1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17
18 #include "mm_internal.h"
19
20 #ifdef CONFIG_PARAVIRT
21 # define STATIC_NOPV
22 #else
23 # define STATIC_NOPV static
24 # define __flush_tlb_local native_flush_tlb_local
25 # define __flush_tlb_global native_flush_tlb_global
26 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
27 # define __flush_tlb_others(msk, info) native_flush_tlb_others(msk, info)
28 #endif
29
30 /*
31 * TLB flushing, formerly SMP-only
32 * c/o Linus Torvalds.
33 *
34 * These mean you can really definitely utterly forget about
35 * writing to user space from interrupts. (Its not allowed anyway).
36 *
37 * Optimizations Manfred Spraul <manfred@colorfullife.com>
38 *
39 * More scalable flush, from Andi Kleen
40 *
41 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
42 */
43
44 /*
45 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
46 * stored in cpu_tlb_state.last_user_mm_ibpb.
47 */
48 #define LAST_USER_MM_IBPB 0x1UL
49
50 /*
51 * The x86 feature is called PCID (Process Context IDentifier). It is similar
52 * to what is traditionally called ASID on the RISC processors.
53 *
54 * We don't use the traditional ASID implementation, where each process/mm gets
55 * its own ASID and flush/restart when we run out of ASID space.
56 *
57 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
58 * that came by on this CPU, allowing cheaper switch_mm between processes on
59 * this CPU.
60 *
61 * We end up with different spaces for different things. To avoid confusion we
62 * use different names for each of them:
63 *
64 * ASID - [0, TLB_NR_DYN_ASIDS-1]
65 * the canonical identifier for an mm
66 *
67 * kPCID - [1, TLB_NR_DYN_ASIDS]
68 * the value we write into the PCID part of CR3; corresponds to the
69 * ASID+1, because PCID 0 is special.
70 *
71 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
72 * for KPTI each mm has two address spaces and thus needs two
73 * PCID values, but we can still do with a single ASID denomination
74 * for each mm. Corresponds to kPCID + 2048.
75 *
76 */
77
78 /* There are 12 bits of space for ASIDS in CR3 */
79 #define CR3_HW_ASID_BITS 12
80
81 /*
82 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
83 * user/kernel switches
84 */
85 #ifdef CONFIG_PAGE_TABLE_ISOLATION
86 # define PTI_CONSUMED_PCID_BITS 1
87 #else
88 # define PTI_CONSUMED_PCID_BITS 0
89 #endif
90
91 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
92
93 /*
94 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
95 * for them being zero-based. Another -1 is because PCID 0 is reserved for
96 * use by non-PCID-aware users.
97 */
98 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
99
100 /*
101 * Given @asid, compute kPCID
102 */
kern_pcid(u16 asid)103 static inline u16 kern_pcid(u16 asid)
104 {
105 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
106
107 #ifdef CONFIG_PAGE_TABLE_ISOLATION
108 /*
109 * Make sure that the dynamic ASID space does not confict with the
110 * bit we are using to switch between user and kernel ASIDs.
111 */
112 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
113
114 /*
115 * The ASID being passed in here should have respected the
116 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
117 */
118 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
119 #endif
120 /*
121 * The dynamically-assigned ASIDs that get passed in are small
122 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
123 * so do not bother to clear it.
124 *
125 * If PCID is on, ASID-aware code paths put the ASID+1 into the
126 * PCID bits. This serves two purposes. It prevents a nasty
127 * situation in which PCID-unaware code saves CR3, loads some other
128 * value (with PCID == 0), and then restores CR3, thus corrupting
129 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
130 * that any bugs involving loading a PCID-enabled CR3 with
131 * CR4.PCIDE off will trigger deterministically.
132 */
133 return asid + 1;
134 }
135
136 /*
137 * Given @asid, compute uPCID
138 */
user_pcid(u16 asid)139 static inline u16 user_pcid(u16 asid)
140 {
141 u16 ret = kern_pcid(asid);
142 #ifdef CONFIG_PAGE_TABLE_ISOLATION
143 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
144 #endif
145 return ret;
146 }
147
build_cr3(pgd_t * pgd,u16 asid)148 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
149 {
150 if (static_cpu_has(X86_FEATURE_PCID)) {
151 return __sme_pa(pgd) | kern_pcid(asid);
152 } else {
153 VM_WARN_ON_ONCE(asid != 0);
154 return __sme_pa(pgd);
155 }
156 }
157
build_cr3_noflush(pgd_t * pgd,u16 asid)158 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
159 {
160 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
161 /*
162 * Use boot_cpu_has() instead of this_cpu_has() as this function
163 * might be called during early boot. This should work even after
164 * boot because all CPU's the have same capabilities:
165 */
166 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
167 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
168 }
169
170 /*
171 * We get here when we do something requiring a TLB invalidation
172 * but could not go invalidate all of the contexts. We do the
173 * necessary invalidation by clearing out the 'ctx_id' which
174 * forces a TLB flush when the context is loaded.
