1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
104
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112
113 #define REXMIT_NONE 0 /* no loss recovery to do */
114 #define REXMIT_LOST 1 /* retransmit packets marked lost */
115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 icsk->icsk_clean_acked = cad;
124 static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 struct bpf_sock_ops_kern sock_ops;
151
152 if (likely(!unknown_opt && !parse_all_opt))
153 return;
154
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
158 */
159 switch (sk->sk_state) {
160 case TCP_SYN_RECV:
161 case TCP_SYN_SENT:
162 case TCP_LISTEN:
163 return;
164 }
165
166 sock_owned_by_me(sk);
167
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
171 sock_ops.sk = sk;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 struct sk_buff *skb)
179 {
180 struct bpf_sock_ops_kern sock_ops;
181
182 sock_owned_by_me(sk);
183
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
187 sock_ops.sk = sk;
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 if (skb)
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 struct sk_buff *skb)
201 {
202 }
203 #endif
204
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 unsigned int len)
207 {
208 static bool __once __read_mostly;
209
210 if (!__once) {
211 struct net_device *dev;
212
213 __once = true;
214
215 rcu_read_lock();
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
220 rcu_read_unlock();
221 }
222 }
223
224 /* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 unsigned int len;
232
233 icsk->icsk_ack.last_seg_size = 0;
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 tcp_sk(sk)->advmss);
242 /* Account for possibly-removed options */
243 if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 MAX_TCP_OPTION_SPACE))
245 tcp_gro_dev_warn(sk, skb, len);
246 } else {
247 /* Otherwise, we make more careful check taking into account,
248 * that SACKs block is variable.
249 *
250 * "len" is invariant segment length, including TCP header.
251 */
252 len += skb->data - skb_transport_header(skb);
253 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 /* If PSH is not set, packet should be
255 * full sized, provided peer TCP is not badly broken.
256 * This observation (if it is correct 8)) allows
257 * to handle super-low mtu links fairly.
258 */
259 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 /* Subtract also invariant (if peer is RFC compliant),
262 * tcp header plus fixed timestamp option length.
263 * Resulting "len" is MSS free of SACK jitter.
264 */
265 len -= tcp_sk(sk)->tcp_header_len;
266 icsk->icsk_ack.last_seg_size = len;
267 if (len == lss) {
268 icsk->icsk_ack.rcv_mss = len;
269 return;
270 }
271 }
272 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 }
276 }
277
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 struct inet_connection_sock *icsk = inet_csk(sk);
281 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282
283 if (quickacks == 0)
284 quickacks = 2;
285 quickacks = min(quickacks, max_quickacks);
286 if (quickacks > icsk->icsk_ack.quick)
287 icsk->icsk_ack.quick = quickacks;
288 }
289
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 struct inet_connection_sock *icsk = inet_csk(sk);
293
294 tcp_incr_quickack(sk, max_quickacks);
295 inet_csk_exit_pingpong_mode(sk);
296 icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299
300 /* Send ACKs quickly, if "quick" count is not exhausted
301 * and the session is not interactive.
302 */
303
tcp_in_quickack_mode(struct sock * sk)304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 const struct inet_connection_sock *icsk = inet_csk(sk);
307 const struct dst_entry *dst = __sk_dst_get(sk);
308
309 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312
tcp_ecn_queue_cwr(struct tcp_sock * tp)313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 if (tp->ecn_flags & TCP_ECN_OK)
316 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 if (tcp_hdr(skb)->cwr) {
322 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323
324 /* If the sender is telling us it has entered CWR, then its
325 * cwnd may be very low (even just 1 packet), so we should ACK
326 * immediately.
327 */
328 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 }
331 }
332
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 struct tcp_sock *tp = tcp_sk(sk);
341
342 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 case INET_ECN_NOT_ECT:
344 /* Funny extension: if ECT is not set on a segment,
345 * and we already seen ECT on a previous segment,
346 * it is probably a retransmit.
347 */
348 if (tp->ecn_flags & TCP_ECN_SEEN)
349 tcp_enter_quickack_mode(sk, 2);
350 break;
351 case INET_ECN_CE:
352 if (tcp_ca_needs_ecn(sk))
353 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354
355 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 /* Better not delay acks, sender can have a very low cwnd */
357 tcp_enter_quickack_mode(sk, 2);
358 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 }
360 tp->ecn_flags |= TCP_ECN_SEEN;
361 break;
362 default:
363 if (tcp_ca_needs_ecn(sk))
364 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 tp->ecn_flags |= TCP_ECN_SEEN;
366 break;
367 }
368 }
369
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 __tcp_ecn_check_ce(sk, skb);
374 }
375
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 return true;
392 return false;
393 }
394
395 /* Buffer size and advertised window tuning.
396 *
397 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398 */
399
tcp_sndbuf_expand(struct sock * sk)400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 const struct tcp_sock *tp = tcp_sk(sk);
403 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 int sndmem, per_mss;
405 u32 nr_segs;
406
407 /* Worst case is non GSO/TSO : each frame consumes one skb
408 * and skb->head is kmalloced using power of two area of memory
409 */
410 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 MAX_TCP_HEADER +
412 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413
414 per_mss = roundup_pow_of_two(per_mss) +
415 SKB_DATA_ALIGN(sizeof(struct sk_buff));
416
417 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
418 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419
420 /* Fast Recovery (RFC 5681 3.2) :
421 * Cubic needs 1.7 factor, rounded to 2 to include
422 * extra cushion (application might react slowly to EPOLLOUT)
423 */
424 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 sndmem *= nr_segs * per_mss;
426
427 if (sk->sk_sndbuf < sndmem)
428 WRITE_ONCE(sk->sk_sndbuf,
429 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
430 }
431
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433 *
434 * All tcp_full_space() is split to two parts: "network" buffer, allocated
435 * forward and advertised in receiver window (tp->rcv_wnd) and
436 * "application buffer", required to isolate scheduling/application
437 * latencies from network.
438 * window_clamp is maximal advertised window. It can be less than
439 * tcp_full_space(), in this case tcp_full_space() - window_clamp
440 * is reserved for "application" buffer. The less window_clamp is
441 * the smoother our behaviour from viewpoint of network, but the lower
442 * throughput and the higher sensitivity of the connection to losses. 8)
443 *
444 * rcv_ssthresh is more strict window_clamp used at "slow start"
445 * phase to predict further behaviour of this connection.
446 * It is used for two goals:
447 * - to enforce header prediction at sender, even when application
448 * requires some significant "application buffer". It is check #1.
449 * - to prevent pruning of receive queue because of misprediction
450 * of receiver window. Check #2.
451 *
452 * The scheme does not work when sender sends good segments opening
453 * window and then starts to feed us spaghetti. But it should work
454 * in common situations. Otherwise, we have to rely on queue collapsing.
455 */
456
457 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 unsigned int skbtruesize)
460 {
461 struct tcp_sock *tp = tcp_sk(sk);
462 /* Optimize this! */
463 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
465
466 while (tp->rcv_ssthresh <= window) {
467 if (truesize <= skb->len)
468 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469
470 truesize >>= 1;
471 window >>= 1;
472 }
473 return 0;
474 }
475
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477 * can play nice with us, as sk_buff and skb->head might be either
478 * freed or shared with up to MAX_SKB_FRAGS segments.
479 * Only give a boost to drivers using page frag(s) to hold the frame(s),
480 * and if no payload was pulled in skb->head before reaching us.
481 */
truesize_adjust(bool adjust,const struct sk_buff * skb)482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 u32 truesize = skb->truesize;
485
486 if (adjust && !skb_headlen(skb)) {
487 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 /* paranoid check, some drivers might be buggy */
489 if (unlikely((int)truesize < (int)skb->len))
490 truesize = skb->truesize;
491 }
492 return truesize;
493 }
494
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 bool adjust)
497 {
498 struct tcp_sock *tp = tcp_sk(sk);
499 int room;
500
501 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502
503 /* Check #1 */
504 if (room > 0 && !tcp_under_memory_pressure(sk)) {
505 unsigned int truesize = truesize_adjust(adjust, skb);
506 int incr;
507
508 /* Check #2. Increase window, if skb with such overhead
509 * will fit to rcvbuf in future.
510 */
511 if (tcp_win_from_space(sk, truesize) <= skb->len)
512 incr = 2 * tp->advmss;
513 else
514 incr = __tcp_grow_window(sk, skb, truesize);
515
516 if (incr) {
517 incr = max_t(int, incr, 2 * skb->len);
518 tp->rcv_ssthresh += min(room, incr);
519 inet_csk(sk)->icsk_ack.quick |= 1;
520 }
521 }
522 }
523
524 /* 3. Try to fixup all. It is made immediately after connection enters
525 * established state.
526 */
tcp_init_buffer_space(struct sock * sk)527 static void tcp_init_buffer_space(struct sock *sk)
528 {
529 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
530 struct tcp_sock *tp = tcp_sk(sk);
531 int maxwin;
532
533 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
534 tcp_sndbuf_expand(sk);
535
536 tcp_mstamp_refresh(tp);
537 tp->rcvq_space.time = tp->tcp_mstamp;
538 tp->rcvq_space.seq = tp->copied_seq;
539
540 maxwin = tcp_full_space(sk);
541
542 if (tp->window_clamp >= maxwin) {
543 tp->window_clamp = maxwin;
544
545 if (tcp_app_win && maxwin > 4 * tp->advmss)
546 tp->window_clamp = max(maxwin -
547 (maxwin >> tcp_app_win),
548 4 * tp->advmss);
549 }
550
551 /* Force reservation of one segment. */
552 if (tcp_app_win &&
553 tp->window_clamp > 2 * tp->advmss &&
554 tp->window_clamp + tp->advmss > maxwin)
555 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
556
557 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
558 tp->snd_cwnd_stamp = tcp_jiffies32;
559 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
560 (u32)TCP_INIT_CWND * tp->advmss);
561 }
562
563 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)564 static void tcp_clamp_window(struct sock *sk)
565 {
566 struct tcp_sock *tp = tcp_sk(sk);
567 struct inet_connection_sock *icsk = inet_csk(sk);
568 struct net *net = sock_net(sk);
569
570 icsk->icsk_ack.quick = 0;
571
572 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
573 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
574 !tcp_under_memory_pressure(sk) &&
575 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
576 WRITE_ONCE(sk->sk_rcvbuf,
577 min(atomic_read(&sk->sk_rmem_alloc),
578 net->ipv4.sysctl_tcp_rmem[2]));
579 }
580 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
581 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
582 }
583
584 /* Initialize RCV_MSS value.
585 * RCV_MSS is an our guess about MSS used by the peer.
586 * We haven't any direct information about the MSS.
587 * It's better to underestimate the RCV_MSS rather than overestimate.
588 * Overestimations make us ACKing less frequently than needed.
589 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
590 */
tcp_initialize_rcv_mss(struct sock * sk)591 void tcp_initialize_rcv_mss(struct sock *sk)
592 {
593 const struct tcp_sock *tp = tcp_sk(sk);
594 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
595
596 hint = min(hint, tp->rcv_wnd / 2);
597 hint = min(hint, TCP_MSS_DEFAULT);
598 hint = max(hint, TCP_MIN_MSS);
599
600 inet_csk(sk)->icsk_ack.rcv_mss = hint;
601 }
602 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
603
604 /* Receiver "autotuning" code.
605 *
606 * The algorithm for RTT estimation w/o timestamps is based on
607 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
608 * <https://public.lanl.gov/radiant/pubs.html#DRS>
609 *
610 * More detail on this code can be found at
611 * <http://staff.psc.edu/jheffner/>,
612 * though this reference is out of date. A new paper
613 * is pending.
614 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)615 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
616 {
617 u32 new_sample = tp->rcv_rtt_est.rtt_us;
618 long m = sample;
619
620 if (new_sample != 0) {
621 /* If we sample in larger samples in the non-timestamp
622 * case, we could grossly overestimate the RTT especially
623 * with chatty applications or bulk transfer apps which
624 * are stalled on filesystem I/O.
625 *
626 * Also, since we are only going for a minimum in the
627 * non-timestamp case, we do not smooth things out
628 * else with timestamps disabled convergence takes too
629 * long.
630 */
631 if (!win_dep) {
632 m -= (new_sample >> 3);
633 new_sample += m;
634 } else {
635 m <<= 3;
636 if (m < new_sample)
637 new_sample = m;
638 }
639 } else {
640 /* No previous measure. */
641 new_sample = m << 3;
642 }
643
644 tp->rcv_rtt_est.rtt_us = new_sample;
645 }
646
tcp_rcv_rtt_measure(struct tcp_sock * tp)647 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
648 {
649 u32 delta_us;
650
651 if (tp->rcv_rtt_est.time == 0)
652 goto new_measure;
653 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
654 return;
655 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
656 if (!delta_us)
657 delta_us = 1;
658 tcp_rcv_rtt_update(tp, delta_us, 1);
659
660 new_measure:
661 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
662 tp->rcv_rtt_est.time = tp->tcp_mstamp;
663 }
664
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)665 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
666 const struct sk_buff *skb)
667 {
668 struct tcp_sock *tp = tcp_sk(sk);
669
670 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
671 return;
672 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
673
674 if (TCP_SKB_CB(skb)->end_seq -
675 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
676 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
677 u32 delta_us;
678
679 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
680 if (!delta)
681 delta = 1;
682 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
683 tcp_rcv_rtt_update(tp, delta_us, 0);
684 }
685 }
686 }
687
688 /*
689 * This function should be called every time data is copied to user space.
690 * It calculates the appropriate TCP receive buffer space.
691 */
tcp_rcv_space_adjust(struct sock * sk)692 void tcp_rcv_space_adjust(struct sock *sk)
693 {
694 struct tcp_sock *tp = tcp_sk(sk);
695 u32 copied;
696 int time;
697
698 trace_tcp_rcv_space_adjust(sk);
699
700 tcp_mstamp_refresh(tp);
701 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
702 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
703 return;
704
705 /* Number of bytes copied to user in last RTT */
706 copied = tp->copied_seq - tp->rcvq_space.seq;
707 if (copied <= tp->rcvq_space.space)
708 goto new_measure;
709
710 /* A bit of theory :
711 * copied = bytes received in previous RTT, our base window
712 * To cope with packet losses, we need a 2x factor
713 * To cope with slow start, and sender growing its cwin by 100 %
714 * every RTT, we need a 4x factor, because the ACK we are sending
715 * now is for the next RTT, not the current one :
716 * <prev RTT . ><current RTT .. ><next RTT .... >
717 */
718
719 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
720 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
721 int rcvmem, rcvbuf;
722 u64 rcvwin, grow;
723
724 /* minimal window to cope with packet losses, assuming
725 * steady state. Add some cushion because of small variations.
726 */
727 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
728
729 /* Accommodate for sender rate increase (eg. slow start) */
730 grow = rcvwin * (copied - tp->rcvq_space.space);
731 do_div(grow, tp->rcvq_space.space);
732 rcvwin += (grow << 1);
733
734 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
735 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
736 rcvmem += 128;
737
738 do_div(rcvwin, tp->advmss);
739 rcvbuf = min_t(u64, rcvwin * rcvmem,
740 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
741 if (rcvbuf > sk->sk_rcvbuf) {
742 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
743
744 /* Make the window clamp follow along. */
745 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
746 }
747 }
748 tp->rcvq_space.space = copied;
749
750 new_measure:
751 tp->rcvq_space.seq = tp->copied_seq;
752 tp->rcvq_space.time = tp->tcp_mstamp;
753 }
754
755 /* There is something which you must keep in mind when you analyze the
756 * behavior of the tp->ato delayed ack timeout interval. When a
757 * connection starts up, we want to ack as quickly as possible. The
758 * problem is that "good" TCP's do slow start at the beginning of data
759 * transmission. The means that until we send the first few ACK's the
760 * sender will sit on his end and only queue most of his data, because
761 * he can only send snd_cwnd unacked packets at any given time. For
762 * each ACK we send, he increments snd_cwnd and transmits more of his
763 * queue. -DaveM
764 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)765 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
766 {
767 struct tcp_sock *tp = tcp_sk(sk);
768 struct inet_connection_sock *icsk = inet_csk(sk);
769 u32 now;
770
771 inet_csk_schedule_ack(sk);
772
773 tcp_measure_rcv_mss(sk, skb);
774
775 tcp_rcv_rtt_measure(tp);
776
777 now = tcp_jiffies32;
778
779 if (!icsk->icsk_ack.ato) {
780 /* The _first_ data packet received, initialize
781 * delayed ACK engine.
782 */
783 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
784 icsk->icsk_ack.ato = TCP_ATO_MIN;
785 } else {
786 int m = now - icsk->icsk_ack.lrcvtime;
787
788 if (m <= TCP_ATO_MIN / 2) {
789 /* The fastest case is the first. */
790 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
791 } else if (m < icsk->icsk_ack.ato) {
792 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
793 if (icsk->icsk_ack.ato > icsk->icsk_rto)
794 icsk->icsk_ack.ato = icsk->icsk_rto;
795 } else if (m > icsk->icsk_rto) {
796 /* Too long gap. Apparently sender failed to
797 * restart window, so that we send ACKs quickly.
798 */
799 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
800 sk_mem_reclaim(sk);
801 }
802 }
803 icsk->icsk_ack.lrcvtime = now;
804
805 tcp_ecn_check_ce(sk, skb);
806
807 if (skb->len >= 128)
808 tcp_grow_window(sk, skb, true);
809 }
810
811 /* Called to compute a smoothed rtt estimate. The data fed to this
812 * routine either comes from timestamps, or from segments that were
813 * known _not_ to have been retransmitted [see Karn/Partridge
814 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
815 * piece by Van Jacobson.
816 * NOTE: the next three routines used to be one big routine.
817 * To save cycles in the RFC 1323 implementation it was better to break
818 * it up into three procedures. -- erics
819 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)820 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
821 {
822 struct tcp_sock *tp = tcp_sk(sk);
823 long m = mrtt_us; /* RTT */
824 u32 srtt = tp->srtt_us;
825
826 /* The following amusing code comes from Jacobson's
827 * article in SIGCOMM '88. Note that rtt and mdev
828 * are scaled versions of rtt and mean deviation.
829 * This is designed to be as fast as possible
830 * m stands for "measurement".
831 *
832 * On a 1990 paper the rto value is changed to:
833 * RTO = rtt + 4 * mdev
834 *
835 * Funny. This algorithm seems to be very broken.
836 * These formulae increase RTO, when it should be decreased, increase
837 * too slowly, when it should be increased quickly, decrease too quickly
838 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
839 * does not matter how to _calculate_ it. Seems, it was trap
840 * that VJ failed to avoid. 8)
841 */
842 if (srtt != 0) {
843 m -= (srtt >> 3); /* m is now error in rtt est */
844 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
845 if (m < 0) {
846 m = -m; /* m is now abs(error) */
847 m -= (tp->mdev_us >> 2); /* similar update on mdev */
848 /* This is similar to one of Eifel findings.
849 * Eifel blocks mdev updates when rtt decreases.
850 * This solution is a bit different: we use finer gain
851 * for mdev in this case (alpha*beta).
852 * Like Eifel it also prevents growth of rto,
853 * but also it limits too fast rto decreases,
854 * happening in pure Eifel.
855 */
856 if (m > 0)
857 m >>= 3;
858 } else {
859 m -= (tp->mdev_us >> 2); /* similar update on mdev */
860 }
861 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
862 if (tp->mdev_us > tp->mdev_max_us) {
863 tp->mdev_max_us = tp->mdev_us;
864 if (tp->mdev_max_us > tp->rttvar_us)
865 tp->rttvar_us = tp->mdev_max_us;
866 }
867 if (after(tp->snd_una, tp->rtt_seq)) {
868 if (tp->mdev_max_us < tp->rttvar_us)
869 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
870 tp->rtt_seq = tp->snd_nxt;
871 tp->mdev_max_us = tcp_rto_min_us(sk);
872
873 tcp_bpf_rtt(sk);
874 }
875 } else {
876 /* no previous measure. */
877 srtt = m << 3; /* take the measured time to be rtt */
878 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
879 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
880 tp->mdev_max_us = tp->rttvar_us;
881 tp->rtt_seq = tp->snd_nxt;
882
883 tcp_bpf_rtt(sk);
884 }
885 tp->srtt_us = max(1U, srtt);
886 }
887
tcp_update_pacing_rate(struct sock * sk)888 static void tcp_update_pacing_rate(struct sock *sk)
889 {
890 const struct tcp_sock *tp = tcp_sk(sk);
891 u64 rate;
892
893 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
894 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
895
896 /* current rate is (cwnd * mss) / srtt
897 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
898 * In Congestion Avoidance phase, set it to 120 % the current rate.
899 *
900 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
901 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
902 * end of slow start and should slow down.
903 */
904 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
905 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
906 else
907 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
908
909 rate *= max(tp->snd_cwnd, tp->packets_out);
910
911 if (likely(tp->srtt_us))
912 do_div(rate, tp->srtt_us);
913
914 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
915 * without any lock. We want to make sure compiler wont store
916 * intermediate values in this location.
917 */
918 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
919 sk->sk_max_pacing_rate));
920 }
921
922 /* Calculate rto without backoff. This is the second half of Van Jacobson's
923 * routine referred to above.
924 */
tcp_set_rto(struct sock * sk)925 static void tcp_set_rto(struct sock *sk)
926 {
927 const struct tcp_sock *tp = tcp_sk(sk);
928 /* Old crap is replaced with new one. 8)
929 *
930 * More seriously:
931 * 1. If rtt variance happened to be less 50msec, it is hallucination.
932 * It cannot be less due to utterly erratic ACK generation made
933 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
934 * to do with delayed acks, because at cwnd>2 true delack timeout
935 * is invisible. Actually, Linux-2.4 also generates erratic
936 * ACKs in some circumstances.
937 */
938 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
939
940 /* 2. Fixups made earlier cannot be right.
941 * If we do not estimate RTO correctly without them,
942 * all the algo is pure shit and should be replaced
943 * with correct one. It is exactly, which we pretend to do.
944 */
945
946 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
947 * guarantees that rto is higher.
948 */
949 tcp_bound_rto(sk);
950 }
951
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)952 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
953 {
954 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
955
956 if (!cwnd)
957 cwnd = TCP_INIT_CWND;
958 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
959 }
960
961 struct tcp_sacktag_state {
962 /* Timestamps for earliest and latest never-retransmitted segment
963 * that was SACKed. RTO needs the earliest RTT to stay conservative,
964 * but congestion control should still get an accurate delay signal.
965 */
966 u64 first_sackt;
967 u64 last_sackt;
968 u32 reord;
969 u32 sack_delivered;
970 int flag;
971 unsigned int mss_now;
972 struct rate_sample *rate;
973 };
974
975 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
976 * and spurious retransmission information if this DSACK is unlikely caused by
977 * sender's action:
978 * - DSACKed sequence range is larger than maximum receiver's window.
