1 /*
2 * Copyright(c) 2015-2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/delay.h>
49 #include "hfi.h"
50 #include "qp.h"
51 #include "trace.h"
52
53 #define SC(name) SEND_CTXT_##name
54 /*
55 * Send Context functions
56 */
57 static void sc_wait_for_packet_egress(struct send_context *sc, int pause);
58
59 /*
60 * Set the CM reset bit and wait for it to clear. Use the provided
61 * sendctrl register. This routine has no locking.
62 */
__cm_reset(struct hfi1_devdata * dd,u64 sendctrl)63 void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl)
64 {
65 write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK);
66 while (1) {
67 udelay(1);
68 sendctrl = read_csr(dd, SEND_CTRL);
69 if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0)
70 break;
71 }
72 }
73
74 /* global control of PIO send */
pio_send_control(struct hfi1_devdata * dd,int op)75 void pio_send_control(struct hfi1_devdata *dd, int op)
76 {
77 u64 reg, mask;
78 unsigned long flags;
79 int write = 1; /* write sendctrl back */
80 int flush = 0; /* re-read sendctrl to make sure it is flushed */
81 int i;
82
83 spin_lock_irqsave(&dd->sendctrl_lock, flags);
84
85 reg = read_csr(dd, SEND_CTRL);
86 switch (op) {
87 case PSC_GLOBAL_ENABLE:
88 reg |= SEND_CTRL_SEND_ENABLE_SMASK;
89 /* Fall through */
90 case PSC_DATA_VL_ENABLE:
91 mask = 0;
92 for (i = 0; i < ARRAY_SIZE(dd->vld); i++)
93 if (!dd->vld[i].mtu)
94 mask |= BIT_ULL(i);
95 /* Disallow sending on VLs not enabled */
96 mask = (mask & SEND_CTRL_UNSUPPORTED_VL_MASK) <<
97 SEND_CTRL_UNSUPPORTED_VL_SHIFT;
98 reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask;
99 break;
100 case PSC_GLOBAL_DISABLE:
101 reg &= ~SEND_CTRL_SEND_ENABLE_SMASK;
102 break;
103 case PSC_GLOBAL_VLARB_ENABLE:
104 reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
105 break;
106 case PSC_GLOBAL_VLARB_DISABLE:
107 reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
108 break;
109 case PSC_CM_RESET:
110 __cm_reset(dd, reg);
111 write = 0; /* CSR already written (and flushed) */
112 break;
113 case PSC_DATA_VL_DISABLE:
114 reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK;
115 flush = 1;
116 break;
117 default:
118 dd_dev_err(dd, "%s: invalid control %d\n", __func__, op);
119 break;
120 }
121
122 if (write) {
123 write_csr(dd, SEND_CTRL, reg);
124 if (flush)
125 (void)read_csr(dd, SEND_CTRL); /* flush write */
126 }
127
128 spin_unlock_irqrestore(&dd->sendctrl_lock, flags);
129 }
130
131 /* number of send context memory pools */
132 #define NUM_SC_POOLS 2
133
134 /* Send Context Size (SCS) wildcards */
135 #define SCS_POOL_0 -1
136 #define SCS_POOL_1 -2
137
138 /* Send Context Count (SCC) wildcards */
139 #define SCC_PER_VL -1
140 #define SCC_PER_CPU -2
141 #define SCC_PER_KRCVQ -3
142
143 /* Send Context Size (SCS) constants */
144 #define SCS_ACK_CREDITS 32
145 #define SCS_VL15_CREDITS 102 /* 3 pkts of 2048B data + 128B header */
146
147 #define PIO_THRESHOLD_CEILING 4096
148
149 #define PIO_WAIT_BATCH_SIZE 5
150
151 /* default send context sizes */
152 static struct sc_config_sizes sc_config_sizes[SC_MAX] = {
153 [SC_KERNEL] = { .size = SCS_POOL_0, /* even divide, pool 0 */
154 .count = SCC_PER_VL }, /* one per NUMA */
155 [SC_ACK] = { .size = SCS_ACK_CREDITS,
156 .count = SCC_PER_KRCVQ },
157 [SC_USER] = { .size = SCS_POOL_0, /* even divide, pool 0 */
158 .count = SCC_PER_CPU }, /* one per CPU */
159 [SC_VL15] = { .size = SCS_VL15_CREDITS,
160 .count = 1 },
161
162 };
163
164 /* send context memory pool configuration */
165 struct mem_pool_config {
166 int centipercent; /* % of memory, in 100ths of 1% */
167 int absolute_blocks; /* absolute block count */
168 };
169
170 /* default memory pool configuration: 100% in pool 0 */
171 static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = {
172 /* centi%, abs blocks */
173 { 10000, -1 }, /* pool 0 */
174 { 0, -1 }, /* pool 1 */
175 };
176
177 /* memory pool information, used when calculating final sizes */
178 struct mem_pool_info {
179 int centipercent; /*
180 * 100th of 1% of memory to use, -1 if blocks
181 * already set
182 */
183 int count; /* count of contexts in the pool */
184 int blocks; /* block size of the pool */
185 int size; /* context size, in blocks */
186 };
187
188 /*
189 * Convert a pool wildcard to a valid pool index. The wildcards
190 * start at -1 and increase negatively. Map them as:
191 * -1 => 0
192 * -2 => 1
193 * etc.
194 *
195 * Return -1 on non-wildcard input, otherwise convert to a pool number.
196 */
wildcard_to_pool(int wc)197 static int wildcard_to_pool(int wc)
198 {
199 if (wc >= 0)
200 return -1; /* non-wildcard */
201 return -wc - 1;
202 }
203
204 static const char *sc_type_names[SC_MAX] = {
205 "kernel",
206 "ack",
207 "user",
208 "vl15"
209 };
210
sc_type_name(int index)211 static const char *sc_type_name(int index)
212 {
213 if (index < 0 || index >= SC_MAX)
214 return "unknown";
215 return sc_type_names[index];
216 }
217
218 /*
219 * Read the send context memory pool configuration and send context
220 * size configuration. Replace any wildcards and come up with final
221 * counts and sizes for the send context types.
222 */
init_sc_pools_and_sizes(struct hfi1_devdata * dd)223 int init_sc_pools_and_sizes(struct hfi1_devdata *dd)
224 {
225 struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } };
226 int total_blocks = (chip_pio_mem_size(dd) / PIO_BLOCK_SIZE) - 1;
227 int total_contexts = 0;
228 int fixed_blocks;
229 int pool_blocks;
230 int used_blocks;
231 int cp_total; /* centipercent total */
232 int ab_total; /* absolute block total */
233 int extra;
234 int i;
235
236 /*
237 * When SDMA is enabled, kernel context pio packet size is capped by
238 * "piothreshold". Reduce pio buffer allocation for kernel context by
239 * setting it to a fixed size. The allocation allows 3-deep buffering
240 * of the largest pio packets plus up to 128 bytes header, sufficient
241 * to maintain verbs performance.
242 *
243 * When SDMA is disabled, keep the default pooling allocation.
244 */
245 if (HFI1_CAP_IS_KSET(SDMA)) {
246 u16 max_pkt_size = (piothreshold < PIO_THRESHOLD_CEILING) ?
247 piothreshold : PIO_THRESHOLD_CEILING;
248 sc_config_sizes[SC_KERNEL].size =
249 3 * (max_pkt_size + 128) / PIO_BLOCK_SIZE;
250 }
251
252 /*
253 * Step 0:
254 * - copy the centipercents/absolute sizes from the pool config
255 * - sanity check these values
256 * - add up centipercents, then later check for full value
257 * - add up absolute blocks, then later check for over-commit
258 */
259 cp_total = 0;
260 ab_total = 0;
261 for (i = 0; i < NUM_SC_POOLS; i++) {
262 int cp = sc_mem_pool_config[i].centipercent;
263 int ab = sc_mem_pool_config[i].absolute_blocks;
264
265 /*
266 * A negative value is "unused" or "invalid". Both *can*
267 * be valid, but centipercent wins, so check that first
268 */
269 if (cp >= 0) { /* centipercent valid */
270 cp_total += cp;
271 } else if (ab >= 0) { /* absolute blocks valid */
272 ab_total += ab;
273 } else { /* neither valid */
274 dd_dev_err(
275 dd,
276 "Send context memory pool %d: both the block count and centipercent are invalid\n",
277 i);
278 return -EINVAL;
279 }
280
281 mem_pool_info[i].centipercent = cp;
282 mem_pool_info[i].blocks = ab;
283 }
284
285 /* do not use both % and absolute blocks for different pools */
286 if (cp_total != 0 && ab_total != 0) {
287 dd_dev_err(
288 dd,
289 "All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n");
290 return -EINVAL;
291 }
292
293 /* if any percentages are present, they must add up to 100% x 100 */
294 if (cp_total != 0 && cp_total != 10000) {
295 dd_dev_err(
296 dd,
297 "Send context memory pool centipercent is %d, expecting 10000\n",
298 cp_total);
299 return -EINVAL;
300 }
301
302 /* the absolute pool total cannot be more than the mem total */
303 if (ab_total > total_blocks) {
304 dd_dev_err(
305 dd,
306 "Send context memory pool absolute block count %d is larger than the memory size %d\n",
307 ab_total, total_blocks);
308 return -EINVAL;
309 }
310
311 /*
312 * Step 2:
313 * - copy from the context size config
314 * - replace context type wildcard counts with real values
315 * - add up non-memory pool block sizes
316 * - add up memory pool user counts
317 */
318 fixed_blocks = 0;
319 for (i = 0; i < SC_MAX; i++) {
320 int count = sc_config_sizes[i].count;
321 int size = sc_config_sizes[i].size;
322 int pool;
323
324 /*
325 * Sanity check count: Either a positive value or
326 * one of the expected wildcards is valid. The positive
327 * value is checked later when we compare against total
328 * memory available.