175 */
clear_asid_other(void)176 static void clear_asid_other(void)
177 {
178 u16 asid;
179
180 /*
181 * This is only expected to be set if we have disabled
182 * kernel _PAGE_GLOBAL pages.
183 */
184 if (!static_cpu_has(X86_FEATURE_PTI)) {
185 WARN_ON_ONCE(1);
186 return;
187 }
188
189 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
190 /* Do not need to flush the current asid */
191 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
192 continue;
193 /*
194 * Make sure the next time we go to switch to
195 * this asid, we do a flush:
196 */
197 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
198 }
199 this_cpu_write(cpu_tlbstate.invalidate_other, false);
200 }
201
202 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
203
204
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)205 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
206 u16 *new_asid, bool *need_flush)
207 {
208 u16 asid;
209
210 if (!static_cpu_has(X86_FEATURE_PCID)) {
211 *new_asid = 0;
212 *need_flush = true;
213 return;
214 }
215
216 if (this_cpu_read(cpu_tlbstate.invalidate_other))
217 clear_asid_other();
218
219 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
220 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
221 next->context.ctx_id)
222 continue;
223
224 *new_asid = asid;
225 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
226 next_tlb_gen);
227 return;
228 }
229
230 /*
231 * We don't currently own an ASID slot on this CPU.
232 * Allocate a slot.
233 */
234 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
235 if (*new_asid >= TLB_NR_DYN_ASIDS) {
236 *new_asid = 0;
237 this_cpu_write(cpu_tlbstate.next_asid, 1);
238 }
239 *need_flush = true;
240 }
241
242 /*
243 * Given an ASID, flush the corresponding user ASID. We can delay this
244 * until the next time we switch to it.
245 *
246 * See SWITCH_TO_USER_CR3.
247 */
invalidate_user_asid(u16 asid)248 static inline void invalidate_user_asid(u16 asid)
249 {
250 /* There is no user ASID if address space separation is off */
251 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
252 return;
253
254 /*
255 * We only have a single ASID if PCID is off and the CR3
256 * write will have flushed it.
257 */
258 if (!cpu_feature_enabled(X86_FEATURE_PCID))
259 return;
260
261 if (!static_cpu_has(X86_FEATURE_PTI))
262 return;
263
264 __set_bit(kern_pcid(asid),
265 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
266 }
267
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,bool need_flush)268 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
269 {
270 unsigned long new_mm_cr3;
271
272 if (need_flush) {
273 invalidate_user_asid(new_asid);
274 new_mm_cr3 = build_cr3(pgdir, new_asid);
275 } else {
276 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
277 }
278
279 /*
280 * Caution: many callers of this function expect
281 * that load_cr3() is serializing and orders TLB
282 * fills with respect to the mm_cpumask writes.
283 */
284 write_cr3(new_mm_cr3);
285 }
286
leave_mm(int cpu)287 void leave_mm(int cpu)
288 {
289 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
290
291 /*
292 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
293 * If so, our callers still expect us to flush the TLB, but there
294 * aren't any user TLB entries in init_mm to worry about.
295 *
296 * This needs to happen before any other sanity checks due to
297 * intel_idle's shenanigans.
298 */
299 if (loaded_mm == &init_mm)
300 return;
301
302 /* Warn if we're not lazy. */
303 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
304
305 switch_mm(NULL, &init_mm, NULL);
306 }
307 EXPORT_SYMBOL_GPL(leave_mm);
308
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)309 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
310 struct task_struct *tsk)
311 {
312 unsigned long flags;
313
314 local_irq_save(flags);
315 switch_mm_irqs_off(prev, next, tsk);
316 local_irq_restore(flags);
317 }
318
mm_mangle_tif_spec_ib(struct task_struct * next)319 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
320 {
321 unsigned long next_tif = task_thread_info(next)->flags;
322 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
323
324 return (unsigned long)next->mm | ibpb;
325 }
326
cond_ibpb(struct task_struct * next)327 static void cond_ibpb(struct task_struct *next)
328 {
329 if (!next || !next->mm)
330 return;
331
332 /*
333 * Both, the conditional and the always IBPB mode use the mm
334 * pointer to avoid the IBPB when switching between tasks of the
335 * same process. Using the mm pointer instead of mm->context.ctx_id
336 * opens a hypothetical hole vs. mm_struct reuse, which is more or
337 * less impossible to control by an attacker. Aside of that it
338 * would only affect the first schedule so the theoretically
339 * exposed data is not really interesting.