979 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
980 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)981 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
982 u32 end_seq, struct tcp_sacktag_state *state)
983 {
984 u32 seq_len, dup_segs = 1;
985
986 if (!before(start_seq, end_seq))
987 return 0;
988
989 seq_len = end_seq - start_seq;
990 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
991 if (seq_len > tp->max_window)
992 return 0;
993 if (seq_len > tp->mss_cache)
994 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
995 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
996 state->flag |= FLAG_DSACK_TLP;
997
998 tp->dsack_dups += dup_segs;
999 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1000 if (tp->dsack_dups > tp->total_retrans)
1001 return 0;
1002
1003 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1004 /* We increase the RACK ordering window in rounds where we receive
1005 * DSACKs that may have been due to reordering causing RACK to trigger
1006 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1007 * without having seen reordering, or that match TLP probes (TLP
1008 * is timer-driven, not triggered by RACK).
1009 */
1010 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1011 tp->rack.dsack_seen = 1;
1012
1013 state->flag |= FLAG_DSACKING_ACK;
1014 /* A spurious retransmission is delivered */
1015 state->sack_delivered += dup_segs;
1016
1017 return dup_segs;
1018 }
1019
1020 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1021 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1022 * distance is approximated in full-mss packet distance ("reordering").
1023 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1024 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1025 const int ts)
1026 {
1027 struct tcp_sock *tp = tcp_sk(sk);
1028 const u32 mss = tp->mss_cache;
1029 u32 fack, metric;
1030
1031 fack = tcp_highest_sack_seq(tp);
1032 if (!before(low_seq, fack))
1033 return;
1034
1035 metric = fack - low_seq;
1036 if ((metric > tp->reordering * mss) && mss) {
1037 #if FASTRETRANS_DEBUG > 1
1038 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1039 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1040 tp->reordering,
1041 0,
1042 tp->sacked_out,
1043 tp->undo_marker ? tp->undo_retrans : 0);
1044 #endif
1045 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1046 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1047 }
1048
1049 /* This exciting event is worth to be remembered. 8) */
1050 tp->reord_seen++;
1051 NET_INC_STATS(sock_net(sk),
1052 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1053 }
1054
1055 /* This must be called before lost_out or retrans_out are updated
1056 * on a new loss, because we want to know if all skbs previously
1057 * known to be lost have already been retransmitted, indicating
1058 * that this newly lost skb is our next skb to retransmit.
1059 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1060 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1061 {
1062 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1063 (tp->retransmit_skb_hint &&
1064 before(TCP_SKB_CB(skb)->seq,
1065 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1066 tp->retransmit_skb_hint = skb;
1067 }
1068
1069 /* Sum the number of packets on the wire we have marked as lost, and
1070 * notify the congestion control module that the given skb was marked lost.
1071 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1072 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1073 {
1074 tp->lost += tcp_skb_pcount(skb);
1075 }
1076
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1077 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1078 {
1079 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1080 struct tcp_sock *tp = tcp_sk(sk);
1081
1082 if (sacked & TCPCB_SACKED_ACKED)
1083 return;
1084
1085 tcp_verify_retransmit_hint(tp, skb);
1086 if (sacked & TCPCB_LOST) {
1087 if (sacked & TCPCB_SACKED_RETRANS) {
1088 /* Account for retransmits that are lost again */
1089 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1090 tp->retrans_out -= tcp_skb_pcount(skb);
1091 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1092 tcp_skb_pcount(skb));
1093 tcp_notify_skb_loss_event(tp, skb);
1094 }
1095 } else {
1096 tp->lost_out += tcp_skb_pcount(skb);
1097 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1098 tcp_notify_skb_loss_event(tp, skb);
1099 }
1100 }
1101
1102 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1103 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1104 bool ece_ack)
1105 {
1106 tp->delivered += delivered;
1107 if (ece_ack)
1108 tp->delivered_ce += delivered;
1109 }
1110
1111 /* This procedure tags the retransmission queue when SACKs arrive.
1112 *
1113 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1114 * Packets in queue with these bits set are counted in variables
1115 * sacked_out, retrans_out and lost_out, correspondingly.
1116 *
1117 * Valid combinations are:
1118 * Tag InFlight Description
1119 * 0 1 - orig segment is in flight.
1120 * S 0 - nothing flies, orig reached receiver.
1121 * L 0 - nothing flies, orig lost by net.
1122 * R 2 - both orig and retransmit are in flight.
1123 * L|R 1 - orig is lost, retransmit is in flight.
1124 * S|R 1 - orig reached receiver, retrans is still in flight.
1125 * (L|S|R is logically valid, it could occur when L|R is sacked,
1126 * but it is equivalent to plain S and code short-curcuits it to S.
1127 * L|S is logically invalid, it would mean -1 packet in flight 8))
1128 *
1129 * These 6 states form finite state machine, controlled by the following events:
1130 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1131 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1132 * 3. Loss detection event of two flavors:
1133 * A. Scoreboard estimator decided the packet is lost.
1134 * A'. Reno "three dupacks" marks head of queue lost.
1135 * B. SACK arrives sacking SND.NXT at the moment, when the
1136 * segment was retransmitted.
1137 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1138 *
1139 * It is pleasant to note, that state diagram turns out to be commutative,
1140 * so that we are allowed not to be bothered by order of our actions,
1141 * when multiple events arrive simultaneously. (see the function below).
1142 *
1143 * Reordering detection.
1144 * --------------------
1145 * Reordering metric is maximal distance, which a packet can be displaced
1146 * in packet stream. With SACKs we can estimate it:
1147 *
1148 * 1. SACK fills old hole and the corresponding segment was not
1149 * ever retransmitted -> reordering. Alas, we cannot use it
1150 * when segment was retransmitted.
1151 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1152 * for retransmitted and already SACKed segment -> reordering..
1153 * Both of these heuristics are not used in Loss state, when we cannot
1154 * account for retransmits accurately.
1155 *
1156 * SACK block validation.
1157 * ----------------------
1158 *
1159 * SACK block range validation checks that the received SACK block fits to
1160 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1161 * Note that SND.UNA is not included to the range though being valid because
1162 * it means that the receiver is rather inconsistent with itself reporting
1163 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1164 * perfectly valid, however, in light of RFC2018 which explicitly states
1165 * that "SACK block MUST reflect the newest segment. Even if the newest
1166 * segment is going to be discarded ...", not that it looks very clever
1167 * in case of head skb. Due to potentional receiver driven attacks, we
1168 * choose to avoid immediate execution of a walk in write queue due to
1169 * reneging and defer head skb's loss recovery to standard loss recovery
1170 * procedure that will eventually trigger (nothing forbids us doing this).
1171 *
1172 * Implements also blockage to start_seq wrap-around. Problem lies in the
1173 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1174 * there's no guarantee that it will be before snd_nxt (n). The problem
1175 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1176 * wrap (s_w):
1177 *
1178 * <- outs wnd -> <- wrapzone ->
1179 * u e n u_w e_w s n_w
1180 * | | | | | | |
1181 * |<------------+------+----- TCP seqno space --------------+---------->|
1182 * ...-- <2^31 ->| |<--------...
1183 * ...---- >2^31 ------>| |<--------...
1184 *
1185 * Current code wouldn't be vulnerable but it's better still to discard such
1186 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1187 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1188 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1189 * equal to the ideal case (infinite seqno space without wrap caused issues).
1190 *
1191 * With D-SACK the lower bound is extended to cover sequence space below
1192 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1193 * again, D-SACK block must not to go across snd_una (for the same reason as
1194 * for the normal SACK blocks, explained above). But there all simplicity
1195 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1196 * fully below undo_marker they do not affect behavior in anyway and can
1197 * therefore be safely ignored. In rare cases (which are more or less
1198 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1199 * fragmentation and packet reordering past skb's retransmission. To consider
1200 * them correctly, the acceptable range must be extended even more though
1201 * the exact amount is rather hard to quantify. However, tp->max_window can
1202 * be used as an exaggerated estimate.
1203 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1204 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1205 u32 start_seq, u32 end_seq)
1206 {
1207 /* Too far in future, or reversed (interpretation is ambiguous) */
1208 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1209 return false;
1210
1211 /* Nasty start_seq wrap-around check (see comments above) */
1212 if (!before(start_seq, tp->snd_nxt))
1213 return false;
1214
1215 /* In outstanding window? ...This is valid exit for D-SACKs too.
1216 * start_seq == snd_una is non-sensical (see comments above)
1217 */
1218 if (after(start_seq, tp->snd_una))
1219 return true;
1220
1221 if (!is_dsack || !tp->undo_marker)
1222 return false;
1223
1224 /* ...Then it's D-SACK, and must reside below snd_una completely */
1225 if (after(end_seq, tp->snd_una))
1226 return false;
1227
1228 if (!before(start_seq, tp->undo_marker))
1229 return true;
1230
1231 /* Too old */
1232 if (!after(end_seq, tp->undo_marker))
1233 return false;
1234
1235 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1236 * start_seq < undo_marker and end_seq >= undo_marker.
1237 */
1238 return !before(start_seq, end_seq - tp->max_window);
1239 }
1240
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1241 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1242 struct tcp_sack_block_wire *sp, int num_sacks,
1243 u32 prior_snd_una, struct tcp_sacktag_state *state)
1244 {
1245 struct tcp_sock *tp = tcp_sk(sk);
1246 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1247 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1248 u32 dup_segs;
1249
1250 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1251 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1252 } else if (num_sacks > 1) {
1253 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1254 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1255
1256 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1257 return false;
1258 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1259 } else {
1260 return false;
1261 }
1262
1263 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1264 if (!dup_segs) { /* Skip dubious DSACK */
1265 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1266 return false;
1267 }
1268
1269 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1270
1271 /* D-SACK for already forgotten data... Do dumb counting. */
1272 if (tp->undo_marker && tp->undo_retrans > 0 &&
1273 !after(end_seq_0, prior_snd_una) &&
1274 after(end_seq_0, tp->undo_marker))
1275 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1276
1277 return true;
1278 }
1279
1280 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1281 * the incoming SACK may not exactly match but we can find smaller MSS
1282 * aligned portion of it that matches. Therefore we might need to fragment
1283 * which may fail and creates some hassle (caller must handle error case
1284 * returns).
1285 *
1286 * FIXME: this could be merged to shift decision code
1287 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1288 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1289 u32 start_seq, u32 end_seq)
1290 {
1291 int err;
1292 bool in_sack;
1293 unsigned int pkt_len;
1294 unsigned int mss;
1295
1296 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1297 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1298
1299 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1300 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1301 mss = tcp_skb_mss(skb);
1302 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1303
1304 if (!in_sack) {
1305 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1306 if (pkt_len < mss)
1307 pkt_len = mss;
1308 } else {
1309 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1310 if (pkt_len < mss)
1311 return -EINVAL;
1312 }
1313
1314 /* Round if necessary so that SACKs cover only full MSSes
1315 * and/or the remaining small portion (if present)
1316 */
1317 if (pkt_len > mss) {
1318 unsigned int new_len = (pkt_len / mss) * mss;
1319 if (!in_sack && new_len < pkt_len)
1320 new_len += mss;
1321 pkt_len = new_len;
1322 }
1323
1324 if (pkt_len >= skb->len && !in_sack)
1325 return 0;
1326
1327 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1328 pkt_len, mss, GFP_ATOMIC);
1329 if (err < 0)
1330 return err;
1331 }
1332
1333 return in_sack;
1334 }
1335
1336 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1337 static u8 tcp_sacktag_one(struct sock *sk,
1338 struct tcp_sacktag_state *state, u8 sacked,
1339 u32 start_seq, u32 end_seq,
1340 int dup_sack, int pcount,
1341 u64 xmit_time)
1342 {
1343 struct tcp_sock *tp = tcp_sk(sk);
1344
1345 /* Account D-SACK for retransmitted packet. */
1346 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1347 if (tp->undo_marker && tp->undo_retrans > 0 &&
1348 after(end_seq, tp->undo_marker))
1349 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1350 if ((sacked & TCPCB_SACKED_ACKED) &&
1351 before(start_seq, state->reord))
1352 state->reord = start_seq;
1353 }
1354
1355 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1356 if (!after(end_seq, tp->snd_una))
1357 return sacked;
1358
1359 if (!(sacked & TCPCB_SACKED_ACKED)) {
1360 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1361
1362 if (sacked & TCPCB_SACKED_RETRANS) {
1363 /* If the segment is not tagged as lost,
1364 * we do not clear RETRANS, believing
1365 * that retransmission is still in flight.
1366 */
1367 if (sacked & TCPCB_LOST) {
1368 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1369 tp->lost_out -= pcount;
1370 tp->retrans_out -= pcount;
1371 }
1372 } else {
1373 if (!(sacked & TCPCB_RETRANS)) {
1374 /* New sack for not retransmitted frame,
1375 * which was in hole. It is reordering.
1376 */
1377 if (before(start_seq,
1378 tcp_highest_sack_seq(tp)) &&
1379 before(start_seq, state->reord))
1380 state->reord = start_seq;
1381
1382 if (!after(end_seq, tp->high_seq))
1383 state->flag |= FLAG_ORIG_SACK_ACKED;
1384 if (state->first_sackt == 0)
1385 state->first_sackt = xmit_time;
1386 state->last_sackt = xmit_time;
1387 }
1388
1389 if (sacked & TCPCB_LOST) {
1390 sacked &= ~TCPCB_LOST;
1391 tp->lost_out -= pcount;
1392 }
1393 }
1394
1395 sacked |= TCPCB_SACKED_ACKED;
1396 state->flag |= FLAG_DATA_SACKED;
1397 tp->sacked_out += pcount;
1398 /* Out-of-order packets delivered */
1399 state->sack_delivered += pcount;
1400
1401 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1402 if (tp->lost_skb_hint &&
1403 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1404 tp->lost_cnt_hint += pcount;
1405 }
1406
1407 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1408 * frames and clear it. undo_retrans is decreased above, L|R frames
1409 * are accounted above as well.
1410 */
1411 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1412 sacked &= ~TCPCB_SACKED_RETRANS;
1413 tp->retrans_out -= pcount;
1414 }
1415
1416 return sacked;
1417 }
1418
1419 /* Shift newly-SACKed bytes from this skb to the immediately previous
1420 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1421 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1422 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1423 struct sk_buff *skb,
1424 struct tcp_sacktag_state *state,
1425 unsigned int pcount, int shifted, int mss,
1426 bool dup_sack)
1427 {
1428 struct tcp_sock *tp = tcp_sk(sk);
1429 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1430 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1431
1432 BUG_ON(!pcount);
1433
1434 /* Adjust counters and hints for the newly sacked sequence
1435 * range but discard the return value since prev is already
1436 * marked. We must tag the range first because the seq
1437 * advancement below implicitly advances
1438 * tcp_highest_sack_seq() when skb is highest_sack.
1439 */
1440 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1441 start_seq, end_seq, dup_sack, pcount,
1442 tcp_skb_timestamp_us(skb));
1443 tcp_rate_skb_delivered(sk, skb, state->rate);
1444
1445 if (skb == tp->lost_skb_hint)
1446 tp->lost_cnt_hint += pcount;
1447
1448 TCP_SKB_CB(prev)->end_seq += shifted;
1449 TCP_SKB_CB(skb)->seq += shifted;
1450
1451 tcp_skb_pcount_add(prev, pcount);
1452 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1453 tcp_skb_pcount_add(skb, -pcount);
1454
1455 /* When we're adding to gso_segs == 1, gso_size will be zero,
1456 * in theory this shouldn't be necessary but as long as DSACK
1457 * code can come after this skb later on it's better to keep
1458 * setting gso_size to something.
1459 */
1460 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1461 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1462
1463 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1464 if (tcp_skb_pcount(skb) <= 1)
1465 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1466
1467 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1468 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1469
1470 if (skb->len > 0) {
1471 BUG_ON(!tcp_skb_pcount(skb));
1472 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1473 return false;
1474 }
1475
1476 /* Whole SKB was eaten :-) */
1477
1478 if (skb == tp->retransmit_skb_hint)
1479 tp->retransmit_skb_hint = prev;
1480 if (skb == tp->lost_skb_hint) {
1481 tp->lost_skb_hint = prev;
1482 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1483 }
1484
1485 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1486 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1487 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1488 TCP_SKB_CB(prev)->end_seq++;
1489
1490 if (skb == tcp_highest_sack(sk))
1491 tcp_advance_highest_sack(sk, skb);
1492
1493 tcp_skb_collapse_tstamp(prev, skb);
1494 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1495 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1496
1497 tcp_rtx_queue_unlink_and_free(skb, sk);
1498
1499 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1500
1501 return true;
1502 }
1503
1504 /* I wish gso_size would have a bit more sane initialization than
1505 * something-or-zero which complicates things
1506 */
tcp_skb_seglen(const struct sk_buff * skb)1507 static int tcp_skb_seglen(const struct sk_buff *skb)
1508 {
1509 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1510 }
1511
1512 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1513 static int skb_can_shift(const struct sk_buff *skb)
1514 {
1515 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1516 }
1517
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1518 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1519 int pcount, int shiftlen)
1520 {
1521 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1522 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1523 * to make sure not storing more than 65535 * 8 bytes per skb,
1524 * even if current MSS is bigger.
1525 */
1526 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1527 return 0;
1528 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1529 return 0;
1530 return skb_shift(to, from, shiftlen);
1531 }
1532
1533 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1534 * skb.
1535 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1536 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1537 struct tcp_sacktag_state *state,
1538 u32 start_seq, u32 end_seq,
1539 bool dup_sack)
1540 {
1541 struct tcp_sock *tp = tcp_sk(sk);
1542 struct sk_buff *prev;
1543 int mss;
1544 int pcount = 0;
1545 int len;
1546 int in_sack;
1547
1548 /* Normally R but no L won't result in plain S */
1549 if (!dup_sack &&
1550 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1551 goto fallback;
1552 if (!skb_can_shift(skb))
1553 goto fallback;
1554 /* This frame is about to be dropped (was ACKed). */
1555 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1556 goto fallback;
1557
1558 /* Can only happen with delayed DSACK + discard craziness */
1559 prev = skb_rb_prev(skb);
1560 if (!prev)
1561 goto fallback;
1562
1563 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1564 goto fallback;
1565
1566 if (!tcp_skb_can_collapse(prev, skb))
1567 goto fallback;
1568
1569 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1570 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1571
1572 if (in_sack) {
1573 len = skb->len;
1574 pcount = tcp_skb_pcount(skb);
1575 mss = tcp_skb_seglen(skb);
1576
1577 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1578 * drop this restriction as unnecessary
1579 */
1580 if (mss != tcp_skb_seglen(prev))
1581 goto fallback;
1582 } else {
1583 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1584 goto noop;
1585 /* CHECKME: This is non-MSS split case only?, this will
1586 * cause skipped skbs due to advancing loop btw, original
1587 * has that feature too
1588 */
1589 if (tcp_skb_pcount(skb) <= 1)
1590 goto noop;
1591
1592 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1593 if (!in_sack) {
1594 /* TODO: head merge to next could be attempted here
1595 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1596 * though it might not be worth of the additional hassle
1597 *
1598 * ...we can probably just fallback to what was done
1599 * previously. We could try merging non-SACKed ones
1600 * as well but it probably isn't going to buy off
1601 * because later SACKs might again split them, and
1602 * it would make skb timestamp tracking considerably
1603 * harder problem.
1604 */
1605 goto fallback;
1606 }
1607
1608 len = end_seq - TCP_SKB_CB(skb)->seq;
1609 BUG_ON(len < 0);
1610 BUG_ON(len > skb->len);
1611
1612 /* MSS boundaries should be honoured or else pcount will
1613 * severely break even though it makes things bit trickier.
1614 * Optimize common case to avoid most of the divides
1615 */
1616 mss = tcp_skb_mss(skb);
1617
1618 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1619 * drop this restriction as unnecessary
1620 */
1621 if (mss != tcp_skb_seglen(prev))
1622 goto fallback;
1623
1624 if (len == mss) {
1625 pcount = 1;
1626 } else if (len < mss) {
1627 goto noop;
1628 } else {
1629 pcount = len / mss;
1630 len = pcount * mss;
1631 }
1632 }
1633
1634 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1635 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1636 goto fallback;
1637
1638 if (!tcp_skb_shift(prev, skb, pcount, len))
1639 goto fallback;
1640 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1641 goto out;
1642
1643 /* Hole filled allows collapsing with the next as well, this is very
1644 * useful when hole on every nth skb pattern happens
1645 */
1646 skb = skb_rb_next(prev);
1647 if (!skb)
1648 goto out;
1649
1650 if (!skb_can_shift(skb) ||
1651 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1652 (mss != tcp_skb_seglen(skb)))
1653 goto out;
1654
1655 len = skb->len;
1656 pcount = tcp_skb_pcount(skb);
1657 if (tcp_skb_shift(prev, skb, pcount, len))
1658 tcp_shifted_skb(sk, prev, skb, state, pcount,
1659 len, mss, 0);
1660
1661 out:
1662 return prev;
1663
1664 noop:
1665 return skb;
1666
1667 fallback:
1668 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1669 return NULL;
1670 }
1671
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1672 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1673 struct tcp_sack_block *next_dup,
1674 struct tcp_sacktag_state *state,
1675 u32 start_seq, u32 end_seq,
1676 bool dup_sack_in)
1677 {
1678 struct tcp_sock *tp = tcp_sk(sk);
1679 struct sk_buff *tmp;
1680
1681 skb_rbtree_walk_from(skb) {
1682 int in_sack = 0;
1683 bool dup_sack = dup_sack_in;
1684
1685 /* queue is in-order => we can short-circuit the walk early */
1686 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1687 break;
1688
1689 if (next_dup &&
1690 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1691 in_sack = tcp_match_skb_to_sack(sk, skb,
1692 next_dup->start_seq,
1693 next_dup->end_seq);
1694 if (in_sack > 0)
1695 dup_sack = true;
1696 }
1697
1698 /* skb reference here is a bit tricky to get right, since
1699 * shifting can eat and free both this skb and the next,
1700 * so not even _safe variant of the loop is enough.
