1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 					       tcp_sk(sk)->advmss);
242 		/* Account for possibly-removed options */
243 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 				   MAX_TCP_OPTION_SPACE))
245 			tcp_gro_dev_warn(sk, skb, len);
246 	} else {
247 		/* Otherwise, we make more careful check taking into account,
248 		 * that SACKs block is variable.
249 		 *
250 		 * "len" is invariant segment length, including TCP header.
251 		 */
252 		len += skb->data - skb_transport_header(skb);
253 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 		    /* If PSH is not set, packet should be
255 		     * full sized, provided peer TCP is not badly broken.
256 		     * This observation (if it is correct 8)) allows
257 		     * to handle super-low mtu links fairly.
258 		     */
259 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 			/* Subtract also invariant (if peer is RFC compliant),
262 			 * tcp header plus fixed timestamp option length.
263 			 * Resulting "len" is MSS free of SACK jitter.
264 			 */
265 			len -= tcp_sk(sk)->tcp_header_len;
266 			icsk->icsk_ack.last_seg_size = len;
267 			if (len == lss) {
268 				icsk->icsk_ack.rcv_mss = len;
269 				return;
270 			}
271 		}
272 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 	}
276 }
277 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 	struct inet_connection_sock *icsk = inet_csk(sk);
281 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282 
283 	if (quickacks == 0)
284 		quickacks = 2;
285 	quickacks = min(quickacks, max_quickacks);
286 	if (quickacks > icsk->icsk_ack.quick)
287 		icsk->icsk_ack.quick = quickacks;
288 }
289 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 	struct inet_connection_sock *icsk = inet_csk(sk);
293 
294 	tcp_incr_quickack(sk, max_quickacks);
295 	inet_csk_exit_pingpong_mode(sk);
296 	icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299 
300 /* Send ACKs quickly, if "quick" count is not exhausted
301  * and the session is not interactive.
302  */
303 
tcp_in_quickack_mode(struct sock * sk)304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 	const struct inet_connection_sock *icsk = inet_csk(sk);
307 	const struct dst_entry *dst = __sk_dst_get(sk);
308 
309 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312 
tcp_ecn_queue_cwr(struct tcp_sock * tp)313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 	if (tp->ecn_flags & TCP_ECN_OK)
316 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 	if (tcp_hdr(skb)->cwr) {
322 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323 
324 		/* If the sender is telling us it has entered CWR, then its
325 		 * cwnd may be very low (even just 1 packet), so we should ACK
326 		 * immediately.
327 		 */
328 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 	}
331 }
332 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 	case INET_ECN_NOT_ECT:
344 		/* Funny extension: if ECT is not set on a segment,
345 		 * and we already seen ECT on a previous segment,
346 		 * it is probably a retransmit.
347 		 */
348 		if (tp->ecn_flags & TCP_ECN_SEEN)
349 			tcp_enter_quickack_mode(sk, 2);
350 		break;
351 	case INET_ECN_CE:
352 		if (tcp_ca_needs_ecn(sk))
353 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354 
355 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 			/* Better not delay acks, sender can have a very low cwnd */
357 			tcp_enter_quickack_mode(sk, 2);
358 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 		}
360 		tp->ecn_flags |= TCP_ECN_SEEN;
361 		break;
362 	default:
363 		if (tcp_ca_needs_ecn(sk))
364 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 		tp->ecn_flags |= TCP_ECN_SEEN;
366 		break;
367 	}
368 }
369 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 		__tcp_ecn_check_ce(sk, skb);
374 }
375 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 		tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 		tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 		return true;
392 	return false;
393 }
394 
395 /* Buffer size and advertised window tuning.
396  *
397  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398  */
399 
tcp_sndbuf_expand(struct sock * sk)400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 	const struct tcp_sock *tp = tcp_sk(sk);
403 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 	int sndmem, per_mss;
405 	u32 nr_segs;
406 
407 	/* Worst case is non GSO/TSO : each frame consumes one skb
408 	 * and skb->head is kmalloced using power of two area of memory
409 	 */
410 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 		  MAX_TCP_HEADER +
412 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413 
414 	per_mss = roundup_pow_of_two(per_mss) +
415 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
416 
417 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
418 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419 
420 	/* Fast Recovery (RFC 5681 3.2) :
421 	 * Cubic needs 1.7 factor, rounded to 2 to include
422 	 * extra cushion (application might react slowly to EPOLLOUT)
423 	 */
424 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 	sndmem *= nr_segs * per_mss;
426 
427 	if (sk->sk_sndbuf < sndmem)
428 		WRITE_ONCE(sk->sk_sndbuf,
429 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
430 }
431 
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433  *
434  * All tcp_full_space() is split to two parts: "network" buffer, allocated
435  * forward and advertised in receiver window (tp->rcv_wnd) and
436  * "application buffer", required to isolate scheduling/application
437  * latencies from network.
438  * window_clamp is maximal advertised window. It can be less than
439  * tcp_full_space(), in this case tcp_full_space() - window_clamp
440  * is reserved for "application" buffer. The less window_clamp is
441  * the smoother our behaviour from viewpoint of network, but the lower
442  * throughput and the higher sensitivity of the connection to losses. 8)
443  *
444  * rcv_ssthresh is more strict window_clamp used at "slow start"
445  * phase to predict further behaviour of this connection.
446  * It is used for two goals:
447  * - to enforce header prediction at sender, even when application
448  *   requires some significant "application buffer". It is check #1.
449  * - to prevent pruning of receive queue because of misprediction
450  *   of receiver window. Check #2.
451  *
452  * The scheme does not work when sender sends good segments opening
453  * window and then starts to feed us spaghetti. But it should work
454  * in common situations. Otherwise, we have to rely on queue collapsing.
455  */
456 
457 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 			     unsigned int skbtruesize)
460 {
461 	struct tcp_sock *tp = tcp_sk(sk);
462 	/* Optimize this! */
463 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
465 
466 	while (tp->rcv_ssthresh <= window) {
467 		if (truesize <= skb->len)
468 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469 
470 		truesize >>= 1;
471 		window >>= 1;
472 	}
473 	return 0;
474 }
475 
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477  * can play nice with us, as sk_buff and skb->head might be either
478  * freed or shared with up to MAX_SKB_FRAGS segments.
479  * Only give a boost to drivers using page frag(s) to hold the frame(s),
480  * and if no payload was pulled in skb->head before reaching us.
481  */
truesize_adjust(bool adjust,const struct sk_buff * skb)482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 	u32 truesize = skb->truesize;
485 
486 	if (adjust && !skb_headlen(skb)) {
487 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 		/* paranoid check, some drivers might be buggy */
489 		if (unlikely((int)truesize < (int)skb->len))
490 			truesize = skb->truesize;
491 	}
492 	return truesize;
493 }
494 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 			    bool adjust)
497 {
498 	struct tcp_sock *tp = tcp_sk(sk);
499 	int room;
500 
501 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502 
503 	/* Check #1 */
504 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
505 		unsigned int truesize = truesize_adjust(adjust, skb);
506 		int incr;
507 
508 		/* Check #2. Increase window, if skb with such overhead
509 		 * will fit to rcvbuf in future.
510 		 */
511 		if (tcp_win_from_space(sk, truesize) <= skb->len)
512 			incr = 2 * tp->advmss;
513 		else
514 			incr = __tcp_grow_window(sk, skb, truesize);
515 
516 		if (incr) {
517 			incr = max_t(int, incr, 2 * skb->len);
518 			tp->rcv_ssthresh += min(room, incr);
519 			inet_csk(sk)->icsk_ack.quick |= 1;
520 		}
521 	}
522 }
523 
524 /* 3. Try to fixup all. It is made immediately after connection enters
525  *    established state.
526  */
tcp_init_buffer_space(struct sock * sk)527 static void tcp_init_buffer_space(struct sock *sk)
528 {
529 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
530 	struct tcp_sock *tp = tcp_sk(sk);
531 	int maxwin;
532 
533 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
534 		tcp_sndbuf_expand(sk);
535 
536 	tcp_mstamp_refresh(tp);
537 	tp->rcvq_space.time = tp->tcp_mstamp;
538 	tp->rcvq_space.seq = tp->copied_seq;
539 
540 	maxwin = tcp_full_space(sk);
541 
542 	if (tp->window_clamp >= maxwin) {
543 		tp->window_clamp = maxwin;
544 
545 		if (tcp_app_win && maxwin > 4 * tp->advmss)
546 			tp->window_clamp = max(maxwin -
547 					       (maxwin >> tcp_app_win),
548 					       4 * tp->advmss);
549 	}
550 
551 	/* Force reservation of one segment. */
552 	if (tcp_app_win &&
553 	    tp->window_clamp > 2 * tp->advmss &&
554 	    tp->window_clamp + tp->advmss > maxwin)
555 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
556 
557 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
558 	tp->snd_cwnd_stamp = tcp_jiffies32;
559 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
560 				    (u32)TCP_INIT_CWND * tp->advmss);
561 }
562 
563 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)564 static void tcp_clamp_window(struct sock *sk)
565 {
566 	struct tcp_sock *tp = tcp_sk(sk);
567 	struct inet_connection_sock *icsk = inet_csk(sk);
568 	struct net *net = sock_net(sk);
569 
570 	icsk->icsk_ack.quick = 0;
571 
572 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
573 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
574 	    !tcp_under_memory_pressure(sk) &&
575 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
576 		WRITE_ONCE(sk->sk_rcvbuf,
577 			   min(atomic_read(&sk->sk_rmem_alloc),
578 			       net->ipv4.sysctl_tcp_rmem[2]));
579 	}
580 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
581 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
582 }
583 
584 /* Initialize RCV_MSS value.
585  * RCV_MSS is an our guess about MSS used by the peer.
586  * We haven't any direct information about the MSS.
587  * It's better to underestimate the RCV_MSS rather than overestimate.
588  * Overestimations make us ACKing less frequently than needed.
589  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
590  */
tcp_initialize_rcv_mss(struct sock * sk)591 void tcp_initialize_rcv_mss(struct sock *sk)
592 {
593 	const struct tcp_sock *tp = tcp_sk(sk);
594 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
595 
596 	hint = min(hint, tp->rcv_wnd / 2);
597 	hint = min(hint, TCP_MSS_DEFAULT);
598 	hint = max(hint, TCP_MIN_MSS);
599 
600 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
601 }
602 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
603 
604 /* Receiver "autotuning" code.
605  *
606  * The algorithm for RTT estimation w/o timestamps is based on
607  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
608  * <https://public.lanl.gov/radiant/pubs.html#DRS>
609  *
610  * More detail on this code can be found at
611  * <http://staff.psc.edu/jheffner/>,
612  * though this reference is out of date.  A new paper
613  * is pending.
614  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)615 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
616 {
617 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
618 	long m = sample;
619 
620 	if (new_sample != 0) {
621 		/* If we sample in larger samples in the non-timestamp
622 		 * case, we could grossly overestimate the RTT especially
623 		 * with chatty applications or bulk transfer apps which
624 		 * are stalled on filesystem I/O.
625 		 *
626 		 * Also, since we are only going for a minimum in the
627 		 * non-timestamp case, we do not smooth things out
628 		 * else with timestamps disabled convergence takes too
629 		 * long.
630 		 */
631 		if (!win_dep) {
632 			m -= (new_sample >> 3);
633 			new_sample += m;
634 		} else {
635 			m <<= 3;
636 			if (m < new_sample)
637 				new_sample = m;
638 		}
639 	} else {
640 		/* No previous measure. */
641 		new_sample = m << 3;
642 	}
643 
644 	tp->rcv_rtt_est.rtt_us = new_sample;
645 }
646 
tcp_rcv_rtt_measure(struct tcp_sock * tp)647 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
648 {
649 	u32 delta_us;
650 
651 	if (tp->rcv_rtt_est.time == 0)
652 		goto new_measure;
653 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
654 		return;
655 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
656 	if (!delta_us)
657 		delta_us = 1;
658 	tcp_rcv_rtt_update(tp, delta_us, 1);
659 
660 new_measure:
661 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
662 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
663 }
664 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)665 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
666 					  const struct sk_buff *skb)
667 {
668 	struct tcp_sock *tp = tcp_sk(sk);
669 
670 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
671 		return;
672 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
673 
674 	if (TCP_SKB_CB(skb)->end_seq -
675 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
676 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
677 		u32 delta_us;
678 
679 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
680 			if (!delta)
681 				delta = 1;
682 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
683 			tcp_rcv_rtt_update(tp, delta_us, 0);
684 		}
685 	}
686 }
687 
688 /*
689  * This function should be called every time data is copied to user space.
690  * It calculates the appropriate TCP receive buffer space.
691  */
tcp_rcv_space_adjust(struct sock * sk)692 void tcp_rcv_space_adjust(struct sock *sk)
693 {
694 	struct tcp_sock *tp = tcp_sk(sk);
695 	u32 copied;
696 	int time;
697 
698 	trace_tcp_rcv_space_adjust(sk);
699 
700 	tcp_mstamp_refresh(tp);
701 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
702 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
703 		return;
704 
705 	/* Number of bytes copied to user in last RTT */
706 	copied = tp->copied_seq - tp->rcvq_space.seq;
707 	if (copied <= tp->rcvq_space.space)
708 		goto new_measure;
709 
710 	/* A bit of theory :
711 	 * copied = bytes received in previous RTT, our base window
712 	 * To cope with packet losses, we need a 2x factor
713 	 * To cope with slow start, and sender growing its cwin by 100 %
714 	 * every RTT, we need a 4x factor, because the ACK we are sending
715 	 * now is for the next RTT, not the current one :
716 	 * <prev RTT . ><current RTT .. ><next RTT .... >
717 	 */
718 
719 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
720 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
721 		int rcvmem, rcvbuf;
722 		u64 rcvwin, grow;
723 
724 		/* minimal window to cope with packet losses, assuming
725 		 * steady state. Add some cushion because of small variations.
726 		 */
727 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
728 
729 		/* Accommodate for sender rate increase (eg. slow start) */
730 		grow = rcvwin * (copied - tp->rcvq_space.space);
731 		do_div(grow, tp->rcvq_space.space);
732 		rcvwin += (grow << 1);
733 
734 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
735 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
736 			rcvmem += 128;
737 
738 		do_div(rcvwin, tp->advmss);
739 		rcvbuf = min_t(u64, rcvwin * rcvmem,
740 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
741 		if (rcvbuf > sk->sk_rcvbuf) {
742 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
743 
744 			/* Make the window clamp follow along.  */
745 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
746 		}
747 	}
748 	tp->rcvq_space.space = copied;
749 
750 new_measure:
751 	tp->rcvq_space.seq = tp->copied_seq;
752 	tp->rcvq_space.time = tp->tcp_mstamp;
753 }
754 
755 /* There is something which you must keep in mind when you analyze the
756  * behavior of the tp->ato delayed ack timeout interval.  When a
757  * connection starts up, we want to ack as quickly as possible.  The
758  * problem is that "good" TCP's do slow start at the beginning of data
759  * transmission.  The means that until we send the first few ACK's the
760  * sender will sit on his end and only queue most of his data, because
761  * he can only send snd_cwnd unacked packets at any given time.  For
762  * each ACK we send, he increments snd_cwnd and transmits more of his
763  * queue.  -DaveM
764  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)765 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
766 {
767 	struct tcp_sock *tp = tcp_sk(sk);
768 	struct inet_connection_sock *icsk = inet_csk(sk);
769 	u32 now;
770 
771 	inet_csk_schedule_ack(sk);
772 
773 	tcp_measure_rcv_mss(sk, skb);
774 
775 	tcp_rcv_rtt_measure(tp);
776 
777 	now = tcp_jiffies32;
778 
779 	if (!icsk->icsk_ack.ato) {
780 		/* The _first_ data packet received, initialize
781 		 * delayed ACK engine.
782 		 */
783 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
784 		icsk->icsk_ack.ato = TCP_ATO_MIN;
785 	} else {
786 		int m = now - icsk->icsk_ack.lrcvtime;
787 
788 		if (m <= TCP_ATO_MIN / 2) {
789 			/* The fastest case is the first. */
790 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
791 		} else if (m < icsk->icsk_ack.ato) {
792 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
793 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
794 				icsk->icsk_ack.ato = icsk->icsk_rto;
795 		} else if (m > icsk->icsk_rto) {
796 			/* Too long gap. Apparently sender failed to
797 			 * restart window, so that we send ACKs quickly.
798 			 */
799 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
800 			sk_mem_reclaim(sk);
801 		}
802 	}
803 	icsk->icsk_ack.lrcvtime = now;
804 
805 	tcp_ecn_check_ce(sk, skb);
806 
807 	if (skb->len >= 128)
808 		tcp_grow_window(sk, skb, true);
809 }
810 
811 /* Called to compute a smoothed rtt estimate. The data fed to this
812  * routine either comes from timestamps, or from segments that were
813  * known _not_ to have been retransmitted [see Karn/Partridge
814  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
815  * piece by Van Jacobson.
816  * NOTE: the next three routines used to be one big routine.
817  * To save cycles in the RFC 1323 implementation it was better to break
818  * it up into three procedures. -- erics
819  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)820 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
821 {
822 	struct tcp_sock *tp = tcp_sk(sk);
823 	long m = mrtt_us; /* RTT */
824 	u32 srtt = tp->srtt_us;
825 
826 	/*	The following amusing code comes from Jacobson's
827 	 *	article in SIGCOMM '88.  Note that rtt and mdev
828 	 *	are scaled versions of rtt and mean deviation.
829 	 *	This is designed to be as fast as possible
830 	 *	m stands for "measurement".
831 	 *
832 	 *	On a 1990 paper the rto value is changed to:
833 	 *	RTO = rtt + 4 * mdev
834 	 *
835 	 * Funny. This algorithm seems to be very broken.
836 	 * These formulae increase RTO, when it should be decreased, increase
837 	 * too slowly, when it should be increased quickly, decrease too quickly
838 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
839 	 * does not matter how to _calculate_ it. Seems, it was trap
840 	 * that VJ failed to avoid. 8)
841 	 */
842 	if (srtt != 0) {
843 		m -= (srtt >> 3);	/* m is now error in rtt est */
844 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
845 		if (m < 0) {
846 			m = -m;		/* m is now abs(error) */
847 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
848 			/* This is similar to one of Eifel findings.
849 			 * Eifel blocks mdev updates when rtt decreases.
850 			 * This solution is a bit different: we use finer gain
851 			 * for mdev in this case (alpha*beta).
852 			 * Like Eifel it also prevents growth of rto,
853 			 * but also it limits too fast rto decreases,
854 			 * happening in pure Eifel.
855 			 */
856 			if (m > 0)
857 				m >>= 3;
858 		} else {
859 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
860 		}
861 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
862 		if (tp->mdev_us > tp->mdev_max_us) {
863 			tp->mdev_max_us = tp->mdev_us;
864 			if (tp->mdev_max_us > tp->rttvar_us)
865 				tp->rttvar_us = tp->mdev_max_us;
866 		}
867 		if (after(tp->snd_una, tp->rtt_seq)) {
868 			if (tp->mdev_max_us < tp->rttvar_us)
869 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
870 			tp->rtt_seq = tp->snd_nxt;
871 			tp->mdev_max_us = tcp_rto_min_us(sk);
872 
873 			tcp_bpf_rtt(sk);
874 		}
875 	} else {
876 		/* no previous measure. */
877 		srtt = m << 3;		/* take the measured time to be rtt */
878 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
879 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
880 		tp->mdev_max_us = tp->rttvar_us;
881 		tp->rtt_seq = tp->snd_nxt;
882 
883 		tcp_bpf_rtt(sk);
884 	}
885 	tp->srtt_us = max(1U, srtt);
886 }
887 
tcp_update_pacing_rate(struct sock * sk)888 static void tcp_update_pacing_rate(struct sock *sk)
889 {
890 	const struct tcp_sock *tp = tcp_sk(sk);
891 	u64 rate;
892 
893 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
894 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
895 
896 	/* current rate is (cwnd * mss) / srtt
897 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
898 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
899 	 *
900 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
901 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
902 	 *	 end of slow start and should slow down.
903 	 */
904 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
905 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
906 	else
907 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
908 
909 	rate *= max(tp->snd_cwnd, tp->packets_out);
910 
911 	if (likely(tp->srtt_us))
912 		do_div(rate, tp->srtt_us);
913 
914 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
915 	 * without any lock. We want to make sure compiler wont store
916 	 * intermediate values in this location.
917 	 */
918 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
919 					     sk->sk_max_pacing_rate));
920 }
921 
922 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
923  * routine referred to above.
924  */
tcp_set_rto(struct sock * sk)925 static void tcp_set_rto(struct sock *sk)
926 {
927 	const struct tcp_sock *tp = tcp_sk(sk);
928 	/* Old crap is replaced with new one. 8)
929 	 *
930 	 * More seriously:
931 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
932 	 *    It cannot be less due to utterly erratic ACK generation made
933 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
934 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
935 	 *    is invisible. Actually, Linux-2.4 also generates erratic
936 	 *    ACKs in some circumstances.
937 	 */
938 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
939 
940 	/* 2. Fixups made earlier cannot be right.
941 	 *    If we do not estimate RTO correctly without them,
942 	 *    all the algo is pure shit and should be replaced
943 	 *    with correct one. It is exactly, which we pretend to do.
944 	 */
945 
946 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
947 	 * guarantees that rto is higher.
948 	 */
949 	tcp_bound_rto(sk);
950 }
951 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)952 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
953 {
954 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
955 
956 	if (!cwnd)
957 		cwnd = TCP_INIT_CWND;
958 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
959 }
960 
961 struct tcp_sacktag_state {
962 	/* Timestamps for earliest and latest never-retransmitted segment
963 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
964 	 * but congestion control should still get an accurate delay signal.
965 	 */
966 	u64	first_sackt;
967 	u64	last_sackt;
968 	u32	reord;
969 	u32	sack_delivered;
970 	int	flag;
971 	unsigned int mss_now;
972 	struct rate_sample *rate;
973 };
974 
975 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
976  * and spurious retransmission information if this DSACK is unlikely caused by
977  * sender's action:
978  * - DSACKed sequence range is larger than maximum receiver's window.
979  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
980  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)981 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
982 			  u32 end_seq, struct tcp_sacktag_state *state)
983 {
984 	u32 seq_len, dup_segs = 1;
985 
986 	if (!before(start_seq, end_seq))
987 		return 0;
988 
989 	seq_len = end_seq - start_seq;
990 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
991 	if (seq_len > tp->max_window)
992 		return 0;
993 	if (seq_len > tp->mss_cache)
994 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
995 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
996 		state->flag |= FLAG_DSACK_TLP;
997 
998 	tp->dsack_dups += dup_segs;
999 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1000 	if (tp->dsack_dups > tp->total_retrans)
1001 		return 0;
1002 
1003 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1004 	/* We increase the RACK ordering window in rounds where we receive
1005 	 * DSACKs that may have been due to reordering causing RACK to trigger
1006 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1007 	 * without having seen reordering, or that match TLP probes (TLP
1008 	 * is timer-driven, not triggered by RACK).
1009 	 */
1010 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1011 		tp->rack.dsack_seen = 1;
1012 
1013 	state->flag |= FLAG_DSACKING_ACK;
1014 	/* A spurious retransmission is delivered */
1015 	state->sack_delivered += dup_segs;
1016 
1017 	return dup_segs;
1018 }
1019 
1020 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1021  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1022  * distance is approximated in full-mss packet distance ("reordering").
1023  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1024 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1025 				      const int ts)
1026 {
1027 	struct tcp_sock *tp = tcp_sk(sk);
1028 	const u32 mss = tp->mss_cache;
1029 	u32 fack, metric;
1030 
1031 	fack = tcp_highest_sack_seq(tp);
1032 	if (!before(low_seq, fack))
1033 		return;
1034 
1035 	metric = fack - low_seq;
1036 	if ((metric > tp->reordering * mss) && mss) {
1037 #if FASTRETRANS_DEBUG > 1
1038 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1039 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1040 			 tp->reordering,
1041 			 0,
1042 			 tp->sacked_out,
1043 			 tp->undo_marker ? tp->undo_retrans : 0);
1044 #endif
1045 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1046 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1047 	}
1048 
1049 	/* This exciting event is worth to be remembered. 8) */
1050 	tp->reord_seen++;
1051 	NET_INC_STATS(sock_net(sk),
1052 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1053 }
1054 
1055  /* This must be called before lost_out or retrans_out are updated
1056   * on a new loss, because we want to know if all skbs previously
1057   * known to be lost have already been retransmitted, indicating
1058   * that this newly lost skb is our next skb to retransmit.
1059   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1060 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1061 {
1062 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1063 	    (tp->retransmit_skb_hint &&
1064 	     before(TCP_SKB_CB(skb)->seq,
1065 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1066 		tp->retransmit_skb_hint = skb;
1067 }
1068 
1069 /* Sum the number of packets on the wire we have marked as lost, and
1070  * notify the congestion control module that the given skb was marked lost.
1071  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1072 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1073 {
1074 	tp->lost += tcp_skb_pcount(skb);
1075 }
1076 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1077 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1078 {
1079 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1080 	struct tcp_sock *tp = tcp_sk(sk);
1081 
1082 	if (sacked & TCPCB_SACKED_ACKED)
1083 		return;
1084 
1085 	tcp_verify_retransmit_hint(tp, skb);
1086 	if (sacked & TCPCB_LOST) {
1087 		if (sacked & TCPCB_SACKED_RETRANS) {
1088 			/* Account for retransmits that are lost again */
1089 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1090 			tp->retrans_out -= tcp_skb_pcount(skb);
1091 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1092 				      tcp_skb_pcount(skb));
1093 			tcp_notify_skb_loss_event(tp, skb);
1094 		}
1095 	} else {
1096 		tp->lost_out += tcp_skb_pcount(skb);
1097 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1098 		tcp_notify_skb_loss_event(tp, skb);
1099 	}
1100 }
1101 
1102 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1103 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1104 				bool ece_ack)
1105 {
1106 	tp->delivered += delivered;
1107 	if (ece_ack)
1108 		tp->delivered_ce += delivered;
1109 }
1110 
1111 /* This procedure tags the retransmission queue when SACKs arrive.
1112  *
1113  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1114  * Packets in queue with these bits set are counted in variables
1115  * sacked_out, retrans_out and lost_out, correspondingly.