340 */
341 if (static_branch_likely(&switch_mm_cond_ibpb)) {
342 unsigned long prev_mm, next_mm;
343
344 /*
345 * This is a bit more complex than the always mode because
346 * it has to handle two cases:
347 *
348 * 1) Switch from a user space task (potential attacker)
349 * which has TIF_SPEC_IB set to a user space task
350 * (potential victim) which has TIF_SPEC_IB not set.
351 *
352 * 2) Switch from a user space task (potential attacker)
353 * which has TIF_SPEC_IB not set to a user space task
354 * (potential victim) which has TIF_SPEC_IB set.
355 *
356 * This could be done by unconditionally issuing IBPB when
357 * a task which has TIF_SPEC_IB set is either scheduled in
358 * or out. Though that results in two flushes when:
359 *
360 * - the same user space task is scheduled out and later
361 * scheduled in again and only a kernel thread ran in
362 * between.
363 *
364 * - a user space task belonging to the same process is
365 * scheduled in after a kernel thread ran in between
366 *
367 * - a user space task belonging to the same process is
368 * scheduled in immediately.
369 *
370 * Optimize this with reasonably small overhead for the
371 * above cases. Mangle the TIF_SPEC_IB bit into the mm
372 * pointer of the incoming task which is stored in
373 * cpu_tlbstate.last_user_mm_ibpb for comparison.
374 */
375 next_mm = mm_mangle_tif_spec_ib(next);
376 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
377
378 /*
379 * Issue IBPB only if the mm's are different and one or
380 * both have the IBPB bit set.
381 */
382 if (next_mm != prev_mm &&
383 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
384 indirect_branch_prediction_barrier();
385
386 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
387 }
388
389 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
390 /*
391 * Only flush when switching to a user space task with a
392 * different context than the user space task which ran
393 * last on this CPU.
394 */
395 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
396 indirect_branch_prediction_barrier();
397 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
398 }
399 }
400 }
401
402 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)403 static inline void cr4_update_pce_mm(struct mm_struct *mm)
404 {
405 if (static_branch_unlikely(&rdpmc_always_available_key) ||
406 (!static_branch_unlikely(&rdpmc_never_available_key) &&
407 atomic_read(&mm->context.perf_rdpmc_allowed)))
408 cr4_set_bits_irqsoff(X86_CR4_PCE);
409 else
410 cr4_clear_bits_irqsoff(X86_CR4_PCE);
411 }
412
cr4_update_pce(void * ignored)413 void cr4_update_pce(void *ignored)
414 {
415 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
416 }
417
418 #else
cr4_update_pce_mm(struct mm_struct * mm)419 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
420 #endif
421
switch_mm_irqs_off(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)422 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
423 struct task_struct *tsk)
424 {
425 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
426 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
427 bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
428 unsigned cpu = smp_processor_id();
429 u64 next_tlb_gen;
430 bool need_flush;
431 u16 new_asid;
432
433 /*
434 * NB: The scheduler will call us with prev == next when switching
435 * from lazy TLB mode to normal mode if active_mm isn't changing.
436 * When this happens, we don't assume that CR3 (and hence
437 * cpu_tlbstate.loaded_mm) matches next.
438 *
439 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
440 */
441
442 /* We don't want flush_tlb_func_* to run concurrently with us. */
443 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
444 WARN_ON_ONCE(!irqs_disabled());
445
446 /*
447 * Verify that CR3 is what we think it is. This will catch
448 * hypothetical buggy code that directly switches to swapper_pg_dir
449 * without going through leave_mm() / switch_mm_irqs_off() or that
450 * does something like write_cr3(read_cr3_pa()).
451 *
452 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
453 * isn't free.
454 */
455 #ifdef CONFIG_DEBUG_VM
456 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
457 /*
458 * If we were to BUG here, we'd be very likely to kill
459 * the system so hard that we don't see the call trace.
460 * Try to recover instead by ignoring the error and doing
461 * a global flush to minimize the chance of corruption.
462 *
463 * (This is far from being a fully correct recovery.
464 * Architecturally, the CPU could prefetch something
465 * back into an incorrect ASID slot and leave it there
466 * to cause trouble down the road. It's better than
467 * nothing, though.)