1701 */
1702 if (in_sack <= 0) {
1703 tmp = tcp_shift_skb_data(sk, skb, state,
1704 start_seq, end_seq, dup_sack);
1705 if (tmp) {
1706 if (tmp != skb) {
1707 skb = tmp;
1708 continue;
1709 }
1710
1711 in_sack = 0;
1712 } else {
1713 in_sack = tcp_match_skb_to_sack(sk, skb,
1714 start_seq,
1715 end_seq);
1716 }
1717 }
1718
1719 if (unlikely(in_sack < 0))
1720 break;
1721
1722 if (in_sack) {
1723 TCP_SKB_CB(skb)->sacked =
1724 tcp_sacktag_one(sk,
1725 state,
1726 TCP_SKB_CB(skb)->sacked,
1727 TCP_SKB_CB(skb)->seq,
1728 TCP_SKB_CB(skb)->end_seq,
1729 dup_sack,
1730 tcp_skb_pcount(skb),
1731 tcp_skb_timestamp_us(skb));
1732 tcp_rate_skb_delivered(sk, skb, state->rate);
1733 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1734 list_del_init(&skb->tcp_tsorted_anchor);
1735
1736 if (!before(TCP_SKB_CB(skb)->seq,
1737 tcp_highest_sack_seq(tp)))
1738 tcp_advance_highest_sack(sk, skb);
1739 }
1740 }
1741 return skb;
1742 }
1743
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1744 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1745 {
1746 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1747 struct sk_buff *skb;
1748
1749 while (*p) {
1750 parent = *p;
1751 skb = rb_to_skb(parent);
1752 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1753 p = &parent->rb_left;
1754 continue;
1755 }
1756 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1757 p = &parent->rb_right;
1758 continue;
1759 }
1760 return skb;
1761 }
1762 return NULL;
1763 }
1764
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1765 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1766 u32 skip_to_seq)
1767 {
1768 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1769 return skb;
1770
1771 return tcp_sacktag_bsearch(sk, skip_to_seq);
1772 }
1773
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1774 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1775 struct sock *sk,
1776 struct tcp_sack_block *next_dup,
1777 struct tcp_sacktag_state *state,
1778 u32 skip_to_seq)
1779 {
1780 if (!next_dup)
1781 return skb;
1782
1783 if (before(next_dup->start_seq, skip_to_seq)) {
1784 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1785 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1786 next_dup->start_seq, next_dup->end_seq,
1787 1);
1788 }
1789
1790 return skb;
1791 }
1792
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1793 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1794 {
1795 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1796 }
1797
1798 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1799 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1800 u32 prior_snd_una, struct tcp_sacktag_state *state)
1801 {
1802 struct tcp_sock *tp = tcp_sk(sk);
1803 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1804 TCP_SKB_CB(ack_skb)->sacked);
1805 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1806 struct tcp_sack_block sp[TCP_NUM_SACKS];
1807 struct tcp_sack_block *cache;
1808 struct sk_buff *skb;
1809 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1810 int used_sacks;
1811 bool found_dup_sack = false;
1812 int i, j;
1813 int first_sack_index;
1814
1815 state->flag = 0;
1816 state->reord = tp->snd_nxt;
1817
1818 if (!tp->sacked_out)
1819 tcp_highest_sack_reset(sk);
1820
1821 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1822 num_sacks, prior_snd_una, state);
1823
1824 /* Eliminate too old ACKs, but take into
1825 * account more or less fresh ones, they can
1826 * contain valid SACK info.
1827 */
1828 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1829 return 0;
1830
1831 if (!tp->packets_out)
1832 goto out;
1833
1834 used_sacks = 0;
1835 first_sack_index = 0;
1836 for (i = 0; i < num_sacks; i++) {
1837 bool dup_sack = !i && found_dup_sack;
1838
1839 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1840 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1841
1842 if (!tcp_is_sackblock_valid(tp, dup_sack,
1843 sp[used_sacks].start_seq,
1844 sp[used_sacks].end_seq)) {
1845 int mib_idx;
1846
1847 if (dup_sack) {
1848 if (!tp->undo_marker)
1849 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1850 else
1851 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1852 } else {
1853 /* Don't count olds caused by ACK reordering */
1854 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1855 !after(sp[used_sacks].end_seq, tp->snd_una))
1856 continue;
1857 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1858 }
1859
1860 NET_INC_STATS(sock_net(sk), mib_idx);
1861 if (i == 0)
1862 first_sack_index = -1;
1863 continue;
1864 }
1865
1866 /* Ignore very old stuff early */
1867 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1868 if (i == 0)
1869 first_sack_index = -1;
1870 continue;
1871 }
1872
1873 used_sacks++;
1874 }
1875
1876 /* order SACK blocks to allow in order walk of the retrans queue */
1877 for (i = used_sacks - 1; i > 0; i--) {
1878 for (j = 0; j < i; j++) {
1879 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1880 swap(sp[j], sp[j + 1]);
1881
1882 /* Track where the first SACK block goes to */
1883 if (j == first_sack_index)
1884 first_sack_index = j + 1;
1885 }
1886 }
1887 }
1888
1889 state->mss_now = tcp_current_mss(sk);
1890 skb = NULL;
1891 i = 0;
1892
1893 if (!tp->sacked_out) {
1894 /* It's already past, so skip checking against it */
1895 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1896 } else {
1897 cache = tp->recv_sack_cache;
1898 /* Skip empty blocks in at head of the cache */
1899 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1900 !cache->end_seq)
1901 cache++;
1902 }
1903
1904 while (i < used_sacks) {
1905 u32 start_seq = sp[i].start_seq;
1906 u32 end_seq = sp[i].end_seq;
1907 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1908 struct tcp_sack_block *next_dup = NULL;
1909
1910 if (found_dup_sack && ((i + 1) == first_sack_index))
1911 next_dup = &sp[i + 1];
1912
1913 /* Skip too early cached blocks */
1914 while (tcp_sack_cache_ok(tp, cache) &&
1915 !before(start_seq, cache->end_seq))
1916 cache++;
1917
1918 /* Can skip some work by looking recv_sack_cache? */
1919 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1920 after(end_seq, cache->start_seq)) {
1921
1922 /* Head todo? */
1923 if (before(start_seq, cache->start_seq)) {
1924 skb = tcp_sacktag_skip(skb, sk, start_seq);
1925 skb = tcp_sacktag_walk(skb, sk, next_dup,
1926 state,
1927 start_seq,
1928 cache->start_seq,
1929 dup_sack);
1930 }
1931
1932 /* Rest of the block already fully processed? */
1933 if (!after(end_seq, cache->end_seq))
1934 goto advance_sp;
1935
1936 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1937 state,
1938 cache->end_seq);
1939
1940 /* ...tail remains todo... */
1941 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1942 /* ...but better entrypoint exists! */
1943 skb = tcp_highest_sack(sk);
1944 if (!skb)
1945 break;
1946 cache++;
1947 goto walk;
1948 }
1949
1950 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1951 /* Check overlap against next cached too (past this one already) */
1952 cache++;
1953 continue;
1954 }
1955
1956 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1957 skb = tcp_highest_sack(sk);
1958 if (!skb)
1959 break;
1960 }
1961 skb = tcp_sacktag_skip(skb, sk, start_seq);
1962
1963 walk:
1964 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1965 start_seq, end_seq, dup_sack);
1966
1967 advance_sp:
1968 i++;
1969 }
1970
1971 /* Clear the head of the cache sack blocks so we can skip it next time */
1972 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1973 tp->recv_sack_cache[i].start_seq = 0;
1974 tp->recv_sack_cache[i].end_seq = 0;
1975 }
1976 for (j = 0; j < used_sacks; j++)
1977 tp->recv_sack_cache[i++] = sp[j];
1978
1979 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1980 tcp_check_sack_reordering(sk, state->reord, 0);
1981
1982 tcp_verify_left_out(tp);
1983 out:
1984
1985 #if FASTRETRANS_DEBUG > 0
1986 WARN_ON((int)tp->sacked_out < 0);
1987 WARN_ON((int)tp->lost_out < 0);
1988 WARN_ON((int)tp->retrans_out < 0);
1989 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1990 #endif
1991 return state->flag;
1992 }
1993
1994 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1995 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1996 */
tcp_limit_reno_sacked(struct tcp_sock * tp)1997 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1998 {
1999 u32 holes;
2000
2001 holes = max(tp->lost_out, 1U);
2002 holes = min(holes, tp->packets_out);
2003
2004 if ((tp->sacked_out + holes) > tp->packets_out) {
2005 tp->sacked_out = tp->packets_out - holes;
2006 return true;
2007 }
2008 return false;
2009 }
2010
2011 /* If we receive more dupacks than we expected counting segments
2012 * in assumption of absent reordering, interpret this as reordering.
2013 * The only another reason could be bug in receiver TCP.
2014 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2015 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2016 {
2017 struct tcp_sock *tp = tcp_sk(sk);
2018
2019 if (!tcp_limit_reno_sacked(tp))
2020 return;
2021
2022 tp->reordering = min_t(u32, tp->packets_out + addend,
2023 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
2024 tp->reord_seen++;
2025 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2026 }
2027
2028 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2029
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2030 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2031 {
2032 if (num_dupack) {
2033 struct tcp_sock *tp = tcp_sk(sk);
2034 u32 prior_sacked = tp->sacked_out;
2035 s32 delivered;
2036
2037 tp->sacked_out += num_dupack;
2038 tcp_check_reno_reordering(sk, 0);
2039 delivered = tp->sacked_out - prior_sacked;
2040 if (delivered > 0)
2041 tcp_count_delivered(tp, delivered, ece_ack);
2042 tcp_verify_left_out(tp);
2043 }
2044 }
2045
2046 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2047
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2048 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2049 {
2050 struct tcp_sock *tp = tcp_sk(sk);
2051
2052 if (acked > 0) {
2053 /* One ACK acked hole. The rest eat duplicate ACKs. */
2054 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2055 ece_ack);
2056 if (acked - 1 >= tp->sacked_out)
2057 tp->sacked_out = 0;
2058 else
2059 tp->sacked_out -= acked - 1;
2060 }
2061 tcp_check_reno_reordering(sk, acked);
2062 tcp_verify_left_out(tp);
2063 }
2064
tcp_reset_reno_sack(struct tcp_sock * tp)2065 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2066 {
2067 tp->sacked_out = 0;
2068 }
2069
tcp_clear_retrans(struct tcp_sock * tp)2070 void tcp_clear_retrans(struct tcp_sock *tp)
2071 {
2072 tp->retrans_out = 0;
2073 tp->lost_out = 0;
2074 tp->undo_marker = 0;
2075 tp->undo_retrans = -1;
2076 tp->sacked_out = 0;
2077 }
2078
tcp_init_undo(struct tcp_sock * tp)2079 static inline void tcp_init_undo(struct tcp_sock *tp)
2080 {
2081 tp->undo_marker = tp->snd_una;
2082 /* Retransmission still in flight may cause DSACKs later. */
2083 tp->undo_retrans = tp->retrans_out ? : -1;
2084 }
2085
tcp_is_rack(const struct sock * sk)2086 static bool tcp_is_rack(const struct sock *sk)
2087 {
2088 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2089 }
2090
2091 /* If we detect SACK reneging, forget all SACK information
2092 * and reset tags completely, otherwise preserve SACKs. If receiver
2093 * dropped its ofo queue, we will know this due to reneging detection.
2094 */
tcp_timeout_mark_lost(struct sock * sk)2095 static void tcp_timeout_mark_lost(struct sock *sk)
2096 {
2097 struct tcp_sock *tp = tcp_sk(sk);
2098 struct sk_buff *skb, *head;
2099 bool is_reneg; /* is receiver reneging on SACKs? */
2100
2101 head = tcp_rtx_queue_head(sk);
2102 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2103 if (is_reneg) {
2104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2105 tp->sacked_out = 0;
2106 /* Mark SACK reneging until we recover from this loss event. */
2107 tp->is_sack_reneg = 1;
2108 } else if (tcp_is_reno(tp)) {
2109 tcp_reset_reno_sack(tp);
2110 }
2111
2112 skb = head;
2113 skb_rbtree_walk_from(skb) {
2114 if (is_reneg)
2115 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2116 else if (tcp_is_rack(sk) && skb != head &&
2117 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2118 continue; /* Don't mark recently sent ones lost yet */
2119 tcp_mark_skb_lost(sk, skb);
2120 }
2121 tcp_verify_left_out(tp);
2122 tcp_clear_all_retrans_hints(tp);
2123 }
2124
2125 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2126 void tcp_enter_loss(struct sock *sk)
2127 {
2128 const struct inet_connection_sock *icsk = inet_csk(sk);
2129 struct tcp_sock *tp = tcp_sk(sk);
2130 struct net *net = sock_net(sk);
2131 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2132
2133 tcp_timeout_mark_lost(sk);
2134
2135 /* Reduce ssthresh if it has not yet been made inside this window. */
2136 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2137 !after(tp->high_seq, tp->snd_una) ||
2138 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2139 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2140 tp->prior_cwnd = tp->snd_cwnd;
2141 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2142 tcp_ca_event(sk, CA_EVENT_LOSS);
2143 tcp_init_undo(tp);
2144 }
2145 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2146 tp->snd_cwnd_cnt = 0;
2147 tp->snd_cwnd_stamp = tcp_jiffies32;
2148
2149 /* Timeout in disordered state after receiving substantial DUPACKs
2150 * suggests that the degree of reordering is over-estimated.
2151 */
2152 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2153 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2154 tp->reordering = min_t(unsigned int, tp->reordering,
2155 net->ipv4.sysctl_tcp_reordering);
2156 tcp_set_ca_state(sk, TCP_CA_Loss);
2157 tp->high_seq = tp->snd_nxt;
2158 tcp_ecn_queue_cwr(tp);
2159
2160 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2161 * loss recovery is underway except recurring timeout(s) on
2162 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2163 */
2164 tp->frto = net->ipv4.sysctl_tcp_frto &&
2165 (new_recovery || icsk->icsk_retransmits) &&
2166 !inet_csk(sk)->icsk_mtup.probe_size;
2167 }
2168
2169 /* If ACK arrived pointing to a remembered SACK, it means that our
2170 * remembered SACKs do not reflect real state of receiver i.e.
2171 * receiver _host_ is heavily congested (or buggy).
2172 *
2173 * To avoid big spurious retransmission bursts due to transient SACK
2174 * scoreboard oddities that look like reneging, we give the receiver a
2175 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2176 * restore sanity to the SACK scoreboard. If the apparent reneging
2177 * persists until this RTO then we'll clear the SACK scoreboard.
2178 */
tcp_check_sack_reneging(struct sock * sk,int flag)2179 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2180 {
2181 if (flag & FLAG_SACK_RENEGING) {
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2184 msecs_to_jiffies(10));
2185
2186 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2187 delay, TCP_RTO_MAX);
2188 return true;
2189 }
2190 return false;
2191 }
2192
2193 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2194 * counter when SACK is enabled (without SACK, sacked_out is used for
2195 * that purpose).
2196 *
2197 * With reordering, holes may still be in flight, so RFC3517 recovery
2198 * uses pure sacked_out (total number of SACKed segments) even though
2199 * it violates the RFC that uses duplicate ACKs, often these are equal
2200 * but when e.g. out-of-window ACKs or packet duplication occurs,
2201 * they differ. Since neither occurs due to loss, TCP should really
2202 * ignore them.
2203 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2204 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2205 {
2206 return tp->sacked_out + 1;
2207 }
2208
2209 /* Linux NewReno/SACK/ECN state machine.
2210 * --------------------------------------
2211 *
2212 * "Open" Normal state, no dubious events, fast path.
2213 * "Disorder" In all the respects it is "Open",
2214 * but requires a bit more attention. It is entered when
2215 * we see some SACKs or dupacks. It is split of "Open"
2216 * mainly to move some processing from fast path to slow one.
2217 * "CWR" CWND was reduced due to some Congestion Notification event.
2218 * It can be ECN, ICMP source quench, local device congestion.
2219 * "Recovery" CWND was reduced, we are fast-retransmitting.
2220 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2221 *
2222 * tcp_fastretrans_alert() is entered:
2223 * - each incoming ACK, if state is not "Open"
2224 * - when arrived ACK is unusual, namely:
2225 * * SACK
2226 * * Duplicate ACK.
2227 * * ECN ECE.
2228 *
2229 * Counting packets in flight is pretty simple.
2230 *
2231 * in_flight = packets_out - left_out + retrans_out
2232 *
2233 * packets_out is SND.NXT-SND.UNA counted in packets.
2234 *
2235 * retrans_out is number of retransmitted segments.
2236 *
2237 * left_out is number of segments left network, but not ACKed yet.
2238 *
2239 * left_out = sacked_out + lost_out
2240 *
2241 * sacked_out: Packets, which arrived to receiver out of order
2242 * and hence not ACKed. With SACKs this number is simply
2243 * amount of SACKed data. Even without SACKs
2244 * it is easy to give pretty reliable estimate of this number,
2245 * counting duplicate ACKs.
2246 *
2247 * lost_out: Packets lost by network. TCP has no explicit
2248 * "loss notification" feedback from network (for now).
2249 * It means that this number can be only _guessed_.
2250 * Actually, it is the heuristics to predict lossage that
2251 * distinguishes different algorithms.
2252 *
2253 * F.e. after RTO, when all the queue is considered as lost,
2254 * lost_out = packets_out and in_flight = retrans_out.
2255 *
2256 * Essentially, we have now a few algorithms detecting
2257 * lost packets.
2258 *
2259 * If the receiver supports SACK:
2260 *
2261 * RFC6675/3517: It is the conventional algorithm. A packet is
2262 * considered lost if the number of higher sequence packets
2263 * SACKed is greater than or equal the DUPACK thoreshold
2264 * (reordering). This is implemented in tcp_mark_head_lost and
2265 * tcp_update_scoreboard.
2266 *
2267 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2268 * (2017-) that checks timing instead of counting DUPACKs.
2269 * Essentially a packet is considered lost if it's not S/ACKed
2270 * after RTT + reordering_window, where both metrics are
2271 * dynamically measured and adjusted. This is implemented in
2272 * tcp_rack_mark_lost.
2273 *
2274 * If the receiver does not support SACK:
2275 *
2276 * NewReno (RFC6582): in Recovery we assume that one segment
2277 * is lost (classic Reno). While we are in Recovery and
2278 * a partial ACK arrives, we assume that one more packet
2279 * is lost (NewReno). This heuristics are the same in NewReno
2280 * and SACK.
2281 *
2282 * Really tricky (and requiring careful tuning) part of algorithm
2283 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2284 * The first determines the moment _when_ we should reduce CWND and,
2285 * hence, slow down forward transmission. In fact, it determines the moment
2286 * when we decide that hole is caused by loss, rather than by a reorder.
2287 *
2288 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2289 * holes, caused by lost packets.
2290 *
2291 * And the most logically complicated part of algorithm is undo
2292 * heuristics. We detect false retransmits due to both too early
2293 * fast retransmit (reordering) and underestimated RTO, analyzing
2294 * timestamps and D-SACKs. When we detect that some segments were
2295 * retransmitted by mistake and CWND reduction was wrong, we undo
2296 * window reduction and abort recovery phase. This logic is hidden
2297 * inside several functions named tcp_try_undo_<something>.
2298 */
2299
2300 /* This function decides, when we should leave Disordered state
2301 * and enter Recovery phase, reducing congestion window.
2302 *
2303 * Main question: may we further continue forward transmission
2304 * with the same cwnd?
2305 */
tcp_time_to_recover(struct sock * sk,int flag)2306 static bool tcp_time_to_recover(struct sock *sk, int flag)
2307 {
2308 struct tcp_sock *tp = tcp_sk(sk);
2309
2310 /* Trick#1: The loss is proven. */
2311 if (tp->lost_out)
2312 return true;
2313
2314 /* Not-A-Trick#2 : Classic rule... */
2315 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2316 return true;
2317
2318 return false;
2319 }
2320
2321 /* Detect loss in event "A" above by marking head of queue up as lost.
2322 * For RFC3517 SACK, a segment is considered lost if it
2323 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2324 * the maximum SACKed segments to pass before reaching this limit.
2325 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2326 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2327 {
2328 struct tcp_sock *tp = tcp_sk(sk);
2329 struct sk_buff *skb;
2330 int cnt;
2331 /* Use SACK to deduce losses of new sequences sent during recovery */
2332 const u32 loss_high = tp->snd_nxt;
2333
2334 WARN_ON(packets > tp->packets_out);
2335 skb = tp->lost_skb_hint;
2336 if (skb) {
2337 /* Head already handled? */
2338 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2339 return;
2340 cnt = tp->lost_cnt_hint;
2341 } else {
2342 skb = tcp_rtx_queue_head(sk);
2343 cnt = 0;
2344 }
2345
2346 skb_rbtree_walk_from(skb) {
2347 /* TODO: do this better */
2348 /* this is not the most efficient way to do this... */
2349 tp->lost_skb_hint = skb;
2350 tp->lost_cnt_hint = cnt;
2351
2352 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2353 break;
2354
2355 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2356 cnt += tcp_skb_pcount(skb);
2357
2358 if (cnt > packets)
2359 break;
2360
2361 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2362 tcp_mark_skb_lost(sk, skb);
2363
2364 if (mark_head)
2365 break;
2366 }
2367 tcp_verify_left_out(tp);
2368 }
2369
2370 /* Account newly detected lost packet(s) */
2371
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2372 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2373 {
2374 struct tcp_sock *tp = tcp_sk(sk);
2375
2376 if (tcp_is_sack(tp)) {
2377 int sacked_upto = tp->sacked_out - tp->reordering;
2378 if (sacked_upto >= 0)
2379 tcp_mark_head_lost(sk, sacked_upto, 0);
2380 else if (fast_rexmit)
2381 tcp_mark_head_lost(sk, 1, 1);
2382 }
2383 }
2384
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2385 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2386 {
2387 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2388 before(tp->rx_opt.rcv_tsecr, when);
2389 }
2390
2391 /* skb is spurious retransmitted if the returned timestamp echo
2392 * reply is prior to the skb transmission time
2393 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2394 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2395 const struct sk_buff *skb)
2396 {
2397 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2398 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2399 }
2400
2401 /* Nothing was retransmitted or returned timestamp is less
2402 * than timestamp of the first retransmission.
2403 */
tcp_packet_delayed(const struct tcp_sock * tp)2404 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2405 {
2406 return tp->retrans_stamp &&
2407 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2408 }
2409
2410 /* Undo procedures. */
2411
2412 /* We can clear retrans_stamp when there are no retransmissions in the
2413 * window. It would seem that it is trivially available for us in
2414 * tp->retrans_out, however, that kind of assumptions doesn't consider
2415 * what will happen if errors occur when sending retransmission for the
2416 * second time. ...It could the that such segment has only
2417 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2418 * the head skb is enough except for some reneging corner cases that
2419 * are not worth the effort.
2420 *
2421 * Main reason for all this complexity is the fact that connection dying
2422 * time now depends on the validity of the retrans_stamp, in particular,
2423 * that successive retransmissions of a segment must not advance
2424 * retrans_stamp under any conditions.