1116  *
1117  * Valid combinations are:
1118  * Tag  InFlight	Description
1119  * 0	1		- orig segment is in flight.
1120  * S	0		- nothing flies, orig reached receiver.
1121  * L	0		- nothing flies, orig lost by net.
1122  * R	2		- both orig and retransmit are in flight.
1123  * L|R	1		- orig is lost, retransmit is in flight.
1124  * S|R  1		- orig reached receiver, retrans is still in flight.
1125  * (L|S|R is logically valid, it could occur when L|R is sacked,
1126  *  but it is equivalent to plain S and code short-curcuits it to S.
1127  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1128  *
1129  * These 6 states form finite state machine, controlled by the following events:
1130  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1131  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1132  * 3. Loss detection event of two flavors:
1133  *	A. Scoreboard estimator decided the packet is lost.
1134  *	   A'. Reno "three dupacks" marks head of queue lost.
1135  *	B. SACK arrives sacking SND.NXT at the moment, when the
1136  *	   segment was retransmitted.
1137  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1138  *
1139  * It is pleasant to note, that state diagram turns out to be commutative,
1140  * so that we are allowed not to be bothered by order of our actions,
1141  * when multiple events arrive simultaneously. (see the function below).
1142  *
1143  * Reordering detection.
1144  * --------------------
1145  * Reordering metric is maximal distance, which a packet can be displaced
1146  * in packet stream. With SACKs we can estimate it:
1147  *
1148  * 1. SACK fills old hole and the corresponding segment was not
1149  *    ever retransmitted -> reordering. Alas, we cannot use it
1150  *    when segment was retransmitted.
1151  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1152  *    for retransmitted and already SACKed segment -> reordering..
1153  * Both of these heuristics are not used in Loss state, when we cannot
1154  * account for retransmits accurately.
1155  *
1156  * SACK block validation.
1157  * ----------------------
1158  *
1159  * SACK block range validation checks that the received SACK block fits to
1160  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1161  * Note that SND.UNA is not included to the range though being valid because
1162  * it means that the receiver is rather inconsistent with itself reporting
1163  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1164  * perfectly valid, however, in light of RFC2018 which explicitly states
1165  * that "SACK block MUST reflect the newest segment.  Even if the newest
1166  * segment is going to be discarded ...", not that it looks very clever
1167  * in case of head skb. Due to potentional receiver driven attacks, we
1168  * choose to avoid immediate execution of a walk in write queue due to
1169  * reneging and defer head skb's loss recovery to standard loss recovery
1170  * procedure that will eventually trigger (nothing forbids us doing this).
1171  *
1172  * Implements also blockage to start_seq wrap-around. Problem lies in the
1173  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1174  * there's no guarantee that it will be before snd_nxt (n). The problem
1175  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1176  * wrap (s_w):
1177  *
1178  *         <- outs wnd ->                          <- wrapzone ->
1179  *         u     e      n                         u_w   e_w  s n_w
1180  *         |     |      |                          |     |   |  |
1181  * |<------------+------+----- TCP seqno space --------------+---------->|
1182  * ...-- <2^31 ->|                                           |<--------...
1183  * ...---- >2^31 ------>|                                    |<--------...
1184  *
1185  * Current code wouldn't be vulnerable but it's better still to discard such
1186  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1187  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1188  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1189  * equal to the ideal case (infinite seqno space without wrap caused issues).
1190  *
1191  * With D-SACK the lower bound is extended to cover sequence space below
1192  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1193  * again, D-SACK block must not to go across snd_una (for the same reason as
1194  * for the normal SACK blocks, explained above). But there all simplicity
1195  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1196  * fully below undo_marker they do not affect behavior in anyway and can
1197  * therefore be safely ignored. In rare cases (which are more or less
1198  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1199  * fragmentation and packet reordering past skb's retransmission. To consider
1200  * them correctly, the acceptable range must be extended even more though
1201  * the exact amount is rather hard to quantify. However, tp->max_window can
1202  * be used as an exaggerated estimate.
1203  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1204 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1205 				   u32 start_seq, u32 end_seq)
1206 {
1207 	/* Too far in future, or reversed (interpretation is ambiguous) */
1208 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1209 		return false;
1210 
1211 	/* Nasty start_seq wrap-around check (see comments above) */
1212 	if (!before(start_seq, tp->snd_nxt))
1213 		return false;
1214 
1215 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1216 	 * start_seq == snd_una is non-sensical (see comments above)
1217 	 */
1218 	if (after(start_seq, tp->snd_una))
1219 		return true;
1220 
1221 	if (!is_dsack || !tp->undo_marker)
1222 		return false;
1223 
1224 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1225 	if (after(end_seq, tp->snd_una))
1226 		return false;
1227 
1228 	if (!before(start_seq, tp->undo_marker))
1229 		return true;
1230 
1231 	/* Too old */
1232 	if (!after(end_seq, tp->undo_marker))
1233 		return false;
1234 
1235 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1236 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1237 	 */
1238 	return !before(start_seq, end_seq - tp->max_window);
1239 }
1240 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1241 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1242 			    struct tcp_sack_block_wire *sp, int num_sacks,
1243 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1244 {
1245 	struct tcp_sock *tp = tcp_sk(sk);
1246 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1247 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1248 	u32 dup_segs;
1249 
1250 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1251 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1252 	} else if (num_sacks > 1) {
1253 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1254 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1255 
1256 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1257 			return false;
1258 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1259 	} else {
1260 		return false;
1261 	}
1262 
1263 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1264 	if (!dup_segs) {	/* Skip dubious DSACK */
1265 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1266 		return false;
1267 	}
1268 
1269 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1270 
1271 	/* D-SACK for already forgotten data... Do dumb counting. */
1272 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1273 	    !after(end_seq_0, prior_snd_una) &&
1274 	    after(end_seq_0, tp->undo_marker))
1275 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1276 
1277 	return true;
1278 }
1279 
1280 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1281  * the incoming SACK may not exactly match but we can find smaller MSS
1282  * aligned portion of it that matches. Therefore we might need to fragment
1283  * which may fail and creates some hassle (caller must handle error case
1284  * returns).
1285  *
1286  * FIXME: this could be merged to shift decision code
1287  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1288 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1289 				  u32 start_seq, u32 end_seq)
1290 {
1291 	int err;
1292 	bool in_sack;
1293 	unsigned int pkt_len;
1294 	unsigned int mss;
1295 
1296 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1297 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1298 
1299 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1300 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1301 		mss = tcp_skb_mss(skb);
1302 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1303 
1304 		if (!in_sack) {
1305 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1306 			if (pkt_len < mss)
1307 				pkt_len = mss;
1308 		} else {
1309 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1310 			if (pkt_len < mss)
1311 				return -EINVAL;
1312 		}
1313 
1314 		/* Round if necessary so that SACKs cover only full MSSes
1315 		 * and/or the remaining small portion (if present)
1316 		 */
1317 		if (pkt_len > mss) {
1318 			unsigned int new_len = (pkt_len / mss) * mss;
1319 			if (!in_sack && new_len < pkt_len)
1320 				new_len += mss;
1321 			pkt_len = new_len;
1322 		}
1323 
1324 		if (pkt_len >= skb->len && !in_sack)
1325 			return 0;
1326 
1327 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1328 				   pkt_len, mss, GFP_ATOMIC);
1329 		if (err < 0)
1330 			return err;
1331 	}
1332 
1333 	return in_sack;
1334 }
1335 
1336 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1337 static u8 tcp_sacktag_one(struct sock *sk,
1338 			  struct tcp_sacktag_state *state, u8 sacked,
1339 			  u32 start_seq, u32 end_seq,
1340 			  int dup_sack, int pcount,
1341 			  u64 xmit_time)
1342 {
1343 	struct tcp_sock *tp = tcp_sk(sk);
1344 
1345 	/* Account D-SACK for retransmitted packet. */
1346 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1347 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1348 		    after(end_seq, tp->undo_marker))
1349 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1350 		if ((sacked & TCPCB_SACKED_ACKED) &&
1351 		    before(start_seq, state->reord))
1352 				state->reord = start_seq;
1353 	}
1354 
1355 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1356 	if (!after(end_seq, tp->snd_una))
1357 		return sacked;
1358 
1359 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1360 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1361 
1362 		if (sacked & TCPCB_SACKED_RETRANS) {
1363 			/* If the segment is not tagged as lost,
1364 			 * we do not clear RETRANS, believing
1365 			 * that retransmission is still in flight.
1366 			 */
1367 			if (sacked & TCPCB_LOST) {
1368 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1369 				tp->lost_out -= pcount;
1370 				tp->retrans_out -= pcount;
1371 			}
1372 		} else {
1373 			if (!(sacked & TCPCB_RETRANS)) {
1374 				/* New sack for not retransmitted frame,
1375 				 * which was in hole. It is reordering.
1376 				 */
1377 				if (before(start_seq,
1378 					   tcp_highest_sack_seq(tp)) &&
1379 				    before(start_seq, state->reord))
1380 					state->reord = start_seq;
1381 
1382 				if (!after(end_seq, tp->high_seq))
1383 					state->flag |= FLAG_ORIG_SACK_ACKED;
1384 				if (state->first_sackt == 0)
1385 					state->first_sackt = xmit_time;
1386 				state->last_sackt = xmit_time;
1387 			}
1388 
1389 			if (sacked & TCPCB_LOST) {
1390 				sacked &= ~TCPCB_LOST;
1391 				tp->lost_out -= pcount;
1392 			}
1393 		}
1394 
1395 		sacked |= TCPCB_SACKED_ACKED;
1396 		state->flag |= FLAG_DATA_SACKED;
1397 		tp->sacked_out += pcount;
1398 		/* Out-of-order packets delivered */
1399 		state->sack_delivered += pcount;
1400 
1401 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1402 		if (tp->lost_skb_hint &&
1403 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1404 			tp->lost_cnt_hint += pcount;
1405 	}
1406 
1407 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1408 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1409 	 * are accounted above as well.
1410 	 */
1411 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1412 		sacked &= ~TCPCB_SACKED_RETRANS;
1413 		tp->retrans_out -= pcount;
1414 	}
1415 
1416 	return sacked;
1417 }
1418 
1419 /* Shift newly-SACKed bytes from this skb to the immediately previous
1420  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1421  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1422 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1423 			    struct sk_buff *skb,
1424 			    struct tcp_sacktag_state *state,
1425 			    unsigned int pcount, int shifted, int mss,
1426 			    bool dup_sack)
1427 {
1428 	struct tcp_sock *tp = tcp_sk(sk);
1429 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1430 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1431 
1432 	BUG_ON(!pcount);
1433 
1434 	/* Adjust counters and hints for the newly sacked sequence
1435 	 * range but discard the return value since prev is already
1436 	 * marked. We must tag the range first because the seq
1437 	 * advancement below implicitly advances
1438 	 * tcp_highest_sack_seq() when skb is highest_sack.
1439 	 */
1440 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1441 			start_seq, end_seq, dup_sack, pcount,
1442 			tcp_skb_timestamp_us(skb));
1443 	tcp_rate_skb_delivered(sk, skb, state->rate);
1444 
1445 	if (skb == tp->lost_skb_hint)
1446 		tp->lost_cnt_hint += pcount;
1447 
1448 	TCP_SKB_CB(prev)->end_seq += shifted;
1449 	TCP_SKB_CB(skb)->seq += shifted;
1450 
1451 	tcp_skb_pcount_add(prev, pcount);
1452 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1453 	tcp_skb_pcount_add(skb, -pcount);
1454 
1455 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1456 	 * in theory this shouldn't be necessary but as long as DSACK
1457 	 * code can come after this skb later on it's better to keep
1458 	 * setting gso_size to something.
1459 	 */
1460 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1461 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1462 
1463 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1464 	if (tcp_skb_pcount(skb) <= 1)
1465 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1466 
1467 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1468 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1469 
1470 	if (skb->len > 0) {
1471 		BUG_ON(!tcp_skb_pcount(skb));
1472 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1473 		return false;
1474 	}
1475 
1476 	/* Whole SKB was eaten :-) */
1477 
1478 	if (skb == tp->retransmit_skb_hint)
1479 		tp->retransmit_skb_hint = prev;
1480 	if (skb == tp->lost_skb_hint) {
1481 		tp->lost_skb_hint = prev;
1482 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1483 	}
1484 
1485 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1486 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1487 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1488 		TCP_SKB_CB(prev)->end_seq++;
1489 
1490 	if (skb == tcp_highest_sack(sk))
1491 		tcp_advance_highest_sack(sk, skb);
1492 
1493 	tcp_skb_collapse_tstamp(prev, skb);
1494 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1495 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1496 
1497 	tcp_rtx_queue_unlink_and_free(skb, sk);
1498 
1499 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1500 
1501 	return true;
1502 }
1503 
1504 /* I wish gso_size would have a bit more sane initialization than
1505  * something-or-zero which complicates things
1506  */
tcp_skb_seglen(const struct sk_buff * skb)1507 static int tcp_skb_seglen(const struct sk_buff *skb)
1508 {
1509 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1510 }
1511 
1512 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1513 static int skb_can_shift(const struct sk_buff *skb)
1514 {
1515 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1516 }
1517 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1518 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1519 		  int pcount, int shiftlen)
1520 {
1521 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1522 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1523 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1524 	 * even if current MSS is bigger.
1525 	 */
1526 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1527 		return 0;
1528 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1529 		return 0;
1530 	return skb_shift(to, from, shiftlen);
1531 }
1532 
1533 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1534  * skb.
1535  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1536 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1537 					  struct tcp_sacktag_state *state,
1538 					  u32 start_seq, u32 end_seq,
1539 					  bool dup_sack)
1540 {
1541 	struct tcp_sock *tp = tcp_sk(sk);
1542 	struct sk_buff *prev;
1543 	int mss;
1544 	int pcount = 0;
1545 	int len;
1546 	int in_sack;
1547 
1548 	/* Normally R but no L won't result in plain S */
1549 	if (!dup_sack &&
1550 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1551 		goto fallback;
1552 	if (!skb_can_shift(skb))
1553 		goto fallback;
1554 	/* This frame is about to be dropped (was ACKed). */
1555 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1556 		goto fallback;
1557 
1558 	/* Can only happen with delayed DSACK + discard craziness */
1559 	prev = skb_rb_prev(skb);
1560 	if (!prev)
1561 		goto fallback;
1562 
1563 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1564 		goto fallback;
1565 
1566 	if (!tcp_skb_can_collapse(prev, skb))
1567 		goto fallback;
1568 
1569 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1570 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1571 
1572 	if (in_sack) {
1573 		len = skb->len;
1574 		pcount = tcp_skb_pcount(skb);
1575 		mss = tcp_skb_seglen(skb);
1576 
1577 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1578 		 * drop this restriction as unnecessary
1579 		 */
1580 		if (mss != tcp_skb_seglen(prev))
1581 			goto fallback;
1582 	} else {
1583 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1584 			goto noop;
1585 		/* CHECKME: This is non-MSS split case only?, this will
1586 		 * cause skipped skbs due to advancing loop btw, original
1587 		 * has that feature too
1588 		 */
1589 		if (tcp_skb_pcount(skb) <= 1)
1590 			goto noop;
1591 
1592 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1593 		if (!in_sack) {
1594 			/* TODO: head merge to next could be attempted here
1595 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1596 			 * though it might not be worth of the additional hassle
1597 			 *
1598 			 * ...we can probably just fallback to what was done
1599 			 * previously. We could try merging non-SACKed ones
1600 			 * as well but it probably isn't going to buy off
1601 			 * because later SACKs might again split them, and
1602 			 * it would make skb timestamp tracking considerably
1603 			 * harder problem.
1604 			 */
1605 			goto fallback;
1606 		}
1607 
1608 		len = end_seq - TCP_SKB_CB(skb)->seq;
1609 		BUG_ON(len < 0);
1610 		BUG_ON(len > skb->len);
1611 
1612 		/* MSS boundaries should be honoured or else pcount will
1613 		 * severely break even though it makes things bit trickier.
1614 		 * Optimize common case to avoid most of the divides
1615 		 */
1616 		mss = tcp_skb_mss(skb);
1617 
1618 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1619 		 * drop this restriction as unnecessary
1620 		 */
1621 		if (mss != tcp_skb_seglen(prev))
1622 			goto fallback;
1623 
1624 		if (len == mss) {
1625 			pcount = 1;
1626 		} else if (len < mss) {
1627 			goto noop;
1628 		} else {
1629 			pcount = len / mss;
1630 			len = pcount * mss;
1631 		}
1632 	}
1633 
1634 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1635 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1636 		goto fallback;
1637 
1638 	if (!tcp_skb_shift(prev, skb, pcount, len))
1639 		goto fallback;
1640 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1641 		goto out;
1642 
1643 	/* Hole filled allows collapsing with the next as well, this is very
1644 	 * useful when hole on every nth skb pattern happens
1645 	 */
1646 	skb = skb_rb_next(prev);
1647 	if (!skb)
1648 		goto out;
1649 
1650 	if (!skb_can_shift(skb) ||
1651 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1652 	    (mss != tcp_skb_seglen(skb)))
1653 		goto out;
1654 
1655 	len = skb->len;
1656 	pcount = tcp_skb_pcount(skb);
1657 	if (tcp_skb_shift(prev, skb, pcount, len))
1658 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1659 				len, mss, 0);
1660 
1661 out:
1662 	return prev;
1663 
1664 noop:
1665 	return skb;
1666 
1667 fallback:
1668 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1669 	return NULL;
1670 }
1671 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1672 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1673 					struct tcp_sack_block *next_dup,
1674 					struct tcp_sacktag_state *state,
1675 					u32 start_seq, u32 end_seq,
1676 					bool dup_sack_in)
1677 {
1678 	struct tcp_sock *tp = tcp_sk(sk);
1679 	struct sk_buff *tmp;
1680 
1681 	skb_rbtree_walk_from(skb) {
1682 		int in_sack = 0;
1683 		bool dup_sack = dup_sack_in;
1684 
1685 		/* queue is in-order => we can short-circuit the walk early */
1686 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1687 			break;
1688 
1689 		if (next_dup  &&
1690 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1691 			in_sack = tcp_match_skb_to_sack(sk, skb,
1692 							next_dup->start_seq,
1693 							next_dup->end_seq);
1694 			if (in_sack > 0)
1695 				dup_sack = true;
1696 		}
1697 
1698 		/* skb reference here is a bit tricky to get right, since
1699 		 * shifting can eat and free both this skb and the next,
1700 		 * so not even _safe variant of the loop is enough.
1701 		 */
1702 		if (in_sack <= 0) {
1703 			tmp = tcp_shift_skb_data(sk, skb, state,
1704 						 start_seq, end_seq, dup_sack);
1705 			if (tmp) {
1706 				if (tmp != skb) {
1707 					skb = tmp;
1708 					continue;
1709 				}
1710 
1711 				in_sack = 0;
1712 			} else {
1713 				in_sack = tcp_match_skb_to_sack(sk, skb,
1714 								start_seq,
1715 								end_seq);
1716 			}
1717 		}
1718 
1719 		if (unlikely(in_sack < 0))
1720 			break;
1721 
1722 		if (in_sack) {
1723 			TCP_SKB_CB(skb)->sacked =
1724 				tcp_sacktag_one(sk,
1725 						state,
1726 						TCP_SKB_CB(skb)->sacked,
1727 						TCP_SKB_CB(skb)->seq,
1728 						TCP_SKB_CB(skb)->end_seq,
1729 						dup_sack,
1730 						tcp_skb_pcount(skb),
1731 						tcp_skb_timestamp_us(skb));
1732 			tcp_rate_skb_delivered(sk, skb, state->rate);
1733 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1734 				list_del_init(&skb->tcp_tsorted_anchor);
1735 
1736 			if (!before(TCP_SKB_CB(skb)->seq,
1737 				    tcp_highest_sack_seq(tp)))
1738 				tcp_advance_highest_sack(sk, skb);
1739 		}
1740 	}
1741 	return skb;
1742 }
1743 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1744 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1745 {
1746 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1747 	struct sk_buff *skb;
1748 
1749 	while (*p) {
1750 		parent = *p;
1751 		skb = rb_to_skb(parent);
1752 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1753 			p = &parent->rb_left;
1754 			continue;
1755 		}
1756 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1757 			p = &parent->rb_right;
1758 			continue;
1759 		}
1760 		return skb;
1761 	}
1762 	return NULL;
1763 }
1764 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1765 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1766 					u32 skip_to_seq)
1767 {
1768 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1769 		return skb;
1770 
1771 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1772 }
1773 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1774 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1775 						struct sock *sk,
1776 						struct tcp_sack_block *next_dup,
1777 						struct tcp_sacktag_state *state,
1778 						u32 skip_to_seq)
1779 {
1780 	if (!next_dup)
1781 		return skb;
1782 
1783 	if (before(next_dup->start_seq, skip_to_seq)) {
1784 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1785 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1786 				       next_dup->start_seq, next_dup->end_seq,
1787 				       1);
1788 	}
1789 
1790 	return skb;
1791 }
1792 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1793 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1794 {
1795 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1796 }
1797 
1798 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1799 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1800 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1801 {
1802 	struct tcp_sock *tp = tcp_sk(sk);
1803 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1804 				    TCP_SKB_CB(ack_skb)->sacked);
1805 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1806 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1807 	struct tcp_sack_block *cache;
1808 	struct sk_buff *skb;
1809 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1810 	int used_sacks;
1811 	bool found_dup_sack = false;
1812 	int i, j;
1813 	int first_sack_index;
1814 
1815 	state->flag = 0;
1816 	state->reord = tp->snd_nxt;
1817 
1818 	if (!tp->sacked_out)
1819 		tcp_highest_sack_reset(sk);
1820 
1821 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1822 					 num_sacks, prior_snd_una, state);
1823 
1824 	/* Eliminate too old ACKs, but take into
1825 	 * account more or less fresh ones, they can
1826 	 * contain valid SACK info.
1827 	 */
1828 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1829 		return 0;
1830 
1831 	if (!tp->packets_out)
1832 		goto out;
1833 
1834 	used_sacks = 0;
1835 	first_sack_index = 0;
1836 	for (i = 0; i < num_sacks; i++) {
1837 		bool dup_sack = !i && found_dup_sack;
1838 
1839 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1840 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1841 
1842 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1843 					    sp[used_sacks].start_seq,
1844 					    sp[used_sacks].end_seq)) {
1845 			int mib_idx;
1846 
1847 			if (dup_sack) {
1848 				if (!tp->undo_marker)
1849 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1850 				else
1851 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1852 			} else {
1853 				/* Don't count olds caused by ACK reordering */
1854 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1855 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1856 					continue;
1857 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1858 			}
1859 
1860 			NET_INC_STATS(sock_net(sk), mib_idx);
1861 			if (i == 0)
1862 				first_sack_index = -1;
1863 			continue;
1864 		}
1865 
1866 		/* Ignore very old stuff early */
1867 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1868 			if (i == 0)
1869 				first_sack_index = -1;
1870 			continue;
1871 		}
1872 
1873 		used_sacks++;
1874 	}
1875 
1876 	/* order SACK blocks to allow in order walk of the retrans queue */
1877 	for (i = used_sacks - 1; i > 0; i--) {
1878 		for (j = 0; j < i; j++) {
1879 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1880 				swap(sp[j], sp[j + 1]);
1881 
1882 				/* Track where the first SACK block goes to */
1883 				if (j == first_sack_index)
1884 					first_sack_index = j + 1;
1885 			}
1886 		}
1887 	}
1888 
1889 	state->mss_now = tcp_current_mss(sk);
1890 	skb = NULL;
1891 	i = 0;
1892 
1893 	if (!tp->sacked_out) {
1894 		/* It's already past, so skip checking against it */
1895 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1896 	} else {
1897 		cache = tp->recv_sack_cache;
1898 		/* Skip empty blocks in at head of the cache */
1899 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1900 		       !cache->end_seq)
1901 			cache++;
1902 	}
1903 
1904 	while (i < used_sacks) {
1905 		u32 start_seq = sp[i].start_seq;
1906 		u32 end_seq = sp[i].end_seq;
1907 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1908 		struct tcp_sack_block *next_dup = NULL;
1909 
1910 		if (found_dup_sack && ((i + 1) == first_sack_index))
1911 			next_dup = &sp[i + 1];
1912 
1913 		/* Skip too early cached blocks */
1914 		while (tcp_sack_cache_ok(tp, cache) &&
1915 		       !before(start_seq, cache->end_seq))
1916 			cache++;
1917 
1918 		/* Can skip some work by looking recv_sack_cache? */
1919 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1920 		    after(end_seq, cache->start_seq)) {
1921 
1922 			/* Head todo? */
1923 			if (before(start_seq, cache->start_seq)) {
1924 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1925 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1926 						       state,
1927 						       start_seq,
1928 						       cache->start_seq,
1929 						       dup_sack);
1930 			}
1931 
1932 			/* Rest of the block already fully processed? */
1933 			if (!after(end_seq, cache->end_seq))
1934 				goto advance_sp;
1935 
1936 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1937 						       state,
1938 						       cache->end_seq);
1939 
1940 			/* ...tail remains todo... */
1941 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1942 				/* ...but better entrypoint exists! */
1943 				skb = tcp_highest_sack(sk);
1944 				if (!skb)
1945 					break;
1946 				cache++;
1947 				goto walk;
1948 			}
1949 
1950 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1951 			/* Check overlap against next cached too (past this one already) */
1952 			cache++;
1953 			continue;
1954 		}
1955 
1956 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1957 			skb = tcp_highest_sack(sk);
1958 			if (!skb)
1959 				break;
1960 		}
1961 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1962 
1963 walk:
1964 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1965 				       start_seq, end_seq, dup_sack);
1966 
1967 advance_sp:
1968 		i++;
1969 	}
1970 
1971 	/* Clear the head of the cache sack blocks so we can skip it next time */
1972 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1973 		tp->recv_sack_cache[i].start_seq = 0;
1974 		tp->recv_sack_cache[i].end_seq = 0;
1975 	}
1976 	for (j = 0; j < used_sacks; j++)
1977 		tp->recv_sack_cache[i++] = sp[j];
1978 
1979 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1980 		tcp_check_sack_reordering(sk, state->reord, 0);
1981 
1982 	tcp_verify_left_out(tp);
1983 out:
1984 
1985 #if FASTRETRANS_DEBUG > 0
1986 	WARN_ON((int)tp->sacked_out < 0);
1987 	WARN_ON((int)tp->lost_out < 0);
1988 	WARN_ON((int)tp->retrans_out < 0);
1989 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1990 #endif
1991 	return state->flag;
1992 }
1993 
1994 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1995  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1996  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1997 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1998 {
1999 	u32 holes;
2000 
2001 	holes = max(tp->lost_out, 1U);
2002 	holes = min(holes, tp->packets_out);
2003 
2004 	if ((tp->sacked_out + holes) > tp->packets_out) {
2005 		tp->sacked_out = tp->packets_out - holes;
2006 		return true;
2007 	}
2008 	return false;
2009 }
2010 
2011 /* If we receive more dupacks than we expected counting segments
2012  * in assumption of absent reordering, interpret this as reordering.