468 */
469 __flush_tlb_all();
470 }
471 #endif
472 this_cpu_write(cpu_tlbstate.is_lazy, false);
473
474 /*
475 * The membarrier system call requires a full memory barrier and
476 * core serialization before returning to user-space, after
477 * storing to rq->curr, when changing mm. This is because
478 * membarrier() sends IPIs to all CPUs that are in the target mm
479 * to make them issue memory barriers. However, if another CPU
480 * switches to/from the target mm concurrently with
481 * membarrier(), it can cause that CPU not to receive an IPI
482 * when it really should issue a memory barrier. Writing to CR3
483 * provides that full memory barrier and core serializing
484 * instruction.
485 */
486 if (real_prev == next) {
487 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
488 next->context.ctx_id);
489
490 /*
491 * Even in lazy TLB mode, the CPU should stay set in the
492 * mm_cpumask. The TLB shootdown code can figure out from
493 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
494 */
495 if (WARN_ON_ONCE(real_prev != &init_mm &&
496 !cpumask_test_cpu(cpu, mm_cpumask(next))))
497 cpumask_set_cpu(cpu, mm_cpumask(next));
498
499 /*
500 * If the CPU is not in lazy TLB mode, we are just switching
501 * from one thread in a process to another thread in the same
502 * process. No TLB flush required.
503 */
504 if (!was_lazy)
505 return;
506
507 /*
508 * Read the tlb_gen to check whether a flush is needed.
509 * If the TLB is up to date, just use it.
510 * The barrier synchronizes with the tlb_gen increment in
511 * the TLB shootdown code.
512 */
513 smp_mb();
514 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
515 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
516 next_tlb_gen)
517 return;
518
519 /*
520 * TLB contents went out of date while we were in lazy
521 * mode. Fall through to the TLB switching code below.
522 */
523 new_asid = prev_asid;
524 need_flush = true;
525 } else {
526 /*
527 * Avoid user/user BTB poisoning by flushing the branch
528 * predictor when switching between processes. This stops
529 * one process from doing Spectre-v2 attacks on another.
530 */
531 cond_ibpb(tsk);
532
533 /*
534 * Stop remote flushes for the previous mm.
535 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
536 * but the bitmap manipulation can cause cache line contention.
537 */
538 if (real_prev != &init_mm) {
539 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
540 mm_cpumask(real_prev)));
541 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
542 }
543
544 /*
545 * Start remote flushes and then read tlb_gen.
546 */
547 if (next != &init_mm)
548 cpumask_set_cpu(cpu, mm_cpumask(next));
549 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
550
551 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
552
553 /* Let nmi_uaccess_okay() know that we're changing CR3. */
554 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
555 barrier();
556 }
557
558 if (need_flush) {
559 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
560 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
561 load_new_mm_cr3(next->pgd, new_asid, true);
562
563 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
564 } else {
565 /* The new ASID is already up to date. */
566 load_new_mm_cr3(next->pgd, new_asid, false);
567
568 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
569 }
570
571 /* Make sure we write CR3 before loaded_mm. */
572 barrier();
573
574 this_cpu_write(cpu_tlbstate.loaded_mm, next);
575 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
576
577 if (next != real_prev) {
578 cr4_update_pce_mm(next);
579 switch_ldt(real_prev, next);
580 }
581 }
582
583 /*
584 * Please ignore the name of this function. It should be called
585 * switch_to_kernel_thread().
586 *
587 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
588 * kernel thread or other context without an mm. Acceptable implementations
589 * include doing nothing whatsoever, switching to init_mm, or various clever
590 * lazy tricks to try to minimize TLB flushes.
591 *
592 * The scheduler reserves the right to call enter_lazy_tlb() several times
593 * in a row. It will notify us that we're going back to a real mm by
594 * calling switch_mm_irqs_off().
595 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)596 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
597 {
598 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
599 return;
600
601 this_cpu_write(cpu_tlbstate.is_lazy, true);
602 }
603
604 /*
605 * Call this when reinitializing a CPU. It fixes the following potential
606 * problems:
607 *
608 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
609 * because the CPU was taken down and came back up with CR3's PCID
610 * bits clear. CPU hotplug can do this.
611 *
612 * - The TLB contains junk in slots corresponding to inactive ASIDs.
613 *
614 * - The CPU went so far out to lunch that it may have missed a TLB
615 * flush.
616 */
initialize_tlbstate_and_flush(void)617 void initialize_tlbstate_and_flush(void)
618 {
619 int i;
620 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
621 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
622 unsigned long cr3 = __read_cr3();
623
624 /* Assert that CR3 already references the right mm. */
625 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
626
627 /*
628 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
629 * doesn't work like other CR4 bits because it can only be set from
630 * long mode.)