329 */
330 if (i == SC_ACK) {
331 count = dd->n_krcv_queues;
332 } else if (i == SC_KERNEL) {
333 count = INIT_SC_PER_VL * num_vls;
334 } else if (count == SCC_PER_CPU) {
335 count = dd->num_rcv_contexts - dd->n_krcv_queues;
336 } else if (count < 0) {
337 dd_dev_err(
338 dd,
339 "%s send context invalid count wildcard %d\n",
340 sc_type_name(i), count);
341 return -EINVAL;
342 }
343 if (total_contexts + count > chip_send_contexts(dd))
344 count = chip_send_contexts(dd) - total_contexts;
345
346 total_contexts += count;
347
348 /*
349 * Sanity check pool: The conversion will return a pool
350 * number or -1 if a fixed (non-negative) value. The fixed
351 * value is checked later when we compare against
352 * total memory available.
353 */
354 pool = wildcard_to_pool(size);
355 if (pool == -1) { /* non-wildcard */
356 fixed_blocks += size * count;
357 } else if (pool < NUM_SC_POOLS) { /* valid wildcard */
358 mem_pool_info[pool].count += count;
359 } else { /* invalid wildcard */
360 dd_dev_err(
361 dd,
362 "%s send context invalid pool wildcard %d\n",
363 sc_type_name(i), size);
364 return -EINVAL;
365 }
366
367 dd->sc_sizes[i].count = count;
368 dd->sc_sizes[i].size = size;
369 }
370 if (fixed_blocks > total_blocks) {
371 dd_dev_err(
372 dd,
373 "Send context fixed block count, %u, larger than total block count %u\n",
374 fixed_blocks, total_blocks);
375 return -EINVAL;
376 }
377
378 /* step 3: calculate the blocks in the pools, and pool context sizes */
379 pool_blocks = total_blocks - fixed_blocks;
380 if (ab_total > pool_blocks) {
381 dd_dev_err(
382 dd,
383 "Send context fixed pool sizes, %u, larger than pool block count %u\n",
384 ab_total, pool_blocks);
385 return -EINVAL;
386 }
387 /* subtract off the fixed pool blocks */
388 pool_blocks -= ab_total;
389
390 for (i = 0; i < NUM_SC_POOLS; i++) {
391 struct mem_pool_info *pi = &mem_pool_info[i];
392
393 /* % beats absolute blocks */
394 if (pi->centipercent >= 0)
395 pi->blocks = (pool_blocks * pi->centipercent) / 10000;
396
397 if (pi->blocks == 0 && pi->count != 0) {
398 dd_dev_err(
399 dd,
400 "Send context memory pool %d has %u contexts, but no blocks\n",
401 i, pi->count);
402 return -EINVAL;
403 }
404 if (pi->count == 0) {
405 /* warn about wasted blocks */
406 if (pi->blocks != 0)
407 dd_dev_err(
408 dd,
409 "Send context memory pool %d has %u blocks, but zero contexts\n",
410 i, pi->blocks);
411 pi->size = 0;
412 } else {
413 pi->size = pi->blocks / pi->count;
414 }
415 }
416
417 /* step 4: fill in the context type sizes from the pool sizes */
418 used_blocks = 0;
419 for (i = 0; i < SC_MAX; i++) {
420 if (dd->sc_sizes[i].size < 0) {
421 unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size);
422
423 WARN_ON_ONCE(pool >= NUM_SC_POOLS);
424 dd->sc_sizes[i].size = mem_pool_info[pool].size;
425 }
426 /* make sure we are not larger than what is allowed by the HW */
427 #define PIO_MAX_BLOCKS 1024
428 if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS)
429 dd->sc_sizes[i].size = PIO_MAX_BLOCKS;
430
431 /* calculate our total usage */
432 used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count;
433 }
434 extra = total_blocks - used_blocks;
435 if (extra != 0)
436 dd_dev_info(dd, "unused send context blocks: %d\n", extra);
437
438 return total_contexts;
439 }
440
init_send_contexts(struct hfi1_devdata * dd)441 int init_send_contexts(struct hfi1_devdata *dd)
442 {
443 u16 base;
444 int ret, i, j, context;
445
446 ret = init_credit_return(dd);
447 if (ret)
448 return ret;
449
450 dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8),
451 GFP_KERNEL);
452 dd->send_contexts = kcalloc(dd->num_send_contexts,
453 sizeof(struct send_context_info),
454 GFP_KERNEL);
455 if (!dd->send_contexts || !dd->hw_to_sw) {
456 kfree(dd->hw_to_sw);
457 kfree(dd->send_contexts);
458 free_credit_return(dd);
459 return -ENOMEM;
460 }
461
462 /* hardware context map starts with invalid send context indices */
463 for (i = 0; i < TXE_NUM_CONTEXTS; i++)
464 dd->hw_to_sw[i] = INVALID_SCI;
465
466 /*
467 * All send contexts have their credit sizes. Allocate credits
468 * for each context one after another from the global space.
469 */
470 context = 0;
471 base = 1;
472 for (i = 0; i < SC_MAX; i++) {
473 struct sc_config_sizes *scs = &dd->sc_sizes[i];
474
475 for (j = 0; j < scs->count; j++) {
476 struct send_context_info *sci =
477 &dd->send_contexts[context];
478 sci->type = i;
479 sci->base = base;
480 sci->credits = scs->size;
481
482 context++;
483 base += scs->size;
484 }
485 }
486
487 return 0;
488 }
489
490 /*
491 * Allocate a software index and hardware context of the given type.
492 *
493 * Must be called with dd->sc_lock held.
494 */
sc_hw_alloc(struct hfi1_devdata * dd,int type,u32 * sw_index,u32 * hw_context)495 static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index,
496 u32 *hw_context)
497 {
498 struct send_context_info *sci;
499 u32 index;
500 u32 context;
501
502 for (index = 0, sci = &dd->send_contexts[0];
503 index < dd->num_send_contexts; index++, sci++) {
504 if (sci->type == type && sci->allocated == 0) {
505 sci->allocated = 1;
506 /* use a 1:1 mapping, but make them non-equal */
507 context = chip_send_contexts(dd) - index - 1;
508 dd->hw_to_sw[context] = index;
509 *sw_index = index;
510 *hw_context = context;
511 return 0; /* success */
512 }
513 }
514 dd_dev_err(dd, "Unable to locate a free type %d send context\n", type);
515 return -ENOSPC;
516 }
517
518 /*
519 * Free the send context given by its software index.
520 *
521 * Must be called with dd->sc_lock held.
522 */
sc_hw_free(struct hfi1_devdata * dd,u32 sw_index,u32 hw_context)523 static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context)
524 {
525 struct send_context_info *sci;
526
527 sci = &dd->send_contexts[sw_index];
528 if (!sci->allocated) {
529 dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n",
530 __func__, sw_index, hw_context);
531 }
532 sci->allocated = 0;
533 dd->hw_to_sw[hw_context] = INVALID_SCI;
534 }
535
536 /* return the base context of a context in a group */
group_context(u32 context,u32 group)537 static inline u32 group_context(u32 context, u32 group)
538 {
539 return (context >> group) << group;
540 }
541
542 /* return the size of a group */
group_size(u32 group)543 static inline u32 group_size(u32 group)
544 {
545 return 1 << group;
546 }
547
548 /*
549 * Obtain the credit return addresses, kernel virtual and bus, for the
550 * given sc.
551 *
552 * To understand this routine:
553 * o va and dma are arrays of struct credit_return. One for each physical
554 * send context, per NUMA.
555 * o Each send context always looks in its relative location in a struct
556 * credit_return for its credit return.
557 * o Each send context in a group must have its return address CSR programmed
558 * with the same value. Use the address of the first send context in the
559 * group.
560 */
cr_group_addresses(struct send_context * sc,dma_addr_t * dma)561 static void cr_group_addresses(struct send_context *sc, dma_addr_t *dma)
562 {
563 u32 gc = group_context(sc->hw_context, sc->group);
564 u32 index = sc->hw_context & 0x7;
565
566 sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index];
567 *dma = (unsigned long)
568 &((struct credit_return *)sc->dd->cr_base[sc->node].dma)[gc];
569 }
570
571 /*
572 * Work queue function triggered in error interrupt routine for
573 * kernel contexts.
574 */
sc_halted(struct work_struct * work)575 static void sc_halted(struct work_struct *work)
576 {
577 struct send_context *sc;
578
579 sc = container_of(work, struct send_context, halt_work);
580 sc_restart(sc);
581 }
582
583 /*
584 * Calculate PIO block threshold for this send context using the given MTU.
585 * Trigger a return when one MTU plus optional header of credits remain.
586 *
587 * Parameter mtu is in bytes.
588 * Parameter hdrqentsize is in DWORDs.
589 *
590 * Return value is what to write into the CSR: trigger return when
591 * unreturned credits pass this count.