2013  * The only another reason could be bug in receiver TCP.
2014  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2015 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2016 {
2017 	struct tcp_sock *tp = tcp_sk(sk);
2018 
2019 	if (!tcp_limit_reno_sacked(tp))
2020 		return;
2021 
2022 	tp->reordering = min_t(u32, tp->packets_out + addend,
2023 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
2024 	tp->reord_seen++;
2025 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2026 }
2027 
2028 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2029 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2030 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2031 {
2032 	if (num_dupack) {
2033 		struct tcp_sock *tp = tcp_sk(sk);
2034 		u32 prior_sacked = tp->sacked_out;
2035 		s32 delivered;
2036 
2037 		tp->sacked_out += num_dupack;
2038 		tcp_check_reno_reordering(sk, 0);
2039 		delivered = tp->sacked_out - prior_sacked;
2040 		if (delivered > 0)
2041 			tcp_count_delivered(tp, delivered, ece_ack);
2042 		tcp_verify_left_out(tp);
2043 	}
2044 }
2045 
2046 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2047 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2048 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2049 {
2050 	struct tcp_sock *tp = tcp_sk(sk);
2051 
2052 	if (acked > 0) {
2053 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2054 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2055 				    ece_ack);
2056 		if (acked - 1 >= tp->sacked_out)
2057 			tp->sacked_out = 0;
2058 		else
2059 			tp->sacked_out -= acked - 1;
2060 	}
2061 	tcp_check_reno_reordering(sk, acked);
2062 	tcp_verify_left_out(tp);
2063 }
2064 
tcp_reset_reno_sack(struct tcp_sock * tp)2065 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2066 {
2067 	tp->sacked_out = 0;
2068 }
2069 
tcp_clear_retrans(struct tcp_sock * tp)2070 void tcp_clear_retrans(struct tcp_sock *tp)
2071 {
2072 	tp->retrans_out = 0;
2073 	tp->lost_out = 0;
2074 	tp->undo_marker = 0;
2075 	tp->undo_retrans = -1;
2076 	tp->sacked_out = 0;
2077 }
2078 
tcp_init_undo(struct tcp_sock * tp)2079 static inline void tcp_init_undo(struct tcp_sock *tp)
2080 {
2081 	tp->undo_marker = tp->snd_una;
2082 	/* Retransmission still in flight may cause DSACKs later. */
2083 	tp->undo_retrans = tp->retrans_out ? : -1;
2084 }
2085 
tcp_is_rack(const struct sock * sk)2086 static bool tcp_is_rack(const struct sock *sk)
2087 {
2088 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2089 }
2090 
2091 /* If we detect SACK reneging, forget all SACK information
2092  * and reset tags completely, otherwise preserve SACKs. If receiver
2093  * dropped its ofo queue, we will know this due to reneging detection.
2094  */
tcp_timeout_mark_lost(struct sock * sk)2095 static void tcp_timeout_mark_lost(struct sock *sk)
2096 {
2097 	struct tcp_sock *tp = tcp_sk(sk);
2098 	struct sk_buff *skb, *head;
2099 	bool is_reneg;			/* is receiver reneging on SACKs? */
2100 
2101 	head = tcp_rtx_queue_head(sk);
2102 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2103 	if (is_reneg) {
2104 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2105 		tp->sacked_out = 0;
2106 		/* Mark SACK reneging until we recover from this loss event. */
2107 		tp->is_sack_reneg = 1;
2108 	} else if (tcp_is_reno(tp)) {
2109 		tcp_reset_reno_sack(tp);
2110 	}
2111 
2112 	skb = head;
2113 	skb_rbtree_walk_from(skb) {
2114 		if (is_reneg)
2115 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2116 		else if (tcp_is_rack(sk) && skb != head &&
2117 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2118 			continue; /* Don't mark recently sent ones lost yet */
2119 		tcp_mark_skb_lost(sk, skb);
2120 	}
2121 	tcp_verify_left_out(tp);
2122 	tcp_clear_all_retrans_hints(tp);
2123 }
2124 
2125 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2126 void tcp_enter_loss(struct sock *sk)
2127 {
2128 	const struct inet_connection_sock *icsk = inet_csk(sk);
2129 	struct tcp_sock *tp = tcp_sk(sk);
2130 	struct net *net = sock_net(sk);
2131 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2132 
2133 	tcp_timeout_mark_lost(sk);
2134 
2135 	/* Reduce ssthresh if it has not yet been made inside this window. */
2136 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2137 	    !after(tp->high_seq, tp->snd_una) ||
2138 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2139 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2140 		tp->prior_cwnd = tp->snd_cwnd;
2141 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2142 		tcp_ca_event(sk, CA_EVENT_LOSS);
2143 		tcp_init_undo(tp);
2144 	}
2145 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2146 	tp->snd_cwnd_cnt   = 0;
2147 	tp->snd_cwnd_stamp = tcp_jiffies32;
2148 
2149 	/* Timeout in disordered state after receiving substantial DUPACKs
2150 	 * suggests that the degree of reordering is over-estimated.
2151 	 */
2152 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2153 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2154 		tp->reordering = min_t(unsigned int, tp->reordering,
2155 				       net->ipv4.sysctl_tcp_reordering);
2156 	tcp_set_ca_state(sk, TCP_CA_Loss);
2157 	tp->high_seq = tp->snd_nxt;
2158 	tcp_ecn_queue_cwr(tp);
2159 
2160 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2161 	 * loss recovery is underway except recurring timeout(s) on
2162 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2163 	 */
2164 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2165 		   (new_recovery || icsk->icsk_retransmits) &&
2166 		   !inet_csk(sk)->icsk_mtup.probe_size;
2167 }
2168 
2169 /* If ACK arrived pointing to a remembered SACK, it means that our
2170  * remembered SACKs do not reflect real state of receiver i.e.
2171  * receiver _host_ is heavily congested (or buggy).
2172  *
2173  * To avoid big spurious retransmission bursts due to transient SACK
2174  * scoreboard oddities that look like reneging, we give the receiver a
2175  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2176  * restore sanity to the SACK scoreboard. If the apparent reneging
2177  * persists until this RTO then we'll clear the SACK scoreboard.
2178  */
tcp_check_sack_reneging(struct sock * sk,int flag)2179 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2180 {
2181 	if (flag & FLAG_SACK_RENEGING) {
2182 		struct tcp_sock *tp = tcp_sk(sk);
2183 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2184 					  msecs_to_jiffies(10));
2185 
2186 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2187 					  delay, TCP_RTO_MAX);
2188 		return true;
2189 	}
2190 	return false;
2191 }
2192 
2193 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2194  * counter when SACK is enabled (without SACK, sacked_out is used for
2195  * that purpose).
2196  *
2197  * With reordering, holes may still be in flight, so RFC3517 recovery
2198  * uses pure sacked_out (total number of SACKed segments) even though
2199  * it violates the RFC that uses duplicate ACKs, often these are equal
2200  * but when e.g. out-of-window ACKs or packet duplication occurs,
2201  * they differ. Since neither occurs due to loss, TCP should really
2202  * ignore them.
2203  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2204 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2205 {
2206 	return tp->sacked_out + 1;
2207 }
2208 
2209 /* Linux NewReno/SACK/ECN state machine.
2210  * --------------------------------------
2211  *
2212  * "Open"	Normal state, no dubious events, fast path.
2213  * "Disorder"   In all the respects it is "Open",
2214  *		but requires a bit more attention. It is entered when
2215  *		we see some SACKs or dupacks. It is split of "Open"
2216  *		mainly to move some processing from fast path to slow one.
2217  * "CWR"	CWND was reduced due to some Congestion Notification event.
2218  *		It can be ECN, ICMP source quench, local device congestion.
2219  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2220  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2221  *
2222  * tcp_fastretrans_alert() is entered:
2223  * - each incoming ACK, if state is not "Open"
2224  * - when arrived ACK is unusual, namely:
2225  *	* SACK
2226  *	* Duplicate ACK.
2227  *	* ECN ECE.
2228  *
2229  * Counting packets in flight is pretty simple.
2230  *
2231  *	in_flight = packets_out - left_out + retrans_out
2232  *
2233  *	packets_out is SND.NXT-SND.UNA counted in packets.
2234  *
2235  *	retrans_out is number of retransmitted segments.
2236  *
2237  *	left_out is number of segments left network, but not ACKed yet.
2238  *
2239  *		left_out = sacked_out + lost_out
2240  *
2241  *     sacked_out: Packets, which arrived to receiver out of order
2242  *		   and hence not ACKed. With SACKs this number is simply
2243  *		   amount of SACKed data. Even without SACKs
2244  *		   it is easy to give pretty reliable estimate of this number,
2245  *		   counting duplicate ACKs.
2246  *
2247  *       lost_out: Packets lost by network. TCP has no explicit
2248  *		   "loss notification" feedback from network (for now).
2249  *		   It means that this number can be only _guessed_.
2250  *		   Actually, it is the heuristics to predict lossage that
2251  *		   distinguishes different algorithms.
2252  *
2253  *	F.e. after RTO, when all the queue is considered as lost,
2254  *	lost_out = packets_out and in_flight = retrans_out.
2255  *
2256  *		Essentially, we have now a few algorithms detecting
2257  *		lost packets.
2258  *
2259  *		If the receiver supports SACK:
2260  *
2261  *		RFC6675/3517: It is the conventional algorithm. A packet is
2262  *		considered lost if the number of higher sequence packets
2263  *		SACKed is greater than or equal the DUPACK thoreshold
2264  *		(reordering). This is implemented in tcp_mark_head_lost and
2265  *		tcp_update_scoreboard.
2266  *
2267  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2268  *		(2017-) that checks timing instead of counting DUPACKs.
2269  *		Essentially a packet is considered lost if it's not S/ACKed
2270  *		after RTT + reordering_window, where both metrics are
2271  *		dynamically measured and adjusted. This is implemented in
2272  *		tcp_rack_mark_lost.
2273  *
2274  *		If the receiver does not support SACK:
2275  *
2276  *		NewReno (RFC6582): in Recovery we assume that one segment
2277  *		is lost (classic Reno). While we are in Recovery and
2278  *		a partial ACK arrives, we assume that one more packet
2279  *		is lost (NewReno). This heuristics are the same in NewReno
2280  *		and SACK.
2281  *
2282  * Really tricky (and requiring careful tuning) part of algorithm
2283  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2284  * The first determines the moment _when_ we should reduce CWND and,
2285  * hence, slow down forward transmission. In fact, it determines the moment
2286  * when we decide that hole is caused by loss, rather than by a reorder.
2287  *
2288  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2289  * holes, caused by lost packets.
2290  *
2291  * And the most logically complicated part of algorithm is undo
2292  * heuristics. We detect false retransmits due to both too early
2293  * fast retransmit (reordering) and underestimated RTO, analyzing
2294  * timestamps and D-SACKs. When we detect that some segments were
2295  * retransmitted by mistake and CWND reduction was wrong, we undo
2296  * window reduction and abort recovery phase. This logic is hidden
2297  * inside several functions named tcp_try_undo_<something>.
2298  */
2299 
2300 /* This function decides, when we should leave Disordered state
2301  * and enter Recovery phase, reducing congestion window.
2302  *
2303  * Main question: may we further continue forward transmission
2304  * with the same cwnd?
2305  */
tcp_time_to_recover(struct sock * sk,int flag)2306 static bool tcp_time_to_recover(struct sock *sk, int flag)
2307 {
2308 	struct tcp_sock *tp = tcp_sk(sk);
2309 
2310 	/* Trick#1: The loss is proven. */
2311 	if (tp->lost_out)
2312 		return true;
2313 
2314 	/* Not-A-Trick#2 : Classic rule... */
2315 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2316 		return true;
2317 
2318 	return false;
2319 }
2320 
2321 /* Detect loss in event "A" above by marking head of queue up as lost.
2322  * For RFC3517 SACK, a segment is considered lost if it
2323  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2324  * the maximum SACKed segments to pass before reaching this limit.
2325  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2326 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2327 {
2328 	struct tcp_sock *tp = tcp_sk(sk);
2329 	struct sk_buff *skb;
2330 	int cnt;
2331 	/* Use SACK to deduce losses of new sequences sent during recovery */
2332 	const u32 loss_high = tp->snd_nxt;
2333 
2334 	WARN_ON(packets > tp->packets_out);
2335 	skb = tp->lost_skb_hint;
2336 	if (skb) {
2337 		/* Head already handled? */
2338 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2339 			return;
2340 		cnt = tp->lost_cnt_hint;
2341 	} else {
2342 		skb = tcp_rtx_queue_head(sk);
2343 		cnt = 0;
2344 	}
2345 
2346 	skb_rbtree_walk_from(skb) {
2347 		/* TODO: do this better */
2348 		/* this is not the most efficient way to do this... */
2349 		tp->lost_skb_hint = skb;
2350 		tp->lost_cnt_hint = cnt;
2351 
2352 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2353 			break;
2354 
2355 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2356 			cnt += tcp_skb_pcount(skb);
2357 
2358 		if (cnt > packets)
2359 			break;
2360 
2361 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2362 			tcp_mark_skb_lost(sk, skb);
2363 
2364 		if (mark_head)
2365 			break;
2366 	}
2367 	tcp_verify_left_out(tp);
2368 }
2369 
2370 /* Account newly detected lost packet(s) */
2371 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2372 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2373 {
2374 	struct tcp_sock *tp = tcp_sk(sk);
2375 
2376 	if (tcp_is_sack(tp)) {
2377 		int sacked_upto = tp->sacked_out - tp->reordering;
2378 		if (sacked_upto >= 0)
2379 			tcp_mark_head_lost(sk, sacked_upto, 0);
2380 		else if (fast_rexmit)
2381 			tcp_mark_head_lost(sk, 1, 1);
2382 	}
2383 }
2384 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2385 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2386 {
2387 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2388 	       before(tp->rx_opt.rcv_tsecr, when);
2389 }
2390 
2391 /* skb is spurious retransmitted if the returned timestamp echo
2392  * reply is prior to the skb transmission time
2393  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2394 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2395 				     const struct sk_buff *skb)
2396 {
2397 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2398 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2399 }
2400 
2401 /* Nothing was retransmitted or returned timestamp is less
2402  * than timestamp of the first retransmission.
2403  */
tcp_packet_delayed(const struct tcp_sock * tp)2404 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2405 {
2406 	return tp->retrans_stamp &&
2407 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2408 }
2409 
2410 /* Undo procedures. */
2411 
2412 /* We can clear retrans_stamp when there are no retransmissions in the
2413  * window. It would seem that it is trivially available for us in
2414  * tp->retrans_out, however, that kind of assumptions doesn't consider
2415  * what will happen if errors occur when sending retransmission for the
2416  * second time. ...It could the that such segment has only
2417  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2418  * the head skb is enough except for some reneging corner cases that
2419  * are not worth the effort.
2420  *
2421  * Main reason for all this complexity is the fact that connection dying
2422  * time now depends on the validity of the retrans_stamp, in particular,
2423  * that successive retransmissions of a segment must not advance
2424  * retrans_stamp under any conditions.
2425  */
tcp_any_retrans_done(const struct sock * sk)2426 static bool tcp_any_retrans_done(const struct sock *sk)
2427 {
2428 	const struct tcp_sock *tp = tcp_sk(sk);
2429 	struct sk_buff *skb;
2430 
2431 	if (tp->retrans_out)
2432 		return true;
2433 
2434 	skb = tcp_rtx_queue_head(sk);
2435 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2436 		return true;
2437 
2438 	return false;
2439 }
2440 
DBGUNDO(struct sock * sk,const char * msg)2441 static void DBGUNDO(struct sock *sk, const char *msg)
2442 {
2443 #if FASTRETRANS_DEBUG > 1
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 	struct inet_sock *inet = inet_sk(sk);
2446 
2447 	if (sk->sk_family == AF_INET) {
2448 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2449 			 msg,
2450 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2451 			 tp->snd_cwnd, tcp_left_out(tp),
2452 			 tp->snd_ssthresh, tp->prior_ssthresh,
2453 			 tp->packets_out);
2454 	}
2455 #if IS_ENABLED(CONFIG_IPV6)
2456 	else if (sk->sk_family == AF_INET6) {
2457 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2458 			 msg,
2459 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2460 			 tp->snd_cwnd, tcp_left_out(tp),
2461 			 tp->snd_ssthresh, tp->prior_ssthresh,
2462 			 tp->packets_out);
2463 	}
2464 #endif
2465 #endif
2466 }
2467 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2468 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2469 {
2470 	struct tcp_sock *tp = tcp_sk(sk);
2471 
2472 	if (unmark_loss) {
2473 		struct sk_buff *skb;
2474 
2475 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2476 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2477 		}
2478 		tp->lost_out = 0;
2479 		tcp_clear_all_retrans_hints(tp);
2480 	}
2481 
2482 	if (tp->prior_ssthresh) {
2483 		const struct inet_connection_sock *icsk = inet_csk(sk);
2484 
2485 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2486 
2487 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2488 			tp->snd_ssthresh = tp->prior_ssthresh;
2489 			tcp_ecn_withdraw_cwr(tp);
2490 		}
2491 	}
2492 	tp->snd_cwnd_stamp = tcp_jiffies32;
2493 	tp->undo_marker = 0;
2494 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2495 }
2496 
tcp_may_undo(const struct tcp_sock * tp)2497 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2498 {
2499 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2500 }
2501 
2502 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2503 static bool tcp_try_undo_recovery(struct sock *sk)
2504 {
2505 	struct tcp_sock *tp = tcp_sk(sk);
2506 
2507 	if (tcp_may_undo(tp)) {
2508 		int mib_idx;
2509 
2510 		/* Happy end! We did not retransmit anything
2511 		 * or our original transmission succeeded.
2512 		 */
2513 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2514 		tcp_undo_cwnd_reduction(sk, false);
2515 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2516 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2517 		else
2518 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2519 
2520 		NET_INC_STATS(sock_net(sk), mib_idx);
2521 	} else if (tp->rack.reo_wnd_persist) {
2522 		tp->rack.reo_wnd_persist--;
2523 	}
2524 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2525 		/* Hold old state until something *above* high_seq
2526 		 * is ACKed. For Reno it is MUST to prevent false
2527 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2528 		if (!tcp_any_retrans_done(sk))
2529 			tp->retrans_stamp = 0;
2530 		return true;
2531 	}
2532 	tcp_set_ca_state(sk, TCP_CA_Open);
2533 	tp->is_sack_reneg = 0;
2534 	return false;
2535 }
2536 
2537 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2538 static bool tcp_try_undo_dsack(struct sock *sk)
2539 {
2540 	struct tcp_sock *tp = tcp_sk(sk);
2541 
2542 	if (tp->undo_marker && !tp->undo_retrans) {
2543 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2544 					       tp->rack.reo_wnd_persist + 1);
2545 		DBGUNDO(sk, "D-SACK");
2546 		tcp_undo_cwnd_reduction(sk, false);
2547 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2548 		return true;
2549 	}
2550 	return false;
2551 }
2552 
2553 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2554 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2555 {
2556 	struct tcp_sock *tp = tcp_sk(sk);
2557 
2558 	if (frto_undo || tcp_may_undo(tp)) {
2559 		tcp_undo_cwnd_reduction(sk, true);
2560 
2561 		DBGUNDO(sk, "partial loss");
2562 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2563 		if (frto_undo)
2564 			NET_INC_STATS(sock_net(sk),
2565 					LINUX_MIB_TCPSPURIOUSRTOS);
2566 		inet_csk(sk)->icsk_retransmits = 0;
2567 		if (frto_undo || tcp_is_sack(tp)) {
2568 			tcp_set_ca_state(sk, TCP_CA_Open);
2569 			tp->is_sack_reneg = 0;
2570 		}
2571 		return true;
2572 	}
2573 	return false;
2574 }
2575 
2576 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2577  * It computes the number of packets to send (sndcnt) based on packets newly
2578  * delivered:
2579  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2580  *	cwnd reductions across a full RTT.
2581  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2582  *      But when SND_UNA is acked without further losses,
2583  *      slow starts cwnd up to ssthresh to speed up the recovery.
2584  */
tcp_init_cwnd_reduction(struct sock * sk)2585 static void tcp_init_cwnd_reduction(struct sock *sk)
2586 {
2587 	struct tcp_sock *tp = tcp_sk(sk);
2588 
2589 	tp->high_seq = tp->snd_nxt;
2590 	tp->tlp_high_seq = 0;
2591 	tp->snd_cwnd_cnt = 0;
2592 	tp->prior_cwnd = tp->snd_cwnd;
2593 	tp->prr_delivered = 0;
2594 	tp->prr_out = 0;
2595 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2596 	tcp_ecn_queue_cwr(tp);
2597 }
2598 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2599 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2600 {
2601 	struct tcp_sock *tp = tcp_sk(sk);
2602 	int sndcnt = 0;
2603 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2604 
2605 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2606 		return;
2607 
2608 	tp->prr_delivered += newly_acked_sacked;
2609 	if (delta < 0) {
2610 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2611 			       tp->prior_cwnd - 1;
2612 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2613 	} else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2614 		sndcnt = min_t(int, delta,
2615 			       max_t(int, tp->prr_delivered - tp->prr_out,
2616 				     newly_acked_sacked) + 1);
2617 	} else {
2618 		sndcnt = min(delta, newly_acked_sacked);
2619 	}
2620 	/* Force a fast retransmit upon entering fast recovery */
2621 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2622 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2623 }
2624 
tcp_end_cwnd_reduction(struct sock * sk)2625 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2626 {
2627 	struct tcp_sock *tp = tcp_sk(sk);
2628 
2629 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2630 		return;
2631 
2632 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2633 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2634 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2635 		tp->snd_cwnd = tp->snd_ssthresh;
2636 		tp->snd_cwnd_stamp = tcp_jiffies32;
2637 	}
2638 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2639 }
2640 
2641 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2642 void tcp_enter_cwr(struct sock *sk)
2643 {
2644 	struct tcp_sock *tp = tcp_sk(sk);
2645 
2646 	tp->prior_ssthresh = 0;
2647 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2648 		tp->undo_marker = 0;
2649 		tcp_init_cwnd_reduction(sk);
2650 		tcp_set_ca_state(sk, TCP_CA_CWR);
2651 	}
2652 }
2653 EXPORT_SYMBOL(tcp_enter_cwr);
2654 
tcp_try_keep_open(struct sock * sk)2655 static void tcp_try_keep_open(struct sock *sk)
2656 {
2657 	struct tcp_sock *tp = tcp_sk(sk);
2658 	int state = TCP_CA_Open;
2659 
2660 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2661 		state = TCP_CA_Disorder;
2662 
2663 	if (inet_csk(sk)->icsk_ca_state != state) {
2664 		tcp_set_ca_state(sk, state);
2665 		tp->high_seq = tp->snd_nxt;
2666 	}
2667 }
2668 
tcp_try_to_open(struct sock * sk,int flag)2669 static void tcp_try_to_open(struct sock *sk, int flag)
2670 {
2671 	struct tcp_sock *tp = tcp_sk(sk);
2672 
2673 	tcp_verify_left_out(tp);
2674 
2675 	if (!tcp_any_retrans_done(sk))
2676 		tp->retrans_stamp = 0;
2677 
2678 	if (flag & FLAG_ECE)
2679 		tcp_enter_cwr(sk);
2680 
2681 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2682 		tcp_try_keep_open(sk);
2683 	}
2684 }
2685 
tcp_mtup_probe_failed(struct sock * sk)2686 static void tcp_mtup_probe_failed(struct sock *sk)
2687 {
2688 	struct inet_connection_sock *icsk = inet_csk(sk);
2689 
2690 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2691 	icsk->icsk_mtup.probe_size = 0;
2692 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2693 }
2694 
tcp_mtup_probe_success(struct sock * sk)2695 static void tcp_mtup_probe_success(struct sock *sk)
2696 {
2697 	struct tcp_sock *tp = tcp_sk(sk);
2698 	struct inet_connection_sock *icsk = inet_csk(sk);
2699 
2700 	/* FIXME: breaks with very large cwnd */
2701 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2702 	tp->snd_cwnd = tp->snd_cwnd *
2703 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2704 		       icsk->icsk_mtup.probe_size;
2705 	tp->snd_cwnd_cnt = 0;
2706 	tp->snd_cwnd_stamp = tcp_jiffies32;
2707 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2708 
2709 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2710 	icsk->icsk_mtup.probe_size = 0;
2711 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2712 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2713 }
2714 
2715 /* Do a simple retransmit without using the backoff mechanisms in
2716  * tcp_timer. This is used for path mtu discovery.
2717  * The socket is already locked here.
2718  */
tcp_simple_retransmit(struct sock * sk)2719 void tcp_simple_retransmit(struct sock *sk)
2720 {
2721 	const struct inet_connection_sock *icsk = inet_csk(sk);
2722 	struct tcp_sock *tp = tcp_sk(sk);
2723 	struct sk_buff *skb;
2724 	int mss;
2725 
2726 	/* A fastopen SYN request is stored as two separate packets within
2727 	 * the retransmit queue, this is done by tcp_send_syn_data().
2728 	 * As a result simply checking the MSS of the frames in the queue
2729 	 * will not work for the SYN packet.