631 */
632 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
633 !(cr4_read_shadow() & X86_CR4_PCIDE));
634
635 /* Force ASID 0 and force a TLB flush. */
636 write_cr3(build_cr3(mm->pgd, 0));
637
638 /* Reinitialize tlbstate. */
639 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
640 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
641 this_cpu_write(cpu_tlbstate.next_asid, 1);
642 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
643 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
644
645 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
646 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
647 }
648
649 /*
650 * flush_tlb_func_common()'s memory ordering requirement is that any
651 * TLB fills that happen after we flush the TLB are ordered after we
652 * read active_mm's tlb_gen. We don't need any explicit barriers
653 * because all x86 flush operations are serializing and the
654 * atomic64_read operation won't be reordered by the compiler.
655 */
flush_tlb_func_common(const struct flush_tlb_info * f,bool local,enum tlb_flush_reason reason)656 static void flush_tlb_func_common(const struct flush_tlb_info *f,
657 bool local, enum tlb_flush_reason reason)
658 {
659 /*
660 * We have three different tlb_gen values in here. They are:
661 *
662 * - mm_tlb_gen: the latest generation.
663 * - local_tlb_gen: the generation that this CPU has already caught
664 * up to.
665 * - f->new_tlb_gen: the generation that the requester of the flush
666 * wants us to catch up to.
667 */
668 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
669 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
670 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
671 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
672
673 /* This code cannot presently handle being reentered. */
674 VM_WARN_ON(!irqs_disabled());
675
676 if (unlikely(loaded_mm == &init_mm))
677 return;
678
679 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
680 loaded_mm->context.ctx_id);
681
682 if (this_cpu_read(cpu_tlbstate.is_lazy)) {
683 /*
684 * We're in lazy mode. We need to at least flush our
685 * paging-structure cache to avoid speculatively reading
686 * garbage into our TLB. Since switching to init_mm is barely
687 * slower than a minimal flush, just switch to init_mm.
688 *
689 * This should be rare, with native_flush_tlb_others skipping
690 * IPIs to lazy TLB mode CPUs.
691 */
692 switch_mm_irqs_off(NULL, &init_mm, NULL);
693 return;
694 }
695
696 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
697 /*
698 * There's nothing to do: we're already up to date. This can
699 * happen if two concurrent flushes happen -- the first flush to
700 * be handled can catch us all the way up, leaving no work for
701 * the second flush.
702 */
703 trace_tlb_flush(reason, 0);
704 return;
705 }
706
707 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
708 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
709
710 /*
711 * If we get to this point, we know that our TLB is out of date.
712 * This does not strictly imply that we need to flush (it's
713 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
714 * going to need to flush in the very near future, so we might
715 * as well get it over with.
716 *
717 * The only question is whether to do a full or partial flush.
718 *
719 * We do a partial flush if requested and two extra conditions
720 * are met:
721 *
722 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
723 * we've always done all needed flushes to catch up to
724 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
725 * f->new_tlb_gen == 3, then we know that the flush needed to bring
726 * us up to date for tlb_gen 3 is the partial flush we're
727 * processing.
728 *
729 * As an example of why this check is needed, suppose that there
730 * are two concurrent flushes. The first is a full flush that
731 * changes context.tlb_gen from 1 to 2. The second is a partial
732 * flush that changes context.tlb_gen from 2 to 3. If they get
733 * processed on this CPU in reverse order, we'll see
734 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
735 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
736 * 3, we'd be break the invariant: we'd update local_tlb_gen above
737 * 1 without the full flush that's needed for tlb_gen 2.
738 *
739 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
740 * Partial TLB flushes are not all that much cheaper than full TLB
741 * flushes, so it seems unlikely that it would be a performance win
742 * to do a partial flush if that won't bring our TLB fully up to
743 * date. By doing a full flush instead, we can increase
744 * local_tlb_gen all the way to mm_tlb_gen and we can probably
745 * avoid another flush in the very near future.