2425 */
tcp_any_retrans_done(const struct sock * sk)2426 static bool tcp_any_retrans_done(const struct sock *sk)
2427 {
2428 const struct tcp_sock *tp = tcp_sk(sk);
2429 struct sk_buff *skb;
2430
2431 if (tp->retrans_out)
2432 return true;
2433
2434 skb = tcp_rtx_queue_head(sk);
2435 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2436 return true;
2437
2438 return false;
2439 }
2440
DBGUNDO(struct sock * sk,const char * msg)2441 static void DBGUNDO(struct sock *sk, const char *msg)
2442 {
2443 #if FASTRETRANS_DEBUG > 1
2444 struct tcp_sock *tp = tcp_sk(sk);
2445 struct inet_sock *inet = inet_sk(sk);
2446
2447 if (sk->sk_family == AF_INET) {
2448 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2449 msg,
2450 &inet->inet_daddr, ntohs(inet->inet_dport),
2451 tp->snd_cwnd, tcp_left_out(tp),
2452 tp->snd_ssthresh, tp->prior_ssthresh,
2453 tp->packets_out);
2454 }
2455 #if IS_ENABLED(CONFIG_IPV6)
2456 else if (sk->sk_family == AF_INET6) {
2457 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2458 msg,
2459 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2460 tp->snd_cwnd, tcp_left_out(tp),
2461 tp->snd_ssthresh, tp->prior_ssthresh,
2462 tp->packets_out);
2463 }
2464 #endif
2465 #endif
2466 }
2467
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2468 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2469 {
2470 struct tcp_sock *tp = tcp_sk(sk);
2471
2472 if (unmark_loss) {
2473 struct sk_buff *skb;
2474
2475 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2476 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2477 }
2478 tp->lost_out = 0;
2479 tcp_clear_all_retrans_hints(tp);
2480 }
2481
2482 if (tp->prior_ssthresh) {
2483 const struct inet_connection_sock *icsk = inet_csk(sk);
2484
2485 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2486
2487 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2488 tp->snd_ssthresh = tp->prior_ssthresh;
2489 tcp_ecn_withdraw_cwr(tp);
2490 }
2491 }
2492 tp->snd_cwnd_stamp = tcp_jiffies32;
2493 tp->undo_marker = 0;
2494 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2495 }
2496
tcp_may_undo(const struct tcp_sock * tp)2497 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2498 {
2499 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2500 }
2501
2502 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2503 static bool tcp_try_undo_recovery(struct sock *sk)
2504 {
2505 struct tcp_sock *tp = tcp_sk(sk);
2506
2507 if (tcp_may_undo(tp)) {
2508 int mib_idx;
2509
2510 /* Happy end! We did not retransmit anything
2511 * or our original transmission succeeded.
2512 */
2513 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2514 tcp_undo_cwnd_reduction(sk, false);
2515 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2516 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2517 else
2518 mib_idx = LINUX_MIB_TCPFULLUNDO;
2519
2520 NET_INC_STATS(sock_net(sk), mib_idx);
2521 } else if (tp->rack.reo_wnd_persist) {
2522 tp->rack.reo_wnd_persist--;
2523 }
2524 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2525 /* Hold old state until something *above* high_seq
2526 * is ACKed. For Reno it is MUST to prevent false
2527 * fast retransmits (RFC2582). SACK TCP is safe. */
2528 if (!tcp_any_retrans_done(sk))
2529 tp->retrans_stamp = 0;
2530 return true;
2531 }
2532 tcp_set_ca_state(sk, TCP_CA_Open);
2533 tp->is_sack_reneg = 0;
2534 return false;
2535 }
2536
2537 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2538 static bool tcp_try_undo_dsack(struct sock *sk)
2539 {
2540 struct tcp_sock *tp = tcp_sk(sk);
2541
2542 if (tp->undo_marker && !tp->undo_retrans) {
2543 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2544 tp->rack.reo_wnd_persist + 1);
2545 DBGUNDO(sk, "D-SACK");
2546 tcp_undo_cwnd_reduction(sk, false);
2547 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2548 return true;
2549 }
2550 return false;
2551 }
2552
2553 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2554 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2555 {
2556 struct tcp_sock *tp = tcp_sk(sk);
2557
2558 if (frto_undo || tcp_may_undo(tp)) {
2559 tcp_undo_cwnd_reduction(sk, true);
2560
2561 DBGUNDO(sk, "partial loss");
2562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2563 if (frto_undo)
2564 NET_INC_STATS(sock_net(sk),
2565 LINUX_MIB_TCPSPURIOUSRTOS);
2566 inet_csk(sk)->icsk_retransmits = 0;
2567 if (frto_undo || tcp_is_sack(tp)) {
2568 tcp_set_ca_state(sk, TCP_CA_Open);
2569 tp->is_sack_reneg = 0;
2570 }
2571 return true;
2572 }
2573 return false;
2574 }
2575
2576 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2577 * It computes the number of packets to send (sndcnt) based on packets newly
2578 * delivered:
2579 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2580 * cwnd reductions across a full RTT.
2581 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2582 * But when SND_UNA is acked without further losses,
2583 * slow starts cwnd up to ssthresh to speed up the recovery.
2584 */
tcp_init_cwnd_reduction(struct sock * sk)2585 static void tcp_init_cwnd_reduction(struct sock *sk)
2586 {
2587 struct tcp_sock *tp = tcp_sk(sk);
2588
2589 tp->high_seq = tp->snd_nxt;
2590 tp->tlp_high_seq = 0;
2591 tp->snd_cwnd_cnt = 0;
2592 tp->prior_cwnd = tp->snd_cwnd;
2593 tp->prr_delivered = 0;
2594 tp->prr_out = 0;
2595 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2596 tcp_ecn_queue_cwr(tp);
2597 }
2598
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2599 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2600 {
2601 struct tcp_sock *tp = tcp_sk(sk);
2602 int sndcnt = 0;
2603 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2604
2605 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2606 return;
2607
2608 tp->prr_delivered += newly_acked_sacked;
2609 if (delta < 0) {
2610 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2611 tp->prior_cwnd - 1;
2612 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2613 } else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2614 sndcnt = min_t(int, delta,
2615 max_t(int, tp->prr_delivered - tp->prr_out,
2616 newly_acked_sacked) + 1);
2617 } else {
2618 sndcnt = min(delta, newly_acked_sacked);
2619 }
2620 /* Force a fast retransmit upon entering fast recovery */
2621 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2622 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2623 }
2624
tcp_end_cwnd_reduction(struct sock * sk)2625 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2626 {
2627 struct tcp_sock *tp = tcp_sk(sk);
2628
2629 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2630 return;
2631
2632 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2633 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2634 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2635 tp->snd_cwnd = tp->snd_ssthresh;
2636 tp->snd_cwnd_stamp = tcp_jiffies32;
2637 }
2638 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2639 }
2640
2641 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2642 void tcp_enter_cwr(struct sock *sk)
2643 {
2644 struct tcp_sock *tp = tcp_sk(sk);
2645
2646 tp->prior_ssthresh = 0;
2647 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2648 tp->undo_marker = 0;
2649 tcp_init_cwnd_reduction(sk);
2650 tcp_set_ca_state(sk, TCP_CA_CWR);
2651 }
2652 }
2653 EXPORT_SYMBOL(tcp_enter_cwr);
2654
tcp_try_keep_open(struct sock * sk)2655 static void tcp_try_keep_open(struct sock *sk)
2656 {
2657 struct tcp_sock *tp = tcp_sk(sk);
2658 int state = TCP_CA_Open;
2659
2660 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2661 state = TCP_CA_Disorder;
2662
2663 if (inet_csk(sk)->icsk_ca_state != state) {
2664 tcp_set_ca_state(sk, state);
2665 tp->high_seq = tp->snd_nxt;
2666 }
2667 }
2668
tcp_try_to_open(struct sock * sk,int flag)2669 static void tcp_try_to_open(struct sock *sk, int flag)
2670 {
2671 struct tcp_sock *tp = tcp_sk(sk);
2672
2673 tcp_verify_left_out(tp);
2674
2675 if (!tcp_any_retrans_done(sk))
2676 tp->retrans_stamp = 0;
2677
2678 if (flag & FLAG_ECE)
2679 tcp_enter_cwr(sk);
2680
2681 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2682 tcp_try_keep_open(sk);
2683 }
2684 }
2685
tcp_mtup_probe_failed(struct sock * sk)2686 static void tcp_mtup_probe_failed(struct sock *sk)
2687 {
2688 struct inet_connection_sock *icsk = inet_csk(sk);
2689
2690 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2691 icsk->icsk_mtup.probe_size = 0;
2692 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2693 }
2694
tcp_mtup_probe_success(struct sock * sk)2695 static void tcp_mtup_probe_success(struct sock *sk)
2696 {
2697 struct tcp_sock *tp = tcp_sk(sk);
2698 struct inet_connection_sock *icsk = inet_csk(sk);
2699
2700 /* FIXME: breaks with very large cwnd */
2701 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2702 tp->snd_cwnd = tp->snd_cwnd *
2703 tcp_mss_to_mtu(sk, tp->mss_cache) /
2704 icsk->icsk_mtup.probe_size;
2705 tp->snd_cwnd_cnt = 0;
2706 tp->snd_cwnd_stamp = tcp_jiffies32;
2707 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2708
2709 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2710 icsk->icsk_mtup.probe_size = 0;
2711 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2713 }
2714
2715 /* Do a simple retransmit without using the backoff mechanisms in
2716 * tcp_timer. This is used for path mtu discovery.
2717 * The socket is already locked here.
2718 */
tcp_simple_retransmit(struct sock * sk)2719 void tcp_simple_retransmit(struct sock *sk)
2720 {
2721 const struct inet_connection_sock *icsk = inet_csk(sk);
2722 struct tcp_sock *tp = tcp_sk(sk);
2723 struct sk_buff *skb;
2724 int mss;
2725
2726 /* A fastopen SYN request is stored as two separate packets within
2727 * the retransmit queue, this is done by tcp_send_syn_data().
2728 * As a result simply checking the MSS of the frames in the queue
2729 * will not work for the SYN packet.
2730 *
2731 * Us being here is an indication of a path MTU issue so we can
2732 * assume that the fastopen SYN was lost and just mark all the
2733 * frames in the retransmit queue as lost. We will use an MSS of
2734 * -1 to mark all frames as lost, otherwise compute the current MSS.
2735 */
2736 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2737 mss = -1;
2738 else
2739 mss = tcp_current_mss(sk);
2740
2741 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2742 if (tcp_skb_seglen(skb) > mss)
2743 tcp_mark_skb_lost(sk, skb);
2744 }
2745
2746 tcp_clear_retrans_hints_partial(tp);
2747
2748 if (!tp->lost_out)
2749 return;
2750
2751 if (tcp_is_reno(tp))
2752 tcp_limit_reno_sacked(tp);
2753
2754 tcp_verify_left_out(tp);
2755
2756 /* Don't muck with the congestion window here.
2757 * Reason is that we do not increase amount of _data_
2758 * in network, but units changed and effective
2759 * cwnd/ssthresh really reduced now.
2760 */
2761 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2762 tp->high_seq = tp->snd_nxt;
2763 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2764 tp->prior_ssthresh = 0;
2765 tp->undo_marker = 0;
2766 tcp_set_ca_state(sk, TCP_CA_Loss);
2767 }
2768 tcp_xmit_retransmit_queue(sk);
2769 }
2770 EXPORT_SYMBOL(tcp_simple_retransmit);
2771
tcp_enter_recovery(struct sock * sk,bool ece_ack)2772 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2773 {
2774 struct tcp_sock *tp = tcp_sk(sk);
2775 int mib_idx;
2776
2777 if (tcp_is_reno(tp))
2778 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2779 else
2780 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2781
2782 NET_INC_STATS(sock_net(sk), mib_idx);
2783
2784 tp->prior_ssthresh = 0;
2785 tcp_init_undo(tp);
2786
2787 if (!tcp_in_cwnd_reduction(sk)) {
2788 if (!ece_ack)
2789 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2790 tcp_init_cwnd_reduction(sk);
2791 }
2792 tcp_set_ca_state(sk, TCP_CA_Recovery);
2793 }
2794
2795 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2796 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2797 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2798 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2799 int *rexmit)
2800 {
2801 struct tcp_sock *tp = tcp_sk(sk);
2802 bool recovered = !before(tp->snd_una, tp->high_seq);
2803
2804 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2805 tcp_try_undo_loss(sk, false))
2806 return;
2807
2808 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2809 /* Step 3.b. A timeout is spurious if not all data are
2810 * lost, i.e., never-retransmitted data are (s)acked.
2811 */
2812 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2813 tcp_try_undo_loss(sk, true))
2814 return;
2815
2816 if (after(tp->snd_nxt, tp->high_seq)) {
2817 if (flag & FLAG_DATA_SACKED || num_dupack)
2818 tp->frto = 0; /* Step 3.a. loss was real */
2819 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2820 tp->high_seq = tp->snd_nxt;
2821 /* Step 2.b. Try send new data (but deferred until cwnd
2822 * is updated in tcp_ack()). Otherwise fall back to
2823 * the conventional recovery.
2824 */
2825 if (!tcp_write_queue_empty(sk) &&
2826 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2827 *rexmit = REXMIT_NEW;
2828 return;
2829 }
2830 tp->frto = 0;
2831 }
2832 }
2833
2834 if (recovered) {
2835 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2836 tcp_try_undo_recovery(sk);
2837 return;
2838 }
2839 if (tcp_is_reno(tp)) {
2840 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2841 * delivered. Lower inflight to clock out (re)tranmissions.
2842 */
2843 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2844 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2845 else if (flag & FLAG_SND_UNA_ADVANCED)
2846 tcp_reset_reno_sack(tp);
2847 }
2848 *rexmit = REXMIT_LOST;
2849 }
2850
tcp_force_fast_retransmit(struct sock * sk)2851 static bool tcp_force_fast_retransmit(struct sock *sk)
2852 {
2853 struct tcp_sock *tp = tcp_sk(sk);
2854
2855 return after(tcp_highest_sack_seq(tp),
2856 tp->snd_una + tp->reordering * tp->mss_cache);
2857 }
2858
2859 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2860 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2861 bool *do_lost)
2862 {
2863 struct tcp_sock *tp = tcp_sk(sk);
2864
2865 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2866 /* Plain luck! Hole if filled with delayed
2867 * packet, rather than with a retransmit. Check reordering.
2868 */
2869 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2870
2871 /* We are getting evidence that the reordering degree is higher
2872 * than we realized. If there are no retransmits out then we
2873 * can undo. Otherwise we clock out new packets but do not
2874 * mark more packets lost or retransmit more.
2875 */
2876 if (tp->retrans_out)
2877 return true;
2878
2879 if (!tcp_any_retrans_done(sk))
2880 tp->retrans_stamp = 0;
2881
2882 DBGUNDO(sk, "partial recovery");
2883 tcp_undo_cwnd_reduction(sk, true);
2884 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2885 tcp_try_keep_open(sk);
2886 } else {
2887 /* Partial ACK arrived. Force fast retransmit. */
2888 *do_lost = tcp_force_fast_retransmit(sk);
2889 }
2890 return false;
2891 }
2892
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2893 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2894 {
2895 struct tcp_sock *tp = tcp_sk(sk);
2896
2897 if (tcp_rtx_queue_empty(sk))
2898 return;
2899
2900 if (unlikely(tcp_is_reno(tp))) {
2901 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2902 } else if (tcp_is_rack(sk)) {
2903 u32 prior_retrans = tp->retrans_out;
2904
2905 if (tcp_rack_mark_lost(sk))
2906 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2907 if (prior_retrans > tp->retrans_out)
2908 *ack_flag |= FLAG_LOST_RETRANS;
2909 }
2910 }
2911
2912 /* Process an event, which can update packets-in-flight not trivially.
2913 * Main goal of this function is to calculate new estimate for left_out,
2914 * taking into account both packets sitting in receiver's buffer and
2915 * packets lost by network.
2916 *
2917 * Besides that it updates the congestion state when packet loss or ECN
2918 * is detected. But it does not reduce the cwnd, it is done by the
2919 * congestion control later.
2920 *
2921 * It does _not_ decide what to send, it is made in function
2922 * tcp_xmit_retransmit_queue().
2923 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2924 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2925 int num_dupack, int *ack_flag, int *rexmit)
2926 {
2927 struct inet_connection_sock *icsk = inet_csk(sk);
2928 struct tcp_sock *tp = tcp_sk(sk);
2929 int fast_rexmit = 0, flag = *ack_flag;
2930 bool ece_ack = flag & FLAG_ECE;
2931 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2932 tcp_force_fast_retransmit(sk));
2933
2934 if (!tp->packets_out && tp->sacked_out)
2935 tp->sacked_out = 0;
2936
2937 /* Now state machine starts.
2938 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2939 if (ece_ack)
2940 tp->prior_ssthresh = 0;
2941
2942 /* B. In all the states check for reneging SACKs. */
2943 if (tcp_check_sack_reneging(sk, flag))
2944 return;
2945
2946 /* C. Check consistency of the current state. */
2947 tcp_verify_left_out(tp);
2948
2949 /* D. Check state exit conditions. State can be terminated
2950 * when high_seq is ACKed. */
2951 if (icsk->icsk_ca_state == TCP_CA_Open) {
2952 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2953 tp->retrans_stamp = 0;
2954 } else if (!before(tp->snd_una, tp->high_seq)) {
2955 switch (icsk->icsk_ca_state) {
2956 case TCP_CA_CWR:
2957 /* CWR is to be held something *above* high_seq
2958 * is ACKed for CWR bit to reach receiver. */
2959 if (tp->snd_una != tp->high_seq) {
2960 tcp_end_cwnd_reduction(sk);
2961 tcp_set_ca_state(sk, TCP_CA_Open);
2962 }
2963 break;
2964
2965 case TCP_CA_Recovery:
2966 if (tcp_is_reno(tp))
2967 tcp_reset_reno_sack(tp);
2968 if (tcp_try_undo_recovery(sk))
2969 return;
2970 tcp_end_cwnd_reduction(sk);
2971 break;
2972 }
2973 }
2974
2975 /* E. Process state. */
2976 switch (icsk->icsk_ca_state) {
2977 case TCP_CA_Recovery:
2978 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2979 if (tcp_is_reno(tp))
2980 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2981 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2982 return;
2983
2984 if (tcp_try_undo_dsack(sk))
2985 tcp_try_keep_open(sk);
2986
2987 tcp_identify_packet_loss(sk, ack_flag);
2988 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2989 if (!tcp_time_to_recover(sk, flag))
2990 return;
2991 /* Undo reverts the recovery state. If loss is evident,
2992 * starts a new recovery (e.g. reordering then loss);
2993 */
2994 tcp_enter_recovery(sk, ece_ack);
2995 }
2996 break;
2997 case TCP_CA_Loss:
2998 tcp_process_loss(sk, flag, num_dupack, rexmit);
2999 tcp_identify_packet_loss(sk, ack_flag);
3000 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3001 (*ack_flag & FLAG_LOST_RETRANS)))
3002 return;
3003 /* Change state if cwnd is undone or retransmits are lost */
3004 fallthrough;
3005 default:
3006 if (tcp_is_reno(tp)) {
3007 if (flag & FLAG_SND_UNA_ADVANCED)
3008 tcp_reset_reno_sack(tp);
3009 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3010 }
3011
3012 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3013 tcp_try_undo_dsack(sk);
3014
3015 tcp_identify_packet_loss(sk, ack_flag);
3016 if (!tcp_time_to_recover(sk, flag)) {
3017 tcp_try_to_open(sk, flag);
3018 return;
3019 }
3020
3021 /* MTU probe failure: don't reduce cwnd */
3022 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3023 icsk->icsk_mtup.probe_size &&
3024 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3025 tcp_mtup_probe_failed(sk);
3026 /* Restores the reduction we did in tcp_mtup_probe() */
3027 tp->snd_cwnd++;
3028 tcp_simple_retransmit(sk);
3029 return;
3030 }
3031
3032 /* Otherwise enter Recovery state */
3033 tcp_enter_recovery(sk, ece_ack);
3034 fast_rexmit = 1;
3035 }
3036
3037 if (!tcp_is_rack(sk) && do_lost)
3038 tcp_update_scoreboard(sk, fast_rexmit);
3039 *rexmit = REXMIT_LOST;
3040 }
3041
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3042 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3043 {
3044 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3045 struct tcp_sock *tp = tcp_sk(sk);
3046
3047 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3048 /* If the remote keeps returning delayed ACKs, eventually
3049 * the min filter would pick it up and overestimate the
3050 * prop. delay when it expires. Skip suspected delayed ACKs.
3051 */
3052 return;
3053 }
3054 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3055 rtt_us ? : jiffies_to_usecs(1));
3056 }
3057
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3058 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3059 long seq_rtt_us, long sack_rtt_us,
3060 long ca_rtt_us, struct rate_sample *rs)
3061 {
3062 const struct tcp_sock *tp = tcp_sk(sk);
3063
3064 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3065 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3066 * Karn's algorithm forbids taking RTT if some retransmitted data
3067 * is acked (RFC6298).
3068 */
3069 if (seq_rtt_us < 0)
3070 seq_rtt_us = sack_rtt_us;
3071
3072 /* RTTM Rule: A TSecr value received in a segment is used to
3073 * update the averaged RTT measurement only if the segment
3074 * acknowledges some new data, i.e., only if it advances the
3075 * left edge of the send window.
3076 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3077 */
3078 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3079 flag & FLAG_ACKED) {
3080 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3081
3082 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3083 if (!delta)
3084 delta = 1;
3085 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3086 ca_rtt_us = seq_rtt_us;
3087 }
3088 }
3089 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3090 if (seq_rtt_us < 0)
3091 return false;
3092
3093 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3094 * always taken together with ACK, SACK, or TS-opts. Any negative
3095 * values will be skipped with the seq_rtt_us < 0 check above.
3096 */
3097 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3098 tcp_rtt_estimator(sk, seq_rtt_us);
3099 tcp_set_rto(sk);
3100
3101 /* RFC6298: only reset backoff on valid RTT measurement. */
3102 inet_csk(sk)->icsk_backoff = 0;
3103 return true;
3104 }
3105
3106 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3107 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3108 {
3109 struct rate_sample rs;
3110 long rtt_us = -1L;
3111
3112 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3113 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3114
3115 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3116 }
3117
3118
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3119 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3120 {
3121 const struct inet_connection_sock *icsk = inet_csk(sk);
3122
3123 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3124 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3125 }
3126
3127 /* Restart timer after forward progress on connection.
3128 * RFC2988 recommends to restart timer to now+rto.
3129 */
tcp_rearm_rto(struct sock * sk)3130 void tcp_rearm_rto(struct sock *sk)
3131 {
3132 const struct inet_connection_sock *icsk = inet_csk(sk);
3133 struct tcp_sock *tp = tcp_sk(sk);
3134
3135 /* If the retrans timer is currently being used by Fast Open
3136 * for SYN-ACK retrans purpose, stay put.