2730 	 *
2731 	 * Us being here is an indication of a path MTU issue so we can
2732 	 * assume that the fastopen SYN was lost and just mark all the
2733 	 * frames in the retransmit queue as lost. We will use an MSS of
2734 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2735 	 */
2736 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2737 		mss = -1;
2738 	else
2739 		mss = tcp_current_mss(sk);
2740 
2741 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2742 		if (tcp_skb_seglen(skb) > mss)
2743 			tcp_mark_skb_lost(sk, skb);
2744 	}
2745 
2746 	tcp_clear_retrans_hints_partial(tp);
2747 
2748 	if (!tp->lost_out)
2749 		return;
2750 
2751 	if (tcp_is_reno(tp))
2752 		tcp_limit_reno_sacked(tp);
2753 
2754 	tcp_verify_left_out(tp);
2755 
2756 	/* Don't muck with the congestion window here.
2757 	 * Reason is that we do not increase amount of _data_
2758 	 * in network, but units changed and effective
2759 	 * cwnd/ssthresh really reduced now.
2760 	 */
2761 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2762 		tp->high_seq = tp->snd_nxt;
2763 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2764 		tp->prior_ssthresh = 0;
2765 		tp->undo_marker = 0;
2766 		tcp_set_ca_state(sk, TCP_CA_Loss);
2767 	}
2768 	tcp_xmit_retransmit_queue(sk);
2769 }
2770 EXPORT_SYMBOL(tcp_simple_retransmit);
2771 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2772 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2773 {
2774 	struct tcp_sock *tp = tcp_sk(sk);
2775 	int mib_idx;
2776 
2777 	if (tcp_is_reno(tp))
2778 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2779 	else
2780 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2781 
2782 	NET_INC_STATS(sock_net(sk), mib_idx);
2783 
2784 	tp->prior_ssthresh = 0;
2785 	tcp_init_undo(tp);
2786 
2787 	if (!tcp_in_cwnd_reduction(sk)) {
2788 		if (!ece_ack)
2789 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2790 		tcp_init_cwnd_reduction(sk);
2791 	}
2792 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2793 }
2794 
2795 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2796  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2797  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2798 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2799 			     int *rexmit)
2800 {
2801 	struct tcp_sock *tp = tcp_sk(sk);
2802 	bool recovered = !before(tp->snd_una, tp->high_seq);
2803 
2804 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2805 	    tcp_try_undo_loss(sk, false))
2806 		return;
2807 
2808 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2809 		/* Step 3.b. A timeout is spurious if not all data are
2810 		 * lost, i.e., never-retransmitted data are (s)acked.
2811 		 */
2812 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2813 		    tcp_try_undo_loss(sk, true))
2814 			return;
2815 
2816 		if (after(tp->snd_nxt, tp->high_seq)) {
2817 			if (flag & FLAG_DATA_SACKED || num_dupack)
2818 				tp->frto = 0; /* Step 3.a. loss was real */
2819 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2820 			tp->high_seq = tp->snd_nxt;
2821 			/* Step 2.b. Try send new data (but deferred until cwnd
2822 			 * is updated in tcp_ack()). Otherwise fall back to
2823 			 * the conventional recovery.
2824 			 */
2825 			if (!tcp_write_queue_empty(sk) &&
2826 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2827 				*rexmit = REXMIT_NEW;
2828 				return;
2829 			}
2830 			tp->frto = 0;
2831 		}
2832 	}
2833 
2834 	if (recovered) {
2835 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2836 		tcp_try_undo_recovery(sk);
2837 		return;
2838 	}
2839 	if (tcp_is_reno(tp)) {
2840 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2841 		 * delivered. Lower inflight to clock out (re)tranmissions.
2842 		 */
2843 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2844 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2845 		else if (flag & FLAG_SND_UNA_ADVANCED)
2846 			tcp_reset_reno_sack(tp);
2847 	}
2848 	*rexmit = REXMIT_LOST;
2849 }
2850 
tcp_force_fast_retransmit(struct sock * sk)2851 static bool tcp_force_fast_retransmit(struct sock *sk)
2852 {
2853 	struct tcp_sock *tp = tcp_sk(sk);
2854 
2855 	return after(tcp_highest_sack_seq(tp),
2856 		     tp->snd_una + tp->reordering * tp->mss_cache);
2857 }
2858 
2859 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2860 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2861 				 bool *do_lost)
2862 {
2863 	struct tcp_sock *tp = tcp_sk(sk);
2864 
2865 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2866 		/* Plain luck! Hole if filled with delayed
2867 		 * packet, rather than with a retransmit. Check reordering.
2868 		 */
2869 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2870 
2871 		/* We are getting evidence that the reordering degree is higher
2872 		 * than we realized. If there are no retransmits out then we
2873 		 * can undo. Otherwise we clock out new packets but do not
2874 		 * mark more packets lost or retransmit more.
2875 		 */
2876 		if (tp->retrans_out)
2877 			return true;
2878 
2879 		if (!tcp_any_retrans_done(sk))
2880 			tp->retrans_stamp = 0;
2881 
2882 		DBGUNDO(sk, "partial recovery");
2883 		tcp_undo_cwnd_reduction(sk, true);
2884 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2885 		tcp_try_keep_open(sk);
2886 	} else {
2887 		/* Partial ACK arrived. Force fast retransmit. */
2888 		*do_lost = tcp_force_fast_retransmit(sk);
2889 	}
2890 	return false;
2891 }
2892 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2893 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2894 {
2895 	struct tcp_sock *tp = tcp_sk(sk);
2896 
2897 	if (tcp_rtx_queue_empty(sk))
2898 		return;
2899 
2900 	if (unlikely(tcp_is_reno(tp))) {
2901 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2902 	} else if (tcp_is_rack(sk)) {
2903 		u32 prior_retrans = tp->retrans_out;
2904 
2905 		if (tcp_rack_mark_lost(sk))
2906 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2907 		if (prior_retrans > tp->retrans_out)
2908 			*ack_flag |= FLAG_LOST_RETRANS;
2909 	}
2910 }
2911 
2912 /* Process an event, which can update packets-in-flight not trivially.
2913  * Main goal of this function is to calculate new estimate for left_out,
2914  * taking into account both packets sitting in receiver's buffer and
2915  * packets lost by network.
2916  *
2917  * Besides that it updates the congestion state when packet loss or ECN
2918  * is detected. But it does not reduce the cwnd, it is done by the
2919  * congestion control later.
2920  *
2921  * It does _not_ decide what to send, it is made in function
2922  * tcp_xmit_retransmit_queue().
2923  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2924 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2925 				  int num_dupack, int *ack_flag, int *rexmit)
2926 {
2927 	struct inet_connection_sock *icsk = inet_csk(sk);
2928 	struct tcp_sock *tp = tcp_sk(sk);
2929 	int fast_rexmit = 0, flag = *ack_flag;
2930 	bool ece_ack = flag & FLAG_ECE;
2931 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2932 				      tcp_force_fast_retransmit(sk));
2933 
2934 	if (!tp->packets_out && tp->sacked_out)
2935 		tp->sacked_out = 0;
2936 
2937 	/* Now state machine starts.
2938 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2939 	if (ece_ack)
2940 		tp->prior_ssthresh = 0;
2941 
2942 	/* B. In all the states check for reneging SACKs. */
2943 	if (tcp_check_sack_reneging(sk, flag))
2944 		return;
2945 
2946 	/* C. Check consistency of the current state. */
2947 	tcp_verify_left_out(tp);
2948 
2949 	/* D. Check state exit conditions. State can be terminated
2950 	 *    when high_seq is ACKed. */
2951 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2952 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2953 		tp->retrans_stamp = 0;
2954 	} else if (!before(tp->snd_una, tp->high_seq)) {
2955 		switch (icsk->icsk_ca_state) {
2956 		case TCP_CA_CWR:
2957 			/* CWR is to be held something *above* high_seq
2958 			 * is ACKed for CWR bit to reach receiver. */
2959 			if (tp->snd_una != tp->high_seq) {
2960 				tcp_end_cwnd_reduction(sk);
2961 				tcp_set_ca_state(sk, TCP_CA_Open);
2962 			}
2963 			break;
2964 
2965 		case TCP_CA_Recovery:
2966 			if (tcp_is_reno(tp))
2967 				tcp_reset_reno_sack(tp);
2968 			if (tcp_try_undo_recovery(sk))
2969 				return;
2970 			tcp_end_cwnd_reduction(sk);
2971 			break;
2972 		}
2973 	}
2974 
2975 	/* E. Process state. */
2976 	switch (icsk->icsk_ca_state) {
2977 	case TCP_CA_Recovery:
2978 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2979 			if (tcp_is_reno(tp))
2980 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2981 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2982 			return;
2983 
2984 		if (tcp_try_undo_dsack(sk))
2985 			tcp_try_keep_open(sk);
2986 
2987 		tcp_identify_packet_loss(sk, ack_flag);
2988 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2989 			if (!tcp_time_to_recover(sk, flag))
2990 				return;
2991 			/* Undo reverts the recovery state. If loss is evident,
2992 			 * starts a new recovery (e.g. reordering then loss);
2993 			 */
2994 			tcp_enter_recovery(sk, ece_ack);
2995 		}
2996 		break;
2997 	case TCP_CA_Loss:
2998 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2999 		tcp_identify_packet_loss(sk, ack_flag);
3000 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3001 		      (*ack_flag & FLAG_LOST_RETRANS)))
3002 			return;
3003 		/* Change state if cwnd is undone or retransmits are lost */
3004 		fallthrough;
3005 	default:
3006 		if (tcp_is_reno(tp)) {
3007 			if (flag & FLAG_SND_UNA_ADVANCED)
3008 				tcp_reset_reno_sack(tp);
3009 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3010 		}
3011 
3012 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3013 			tcp_try_undo_dsack(sk);
3014 
3015 		tcp_identify_packet_loss(sk, ack_flag);
3016 		if (!tcp_time_to_recover(sk, flag)) {
3017 			tcp_try_to_open(sk, flag);
3018 			return;
3019 		}
3020 
3021 		/* MTU probe failure: don't reduce cwnd */
3022 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3023 		    icsk->icsk_mtup.probe_size &&
3024 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3025 			tcp_mtup_probe_failed(sk);
3026 			/* Restores the reduction we did in tcp_mtup_probe() */
3027 			tp->snd_cwnd++;
3028 			tcp_simple_retransmit(sk);
3029 			return;
3030 		}
3031 
3032 		/* Otherwise enter Recovery state */
3033 		tcp_enter_recovery(sk, ece_ack);
3034 		fast_rexmit = 1;
3035 	}
3036 
3037 	if (!tcp_is_rack(sk) && do_lost)
3038 		tcp_update_scoreboard(sk, fast_rexmit);
3039 	*rexmit = REXMIT_LOST;
3040 }
3041 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3042 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3043 {
3044 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3045 	struct tcp_sock *tp = tcp_sk(sk);
3046 
3047 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3048 		/* If the remote keeps returning delayed ACKs, eventually
3049 		 * the min filter would pick it up and overestimate the
3050 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3051 		 */
3052 		return;
3053 	}
3054 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3055 			   rtt_us ? : jiffies_to_usecs(1));
3056 }
3057 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3058 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3059 			       long seq_rtt_us, long sack_rtt_us,
3060 			       long ca_rtt_us, struct rate_sample *rs)
3061 {
3062 	const struct tcp_sock *tp = tcp_sk(sk);
3063 
3064 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3065 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3066 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3067 	 * is acked (RFC6298).
3068 	 */
3069 	if (seq_rtt_us < 0)
3070 		seq_rtt_us = sack_rtt_us;
3071 
3072 	/* RTTM Rule: A TSecr value received in a segment is used to
3073 	 * update the averaged RTT measurement only if the segment
3074 	 * acknowledges some new data, i.e., only if it advances the
3075 	 * left edge of the send window.
3076 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3077 	 */
3078 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3079 	    flag & FLAG_ACKED) {
3080 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3081 
3082 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3083 			if (!delta)
3084 				delta = 1;
3085 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3086 			ca_rtt_us = seq_rtt_us;
3087 		}
3088 	}
3089 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3090 	if (seq_rtt_us < 0)
3091 		return false;
3092 
3093 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3094 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3095 	 * values will be skipped with the seq_rtt_us < 0 check above.
3096 	 */
3097 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3098 	tcp_rtt_estimator(sk, seq_rtt_us);
3099 	tcp_set_rto(sk);
3100 
3101 	/* RFC6298: only reset backoff on valid RTT measurement. */
3102 	inet_csk(sk)->icsk_backoff = 0;
3103 	return true;
3104 }
3105 
3106 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3107 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3108 {
3109 	struct rate_sample rs;
3110 	long rtt_us = -1L;
3111 
3112 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3113 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3114 
3115 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3116 }
3117 
3118 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3119 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3120 {
3121 	const struct inet_connection_sock *icsk = inet_csk(sk);
3122 
3123 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3124 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3125 }
3126 
3127 /* Restart timer after forward progress on connection.
3128  * RFC2988 recommends to restart timer to now+rto.
3129  */
tcp_rearm_rto(struct sock * sk)3130 void tcp_rearm_rto(struct sock *sk)
3131 {
3132 	const struct inet_connection_sock *icsk = inet_csk(sk);
3133 	struct tcp_sock *tp = tcp_sk(sk);
3134 
3135 	/* If the retrans timer is currently being used by Fast Open
3136 	 * for SYN-ACK retrans purpose, stay put.
3137 	 */
3138 	if (rcu_access_pointer(tp->fastopen_rsk))
3139 		return;
3140 
3141 	if (!tp->packets_out) {
3142 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3143 	} else {
3144 		u32 rto = inet_csk(sk)->icsk_rto;
3145 		/* Offset the time elapsed after installing regular RTO */
3146 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3147 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3148 			s64 delta_us = tcp_rto_delta_us(sk);
3149 			/* delta_us may not be positive if the socket is locked
3150 			 * when the retrans timer fires and is rescheduled.
3151 			 */
3152 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3153 		}
3154 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3155 				     TCP_RTO_MAX);
3156 	}
3157 }
3158 
3159 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3160 static void tcp_set_xmit_timer(struct sock *sk)
3161 {
3162 	if (!tcp_schedule_loss_probe(sk, true))
3163 		tcp_rearm_rto(sk);
3164 }
3165 
3166 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3167 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3168 {
3169 	struct tcp_sock *tp = tcp_sk(sk);
3170 	u32 packets_acked;
3171 
3172 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3173 
3174 	packets_acked = tcp_skb_pcount(skb);
3175 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3176 		return 0;
3177 	packets_acked -= tcp_skb_pcount(skb);
3178 
3179 	if (packets_acked) {
3180 		BUG_ON(tcp_skb_pcount(skb) == 0);
3181 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3182 	}
3183 
3184 	return packets_acked;
3185 }
3186 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3187 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3188 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3189 {
3190 	const struct skb_shared_info *shinfo;
3191 
3192 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3193 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3194 		return;
3195 
3196 	shinfo = skb_shinfo(skb);
3197 	if (!before(shinfo->tskey, prior_snd_una) &&
3198 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3199 		tcp_skb_tsorted_save(skb) {
3200 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3201 		} tcp_skb_tsorted_restore(skb);
3202 	}
3203 }
3204 
3205 /* Remove acknowledged frames from the retransmission queue. If our packet
3206  * is before the ack sequence we can discard it as it's confirmed to have
3207  * arrived at the other end.
3208  */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3209 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3210 			       u32 prior_fack, u32 prior_snd_una,
3211 			       struct tcp_sacktag_state *sack, bool ece_ack)
3212 {
3213 	const struct inet_connection_sock *icsk = inet_csk(sk);
3214 	u64 first_ackt, last_ackt;
3215 	struct tcp_sock *tp = tcp_sk(sk);
3216 	u32 prior_sacked = tp->sacked_out;
3217 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3218 	struct sk_buff *skb, *next;
3219 	bool fully_acked = true;
3220 	long sack_rtt_us = -1L;
3221 	long seq_rtt_us = -1L;
3222 	long ca_rtt_us = -1L;
3223 	u32 pkts_acked = 0;
3224 	u32 last_in_flight = 0;
3225 	bool rtt_update;
3226 	int flag = 0;
3227 
3228 	first_ackt = 0;
3229 
3230 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3231 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3232 		const u32 start_seq = scb->seq;
3233 		u8 sacked = scb->sacked;
3234 		u32 acked_pcount;
3235 
3236 		/* Determine how many packets and what bytes were acked, tso and else */
3237 		if (after(scb->end_seq, tp->snd_una)) {
3238 			if (tcp_skb_pcount(skb) == 1 ||
3239 			    !after(tp->snd_una, scb->seq))
3240 				break;
3241 
3242 			acked_pcount = tcp_tso_acked(sk, skb);
3243 			if (!acked_pcount)
3244 				break;
3245 			fully_acked = false;
3246 		} else {
3247 			acked_pcount = tcp_skb_pcount(skb);
3248 		}
3249 
3250 		if (unlikely(sacked & TCPCB_RETRANS)) {
3251 			if (sacked & TCPCB_SACKED_RETRANS)
3252 				tp->retrans_out -= acked_pcount;
3253 			flag |= FLAG_RETRANS_DATA_ACKED;
3254 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3255 			last_ackt = tcp_skb_timestamp_us(skb);
3256 			WARN_ON_ONCE(last_ackt == 0);
3257 			if (!first_ackt)
3258 				first_ackt = last_ackt;
3259 
3260 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3261 			if (before(start_seq, reord))
3262 				reord = start_seq;
3263 			if (!after(scb->end_seq, tp->high_seq))
3264 				flag |= FLAG_ORIG_SACK_ACKED;
3265 		}
3266 
3267 		if (sacked & TCPCB_SACKED_ACKED) {
3268 			tp->sacked_out -= acked_pcount;
3269 		} else if (tcp_is_sack(tp)) {
3270 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3271 			if (!tcp_skb_spurious_retrans(tp, skb))
3272 				tcp_rack_advance(tp, sacked, scb->end_seq,
3273 						 tcp_skb_timestamp_us(skb));
3274 		}
3275 		if (sacked & TCPCB_LOST)
3276 			tp->lost_out -= acked_pcount;
3277 
3278 		tp->packets_out -= acked_pcount;
3279 		pkts_acked += acked_pcount;
3280 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3281 
3282 		/* Initial outgoing SYN's get put onto the write_queue
3283 		 * just like anything else we transmit.  It is not
3284 		 * true data, and if we misinform our callers that
3285 		 * this ACK acks real data, we will erroneously exit
3286 		 * connection startup slow start one packet too
3287 		 * quickly.  This is severely frowned upon behavior.
3288 		 */
3289 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3290 			flag |= FLAG_DATA_ACKED;
3291 		} else {
3292 			flag |= FLAG_SYN_ACKED;
3293 			tp->retrans_stamp = 0;
3294 		}
3295 
3296 		if (!fully_acked)
3297 			break;
3298 
3299 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3300 
3301 		next = skb_rb_next(skb);
3302 		if (unlikely(skb == tp->retransmit_skb_hint))
3303 			tp->retransmit_skb_hint = NULL;
3304 		if (unlikely(skb == tp->lost_skb_hint))
3305 			tp->lost_skb_hint = NULL;
3306 		tcp_highest_sack_replace(sk, skb, next);
3307 		tcp_rtx_queue_unlink_and_free(skb, sk);
3308 	}
3309 
3310 	if (!skb)
3311 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3312 
3313 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3314 		tp->snd_up = tp->snd_una;
3315 
3316 	if (skb) {
3317 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3318 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3319 			flag |= FLAG_SACK_RENEGING;
3320 	}
3321 
3322 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3323 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3324 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3325 
3326 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3327 		    last_in_flight && !prior_sacked && fully_acked &&
3328 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3329 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3330 			/* Conservatively mark a delayed ACK. It's typically
3331 			 * from a lone runt packet over the round trip to
3332 			 * a receiver w/o out-of-order or CE events.
3333 			 */
3334 			flag |= FLAG_ACK_MAYBE_DELAYED;
3335 		}
3336 	}
3337 	if (sack->first_sackt) {
3338 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3339 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3340 	}
3341 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3342 					ca_rtt_us, sack->rate);
3343 
3344 	if (flag & FLAG_ACKED) {
3345 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3346 		if (unlikely(icsk->icsk_mtup.probe_size &&
3347 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3348 			tcp_mtup_probe_success(sk);
3349 		}
3350 
3351 		if (tcp_is_reno(tp)) {
3352 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3353 
3354 			/* If any of the cumulatively ACKed segments was
3355 			 * retransmitted, non-SACK case cannot confirm that
3356 			 * progress was due to original transmission due to
3357 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3358 			 * the packets may have been never retransmitted.
3359 			 */
3360 			if (flag & FLAG_RETRANS_DATA_ACKED)
3361 				flag &= ~FLAG_ORIG_SACK_ACKED;
3362 		} else {
3363 			int delta;
3364 
3365 			/* Non-retransmitted hole got filled? That's reordering */
3366 			if (before(reord, prior_fack))
3367 				tcp_check_sack_reordering(sk, reord, 0);
3368 
3369 			delta = prior_sacked - tp->sacked_out;
3370 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3371 		}
3372 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3373 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3374 						    tcp_skb_timestamp_us(skb))) {
3375 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3376 		 * after when the head was last (re)transmitted. Otherwise the
3377 		 * timeout may continue to extend in loss recovery.
3378 		 */
3379 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3380 	}
3381 
3382 	if (icsk->icsk_ca_ops->pkts_acked) {
3383 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3384 					     .rtt_us = sack->rate->rtt_us,
3385 					     .in_flight = last_in_flight };
3386 
3387 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3388 	}
3389 
3390 #if FASTRETRANS_DEBUG > 0
3391 	WARN_ON((int)tp->sacked_out < 0);
3392 	WARN_ON((int)tp->lost_out < 0);
3393 	WARN_ON((int)tp->retrans_out < 0);
3394 	if (!tp->packets_out && tcp_is_sack(tp)) {
3395 		icsk = inet_csk(sk);
3396 		if (tp->lost_out) {
3397 			pr_debug("Leak l=%u %d\n",
3398 				 tp->lost_out, icsk->icsk_ca_state);
3399 			tp->lost_out = 0;
3400 		}
3401 		if (tp->sacked_out) {
3402 			pr_debug("Leak s=%u %d\n",
3403 				 tp->sacked_out, icsk->icsk_ca_state);
3404 			tp->sacked_out = 0;
3405 		}
3406 		if (tp->retrans_out) {
3407 			pr_debug("Leak r=%u %d\n",
3408 				 tp->retrans_out, icsk->icsk_ca_state);
3409 			tp->retrans_out = 0;
3410 		}
3411 	}
3412 #endif
3413 	return flag;
3414 }
3415 
tcp_ack_probe(struct sock * sk)3416 static void tcp_ack_probe(struct sock *sk)
3417 {
3418 	struct inet_connection_sock *icsk = inet_csk(sk);
3419 	struct sk_buff *head = tcp_send_head(sk);
3420 	const struct tcp_sock *tp = tcp_sk(sk);
3421 
3422 	/* Was it a usable window open? */
3423 	if (!head)
3424 		return;
3425 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3426 		icsk->icsk_backoff = 0;
3427 		icsk->icsk_probes_tstamp = 0;
3428 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3429 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3430 		 * This function is not for random using!
3431 		 */
3432 	} else {
3433 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3434 
3435 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3436 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3437 	}
3438 }
3439 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3440 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3441 {
3442 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3443 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3444 }
3445 
3446 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3447 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3448 {
3449 	/* If reordering is high then always grow cwnd whenever data is
3450 	 * delivered regardless of its ordering. Otherwise stay conservative
3451 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3452 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3453 	 * cwnd in tcp_fastretrans_alert() based on more states.
3454 	 */
3455 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3456 		return flag & FLAG_FORWARD_PROGRESS;
3457 
3458 	return flag & FLAG_DATA_ACKED;
3459 }
3460 
3461 /* The "ultimate" congestion control function that aims to replace the rigid
3462  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3463  * It's called toward the end of processing an ACK with precise rate
3464  * information. All transmission or retransmission are delayed afterwards.
3465  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3466 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3467 			     int flag, const struct rate_sample *rs)
3468 {
3469 	const struct inet_connection_sock *icsk = inet_csk(sk);
3470 
3471 	if (icsk->icsk_ca_ops->cong_control) {
3472 		icsk->icsk_ca_ops->cong_control(sk, rs);
3473 		return;
3474 	}
3475 
3476 	if (tcp_in_cwnd_reduction(sk)) {
3477 		/* Reduce cwnd if state mandates */
3478 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3479 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3480 		/* Advance cwnd if state allows */
3481 		tcp_cong_avoid(sk, ack, acked_sacked);
3482 	}
3483 	tcp_update_pacing_rate(sk);
3484 }
3485 
3486 /* Check that window update is acceptable.
3487  * The function assumes that snd_una<=ack<=snd_next.
3488  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3489 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3490 					const u32 ack, const u32 ack_seq,
3491 					const u32 nwin)
3492 {
3493 	return	after(ack, tp->snd_una) ||
3494 		after(ack_seq, tp->snd_wl1) ||
3495 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3496 }
3497 
3498 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3499 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3500 {
3501 	u32 delta = ack - tp->snd_una;
3502 
3503 	sock_owned_by_me((struct sock *)tp);
3504 	tp->bytes_acked += delta;
3505 	tp->snd_una = ack;
3506 }
3507 
3508 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3509 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3510 {
3511 	u32 delta = seq - tp->rcv_nxt;
3512 
3513 	sock_owned_by_me((struct sock *)tp);
3514 	tp->bytes_received += delta;
3515 	WRITE_ONCE(tp->rcv_nxt, seq);
3516 }
3517 
3518 /* Update our send window.
3519  *
3520  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3521  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3522  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3523 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3524 				 u32 ack_seq)
3525 {
3526 	struct tcp_sock *tp = tcp_sk(sk);
3527 	int flag = 0;
3528 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3529 
3530 	if (likely(!tcp_hdr(skb)->syn))
3531 		nwin <<= tp->rx_opt.snd_wscale;
3532 
3533 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3534 		flag |= FLAG_WIN_UPDATE;
3535 		tcp_update_wl(tp, ack_seq);
3536 
3537 		if (tp->snd_wnd != nwin) {
3538 			tp->snd_wnd = nwin;
3539 
3540 			/* Note, it is the only place, where
3541 			 * fast path is recovered for sending TCP.