746 */
747 if (f->end != TLB_FLUSH_ALL &&
748 f->new_tlb_gen == local_tlb_gen + 1 &&
749 f->new_tlb_gen == mm_tlb_gen) {
750 /* Partial flush */
751 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
752 unsigned long addr = f->start;
753
754 while (addr < f->end) {
755 flush_tlb_one_user(addr);
756 addr += 1UL << f->stride_shift;
757 }
758 if (local)
759 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
760 trace_tlb_flush(reason, nr_invalidate);
761 } else {
762 /* Full flush. */
763 flush_tlb_local();
764 if (local)
765 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
766 trace_tlb_flush(reason, TLB_FLUSH_ALL);
767 }
768
769 /* Both paths above update our state to mm_tlb_gen. */
770 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
771 }
772
flush_tlb_func_local(const void * info,enum tlb_flush_reason reason)773 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
774 {
775 const struct flush_tlb_info *f = info;
776
777 flush_tlb_func_common(f, true, reason);
778 }
779
flush_tlb_func_remote(void * info)780 static void flush_tlb_func_remote(void *info)
781 {
782 const struct flush_tlb_info *f = info;
783
784 inc_irq_stat(irq_tlb_count);
785
786 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
787 return;
788
789 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
790 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
791 }
792
tlb_is_not_lazy(int cpu,void * data)793 static bool tlb_is_not_lazy(int cpu, void *data)
794 {
795 return !per_cpu(cpu_tlbstate.is_lazy, cpu);
796 }
797
native_flush_tlb_others(const struct cpumask * cpumask,const struct flush_tlb_info * info)798 STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
799 const struct flush_tlb_info *info)
800 {
801 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
802 if (info->end == TLB_FLUSH_ALL)
803 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
804 else
805 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
806 (info->end - info->start) >> PAGE_SHIFT);
807
808 /*
809 * If no page tables were freed, we can skip sending IPIs to
810 * CPUs in lazy TLB mode. They will flush the CPU themselves
811 * at the next context switch.
812 *
813 * However, if page tables are getting freed, we need to send the
814 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
815 * up on the new contents of what used to be page tables, while
816 * doing a speculative memory access.
817 */
818 if (info->freed_tables)
819 smp_call_function_many(cpumask, flush_tlb_func_remote,
820 (void *)info, 1);
821 else
822 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
823 (void *)info, 1, cpumask);
824 }
825
flush_tlb_others(const struct cpumask * cpumask,const struct flush_tlb_info * info)826 void flush_tlb_others(const struct cpumask *cpumask,
827 const struct flush_tlb_info *info)
828 {
829 __flush_tlb_others(cpumask, info);
830 }
831
832 /*
833 * See Documentation/x86/tlb.rst for details. We choose 33
834 * because it is large enough to cover the vast majority (at
835 * least 95%) of allocations, and is small enough that we are
836 * confident it will not cause too much overhead. Each single
837 * flush is about 100 ns, so this caps the maximum overhead at
838 * _about_ 3,000 ns.
839 *
840 * This is in units of pages.
841 */
842 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
843
844 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
845
846 #ifdef CONFIG_DEBUG_VM
847 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
848 #endif
849
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)850 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
851 unsigned long start, unsigned long end,
852 unsigned int stride_shift, bool freed_tables,
853 u64 new_tlb_gen)
854 {
855 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
856
857 #ifdef CONFIG_DEBUG_VM
858 /*
859 * Ensure that the following code is non-reentrant and flush_tlb_info
860 * is not overwritten. This means no TLB flushing is initiated by
861 * interrupt handlers and machine-check exception handlers.
862 */
863 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
864 #endif
865
866 info->start = start;
867 info->end = end;
868 info->mm = mm;
869 info->stride_shift = stride_shift;
870 info->freed_tables = freed_tables;
871 info->new_tlb_gen = new_tlb_gen;
872
873 return info;
874 }
875
put_flush_tlb_info(void)876 static inline void put_flush_tlb_info(void)
877 {
878 #ifdef CONFIG_DEBUG_VM
879 /* Complete reentrency prevention checks */
880 barrier();
881 this_cpu_dec(flush_tlb_info_idx);
882 #endif
883 }
884
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)885 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
886 unsigned long end, unsigned int stride_shift,
887 bool freed_tables)
888 {
889 struct flush_tlb_info *info;
890 u64 new_tlb_gen;
891 int cpu;
892
893 cpu = get_cpu();
894
895 /* Should we flush just the requested range? */
896 if ((end == TLB_FLUSH_ALL) ||
897 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
898 start = 0;
899 end = TLB_FLUSH_ALL;
900 }
901
902 /* This is also a barrier that synchronizes with switch_mm(). */
903 new_tlb_gen = inc_mm_tlb_gen(mm);
904
905 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
906 new_tlb_gen);
907
908 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
909 lockdep_assert_irqs_enabled();
910 local_irq_disable();
911 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
912 local_irq_enable();
913 }
914
915 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
916 flush_tlb_others(mm_cpumask(mm), info);
917
918 put_flush_tlb_info();
919 put_cpu();
920 }
921
922
do_flush_tlb_all(void * info)923 static void do_flush_tlb_all(void *info)
924 {
925 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
926 __flush_tlb_all();
927 }
928
flush_tlb_all(void)929 void flush_tlb_all(void)
930 {
931 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
932 on_each_cpu(do_flush_tlb_all, NULL, 1);
933 }
934
do_kernel_range_flush(void * info)935 static void do_kernel_range_flush(void *info)
936 {
937 struct flush_tlb_info *f = info;
938 unsigned long addr;
939
940 /* flush range by one by one 'invlpg' */
941 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
942 flush_tlb_one_kernel(addr);
943 }
944
flush_tlb_kernel_range(unsigned long start,unsigned long end)945 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
946 {
947 /* Balance as user space task's flush, a bit conservative */
948 if (end == TLB_FLUSH_ALL ||
949 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
950 on_each_cpu(do_flush_tlb_all, NULL, 1);
951 } else {
952 struct flush_tlb_info *info;
953
954 preempt_disable();
955 info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
956
957 on_each_cpu(do_kernel_range_flush, info, 1);
958
959 put_flush_tlb_info();
960 preempt_enable();
961 }
962 }
963
964 /*
965 * This can be used from process context to figure out what the value of
966 * CR3 is without needing to do a (slow) __read_cr3().