3137 */
3138 if (rcu_access_pointer(tp->fastopen_rsk))
3139 return;
3140
3141 if (!tp->packets_out) {
3142 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3143 } else {
3144 u32 rto = inet_csk(sk)->icsk_rto;
3145 /* Offset the time elapsed after installing regular RTO */
3146 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3147 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3148 s64 delta_us = tcp_rto_delta_us(sk);
3149 /* delta_us may not be positive if the socket is locked
3150 * when the retrans timer fires and is rescheduled.
3151 */
3152 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3153 }
3154 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3155 TCP_RTO_MAX);
3156 }
3157 }
3158
3159 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3160 static void tcp_set_xmit_timer(struct sock *sk)
3161 {
3162 if (!tcp_schedule_loss_probe(sk, true))
3163 tcp_rearm_rto(sk);
3164 }
3165
3166 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3167 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3168 {
3169 struct tcp_sock *tp = tcp_sk(sk);
3170 u32 packets_acked;
3171
3172 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3173
3174 packets_acked = tcp_skb_pcount(skb);
3175 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3176 return 0;
3177 packets_acked -= tcp_skb_pcount(skb);
3178
3179 if (packets_acked) {
3180 BUG_ON(tcp_skb_pcount(skb) == 0);
3181 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3182 }
3183
3184 return packets_acked;
3185 }
3186
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3187 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3188 const struct sk_buff *ack_skb, u32 prior_snd_una)
3189 {
3190 const struct skb_shared_info *shinfo;
3191
3192 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3193 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3194 return;
3195
3196 shinfo = skb_shinfo(skb);
3197 if (!before(shinfo->tskey, prior_snd_una) &&
3198 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3199 tcp_skb_tsorted_save(skb) {
3200 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3201 } tcp_skb_tsorted_restore(skb);
3202 }
3203 }
3204
3205 /* Remove acknowledged frames from the retransmission queue. If our packet
3206 * is before the ack sequence we can discard it as it's confirmed to have
3207 * arrived at the other end.
3208 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3209 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3210 u32 prior_fack, u32 prior_snd_una,
3211 struct tcp_sacktag_state *sack, bool ece_ack)
3212 {
3213 const struct inet_connection_sock *icsk = inet_csk(sk);
3214 u64 first_ackt, last_ackt;
3215 struct tcp_sock *tp = tcp_sk(sk);
3216 u32 prior_sacked = tp->sacked_out;
3217 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3218 struct sk_buff *skb, *next;
3219 bool fully_acked = true;
3220 long sack_rtt_us = -1L;
3221 long seq_rtt_us = -1L;
3222 long ca_rtt_us = -1L;
3223 u32 pkts_acked = 0;
3224 u32 last_in_flight = 0;
3225 bool rtt_update;
3226 int flag = 0;
3227
3228 first_ackt = 0;
3229
3230 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3231 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3232 const u32 start_seq = scb->seq;
3233 u8 sacked = scb->sacked;
3234 u32 acked_pcount;
3235
3236 /* Determine how many packets and what bytes were acked, tso and else */
3237 if (after(scb->end_seq, tp->snd_una)) {
3238 if (tcp_skb_pcount(skb) == 1 ||
3239 !after(tp->snd_una, scb->seq))
3240 break;
3241
3242 acked_pcount = tcp_tso_acked(sk, skb);
3243 if (!acked_pcount)
3244 break;
3245 fully_acked = false;
3246 } else {
3247 acked_pcount = tcp_skb_pcount(skb);
3248 }
3249
3250 if (unlikely(sacked & TCPCB_RETRANS)) {
3251 if (sacked & TCPCB_SACKED_RETRANS)
3252 tp->retrans_out -= acked_pcount;
3253 flag |= FLAG_RETRANS_DATA_ACKED;
3254 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3255 last_ackt = tcp_skb_timestamp_us(skb);
3256 WARN_ON_ONCE(last_ackt == 0);
3257 if (!first_ackt)
3258 first_ackt = last_ackt;
3259
3260 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3261 if (before(start_seq, reord))
3262 reord = start_seq;
3263 if (!after(scb->end_seq, tp->high_seq))
3264 flag |= FLAG_ORIG_SACK_ACKED;
3265 }
3266
3267 if (sacked & TCPCB_SACKED_ACKED) {
3268 tp->sacked_out -= acked_pcount;
3269 } else if (tcp_is_sack(tp)) {
3270 tcp_count_delivered(tp, acked_pcount, ece_ack);
3271 if (!tcp_skb_spurious_retrans(tp, skb))
3272 tcp_rack_advance(tp, sacked, scb->end_seq,
3273 tcp_skb_timestamp_us(skb));
3274 }
3275 if (sacked & TCPCB_LOST)
3276 tp->lost_out -= acked_pcount;
3277
3278 tp->packets_out -= acked_pcount;
3279 pkts_acked += acked_pcount;
3280 tcp_rate_skb_delivered(sk, skb, sack->rate);
3281
3282 /* Initial outgoing SYN's get put onto the write_queue
3283 * just like anything else we transmit. It is not
3284 * true data, and if we misinform our callers that
3285 * this ACK acks real data, we will erroneously exit
3286 * connection startup slow start one packet too
3287 * quickly. This is severely frowned upon behavior.
3288 */
3289 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3290 flag |= FLAG_DATA_ACKED;
3291 } else {
3292 flag |= FLAG_SYN_ACKED;
3293 tp->retrans_stamp = 0;
3294 }
3295
3296 if (!fully_acked)
3297 break;
3298
3299 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3300
3301 next = skb_rb_next(skb);
3302 if (unlikely(skb == tp->retransmit_skb_hint))
3303 tp->retransmit_skb_hint = NULL;
3304 if (unlikely(skb == tp->lost_skb_hint))
3305 tp->lost_skb_hint = NULL;
3306 tcp_highest_sack_replace(sk, skb, next);
3307 tcp_rtx_queue_unlink_and_free(skb, sk);
3308 }
3309
3310 if (!skb)
3311 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3312
3313 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3314 tp->snd_up = tp->snd_una;
3315
3316 if (skb) {
3317 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3318 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3319 flag |= FLAG_SACK_RENEGING;
3320 }
3321
3322 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3323 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3324 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3325
3326 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3327 last_in_flight && !prior_sacked && fully_acked &&
3328 sack->rate->prior_delivered + 1 == tp->delivered &&
3329 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3330 /* Conservatively mark a delayed ACK. It's typically
3331 * from a lone runt packet over the round trip to
3332 * a receiver w/o out-of-order or CE events.
3333 */
3334 flag |= FLAG_ACK_MAYBE_DELAYED;
3335 }
3336 }
3337 if (sack->first_sackt) {
3338 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3339 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3340 }
3341 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3342 ca_rtt_us, sack->rate);
3343
3344 if (flag & FLAG_ACKED) {
3345 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3346 if (unlikely(icsk->icsk_mtup.probe_size &&
3347 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3348 tcp_mtup_probe_success(sk);
3349 }
3350
3351 if (tcp_is_reno(tp)) {
3352 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3353
3354 /* If any of the cumulatively ACKed segments was
3355 * retransmitted, non-SACK case cannot confirm that
3356 * progress was due to original transmission due to
3357 * lack of TCPCB_SACKED_ACKED bits even if some of
3358 * the packets may have been never retransmitted.
3359 */
3360 if (flag & FLAG_RETRANS_DATA_ACKED)
3361 flag &= ~FLAG_ORIG_SACK_ACKED;
3362 } else {
3363 int delta;
3364
3365 /* Non-retransmitted hole got filled? That's reordering */
3366 if (before(reord, prior_fack))
3367 tcp_check_sack_reordering(sk, reord, 0);
3368
3369 delta = prior_sacked - tp->sacked_out;
3370 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3371 }
3372 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3373 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3374 tcp_skb_timestamp_us(skb))) {
3375 /* Do not re-arm RTO if the sack RTT is measured from data sent
3376 * after when the head was last (re)transmitted. Otherwise the
3377 * timeout may continue to extend in loss recovery.
3378 */
3379 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3380 }
3381
3382 if (icsk->icsk_ca_ops->pkts_acked) {
3383 struct ack_sample sample = { .pkts_acked = pkts_acked,
3384 .rtt_us = sack->rate->rtt_us,
3385 .in_flight = last_in_flight };
3386
3387 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3388 }
3389
3390 #if FASTRETRANS_DEBUG > 0
3391 WARN_ON((int)tp->sacked_out < 0);
3392 WARN_ON((int)tp->lost_out < 0);
3393 WARN_ON((int)tp->retrans_out < 0);
3394 if (!tp->packets_out && tcp_is_sack(tp)) {
3395 icsk = inet_csk(sk);
3396 if (tp->lost_out) {
3397 pr_debug("Leak l=%u %d\n",
3398 tp->lost_out, icsk->icsk_ca_state);
3399 tp->lost_out = 0;
3400 }
3401 if (tp->sacked_out) {
3402 pr_debug("Leak s=%u %d\n",
3403 tp->sacked_out, icsk->icsk_ca_state);
3404 tp->sacked_out = 0;
3405 }
3406 if (tp->retrans_out) {
3407 pr_debug("Leak r=%u %d\n",
3408 tp->retrans_out, icsk->icsk_ca_state);
3409 tp->retrans_out = 0;
3410 }
3411 }
3412 #endif
3413 return flag;
3414 }
3415
tcp_ack_probe(struct sock * sk)3416 static void tcp_ack_probe(struct sock *sk)
3417 {
3418 struct inet_connection_sock *icsk = inet_csk(sk);
3419 struct sk_buff *head = tcp_send_head(sk);
3420 const struct tcp_sock *tp = tcp_sk(sk);
3421
3422 /* Was it a usable window open? */
3423 if (!head)
3424 return;
3425 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3426 icsk->icsk_backoff = 0;
3427 icsk->icsk_probes_tstamp = 0;
3428 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3429 /* Socket must be waked up by subsequent tcp_data_snd_check().
3430 * This function is not for random using!
3431 */
3432 } else {
3433 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3434
3435 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3436 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3437 }
3438 }
3439
tcp_ack_is_dubious(const struct sock * sk,const int flag)3440 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3441 {
3442 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3443 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3444 }
3445
3446 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3447 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3448 {
3449 /* If reordering is high then always grow cwnd whenever data is
3450 * delivered regardless of its ordering. Otherwise stay conservative
3451 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3452 * new SACK or ECE mark may first advance cwnd here and later reduce
3453 * cwnd in tcp_fastretrans_alert() based on more states.
3454 */
3455 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3456 return flag & FLAG_FORWARD_PROGRESS;
3457
3458 return flag & FLAG_DATA_ACKED;
3459 }
3460
3461 /* The "ultimate" congestion control function that aims to replace the rigid
3462 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3463 * It's called toward the end of processing an ACK with precise rate
3464 * information. All transmission or retransmission are delayed afterwards.
3465 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3466 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3467 int flag, const struct rate_sample *rs)
3468 {
3469 const struct inet_connection_sock *icsk = inet_csk(sk);
3470
3471 if (icsk->icsk_ca_ops->cong_control) {
3472 icsk->icsk_ca_ops->cong_control(sk, rs);
3473 return;
3474 }
3475
3476 if (tcp_in_cwnd_reduction(sk)) {
3477 /* Reduce cwnd if state mandates */
3478 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3479 } else if (tcp_may_raise_cwnd(sk, flag)) {
3480 /* Advance cwnd if state allows */
3481 tcp_cong_avoid(sk, ack, acked_sacked);
3482 }
3483 tcp_update_pacing_rate(sk);
3484 }
3485
3486 /* Check that window update is acceptable.
3487 * The function assumes that snd_una<=ack<=snd_next.
3488 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3489 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3490 const u32 ack, const u32 ack_seq,
3491 const u32 nwin)
3492 {
3493 return after(ack, tp->snd_una) ||
3494 after(ack_seq, tp->snd_wl1) ||
3495 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3496 }
3497
3498 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3499 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3500 {
3501 u32 delta = ack - tp->snd_una;
3502
3503 sock_owned_by_me((struct sock *)tp);
3504 tp->bytes_acked += delta;
3505 tp->snd_una = ack;
3506 }
3507
3508 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3509 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3510 {
3511 u32 delta = seq - tp->rcv_nxt;
3512
3513 sock_owned_by_me((struct sock *)tp);
3514 tp->bytes_received += delta;
3515 WRITE_ONCE(tp->rcv_nxt, seq);
3516 }
3517
3518 /* Update our send window.
3519 *
3520 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3521 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3522 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3523 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3524 u32 ack_seq)
3525 {
3526 struct tcp_sock *tp = tcp_sk(sk);
3527 int flag = 0;
3528 u32 nwin = ntohs(tcp_hdr(skb)->window);
3529
3530 if (likely(!tcp_hdr(skb)->syn))
3531 nwin <<= tp->rx_opt.snd_wscale;
3532
3533 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3534 flag |= FLAG_WIN_UPDATE;
3535 tcp_update_wl(tp, ack_seq);
3536
3537 if (tp->snd_wnd != nwin) {
3538 tp->snd_wnd = nwin;
3539
3540 /* Note, it is the only place, where
3541 * fast path is recovered for sending TCP.
3542 */
3543 tp->pred_flags = 0;
3544 tcp_fast_path_check(sk);
3545
3546 if (!tcp_write_queue_empty(sk))
3547 tcp_slow_start_after_idle_check(sk);
3548
3549 if (nwin > tp->max_window) {
3550 tp->max_window = nwin;
3551 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3552 }
3553 }
3554 }
3555
3556 tcp_snd_una_update(tp, ack);
3557
3558 return flag;
3559 }
3560
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3561 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3562 u32 *last_oow_ack_time)
3563 {
3564 if (*last_oow_ack_time) {
3565 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3566
3567 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3568 NET_INC_STATS(net, mib_idx);
3569 return true; /* rate-limited: don't send yet! */
3570 }
3571 }
3572
3573 *last_oow_ack_time = tcp_jiffies32;
3574
3575 return false; /* not rate-limited: go ahead, send dupack now! */
3576 }
3577
3578 /* Return true if we're currently rate-limiting out-of-window ACKs and
3579 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3580 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3581 * attacks that send repeated SYNs or ACKs for the same connection. To
3582 * do this, we do not send a duplicate SYNACK or ACK if the remote
3583 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3584 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3585 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3586 int mib_idx, u32 *last_oow_ack_time)
3587 {
3588 /* Data packets without SYNs are not likely part of an ACK loop. */
3589 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3590 !tcp_hdr(skb)->syn)
3591 return false;
3592
3593 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3594 }
3595
3596 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3597 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3598 {
3599 /* unprotected vars, we dont care of overwrites */
3600 static u32 challenge_timestamp;
3601 static unsigned int challenge_count;
3602 struct tcp_sock *tp = tcp_sk(sk);
3603 struct net *net = sock_net(sk);
3604 u32 count, now;
3605
3606 /* First check our per-socket dupack rate limit. */
3607 if (__tcp_oow_rate_limited(net,
3608 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3609 &tp->last_oow_ack_time))
3610 return;
3611
3612 /* Then check host-wide RFC 5961 rate limit. */
3613 now = jiffies / HZ;
3614 if (now != challenge_timestamp) {
3615 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3616 u32 half = (ack_limit + 1) >> 1;
3617
3618 challenge_timestamp = now;
3619 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3620 }
3621 count = READ_ONCE(challenge_count);
3622 if (count > 0) {
3623 WRITE_ONCE(challenge_count, count - 1);
3624 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3625 tcp_send_ack(sk);
3626 }
3627 }
3628
tcp_store_ts_recent(struct tcp_sock * tp)3629 static void tcp_store_ts_recent(struct tcp_sock *tp)
3630 {
3631 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3632 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3633 }
3634
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3635 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3636 {
3637 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3638 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3639 * extra check below makes sure this can only happen
3640 * for pure ACK frames. -DaveM
3641 *
3642 * Not only, also it occurs for expired timestamps.
3643 */
3644
3645 if (tcp_paws_check(&tp->rx_opt, 0))
3646 tcp_store_ts_recent(tp);
3647 }
3648 }
3649
3650 /* This routine deals with acks during a TLP episode and ends an episode by
3651 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3652 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3653 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3654 {
3655 struct tcp_sock *tp = tcp_sk(sk);
3656
3657 if (before(ack, tp->tlp_high_seq))
3658 return;
3659
3660 if (!tp->tlp_retrans) {
3661 /* TLP of new data has been acknowledged */
3662 tp->tlp_high_seq = 0;
3663 } else if (flag & FLAG_DSACK_TLP) {
3664 /* This DSACK means original and TLP probe arrived; no loss */
3665 tp->tlp_high_seq = 0;
3666 } else if (after(ack, tp->tlp_high_seq)) {
3667 /* ACK advances: there was a loss, so reduce cwnd. Reset
3668 * tlp_high_seq in tcp_init_cwnd_reduction()
3669 */
3670 tcp_init_cwnd_reduction(sk);
3671 tcp_set_ca_state(sk, TCP_CA_CWR);
3672 tcp_end_cwnd_reduction(sk);
3673 tcp_try_keep_open(sk);
3674 NET_INC_STATS(sock_net(sk),
3675 LINUX_MIB_TCPLOSSPROBERECOVERY);
3676 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3677 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3678 /* Pure dupack: original and TLP probe arrived; no loss */
3679 tp->tlp_high_seq = 0;
3680 }
3681 }
3682
tcp_in_ack_event(struct sock * sk,u32 flags)3683 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3684 {
3685 const struct inet_connection_sock *icsk = inet_csk(sk);
3686
3687 if (icsk->icsk_ca_ops->in_ack_event)
3688 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3689 }
3690
3691 /* Congestion control has updated the cwnd already. So if we're in
3692 * loss recovery then now we do any new sends (for FRTO) or
3693 * retransmits (for CA_Loss or CA_recovery) that make sense.
3694 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3695 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3696 {
3697 struct tcp_sock *tp = tcp_sk(sk);
3698
3699 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3700 return;
3701
3702 if (unlikely(rexmit == REXMIT_NEW)) {
3703 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3704 TCP_NAGLE_OFF);
3705 if (after(tp->snd_nxt, tp->high_seq))
3706 return;
3707 tp->frto = 0;
3708 }
3709 tcp_xmit_retransmit_queue(sk);
3710 }
3711
3712 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3713 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3714 {
3715 const struct net *net = sock_net(sk);
3716 struct tcp_sock *tp = tcp_sk(sk);
3717 u32 delivered;
3718
3719 delivered = tp->delivered - prior_delivered;
3720 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3721 if (flag & FLAG_ECE)
3722 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3723
3724 return delivered;
3725 }
3726
3727 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3728 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3729 {
3730 struct inet_connection_sock *icsk = inet_csk(sk);
3731 struct tcp_sock *tp = tcp_sk(sk);
3732 struct tcp_sacktag_state sack_state;
3733 struct rate_sample rs = { .prior_delivered = 0 };
3734 u32 prior_snd_una = tp->snd_una;
3735 bool is_sack_reneg = tp->is_sack_reneg;
3736 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3737 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3738 int num_dupack = 0;
3739 int prior_packets = tp->packets_out;
3740 u32 delivered = tp->delivered;
3741 u32 lost = tp->lost;
3742 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3743 u32 prior_fack;
3744
3745 sack_state.first_sackt = 0;
3746 sack_state.rate = &rs;
3747 sack_state.sack_delivered = 0;
3748
3749 /* We very likely will need to access rtx queue. */
3750 prefetch(sk->tcp_rtx_queue.rb_node);
3751
3752 /* If the ack is older than previous acks
3753 * then we can probably ignore it.
3754 */
3755 if (before(ack, prior_snd_una)) {
3756 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3757 if (before(ack, prior_snd_una - tp->max_window)) {
3758 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3759 tcp_send_challenge_ack(sk, skb);
3760 return -1;
3761 }
3762 goto old_ack;
3763 }
3764
3765 /* If the ack includes data we haven't sent yet, discard
3766 * this segment (RFC793 Section 3.9).
3767 */
3768 if (after(ack, tp->snd_nxt))
3769 return -1;
3770
3771 if (after(ack, prior_snd_una)) {
3772 flag |= FLAG_SND_UNA_ADVANCED;
3773 icsk->icsk_retransmits = 0;
3774
3775 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3776 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3777 if (icsk->icsk_clean_acked)
3778 icsk->icsk_clean_acked(sk, ack);
3779 #endif
3780 }
3781
3782 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3783 rs.prior_in_flight = tcp_packets_in_flight(tp);
3784
3785 /* ts_recent update must be made after we are sure that the packet
3786 * is in window.
3787 */
3788 if (flag & FLAG_UPDATE_TS_RECENT)
3789 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3790
3791 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3792 FLAG_SND_UNA_ADVANCED) {
3793 /* Window is constant, pure forward advance.
3794 * No more checks are required.
3795 * Note, we use the fact that SND.UNA>=SND.WL2.
3796 */
3797 tcp_update_wl(tp, ack_seq);
3798 tcp_snd_una_update(tp, ack);
3799 flag |= FLAG_WIN_UPDATE;
3800
3801 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3802
3803 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3804 } else {
3805 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3806
3807 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3808 flag |= FLAG_DATA;
3809 else
3810 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3811
3812 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3813
3814 if (TCP_SKB_CB(skb)->sacked)
3815 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3816 &sack_state);
3817
3818 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3819 flag |= FLAG_ECE;
3820 ack_ev_flags |= CA_ACK_ECE;
3821 }
3822
3823 if (sack_state.sack_delivered)
3824 tcp_count_delivered(tp, sack_state.sack_delivered,
3825 flag & FLAG_ECE);
3826
3827 if (flag & FLAG_WIN_UPDATE)
3828 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3829
3830 tcp_in_ack_event(sk, ack_ev_flags);
3831 }
3832
3833 /* This is a deviation from RFC3168 since it states that:
3834 * "When the TCP data sender is ready to set the CWR bit after reducing
3835 * the congestion window, it SHOULD set the CWR bit only on the first
3836 * new data packet that it transmits."
3837 * We accept CWR on pure ACKs to be more robust
3838 * with widely-deployed TCP implementations that do this.
3839 */
3840 tcp_ecn_accept_cwr(sk, skb);
3841
3842 /* We passed data and got it acked, remove any soft error
3843 * log. Something worked...