3542 			 */
3543 			tp->pred_flags = 0;
3544 			tcp_fast_path_check(sk);
3545 
3546 			if (!tcp_write_queue_empty(sk))
3547 				tcp_slow_start_after_idle_check(sk);
3548 
3549 			if (nwin > tp->max_window) {
3550 				tp->max_window = nwin;
3551 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3552 			}
3553 		}
3554 	}
3555 
3556 	tcp_snd_una_update(tp, ack);
3557 
3558 	return flag;
3559 }
3560 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3561 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3562 				   u32 *last_oow_ack_time)
3563 {
3564 	if (*last_oow_ack_time) {
3565 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3566 
3567 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3568 			NET_INC_STATS(net, mib_idx);
3569 			return true;	/* rate-limited: don't send yet! */
3570 		}
3571 	}
3572 
3573 	*last_oow_ack_time = tcp_jiffies32;
3574 
3575 	return false;	/* not rate-limited: go ahead, send dupack now! */
3576 }
3577 
3578 /* Return true if we're currently rate-limiting out-of-window ACKs and
3579  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3580  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3581  * attacks that send repeated SYNs or ACKs for the same connection. To
3582  * do this, we do not send a duplicate SYNACK or ACK if the remote
3583  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3584  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3585 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3586 			  int mib_idx, u32 *last_oow_ack_time)
3587 {
3588 	/* Data packets without SYNs are not likely part of an ACK loop. */
3589 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3590 	    !tcp_hdr(skb)->syn)
3591 		return false;
3592 
3593 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3594 }
3595 
3596 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3597 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3598 {
3599 	/* unprotected vars, we dont care of overwrites */
3600 	static u32 challenge_timestamp;
3601 	static unsigned int challenge_count;
3602 	struct tcp_sock *tp = tcp_sk(sk);
3603 	struct net *net = sock_net(sk);
3604 	u32 count, now;
3605 
3606 	/* First check our per-socket dupack rate limit. */
3607 	if (__tcp_oow_rate_limited(net,
3608 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3609 				   &tp->last_oow_ack_time))
3610 		return;
3611 
3612 	/* Then check host-wide RFC 5961 rate limit. */
3613 	now = jiffies / HZ;
3614 	if (now != challenge_timestamp) {
3615 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3616 		u32 half = (ack_limit + 1) >> 1;
3617 
3618 		challenge_timestamp = now;
3619 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3620 	}
3621 	count = READ_ONCE(challenge_count);
3622 	if (count > 0) {
3623 		WRITE_ONCE(challenge_count, count - 1);
3624 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3625 		tcp_send_ack(sk);
3626 	}
3627 }
3628 
tcp_store_ts_recent(struct tcp_sock * tp)3629 static void tcp_store_ts_recent(struct tcp_sock *tp)
3630 {
3631 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3632 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3633 }
3634 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3635 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3636 {
3637 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3638 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3639 		 * extra check below makes sure this can only happen
3640 		 * for pure ACK frames.  -DaveM
3641 		 *
3642 		 * Not only, also it occurs for expired timestamps.
3643 		 */
3644 
3645 		if (tcp_paws_check(&tp->rx_opt, 0))
3646 			tcp_store_ts_recent(tp);
3647 	}
3648 }
3649 
3650 /* This routine deals with acks during a TLP episode and ends an episode by
3651  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3652  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3653 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3654 {
3655 	struct tcp_sock *tp = tcp_sk(sk);
3656 
3657 	if (before(ack, tp->tlp_high_seq))
3658 		return;
3659 
3660 	if (!tp->tlp_retrans) {
3661 		/* TLP of new data has been acknowledged */
3662 		tp->tlp_high_seq = 0;
3663 	} else if (flag & FLAG_DSACK_TLP) {
3664 		/* This DSACK means original and TLP probe arrived; no loss */
3665 		tp->tlp_high_seq = 0;
3666 	} else if (after(ack, tp->tlp_high_seq)) {
3667 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3668 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3669 		 */
3670 		tcp_init_cwnd_reduction(sk);
3671 		tcp_set_ca_state(sk, TCP_CA_CWR);
3672 		tcp_end_cwnd_reduction(sk);
3673 		tcp_try_keep_open(sk);
3674 		NET_INC_STATS(sock_net(sk),
3675 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3676 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3677 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3678 		/* Pure dupack: original and TLP probe arrived; no loss */
3679 		tp->tlp_high_seq = 0;
3680 	}
3681 }
3682 
tcp_in_ack_event(struct sock * sk,u32 flags)3683 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3684 {
3685 	const struct inet_connection_sock *icsk = inet_csk(sk);
3686 
3687 	if (icsk->icsk_ca_ops->in_ack_event)
3688 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3689 }
3690 
3691 /* Congestion control has updated the cwnd already. So if we're in
3692  * loss recovery then now we do any new sends (for FRTO) or
3693  * retransmits (for CA_Loss or CA_recovery) that make sense.
3694  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3695 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3696 {
3697 	struct tcp_sock *tp = tcp_sk(sk);
3698 
3699 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3700 		return;
3701 
3702 	if (unlikely(rexmit == REXMIT_NEW)) {
3703 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3704 					  TCP_NAGLE_OFF);
3705 		if (after(tp->snd_nxt, tp->high_seq))
3706 			return;
3707 		tp->frto = 0;
3708 	}
3709 	tcp_xmit_retransmit_queue(sk);
3710 }
3711 
3712 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3713 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3714 {
3715 	const struct net *net = sock_net(sk);
3716 	struct tcp_sock *tp = tcp_sk(sk);
3717 	u32 delivered;
3718 
3719 	delivered = tp->delivered - prior_delivered;
3720 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3721 	if (flag & FLAG_ECE)
3722 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3723 
3724 	return delivered;
3725 }
3726 
3727 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3728 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3729 {
3730 	struct inet_connection_sock *icsk = inet_csk(sk);
3731 	struct tcp_sock *tp = tcp_sk(sk);
3732 	struct tcp_sacktag_state sack_state;
3733 	struct rate_sample rs = { .prior_delivered = 0 };
3734 	u32 prior_snd_una = tp->snd_una;
3735 	bool is_sack_reneg = tp->is_sack_reneg;
3736 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3737 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3738 	int num_dupack = 0;
3739 	int prior_packets = tp->packets_out;
3740 	u32 delivered = tp->delivered;
3741 	u32 lost = tp->lost;
3742 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3743 	u32 prior_fack;
3744 
3745 	sack_state.first_sackt = 0;
3746 	sack_state.rate = &rs;
3747 	sack_state.sack_delivered = 0;
3748 
3749 	/* We very likely will need to access rtx queue. */
3750 	prefetch(sk->tcp_rtx_queue.rb_node);
3751 
3752 	/* If the ack is older than previous acks
3753 	 * then we can probably ignore it.
3754 	 */
3755 	if (before(ack, prior_snd_una)) {
3756 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3757 		if (before(ack, prior_snd_una - tp->max_window)) {
3758 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3759 				tcp_send_challenge_ack(sk, skb);
3760 			return -1;
3761 		}
3762 		goto old_ack;
3763 	}
3764 
3765 	/* If the ack includes data we haven't sent yet, discard
3766 	 * this segment (RFC793 Section 3.9).
3767 	 */
3768 	if (after(ack, tp->snd_nxt))
3769 		return -1;
3770 
3771 	if (after(ack, prior_snd_una)) {
3772 		flag |= FLAG_SND_UNA_ADVANCED;
3773 		icsk->icsk_retransmits = 0;
3774 
3775 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3776 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3777 			if (icsk->icsk_clean_acked)
3778 				icsk->icsk_clean_acked(sk, ack);
3779 #endif
3780 	}
3781 
3782 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3783 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3784 
3785 	/* ts_recent update must be made after we are sure that the packet
3786 	 * is in window.
3787 	 */
3788 	if (flag & FLAG_UPDATE_TS_RECENT)
3789 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3790 
3791 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3792 	    FLAG_SND_UNA_ADVANCED) {
3793 		/* Window is constant, pure forward advance.
3794 		 * No more checks are required.
3795 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3796 		 */
3797 		tcp_update_wl(tp, ack_seq);
3798 		tcp_snd_una_update(tp, ack);
3799 		flag |= FLAG_WIN_UPDATE;
3800 
3801 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3802 
3803 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3804 	} else {
3805 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3806 
3807 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3808 			flag |= FLAG_DATA;
3809 		else
3810 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3811 
3812 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3813 
3814 		if (TCP_SKB_CB(skb)->sacked)
3815 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3816 							&sack_state);
3817 
3818 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3819 			flag |= FLAG_ECE;
3820 			ack_ev_flags |= CA_ACK_ECE;
3821 		}
3822 
3823 		if (sack_state.sack_delivered)
3824 			tcp_count_delivered(tp, sack_state.sack_delivered,
3825 					    flag & FLAG_ECE);
3826 
3827 		if (flag & FLAG_WIN_UPDATE)
3828 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3829 
3830 		tcp_in_ack_event(sk, ack_ev_flags);
3831 	}
3832 
3833 	/* This is a deviation from RFC3168 since it states that:
3834 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3835 	 * the congestion window, it SHOULD set the CWR bit only on the first
3836 	 * new data packet that it transmits."
3837 	 * We accept CWR on pure ACKs to be more robust
3838 	 * with widely-deployed TCP implementations that do this.
3839 	 */
3840 	tcp_ecn_accept_cwr(sk, skb);
3841 
3842 	/* We passed data and got it acked, remove any soft error
3843 	 * log. Something worked...
3844 	 */
3845 	sk->sk_err_soft = 0;
3846 	icsk->icsk_probes_out = 0;
3847 	tp->rcv_tstamp = tcp_jiffies32;
3848 	if (!prior_packets)
3849 		goto no_queue;
3850 
3851 	/* See if we can take anything off of the retransmit queue. */
3852 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3853 				    &sack_state, flag & FLAG_ECE);
3854 
3855 	tcp_rack_update_reo_wnd(sk, &rs);
3856 
3857 	if (tp->tlp_high_seq)
3858 		tcp_process_tlp_ack(sk, ack, flag);
3859 
3860 	if (tcp_ack_is_dubious(sk, flag)) {
3861 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3862 			num_dupack = 1;
3863 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3864 			if (!(flag & FLAG_DATA))
3865 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3866 		}
3867 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3868 				      &rexmit);
3869 	}
3870 
3871 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3872 	if (flag & FLAG_SET_XMIT_TIMER)
3873 		tcp_set_xmit_timer(sk);
3874 
3875 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3876 		sk_dst_confirm(sk);
3877 
3878 	delivered = tcp_newly_delivered(sk, delivered, flag);
3879 	lost = tp->lost - lost;			/* freshly marked lost */
3880 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3881 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3882 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3883 	tcp_xmit_recovery(sk, rexmit);
3884 	return 1;
3885 
3886 no_queue:
3887 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3888 	if (flag & FLAG_DSACKING_ACK) {
3889 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3890 				      &rexmit);
3891 		tcp_newly_delivered(sk, delivered, flag);
3892 	}
3893 	/* If this ack opens up a zero window, clear backoff.  It was
3894 	 * being used to time the probes, and is probably far higher than
3895 	 * it needs to be for normal retransmission.
3896 	 */
3897 	tcp_ack_probe(sk);
3898 
3899 	if (tp->tlp_high_seq)
3900 		tcp_process_tlp_ack(sk, ack, flag);
3901 	return 1;
3902 
3903 old_ack:
3904 	/* If data was SACKed, tag it and see if we should send more data.
3905 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3906 	 */
3907 	if (TCP_SKB_CB(skb)->sacked) {
3908 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3909 						&sack_state);
3910 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3911 				      &rexmit);
3912 		tcp_newly_delivered(sk, delivered, flag);
3913 		tcp_xmit_recovery(sk, rexmit);
3914 	}
3915 
3916 	return 0;
3917 }
3918 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3919 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3920 				      bool syn, struct tcp_fastopen_cookie *foc,
3921 				      bool exp_opt)
3922 {
3923 	/* Valid only in SYN or SYN-ACK with an even length.  */
3924 	if (!foc || !syn || len < 0 || (len & 1))
3925 		return;
3926 
3927 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3928 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3929 		memcpy(foc->val, cookie, len);
3930 	else if (len != 0)
3931 		len = -1;
3932 	foc->len = len;
3933 	foc->exp = exp_opt;
3934 }
3935 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3936 static bool smc_parse_options(const struct tcphdr *th,
3937 			      struct tcp_options_received *opt_rx,
3938 			      const unsigned char *ptr,
3939 			      int opsize)
3940 {
3941 #if IS_ENABLED(CONFIG_SMC)
3942 	if (static_branch_unlikely(&tcp_have_smc)) {
3943 		if (th->syn && !(opsize & 1) &&
3944 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3945 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3946 			opt_rx->smc_ok = 1;
3947 			return true;
3948 		}
3949 	}
3950 #endif
3951 	return false;
3952 }
3953 
3954 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3955  * value on success.
3956  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3957 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3958 {
3959 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3960 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3961 	u16 mss = 0;
3962 
3963 	while (length > 0) {
3964 		int opcode = *ptr++;
3965 		int opsize;
3966 
3967 		switch (opcode) {
3968 		case TCPOPT_EOL:
3969 			return mss;
3970 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3971 			length--;
3972 			continue;
3973 		default:
3974 			if (length < 2)
3975 				return mss;
3976 			opsize = *ptr++;
3977 			if (opsize < 2) /* "silly options" */
3978 				return mss;
3979 			if (opsize > length)
3980 				return mss;	/* fail on partial options */
3981 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3982 				u16 in_mss = get_unaligned_be16(ptr);
3983 
3984 				if (in_mss) {
3985 					if (user_mss && user_mss < in_mss)
3986 						in_mss = user_mss;
3987 					mss = in_mss;
3988 				}
3989 			}
3990 			ptr += opsize - 2;
3991 			length -= opsize;
3992 		}
3993 	}
3994 	return mss;
3995 }
3996 
3997 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3998  * But, this can also be called on packets in the established flow when
3999  * the fast version below fails.
4000  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4001 void tcp_parse_options(const struct net *net,
4002 		       const struct sk_buff *skb,
4003 		       struct tcp_options_received *opt_rx, int estab,
4004 		       struct tcp_fastopen_cookie *foc)
4005 {
4006 	const unsigned char *ptr;
4007 	const struct tcphdr *th = tcp_hdr(skb);
4008 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4009 
4010 	ptr = (const unsigned char *)(th + 1);
4011 	opt_rx->saw_tstamp = 0;
4012 	opt_rx->saw_unknown = 0;
4013 
4014 	while (length > 0) {
4015 		int opcode = *ptr++;
4016 		int opsize;
4017 
4018 		switch (opcode) {
4019 		case TCPOPT_EOL:
4020 			return;
4021 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4022 			length--;
4023 			continue;
4024 		default:
4025 			if (length < 2)
4026 				return;
4027 			opsize = *ptr++;
4028 			if (opsize < 2) /* "silly options" */
4029 				return;
4030 			if (opsize > length)
4031 				return;	/* don't parse partial options */
4032 			switch (opcode) {
4033 			case TCPOPT_MSS:
4034 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4035 					u16 in_mss = get_unaligned_be16(ptr);
4036 					if (in_mss) {
4037 						if (opt_rx->user_mss &&
4038 						    opt_rx->user_mss < in_mss)
4039 							in_mss = opt_rx->user_mss;
4040 						opt_rx->mss_clamp = in_mss;
4041 					}
4042 				}
4043 				break;
4044 			case TCPOPT_WINDOW:
4045 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4046 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
4047 					__u8 snd_wscale = *(__u8 *)ptr;
4048 					opt_rx->wscale_ok = 1;
4049 					if (snd_wscale > TCP_MAX_WSCALE) {
4050 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4051 								     __func__,
4052 								     snd_wscale,
4053 								     TCP_MAX_WSCALE);
4054 						snd_wscale = TCP_MAX_WSCALE;
4055 					}
4056 					opt_rx->snd_wscale = snd_wscale;
4057 				}
4058 				break;
4059 			case TCPOPT_TIMESTAMP:
4060 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4061 				    ((estab && opt_rx->tstamp_ok) ||
4062 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4063 					opt_rx->saw_tstamp = 1;
4064 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4065 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4066 				}
4067 				break;
4068 			case TCPOPT_SACK_PERM:
4069 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4070 				    !estab && net->ipv4.sysctl_tcp_sack) {
4071 					opt_rx->sack_ok = TCP_SACK_SEEN;
4072 					tcp_sack_reset(opt_rx);
4073 				}
4074 				break;
4075 
4076 			case TCPOPT_SACK:
4077 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4078 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4079 				   opt_rx->sack_ok) {
4080 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4081 				}
4082 				break;
4083 #ifdef CONFIG_TCP_MD5SIG
4084 			case TCPOPT_MD5SIG:
4085 				/*
4086 				 * The MD5 Hash has already been
4087 				 * checked (see tcp_v{4,6}_do_rcv()).
4088 				 */
4089 				break;
4090 #endif
4091 			case TCPOPT_FASTOPEN:
4092 				tcp_parse_fastopen_option(
4093 					opsize - TCPOLEN_FASTOPEN_BASE,
4094 					ptr, th->syn, foc, false);
4095 				break;
4096 
4097 			case TCPOPT_EXP:
4098 				/* Fast Open option shares code 254 using a
4099 				 * 16 bits magic number.
4100 				 */
4101 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4102 				    get_unaligned_be16(ptr) ==
4103 				    TCPOPT_FASTOPEN_MAGIC) {
4104 					tcp_parse_fastopen_option(opsize -
4105 						TCPOLEN_EXP_FASTOPEN_BASE,
4106 						ptr + 2, th->syn, foc, true);
4107 					break;
4108 				}
4109 
4110 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4111 					break;
4112 
4113 				opt_rx->saw_unknown = 1;
4114 				break;
4115 
4116 			default:
4117 				opt_rx->saw_unknown = 1;
4118 			}
4119 			ptr += opsize-2;
4120 			length -= opsize;
4121 		}
4122 	}
4123 }
4124 EXPORT_SYMBOL(tcp_parse_options);
4125 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4126 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4127 {
4128 	const __be32 *ptr = (const __be32 *)(th + 1);
4129 
4130 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4131 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4132 		tp->rx_opt.saw_tstamp = 1;
4133 		++ptr;
4134 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4135 		++ptr;
4136 		if (*ptr)
4137 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4138 		else
4139 			tp->rx_opt.rcv_tsecr = 0;
4140 		return true;
4141 	}
4142 	return false;
4143 }
4144 
4145 /* Fast parse options. This hopes to only see timestamps.
4146  * If it is wrong it falls back on tcp_parse_options().
4147  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4148 static bool tcp_fast_parse_options(const struct net *net,
4149 				   const struct sk_buff *skb,
4150 				   const struct tcphdr *th, struct tcp_sock *tp)
4151 {
4152 	/* In the spirit of fast parsing, compare doff directly to constant
4153 	 * values.  Because equality is used, short doff can be ignored here.
4154 	 */
4155 	if (th->doff == (sizeof(*th) / 4)) {
4156 		tp->rx_opt.saw_tstamp = 0;
4157 		return false;
4158 	} else if (tp->rx_opt.tstamp_ok &&
4159 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4160 		if (tcp_parse_aligned_timestamp(tp, th))
4161 			return true;
4162 	}
4163 
4164 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4165 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4166 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4167 
4168 	return true;
4169 }
4170 
4171 #ifdef CONFIG_TCP_MD5SIG
4172 /*
4173  * Parse MD5 Signature option
4174  */
tcp_parse_md5sig_option(const struct tcphdr * th)4175 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4176 {
4177 	int length = (th->doff << 2) - sizeof(*th);
4178 	const u8 *ptr = (const u8 *)(th + 1);
4179 
4180 	/* If not enough data remaining, we can short cut */
4181 	while (length >= TCPOLEN_MD5SIG) {
4182 		int opcode = *ptr++;
4183 		int opsize;
4184 
4185 		switch (opcode) {
4186 		case TCPOPT_EOL:
4187 			return NULL;
4188 		case TCPOPT_NOP:
4189 			length--;
4190 			continue;
4191 		default:
4192 			opsize = *ptr++;
4193 			if (opsize < 2 || opsize > length)
4194 				return NULL;
4195 			if (opcode == TCPOPT_MD5SIG)
4196 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4197 		}
4198 		ptr += opsize - 2;
4199 		length -= opsize;
4200 	}
4201 	return NULL;
4202 }
4203 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4204 #endif
4205 
4206 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4207  *
4208  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4209  * it can pass through stack. So, the following predicate verifies that
4210  * this segment is not used for anything but congestion avoidance or
4211  * fast retransmit. Moreover, we even are able to eliminate most of such
4212  * second order effects, if we apply some small "replay" window (~RTO)
4213  * to timestamp space.
4214  *
4215  * All these measures still do not guarantee that we reject wrapped ACKs
4216  * on networks with high bandwidth, when sequence space is recycled fastly,
4217  * but it guarantees that such events will be very rare and do not affect
4218  * connection seriously. This doesn't look nice, but alas, PAWS is really
4219  * buggy extension.
4220  *
4221  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4222  * states that events when retransmit arrives after original data are rare.
4223  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4224  * the biggest problem on large power networks even with minor reordering.
4225  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4226  * up to bandwidth of 18Gigabit/sec. 8) ]
4227  */
4228 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4229 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4230 {
4231 	const struct tcp_sock *tp = tcp_sk(sk);
4232 	const struct tcphdr *th = tcp_hdr(skb);
4233 	u32 seq = TCP_SKB_CB(skb)->seq;
4234 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4235 
4236 	return (/* 1. Pure ACK with correct sequence number. */
4237 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4238 
4239 		/* 2. ... and duplicate ACK. */
4240 		ack == tp->snd_una &&
4241 
4242 		/* 3. ... and does not update window. */
4243 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4244 
4245 		/* 4. ... and sits in replay window. */
4246 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4247 }
4248 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4249 static inline bool tcp_paws_discard(const struct sock *sk,
4250 				   const struct sk_buff *skb)
4251 {
4252 	const struct tcp_sock *tp = tcp_sk(sk);
4253 
4254 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4255 	       !tcp_disordered_ack(sk, skb);
4256 }
4257 
4258 /* Check segment sequence number for validity.
4259  *
4260  * Segment controls are considered valid, if the segment
4261  * fits to the window after truncation to the window. Acceptability
4262  * of data (and SYN, FIN, of course) is checked separately.
4263  * See tcp_data_queue(), for example.
4264  *
4265  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4266  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4267  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4268  * (borrowed from freebsd)
4269  */
4270 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4271 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4272 {
4273 	return	!before(end_seq, tp->rcv_wup) &&
4274 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4275 }
4276 
4277 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4278 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4279 {
4280 	trace_tcp_receive_reset(sk);
4281 
4282 	/* mptcp can't tell us to ignore reset pkts,
4283 	 * so just ignore the return value of mptcp_incoming_options().
4284 	 */
4285 	if (sk_is_mptcp(sk))
4286 		mptcp_incoming_options(sk, skb);
4287 
4288 	/* We want the right error as BSD sees it (and indeed as we do). */
4289 	switch (sk->sk_state) {
4290 	case TCP_SYN_SENT:
4291 		sk->sk_err = ECONNREFUSED;
4292 		break;
4293 	case TCP_CLOSE_WAIT:
4294 		sk->sk_err = EPIPE;
4295 		break;
4296 	case TCP_CLOSE:
4297 		return;
4298 	default:
4299 		sk->sk_err = ECONNRESET;
4300 	}
4301 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4302 	smp_wmb();
4303 
4304 	tcp_write_queue_purge(sk);
4305 	tcp_done(sk);
4306 
4307 	if (!sock_flag(sk, SOCK_DEAD))
4308 		sk_error_report(sk);
4309 }
4310 
4311 /*
4312  * 	Process the FIN bit. This now behaves as it is supposed to work
4313  *	and the FIN takes effect when it is validly part of sequence
4314  *	space. Not before when we get holes.
4315  *
4316  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4317  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4318  *	TIME-WAIT)
4319  *
4320  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4321  *	close and we go into CLOSING (and later onto TIME-WAIT)
4322  *
4323  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4324  */
tcp_fin(struct sock * sk)4325 void tcp_fin(struct sock *sk)
4326 {
4327 	struct tcp_sock *tp = tcp_sk(sk);
4328 
4329 	inet_csk_schedule_ack(sk);
4330 
4331 	sk->sk_shutdown |= RCV_SHUTDOWN;
4332 	sock_set_flag(sk, SOCK_DONE);
4333 
4334 	switch (sk->sk_state) {
4335 	case TCP_SYN_RECV:
4336 	case TCP_ESTABLISHED:
4337 		/* Move to CLOSE_WAIT */
4338 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4339 		inet_csk_enter_pingpong_mode(sk);
4340 		break;
4341 
4342 	case TCP_CLOSE_WAIT:
4343 	case TCP_CLOSING:
4344 		/* Received a retransmission of the FIN, do
4345 		 * nothing.
4346 		 */
4347 		break;
4348 	case TCP_LAST_ACK:
4349 		/* RFC793: Remain in the LAST-ACK state. */
4350 		break;
4351 
4352 	case TCP_FIN_WAIT1:
4353 		/* This case occurs when a simultaneous close
4354 		 * happens, we must ack the received FIN and
4355 		 * enter the CLOSING state.
4356 		 */
4357 		tcp_send_ack(sk);
4358 		tcp_set_state(sk, TCP_CLOSING);
4359 		break;
4360 	case TCP_FIN_WAIT2:
4361 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4362 		tcp_send_ack(sk);
4363 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4364 		break;
4365 	default:
4366 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4367 		 * cases we should never reach this piece of code.
4368 		 */
4369 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4370 		       __func__, sk->sk_state);
4371 		break;
4372 	}
4373 
4374 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4375 	 * Probably, we should reset in this case. For now drop them.