967 *
968 * It's intended to be used for code like KVM that sneakily changes CR3
969 * and needs to restore it. It needs to be used very carefully.
970 */
__get_current_cr3_fast(void)971 unsigned long __get_current_cr3_fast(void)
972 {
973 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
974 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
975
976 /* For now, be very restrictive about when this can be called. */
977 VM_WARN_ON(in_nmi() || preemptible());
978
979 VM_BUG_ON(cr3 != __read_cr3());
980 return cr3;
981 }
982 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
983
984 /*
985 * Flush one page in the kernel mapping
986 */
flush_tlb_one_kernel(unsigned long addr)987 void flush_tlb_one_kernel(unsigned long addr)
988 {
989 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
990
991 /*
992 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
993 * paravirt equivalent. Even with PCID, this is sufficient: we only
994 * use PCID if we also use global PTEs for the kernel mapping, and
995 * INVLPG flushes global translations across all address spaces.
996 *
997 * If PTI is on, then the kernel is mapped with non-global PTEs, and
998 * __flush_tlb_one_user() will flush the given address for the current
999 * kernel address space and for its usermode counterpart, but it does
1000 * not flush it for other address spaces.
1001 */
1002 flush_tlb_one_user(addr);
1003
1004 if (!static_cpu_has(X86_FEATURE_PTI))
1005 return;
1006
1007 /*
1008 * See above. We need to propagate the flush to all other address
1009 * spaces. In principle, we only need to propagate it to kernelmode
1010 * address spaces, but the extra bookkeeping we would need is not
1011 * worth it.
1012 */
1013 this_cpu_write(cpu_tlbstate.invalidate_other, true);
1014 }
1015
1016 /*
1017 * Flush one page in the user mapping
1018 */
native_flush_tlb_one_user(unsigned long addr)1019 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1020 {
1021 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1022
1023 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1024
1025 if (!static_cpu_has(X86_FEATURE_PTI))
1026 return;
1027
1028 /*
1029 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1030 * Just use invalidate_user_asid() in case we are called early.
1031 */
1032 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1033 invalidate_user_asid(loaded_mm_asid);
1034 else
1035 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1036 }
1037
flush_tlb_one_user(unsigned long addr)1038 void flush_tlb_one_user(unsigned long addr)
1039 {
1040 __flush_tlb_one_user(addr);
1041 }
1042
1043 /*
1044 * Flush everything
1045 */
native_flush_tlb_global(void)1046 STATIC_NOPV void native_flush_tlb_global(void)
1047 {
1048 unsigned long cr4, flags;
1049
1050 if (static_cpu_has(X86_FEATURE_INVPCID)) {
1051 /*
1052 * Using INVPCID is considerably faster than a pair of writes
1053 * to CR4 sandwiched inside an IRQ flag save/restore.
1054 *
1055 * Note, this works with CR4.PCIDE=0 or 1.
1056 */
1057 invpcid_flush_all();
1058 return;
1059 }
1060
1061 /*
1062 * Read-modify-write to CR4 - protect it from preemption and
1063 * from interrupts. (Use the raw variant because this code can
1064 * be called from deep inside debugging code.)