3844 */
3845 sk->sk_err_soft = 0;
3846 icsk->icsk_probes_out = 0;
3847 tp->rcv_tstamp = tcp_jiffies32;
3848 if (!prior_packets)
3849 goto no_queue;
3850
3851 /* See if we can take anything off of the retransmit queue. */
3852 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3853 &sack_state, flag & FLAG_ECE);
3854
3855 tcp_rack_update_reo_wnd(sk, &rs);
3856
3857 if (tp->tlp_high_seq)
3858 tcp_process_tlp_ack(sk, ack, flag);
3859
3860 if (tcp_ack_is_dubious(sk, flag)) {
3861 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3862 num_dupack = 1;
3863 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3864 if (!(flag & FLAG_DATA))
3865 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3866 }
3867 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3868 &rexmit);
3869 }
3870
3871 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3872 if (flag & FLAG_SET_XMIT_TIMER)
3873 tcp_set_xmit_timer(sk);
3874
3875 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3876 sk_dst_confirm(sk);
3877
3878 delivered = tcp_newly_delivered(sk, delivered, flag);
3879 lost = tp->lost - lost; /* freshly marked lost */
3880 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3881 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3882 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3883 tcp_xmit_recovery(sk, rexmit);
3884 return 1;
3885
3886 no_queue:
3887 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3888 if (flag & FLAG_DSACKING_ACK) {
3889 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3890 &rexmit);
3891 tcp_newly_delivered(sk, delivered, flag);
3892 }
3893 /* If this ack opens up a zero window, clear backoff. It was
3894 * being used to time the probes, and is probably far higher than
3895 * it needs to be for normal retransmission.
3896 */
3897 tcp_ack_probe(sk);
3898
3899 if (tp->tlp_high_seq)
3900 tcp_process_tlp_ack(sk, ack, flag);
3901 return 1;
3902
3903 old_ack:
3904 /* If data was SACKed, tag it and see if we should send more data.
3905 * If data was DSACKed, see if we can undo a cwnd reduction.
3906 */
3907 if (TCP_SKB_CB(skb)->sacked) {
3908 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3909 &sack_state);
3910 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3911 &rexmit);
3912 tcp_newly_delivered(sk, delivered, flag);
3913 tcp_xmit_recovery(sk, rexmit);
3914 }
3915
3916 return 0;
3917 }
3918
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3919 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3920 bool syn, struct tcp_fastopen_cookie *foc,
3921 bool exp_opt)
3922 {
3923 /* Valid only in SYN or SYN-ACK with an even length. */
3924 if (!foc || !syn || len < 0 || (len & 1))
3925 return;
3926
3927 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3928 len <= TCP_FASTOPEN_COOKIE_MAX)
3929 memcpy(foc->val, cookie, len);
3930 else if (len != 0)
3931 len = -1;
3932 foc->len = len;
3933 foc->exp = exp_opt;
3934 }
3935
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3936 static bool smc_parse_options(const struct tcphdr *th,
3937 struct tcp_options_received *opt_rx,
3938 const unsigned char *ptr,
3939 int opsize)
3940 {
3941 #if IS_ENABLED(CONFIG_SMC)
3942 if (static_branch_unlikely(&tcp_have_smc)) {
3943 if (th->syn && !(opsize & 1) &&
3944 opsize >= TCPOLEN_EXP_SMC_BASE &&
3945 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3946 opt_rx->smc_ok = 1;
3947 return true;
3948 }
3949 }
3950 #endif
3951 return false;
3952 }
3953
3954 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3955 * value on success.
3956 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3957 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3958 {
3959 const unsigned char *ptr = (const unsigned char *)(th + 1);
3960 int length = (th->doff * 4) - sizeof(struct tcphdr);
3961 u16 mss = 0;
3962
3963 while (length > 0) {
3964 int opcode = *ptr++;
3965 int opsize;
3966
3967 switch (opcode) {
3968 case TCPOPT_EOL:
3969 return mss;
3970 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3971 length--;
3972 continue;
3973 default:
3974 if (length < 2)
3975 return mss;
3976 opsize = *ptr++;
3977 if (opsize < 2) /* "silly options" */
3978 return mss;
3979 if (opsize > length)
3980 return mss; /* fail on partial options */
3981 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3982 u16 in_mss = get_unaligned_be16(ptr);
3983
3984 if (in_mss) {
3985 if (user_mss && user_mss < in_mss)
3986 in_mss = user_mss;
3987 mss = in_mss;
3988 }
3989 }
3990 ptr += opsize - 2;
3991 length -= opsize;
3992 }
3993 }
3994 return mss;
3995 }
3996
3997 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3998 * But, this can also be called on packets in the established flow when
3999 * the fast version below fails.
4000 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4001 void tcp_parse_options(const struct net *net,
4002 const struct sk_buff *skb,
4003 struct tcp_options_received *opt_rx, int estab,
4004 struct tcp_fastopen_cookie *foc)
4005 {
4006 const unsigned char *ptr;
4007 const struct tcphdr *th = tcp_hdr(skb);
4008 int length = (th->doff * 4) - sizeof(struct tcphdr);
4009
4010 ptr = (const unsigned char *)(th + 1);
4011 opt_rx->saw_tstamp = 0;
4012 opt_rx->saw_unknown = 0;
4013
4014 while (length > 0) {
4015 int opcode = *ptr++;
4016 int opsize;
4017
4018 switch (opcode) {
4019 case TCPOPT_EOL:
4020 return;
4021 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4022 length--;
4023 continue;
4024 default:
4025 if (length < 2)
4026 return;
4027 opsize = *ptr++;
4028 if (opsize < 2) /* "silly options" */
4029 return;
4030 if (opsize > length)
4031 return; /* don't parse partial options */
4032 switch (opcode) {
4033 case TCPOPT_MSS:
4034 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4035 u16 in_mss = get_unaligned_be16(ptr);
4036 if (in_mss) {
4037 if (opt_rx->user_mss &&
4038 opt_rx->user_mss < in_mss)
4039 in_mss = opt_rx->user_mss;
4040 opt_rx->mss_clamp = in_mss;
4041 }
4042 }
4043 break;
4044 case TCPOPT_WINDOW:
4045 if (opsize == TCPOLEN_WINDOW && th->syn &&
4046 !estab && net->ipv4.sysctl_tcp_window_scaling) {
4047 __u8 snd_wscale = *(__u8 *)ptr;
4048 opt_rx->wscale_ok = 1;
4049 if (snd_wscale > TCP_MAX_WSCALE) {
4050 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4051 __func__,
4052 snd_wscale,
4053 TCP_MAX_WSCALE);
4054 snd_wscale = TCP_MAX_WSCALE;
4055 }
4056 opt_rx->snd_wscale = snd_wscale;
4057 }
4058 break;
4059 case TCPOPT_TIMESTAMP:
4060 if ((opsize == TCPOLEN_TIMESTAMP) &&
4061 ((estab && opt_rx->tstamp_ok) ||
4062 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4063 opt_rx->saw_tstamp = 1;
4064 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4065 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4066 }
4067 break;
4068 case TCPOPT_SACK_PERM:
4069 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4070 !estab && net->ipv4.sysctl_tcp_sack) {
4071 opt_rx->sack_ok = TCP_SACK_SEEN;
4072 tcp_sack_reset(opt_rx);
4073 }
4074 break;
4075
4076 case TCPOPT_SACK:
4077 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4078 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4079 opt_rx->sack_ok) {
4080 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4081 }
4082 break;
4083 #ifdef CONFIG_TCP_MD5SIG
4084 case TCPOPT_MD5SIG:
4085 /*
4086 * The MD5 Hash has already been
4087 * checked (see tcp_v{4,6}_do_rcv()).
4088 */
4089 break;
4090 #endif
4091 case TCPOPT_FASTOPEN:
4092 tcp_parse_fastopen_option(
4093 opsize - TCPOLEN_FASTOPEN_BASE,
4094 ptr, th->syn, foc, false);
4095 break;
4096
4097 case TCPOPT_EXP:
4098 /* Fast Open option shares code 254 using a
4099 * 16 bits magic number.
4100 */
4101 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4102 get_unaligned_be16(ptr) ==
4103 TCPOPT_FASTOPEN_MAGIC) {
4104 tcp_parse_fastopen_option(opsize -
4105 TCPOLEN_EXP_FASTOPEN_BASE,
4106 ptr + 2, th->syn, foc, true);
4107 break;
4108 }
4109
4110 if (smc_parse_options(th, opt_rx, ptr, opsize))
4111 break;
4112
4113 opt_rx->saw_unknown = 1;
4114 break;
4115
4116 default:
4117 opt_rx->saw_unknown = 1;
4118 }
4119 ptr += opsize-2;
4120 length -= opsize;
4121 }
4122 }
4123 }
4124 EXPORT_SYMBOL(tcp_parse_options);
4125
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4126 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4127 {
4128 const __be32 *ptr = (const __be32 *)(th + 1);
4129
4130 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4131 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4132 tp->rx_opt.saw_tstamp = 1;
4133 ++ptr;
4134 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4135 ++ptr;
4136 if (*ptr)
4137 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4138 else
4139 tp->rx_opt.rcv_tsecr = 0;
4140 return true;
4141 }
4142 return false;
4143 }
4144
4145 /* Fast parse options. This hopes to only see timestamps.
4146 * If it is wrong it falls back on tcp_parse_options().
4147 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4148 static bool tcp_fast_parse_options(const struct net *net,
4149 const struct sk_buff *skb,
4150 const struct tcphdr *th, struct tcp_sock *tp)
4151 {
4152 /* In the spirit of fast parsing, compare doff directly to constant
4153 * values. Because equality is used, short doff can be ignored here.
4154 */
4155 if (th->doff == (sizeof(*th) / 4)) {
4156 tp->rx_opt.saw_tstamp = 0;
4157 return false;
4158 } else if (tp->rx_opt.tstamp_ok &&
4159 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4160 if (tcp_parse_aligned_timestamp(tp, th))
4161 return true;
4162 }
4163
4164 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4165 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4166 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4167
4168 return true;
4169 }
4170
4171 #ifdef CONFIG_TCP_MD5SIG
4172 /*
4173 * Parse MD5 Signature option
4174 */
tcp_parse_md5sig_option(const struct tcphdr * th)4175 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4176 {
4177 int length = (th->doff << 2) - sizeof(*th);
4178 const u8 *ptr = (const u8 *)(th + 1);
4179
4180 /* If not enough data remaining, we can short cut */
4181 while (length >= TCPOLEN_MD5SIG) {
4182 int opcode = *ptr++;
4183 int opsize;
4184
4185 switch (opcode) {
4186 case TCPOPT_EOL:
4187 return NULL;
4188 case TCPOPT_NOP:
4189 length--;
4190 continue;
4191 default:
4192 opsize = *ptr++;
4193 if (opsize < 2 || opsize > length)
4194 return NULL;
4195 if (opcode == TCPOPT_MD5SIG)
4196 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4197 }
4198 ptr += opsize - 2;
4199 length -= opsize;
4200 }
4201 return NULL;
4202 }
4203 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4204 #endif
4205
4206 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4207 *
4208 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4209 * it can pass through stack. So, the following predicate verifies that
4210 * this segment is not used for anything but congestion avoidance or
4211 * fast retransmit. Moreover, we even are able to eliminate most of such
4212 * second order effects, if we apply some small "replay" window (~RTO)
4213 * to timestamp space.
4214 *
4215 * All these measures still do not guarantee that we reject wrapped ACKs
4216 * on networks with high bandwidth, when sequence space is recycled fastly,
4217 * but it guarantees that such events will be very rare and do not affect
4218 * connection seriously. This doesn't look nice, but alas, PAWS is really
4219 * buggy extension.
4220 *
4221 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4222 * states that events when retransmit arrives after original data are rare.
4223 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4224 * the biggest problem on large power networks even with minor reordering.
4225 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4226 * up to bandwidth of 18Gigabit/sec. 8) ]
4227 */
4228
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4229 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4230 {
4231 const struct tcp_sock *tp = tcp_sk(sk);
4232 const struct tcphdr *th = tcp_hdr(skb);
4233 u32 seq = TCP_SKB_CB(skb)->seq;
4234 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4235
4236 return (/* 1. Pure ACK with correct sequence number. */
4237 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4238
4239 /* 2. ... and duplicate ACK. */
4240 ack == tp->snd_una &&
4241
4242 /* 3. ... and does not update window. */
4243 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4244
4245 /* 4. ... and sits in replay window. */
4246 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4247 }
4248
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4249 static inline bool tcp_paws_discard(const struct sock *sk,
4250 const struct sk_buff *skb)
4251 {
4252 const struct tcp_sock *tp = tcp_sk(sk);
4253
4254 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4255 !tcp_disordered_ack(sk, skb);
4256 }
4257
4258 /* Check segment sequence number for validity.
4259 *
4260 * Segment controls are considered valid, if the segment
4261 * fits to the window after truncation to the window. Acceptability
4262 * of data (and SYN, FIN, of course) is checked separately.
4263 * See tcp_data_queue(), for example.
4264 *
4265 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4266 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4267 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4268 * (borrowed from freebsd)
4269 */
4270
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4271 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4272 {
4273 return !before(end_seq, tp->rcv_wup) &&
4274 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4275 }
4276
4277 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4278 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4279 {
4280 trace_tcp_receive_reset(sk);
4281
4282 /* mptcp can't tell us to ignore reset pkts,
4283 * so just ignore the return value of mptcp_incoming_options().
4284 */
4285 if (sk_is_mptcp(sk))
4286 mptcp_incoming_options(sk, skb);
4287
4288 /* We want the right error as BSD sees it (and indeed as we do). */
4289 switch (sk->sk_state) {
4290 case TCP_SYN_SENT:
4291 sk->sk_err = ECONNREFUSED;
4292 break;
4293 case TCP_CLOSE_WAIT:
4294 sk->sk_err = EPIPE;
4295 break;
4296 case TCP_CLOSE:
4297 return;
4298 default:
4299 sk->sk_err = ECONNRESET;
4300 }
4301 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4302 smp_wmb();
4303
4304 tcp_write_queue_purge(sk);
4305 tcp_done(sk);
4306
4307 if (!sock_flag(sk, SOCK_DEAD))
4308 sk_error_report(sk);
4309 }
4310
4311 /*
4312 * Process the FIN bit. This now behaves as it is supposed to work
4313 * and the FIN takes effect when it is validly part of sequence
4314 * space. Not before when we get holes.
4315 *
4316 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4317 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4318 * TIME-WAIT)
4319 *
4320 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4321 * close and we go into CLOSING (and later onto TIME-WAIT)
4322 *
4323 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4324 */
tcp_fin(struct sock * sk)4325 void tcp_fin(struct sock *sk)
4326 {
4327 struct tcp_sock *tp = tcp_sk(sk);
4328
4329 inet_csk_schedule_ack(sk);
4330
4331 sk->sk_shutdown |= RCV_SHUTDOWN;
4332 sock_set_flag(sk, SOCK_DONE);
4333
4334 switch (sk->sk_state) {
4335 case TCP_SYN_RECV:
4336 case TCP_ESTABLISHED:
4337 /* Move to CLOSE_WAIT */
4338 tcp_set_state(sk, TCP_CLOSE_WAIT);
4339 inet_csk_enter_pingpong_mode(sk);
4340 break;
4341
4342 case TCP_CLOSE_WAIT:
4343 case TCP_CLOSING:
4344 /* Received a retransmission of the FIN, do
4345 * nothing.
4346 */
4347 break;
4348 case TCP_LAST_ACK:
4349 /* RFC793: Remain in the LAST-ACK state. */
4350 break;
4351
4352 case TCP_FIN_WAIT1:
4353 /* This case occurs when a simultaneous close
4354 * happens, we must ack the received FIN and
4355 * enter the CLOSING state.
4356 */
4357 tcp_send_ack(sk);
4358 tcp_set_state(sk, TCP_CLOSING);
4359 break;
4360 case TCP_FIN_WAIT2:
4361 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4362 tcp_send_ack(sk);
4363 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4364 break;
4365 default:
4366 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4367 * cases we should never reach this piece of code.
4368 */
4369 pr_err("%s: Impossible, sk->sk_state=%d\n",
4370 __func__, sk->sk_state);
4371 break;
4372 }
4373
4374 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4375 * Probably, we should reset in this case. For now drop them.
4376 */
4377 skb_rbtree_purge(&tp->out_of_order_queue);
4378 if (tcp_is_sack(tp))
4379 tcp_sack_reset(&tp->rx_opt);
4380 sk_mem_reclaim(sk);
4381
4382 if (!sock_flag(sk, SOCK_DEAD)) {
4383 sk->sk_state_change(sk);
4384
4385 /* Do not send POLL_HUP for half duplex close. */
4386 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4387 sk->sk_state == TCP_CLOSE)
4388 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4389 else
4390 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4391 }
4392 }
4393
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4394 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4395 u32 end_seq)
4396 {
4397 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4398 if (before(seq, sp->start_seq))
4399 sp->start_seq = seq;
4400 if (after(end_seq, sp->end_seq))
4401 sp->end_seq = end_seq;
4402 return true;
4403 }
4404 return false;
4405 }
4406
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4407 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4408 {
4409 struct tcp_sock *tp = tcp_sk(sk);
4410
4411 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4412 int mib_idx;
4413
4414 if (before(seq, tp->rcv_nxt))
4415 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4416 else
4417 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4418
4419 NET_INC_STATS(sock_net(sk), mib_idx);
4420
4421 tp->rx_opt.dsack = 1;
4422 tp->duplicate_sack[0].start_seq = seq;
4423 tp->duplicate_sack[0].end_seq = end_seq;
4424 }
4425 }
4426
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4427 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4428 {
4429 struct tcp_sock *tp = tcp_sk(sk);
4430
4431 if (!tp->rx_opt.dsack)
4432 tcp_dsack_set(sk, seq, end_seq);
4433 else
4434 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4435 }
4436
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4437 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4438 {
4439 /* When the ACK path fails or drops most ACKs, the sender would
4440 * timeout and spuriously retransmit the same segment repeatedly.
4441 * The receiver remembers and reflects via DSACKs. Leverage the
4442 * DSACK state and change the txhash to re-route speculatively.
4443 */
4444 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4445 sk_rethink_txhash(sk))
4446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4447 }
4448
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4449 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4450 {
4451 struct tcp_sock *tp = tcp_sk(sk);
4452
4453 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4454 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4455 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4456 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4457
4458 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4459 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4460
4461 tcp_rcv_spurious_retrans(sk, skb);
4462 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4463 end_seq = tp->rcv_nxt;
4464 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4465 }
4466 }
4467
4468 tcp_send_ack(sk);
4469 }
4470
4471 /* These routines update the SACK block as out-of-order packets arrive or
4472 * in-order packets close up the sequence space.
4473 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4474 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4475 {
4476 int this_sack;
4477 struct tcp_sack_block *sp = &tp->selective_acks[0];
4478 struct tcp_sack_block *swalk = sp + 1;
4479
4480 /* See if the recent change to the first SACK eats into
4481 * or hits the sequence space of other SACK blocks, if so coalesce.
4482 */
4483 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4484 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4485 int i;
4486
4487 /* Zap SWALK, by moving every further SACK up by one slot.
4488 * Decrease num_sacks.
4489 */
4490 tp->rx_opt.num_sacks--;
4491 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4492 sp[i] = sp[i + 1];
4493 continue;
4494 }
4495 this_sack++;
4496 swalk++;
4497 }
4498 }
4499
tcp_sack_compress_send_ack(struct sock * sk)4500 static void tcp_sack_compress_send_ack(struct sock *sk)
4501 {
4502 struct tcp_sock *tp = tcp_sk(sk);
4503
4504 if (!tp->compressed_ack)
4505 return;
4506
4507 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4508 __sock_put(sk);
4509
4510 /* Since we have to send one ack finally,
4511 * substract one from tp->compressed_ack to keep
4512 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4513 */
4514 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4515 tp->compressed_ack - 1);
4516
4517 tp->compressed_ack = 0;
4518 tcp_send_ack(sk);
4519 }
4520
4521 /* Reasonable amount of sack blocks included in TCP SACK option
4522 * The max is 4, but this becomes 3 if TCP timestamps are there.
4523 * Given that SACK packets might be lost, be conservative and use 2.
4524 */
4525 #define TCP_SACK_BLOCKS_EXPECTED 2
4526
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4527 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4528 {
4529 struct tcp_sock *tp = tcp_sk(sk);
4530 struct tcp_sack_block *sp = &tp->selective_acks[0];
4531 int cur_sacks = tp->rx_opt.num_sacks;
4532 int this_sack;
4533
4534 if (!cur_sacks)
4535 goto new_sack;
4536
4537 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4538 if (tcp_sack_extend(sp, seq, end_seq)) {
4539 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4540 tcp_sack_compress_send_ack(sk);
4541 /* Rotate this_sack to the first one. */
4542 for (; this_sack > 0; this_sack--, sp--)
4543 swap(*sp, *(sp - 1));
4544 if (cur_sacks > 1)
4545 tcp_sack_maybe_coalesce(tp);
4546 return;
4547 }
4548 }
4549
4550 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4551 tcp_sack_compress_send_ack(sk);
4552
4553 /* Could not find an adjacent existing SACK, build a new one,
4554 * put it at the front, and shift everyone else down. We
4555 * always know there is at least one SACK present already here.
4556 *
4557 * If the sack array is full, forget about the last one.
4558 */
4559 if (this_sack >= TCP_NUM_SACKS) {
4560 this_sack--;
4561 tp->rx_opt.num_sacks--;
4562 sp--;
4563 }
4564 for (; this_sack > 0; this_sack--, sp--)
4565 *sp = *(sp - 1);
4566
4567 new_sack:
4568 /* Build the new head SACK, and we're done. */
4569 sp->start_seq = seq;
4570 sp->end_seq = end_seq;
4571 tp->rx_opt.num_sacks++;
4572 }
4573
4574 /* RCV.NXT advances, some SACKs should be eaten. */
4575
tcp_sack_remove(struct tcp_sock * tp)4576 static void tcp_sack_remove(struct tcp_sock *tp)
4577 {
4578 struct tcp_sack_block *sp = &tp->selective_acks[0];
4579 int num_sacks = tp->rx_opt.num_sacks;
4580 int this_sack;
4581
4582 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4583 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4584 tp->rx_opt.num_sacks = 0;
4585 return;
4586 }
4587
4588 for (this_sack = 0; this_sack < num_sacks;) {
4589 /* Check if the start of the sack is covered by RCV.NXT. */
4590 if (!before(tp->rcv_nxt, sp->start_seq)) {
4591 int i;
4592
4593 /* RCV.NXT must cover all the block! */
4594 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4595
4596 /* Zap this SACK, by moving forward any other SACKS. */
4597 for (i = this_sack+1; i < num_sacks; i++)
4598 tp->selective_acks[i-1] = tp->selective_acks[i];
4599 num_sacks--;
4600 continue;
4601 }
4602 this_sack++;
4603 sp++;
4604 }
4605 tp->rx_opt.num_sacks = num_sacks;
4606 }
4607
4608 /**
4609 * tcp_try_coalesce - try to merge skb to prior one
4610 * @sk: socket
4611 * @to: prior buffer
4612 * @from: buffer to add in queue
4613 * @fragstolen: pointer to boolean
4614 *
4615 * Before queueing skb @from after @to, try to merge them
4616 * to reduce overall memory use and queue lengths, if cost is small.