4376 	 */
4377 	skb_rbtree_purge(&tp->out_of_order_queue);
4378 	if (tcp_is_sack(tp))
4379 		tcp_sack_reset(&tp->rx_opt);
4380 	sk_mem_reclaim(sk);
4381 
4382 	if (!sock_flag(sk, SOCK_DEAD)) {
4383 		sk->sk_state_change(sk);
4384 
4385 		/* Do not send POLL_HUP for half duplex close. */
4386 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4387 		    sk->sk_state == TCP_CLOSE)
4388 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4389 		else
4390 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4391 	}
4392 }
4393 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4394 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4395 				  u32 end_seq)
4396 {
4397 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4398 		if (before(seq, sp->start_seq))
4399 			sp->start_seq = seq;
4400 		if (after(end_seq, sp->end_seq))
4401 			sp->end_seq = end_seq;
4402 		return true;
4403 	}
4404 	return false;
4405 }
4406 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4407 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4408 {
4409 	struct tcp_sock *tp = tcp_sk(sk);
4410 
4411 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4412 		int mib_idx;
4413 
4414 		if (before(seq, tp->rcv_nxt))
4415 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4416 		else
4417 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4418 
4419 		NET_INC_STATS(sock_net(sk), mib_idx);
4420 
4421 		tp->rx_opt.dsack = 1;
4422 		tp->duplicate_sack[0].start_seq = seq;
4423 		tp->duplicate_sack[0].end_seq = end_seq;
4424 	}
4425 }
4426 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4427 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4428 {
4429 	struct tcp_sock *tp = tcp_sk(sk);
4430 
4431 	if (!tp->rx_opt.dsack)
4432 		tcp_dsack_set(sk, seq, end_seq);
4433 	else
4434 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4435 }
4436 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4437 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4438 {
4439 	/* When the ACK path fails or drops most ACKs, the sender would
4440 	 * timeout and spuriously retransmit the same segment repeatedly.
4441 	 * The receiver remembers and reflects via DSACKs. Leverage the
4442 	 * DSACK state and change the txhash to re-route speculatively.
4443 	 */
4444 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4445 	    sk_rethink_txhash(sk))
4446 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4447 }
4448 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4449 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4450 {
4451 	struct tcp_sock *tp = tcp_sk(sk);
4452 
4453 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4454 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4455 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4456 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4457 
4458 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4459 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4460 
4461 			tcp_rcv_spurious_retrans(sk, skb);
4462 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4463 				end_seq = tp->rcv_nxt;
4464 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4465 		}
4466 	}
4467 
4468 	tcp_send_ack(sk);
4469 }
4470 
4471 /* These routines update the SACK block as out-of-order packets arrive or
4472  * in-order packets close up the sequence space.
4473  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4474 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4475 {
4476 	int this_sack;
4477 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4478 	struct tcp_sack_block *swalk = sp + 1;
4479 
4480 	/* See if the recent change to the first SACK eats into
4481 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4482 	 */
4483 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4484 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4485 			int i;
4486 
4487 			/* Zap SWALK, by moving every further SACK up by one slot.
4488 			 * Decrease num_sacks.
4489 			 */
4490 			tp->rx_opt.num_sacks--;
4491 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4492 				sp[i] = sp[i + 1];
4493 			continue;
4494 		}
4495 		this_sack++;
4496 		swalk++;
4497 	}
4498 }
4499 
tcp_sack_compress_send_ack(struct sock * sk)4500 static void tcp_sack_compress_send_ack(struct sock *sk)
4501 {
4502 	struct tcp_sock *tp = tcp_sk(sk);
4503 
4504 	if (!tp->compressed_ack)
4505 		return;
4506 
4507 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4508 		__sock_put(sk);
4509 
4510 	/* Since we have to send one ack finally,
4511 	 * substract one from tp->compressed_ack to keep
4512 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4513 	 */
4514 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4515 		      tp->compressed_ack - 1);
4516 
4517 	tp->compressed_ack = 0;
4518 	tcp_send_ack(sk);
4519 }
4520 
4521 /* Reasonable amount of sack blocks included in TCP SACK option
4522  * The max is 4, but this becomes 3 if TCP timestamps are there.
4523  * Given that SACK packets might be lost, be conservative and use 2.
4524  */
4525 #define TCP_SACK_BLOCKS_EXPECTED 2
4526 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4527 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4528 {
4529 	struct tcp_sock *tp = tcp_sk(sk);
4530 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4531 	int cur_sacks = tp->rx_opt.num_sacks;
4532 	int this_sack;
4533 
4534 	if (!cur_sacks)
4535 		goto new_sack;
4536 
4537 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4538 		if (tcp_sack_extend(sp, seq, end_seq)) {
4539 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4540 				tcp_sack_compress_send_ack(sk);
4541 			/* Rotate this_sack to the first one. */
4542 			for (; this_sack > 0; this_sack--, sp--)
4543 				swap(*sp, *(sp - 1));
4544 			if (cur_sacks > 1)
4545 				tcp_sack_maybe_coalesce(tp);
4546 			return;
4547 		}
4548 	}
4549 
4550 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4551 		tcp_sack_compress_send_ack(sk);
4552 
4553 	/* Could not find an adjacent existing SACK, build a new one,
4554 	 * put it at the front, and shift everyone else down.  We
4555 	 * always know there is at least one SACK present already here.
4556 	 *
4557 	 * If the sack array is full, forget about the last one.
4558 	 */
4559 	if (this_sack >= TCP_NUM_SACKS) {
4560 		this_sack--;
4561 		tp->rx_opt.num_sacks--;
4562 		sp--;
4563 	}
4564 	for (; this_sack > 0; this_sack--, sp--)
4565 		*sp = *(sp - 1);
4566 
4567 new_sack:
4568 	/* Build the new head SACK, and we're done. */
4569 	sp->start_seq = seq;
4570 	sp->end_seq = end_seq;
4571 	tp->rx_opt.num_sacks++;
4572 }
4573 
4574 /* RCV.NXT advances, some SACKs should be eaten. */
4575 
tcp_sack_remove(struct tcp_sock * tp)4576 static void tcp_sack_remove(struct tcp_sock *tp)
4577 {
4578 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4579 	int num_sacks = tp->rx_opt.num_sacks;
4580 	int this_sack;
4581 
4582 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4583 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4584 		tp->rx_opt.num_sacks = 0;
4585 		return;
4586 	}
4587 
4588 	for (this_sack = 0; this_sack < num_sacks;) {
4589 		/* Check if the start of the sack is covered by RCV.NXT. */
4590 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4591 			int i;
4592 
4593 			/* RCV.NXT must cover all the block! */
4594 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4595 
4596 			/* Zap this SACK, by moving forward any other SACKS. */
4597 			for (i = this_sack+1; i < num_sacks; i++)
4598 				tp->selective_acks[i-1] = tp->selective_acks[i];
4599 			num_sacks--;
4600 			continue;
4601 		}
4602 		this_sack++;
4603 		sp++;
4604 	}
4605 	tp->rx_opt.num_sacks = num_sacks;
4606 }
4607 
4608 /**
4609  * tcp_try_coalesce - try to merge skb to prior one
4610  * @sk: socket
4611  * @to: prior buffer
4612  * @from: buffer to add in queue
4613  * @fragstolen: pointer to boolean
4614  *
4615  * Before queueing skb @from after @to, try to merge them
4616  * to reduce overall memory use and queue lengths, if cost is small.
4617  * Packets in ofo or receive queues can stay a long time.
4618  * Better try to coalesce them right now to avoid future collapses.
4619  * Returns true if caller should free @from instead of queueing it
4620  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4621 static bool tcp_try_coalesce(struct sock *sk,
4622 			     struct sk_buff *to,
4623 			     struct sk_buff *from,
4624 			     bool *fragstolen)
4625 {
4626 	int delta;
4627 
4628 	*fragstolen = false;
4629 
4630 	/* Its possible this segment overlaps with prior segment in queue */
4631 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4632 		return false;
4633 
4634 	if (!mptcp_skb_can_collapse(to, from))
4635 		return false;
4636 
4637 #ifdef CONFIG_TLS_DEVICE
4638 	if (from->decrypted != to->decrypted)
4639 		return false;
4640 #endif
4641 
4642 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4643 		return false;
4644 
4645 	atomic_add(delta, &sk->sk_rmem_alloc);
4646 	sk_mem_charge(sk, delta);
4647 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4648 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4649 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4650 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4651 
4652 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4653 		TCP_SKB_CB(to)->has_rxtstamp = true;
4654 		to->tstamp = from->tstamp;
4655 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4656 	}
4657 
4658 	return true;
4659 }
4660 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4661 static bool tcp_ooo_try_coalesce(struct sock *sk,
4662 			     struct sk_buff *to,
4663 			     struct sk_buff *from,
4664 			     bool *fragstolen)
4665 {
4666 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4667 
4668 	/* In case tcp_drop() is called later, update to->gso_segs */
4669 	if (res) {
4670 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4671 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4672 
4673 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4674 	}
4675 	return res;
4676 }
4677 
tcp_drop(struct sock * sk,struct sk_buff * skb)4678 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4679 {
4680 	sk_drops_add(sk, skb);
4681 	__kfree_skb(skb);
4682 }
4683 
4684 /* This one checks to see if we can put data from the
4685  * out_of_order queue into the receive_queue.
4686  */
tcp_ofo_queue(struct sock * sk)4687 static void tcp_ofo_queue(struct sock *sk)
4688 {
4689 	struct tcp_sock *tp = tcp_sk(sk);
4690 	__u32 dsack_high = tp->rcv_nxt;
4691 	bool fin, fragstolen, eaten;
4692 	struct sk_buff *skb, *tail;
4693 	struct rb_node *p;
4694 
4695 	p = rb_first(&tp->out_of_order_queue);
4696 	while (p) {
4697 		skb = rb_to_skb(p);
4698 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4699 			break;
4700 
4701 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4702 			__u32 dsack = dsack_high;
4703 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4704 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4705 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4706 		}
4707 		p = rb_next(p);
4708 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4709 
4710 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4711 			tcp_drop(sk, skb);
4712 			continue;
4713 		}
4714 
4715 		tail = skb_peek_tail(&sk->sk_receive_queue);
4716 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4717 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4718 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4719 		if (!eaten)
4720 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4721 		else
4722 			kfree_skb_partial(skb, fragstolen);
4723 
4724 		if (unlikely(fin)) {
4725 			tcp_fin(sk);
4726 			/* tcp_fin() purges tp->out_of_order_queue,
4727 			 * so we must end this loop right now.
4728 			 */
4729 			break;
4730 		}
4731 	}
4732 }
4733 
4734 static bool tcp_prune_ofo_queue(struct sock *sk);
4735 static int tcp_prune_queue(struct sock *sk);
4736 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4737 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4738 				 unsigned int size)
4739 {
4740 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4741 	    !sk_rmem_schedule(sk, skb, size)) {
4742 
4743 		if (tcp_prune_queue(sk) < 0)
4744 			return -1;
4745 
4746 		while (!sk_rmem_schedule(sk, skb, size)) {
4747 			if (!tcp_prune_ofo_queue(sk))
4748 				return -1;
4749 		}
4750 	}
4751 	return 0;
4752 }
4753 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4754 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4755 {
4756 	struct tcp_sock *tp = tcp_sk(sk);
4757 	struct rb_node **p, *parent;
4758 	struct sk_buff *skb1;
4759 	u32 seq, end_seq;
4760 	bool fragstolen;
4761 
4762 	tcp_ecn_check_ce(sk, skb);
4763 
4764 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4765 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4766 		sk->sk_data_ready(sk);
4767 		tcp_drop(sk, skb);
4768 		return;
4769 	}
4770 
4771 	/* Disable header prediction. */
4772 	tp->pred_flags = 0;
4773 	inet_csk_schedule_ack(sk);
4774 
4775 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4776 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4777 	seq = TCP_SKB_CB(skb)->seq;
4778 	end_seq = TCP_SKB_CB(skb)->end_seq;
4779 
4780 	p = &tp->out_of_order_queue.rb_node;
4781 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4782 		/* Initial out of order segment, build 1 SACK. */
4783 		if (tcp_is_sack(tp)) {
4784 			tp->rx_opt.num_sacks = 1;
4785 			tp->selective_acks[0].start_seq = seq;
4786 			tp->selective_acks[0].end_seq = end_seq;
4787 		}
4788 		rb_link_node(&skb->rbnode, NULL, p);
4789 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4790 		tp->ooo_last_skb = skb;
4791 		goto end;
4792 	}
4793 
4794 	/* In the typical case, we are adding an skb to the end of the list.
4795 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4796 	 */
4797 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4798 				 skb, &fragstolen)) {
4799 coalesce_done:
4800 		/* For non sack flows, do not grow window to force DUPACK
4801 		 * and trigger fast retransmit.
4802 		 */
4803 		if (tcp_is_sack(tp))
4804 			tcp_grow_window(sk, skb, true);
4805 		kfree_skb_partial(skb, fragstolen);
4806 		skb = NULL;
4807 		goto add_sack;
4808 	}
4809 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4810 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4811 		parent = &tp->ooo_last_skb->rbnode;
4812 		p = &parent->rb_right;
4813 		goto insert;
4814 	}
4815 
4816 	/* Find place to insert this segment. Handle overlaps on the way. */
4817 	parent = NULL;
4818 	while (*p) {
4819 		parent = *p;
4820 		skb1 = rb_to_skb(parent);
4821 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4822 			p = &parent->rb_left;
4823 			continue;
4824 		}
4825 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4826 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4827 				/* All the bits are present. Drop. */
4828 				NET_INC_STATS(sock_net(sk),
4829 					      LINUX_MIB_TCPOFOMERGE);
4830 				tcp_drop(sk, skb);
4831 				skb = NULL;
4832 				tcp_dsack_set(sk, seq, end_seq);
4833 				goto add_sack;
4834 			}
4835 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4836 				/* Partial overlap. */
4837 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4838 			} else {
4839 				/* skb's seq == skb1's seq and skb covers skb1.
4840 				 * Replace skb1 with skb.
4841 				 */
4842 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4843 						&tp->out_of_order_queue);
4844 				tcp_dsack_extend(sk,
4845 						 TCP_SKB_CB(skb1)->seq,
4846 						 TCP_SKB_CB(skb1)->end_seq);
4847 				NET_INC_STATS(sock_net(sk),
4848 					      LINUX_MIB_TCPOFOMERGE);
4849 				tcp_drop(sk, skb1);
4850 				goto merge_right;
4851 			}
4852 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4853 						skb, &fragstolen)) {
4854 			goto coalesce_done;
4855 		}
4856 		p = &parent->rb_right;
4857 	}
4858 insert:
4859 	/* Insert segment into RB tree. */
4860 	rb_link_node(&skb->rbnode, parent, p);
4861 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4862 
4863 merge_right:
4864 	/* Remove other segments covered by skb. */
4865 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4866 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4867 			break;
4868 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4869 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4870 					 end_seq);
4871 			break;
4872 		}
4873 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4874 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4875 				 TCP_SKB_CB(skb1)->end_seq);
4876 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4877 		tcp_drop(sk, skb1);
4878 	}
4879 	/* If there is no skb after us, we are the last_skb ! */
4880 	if (!skb1)
4881 		tp->ooo_last_skb = skb;
4882 
4883 add_sack:
4884 	if (tcp_is_sack(tp))
4885 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4886 end:
4887 	if (skb) {
4888 		/* For non sack flows, do not grow window to force DUPACK
4889 		 * and trigger fast retransmit.
4890 		 */
4891 		if (tcp_is_sack(tp))
4892 			tcp_grow_window(sk, skb, false);
4893 		skb_condense(skb);
4894 		skb_set_owner_r(skb, sk);
4895 	}
4896 }
4897 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4898 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4899 				      bool *fragstolen)
4900 {
4901 	int eaten;
4902 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4903 
4904 	eaten = (tail &&
4905 		 tcp_try_coalesce(sk, tail,
4906 				  skb, fragstolen)) ? 1 : 0;
4907 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4908 	if (!eaten) {
4909 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4910 		skb_set_owner_r(skb, sk);
4911 	}
4912 	return eaten;
4913 }
4914 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4915 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4916 {
4917 	struct sk_buff *skb;
4918 	int err = -ENOMEM;
4919 	int data_len = 0;
4920 	bool fragstolen;
4921 
4922 	if (size == 0)
4923 		return 0;
4924 
4925 	if (size > PAGE_SIZE) {
4926 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4927 
4928 		data_len = npages << PAGE_SHIFT;
4929 		size = data_len + (size & ~PAGE_MASK);
4930 	}
4931 	skb = alloc_skb_with_frags(size - data_len, data_len,
4932 				   PAGE_ALLOC_COSTLY_ORDER,
4933 				   &err, sk->sk_allocation);
4934 	if (!skb)
4935 		goto err;
4936 
4937 	skb_put(skb, size - data_len);
4938 	skb->data_len = data_len;
4939 	skb->len = size;
4940 
4941 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4942 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4943 		goto err_free;
4944 	}
4945 
4946 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4947 	if (err)
4948 		goto err_free;
4949 
4950 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4951 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4952 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4953 
4954 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4955 		WARN_ON_ONCE(fragstolen); /* should not happen */
4956 		__kfree_skb(skb);
4957 	}
4958 	return size;
4959 
4960 err_free:
4961 	kfree_skb(skb);
4962 err:
4963 	return err;
4964 
4965 }
4966 
tcp_data_ready(struct sock * sk)4967 void tcp_data_ready(struct sock *sk)
4968 {
4969 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4970 		sk->sk_data_ready(sk);
4971 }
4972 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4973 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4974 {
4975 	struct tcp_sock *tp = tcp_sk(sk);
4976 	bool fragstolen;
4977 	int eaten;
4978 
4979 	/* If a subflow has been reset, the packet should not continue
4980 	 * to be processed, drop the packet.
4981 	 */
4982 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
4983 		__kfree_skb(skb);
4984 		return;
4985 	}
4986 
4987 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4988 		__kfree_skb(skb);
4989 		return;
4990 	}
4991 	skb_dst_drop(skb);
4992 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4993 
4994 	tp->rx_opt.dsack = 0;
4995 
4996 	/*  Queue data for delivery to the user.
4997 	 *  Packets in sequence go to the receive queue.
4998 	 *  Out of sequence packets to the out_of_order_queue.
4999 	 */
5000 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5001 		if (tcp_receive_window(tp) == 0) {
5002 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5003 			goto out_of_window;
5004 		}
5005 
5006 		/* Ok. In sequence. In window. */
5007 queue_and_out:
5008 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5009 			sk_forced_mem_schedule(sk, skb->truesize);
5010 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5011 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5012 			sk->sk_data_ready(sk);
5013 			goto drop;
5014 		}
5015 
5016 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5017 		if (skb->len)
5018 			tcp_event_data_recv(sk, skb);
5019 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5020 			tcp_fin(sk);
5021 
5022 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5023 			tcp_ofo_queue(sk);
5024 
5025 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5026 			 * gap in queue is filled.
5027 			 */
5028 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5029 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5030 		}
5031 
5032 		if (tp->rx_opt.num_sacks)
5033 			tcp_sack_remove(tp);
5034 
5035 		tcp_fast_path_check(sk);
5036 
5037 		if (eaten > 0)
5038 			kfree_skb_partial(skb, fragstolen);
5039 		if (!sock_flag(sk, SOCK_DEAD))
5040 			tcp_data_ready(sk);
5041 		return;
5042 	}
5043 
5044 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5045 		tcp_rcv_spurious_retrans(sk, skb);
5046 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5047 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5048 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5049 
5050 out_of_window:
5051 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5052 		inet_csk_schedule_ack(sk);
5053 drop:
5054 		tcp_drop(sk, skb);
5055 		return;
5056 	}
5057 
5058 	/* Out of window. F.e. zero window probe. */
5059 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5060 		goto out_of_window;
5061 
5062 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5063 		/* Partial packet, seq < rcv_next < end_seq */
5064 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5065 
5066 		/* If window is closed, drop tail of packet. But after
5067 		 * remembering D-SACK for its head made in previous line.
5068 		 */
5069 		if (!tcp_receive_window(tp)) {
5070 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5071 			goto out_of_window;
5072 		}
5073 		goto queue_and_out;
5074 	}
5075 
5076 	tcp_data_queue_ofo(sk, skb);
5077 }
5078 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5079 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5080 {
5081 	if (list)
5082 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5083 
5084 	return skb_rb_next(skb);
5085 }
5086 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5087 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5088 					struct sk_buff_head *list,
5089 					struct rb_root *root)
5090 {
5091 	struct sk_buff *next = tcp_skb_next(skb, list);
5092 
5093 	if (list)
5094 		__skb_unlink(skb, list);
5095 	else
5096 		rb_erase(&skb->rbnode, root);
5097 
5098 	__kfree_skb(skb);
5099 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5100 
5101 	return next;
5102 }
5103 
5104 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5105 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5106 {
5107 	struct rb_node **p = &root->rb_node;
5108 	struct rb_node *parent = NULL;
5109 	struct sk_buff *skb1;
5110 
5111 	while (*p) {
5112 		parent = *p;
5113 		skb1 = rb_to_skb(parent);
5114 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5115 			p = &parent->rb_left;
5116 		else
5117 			p = &parent->rb_right;
5118 	}
5119 	rb_link_node(&skb->rbnode, parent, p);
5120 	rb_insert_color(&skb->rbnode, root);
5121 }
5122 
5123 /* Collapse contiguous sequence of skbs head..tail with
5124  * sequence numbers start..end.
5125  *
5126  * If tail is NULL, this means until the end of the queue.
5127  *
5128  * Segments with FIN/SYN are not collapsed (only because this
5129  * simplifies code)
5130  */
5131 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5132 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5133 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5134 {
5135 	struct sk_buff *skb = head, *n;
5136 	struct sk_buff_head tmp;
5137 	bool end_of_skbs;
5138 
5139 	/* First, check that queue is collapsible and find
5140 	 * the point where collapsing can be useful.
5141 	 */
5142 restart:
5143 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5144 		n = tcp_skb_next(skb, list);
5145 
5146 		/* No new bits? It is possible on ofo queue. */
5147 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5148 			skb = tcp_collapse_one(sk, skb, list, root);
5149 			if (!skb)
5150 				break;
5151 			goto restart;
5152 		}
5153 
5154 		/* The first skb to collapse is:
5155 		 * - not SYN/FIN and
5156 		 * - bloated or contains data before "start" or
5157 		 *   overlaps to the next one and mptcp allow collapsing.
5158 		 */
5159 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5160 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5161 		     before(TCP_SKB_CB(skb)->seq, start))) {
5162 			end_of_skbs = false;
5163 			break;
5164 		}
5165 
5166 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5167 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5168 			end_of_skbs = false;
5169 			break;
5170 		}
5171 
5172 		/* Decided to skip this, advance start seq. */
5173 		start = TCP_SKB_CB(skb)->end_seq;
5174 	}
5175 	if (end_of_skbs ||
5176 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5177 		return;
5178 
5179 	__skb_queue_head_init(&tmp);
5180 
5181 	while (before(start, end)) {
5182 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5183 		struct sk_buff *nskb;
5184 
5185 		nskb = alloc_skb(copy, GFP_ATOMIC);
5186 		if (!nskb)
5187 			break;
5188 
5189 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5190 #ifdef CONFIG_TLS_DEVICE
5191 		nskb->decrypted = skb->decrypted;
5192 #endif
5193 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5194 		if (list)
5195 			__skb_queue_before(list, skb, nskb);
5196 		else
5197 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5198 		skb_set_owner_r(nskb, sk);
5199 		mptcp_skb_ext_move(nskb, skb);
5200 
5201 		/* Copy data, releasing collapsed skbs. */
5202 		while (copy > 0) {
5203 			int offset = start - TCP_SKB_CB(skb)->seq;
5204 			int size = TCP_SKB_CB(skb)->end_seq - start;
5205 
5206 			BUG_ON(offset < 0);
5207 			if (size > 0) {
5208 				size = min(copy, size);
5209 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5210 					BUG();
5211 				TCP_SKB_CB(nskb)->end_seq += size;
5212 				copy -= size;
5213 				start += size;
5214 			}
5215 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5216 				skb = tcp_collapse_one(sk, skb, list, root);
5217 				if (!skb ||
5218 				    skb == tail ||
5219 				    !mptcp_skb_can_collapse(nskb, skb) ||
5220 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5221 					goto end;
5222 #ifdef CONFIG_TLS_DEVICE
5223 				if (skb->decrypted != nskb->decrypted)
5224 					goto end;
5225 #endif
5226 			}
5227 		}
5228 	}
5229 end:
5230 	skb_queue_walk_safe(&tmp, skb, n)
5231 		tcp_rbtree_insert(root, skb);
5232 }
5233 
5234 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5235  * and tcp_collapse() them until all the queue is collapsed.
5236  */
tcp_collapse_ofo_queue(struct sock * sk)5237 static void tcp_collapse_ofo_queue(struct sock *sk)
5238 {
5239 	struct tcp_sock *tp = tcp_sk(sk);
5240 	u32 range_truesize, sum_tiny = 0;
5241 	struct sk_buff *skb, *head;
5242 	u32 start, end;
5243 
5244 	skb = skb_rb_first(&tp->out_of_order_queue);
5245 new_range:
5246 	if (!skb) {
5247 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5248 		return;
5249 	}
5250 	start = TCP_SKB_CB(skb)->seq;
5251 	end = TCP_SKB_CB(skb)->end_seq;
5252 	range_truesize = skb->truesize;
5253 
5254 	for (head = skb;;) {
5255 		skb = skb_rb_next(skb);
5256 
5257 		/* Range is terminated when we see a gap or when
5258 		 * we are at the queue end.
5259 		 */
5260 		if (!skb ||
5261 		    after(TCP_SKB_CB(skb)->seq, end) ||
5262 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5263 			/* Do not attempt collapsing tiny skbs */
5264 			if (range_truesize != head->truesize ||
5265 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5266 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5267 					     head, skb, start, end);
5268 			} else {
5269 				sum_tiny += range_truesize;
5270 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5271 					return;
5272 			}
5273 			goto new_range;
5274 		}
5275 
5276 		range_truesize += skb->truesize;
5277 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5278 			start = TCP_SKB_CB(skb)->seq;
5279 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5280 			end = TCP_SKB_CB(skb)->end_seq;
5281 	}
5282 }
5283 
5284 /*
5285  * Clean the out-of-order queue to make room.
5286  * We drop high sequences packets to :
5287  * 1) Let a chance for holes to be filled.
5288  * 2) not add too big latencies if thousands of packets sit there.
5289  *    (But if application shrinks SO_RCVBUF, we could still end up
5290  *     freeing whole queue here)
5291  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5292  *
5293  * Return true if queue has shrunk.