592 */
sc_mtu_to_threshold(struct send_context * sc,u32 mtu,u32 hdrqentsize)593 u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize)
594 {
595 u32 release_credits;
596 u32 threshold;
597
598 /* add in the header size, then divide by the PIO block size */
599 mtu += hdrqentsize << 2;
600 release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE);
601
602 /* check against this context's credits */
603 if (sc->credits <= release_credits)
604 threshold = 1;
605 else
606 threshold = sc->credits - release_credits;
607
608 return threshold;
609 }
610
611 /*
612 * Calculate credit threshold in terms of percent of the allocated credits.
613 * Trigger when unreturned credits equal or exceed the percentage of the whole.
614 *
615 * Return value is what to write into the CSR: trigger return when
616 * unreturned credits pass this count.
617 */
sc_percent_to_threshold(struct send_context * sc,u32 percent)618 u32 sc_percent_to_threshold(struct send_context *sc, u32 percent)
619 {
620 return (sc->credits * percent) / 100;
621 }
622
623 /*
624 * Set the credit return threshold.
625 */
sc_set_cr_threshold(struct send_context * sc,u32 new_threshold)626 void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold)
627 {
628 unsigned long flags;
629 u32 old_threshold;
630 int force_return = 0;
631
632 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
633
634 old_threshold = (sc->credit_ctrl >>
635 SC(CREDIT_CTRL_THRESHOLD_SHIFT))
636 & SC(CREDIT_CTRL_THRESHOLD_MASK);
637
638 if (new_threshold != old_threshold) {
639 sc->credit_ctrl =
640 (sc->credit_ctrl
641 & ~SC(CREDIT_CTRL_THRESHOLD_SMASK))
642 | ((new_threshold
643 & SC(CREDIT_CTRL_THRESHOLD_MASK))
644 << SC(CREDIT_CTRL_THRESHOLD_SHIFT));
645 write_kctxt_csr(sc->dd, sc->hw_context,
646 SC(CREDIT_CTRL), sc->credit_ctrl);
647
648 /* force a credit return on change to avoid a possible stall */
649 force_return = 1;
650 }
651
652 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
653
654 if (force_return)
655 sc_return_credits(sc);
656 }
657
658 /*
659 * set_pio_integrity
660 *
661 * Set the CHECK_ENABLE register for the send context 'sc'.
662 */
set_pio_integrity(struct send_context * sc)663 void set_pio_integrity(struct send_context *sc)
664 {
665 struct hfi1_devdata *dd = sc->dd;
666 u32 hw_context = sc->hw_context;
667 int type = sc->type;
668
669 write_kctxt_csr(dd, hw_context,
670 SC(CHECK_ENABLE),
671 hfi1_pkt_default_send_ctxt_mask(dd, type));
672 }
673
get_buffers_allocated(struct send_context * sc)674 static u32 get_buffers_allocated(struct send_context *sc)
675 {
676 int cpu;
677 u32 ret = 0;
678
679 for_each_possible_cpu(cpu)
680 ret += *per_cpu_ptr(sc->buffers_allocated, cpu);
681 return ret;
682 }
683
reset_buffers_allocated(struct send_context * sc)684 static void reset_buffers_allocated(struct send_context *sc)
685 {
686 int cpu;
687
688 for_each_possible_cpu(cpu)
689 (*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0;
690 }
691
692 /*
693 * Allocate a NUMA relative send context structure of the given type along
694 * with a HW context.
695 */
sc_alloc(struct hfi1_devdata * dd,int type,uint hdrqentsize,int numa)696 struct send_context *sc_alloc(struct hfi1_devdata *dd, int type,
697 uint hdrqentsize, int numa)
698 {
699 struct send_context_info *sci;
700 struct send_context *sc = NULL;
701 dma_addr_t dma;
702 unsigned long flags;
703 u64 reg;
704 u32 thresh;
705 u32 sw_index;
706 u32 hw_context;
707 int ret;
708 u8 opval, opmask;
709
710 /* do not allocate while frozen */
711 if (dd->flags & HFI1_FROZEN)
712 return NULL;
713
714 sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa);
715 if (!sc)
716 return NULL;
717
718 sc->buffers_allocated = alloc_percpu(u32);
719 if (!sc->buffers_allocated) {
720 kfree(sc);
721 dd_dev_err(dd,
722 "Cannot allocate buffers_allocated per cpu counters\n"
723 );
724 return NULL;
725 }
726
727 spin_lock_irqsave(&dd->sc_lock, flags);
728 ret = sc_hw_alloc(dd, type, &sw_index, &hw_context);
729 if (ret) {
730 spin_unlock_irqrestore(&dd->sc_lock, flags);
731 free_percpu(sc->buffers_allocated);
732 kfree(sc);
733 return NULL;
734 }
735
736 sci = &dd->send_contexts[sw_index];
737 sci->sc = sc;
738
739 sc->dd = dd;
740 sc->node = numa;
741 sc->type = type;
742 spin_lock_init(&sc->alloc_lock);
743 spin_lock_init(&sc->release_lock);
744 spin_lock_init(&sc->credit_ctrl_lock);
745 seqlock_init(&sc->waitlock);
746 INIT_LIST_HEAD(&sc->piowait);
747 INIT_WORK(&sc->halt_work, sc_halted);
748 init_waitqueue_head(&sc->halt_wait);
749
750 /* grouping is always single context for now */
751 sc->group = 0;
752
753 sc->sw_index = sw_index;
754 sc->hw_context = hw_context;
755 cr_group_addresses(sc, &dma);
756 sc->credits = sci->credits;
757 sc->size = sc->credits * PIO_BLOCK_SIZE;
758
759 /* PIO Send Memory Address details */
760 #define PIO_ADDR_CONTEXT_MASK 0xfful
761 #define PIO_ADDR_CONTEXT_SHIFT 16
762 sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK)
763 << PIO_ADDR_CONTEXT_SHIFT);
764
765 /* set base and credits */
766 reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK))
767 << SC(CTRL_CTXT_DEPTH_SHIFT))
768 | ((sci->base & SC(CTRL_CTXT_BASE_MASK))
769 << SC(CTRL_CTXT_BASE_SHIFT));
770 write_kctxt_csr(dd, hw_context, SC(CTRL), reg);
771
772 set_pio_integrity(sc);
773
774 /* unmask all errors */
775 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1);
776
777 /* set the default partition key */
778 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY),
779 (SC(CHECK_PARTITION_KEY_VALUE_MASK) &
780 DEFAULT_PKEY) <<
781 SC(CHECK_PARTITION_KEY_VALUE_SHIFT));
782
783 /* per context type checks */
784 if (type == SC_USER) {
785 opval = USER_OPCODE_CHECK_VAL;
786 opmask = USER_OPCODE_CHECK_MASK;
787 } else {
788 opval = OPCODE_CHECK_VAL_DISABLED;
789 opmask = OPCODE_CHECK_MASK_DISABLED;
790 }
791
792 /* set the send context check opcode mask and value */
793 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE),
794 ((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) |
795 ((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT)));
796
797 /* set up credit return */
798 reg = dma & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK);
799 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg);
800
801 /*
802 * Calculate the initial credit return threshold.
803 *
804 * For Ack contexts, set a threshold for half the credits.
805 * For User contexts use the given percentage. This has been
806 * sanitized on driver start-up.
807 * For Kernel contexts, use the default MTU plus a header
808 * or half the credits, whichever is smaller. This should
809 * work for both the 3-deep buffering allocation and the
810 * pooling allocation.
811 */
812 if (type == SC_ACK) {
813 thresh = sc_percent_to_threshold(sc, 50);
814 } else if (type == SC_USER) {
815 thresh = sc_percent_to_threshold(sc,
816 user_credit_return_threshold);
817 } else { /* kernel */
818 thresh = min(sc_percent_to_threshold(sc, 50),
819 sc_mtu_to_threshold(sc, hfi1_max_mtu,
820 hdrqentsize));
821 }
822 reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT);
823 /* add in early return */
824 if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN))
825 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
826 else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */
827 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
828
829 /* set up write-through credit_ctrl */
830 sc->credit_ctrl = reg;
831 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg);
832
833 /* User send contexts should not allow sending on VL15 */
834 if (type == SC_USER) {
835 reg = 1ULL << 15;
836 write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg);
837 }
838
839 spin_unlock_irqrestore(&dd->sc_lock, flags);
840
841 /*
842 * Allocate shadow ring to track outstanding PIO buffers _after_
843 * unlocking. We don't know the size until the lock is held and
844 * we can't allocate while the lock is held. No one is using
845 * the context yet, so allocate it now.
846 *
847 * User contexts do not get a shadow ring.
848 */
849 if (type != SC_USER) {
850 /*
851 * Size the shadow ring 1 larger than the number of credits
852 * so head == tail can mean empty.