4617 * Packets in ofo or receive queues can stay a long time.
4618 * Better try to coalesce them right now to avoid future collapses.
4619 * Returns true if caller should free @from instead of queueing it
4620 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4621 static bool tcp_try_coalesce(struct sock *sk,
4622 struct sk_buff *to,
4623 struct sk_buff *from,
4624 bool *fragstolen)
4625 {
4626 int delta;
4627
4628 *fragstolen = false;
4629
4630 /* Its possible this segment overlaps with prior segment in queue */
4631 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4632 return false;
4633
4634 if (!mptcp_skb_can_collapse(to, from))
4635 return false;
4636
4637 #ifdef CONFIG_TLS_DEVICE
4638 if (from->decrypted != to->decrypted)
4639 return false;
4640 #endif
4641
4642 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4643 return false;
4644
4645 atomic_add(delta, &sk->sk_rmem_alloc);
4646 sk_mem_charge(sk, delta);
4647 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4648 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4649 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4650 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4651
4652 if (TCP_SKB_CB(from)->has_rxtstamp) {
4653 TCP_SKB_CB(to)->has_rxtstamp = true;
4654 to->tstamp = from->tstamp;
4655 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4656 }
4657
4658 return true;
4659 }
4660
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4661 static bool tcp_ooo_try_coalesce(struct sock *sk,
4662 struct sk_buff *to,
4663 struct sk_buff *from,
4664 bool *fragstolen)
4665 {
4666 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4667
4668 /* In case tcp_drop() is called later, update to->gso_segs */
4669 if (res) {
4670 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4671 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4672
4673 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4674 }
4675 return res;
4676 }
4677
tcp_drop(struct sock * sk,struct sk_buff * skb)4678 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4679 {
4680 sk_drops_add(sk, skb);
4681 __kfree_skb(skb);
4682 }
4683
4684 /* This one checks to see if we can put data from the
4685 * out_of_order queue into the receive_queue.
4686 */
tcp_ofo_queue(struct sock * sk)4687 static void tcp_ofo_queue(struct sock *sk)
4688 {
4689 struct tcp_sock *tp = tcp_sk(sk);
4690 __u32 dsack_high = tp->rcv_nxt;
4691 bool fin, fragstolen, eaten;
4692 struct sk_buff *skb, *tail;
4693 struct rb_node *p;
4694
4695 p = rb_first(&tp->out_of_order_queue);
4696 while (p) {
4697 skb = rb_to_skb(p);
4698 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4699 break;
4700
4701 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4702 __u32 dsack = dsack_high;
4703 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4704 dsack_high = TCP_SKB_CB(skb)->end_seq;
4705 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4706 }
4707 p = rb_next(p);
4708 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4709
4710 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4711 tcp_drop(sk, skb);
4712 continue;
4713 }
4714
4715 tail = skb_peek_tail(&sk->sk_receive_queue);
4716 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4717 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4718 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4719 if (!eaten)
4720 __skb_queue_tail(&sk->sk_receive_queue, skb);
4721 else
4722 kfree_skb_partial(skb, fragstolen);
4723
4724 if (unlikely(fin)) {
4725 tcp_fin(sk);
4726 /* tcp_fin() purges tp->out_of_order_queue,
4727 * so we must end this loop right now.
4728 */
4729 break;
4730 }
4731 }
4732 }
4733
4734 static bool tcp_prune_ofo_queue(struct sock *sk);
4735 static int tcp_prune_queue(struct sock *sk);
4736
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4737 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4738 unsigned int size)
4739 {
4740 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4741 !sk_rmem_schedule(sk, skb, size)) {
4742
4743 if (tcp_prune_queue(sk) < 0)
4744 return -1;
4745
4746 while (!sk_rmem_schedule(sk, skb, size)) {
4747 if (!tcp_prune_ofo_queue(sk))
4748 return -1;
4749 }
4750 }
4751 return 0;
4752 }
4753
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4754 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4755 {
4756 struct tcp_sock *tp = tcp_sk(sk);
4757 struct rb_node **p, *parent;
4758 struct sk_buff *skb1;
4759 u32 seq, end_seq;
4760 bool fragstolen;
4761
4762 tcp_ecn_check_ce(sk, skb);
4763
4764 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4765 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4766 sk->sk_data_ready(sk);
4767 tcp_drop(sk, skb);
4768 return;
4769 }
4770
4771 /* Disable header prediction. */
4772 tp->pred_flags = 0;
4773 inet_csk_schedule_ack(sk);
4774
4775 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4776 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4777 seq = TCP_SKB_CB(skb)->seq;
4778 end_seq = TCP_SKB_CB(skb)->end_seq;
4779
4780 p = &tp->out_of_order_queue.rb_node;
4781 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4782 /* Initial out of order segment, build 1 SACK. */
4783 if (tcp_is_sack(tp)) {
4784 tp->rx_opt.num_sacks = 1;
4785 tp->selective_acks[0].start_seq = seq;
4786 tp->selective_acks[0].end_seq = end_seq;
4787 }
4788 rb_link_node(&skb->rbnode, NULL, p);
4789 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4790 tp->ooo_last_skb = skb;
4791 goto end;
4792 }
4793
4794 /* In the typical case, we are adding an skb to the end of the list.
4795 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4796 */
4797 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4798 skb, &fragstolen)) {
4799 coalesce_done:
4800 /* For non sack flows, do not grow window to force DUPACK
4801 * and trigger fast retransmit.
4802 */
4803 if (tcp_is_sack(tp))
4804 tcp_grow_window(sk, skb, true);
4805 kfree_skb_partial(skb, fragstolen);
4806 skb = NULL;
4807 goto add_sack;
4808 }
4809 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4810 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4811 parent = &tp->ooo_last_skb->rbnode;
4812 p = &parent->rb_right;
4813 goto insert;
4814 }
4815
4816 /* Find place to insert this segment. Handle overlaps on the way. */
4817 parent = NULL;
4818 while (*p) {
4819 parent = *p;
4820 skb1 = rb_to_skb(parent);
4821 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4822 p = &parent->rb_left;
4823 continue;
4824 }
4825 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4826 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4827 /* All the bits are present. Drop. */
4828 NET_INC_STATS(sock_net(sk),
4829 LINUX_MIB_TCPOFOMERGE);
4830 tcp_drop(sk, skb);
4831 skb = NULL;
4832 tcp_dsack_set(sk, seq, end_seq);
4833 goto add_sack;
4834 }
4835 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4836 /* Partial overlap. */
4837 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4838 } else {
4839 /* skb's seq == skb1's seq and skb covers skb1.
4840 * Replace skb1 with skb.
4841 */
4842 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4843 &tp->out_of_order_queue);
4844 tcp_dsack_extend(sk,
4845 TCP_SKB_CB(skb1)->seq,
4846 TCP_SKB_CB(skb1)->end_seq);
4847 NET_INC_STATS(sock_net(sk),
4848 LINUX_MIB_TCPOFOMERGE);
4849 tcp_drop(sk, skb1);
4850 goto merge_right;
4851 }
4852 } else if (tcp_ooo_try_coalesce(sk, skb1,
4853 skb, &fragstolen)) {
4854 goto coalesce_done;
4855 }
4856 p = &parent->rb_right;
4857 }
4858 insert:
4859 /* Insert segment into RB tree. */
4860 rb_link_node(&skb->rbnode, parent, p);
4861 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4862
4863 merge_right:
4864 /* Remove other segments covered by skb. */
4865 while ((skb1 = skb_rb_next(skb)) != NULL) {
4866 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4867 break;
4868 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4869 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4870 end_seq);
4871 break;
4872 }
4873 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4874 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4875 TCP_SKB_CB(skb1)->end_seq);
4876 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4877 tcp_drop(sk, skb1);
4878 }
4879 /* If there is no skb after us, we are the last_skb ! */
4880 if (!skb1)
4881 tp->ooo_last_skb = skb;
4882
4883 add_sack:
4884 if (tcp_is_sack(tp))
4885 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4886 end:
4887 if (skb) {
4888 /* For non sack flows, do not grow window to force DUPACK
4889 * and trigger fast retransmit.
4890 */
4891 if (tcp_is_sack(tp))
4892 tcp_grow_window(sk, skb, false);
4893 skb_condense(skb);
4894 skb_set_owner_r(skb, sk);
4895 }
4896 }
4897
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4898 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4899 bool *fragstolen)
4900 {
4901 int eaten;
4902 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4903
4904 eaten = (tail &&
4905 tcp_try_coalesce(sk, tail,
4906 skb, fragstolen)) ? 1 : 0;
4907 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4908 if (!eaten) {
4909 __skb_queue_tail(&sk->sk_receive_queue, skb);
4910 skb_set_owner_r(skb, sk);
4911 }
4912 return eaten;
4913 }
4914
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4915 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4916 {
4917 struct sk_buff *skb;
4918 int err = -ENOMEM;
4919 int data_len = 0;
4920 bool fragstolen;
4921
4922 if (size == 0)
4923 return 0;
4924
4925 if (size > PAGE_SIZE) {
4926 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4927
4928 data_len = npages << PAGE_SHIFT;
4929 size = data_len + (size & ~PAGE_MASK);
4930 }
4931 skb = alloc_skb_with_frags(size - data_len, data_len,
4932 PAGE_ALLOC_COSTLY_ORDER,
4933 &err, sk->sk_allocation);
4934 if (!skb)
4935 goto err;
4936
4937 skb_put(skb, size - data_len);
4938 skb->data_len = data_len;
4939 skb->len = size;
4940
4941 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4943 goto err_free;
4944 }
4945
4946 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4947 if (err)
4948 goto err_free;
4949
4950 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4951 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4952 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4953
4954 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4955 WARN_ON_ONCE(fragstolen); /* should not happen */
4956 __kfree_skb(skb);
4957 }
4958 return size;
4959
4960 err_free:
4961 kfree_skb(skb);
4962 err:
4963 return err;
4964
4965 }
4966
tcp_data_ready(struct sock * sk)4967 void tcp_data_ready(struct sock *sk)
4968 {
4969 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4970 sk->sk_data_ready(sk);
4971 }
4972
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4973 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4974 {
4975 struct tcp_sock *tp = tcp_sk(sk);
4976 bool fragstolen;
4977 int eaten;
4978
4979 /* If a subflow has been reset, the packet should not continue
4980 * to be processed, drop the packet.
4981 */
4982 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
4983 __kfree_skb(skb);
4984 return;
4985 }
4986
4987 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4988 __kfree_skb(skb);
4989 return;
4990 }
4991 skb_dst_drop(skb);
4992 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4993
4994 tp->rx_opt.dsack = 0;
4995
4996 /* Queue data for delivery to the user.
4997 * Packets in sequence go to the receive queue.
4998 * Out of sequence packets to the out_of_order_queue.
4999 */
5000 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5001 if (tcp_receive_window(tp) == 0) {
5002 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5003 goto out_of_window;
5004 }
5005
5006 /* Ok. In sequence. In window. */
5007 queue_and_out:
5008 if (skb_queue_len(&sk->sk_receive_queue) == 0)
5009 sk_forced_mem_schedule(sk, skb->truesize);
5010 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5011 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5012 sk->sk_data_ready(sk);
5013 goto drop;
5014 }
5015
5016 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5017 if (skb->len)
5018 tcp_event_data_recv(sk, skb);
5019 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5020 tcp_fin(sk);
5021
5022 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5023 tcp_ofo_queue(sk);
5024
5025 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5026 * gap in queue is filled.
5027 */
5028 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5029 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5030 }
5031
5032 if (tp->rx_opt.num_sacks)
5033 tcp_sack_remove(tp);
5034
5035 tcp_fast_path_check(sk);
5036
5037 if (eaten > 0)
5038 kfree_skb_partial(skb, fragstolen);
5039 if (!sock_flag(sk, SOCK_DEAD))
5040 tcp_data_ready(sk);
5041 return;
5042 }
5043
5044 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5045 tcp_rcv_spurious_retrans(sk, skb);
5046 /* A retransmit, 2nd most common case. Force an immediate ack. */
5047 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5048 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5049
5050 out_of_window:
5051 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5052 inet_csk_schedule_ack(sk);
5053 drop:
5054 tcp_drop(sk, skb);
5055 return;
5056 }
5057
5058 /* Out of window. F.e. zero window probe. */
5059 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5060 goto out_of_window;
5061
5062 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5063 /* Partial packet, seq < rcv_next < end_seq */
5064 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5065
5066 /* If window is closed, drop tail of packet. But after
5067 * remembering D-SACK for its head made in previous line.
5068 */
5069 if (!tcp_receive_window(tp)) {
5070 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5071 goto out_of_window;
5072 }
5073 goto queue_and_out;
5074 }
5075
5076 tcp_data_queue_ofo(sk, skb);
5077 }
5078
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5079 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5080 {
5081 if (list)
5082 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5083
5084 return skb_rb_next(skb);
5085 }
5086
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5087 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5088 struct sk_buff_head *list,
5089 struct rb_root *root)
5090 {
5091 struct sk_buff *next = tcp_skb_next(skb, list);
5092
5093 if (list)
5094 __skb_unlink(skb, list);
5095 else
5096 rb_erase(&skb->rbnode, root);
5097
5098 __kfree_skb(skb);
5099 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5100
5101 return next;
5102 }
5103
5104 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5105 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5106 {
5107 struct rb_node **p = &root->rb_node;
5108 struct rb_node *parent = NULL;
5109 struct sk_buff *skb1;
5110
5111 while (*p) {
5112 parent = *p;
5113 skb1 = rb_to_skb(parent);
5114 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5115 p = &parent->rb_left;
5116 else
5117 p = &parent->rb_right;
5118 }
5119 rb_link_node(&skb->rbnode, parent, p);
5120 rb_insert_color(&skb->rbnode, root);
5121 }
5122
5123 /* Collapse contiguous sequence of skbs head..tail with
5124 * sequence numbers start..end.
5125 *
5126 * If tail is NULL, this means until the end of the queue.
5127 *
5128 * Segments with FIN/SYN are not collapsed (only because this
5129 * simplifies code)
5130 */
5131 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5132 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5133 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5134 {
5135 struct sk_buff *skb = head, *n;
5136 struct sk_buff_head tmp;
5137 bool end_of_skbs;
5138
5139 /* First, check that queue is collapsible and find
5140 * the point where collapsing can be useful.
5141 */
5142 restart:
5143 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5144 n = tcp_skb_next(skb, list);
5145
5146 /* No new bits? It is possible on ofo queue. */
5147 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5148 skb = tcp_collapse_one(sk, skb, list, root);
5149 if (!skb)
5150 break;
5151 goto restart;
5152 }
5153
5154 /* The first skb to collapse is:
5155 * - not SYN/FIN and
5156 * - bloated or contains data before "start" or
5157 * overlaps to the next one and mptcp allow collapsing.
5158 */
5159 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5160 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5161 before(TCP_SKB_CB(skb)->seq, start))) {
5162 end_of_skbs = false;
5163 break;
5164 }
5165
5166 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5167 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5168 end_of_skbs = false;
5169 break;
5170 }
5171
5172 /* Decided to skip this, advance start seq. */
5173 start = TCP_SKB_CB(skb)->end_seq;
5174 }
5175 if (end_of_skbs ||
5176 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5177 return;
5178
5179 __skb_queue_head_init(&tmp);
5180
5181 while (before(start, end)) {
5182 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5183 struct sk_buff *nskb;
5184
5185 nskb = alloc_skb(copy, GFP_ATOMIC);
5186 if (!nskb)
5187 break;
5188
5189 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5190 #ifdef CONFIG_TLS_DEVICE
5191 nskb->decrypted = skb->decrypted;
5192 #endif
5193 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5194 if (list)
5195 __skb_queue_before(list, skb, nskb);
5196 else
5197 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5198 skb_set_owner_r(nskb, sk);
5199 mptcp_skb_ext_move(nskb, skb);
5200
5201 /* Copy data, releasing collapsed skbs. */
5202 while (copy > 0) {
5203 int offset = start - TCP_SKB_CB(skb)->seq;
5204 int size = TCP_SKB_CB(skb)->end_seq - start;
5205
5206 BUG_ON(offset < 0);
5207 if (size > 0) {
5208 size = min(copy, size);
5209 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5210 BUG();
5211 TCP_SKB_CB(nskb)->end_seq += size;
5212 copy -= size;
5213 start += size;
5214 }
5215 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5216 skb = tcp_collapse_one(sk, skb, list, root);
5217 if (!skb ||
5218 skb == tail ||
5219 !mptcp_skb_can_collapse(nskb, skb) ||
5220 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5221 goto end;
5222 #ifdef CONFIG_TLS_DEVICE
5223 if (skb->decrypted != nskb->decrypted)
5224 goto end;
5225 #endif
5226 }
5227 }
5228 }
5229 end:
5230 skb_queue_walk_safe(&tmp, skb, n)
5231 tcp_rbtree_insert(root, skb);
5232 }
5233
5234 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5235 * and tcp_collapse() them until all the queue is collapsed.
5236 */
tcp_collapse_ofo_queue(struct sock * sk)5237 static void tcp_collapse_ofo_queue(struct sock *sk)
5238 {
5239 struct tcp_sock *tp = tcp_sk(sk);
5240 u32 range_truesize, sum_tiny = 0;
5241 struct sk_buff *skb, *head;
5242 u32 start, end;
5243
5244 skb = skb_rb_first(&tp->out_of_order_queue);
5245 new_range:
5246 if (!skb) {
5247 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5248 return;
5249 }
5250 start = TCP_SKB_CB(skb)->seq;
5251 end = TCP_SKB_CB(skb)->end_seq;
5252 range_truesize = skb->truesize;
5253
5254 for (head = skb;;) {
5255 skb = skb_rb_next(skb);
5256
5257 /* Range is terminated when we see a gap or when
5258 * we are at the queue end.
5259 */
5260 if (!skb ||
5261 after(TCP_SKB_CB(skb)->seq, end) ||
5262 before(TCP_SKB_CB(skb)->end_seq, start)) {
5263 /* Do not attempt collapsing tiny skbs */
5264 if (range_truesize != head->truesize ||
5265 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5266 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5267 head, skb, start, end);
5268 } else {
5269 sum_tiny += range_truesize;
5270 if (sum_tiny > sk->sk_rcvbuf >> 3)
5271 return;
5272 }
5273 goto new_range;
5274 }
5275
5276 range_truesize += skb->truesize;
5277 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5278 start = TCP_SKB_CB(skb)->seq;
5279 if (after(TCP_SKB_CB(skb)->end_seq, end))
5280 end = TCP_SKB_CB(skb)->end_seq;
5281 }
5282 }
5283
5284 /*
5285 * Clean the out-of-order queue to make room.
5286 * We drop high sequences packets to :
5287 * 1) Let a chance for holes to be filled.
5288 * 2) not add too big latencies if thousands of packets sit there.
5289 * (But if application shrinks SO_RCVBUF, we could still end up
5290 * freeing whole queue here)
5291 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5292 *
5293 * Return true if queue has shrunk.
5294 */
tcp_prune_ofo_queue(struct sock * sk)5295 static bool tcp_prune_ofo_queue(struct sock *sk)
5296 {
5297 struct tcp_sock *tp = tcp_sk(sk);
5298 struct rb_node *node, *prev;
5299 int goal;
5300
5301 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5302 return false;
5303
5304 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5305 goal = sk->sk_rcvbuf >> 3;
5306 node = &tp->ooo_last_skb->rbnode;
5307 do {
5308 prev = rb_prev(node);
5309 rb_erase(node, &tp->out_of_order_queue);
5310 goal -= rb_to_skb(node)->truesize;
5311 tcp_drop(sk, rb_to_skb(node));
5312 if (!prev || goal <= 0) {
5313 sk_mem_reclaim(sk);
5314 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5315 !tcp_under_memory_pressure(sk))
5316 break;
5317 goal = sk->sk_rcvbuf >> 3;
5318 }
5319 node = prev;
5320 } while (node);
5321 tp->ooo_last_skb = rb_to_skb(prev);
5322
5323 /* Reset SACK state. A conforming SACK implementation will
5324 * do the same at a timeout based retransmit. When a connection
5325 * is in a sad state like this, we care only about integrity
5326 * of the connection not performance.
5327 */
5328 if (tp->rx_opt.sack_ok)
5329 tcp_sack_reset(&tp->rx_opt);
5330 return true;
5331 }
5332
5333 /* Reduce allocated memory if we can, trying to get
5334 * the socket within its memory limits again.
5335 *
5336 * Return less than zero if we should start dropping frames
5337 * until the socket owning process reads some of the data
5338 * to stabilize the situation.
5339 */
tcp_prune_queue(struct sock * sk)5340 static int tcp_prune_queue(struct sock *sk)
5341 {
5342 struct tcp_sock *tp = tcp_sk(sk);
5343
5344 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5345
5346 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5347 tcp_clamp_window(sk);
5348 else if (tcp_under_memory_pressure(sk))
5349 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5350
5351 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5352 return 0;
5353
5354 tcp_collapse_ofo_queue(sk);
5355 if (!skb_queue_empty(&sk->sk_receive_queue))
5356 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5357 skb_peek(&sk->sk_receive_queue),
5358 NULL,
5359 tp->copied_seq, tp->rcv_nxt);
5360 sk_mem_reclaim(sk);
5361
5362 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5363 return 0;
5364
5365 /* Collapsing did not help, destructive actions follow.
5366 * This must not ever occur. */
5367
5368 tcp_prune_ofo_queue(sk);
5369
5370 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5371 return 0;
5372
5373 /* If we are really being abused, tell the caller to silently
5374 * drop receive data on the floor. It will get retransmitted
5375 * and hopefully then we'll have sufficient space.
5376 */
5377 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5378
5379 /* Massive buffer overcommit. */
5380 tp->pred_flags = 0;
5381 return -1;
5382 }
5383
tcp_should_expand_sndbuf(const struct sock * sk)5384 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5385 {
5386 const struct tcp_sock *tp = tcp_sk(sk);
5387
5388 /* If the user specified a specific send buffer setting, do
5389 * not modify it.