5294  */
tcp_prune_ofo_queue(struct sock * sk)5295 static bool tcp_prune_ofo_queue(struct sock *sk)
5296 {
5297 	struct tcp_sock *tp = tcp_sk(sk);
5298 	struct rb_node *node, *prev;
5299 	int goal;
5300 
5301 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5302 		return false;
5303 
5304 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5305 	goal = sk->sk_rcvbuf >> 3;
5306 	node = &tp->ooo_last_skb->rbnode;
5307 	do {
5308 		prev = rb_prev(node);
5309 		rb_erase(node, &tp->out_of_order_queue);
5310 		goal -= rb_to_skb(node)->truesize;
5311 		tcp_drop(sk, rb_to_skb(node));
5312 		if (!prev || goal <= 0) {
5313 			sk_mem_reclaim(sk);
5314 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5315 			    !tcp_under_memory_pressure(sk))
5316 				break;
5317 			goal = sk->sk_rcvbuf >> 3;
5318 		}
5319 		node = prev;
5320 	} while (node);
5321 	tp->ooo_last_skb = rb_to_skb(prev);
5322 
5323 	/* Reset SACK state.  A conforming SACK implementation will
5324 	 * do the same at a timeout based retransmit.  When a connection
5325 	 * is in a sad state like this, we care only about integrity
5326 	 * of the connection not performance.
5327 	 */
5328 	if (tp->rx_opt.sack_ok)
5329 		tcp_sack_reset(&tp->rx_opt);
5330 	return true;
5331 }
5332 
5333 /* Reduce allocated memory if we can, trying to get
5334  * the socket within its memory limits again.
5335  *
5336  * Return less than zero if we should start dropping frames
5337  * until the socket owning process reads some of the data
5338  * to stabilize the situation.
5339  */
tcp_prune_queue(struct sock * sk)5340 static int tcp_prune_queue(struct sock *sk)
5341 {
5342 	struct tcp_sock *tp = tcp_sk(sk);
5343 
5344 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5345 
5346 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5347 		tcp_clamp_window(sk);
5348 	else if (tcp_under_memory_pressure(sk))
5349 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5350 
5351 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5352 		return 0;
5353 
5354 	tcp_collapse_ofo_queue(sk);
5355 	if (!skb_queue_empty(&sk->sk_receive_queue))
5356 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5357 			     skb_peek(&sk->sk_receive_queue),
5358 			     NULL,
5359 			     tp->copied_seq, tp->rcv_nxt);
5360 	sk_mem_reclaim(sk);
5361 
5362 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5363 		return 0;
5364 
5365 	/* Collapsing did not help, destructive actions follow.
5366 	 * This must not ever occur. */
5367 
5368 	tcp_prune_ofo_queue(sk);
5369 
5370 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5371 		return 0;
5372 
5373 	/* If we are really being abused, tell the caller to silently
5374 	 * drop receive data on the floor.  It will get retransmitted
5375 	 * and hopefully then we'll have sufficient space.
5376 	 */
5377 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5378 
5379 	/* Massive buffer overcommit. */
5380 	tp->pred_flags = 0;
5381 	return -1;
5382 }
5383 
tcp_should_expand_sndbuf(const struct sock * sk)5384 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5385 {
5386 	const struct tcp_sock *tp = tcp_sk(sk);
5387 
5388 	/* If the user specified a specific send buffer setting, do
5389 	 * not modify it.
5390 	 */
5391 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5392 		return false;
5393 
5394 	/* If we are under global TCP memory pressure, do not expand.  */
5395 	if (tcp_under_memory_pressure(sk))
5396 		return false;
5397 
5398 	/* If we are under soft global TCP memory pressure, do not expand.  */
5399 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5400 		return false;
5401 
5402 	/* If we filled the congestion window, do not expand.  */
5403 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5404 		return false;
5405 
5406 	return true;
5407 }
5408 
tcp_new_space(struct sock * sk)5409 static void tcp_new_space(struct sock *sk)
5410 {
5411 	struct tcp_sock *tp = tcp_sk(sk);
5412 
5413 	if (tcp_should_expand_sndbuf(sk)) {
5414 		tcp_sndbuf_expand(sk);
5415 		tp->snd_cwnd_stamp = tcp_jiffies32;
5416 	}
5417 
5418 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5419 }
5420 
tcp_check_space(struct sock * sk)5421 static void tcp_check_space(struct sock *sk)
5422 {
5423 	/* pairs with tcp_poll() */
5424 	smp_mb();
5425 	if (sk->sk_socket &&
5426 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5427 		tcp_new_space(sk);
5428 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5429 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5430 	}
5431 }
5432 
tcp_data_snd_check(struct sock * sk)5433 static inline void tcp_data_snd_check(struct sock *sk)
5434 {
5435 	tcp_push_pending_frames(sk);
5436 	tcp_check_space(sk);
5437 }
5438 
5439 /*
5440  * Check if sending an ack is needed.
5441  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5442 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5443 {
5444 	struct tcp_sock *tp = tcp_sk(sk);
5445 	unsigned long rtt, delay;
5446 
5447 	    /* More than one full frame received... */
5448 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5449 	     /* ... and right edge of window advances far enough.
5450 	      * (tcp_recvmsg() will send ACK otherwise).
5451 	      * If application uses SO_RCVLOWAT, we want send ack now if
5452 	      * we have not received enough bytes to satisfy the condition.
5453 	      */
5454 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5455 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5456 	    /* We ACK each frame or... */
5457 	    tcp_in_quickack_mode(sk) ||
5458 	    /* Protocol state mandates a one-time immediate ACK */
5459 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5460 send_now:
5461 		tcp_send_ack(sk);
5462 		return;
5463 	}
5464 
5465 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5466 		tcp_send_delayed_ack(sk);
5467 		return;
5468 	}
5469 
5470 	if (!tcp_is_sack(tp) ||
5471 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5472 		goto send_now;
5473 
5474 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5475 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5476 		tp->dup_ack_counter = 0;
5477 	}
5478 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5479 		tp->dup_ack_counter++;
5480 		goto send_now;
5481 	}
5482 	tp->compressed_ack++;
5483 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5484 		return;
5485 
5486 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5487 
5488 	rtt = tp->rcv_rtt_est.rtt_us;
5489 	if (tp->srtt_us && tp->srtt_us < rtt)
5490 		rtt = tp->srtt_us;
5491 
5492 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5493 		      rtt * (NSEC_PER_USEC >> 3)/20);
5494 	sock_hold(sk);
5495 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5496 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5497 			       HRTIMER_MODE_REL_PINNED_SOFT);
5498 }
5499 
tcp_ack_snd_check(struct sock * sk)5500 static inline void tcp_ack_snd_check(struct sock *sk)
5501 {
5502 	if (!inet_csk_ack_scheduled(sk)) {
5503 		/* We sent a data segment already. */
5504 		return;
5505 	}
5506 	__tcp_ack_snd_check(sk, 1);
5507 }
5508 
5509 /*
5510  *	This routine is only called when we have urgent data
5511  *	signaled. Its the 'slow' part of tcp_urg. It could be
5512  *	moved inline now as tcp_urg is only called from one
5513  *	place. We handle URGent data wrong. We have to - as
5514  *	BSD still doesn't use the correction from RFC961.
5515  *	For 1003.1g we should support a new option TCP_STDURG to permit
5516  *	either form (or just set the sysctl tcp_stdurg).
5517  */
5518 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5519 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5520 {
5521 	struct tcp_sock *tp = tcp_sk(sk);
5522 	u32 ptr = ntohs(th->urg_ptr);
5523 
5524 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5525 		ptr--;
5526 	ptr += ntohl(th->seq);
5527 
5528 	/* Ignore urgent data that we've already seen and read. */
5529 	if (after(tp->copied_seq, ptr))
5530 		return;
5531 
5532 	/* Do not replay urg ptr.
5533 	 *
5534 	 * NOTE: interesting situation not covered by specs.
5535 	 * Misbehaving sender may send urg ptr, pointing to segment,
5536 	 * which we already have in ofo queue. We are not able to fetch
5537 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5538 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5539 	 * situations. But it is worth to think about possibility of some
5540 	 * DoSes using some hypothetical application level deadlock.
5541 	 */
5542 	if (before(ptr, tp->rcv_nxt))
5543 		return;
5544 
5545 	/* Do we already have a newer (or duplicate) urgent pointer? */
5546 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5547 		return;
5548 
5549 	/* Tell the world about our new urgent pointer. */
5550 	sk_send_sigurg(sk);
5551 
5552 	/* We may be adding urgent data when the last byte read was
5553 	 * urgent. To do this requires some care. We cannot just ignore
5554 	 * tp->copied_seq since we would read the last urgent byte again
5555 	 * as data, nor can we alter copied_seq until this data arrives
5556 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5557 	 *
5558 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5559 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5560 	 * and expect that both A and B disappear from stream. This is _wrong_.
5561 	 * Though this happens in BSD with high probability, this is occasional.
5562 	 * Any application relying on this is buggy. Note also, that fix "works"
5563 	 * only in this artificial test. Insert some normal data between A and B and we will
5564 	 * decline of BSD again. Verdict: it is better to remove to trap
5565 	 * buggy users.
5566 	 */
5567 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5568 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5569 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5570 		tp->copied_seq++;
5571 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5572 			__skb_unlink(skb, &sk->sk_receive_queue);
5573 			__kfree_skb(skb);
5574 		}
5575 	}
5576 
5577 	tp->urg_data = TCP_URG_NOTYET;
5578 	WRITE_ONCE(tp->urg_seq, ptr);
5579 
5580 	/* Disable header prediction. */
5581 	tp->pred_flags = 0;
5582 }
5583 
5584 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5585 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5586 {
5587 	struct tcp_sock *tp = tcp_sk(sk);
5588 
5589 	/* Check if we get a new urgent pointer - normally not. */
5590 	if (th->urg)
5591 		tcp_check_urg(sk, th);
5592 
5593 	/* Do we wait for any urgent data? - normally not... */
5594 	if (tp->urg_data == TCP_URG_NOTYET) {
5595 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5596 			  th->syn;
5597 
5598 		/* Is the urgent pointer pointing into this packet? */
5599 		if (ptr < skb->len) {
5600 			u8 tmp;
5601 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5602 				BUG();
5603 			tp->urg_data = TCP_URG_VALID | tmp;
5604 			if (!sock_flag(sk, SOCK_DEAD))
5605 				sk->sk_data_ready(sk);
5606 		}
5607 	}
5608 }
5609 
5610 /* Accept RST for rcv_nxt - 1 after a FIN.
5611  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5612  * FIN is sent followed by a RST packet. The RST is sent with the same
5613  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5614  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5615  * ACKs on the closed socket. In addition middleboxes can drop either the
5616  * challenge ACK or a subsequent RST.
5617  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5618 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5619 {
5620 	struct tcp_sock *tp = tcp_sk(sk);
5621 
5622 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5623 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5624 					       TCPF_CLOSING));
5625 }
5626 
5627 /* Does PAWS and seqno based validation of an incoming segment, flags will
5628  * play significant role here.
5629  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5630 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5631 				  const struct tcphdr *th, int syn_inerr)
5632 {
5633 	struct tcp_sock *tp = tcp_sk(sk);
5634 	bool rst_seq_match = false;
5635 
5636 	/* RFC1323: H1. Apply PAWS check first. */
5637 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5638 	    tp->rx_opt.saw_tstamp &&
5639 	    tcp_paws_discard(sk, skb)) {
5640 		if (!th->rst) {
5641 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5642 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5643 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5644 						  &tp->last_oow_ack_time))
5645 				tcp_send_dupack(sk, skb);
5646 			goto discard;
5647 		}
5648 		/* Reset is accepted even if it did not pass PAWS. */
5649 	}
5650 
5651 	/* Step 1: check sequence number */
5652 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5653 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5654 		 * (RST) segments are validated by checking their SEQ-fields."
5655 		 * And page 69: "If an incoming segment is not acceptable,
5656 		 * an acknowledgment should be sent in reply (unless the RST
5657 		 * bit is set, if so drop the segment and return)".
5658 		 */
5659 		if (!th->rst) {
5660 			if (th->syn)
5661 				goto syn_challenge;
5662 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5663 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5664 						  &tp->last_oow_ack_time))
5665 				tcp_send_dupack(sk, skb);
5666 		} else if (tcp_reset_check(sk, skb)) {
5667 			tcp_reset(sk, skb);
5668 		}
5669 		goto discard;
5670 	}
5671 
5672 	/* Step 2: check RST bit */
5673 	if (th->rst) {
5674 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5675 		 * FIN and SACK too if available):
5676 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5677 		 * the right-most SACK block,
5678 		 * then
5679 		 *     RESET the connection
5680 		 * else
5681 		 *     Send a challenge ACK
5682 		 */
5683 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5684 		    tcp_reset_check(sk, skb)) {
5685 			rst_seq_match = true;
5686 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5687 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5688 			int max_sack = sp[0].end_seq;
5689 			int this_sack;
5690 
5691 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5692 			     ++this_sack) {
5693 				max_sack = after(sp[this_sack].end_seq,
5694 						 max_sack) ?
5695 					sp[this_sack].end_seq : max_sack;
5696 			}
5697 
5698 			if (TCP_SKB_CB(skb)->seq == max_sack)
5699 				rst_seq_match = true;
5700 		}
5701 
5702 		if (rst_seq_match)
5703 			tcp_reset(sk, skb);
5704 		else {
5705 			/* Disable TFO if RST is out-of-order
5706 			 * and no data has been received
5707 			 * for current active TFO socket
5708 			 */
5709 			if (tp->syn_fastopen && !tp->data_segs_in &&
5710 			    sk->sk_state == TCP_ESTABLISHED)
5711 				tcp_fastopen_active_disable(sk);
5712 			tcp_send_challenge_ack(sk, skb);
5713 		}
5714 		goto discard;
5715 	}
5716 
5717 	/* step 3: check security and precedence [ignored] */
5718 
5719 	/* step 4: Check for a SYN
5720 	 * RFC 5961 4.2 : Send a challenge ack
5721 	 */
5722 	if (th->syn) {
5723 syn_challenge:
5724 		if (syn_inerr)
5725 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5726 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5727 		tcp_send_challenge_ack(sk, skb);
5728 		goto discard;
5729 	}
5730 
5731 	bpf_skops_parse_hdr(sk, skb);
5732 
5733 	return true;
5734 
5735 discard:
5736 	tcp_drop(sk, skb);
5737 	return false;
5738 }
5739 
5740 /*
5741  *	TCP receive function for the ESTABLISHED state.
5742  *
5743  *	It is split into a fast path and a slow path. The fast path is
5744  * 	disabled when:
5745  *	- A zero window was announced from us - zero window probing
5746  *        is only handled properly in the slow path.
5747  *	- Out of order segments arrived.
5748  *	- Urgent data is expected.
5749  *	- There is no buffer space left
5750  *	- Unexpected TCP flags/window values/header lengths are received
5751  *	  (detected by checking the TCP header against pred_flags)
5752  *	- Data is sent in both directions. Fast path only supports pure senders
5753  *	  or pure receivers (this means either the sequence number or the ack
5754  *	  value must stay constant)
5755  *	- Unexpected TCP option.
5756  *
5757  *	When these conditions are not satisfied it drops into a standard
5758  *	receive procedure patterned after RFC793 to handle all cases.
5759  *	The first three cases are guaranteed by proper pred_flags setting,
5760  *	the rest is checked inline. Fast processing is turned on in
5761  *	tcp_data_queue when everything is OK.
5762  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5763 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5764 {
5765 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5766 	struct tcp_sock *tp = tcp_sk(sk);
5767 	unsigned int len = skb->len;
5768 
5769 	/* TCP congestion window tracking */
5770 	trace_tcp_probe(sk, skb);
5771 
5772 	tcp_mstamp_refresh(tp);
5773 	if (unlikely(!sk->sk_rx_dst))
5774 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5775 	/*
5776 	 *	Header prediction.
5777 	 *	The code loosely follows the one in the famous
5778 	 *	"30 instruction TCP receive" Van Jacobson mail.
5779 	 *
5780 	 *	Van's trick is to deposit buffers into socket queue
5781 	 *	on a device interrupt, to call tcp_recv function
5782 	 *	on the receive process context and checksum and copy
5783 	 *	the buffer to user space. smart...
5784 	 *
5785 	 *	Our current scheme is not silly either but we take the
5786 	 *	extra cost of the net_bh soft interrupt processing...
5787 	 *	We do checksum and copy also but from device to kernel.
5788 	 */
5789 
5790 	tp->rx_opt.saw_tstamp = 0;
5791 
5792 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5793 	 *	if header_prediction is to be made
5794 	 *	'S' will always be tp->tcp_header_len >> 2
5795 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5796 	 *  turn it off	(when there are holes in the receive
5797 	 *	 space for instance)
5798 	 *	PSH flag is ignored.
5799 	 */
5800 
5801 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5802 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5803 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5804 		int tcp_header_len = tp->tcp_header_len;
5805 
5806 		/* Timestamp header prediction: tcp_header_len
5807 		 * is automatically equal to th->doff*4 due to pred_flags
5808 		 * match.
5809 		 */
5810 
5811 		/* Check timestamp */
5812 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5813 			/* No? Slow path! */
5814 			if (!tcp_parse_aligned_timestamp(tp, th))
5815 				goto slow_path;
5816 
5817 			/* If PAWS failed, check it more carefully in slow path */
5818 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5819 				goto slow_path;
5820 
5821 			/* DO NOT update ts_recent here, if checksum fails
5822 			 * and timestamp was corrupted part, it will result
5823 			 * in a hung connection since we will drop all
5824 			 * future packets due to the PAWS test.
5825 			 */
5826 		}
5827 
5828 		if (len <= tcp_header_len) {
5829 			/* Bulk data transfer: sender */
5830 			if (len == tcp_header_len) {
5831 				/* Predicted packet is in window by definition.
5832 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5833 				 * Hence, check seq<=rcv_wup reduces to:
5834 				 */
5835 				if (tcp_header_len ==
5836 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5837 				    tp->rcv_nxt == tp->rcv_wup)
5838 					tcp_store_ts_recent(tp);
5839 
5840 				/* We know that such packets are checksummed
5841 				 * on entry.
5842 				 */
5843 				tcp_ack(sk, skb, 0);
5844 				__kfree_skb(skb);
5845 				tcp_data_snd_check(sk);
5846 				/* When receiving pure ack in fast path, update
5847 				 * last ts ecr directly instead of calling
5848 				 * tcp_rcv_rtt_measure_ts()
5849 				 */
5850 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5851 				return;
5852 			} else { /* Header too small */
5853 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5854 				goto discard;
5855 			}
5856 		} else {
5857 			int eaten = 0;
5858 			bool fragstolen = false;
5859 
5860 			if (tcp_checksum_complete(skb))
5861 				goto csum_error;
5862 
5863 			if ((int)skb->truesize > sk->sk_forward_alloc)
5864 				goto step5;
5865 
5866 			/* Predicted packet is in window by definition.
5867 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5868 			 * Hence, check seq<=rcv_wup reduces to:
5869 			 */
5870 			if (tcp_header_len ==
5871 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5872 			    tp->rcv_nxt == tp->rcv_wup)
5873 				tcp_store_ts_recent(tp);
5874 
5875 			tcp_rcv_rtt_measure_ts(sk, skb);
5876 
5877 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5878 
5879 			/* Bulk data transfer: receiver */
5880 			__skb_pull(skb, tcp_header_len);
5881 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5882 
5883 			tcp_event_data_recv(sk, skb);
5884 
5885 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5886 				/* Well, only one small jumplet in fast path... */
5887 				tcp_ack(sk, skb, FLAG_DATA);
5888 				tcp_data_snd_check(sk);
5889 				if (!inet_csk_ack_scheduled(sk))
5890 					goto no_ack;
5891 			} else {
5892 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5893 			}
5894 
5895 			__tcp_ack_snd_check(sk, 0);
5896 no_ack:
5897 			if (eaten)
5898 				kfree_skb_partial(skb, fragstolen);
5899 			tcp_data_ready(sk);
5900 			return;
5901 		}
5902 	}
5903 
5904 slow_path:
5905 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5906 		goto csum_error;
5907 
5908 	if (!th->ack && !th->rst && !th->syn)
5909 		goto discard;
5910 
5911 	/*
5912 	 *	Standard slow path.
5913 	 */
5914 
5915 	if (!tcp_validate_incoming(sk, skb, th, 1))
5916 		return;
5917 
5918 step5:
5919 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5920 		goto discard;
5921 
5922 	tcp_rcv_rtt_measure_ts(sk, skb);
5923 
5924 	/* Process urgent data. */
5925 	tcp_urg(sk, skb, th);
5926 
5927 	/* step 7: process the segment text */
5928 	tcp_data_queue(sk, skb);
5929 
5930 	tcp_data_snd_check(sk);
5931 	tcp_ack_snd_check(sk);
5932 	return;
5933 
5934 csum_error:
5935 	trace_tcp_bad_csum(skb);
5936 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5937 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5938 
5939 discard:
5940 	tcp_drop(sk, skb);
5941 }
5942 EXPORT_SYMBOL(tcp_rcv_established);
5943 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5944 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5945 {
5946 	struct inet_connection_sock *icsk = inet_csk(sk);
5947 	struct tcp_sock *tp = tcp_sk(sk);
5948 
5949 	tcp_mtup_init(sk);
5950 	icsk->icsk_af_ops->rebuild_header(sk);
5951 	tcp_init_metrics(sk);
5952 
5953 	/* Initialize the congestion window to start the transfer.
5954 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5955 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5956 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5957 	 * retransmission has occurred.
5958 	 */
5959 	if (tp->total_retrans > 1 && tp->undo_marker)
5960 		tp->snd_cwnd = 1;
5961 	else
5962 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5963 	tp->snd_cwnd_stamp = tcp_jiffies32;
5964 
5965 	bpf_skops_established(sk, bpf_op, skb);
5966 	/* Initialize congestion control unless BPF initialized it already: */
5967 	if (!icsk->icsk_ca_initialized)
5968 		tcp_init_congestion_control(sk);
5969 	tcp_init_buffer_space(sk);
5970 }
5971 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5972 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5973 {
5974 	struct tcp_sock *tp = tcp_sk(sk);
5975 	struct inet_connection_sock *icsk = inet_csk(sk);
5976 
5977 	tcp_set_state(sk, TCP_ESTABLISHED);
5978 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5979 
5980 	if (skb) {
5981 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5982 		security_inet_conn_established(sk, skb);
5983 		sk_mark_napi_id(sk, skb);
5984 	}
5985 
5986 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5987 
5988 	/* Prevent spurious tcp_cwnd_restart() on first data
5989 	 * packet.
5990 	 */
5991 	tp->lsndtime = tcp_jiffies32;
5992 
5993 	if (sock_flag(sk, SOCK_KEEPOPEN))
5994 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5995 
5996 	if (!tp->rx_opt.snd_wscale)
5997 		__tcp_fast_path_on(tp, tp->snd_wnd);
5998 	else
5999 		tp->pred_flags = 0;
6000 }
6001 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6002 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6003 				    struct tcp_fastopen_cookie *cookie)
6004 {
6005 	struct tcp_sock *tp = tcp_sk(sk);
6006 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6007 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6008 	bool syn_drop = false;
6009 
6010 	if (mss == tp->rx_opt.user_mss) {
6011 		struct tcp_options_received opt;
6012 
6013 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6014 		tcp_clear_options(&opt);
6015 		opt.user_mss = opt.mss_clamp = 0;
6016 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6017 		mss = opt.mss_clamp;
6018 	}
6019 
6020 	if (!tp->syn_fastopen) {
6021 		/* Ignore an unsolicited cookie */
6022 		cookie->len = -1;
6023 	} else if (tp->total_retrans) {
6024 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6025 		 * acknowledges data. Presumably the remote received only
6026 		 * the retransmitted (regular) SYNs: either the original
6027 		 * SYN-data or the corresponding SYN-ACK was dropped.
6028 		 */
6029 		syn_drop = (cookie->len < 0 && data);
6030 	} else if (cookie->len < 0 && !tp->syn_data) {
6031 		/* We requested a cookie but didn't get it. If we did not use
6032 		 * the (old) exp opt format then try so next time (try_exp=1).
6033 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6034 		 */
6035 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6036 	}
6037 
6038 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6039 
6040 	if (data) { /* Retransmit unacked data in SYN */
6041 		if (tp->total_retrans)
6042 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6043 		else
6044 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6045 		skb_rbtree_walk_from(data)
6046 			 tcp_mark_skb_lost(sk, data);
6047 		tcp_xmit_retransmit_queue(sk);
6048 		NET_INC_STATS(sock_net(sk),
6049 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6050 		return true;
6051 	}
6052 	tp->syn_data_acked = tp->syn_data;
6053 	if (tp->syn_data_acked) {
6054 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6055 		/* SYN-data is counted as two separate packets in tcp_ack() */
6056 		if (tp->delivered > 1)
6057 			--tp->delivered;
6058 	}
6059 
6060 	tcp_fastopen_add_skb(sk, synack);
6061 
6062 	return false;
6063 }
6064 
smc_check_reset_syn(struct tcp_sock * tp)6065 static void smc_check_reset_syn(struct tcp_sock *tp)
6066 {
6067 #if IS_ENABLED(CONFIG_SMC)
6068 	if (static_branch_unlikely(&tcp_have_smc)) {
6069 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6070 			tp->syn_smc = 0;
6071 	}
6072 #endif
6073 }
6074 
tcp_try_undo_spurious_syn(struct sock * sk)6075 static void tcp_try_undo_spurious_syn(struct sock *sk)
6076 {
6077 	struct tcp_sock *tp = tcp_sk(sk);
6078 	u32 syn_stamp;
6079 
6080 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6081 	 * spurious if the ACK's timestamp option echo value matches the
6082 	 * original SYN timestamp.