853 */
854 sc->sr_size = sci->credits + 1;
855 sc->sr = kcalloc_node(sc->sr_size,
856 sizeof(union pio_shadow_ring),
857 GFP_KERNEL, numa);
858 if (!sc->sr) {
859 sc_free(sc);
860 return NULL;
861 }
862 }
863
864 hfi1_cdbg(PIO,
865 "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u\n",
866 sw_index,
867 hw_context,
868 sc_type_name(type),
869 sc->group,
870 sc->credits,
871 sc->credit_ctrl,
872 thresh);
873
874 return sc;
875 }
876
877 /* free a per-NUMA send context structure */
sc_free(struct send_context * sc)878 void sc_free(struct send_context *sc)
879 {
880 struct hfi1_devdata *dd;
881 unsigned long flags;
882 u32 sw_index;
883 u32 hw_context;
884
885 if (!sc)
886 return;
887
888 sc->flags |= SCF_IN_FREE; /* ensure no restarts */
889 dd = sc->dd;
890 if (!list_empty(&sc->piowait))
891 dd_dev_err(dd, "piowait list not empty!\n");
892 sw_index = sc->sw_index;
893 hw_context = sc->hw_context;
894 sc_disable(sc); /* make sure the HW is disabled */
895 flush_work(&sc->halt_work);
896
897 spin_lock_irqsave(&dd->sc_lock, flags);
898 dd->send_contexts[sw_index].sc = NULL;
899
900 /* clear/disable all registers set in sc_alloc */
901 write_kctxt_csr(dd, hw_context, SC(CTRL), 0);
902 write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0);
903 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0);
904 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0);
905 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0);
906 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0);
907 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0);
908
909 /* release the index and context for re-use */
910 sc_hw_free(dd, sw_index, hw_context);
911 spin_unlock_irqrestore(&dd->sc_lock, flags);
912
913 kfree(sc->sr);
914 free_percpu(sc->buffers_allocated);
915 kfree(sc);
916 }
917
918 /* disable the context */
sc_disable(struct send_context * sc)919 void sc_disable(struct send_context *sc)
920 {
921 u64 reg;
922 struct pio_buf *pbuf;
923
924 if (!sc)
925 return;
926
927 /* do all steps, even if already disabled */
928 spin_lock_irq(&sc->alloc_lock);
929 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL));
930 reg &= ~SC(CTRL_CTXT_ENABLE_SMASK);
931 sc->flags &= ~SCF_ENABLED;
932 sc_wait_for_packet_egress(sc, 1);
933 write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg);
934
935 /*
936 * Flush any waiters. Once the context is disabled,
937 * credit return interrupts are stopped (although there
938 * could be one in-process when the context is disabled).
939 * Wait one microsecond for any lingering interrupts, then
940 * proceed with the flush.
941 */
942 udelay(1);
943 spin_lock(&sc->release_lock);
944 if (sc->sr) { /* this context has a shadow ring */
945 while (sc->sr_tail != sc->sr_head) {
946 pbuf = &sc->sr[sc->sr_tail].pbuf;
947 if (pbuf->cb)
948 (*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE);
949 sc->sr_tail++;
950 if (sc->sr_tail >= sc->sr_size)
951 sc->sr_tail = 0;
952 }
953 }
954 spin_unlock(&sc->release_lock);
955
956 write_seqlock(&sc->waitlock);
957 while (!list_empty(&sc->piowait)) {
958 struct iowait *wait;
959 struct rvt_qp *qp;
960 struct hfi1_qp_priv *priv;
961
962 wait = list_first_entry(&sc->piowait, struct iowait, list);
963 qp = iowait_to_qp(wait);
964 priv = qp->priv;
965 list_del_init(&priv->s_iowait.list);
966 priv->s_iowait.lock = NULL;
967 hfi1_qp_wakeup(qp, RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN);
968 }
969 write_sequnlock(&sc->waitlock);
970
971 spin_unlock_irq(&sc->alloc_lock);
972 }
973
974 /* return SendEgressCtxtStatus.PacketOccupancy */
packet_occupancy(u64 reg)975 static u64 packet_occupancy(u64 reg)
976 {
977 return (reg &
978 SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK)
979 >> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT;
980 }
981
982 /* is egress halted on the context? */
egress_halted(u64 reg)983 static bool egress_halted(u64 reg)
984 {
985 return !!(reg & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK);
986 }
987
988 /* is the send context halted? */
is_sc_halted(struct hfi1_devdata * dd,u32 hw_context)989 static bool is_sc_halted(struct hfi1_devdata *dd, u32 hw_context)
990 {
991 return !!(read_kctxt_csr(dd, hw_context, SC(STATUS)) &
992 SC(STATUS_CTXT_HALTED_SMASK));
993 }
994
995 /**
996 * sc_wait_for_packet_egress
997 * @sc: valid send context
998 * @pause: wait for credit return
999 *
1000 * Wait for packet egress, optionally pause for credit return
1001 *
1002 * Egress halt and Context halt are not necessarily the same thing, so
1003 * check for both.
1004 *
1005 * NOTE: The context halt bit may not be set immediately. Because of this,
1006 * it is necessary to check the SW SFC_HALTED bit (set in the IRQ) and the HW
1007 * context bit to determine if the context is halted.
1008 */
sc_wait_for_packet_egress(struct send_context * sc,int pause)1009 static void sc_wait_for_packet_egress(struct send_context *sc, int pause)
1010 {
1011 struct hfi1_devdata *dd = sc->dd;
1012 u64 reg = 0;
1013 u64 reg_prev;
1014 u32 loop = 0;
1015
1016 while (1) {
1017 reg_prev = reg;
1018 reg = read_csr(dd, sc->hw_context * 8 +
1019 SEND_EGRESS_CTXT_STATUS);
1020 /* done if any halt bits, SW or HW are set */
1021 if (sc->flags & SCF_HALTED ||
1022 is_sc_halted(dd, sc->hw_context) || egress_halted(reg))
1023 break;
1024 reg = packet_occupancy(reg);
1025 if (reg == 0)
1026 break;
1027 /* counter is reset if occupancy count changes */
1028 if (reg != reg_prev)
1029 loop = 0;
1030 if (loop > 50000) {
1031 /* timed out - bounce the link */
1032 dd_dev_err(dd,
1033 "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n",
1034 __func__, sc->sw_index,
1035 sc->hw_context, (u32)reg);
1036 queue_work(dd->pport->link_wq,
1037 &dd->pport->link_bounce_work);
1038 break;
1039 }
1040 loop++;
1041 udelay(1);
1042 }
1043
1044 if (pause)
1045 /* Add additional delay to ensure chip returns all credits */
1046 pause_for_credit_return(dd);
1047 }
1048
sc_wait(struct hfi1_devdata * dd)1049 void sc_wait(struct hfi1_devdata *dd)
1050 {
1051 int i;
1052
1053 for (i = 0; i < dd->num_send_contexts; i++) {
1054 struct send_context *sc = dd->send_contexts[i].sc;
1055
1056 if (!sc)
1057 continue;
1058 sc_wait_for_packet_egress(sc, 0);
1059 }
1060 }
1061
1062 /*
1063 * Restart a context after it has been halted due to error.
1064 *
1065 * If the first step fails - wait for the halt to be asserted, return early.
1066 * Otherwise complain about timeouts but keep going.
1067 *
1068 * It is expected that allocations (enabled flag bit) have been shut off
1069 * already (only applies to kernel contexts).
1070 */
sc_restart(struct send_context * sc)1071 int sc_restart(struct send_context *sc)
1072 {
1073 struct hfi1_devdata *dd = sc->dd;
1074 u64 reg;
1075 u32 loop;
1076 int count;
1077
1078 /* bounce off if not halted, or being free'd */
1079 if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE))
1080 return -EINVAL;
1081
1082 dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index,
1083 sc->hw_context);
1084
1085 /*
1086 * Step 1: Wait for the context to actually halt.
1087 *
1088 * The error interrupt is asynchronous to actually setting halt
1089 * on the context.
1090 */
1091 loop = 0;
1092 while (1) {
1093 reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS));
1094 if (reg & SC(STATUS_CTXT_HALTED_SMASK))
1095 break;
1096 if (loop > 100) {
1097 dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n",
1098 __func__, sc->sw_index, sc->hw_context);
1099 return -ETIME;
1100 }
1101 loop++;
1102 udelay(1);
1103 }
1104
1105 /*
1106 * Step 2: Ensure no users are still trying to write to PIO.
1107 *
1108 * For kernel contexts, we have already turned off buffer allocation.
1109 * Now wait for the buffer count to go to zero.
1110 *
1111 * For user contexts, the user handling code has cut off write access
1112 * to the context's PIO pages before calling this routine and will
1113 * restore write access after this routine returns.
1114 */
1115 if (sc->type != SC_USER) {
1116 /* kernel context */
1117 loop = 0;
1118 while (1) {
1119 count = get_buffers_allocated(sc);
1120 if (count == 0)
1121 break;
1122 if (loop > 100) {
1123 dd_dev_err(dd,
1124 "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n",
1125 __func__, sc->sw_index,
1126 sc->hw_context, count);
1127 }
1128 loop++;
1129 udelay(1);
1130 }
1131 }
1132
1133 /*
1134 * Step 3: Wait for all packets to egress.
1135 * This is done while disabling the send context
1136 *
1137 * Step 4: Disable the context
1138 *
1139 * This is a superset of the halt. After the disable, the
1140 * errors can be cleared.
1141 */
1142 sc_disable(sc);
1143
1144 /*
1145 * Step 5: Enable the context
1146 *
1147 * This enable will clear the halted flag and per-send context
1148 * error flags.
1149 */
1150 return sc_enable(sc);
1151 }
1152
1153 /*
1154 * PIO freeze processing. To be called after the TXE block is fully frozen.
1155 * Go through all frozen send contexts and disable them. The contexts are
1156 * already stopped by the freeze.