1065 */
1066 raw_local_irq_save(flags);
1067
1068 cr4 = this_cpu_read(cpu_tlbstate.cr4);
1069 /* toggle PGE */
1070 native_write_cr4(cr4 ^ X86_CR4_PGE);
1071 /* write old PGE again and flush TLBs */
1072 native_write_cr4(cr4);
1073
1074 raw_local_irq_restore(flags);
1075 }
1076
1077 /*
1078 * Flush the entire current user mapping
1079 */
native_flush_tlb_local(void)1080 STATIC_NOPV void native_flush_tlb_local(void)
1081 {
1082 /*
1083 * Preemption or interrupts must be disabled to protect the access
1084 * to the per CPU variable and to prevent being preempted between
1085 * read_cr3() and write_cr3().
1086 */
1087 WARN_ON_ONCE(preemptible());
1088
1089 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1090
1091 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1092 native_write_cr3(__native_read_cr3());
1093 }
1094
flush_tlb_local(void)1095 void flush_tlb_local(void)
1096 {
1097 __flush_tlb_local();
1098 }
1099
1100 /*
1101 * Flush everything
1102 */
__flush_tlb_all(void)1103 void __flush_tlb_all(void)
1104 {
1105 /*
1106 * This is to catch users with enabled preemption and the PGE feature
1107 * and don't trigger the warning in __native_flush_tlb().
1108 */
1109 VM_WARN_ON_ONCE(preemptible());
1110
1111 if (boot_cpu_has(X86_FEATURE_PGE)) {
1112 __flush_tlb_global();
1113 } else {
1114 /*
1115 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1116 */
1117 flush_tlb_local();
1118 }
1119 }
1120 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1121
1122 /*
1123 * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
1124 * This means that the 'struct flush_tlb_info' that describes which mappings to
1125 * flush is actually fixed. We therefore set a single fixed struct and use it in
1126 * arch_tlbbatch_flush().
1127 */
1128 static const struct flush_tlb_info full_flush_tlb_info = {
1129 .mm = NULL,
1130 .start = 0,
1131 .end = TLB_FLUSH_ALL,
1132 };
1133
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1134 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1135 {
1136 int cpu = get_cpu();
1137
1138 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1139 lockdep_assert_irqs_enabled();
1140 local_irq_disable();
1141 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
1142 local_irq_enable();
1143 }
1144
1145 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
1146 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
1147
1148 cpumask_clear(&batch->cpumask);
1149
1150 put_cpu();
1151 }
1152
1153 /*
1154 * Blindly accessing user memory from NMI context can be dangerous
1155 * if we're in the middle of switching the current user task or
1156 * switching the loaded mm. It can also be dangerous if we
1157 * interrupted some kernel code that was temporarily using a
1158 * different mm.
1159 */
nmi_uaccess_okay(void)1160 bool nmi_uaccess_okay(void)
1161 {
1162 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1163 struct mm_struct *current_mm = current->mm;
1164
1165 VM_WARN_ON_ONCE(!loaded_mm);
1166
1167 /*
1168 * The condition we want to check is
1169 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1170 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1171 * is supposed to be reasonably fast.
1172 *
1173 * Instead, we check the almost equivalent but somewhat conservative
1174 * condition below, and we rely on the fact that switch_mm_irqs_off()
1175 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1176 */
1177 if (loaded_mm != current_mm)
1178 return false;
1179
1180 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1181
1182 return true;
1183 }
1184
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1185 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1186 size_t count, loff_t *ppos)
1187 {
1188 char buf[32];
1189 unsigned int len;
1190
1191 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1192 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1193 }
1194
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1195 static ssize_t tlbflush_write_file(struct file *file,
1196 const char __user *user_buf, size_t count, loff_t *ppos)
1197 {
1198 char buf[32];
1199 ssize_t len;
1200 int ceiling;
1201
1202 len = min(count, sizeof(buf) - 1);
1203 if (copy_from_user(buf, user_buf, len))
1204 return -EFAULT;
1205
1206 buf[len] = '\0';
1207 if (kstrtoint(buf, 0, &ceiling))
1208 return -EINVAL;
1209
1210 if (ceiling < 0)
1211 return -EINVAL;
1212
1213 tlb_single_page_flush_ceiling = ceiling;
1214 return count;
1215 }
1216
1217 static const struct file_operations fops_tlbflush = {
1218 .read = tlbflush_read_file,
1219 .write = tlbflush_write_file,
1220 .llseek = default_llseek,
1221 };
1222
create_tlb_single_page_flush_ceiling(void)1223 static int __init create_tlb_single_page_flush_ceiling(void)
1224 {
1225 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1226 arch_debugfs_dir, NULL, &fops_tlbflush);
1227 return 0;
1228 }
1229 late_initcall(create_tlb_single_page_flush_ceiling);
1230