6083 	 */
6084 	syn_stamp = tp->retrans_stamp;
6085 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6086 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6087 		tp->undo_marker = 0;
6088 }
6089 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6090 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6091 					 const struct tcphdr *th)
6092 {
6093 	struct inet_connection_sock *icsk = inet_csk(sk);
6094 	struct tcp_sock *tp = tcp_sk(sk);
6095 	struct tcp_fastopen_cookie foc = { .len = -1 };
6096 	int saved_clamp = tp->rx_opt.mss_clamp;
6097 	bool fastopen_fail;
6098 
6099 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6100 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6101 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6102 
6103 	if (th->ack) {
6104 		/* rfc793:
6105 		 * "If the state is SYN-SENT then
6106 		 *    first check the ACK bit
6107 		 *      If the ACK bit is set
6108 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6109 		 *        a reset (unless the RST bit is set, if so drop
6110 		 *        the segment and return)"
6111 		 */
6112 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6113 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6114 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6115 			if (icsk->icsk_retransmits == 0)
6116 				inet_csk_reset_xmit_timer(sk,
6117 						ICSK_TIME_RETRANS,
6118 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6119 			goto reset_and_undo;
6120 		}
6121 
6122 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6123 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6124 			     tcp_time_stamp(tp))) {
6125 			NET_INC_STATS(sock_net(sk),
6126 					LINUX_MIB_PAWSACTIVEREJECTED);
6127 			goto reset_and_undo;
6128 		}
6129 
6130 		/* Now ACK is acceptable.
6131 		 *
6132 		 * "If the RST bit is set
6133 		 *    If the ACK was acceptable then signal the user "error:
6134 		 *    connection reset", drop the segment, enter CLOSED state,
6135 		 *    delete TCB, and return."
6136 		 */
6137 
6138 		if (th->rst) {
6139 			tcp_reset(sk, skb);
6140 			goto discard;
6141 		}
6142 
6143 		/* rfc793:
6144 		 *   "fifth, if neither of the SYN or RST bits is set then
6145 		 *    drop the segment and return."
6146 		 *
6147 		 *    See note below!
6148 		 *                                        --ANK(990513)
6149 		 */
6150 		if (!th->syn)
6151 			goto discard_and_undo;
6152 
6153 		/* rfc793:
6154 		 *   "If the SYN bit is on ...
6155 		 *    are acceptable then ...
6156 		 *    (our SYN has been ACKed), change the connection
6157 		 *    state to ESTABLISHED..."
6158 		 */
6159 
6160 		tcp_ecn_rcv_synack(tp, th);
6161 
6162 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6163 		tcp_try_undo_spurious_syn(sk);
6164 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6165 
6166 		/* Ok.. it's good. Set up sequence numbers and
6167 		 * move to established.
6168 		 */
6169 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6170 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6171 
6172 		/* RFC1323: The window in SYN & SYN/ACK segments is
6173 		 * never scaled.
6174 		 */
6175 		tp->snd_wnd = ntohs(th->window);
6176 
6177 		if (!tp->rx_opt.wscale_ok) {
6178 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6179 			tp->window_clamp = min(tp->window_clamp, 65535U);
6180 		}
6181 
6182 		if (tp->rx_opt.saw_tstamp) {
6183 			tp->rx_opt.tstamp_ok	   = 1;
6184 			tp->tcp_header_len =
6185 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6186 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6187 			tcp_store_ts_recent(tp);
6188 		} else {
6189 			tp->tcp_header_len = sizeof(struct tcphdr);
6190 		}
6191 
6192 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6193 		tcp_initialize_rcv_mss(sk);
6194 
6195 		/* Remember, tcp_poll() does not lock socket!
6196 		 * Change state from SYN-SENT only after copied_seq
6197 		 * is initialized. */
6198 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6199 
6200 		smc_check_reset_syn(tp);
6201 
6202 		smp_mb();
6203 
6204 		tcp_finish_connect(sk, skb);
6205 
6206 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6207 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6208 
6209 		if (!sock_flag(sk, SOCK_DEAD)) {
6210 			sk->sk_state_change(sk);
6211 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6212 		}
6213 		if (fastopen_fail)
6214 			return -1;
6215 		if (sk->sk_write_pending ||
6216 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6217 		    inet_csk_in_pingpong_mode(sk)) {
6218 			/* Save one ACK. Data will be ready after
6219 			 * several ticks, if write_pending is set.
6220 			 *
6221 			 * It may be deleted, but with this feature tcpdumps
6222 			 * look so _wonderfully_ clever, that I was not able
6223 			 * to stand against the temptation 8)     --ANK
6224 			 */
6225 			inet_csk_schedule_ack(sk);
6226 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6227 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6228 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6229 
6230 discard:
6231 			tcp_drop(sk, skb);
6232 			return 0;
6233 		} else {
6234 			tcp_send_ack(sk);
6235 		}
6236 		return -1;
6237 	}
6238 
6239 	/* No ACK in the segment */
6240 
6241 	if (th->rst) {
6242 		/* rfc793:
6243 		 * "If the RST bit is set
6244 		 *
6245 		 *      Otherwise (no ACK) drop the segment and return."
6246 		 */
6247 
6248 		goto discard_and_undo;
6249 	}
6250 
6251 	/* PAWS check. */
6252 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6253 	    tcp_paws_reject(&tp->rx_opt, 0))
6254 		goto discard_and_undo;
6255 
6256 	if (th->syn) {
6257 		/* We see SYN without ACK. It is attempt of
6258 		 * simultaneous connect with crossed SYNs.
6259 		 * Particularly, it can be connect to self.
6260 		 */
6261 		tcp_set_state(sk, TCP_SYN_RECV);
6262 
6263 		if (tp->rx_opt.saw_tstamp) {
6264 			tp->rx_opt.tstamp_ok = 1;
6265 			tcp_store_ts_recent(tp);
6266 			tp->tcp_header_len =
6267 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6268 		} else {
6269 			tp->tcp_header_len = sizeof(struct tcphdr);
6270 		}
6271 
6272 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6273 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6274 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6275 
6276 		/* RFC1323: The window in SYN & SYN/ACK segments is
6277 		 * never scaled.
6278 		 */
6279 		tp->snd_wnd    = ntohs(th->window);
6280 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6281 		tp->max_window = tp->snd_wnd;
6282 
6283 		tcp_ecn_rcv_syn(tp, th);
6284 
6285 		tcp_mtup_init(sk);
6286 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6287 		tcp_initialize_rcv_mss(sk);
6288 
6289 		tcp_send_synack(sk);
6290 #if 0
6291 		/* Note, we could accept data and URG from this segment.
6292 		 * There are no obstacles to make this (except that we must
6293 		 * either change tcp_recvmsg() to prevent it from returning data
6294 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6295 		 *
6296 		 * However, if we ignore data in ACKless segments sometimes,
6297 		 * we have no reasons to accept it sometimes.
6298 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6299 		 * is not flawless. So, discard packet for sanity.
6300 		 * Uncomment this return to process the data.
6301 		 */
6302 		return -1;
6303 #else
6304 		goto discard;
6305 #endif
6306 	}
6307 	/* "fifth, if neither of the SYN or RST bits is set then
6308 	 * drop the segment and return."
6309 	 */
6310 
6311 discard_and_undo:
6312 	tcp_clear_options(&tp->rx_opt);
6313 	tp->rx_opt.mss_clamp = saved_clamp;
6314 	goto discard;
6315 
6316 reset_and_undo:
6317 	tcp_clear_options(&tp->rx_opt);
6318 	tp->rx_opt.mss_clamp = saved_clamp;
6319 	return 1;
6320 }
6321 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6322 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6323 {
6324 	struct request_sock *req;
6325 
6326 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6327 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6328 	 */
6329 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6330 		tcp_try_undo_loss(sk, false);
6331 
6332 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6333 	tcp_sk(sk)->retrans_stamp = 0;
6334 	inet_csk(sk)->icsk_retransmits = 0;
6335 
6336 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6337 	 * we no longer need req so release it.
6338 	 */
6339 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6340 					lockdep_sock_is_held(sk));
6341 	reqsk_fastopen_remove(sk, req, false);
6342 
6343 	/* Re-arm the timer because data may have been sent out.
6344 	 * This is similar to the regular data transmission case
6345 	 * when new data has just been ack'ed.
6346 	 *
6347 	 * (TFO) - we could try to be more aggressive and
6348 	 * retransmitting any data sooner based on when they
6349 	 * are sent out.
6350 	 */
6351 	tcp_rearm_rto(sk);
6352 }
6353 
6354 /*
6355  *	This function implements the receiving procedure of RFC 793 for
6356  *	all states except ESTABLISHED and TIME_WAIT.
6357  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6358  *	address independent.
6359  */
6360 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6361 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6362 {
6363 	struct tcp_sock *tp = tcp_sk(sk);
6364 	struct inet_connection_sock *icsk = inet_csk(sk);
6365 	const struct tcphdr *th = tcp_hdr(skb);
6366 	struct request_sock *req;
6367 	int queued = 0;
6368 	bool acceptable;
6369 
6370 	switch (sk->sk_state) {
6371 	case TCP_CLOSE:
6372 		goto discard;
6373 
6374 	case TCP_LISTEN:
6375 		if (th->ack)
6376 			return 1;
6377 
6378 		if (th->rst)
6379 			goto discard;
6380 
6381 		if (th->syn) {
6382 			if (th->fin)
6383 				goto discard;
6384 			/* It is possible that we process SYN packets from backlog,
6385 			 * so we need to make sure to disable BH and RCU right there.
6386 			 */
6387 			rcu_read_lock();
6388 			local_bh_disable();
6389 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6390 			local_bh_enable();
6391 			rcu_read_unlock();
6392 
6393 			if (!acceptable)
6394 				return 1;
6395 			consume_skb(skb);
6396 			return 0;
6397 		}
6398 		goto discard;
6399 
6400 	case TCP_SYN_SENT:
6401 		tp->rx_opt.saw_tstamp = 0;
6402 		tcp_mstamp_refresh(tp);
6403 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6404 		if (queued >= 0)
6405 			return queued;
6406 
6407 		/* Do step6 onward by hand. */
6408 		tcp_urg(sk, skb, th);
6409 		__kfree_skb(skb);
6410 		tcp_data_snd_check(sk);
6411 		return 0;
6412 	}
6413 
6414 	tcp_mstamp_refresh(tp);
6415 	tp->rx_opt.saw_tstamp = 0;
6416 	req = rcu_dereference_protected(tp->fastopen_rsk,
6417 					lockdep_sock_is_held(sk));
6418 	if (req) {
6419 		bool req_stolen;
6420 
6421 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6422 		    sk->sk_state != TCP_FIN_WAIT1);
6423 
6424 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6425 			goto discard;
6426 	}
6427 
6428 	if (!th->ack && !th->rst && !th->syn)
6429 		goto discard;
6430 
6431 	if (!tcp_validate_incoming(sk, skb, th, 0))
6432 		return 0;
6433 
6434 	/* step 5: check the ACK field */
6435 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6436 				      FLAG_UPDATE_TS_RECENT |
6437 				      FLAG_NO_CHALLENGE_ACK) > 0;
6438 
6439 	if (!acceptable) {
6440 		if (sk->sk_state == TCP_SYN_RECV)
6441 			return 1;	/* send one RST */
6442 		tcp_send_challenge_ack(sk, skb);
6443 		goto discard;
6444 	}
6445 	switch (sk->sk_state) {
6446 	case TCP_SYN_RECV:
6447 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6448 		if (!tp->srtt_us)
6449 			tcp_synack_rtt_meas(sk, req);
6450 
6451 		if (req) {
6452 			tcp_rcv_synrecv_state_fastopen(sk);
6453 		} else {
6454 			tcp_try_undo_spurious_syn(sk);
6455 			tp->retrans_stamp = 0;
6456 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6457 					  skb);
6458 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6459 		}
6460 		smp_mb();
6461 		tcp_set_state(sk, TCP_ESTABLISHED);
6462 		sk->sk_state_change(sk);
6463 
6464 		/* Note, that this wakeup is only for marginal crossed SYN case.
6465 		 * Passively open sockets are not waked up, because
6466 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6467 		 */
6468 		if (sk->sk_socket)
6469 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6470 
6471 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6472 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6473 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6474 
6475 		if (tp->rx_opt.tstamp_ok)
6476 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6477 
6478 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6479 			tcp_update_pacing_rate(sk);
6480 
6481 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6482 		tp->lsndtime = tcp_jiffies32;
6483 
6484 		tcp_initialize_rcv_mss(sk);
6485 		tcp_fast_path_on(tp);
6486 		break;
6487 
6488 	case TCP_FIN_WAIT1: {
6489 		int tmo;
6490 
6491 		if (req)
6492 			tcp_rcv_synrecv_state_fastopen(sk);
6493 
6494 		if (tp->snd_una != tp->write_seq)
6495 			break;
6496 
6497 		tcp_set_state(sk, TCP_FIN_WAIT2);
6498 		sk->sk_shutdown |= SEND_SHUTDOWN;
6499 
6500 		sk_dst_confirm(sk);
6501 
6502 		if (!sock_flag(sk, SOCK_DEAD)) {
6503 			/* Wake up lingering close() */
6504 			sk->sk_state_change(sk);
6505 			break;
6506 		}
6507 
6508 		if (tp->linger2 < 0) {
6509 			tcp_done(sk);
6510 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6511 			return 1;
6512 		}
6513 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6514 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6515 			/* Receive out of order FIN after close() */
6516 			if (tp->syn_fastopen && th->fin)
6517 				tcp_fastopen_active_disable(sk);
6518 			tcp_done(sk);
6519 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6520 			return 1;
6521 		}
6522 
6523 		tmo = tcp_fin_time(sk);
6524 		if (tmo > TCP_TIMEWAIT_LEN) {
6525 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6526 		} else if (th->fin || sock_owned_by_user(sk)) {
6527 			/* Bad case. We could lose such FIN otherwise.
6528 			 * It is not a big problem, but it looks confusing
6529 			 * and not so rare event. We still can lose it now,
6530 			 * if it spins in bh_lock_sock(), but it is really
6531 			 * marginal case.
6532 			 */
6533 			inet_csk_reset_keepalive_timer(sk, tmo);
6534 		} else {
6535 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6536 			goto discard;
6537 		}
6538 		break;
6539 	}
6540 
6541 	case TCP_CLOSING:
6542 		if (tp->snd_una == tp->write_seq) {
6543 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6544 			goto discard;
6545 		}
6546 		break;
6547 
6548 	case TCP_LAST_ACK:
6549 		if (tp->snd_una == tp->write_seq) {
6550 			tcp_update_metrics(sk);
6551 			tcp_done(sk);
6552 			goto discard;
6553 		}
6554 		break;
6555 	}
6556 
6557 	/* step 6: check the URG bit */
6558 	tcp_urg(sk, skb, th);
6559 
6560 	/* step 7: process the segment text */
6561 	switch (sk->sk_state) {
6562 	case TCP_CLOSE_WAIT:
6563 	case TCP_CLOSING:
6564 	case TCP_LAST_ACK:
6565 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6566 			/* If a subflow has been reset, the packet should not
6567 			 * continue to be processed, drop the packet.
6568 			 */
6569 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6570 				goto discard;
6571 			break;
6572 		}
6573 		fallthrough;
6574 	case TCP_FIN_WAIT1:
6575 	case TCP_FIN_WAIT2:
6576 		/* RFC 793 says to queue data in these states,
6577 		 * RFC 1122 says we MUST send a reset.
6578 		 * BSD 4.4 also does reset.
6579 		 */
6580 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6581 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6582 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6583 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6584 				tcp_reset(sk, skb);
6585 				return 1;
6586 			}
6587 		}
6588 		fallthrough;
6589 	case TCP_ESTABLISHED:
6590 		tcp_data_queue(sk, skb);
6591 		queued = 1;
6592 		break;
6593 	}
6594 
6595 	/* tcp_data could move socket to TIME-WAIT */
6596 	if (sk->sk_state != TCP_CLOSE) {
6597 		tcp_data_snd_check(sk);
6598 		tcp_ack_snd_check(sk);
6599 	}
6600 
6601 	if (!queued) {
6602 discard:
6603 		tcp_drop(sk, skb);
6604 	}
6605 	return 0;
6606 }
6607 EXPORT_SYMBOL(tcp_rcv_state_process);
6608 
pr_drop_req(struct request_sock * req,__u16 port,int family)6609 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6610 {
6611 	struct inet_request_sock *ireq = inet_rsk(req);
6612 
6613 	if (family == AF_INET)
6614 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6615 				    &ireq->ir_rmt_addr, port);
6616 #if IS_ENABLED(CONFIG_IPV6)
6617 	else if (family == AF_INET6)
6618 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6619 				    &ireq->ir_v6_rmt_addr, port);
6620 #endif
6621 }
6622 
6623 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6624  *
6625  * If we receive a SYN packet with these bits set, it means a
6626  * network is playing bad games with TOS bits. In order to
6627  * avoid possible false congestion notifications, we disable
6628  * TCP ECN negotiation.
6629  *
6630  * Exception: tcp_ca wants ECN. This is required for DCTCP
6631  * congestion control: Linux DCTCP asserts ECT on all packets,
6632  * including SYN, which is most optimal solution; however,
6633  * others, such as FreeBSD do not.
6634  *
6635  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6636  * set, indicating the use of a future TCP extension (such as AccECN). See
6637  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6638  * extensions.
6639  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6640 static void tcp_ecn_create_request(struct request_sock *req,
6641 				   const struct sk_buff *skb,
6642 				   const struct sock *listen_sk,
6643 				   const struct dst_entry *dst)
6644 {
6645 	const struct tcphdr *th = tcp_hdr(skb);
6646 	const struct net *net = sock_net(listen_sk);
6647 	bool th_ecn = th->ece && th->cwr;
6648 	bool ect, ecn_ok;
6649 	u32 ecn_ok_dst;
6650 
6651 	if (!th_ecn)
6652 		return;
6653 
6654 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6655 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6656 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6657 
6658 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6659 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6660 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6661 		inet_rsk(req)->ecn_ok = 1;
6662 }
6663 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6664 static void tcp_openreq_init(struct request_sock *req,
6665 			     const struct tcp_options_received *rx_opt,
6666 			     struct sk_buff *skb, const struct sock *sk)
6667 {
6668 	struct inet_request_sock *ireq = inet_rsk(req);
6669 
6670 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6671 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6672 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6673 	tcp_rsk(req)->snt_synack = 0;
6674 	tcp_rsk(req)->last_oow_ack_time = 0;
6675 	req->mss = rx_opt->mss_clamp;
6676 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6677 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6678 	ireq->sack_ok = rx_opt->sack_ok;
6679 	ireq->snd_wscale = rx_opt->snd_wscale;
6680 	ireq->wscale_ok = rx_opt->wscale_ok;
6681 	ireq->acked = 0;
6682 	ireq->ecn_ok = 0;
6683 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6684 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6685 	ireq->ir_mark = inet_request_mark(sk, skb);
6686 #if IS_ENABLED(CONFIG_SMC)
6687 	ireq->smc_ok = rx_opt->smc_ok;
6688 #endif
6689 }
6690 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6691 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6692 				      struct sock *sk_listener,
6693 				      bool attach_listener)
6694 {
6695 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6696 					       attach_listener);
6697 
6698 	if (req) {
6699 		struct inet_request_sock *ireq = inet_rsk(req);
6700 
6701 		ireq->ireq_opt = NULL;
6702 #if IS_ENABLED(CONFIG_IPV6)
6703 		ireq->pktopts = NULL;
6704 #endif
6705 		atomic64_set(&ireq->ir_cookie, 0);
6706 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6707 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6708 		ireq->ireq_family = sk_listener->sk_family;
6709 	}
6710 
6711 	return req;
6712 }
6713 EXPORT_SYMBOL(inet_reqsk_alloc);
6714 
6715 /*
6716  * Return true if a syncookie should be sent
6717  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6718 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6719 {
6720 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6721 	const char *msg = "Dropping request";
6722 	bool want_cookie = false;
6723 	struct net *net = sock_net(sk);
6724 
6725 #ifdef CONFIG_SYN_COOKIES
6726 	if (net->ipv4.sysctl_tcp_syncookies) {
6727 		msg = "Sending cookies";
6728 		want_cookie = true;
6729 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6730 	} else
6731 #endif
6732 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6733 
6734 	if (!queue->synflood_warned &&
6735 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6736 	    xchg(&queue->synflood_warned, 1) == 0)
6737 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6738 				     proto, sk->sk_num, msg);
6739 
6740 	return want_cookie;
6741 }
6742 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6743 static void tcp_reqsk_record_syn(const struct sock *sk,
6744 				 struct request_sock *req,
6745 				 const struct sk_buff *skb)
6746 {
6747 	if (tcp_sk(sk)->save_syn) {
6748 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6749 		struct saved_syn *saved_syn;
6750 		u32 mac_hdrlen;
6751 		void *base;
6752 
6753 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6754 			base = skb_mac_header(skb);
6755 			mac_hdrlen = skb_mac_header_len(skb);
6756 			len += mac_hdrlen;
6757 		} else {
6758 			base = skb_network_header(skb);
6759 			mac_hdrlen = 0;
6760 		}
6761 
6762 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6763 				    GFP_ATOMIC);
6764 		if (saved_syn) {
6765 			saved_syn->mac_hdrlen = mac_hdrlen;
6766 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6767 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6768 			memcpy(saved_syn->data, base, len);
6769 			req->saved_syn = saved_syn;
6770 		}
6771 	}
6772 }
6773 
6774 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6775  * used for SYN cookie generation.
6776  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6777 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6778 			  const struct tcp_request_sock_ops *af_ops,
6779 			  struct sock *sk, struct tcphdr *th)
6780 {
6781 	struct tcp_sock *tp = tcp_sk(sk);
6782 	u16 mss;
6783 
6784 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6785 	    !inet_csk_reqsk_queue_is_full(sk))
6786 		return 0;
6787 
6788 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6789 		return 0;
6790 
6791 	if (sk_acceptq_is_full(sk)) {
6792 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6793 		return 0;
6794 	}
6795 
6796 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6797 	if (!mss)
6798 		mss = af_ops->mss_clamp;
6799 
6800 	return mss;
6801 }
6802 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6803 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6804 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6805 		     const struct tcp_request_sock_ops *af_ops,
6806 		     struct sock *sk, struct sk_buff *skb)
6807 {
6808 	struct tcp_fastopen_cookie foc = { .len = -1 };
6809 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6810 	struct tcp_options_received tmp_opt;
6811 	struct tcp_sock *tp = tcp_sk(sk);
6812 	struct net *net = sock_net(sk);
6813 	struct sock *fastopen_sk = NULL;
6814 	struct request_sock *req;
6815 	bool want_cookie = false;
6816 	struct dst_entry *dst;
6817 	struct flowi fl;
6818 
6819 	/* TW buckets are converted to open requests without
6820 	 * limitations, they conserve resources and peer is
6821 	 * evidently real one.
6822 	 */
6823 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6824 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6825 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6826 		if (!want_cookie)
6827 			goto drop;
6828 	}
6829 
6830 	if (sk_acceptq_is_full(sk)) {
6831 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6832 		goto drop;
6833 	}
6834 
6835 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6836 	if (!req)
6837 		goto drop;
6838 
6839 	req->syncookie = want_cookie;
6840 	tcp_rsk(req)->af_specific = af_ops;
6841 	tcp_rsk(req)->ts_off = 0;
6842 #if IS_ENABLED(CONFIG_MPTCP)
6843 	tcp_rsk(req)->is_mptcp = 0;
6844 #endif
6845 
6846 	tcp_clear_options(&tmp_opt);
6847 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6848 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6849 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6850 			  want_cookie ? NULL : &foc);
6851 
6852 	if (want_cookie && !tmp_opt.saw_tstamp)
6853 		tcp_clear_options(&tmp_opt);
6854 
6855 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6856 		tmp_opt.smc_ok = 0;
6857 
6858 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6859 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6860 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6861 
6862 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6863 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6864 
6865 	dst = af_ops->route_req(sk, skb, &fl, req);
6866 	if (!dst)
6867 		goto drop_and_free;
6868 
6869 	if (tmp_opt.tstamp_ok)
6870 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6871 
6872 	if (!want_cookie && !isn) {
6873 		/* Kill the following clause, if you dislike this way. */
6874 		if (!net->ipv4.sysctl_tcp_syncookies &&
6875 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6876 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6877 		    !tcp_peer_is_proven(req, dst)) {
6878 			/* Without syncookies last quarter of
6879 			 * backlog is filled with destinations,
6880 			 * proven to be alive.
6881 			 * It means that we continue to communicate
6882 			 * to destinations, already remembered
6883 			 * to the moment of synflood.
6884 			 */
6885 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6886 				    rsk_ops->family);
6887 			goto drop_and_release;
6888 		}
6889 
6890 		isn = af_ops->init_seq(skb);
6891 	}
6892 
6893 	tcp_ecn_create_request(req, skb, sk, dst);
6894 
6895 	if (want_cookie) {
6896 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6897 		if (!tmp_opt.tstamp_ok)
6898 			inet_rsk(req)->ecn_ok = 0;
6899 	}
6900 
6901 	tcp_rsk(req)->snt_isn = isn;
6902 	tcp_rsk(req)->txhash = net_tx_rndhash();
6903 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6904 	tcp_openreq_init_rwin(req, sk, dst);
6905 	sk_rx_queue_set(req_to_sk(req), skb);
6906 	if (!want_cookie) {
6907 		tcp_reqsk_record_syn(sk, req, skb);
6908 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6909 	}
6910 	if (fastopen_sk) {
6911 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6912 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6913 		/* Add the child socket directly into the accept queue */
6914 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6915 			reqsk_fastopen_remove(fastopen_sk, req, false);
6916 			bh_unlock_sock(fastopen_sk);
6917 			sock_put(fastopen_sk);
6918 			goto drop_and_free;
6919 		}
6920 		sk->sk_data_ready(sk);
6921 		bh_unlock_sock(fastopen_sk);
6922 		sock_put(fastopen_sk);
6923 	} else {
6924 		tcp_rsk(req)->tfo_listener = false;
6925 		if (!want_cookie)
6926 			inet_csk_reqsk_queue_hash_add(sk, req,
6927 				tcp_timeout_init((struct sock *)req));
6928 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6929 				    !want_cookie ? TCP_SYNACK_NORMAL :
6930 						   TCP_SYNACK_COOKIE,
6931 				    skb);
6932 		if (want_cookie) {
6933 			reqsk_free(req);
6934 			return 0;
6935 		}
6936 	}
6937 	reqsk_put(req);
6938 	return 0;
6939 
6940 drop_and_release:
6941 	dst_release(dst);
6942 drop_and_free:
6943 	__reqsk_free(req);
6944 drop:
6945 	tcp_listendrop(sk);
6946 	return 0;
6947 }
6948 EXPORT_SYMBOL(tcp_conn_request);
6949