1157 */
pio_freeze(struct hfi1_devdata * dd)1158 void pio_freeze(struct hfi1_devdata *dd)
1159 {
1160 struct send_context *sc;
1161 int i;
1162
1163 for (i = 0; i < dd->num_send_contexts; i++) {
1164 sc = dd->send_contexts[i].sc;
1165 /*
1166 * Don't disable unallocated, unfrozen, or user send contexts.
1167 * User send contexts will be disabled when the process
1168 * calls into the driver to reset its context.
1169 */
1170 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1171 continue;
1172
1173 /* only need to disable, the context is already stopped */
1174 sc_disable(sc);
1175 }
1176 }
1177
1178 /*
1179 * Unfreeze PIO for kernel send contexts. The precondition for calling this
1180 * is that all PIO send contexts have been disabled and the SPC freeze has
1181 * been cleared. Now perform the last step and re-enable each kernel context.
1182 * User (PSM) processing will occur when PSM calls into the kernel to
1183 * acknowledge the freeze.
1184 */
pio_kernel_unfreeze(struct hfi1_devdata * dd)1185 void pio_kernel_unfreeze(struct hfi1_devdata *dd)
1186 {
1187 struct send_context *sc;
1188 int i;
1189
1190 for (i = 0; i < dd->num_send_contexts; i++) {
1191 sc = dd->send_contexts[i].sc;
1192 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1193 continue;
1194 if (sc->flags & SCF_LINK_DOWN)
1195 continue;
1196
1197 sc_enable(sc); /* will clear the sc frozen flag */
1198 }
1199 }
1200
1201 /**
1202 * pio_kernel_linkup() - Re-enable send contexts after linkup event
1203 * @dd: valid devive data
1204 *
1205 * When the link goes down, the freeze path is taken. However, a link down
1206 * event is different from a freeze because if the send context is re-enabled
1207 * whowever is sending data will start sending data again, which will hang
1208 * any QP that is sending data.
1209 *
1210 * The freeze path now looks at the type of event that occurs and takes this
1211 * path for link down event.
1212 */
pio_kernel_linkup(struct hfi1_devdata * dd)1213 void pio_kernel_linkup(struct hfi1_devdata *dd)
1214 {
1215 struct send_context *sc;
1216 int i;
1217
1218 for (i = 0; i < dd->num_send_contexts; i++) {
1219 sc = dd->send_contexts[i].sc;
1220 if (!sc || !(sc->flags & SCF_LINK_DOWN) || sc->type == SC_USER)
1221 continue;
1222
1223 sc_enable(sc); /* will clear the sc link down flag */
1224 }
1225 }
1226
1227 /*
1228 * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear.
1229 * Returns:
1230 * -ETIMEDOUT - if we wait too long
1231 * -EIO - if there was an error
1232 */
pio_init_wait_progress(struct hfi1_devdata * dd)1233 static int pio_init_wait_progress(struct hfi1_devdata *dd)
1234 {
1235 u64 reg;
1236 int max, count = 0;
1237
1238 /* max is the longest possible HW init time / delay */
1239 max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5;
1240 while (1) {
1241 reg = read_csr(dd, SEND_PIO_INIT_CTXT);
1242 if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK))
1243 break;
1244 if (count >= max)
1245 return -ETIMEDOUT;
1246 udelay(5);
1247 count++;
1248 }
1249
1250 return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0;
1251 }
1252
1253 /*
1254 * Reset all of the send contexts to their power-on state. Used
1255 * only during manual init - no lock against sc_enable needed.
1256 */
pio_reset_all(struct hfi1_devdata * dd)1257 void pio_reset_all(struct hfi1_devdata *dd)
1258 {
1259 int ret;
1260
1261 /* make sure the init engine is not busy */
1262 ret = pio_init_wait_progress(dd);
1263 /* ignore any timeout */
1264 if (ret == -EIO) {
1265 /* clear the error */
1266 write_csr(dd, SEND_PIO_ERR_CLEAR,
1267 SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK);
1268 }
1269
1270 /* reset init all */
1271 write_csr(dd, SEND_PIO_INIT_CTXT,
1272 SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK);
1273 udelay(2);
1274 ret = pio_init_wait_progress(dd);
1275 if (ret < 0) {
1276 dd_dev_err(dd,
1277 "PIO send context init %s while initializing all PIO blocks\n",
1278 ret == -ETIMEDOUT ? "is stuck" : "had an error");
1279 }
1280 }
1281
1282 /* enable the context */
sc_enable(struct send_context * sc)1283 int sc_enable(struct send_context *sc)
1284 {
1285 u64 sc_ctrl, reg, pio;
1286 struct hfi1_devdata *dd;
1287 unsigned long flags;
1288 int ret = 0;
1289
1290 if (!sc)
1291 return -EINVAL;
1292 dd = sc->dd;
1293
1294 /*
1295 * Obtain the allocator lock to guard against any allocation
1296 * attempts (which should not happen prior to context being
1297 * enabled). On the release/disable side we don't need to
1298 * worry about locking since the releaser will not do anything
1299 * if the context accounting values have not changed.
1300 */
1301 spin_lock_irqsave(&sc->alloc_lock, flags);
1302 sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1303 if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK)))
1304 goto unlock; /* already enabled */
1305
1306 /* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */
1307
1308 *sc->hw_free = 0;
1309 sc->free = 0;
1310 sc->alloc_free = 0;
1311 sc->fill = 0;
1312 sc->fill_wrap = 0;
1313 sc->sr_head = 0;
1314 sc->sr_tail = 0;
1315 sc->flags = 0;
1316 /* the alloc lock insures no fast path allocation */
1317 reset_buffers_allocated(sc);
1318
1319 /*
1320 * Clear all per-context errors. Some of these will be set when
1321 * we are re-enabling after a context halt. Now that the context
1322 * is disabled, the halt will not clear until after the PIO init
1323 * engine runs below.
1324 */
1325 reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS));
1326 if (reg)
1327 write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg);
1328
1329 /*
1330 * The HW PIO initialization engine can handle only one init
1331 * request at a time. Serialize access to each device's engine.
1332 */
1333 spin_lock(&dd->sc_init_lock);
1334 /*
1335 * Since access to this code block is serialized and
1336 * each access waits for the initialization to complete
1337 * before releasing the lock, the PIO initialization engine
1338 * should not be in use, so we don't have to wait for the
1339 * InProgress bit to go down.
1340 */
1341 pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) <<
1342 SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) |
1343 SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK;
1344 write_csr(dd, SEND_PIO_INIT_CTXT, pio);
1345 /*
1346 * Wait until the engine is done. Give the chip the required time
1347 * so, hopefully, we read the register just once.
1348 */
1349 udelay(2);
1350 ret = pio_init_wait_progress(dd);
1351 spin_unlock(&dd->sc_init_lock);
1352 if (ret) {
1353 dd_dev_err(dd,
1354 "sctxt%u(%u): Context not enabled due to init failure %d\n",
1355 sc->sw_index, sc->hw_context, ret);
1356 goto unlock;
1357 }
1358
1359 /*
1360 * All is well. Enable the context.
1361 */
1362 sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK);
1363 write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl);
1364 /*
1365 * Read SendCtxtCtrl to force the write out and prevent a timing
1366 * hazard where a PIO write may reach the context before the enable.
1367 */
1368 read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1369 sc->flags |= SCF_ENABLED;
1370
1371 unlock:
1372 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1373
1374 return ret;
1375 }
1376
1377 /* force a credit return on the context */
sc_return_credits(struct send_context * sc)1378 void sc_return_credits(struct send_context *sc)
1379 {
1380 if (!sc)
1381 return;
1382
1383 /* a 0->1 transition schedules a credit return */
1384 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE),
1385 SC(CREDIT_FORCE_FORCE_RETURN_SMASK));
1386 /*
1387 * Ensure that the write is flushed and the credit return is
1388 * scheduled. We care more about the 0 -> 1 transition.
1389 */
1390 read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE));
1391 /* set back to 0 for next time */
1392 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0);
1393 }
1394
1395 /* allow all in-flight packets to drain on the context */
sc_flush(struct send_context * sc)1396 void sc_flush(struct send_context *sc)
1397 {
1398 if (!sc)
1399 return;
1400
1401 sc_wait_for_packet_egress(sc, 1);
1402 }
1403
1404 /* drop all packets on the context, no waiting until they are sent */
sc_drop(struct send_context * sc)1405 void sc_drop(struct send_context *sc)
1406 {
1407 if (!sc)
1408 return;
1409
1410 dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n",
1411 __func__, sc->sw_index, sc->hw_context);
1412 }
1413
1414 /*
1415 * Start the software reaction to a context halt or SPC freeze:
1416 * - mark the context as halted or frozen
1417 * - stop buffer allocations
1418 *
1419 * Called from the error interrupt. Other work is deferred until
1420 * out of the interrupt.
1421 */
sc_stop(struct send_context * sc,int flag)1422 void sc_stop(struct send_context *sc, int flag)
1423 {
1424 unsigned long flags;
1425
1426 /* stop buffer allocations */
1427 spin_lock_irqsave(&sc->alloc_lock, flags);
1428 /* mark the context */
1429 sc->flags |= flag;
1430 sc->flags &= ~SCF_ENABLED;
1431 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1432 wake_up(&sc->halt_wait);
1433 }
1434
1435 #define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32))
1436 #define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS)
1437
1438 /*
1439 * The send context buffer "allocator".
1440 *
1441 * @sc: the PIO send context we are allocating from
1442 * @len: length of whole packet - including PBC - in dwords
1443 * @cb: optional callback to call when the buffer is finished sending
1444 * @arg: argument for cb
1445 *
1446 * Return a pointer to a PIO buffer, NULL if not enough room, -ECOMM
1447 * when link is down.
1448 */
sc_buffer_alloc(struct send_context * sc,u32 dw_len,pio_release_cb cb,void * arg)1449 struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len,
1450 pio_release_cb cb, void *arg)
1451 {
1452 struct pio_buf *pbuf = NULL;
1453 unsigned long flags;
1454 unsigned long avail;
1455 unsigned long blocks = dwords_to_blocks(dw_len);
1456 u32 fill_wrap;
1457 int trycount = 0;
1458 u32 head, next;
1459
1460 spin_lock_irqsave(&sc->alloc_lock, flags);
1461 if (!(sc->flags & SCF_ENABLED)) {
1462 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1463 return ERR_PTR(-ECOMM);
1464 }
1465
1466 retry:
1467 avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free);
1468 if (blocks > avail) {
1469 /* not enough room */
1470 if (unlikely(trycount)) { /* already tried to get more room */
1471 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1472 goto done;
1473 }
1474 /* copy from receiver cache line and recalculate */
1475 sc->alloc_free = READ_ONCE(sc->free);
1476 avail =
1477 (unsigned long)sc->credits -
1478 (sc->fill - sc->alloc_free);
1479 if (blocks > avail) {
1480 /* still no room, actively update */
1481 sc_release_update(sc);
1482 sc->alloc_free = READ_ONCE(sc->free);
1483 trycount++;
1484 goto retry;
1485 }
1486 }
1487
1488 /* there is enough room */
1489
1490 preempt_disable();
1491 this_cpu_inc(*sc->buffers_allocated);
1492
1493 /* read this once */
1494 head = sc->sr_head;
1495
1496 /* "allocate" the buffer */
1497 sc->fill += blocks;
1498 fill_wrap = sc->fill_wrap;
1499 sc->fill_wrap += blocks;
1500 if (sc->fill_wrap >= sc->credits)
1501 sc->fill_wrap = sc->fill_wrap - sc->credits;
1502
1503 /*
1504 * Fill the parts that the releaser looks at before moving the head.
1505 * The only necessary piece is the sent_at field. The credits
1506 * we have just allocated cannot have been returned yet, so the
1507 * cb and arg will not be looked at for a "while". Put them
1508 * on this side of the memory barrier anyway.
1509 */
1510 pbuf = &sc->sr[head].pbuf;
1511 pbuf->sent_at = sc->fill;
1512 pbuf->cb = cb;
1513 pbuf->arg = arg;
1514 pbuf->sc = sc; /* could be filled in at sc->sr init time */
1515 /* make sure this is in memory before updating the head */
1516
1517 /* calculate next head index, do not store */
1518 next = head + 1;
1519 if (next >= sc->sr_size)
1520 next = 0;
1521 /*
1522 * update the head - must be last! - the releaser can look at fields
1523 * in pbuf once we move the head
1524 */
1525 smp_wmb();
1526 sc->sr_head = next;
1527 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1528
1529 /* finish filling in the buffer outside the lock */
1530 pbuf->start = sc->base_addr + fill_wrap * PIO_BLOCK_SIZE;
1531 pbuf->end = sc->base_addr + sc->size;
1532 pbuf->qw_written = 0;
1533 pbuf->carry_bytes = 0;
1534 pbuf->carry.val64 = 0;
1535 done:
1536 return pbuf;
1537 }
1538
1539 /*
1540 * There are at least two entities that can turn on credit return
1541 * interrupts and they can overlap. Avoid problems by implementing
1542 * a count scheme that is enforced by a lock. The lock is needed because
1543 * the count and CSR write must be paired.
1544 */
1545
1546 /*
1547 * Start credit return interrupts. This is managed by a count. If already
1548 * on, just increment the count.
1549 */
sc_add_credit_return_intr(struct send_context * sc)1550 void sc_add_credit_return_intr(struct send_context *sc)
1551 {
1552 unsigned long flags;
1553
1554 /* lock must surround both the count change and the CSR update */
1555 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1556 if (sc->credit_intr_count == 0) {
1557 sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1558 write_kctxt_csr(sc->dd, sc->hw_context,
1559 SC(CREDIT_CTRL), sc->credit_ctrl);
1560 }
1561 sc->credit_intr_count++;
1562 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1563 }
1564
1565 /*
1566 * Stop credit return interrupts. This is managed by a count. Decrement the
1567 * count, if the last user, then turn the credit interrupts off.
1568 */
sc_del_credit_return_intr(struct send_context * sc)1569 void sc_del_credit_return_intr(struct send_context *sc)
1570 {
1571 unsigned long flags;
1572
1573 WARN_ON(sc->credit_intr_count == 0);
1574
1575 /* lock must surround both the count change and the CSR update */
1576 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1577 sc->credit_intr_count--;
1578 if (sc->credit_intr_count == 0) {
1579 sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1580 write_kctxt_csr(sc->dd, sc->hw_context,
1581 SC(CREDIT_CTRL), sc->credit_ctrl);
1582 }
1583 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1584 }
1585
1586 /*
1587 * The caller must be careful when calling this. All needint calls
1588 * must be paired with !needint.
1589 */
hfi1_sc_wantpiobuf_intr(struct send_context * sc,u32 needint)1590 void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint)
1591 {
1592 if (needint)
1593 sc_add_credit_return_intr(sc);
1594 else
1595 sc_del_credit_return_intr(sc);
1596 trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl);
1597 if (needint)
1598 sc_return_credits(sc);
1599 }
1600
1601 /**
1602 * sc_piobufavail - callback when a PIO buffer is available
1603 * @sc: the send context
1604 *
1605 * This is called from the interrupt handler when a PIO buffer is
1606 * available after hfi1_verbs_send() returned an error that no buffers were
1607 * available. Disable the interrupt if there are no more QPs waiting.
1608 */
sc_piobufavail(struct send_context * sc)1609 static void sc_piobufavail(struct send_context *sc)
1610 {
1611 struct hfi1_devdata *dd = sc->dd;
1612 struct list_head *list;
1613 struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE];
1614 struct rvt_qp *qp;
1615 struct hfi1_qp_priv *priv;
1616 unsigned long flags;
1617 uint i, n = 0, top_idx = 0;
1618
1619 if (dd->send_contexts[sc->sw_index].type != SC_KERNEL &&
1620 dd->send_contexts[sc->sw_index].type != SC_VL15)
1621 return;
1622 list = &sc->piowait;
1623 /*
1624 * Note: checking that the piowait list is empty and clearing
1625 * the buffer available interrupt needs to be atomic or we
1626 * could end up with QPs on the wait list with the interrupt
1627 * disabled.
1628 */
1629 write_seqlock_irqsave(&sc->waitlock, flags);
1630 while (!list_empty(list)) {
1631 struct iowait *wait;
1632
1633 if (n == ARRAY_SIZE(qps))
1634 break;
1635 wait = list_first_entry(list, struct iowait, list);
1636 iowait_get_priority(wait);
1637 qp = iowait_to_qp(wait);
1638 priv = qp->priv;
1639 list_del_init(&priv->s_iowait.list);
1640 priv->s_iowait.lock = NULL;
1641 if (n) {
1642 priv = qps[top_idx]->priv;
1643 top_idx = iowait_priority_update_top(wait,
1644 &priv->s_iowait,
1645 n, top_idx);
1646 }
1647
1648 /* refcount held until actual wake up */
1649 qps[n++] = qp;
1650 }
1651 /*
1652 * If there had been waiters and there are more
1653 * insure that we redo the force to avoid a potential hang.
1654 */
1655 if (n) {
1656 hfi1_sc_wantpiobuf_intr(sc, 0);
1657 if (!list_empty(list))
1658 hfi1_sc_wantpiobuf_intr(sc, 1);
1659 }
1660 write_sequnlock_irqrestore(&sc->waitlock, flags);
1661
1662 /* Wake up the top-priority one first */
1663 if (n)
1664 hfi1_qp_wakeup(qps[top_idx],
1665 RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN);
1666 for (i = 0; i < n; i++)
1667 if (i != top_idx)
1668 hfi1_qp_wakeup(qps[i],
1669 RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN);
1670 }
1671
1672 /* translate a send credit update to a bit code of reasons */
fill_code(u64 hw_free)1673 static inline int fill_code(u64 hw_free)
1674 {
1675 int code = 0;
1676
1677 if (hw_free & CR_STATUS_SMASK)
1678 code |= PRC_STATUS_ERR;
1679 if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK)
1680 code |= PRC_PBC;
1681 if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK)
1682 code |= PRC_THRESHOLD;
1683 if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK)
1684 code |= PRC_FILL_ERR;
1685 if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK)
1686 code |= PRC_SC_DISABLE;
1687 return code;
1688 }
1689
1690 /* use the jiffies compare to get the wrap right */
1691 #define sent_before(a, b) time_before(a, b) /* a < b */
1692
1693 /*
1694 * The send context buffer "releaser".
1695 */
sc_release_update(struct send_context * sc)1696 void sc_release_update(struct send_context *sc)
1697 {
1698 struct pio_buf *pbuf;
1699 u64 hw_free;
1700 u32 head, tail;
1701 unsigned long old_free;
1702 unsigned long free;
1703 unsigned long extra;
1704 unsigned long flags;
1705 int code;
1706
1707 if (!sc)
1708 return;
1709
1710 spin_lock_irqsave(&sc->release_lock, flags);
1711 /* update free */
1712 hw_free = le64_to_cpu(*sc->hw_free); /* volatile read */
1713 old_free = sc->free;
1714 extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT)
1715 - (old_free & CR_COUNTER_MASK))
1716 & CR_COUNTER_MASK;
1717 free = old_free + extra;
1718 trace_hfi1_piofree(sc, extra);
1719
1720 /* call sent buffer callbacks */
1721 code = -1; /* code not yet set */
1722 head = READ_ONCE(sc->sr_head); /* snapshot the head */
1723 tail = sc->sr_tail;
1724 while (head != tail) {
1725 pbuf = &sc->sr[tail].pbuf;
1726
1727 if (sent_before(free, pbuf->sent_at)) {
1728 /* not sent yet */
1729 break;
1730 }
1731 if (pbuf->cb) {
1732 if (code < 0) /* fill in code on first user */
1733 code = fill_code(hw_free);
1734 (*pbuf->cb)(pbuf->arg, code);
1735 }
1736
1737 tail++;
1738 if (tail >= sc->sr_size)
1739 tail = 0;
1740 }
1741 sc->sr_tail = tail;
1742 /* make sure tail is updated before free */
1743 smp_wmb();
1744 sc->free = free;
1745 spin_unlock_irqrestore(&sc->release_lock, flags);
1746 sc_piobufavail(sc);
1747 }
1748
1749 /*
1750 * Send context group releaser. Argument is the send context that caused
1751 * the interrupt. Called from the send context interrupt handler.
1752 *
1753 * Call release on all contexts in the group.
1754 *
1755 * This routine takes the sc_lock without an irqsave because it is only
1756 * called from an interrupt handler. Adjust if that changes.
1757 */
sc_group_release_update(struct hfi1_devdata * dd,u32 hw_context)1758 void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context)
1759 {
1760 struct send_context *sc;
1761 u32 sw_index;
1762 u32 gc, gc_end;
1763
1764 spin_lock(&dd->sc_lock);
1765 sw_index = dd->hw_to_sw[hw_context];
1766 if (unlikely(sw_index >= dd->num_send_contexts)) {
1767 dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n",
1768 __func__, hw_context, sw_index);
1769 goto done;
1770 }
1771 sc = dd->send_contexts[sw_index].sc;
1772 if (unlikely(!sc))
1773 goto done;
1774
1775 gc = group_context(hw_context, sc->group);
1776 gc_end = gc + group_size(sc->group);
1777 for (; gc < gc_end; gc++) {
1778 sw_index = dd->hw_to_sw[gc];
1779 if (unlikely(sw_index >= dd->num_send_contexts)) {
1780 dd_dev_err(dd,
1781 "%s: invalid hw (%u) to sw (%u) mapping\n",
1782 __func__, hw_context, sw_index);
1783 continue;
1784 }
1785 sc_release_update(dd->send_contexts[sw_index].sc);
1786 }
1787 done:
1788 spin_unlock(&dd->sc_lock);
1789 }
1790
1791 /*
1792 * pio_select_send_context_vl() - select send context
1793 * @dd: devdata
1794 * @selector: a spreading factor
1795 * @vl: this vl
1796 *
1797 * This function returns a send context based on the selector and a vl.
1798 * The mapping fields are protected by RCU
1799 */
pio_select_send_context_vl(struct hfi1_devdata * dd,u32 selector,u8 vl)1800 struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd,
1801 u32 selector, u8 vl)
1802 {
1803 struct pio_vl_map *m;
1804 struct pio_map_elem *e;
1805 struct send_context *rval;
1806
1807 /*
1808 * NOTE This should only happen if SC->VL changed after the initial
1809 * checks on the QP/AH
1810 * Default will return VL0's send context below
1811 */
1812 if (unlikely(vl >= num_vls)) {
1813 rval = NULL;
1814 goto done;
1815 }
1816
1817 rcu_read_lock();
1818 m = rcu_dereference(dd->pio_map);
1819 if (unlikely(!m)) {
1820 rcu_read_unlock();
1821 return dd->vld[0].sc;
1822 }
1823 e = m->map[vl & m->mask];
1824 rval = e->ksc[selector & e->mask];
1825 rcu_read_unlock();
1826
1827 done:
1828 rval = !rval ? dd->vld[0].sc : rval;
1829 return rval;
1830 }
1831
1832 /*
1833 * pio_select_send_context_sc() - select send context
1834 * @dd: devdata
1835 * @selector: a spreading factor
1836 * @sc5: the 5 bit sc
1837 *
1838 * This function returns an send context based on the selector and an sc
1839 */
pio_select_send_context_sc(struct hfi1_devdata * dd,u32 selector,u8 sc5)1840 struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd,
1841 u32 selector, u8 sc5)
1842 {
1843 u8 vl = sc_to_vlt(dd, sc5);
1844
1845 return pio_select_send_context_vl(dd, selector, vl);
1846 }
1847
1848 /*
1849 * Free the indicated map struct
1850 */
pio_map_free(struct pio_vl_map * m)1851 static void pio_map_free(struct pio_vl_map *m)
1852 {
1853 int i;
1854
1855 for (i = 0; m && i < m->actual_vls; i++)
1856 kfree(m->map[i]);
1857 kfree(m);
1858 }
1859
1860 /*
1861 * Handle RCU callback
1862 */
pio_map_rcu_callback(struct rcu_head * list)1863 static void pio_map_rcu_callback(struct rcu_head *list)
1864 {
1865 struct pio_vl_map *m = container_of(list, struct pio_vl_map, list);
1866
1867 pio_map_free(m);
1868 }
1869
1870 /*
1871 * Set credit return threshold for the kernel send context
1872 */
set_threshold(struct hfi1_devdata * dd,int scontext,int i)1873 static void set_threshold(struct hfi1_devdata *dd, int scontext, int i)
1874 {
1875 u32 thres;
1876
1877 thres = min(sc_percent_to_threshold(dd->kernel_send_context[scontext],
1878 50),
1879 sc_mtu_to_threshold(dd->kernel_send_context[scontext],
1880 dd->vld[i].mtu,
1881 dd->rcd[0]->rcvhdrqentsize));
1882 sc_set_cr_threshold(dd->kernel_send_context[scontext], thres);
1883 }
1884
1885 /*
1886 * pio_map_init - called when #vls change
1887 * @dd: hfi1_devdata
1888 * @port: port number
1889 * @num_vls: number of vls
1890 * @vl_scontexts: per vl send context mapping (optional)
1891 *
1892 * This routine changes the mapping based on the number of vls.
1893 *
1894 * vl_scontexts is used to specify a non-uniform vl/send context
1895 * loading. NULL implies auto computing the loading and giving each
1896 * VL an uniform distribution of send contexts per VL.
1897 *
1898 * The auto algorithm computers the sc_per_vl and the number of extra
1899 * send contexts. Any extra send contexts are added from the last VL
1900 * on down
1901 *
1902 * rcu locking is used here to control access to the mapping fields.
1903 *
1904 * If either the num_vls or num_send_contexts are non-power of 2, the
1905 * array sizes in the struct pio_vl_map and the struct pio_map_elem are
1906 * rounded up to the next highest power of 2 and the first entry is
1907 * reused in a round robin fashion.
1908 *
1909 * If an error occurs the map change is not done and the mapping is not
1910 * chaged.
1911 *
1912 */
pio_map_init(struct hfi1_devdata * dd,u8 port,u8 num_vls,u8 * vl_scontexts)1913 int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts)
1914 {
1915 int i, j;
1916 int extra, sc_per_vl;
1917 int scontext = 1;
1918 int num_kernel_send_contexts = 0;
1919 u8 lvl_scontexts[OPA_MAX_VLS];
1920 struct pio_vl_map *oldmap, *newmap;
1921
1922 if (!vl_scontexts) {
1923 for (i = 0; i < dd->num_send_contexts; i++)
1924 if (dd->send_contexts[i].type == SC_KERNEL)
1925 num_kernel_send_contexts++;
1926 /* truncate divide */
1927 sc_per_vl = num_kernel_send_contexts / num_vls;
1928 /* extras */
1929 extra = num_kernel_send_contexts % num_vls;
1930 vl_scontexts = lvl_scontexts;
1931 /* add extras from last vl down */
1932 for (i = num_vls - 1; i >= 0; i--, extra--)
1933 vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0);
1934 }
1935 /* build new map */
1936 newmap = kzalloc(sizeof(*newmap) +
1937 roundup_pow_of_two(num_vls) *
1938 sizeof(struct pio_map_elem *),
1939 GFP_KERNEL);
1940 if (!newmap)
1941 goto bail;
1942 newmap->actual_vls = num_vls;
1943 newmap->vls = roundup_pow_of_two(num_vls);
1944 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1945 for (i = 0; i < newmap->vls; i++) {
1946 /* save for wrap around */
1947 int first_scontext = scontext;
1948
1949 if (i < newmap->actual_vls) {
1950 int sz = roundup_pow_of_two(vl_scontexts[i]);
1951
1952 /* only allocate once */
1953 newmap->map[i] = kzalloc(sizeof(*newmap->map[i]) +
1954 sz * sizeof(struct
1955 send_context *),
1956 GFP_KERNEL);
1957 if (!newmap->map[i])
1958 goto bail;
1959 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1960 /*
1961 * assign send contexts and
1962 * adjust credit return threshold
1963 */
1964 for (j = 0; j < sz; j++) {
1965 if (dd->kernel_send_context[scontext]) {
1966 newmap->map[i]->ksc[j] =
1967 dd->kernel_send_context[scontext];
1968 set_threshold(dd, scontext, i);
1969 }
1970 if (++scontext >= first_scontext +
1971 vl_scontexts[i])
1972 /* wrap back to first send context */
1973 scontext = first_scontext;
1974 }
1975 } else {
1976 /* just re-use entry without allocating */
1977 newmap->map[i] = newmap->map[i % num_vls];
1978 }
1979 scontext = first_scontext + vl_scontexts[i];
1980 }
1981 /* newmap in hand, save old map */
1982 spin_lock_irq(&dd->pio_map_lock);
1983 oldmap = rcu_dereference_protected(dd->pio_map,
1984 lockdep_is_held(&dd->pio_map_lock));
1985
1986 /* publish newmap */
1987 rcu_assign_pointer(dd->pio_map, newmap);
1988
1989 spin_unlock_irq(&dd->pio_map_lock);
1990 /* success, free any old map after grace period */
1991 if (oldmap)
1992 call_rcu(&oldmap->list, pio_map_rcu_callback);
1993 return 0;
1994 bail:
1995 /* free any partial allocation */
1996 pio_map_free(newmap);
1997 return -ENOMEM;
1998 }
1999
free_pio_map(struct hfi1_devdata * dd)2000 void free_pio_map(struct hfi1_devdata *dd)
2001 {
2002 /* Free PIO map if allocated */
2003 if (rcu_access_pointer(dd->pio_map)) {
2004 spin_lock_irq(&dd->pio_map_lock);
2005 pio_map_free(rcu_access_pointer(dd->pio_map));
2006 RCU_INIT_POINTER(dd->pio_map, NULL);
2007 spin_unlock_irq(&dd->pio_map_lock);
2008 synchronize_rcu();
2009 }
2010 kfree(dd->kernel_send_context);
2011 dd->kernel_send_context = NULL;
2012 }
2013
init_pervl_scs(struct hfi1_devdata * dd)2014 int init_pervl_scs(struct hfi1_devdata *dd)
2015 {
2016 int i;
2017 u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */
2018 u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */
2019 u32 ctxt;
2020 struct hfi1_pportdata *ppd = dd->pport;
2021
2022 dd->vld[15].sc = sc_alloc(dd, SC_VL15,
2023 dd->rcd[0]->rcvhdrqentsize, dd->node);
2024 if (!dd->vld[15].sc)
2025 return -ENOMEM;
2026
2027 hfi1_init_ctxt(dd->vld[15].sc);
2028 dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048);
2029
2030 dd->kernel_send_context = kcalloc_node(dd->num_send_contexts,
2031 sizeof(struct send_context *),
2032 GFP_KERNEL, dd->node);
2033 if (!dd->kernel_send_context)
2034 goto freesc15;
2035
2036 dd->kernel_send_context[0] = dd->vld[15].sc;
2037
2038 for (i = 0; i < num_vls; i++) {
2039 /*
2040 * Since this function does not deal with a specific
2041 * receive context but we need the RcvHdrQ entry size,
2042 * use the size from rcd[0]. It is guaranteed to be
2043 * valid at this point and will remain the same for all
2044 * receive contexts.
2045 */
2046 dd->vld[i].sc = sc_alloc(dd, SC_KERNEL,
2047 dd->rcd[0]->rcvhdrqentsize, dd->node);
2048 if (!dd->vld[i].sc)
2049 goto nomem;
2050 dd->kernel_send_context[i + 1] = dd->vld[i].sc;
2051 hfi1_init_ctxt(dd->vld[i].sc);
2052 /* non VL15 start with the max MTU */
2053 dd->vld[i].mtu = hfi1_max_mtu;
2054 }
2055 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
2056 dd->kernel_send_context[i + 1] =
2057 sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node);
2058 if (!dd->kernel_send_context[i + 1])
2059 goto nomem;
2060 hfi1_init_ctxt(dd->kernel_send_context[i + 1]);
2061 }
2062
2063 sc_enable(dd->vld[15].sc);
2064 ctxt = dd->vld[15].sc->hw_context;
2065 mask = all_vl_mask & ~(1LL << 15);
2066 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2067 dd_dev_info(dd,
2068 "Using send context %u(%u) for VL15\n",
2069 dd->vld[15].sc->sw_index, ctxt);
2070
2071 for (i = 0; i < num_vls; i++) {
2072 sc_enable(dd->vld[i].sc);
2073 ctxt = dd->vld[i].sc->hw_context;
2074 mask = all_vl_mask & ~(data_vls_mask);
2075 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2076 }
2077 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
2078 sc_enable(dd->kernel_send_context[i + 1]);
2079 ctxt = dd->kernel_send_context[i + 1]->hw_context;
2080 mask = all_vl_mask & ~(data_vls_mask);
2081 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2082 }
2083
2084 if (pio_map_init(dd, ppd->port - 1, num_vls, NULL))
2085 goto nomem;
2086 return 0;
2087
2088 nomem:
2089 for (i = 0; i < num_vls; i++) {
2090 sc_free(dd->vld[i].sc);
2091 dd->vld[i].sc = NULL;
2092 }
2093
2094 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++)
2095 sc_free(dd->kernel_send_context[i + 1]);
2096
2097 kfree(dd->kernel_send_context);
2098 dd->kernel_send_context = NULL;
2099
2100 freesc15:
2101 sc_free(dd->vld[15].sc);
2102 return -ENOMEM;
2103 }
2104
init_credit_return(struct hfi1_devdata * dd)2105 int init_credit_return(struct hfi1_devdata *dd)
2106 {
2107 int ret;
2108 int i;
2109
2110 dd->cr_base = kcalloc(
2111 node_affinity.num_possible_nodes,
2112 sizeof(struct credit_return_base),
2113 GFP_KERNEL);
2114 if (!dd->cr_base) {
2115 ret = -ENOMEM;
2116 goto done;
2117 }
2118 for_each_node_with_cpus(i) {
2119 int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return);
2120
2121 set_dev_node(&dd->pcidev->dev, i);
2122 dd->cr_base[i].va = dma_alloc_coherent(&dd->pcidev->dev,
2123 bytes,
2124 &dd->cr_base[i].dma,
2125 GFP_KERNEL);
2126 if (!dd->cr_base[i].va) {
2127 set_dev_node(&dd->pcidev->dev, dd->node);
2128 dd_dev_err(dd,
2129 "Unable to allocate credit return DMA range for NUMA %d\n",
2130 i);
2131 ret = -ENOMEM;
2132 goto done;
2133 }
2134 }
2135 set_dev_node(&dd->pcidev->dev, dd->node);
2136
2137 ret = 0;
2138 done:
2139 return ret;
2140 }
2141
free_credit_return(struct hfi1_devdata * dd)2142 void free_credit_return(struct hfi1_devdata *dd)
2143 {
2144 int i;
2145
2146 if (!dd->cr_base)
2147 return;
2148 for (i = 0; i < node_affinity.num_possible_nodes; i++) {
2149 if (dd->cr_base[i].va) {
2150 dma_free_coherent(&dd->pcidev->dev,
2151 TXE_NUM_CONTEXTS *
2152 sizeof(struct credit_return),
2153 dd->cr_base[i].va,
2154 dd->cr_base[i].dma);
2155 }
2156 }
2157 kfree(dd->cr_base);
2158 dd->cr_base = NULL;
2159 }
2160
seqfile_dump_sci(struct seq_file * s,u32 i,struct send_context_info * sci)2161 void seqfile_dump_sci(struct seq_file *s, u32 i,
2162 struct send_context_info *sci)
2163 {
2164 struct send_context *sc = sci->sc;
2165 u64 reg;
2166
2167 seq_printf(s, "SCI %u: type %u base %u credits %u\n",
2168 i, sci->type, sci->base, sci->credits);
2169 seq_printf(s, " flags 0x%x sw_inx %u hw_ctxt %u grp %u\n",
2170 sc->flags, sc->sw_index, sc->hw_context, sc->group);
2171 seq_printf(s, " sr_size %u credits %u sr_head %u sr_tail %u\n",
2172 sc->sr_size, sc->credits, sc->sr_head, sc->sr_tail);
2173 seq_printf(s, " fill %lu free %lu fill_wrap %u alloc_free %lu\n",
2174 sc->fill, sc->free, sc->fill_wrap, sc->alloc_free);
2175 seq_printf(s, " credit_intr_count %u credit_ctrl 0x%llx\n",
2176 sc->credit_intr_count, sc->credit_ctrl);
2177 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_STATUS));
2178 seq_printf(s, " *hw_free %llu CurrentFree %llu LastReturned %llu\n",
2179 (le64_to_cpu(*sc->hw_free) & CR_COUNTER_SMASK) >>
2180 CR_COUNTER_SHIFT,
2181 (reg >> SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_SHIFT)) &
2182 SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_MASK),
2183 reg & SC(CREDIT_STATUS_LAST_RETURNED_COUNTER_SMASK));
2184 }
2185