5390 */
5391 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5392 return false;
5393
5394 /* If we are under global TCP memory pressure, do not expand. */
5395 if (tcp_under_memory_pressure(sk))
5396 return false;
5397
5398 /* If we are under soft global TCP memory pressure, do not expand. */
5399 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5400 return false;
5401
5402 /* If we filled the congestion window, do not expand. */
5403 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5404 return false;
5405
5406 return true;
5407 }
5408
tcp_new_space(struct sock * sk)5409 static void tcp_new_space(struct sock *sk)
5410 {
5411 struct tcp_sock *tp = tcp_sk(sk);
5412
5413 if (tcp_should_expand_sndbuf(sk)) {
5414 tcp_sndbuf_expand(sk);
5415 tp->snd_cwnd_stamp = tcp_jiffies32;
5416 }
5417
5418 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5419 }
5420
tcp_check_space(struct sock * sk)5421 static void tcp_check_space(struct sock *sk)
5422 {
5423 /* pairs with tcp_poll() */
5424 smp_mb();
5425 if (sk->sk_socket &&
5426 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5427 tcp_new_space(sk);
5428 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5429 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5430 }
5431 }
5432
tcp_data_snd_check(struct sock * sk)5433 static inline void tcp_data_snd_check(struct sock *sk)
5434 {
5435 tcp_push_pending_frames(sk);
5436 tcp_check_space(sk);
5437 }
5438
5439 /*
5440 * Check if sending an ack is needed.
5441 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5442 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5443 {
5444 struct tcp_sock *tp = tcp_sk(sk);
5445 unsigned long rtt, delay;
5446
5447 /* More than one full frame received... */
5448 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5449 /* ... and right edge of window advances far enough.
5450 * (tcp_recvmsg() will send ACK otherwise).
5451 * If application uses SO_RCVLOWAT, we want send ack now if
5452 * we have not received enough bytes to satisfy the condition.
5453 */
5454 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5455 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5456 /* We ACK each frame or... */
5457 tcp_in_quickack_mode(sk) ||
5458 /* Protocol state mandates a one-time immediate ACK */
5459 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5460 send_now:
5461 tcp_send_ack(sk);
5462 return;
5463 }
5464
5465 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5466 tcp_send_delayed_ack(sk);
5467 return;
5468 }
5469
5470 if (!tcp_is_sack(tp) ||
5471 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5472 goto send_now;
5473
5474 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5475 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5476 tp->dup_ack_counter = 0;
5477 }
5478 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5479 tp->dup_ack_counter++;
5480 goto send_now;
5481 }
5482 tp->compressed_ack++;
5483 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5484 return;
5485
5486 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5487
5488 rtt = tp->rcv_rtt_est.rtt_us;
5489 if (tp->srtt_us && tp->srtt_us < rtt)
5490 rtt = tp->srtt_us;
5491
5492 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5493 rtt * (NSEC_PER_USEC >> 3)/20);
5494 sock_hold(sk);
5495 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5496 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5497 HRTIMER_MODE_REL_PINNED_SOFT);
5498 }
5499
tcp_ack_snd_check(struct sock * sk)5500 static inline void tcp_ack_snd_check(struct sock *sk)
5501 {
5502 if (!inet_csk_ack_scheduled(sk)) {
5503 /* We sent a data segment already. */
5504 return;
5505 }
5506 __tcp_ack_snd_check(sk, 1);
5507 }
5508
5509 /*
5510 * This routine is only called when we have urgent data
5511 * signaled. Its the 'slow' part of tcp_urg. It could be
5512 * moved inline now as tcp_urg is only called from one
5513 * place. We handle URGent data wrong. We have to - as
5514 * BSD still doesn't use the correction from RFC961.
5515 * For 1003.1g we should support a new option TCP_STDURG to permit
5516 * either form (or just set the sysctl tcp_stdurg).
5517 */
5518
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5519 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5520 {
5521 struct tcp_sock *tp = tcp_sk(sk);
5522 u32 ptr = ntohs(th->urg_ptr);
5523
5524 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5525 ptr--;
5526 ptr += ntohl(th->seq);
5527
5528 /* Ignore urgent data that we've already seen and read. */
5529 if (after(tp->copied_seq, ptr))
5530 return;
5531
5532 /* Do not replay urg ptr.
5533 *
5534 * NOTE: interesting situation not covered by specs.
5535 * Misbehaving sender may send urg ptr, pointing to segment,
5536 * which we already have in ofo queue. We are not able to fetch
5537 * such data and will stay in TCP_URG_NOTYET until will be eaten
5538 * by recvmsg(). Seems, we are not obliged to handle such wicked
5539 * situations. But it is worth to think about possibility of some
5540 * DoSes using some hypothetical application level deadlock.
5541 */
5542 if (before(ptr, tp->rcv_nxt))
5543 return;
5544
5545 /* Do we already have a newer (or duplicate) urgent pointer? */
5546 if (tp->urg_data && !after(ptr, tp->urg_seq))
5547 return;
5548
5549 /* Tell the world about our new urgent pointer. */
5550 sk_send_sigurg(sk);
5551
5552 /* We may be adding urgent data when the last byte read was
5553 * urgent. To do this requires some care. We cannot just ignore
5554 * tp->copied_seq since we would read the last urgent byte again
5555 * as data, nor can we alter copied_seq until this data arrives
5556 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5557 *
5558 * NOTE. Double Dutch. Rendering to plain English: author of comment
5559 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5560 * and expect that both A and B disappear from stream. This is _wrong_.
5561 * Though this happens in BSD with high probability, this is occasional.
5562 * Any application relying on this is buggy. Note also, that fix "works"
5563 * only in this artificial test. Insert some normal data between A and B and we will
5564 * decline of BSD again. Verdict: it is better to remove to trap
5565 * buggy users.
5566 */
5567 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5568 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5569 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5570 tp->copied_seq++;
5571 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5572 __skb_unlink(skb, &sk->sk_receive_queue);
5573 __kfree_skb(skb);
5574 }
5575 }
5576
5577 tp->urg_data = TCP_URG_NOTYET;
5578 WRITE_ONCE(tp->urg_seq, ptr);
5579
5580 /* Disable header prediction. */
5581 tp->pred_flags = 0;
5582 }
5583
5584 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5585 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5586 {
5587 struct tcp_sock *tp = tcp_sk(sk);
5588
5589 /* Check if we get a new urgent pointer - normally not. */
5590 if (th->urg)
5591 tcp_check_urg(sk, th);
5592
5593 /* Do we wait for any urgent data? - normally not... */
5594 if (tp->urg_data == TCP_URG_NOTYET) {
5595 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5596 th->syn;
5597
5598 /* Is the urgent pointer pointing into this packet? */
5599 if (ptr < skb->len) {
5600 u8 tmp;
5601 if (skb_copy_bits(skb, ptr, &tmp, 1))
5602 BUG();
5603 tp->urg_data = TCP_URG_VALID | tmp;
5604 if (!sock_flag(sk, SOCK_DEAD))
5605 sk->sk_data_ready(sk);
5606 }
5607 }
5608 }
5609
5610 /* Accept RST for rcv_nxt - 1 after a FIN.
5611 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5612 * FIN is sent followed by a RST packet. The RST is sent with the same
5613 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5614 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5615 * ACKs on the closed socket. In addition middleboxes can drop either the
5616 * challenge ACK or a subsequent RST.
5617 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5618 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5619 {
5620 struct tcp_sock *tp = tcp_sk(sk);
5621
5622 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5623 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5624 TCPF_CLOSING));
5625 }
5626
5627 /* Does PAWS and seqno based validation of an incoming segment, flags will
5628 * play significant role here.
5629 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5630 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5631 const struct tcphdr *th, int syn_inerr)
5632 {
5633 struct tcp_sock *tp = tcp_sk(sk);
5634 bool rst_seq_match = false;
5635
5636 /* RFC1323: H1. Apply PAWS check first. */
5637 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5638 tp->rx_opt.saw_tstamp &&
5639 tcp_paws_discard(sk, skb)) {
5640 if (!th->rst) {
5641 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5642 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5643 LINUX_MIB_TCPACKSKIPPEDPAWS,
5644 &tp->last_oow_ack_time))
5645 tcp_send_dupack(sk, skb);
5646 goto discard;
5647 }
5648 /* Reset is accepted even if it did not pass PAWS. */
5649 }
5650
5651 /* Step 1: check sequence number */
5652 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5653 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5654 * (RST) segments are validated by checking their SEQ-fields."
5655 * And page 69: "If an incoming segment is not acceptable,
5656 * an acknowledgment should be sent in reply (unless the RST
5657 * bit is set, if so drop the segment and return)".
5658 */
5659 if (!th->rst) {
5660 if (th->syn)
5661 goto syn_challenge;
5662 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5663 LINUX_MIB_TCPACKSKIPPEDSEQ,
5664 &tp->last_oow_ack_time))
5665 tcp_send_dupack(sk, skb);
5666 } else if (tcp_reset_check(sk, skb)) {
5667 tcp_reset(sk, skb);
5668 }
5669 goto discard;
5670 }
5671
5672 /* Step 2: check RST bit */
5673 if (th->rst) {
5674 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5675 * FIN and SACK too if available):
5676 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5677 * the right-most SACK block,
5678 * then
5679 * RESET the connection
5680 * else
5681 * Send a challenge ACK
5682 */
5683 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5684 tcp_reset_check(sk, skb)) {
5685 rst_seq_match = true;
5686 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5687 struct tcp_sack_block *sp = &tp->selective_acks[0];
5688 int max_sack = sp[0].end_seq;
5689 int this_sack;
5690
5691 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5692 ++this_sack) {
5693 max_sack = after(sp[this_sack].end_seq,
5694 max_sack) ?
5695 sp[this_sack].end_seq : max_sack;
5696 }
5697
5698 if (TCP_SKB_CB(skb)->seq == max_sack)
5699 rst_seq_match = true;
5700 }
5701
5702 if (rst_seq_match)
5703 tcp_reset(sk, skb);
5704 else {
5705 /* Disable TFO if RST is out-of-order
5706 * and no data has been received
5707 * for current active TFO socket
5708 */
5709 if (tp->syn_fastopen && !tp->data_segs_in &&
5710 sk->sk_state == TCP_ESTABLISHED)
5711 tcp_fastopen_active_disable(sk);
5712 tcp_send_challenge_ack(sk, skb);
5713 }
5714 goto discard;
5715 }
5716
5717 /* step 3: check security and precedence [ignored] */
5718
5719 /* step 4: Check for a SYN
5720 * RFC 5961 4.2 : Send a challenge ack
5721 */
5722 if (th->syn) {
5723 syn_challenge:
5724 if (syn_inerr)
5725 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5727 tcp_send_challenge_ack(sk, skb);
5728 goto discard;
5729 }
5730
5731 bpf_skops_parse_hdr(sk, skb);
5732
5733 return true;
5734
5735 discard:
5736 tcp_drop(sk, skb);
5737 return false;
5738 }
5739
5740 /*
5741 * TCP receive function for the ESTABLISHED state.
5742 *
5743 * It is split into a fast path and a slow path. The fast path is
5744 * disabled when:
5745 * - A zero window was announced from us - zero window probing
5746 * is only handled properly in the slow path.
5747 * - Out of order segments arrived.
5748 * - Urgent data is expected.
5749 * - There is no buffer space left
5750 * - Unexpected TCP flags/window values/header lengths are received
5751 * (detected by checking the TCP header against pred_flags)
5752 * - Data is sent in both directions. Fast path only supports pure senders
5753 * or pure receivers (this means either the sequence number or the ack
5754 * value must stay constant)
5755 * - Unexpected TCP option.
5756 *
5757 * When these conditions are not satisfied it drops into a standard
5758 * receive procedure patterned after RFC793 to handle all cases.
5759 * The first three cases are guaranteed by proper pred_flags setting,
5760 * the rest is checked inline. Fast processing is turned on in
5761 * tcp_data_queue when everything is OK.
5762 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5763 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5764 {
5765 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5766 struct tcp_sock *tp = tcp_sk(sk);
5767 unsigned int len = skb->len;
5768
5769 /* TCP congestion window tracking */
5770 trace_tcp_probe(sk, skb);
5771
5772 tcp_mstamp_refresh(tp);
5773 if (unlikely(!sk->sk_rx_dst))
5774 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5775 /*
5776 * Header prediction.
5777 * The code loosely follows the one in the famous
5778 * "30 instruction TCP receive" Van Jacobson mail.
5779 *
5780 * Van's trick is to deposit buffers into socket queue
5781 * on a device interrupt, to call tcp_recv function
5782 * on the receive process context and checksum and copy
5783 * the buffer to user space. smart...
5784 *
5785 * Our current scheme is not silly either but we take the
5786 * extra cost of the net_bh soft interrupt processing...
5787 * We do checksum and copy also but from device to kernel.
5788 */
5789
5790 tp->rx_opt.saw_tstamp = 0;
5791
5792 /* pred_flags is 0xS?10 << 16 + snd_wnd
5793 * if header_prediction is to be made
5794 * 'S' will always be tp->tcp_header_len >> 2
5795 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5796 * turn it off (when there are holes in the receive
5797 * space for instance)
5798 * PSH flag is ignored.
5799 */
5800
5801 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5802 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5803 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5804 int tcp_header_len = tp->tcp_header_len;
5805
5806 /* Timestamp header prediction: tcp_header_len
5807 * is automatically equal to th->doff*4 due to pred_flags
5808 * match.
5809 */
5810
5811 /* Check timestamp */
5812 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5813 /* No? Slow path! */
5814 if (!tcp_parse_aligned_timestamp(tp, th))
5815 goto slow_path;
5816
5817 /* If PAWS failed, check it more carefully in slow path */
5818 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5819 goto slow_path;
5820
5821 /* DO NOT update ts_recent here, if checksum fails
5822 * and timestamp was corrupted part, it will result
5823 * in a hung connection since we will drop all
5824 * future packets due to the PAWS test.
5825 */
5826 }
5827
5828 if (len <= tcp_header_len) {
5829 /* Bulk data transfer: sender */
5830 if (len == tcp_header_len) {
5831 /* Predicted packet is in window by definition.
5832 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5833 * Hence, check seq<=rcv_wup reduces to:
5834 */
5835 if (tcp_header_len ==
5836 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5837 tp->rcv_nxt == tp->rcv_wup)
5838 tcp_store_ts_recent(tp);
5839
5840 /* We know that such packets are checksummed
5841 * on entry.
5842 */
5843 tcp_ack(sk, skb, 0);
5844 __kfree_skb(skb);
5845 tcp_data_snd_check(sk);
5846 /* When receiving pure ack in fast path, update
5847 * last ts ecr directly instead of calling
5848 * tcp_rcv_rtt_measure_ts()
5849 */
5850 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5851 return;
5852 } else { /* Header too small */
5853 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5854 goto discard;
5855 }
5856 } else {
5857 int eaten = 0;
5858 bool fragstolen = false;
5859
5860 if (tcp_checksum_complete(skb))
5861 goto csum_error;
5862
5863 if ((int)skb->truesize > sk->sk_forward_alloc)
5864 goto step5;
5865
5866 /* Predicted packet is in window by definition.
5867 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5868 * Hence, check seq<=rcv_wup reduces to:
5869 */
5870 if (tcp_header_len ==
5871 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5872 tp->rcv_nxt == tp->rcv_wup)
5873 tcp_store_ts_recent(tp);
5874
5875 tcp_rcv_rtt_measure_ts(sk, skb);
5876
5877 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5878
5879 /* Bulk data transfer: receiver */
5880 __skb_pull(skb, tcp_header_len);
5881 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5882
5883 tcp_event_data_recv(sk, skb);
5884
5885 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5886 /* Well, only one small jumplet in fast path... */
5887 tcp_ack(sk, skb, FLAG_DATA);
5888 tcp_data_snd_check(sk);
5889 if (!inet_csk_ack_scheduled(sk))
5890 goto no_ack;
5891 } else {
5892 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5893 }
5894
5895 __tcp_ack_snd_check(sk, 0);
5896 no_ack:
5897 if (eaten)
5898 kfree_skb_partial(skb, fragstolen);
5899 tcp_data_ready(sk);
5900 return;
5901 }
5902 }
5903
5904 slow_path:
5905 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5906 goto csum_error;
5907
5908 if (!th->ack && !th->rst && !th->syn)
5909 goto discard;
5910
5911 /*
5912 * Standard slow path.
5913 */
5914
5915 if (!tcp_validate_incoming(sk, skb, th, 1))
5916 return;
5917
5918 step5:
5919 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5920 goto discard;
5921
5922 tcp_rcv_rtt_measure_ts(sk, skb);
5923
5924 /* Process urgent data. */
5925 tcp_urg(sk, skb, th);
5926
5927 /* step 7: process the segment text */
5928 tcp_data_queue(sk, skb);
5929
5930 tcp_data_snd_check(sk);
5931 tcp_ack_snd_check(sk);
5932 return;
5933
5934 csum_error:
5935 trace_tcp_bad_csum(skb);
5936 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5937 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5938
5939 discard:
5940 tcp_drop(sk, skb);
5941 }
5942 EXPORT_SYMBOL(tcp_rcv_established);
5943
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5944 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5945 {
5946 struct inet_connection_sock *icsk = inet_csk(sk);
5947 struct tcp_sock *tp = tcp_sk(sk);
5948
5949 tcp_mtup_init(sk);
5950 icsk->icsk_af_ops->rebuild_header(sk);
5951 tcp_init_metrics(sk);
5952
5953 /* Initialize the congestion window to start the transfer.
5954 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5955 * retransmitted. In light of RFC6298 more aggressive 1sec
5956 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5957 * retransmission has occurred.
5958 */
5959 if (tp->total_retrans > 1 && tp->undo_marker)
5960 tp->snd_cwnd = 1;
5961 else
5962 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5963 tp->snd_cwnd_stamp = tcp_jiffies32;
5964
5965 bpf_skops_established(sk, bpf_op, skb);
5966 /* Initialize congestion control unless BPF initialized it already: */
5967 if (!icsk->icsk_ca_initialized)
5968 tcp_init_congestion_control(sk);
5969 tcp_init_buffer_space(sk);
5970 }
5971
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5972 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5973 {
5974 struct tcp_sock *tp = tcp_sk(sk);
5975 struct inet_connection_sock *icsk = inet_csk(sk);
5976
5977 tcp_set_state(sk, TCP_ESTABLISHED);
5978 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5979
5980 if (skb) {
5981 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5982 security_inet_conn_established(sk, skb);
5983 sk_mark_napi_id(sk, skb);
5984 }
5985
5986 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5987
5988 /* Prevent spurious tcp_cwnd_restart() on first data
5989 * packet.
5990 */
5991 tp->lsndtime = tcp_jiffies32;
5992
5993 if (sock_flag(sk, SOCK_KEEPOPEN))
5994 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5995
5996 if (!tp->rx_opt.snd_wscale)
5997 __tcp_fast_path_on(tp, tp->snd_wnd);
5998 else
5999 tp->pred_flags = 0;
6000 }
6001
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6002 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6003 struct tcp_fastopen_cookie *cookie)
6004 {
6005 struct tcp_sock *tp = tcp_sk(sk);
6006 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6007 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6008 bool syn_drop = false;
6009
6010 if (mss == tp->rx_opt.user_mss) {
6011 struct tcp_options_received opt;
6012
6013 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6014 tcp_clear_options(&opt);
6015 opt.user_mss = opt.mss_clamp = 0;
6016 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6017 mss = opt.mss_clamp;
6018 }
6019
6020 if (!tp->syn_fastopen) {
6021 /* Ignore an unsolicited cookie */
6022 cookie->len = -1;
6023 } else if (tp->total_retrans) {
6024 /* SYN timed out and the SYN-ACK neither has a cookie nor
6025 * acknowledges data. Presumably the remote received only
6026 * the retransmitted (regular) SYNs: either the original
6027 * SYN-data or the corresponding SYN-ACK was dropped.
6028 */
6029 syn_drop = (cookie->len < 0 && data);
6030 } else if (cookie->len < 0 && !tp->syn_data) {
6031 /* We requested a cookie but didn't get it. If we did not use
6032 * the (old) exp opt format then try so next time (try_exp=1).
6033 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6034 */
6035 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6036 }
6037
6038 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6039
6040 if (data) { /* Retransmit unacked data in SYN */
6041 if (tp->total_retrans)
6042 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6043 else
6044 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6045 skb_rbtree_walk_from(data)
6046 tcp_mark_skb_lost(sk, data);
6047 tcp_xmit_retransmit_queue(sk);
6048 NET_INC_STATS(sock_net(sk),
6049 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6050 return true;
6051 }
6052 tp->syn_data_acked = tp->syn_data;
6053 if (tp->syn_data_acked) {
6054 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6055 /* SYN-data is counted as two separate packets in tcp_ack() */
6056 if (tp->delivered > 1)
6057 --tp->delivered;
6058 }
6059
6060 tcp_fastopen_add_skb(sk, synack);
6061
6062 return false;
6063 }
6064
smc_check_reset_syn(struct tcp_sock * tp)6065 static void smc_check_reset_syn(struct tcp_sock *tp)
6066 {
6067 #if IS_ENABLED(CONFIG_SMC)
6068 if (static_branch_unlikely(&tcp_have_smc)) {
6069 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6070 tp->syn_smc = 0;
6071 }
6072 #endif
6073 }
6074
tcp_try_undo_spurious_syn(struct sock * sk)6075 static void tcp_try_undo_spurious_syn(struct sock *sk)
6076 {
6077 struct tcp_sock *tp = tcp_sk(sk);
6078 u32 syn_stamp;
6079
6080 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6081 * spurious if the ACK's timestamp option echo value matches the
6082 * original SYN timestamp.
6083 */
6084 syn_stamp = tp->retrans_stamp;
6085 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6086 syn_stamp == tp->rx_opt.rcv_tsecr)
6087 tp->undo_marker = 0;
6088 }
6089
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6090 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6091 const struct tcphdr *th)
6092 {
6093 struct inet_connection_sock *icsk = inet_csk(sk);
6094 struct tcp_sock *tp = tcp_sk(sk);
6095 struct tcp_fastopen_cookie foc = { .len = -1 };
6096 int saved_clamp = tp->rx_opt.mss_clamp;
6097 bool fastopen_fail;
6098
6099 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6100 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6101 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6102
6103 if (th->ack) {
6104 /* rfc793:
6105 * "If the state is SYN-SENT then
6106 * first check the ACK bit
6107 * If the ACK bit is set
6108 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6109 * a reset (unless the RST bit is set, if so drop
6110 * the segment and return)"
6111 */
6112 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6113 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6114 /* Previous FIN/ACK or RST/ACK might be ignored. */
6115 if (icsk->icsk_retransmits == 0)
6116 inet_csk_reset_xmit_timer(sk,
6117 ICSK_TIME_RETRANS,
6118 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6119 goto reset_and_undo;
6120 }
6121
6122 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6123 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6124 tcp_time_stamp(tp))) {
6125 NET_INC_STATS(sock_net(sk),
6126 LINUX_MIB_PAWSACTIVEREJECTED);
6127 goto reset_and_undo;
6128 }
6129
6130 /* Now ACK is acceptable.
6131 *
6132 * "If the RST bit is set
6133 * If the ACK was acceptable then signal the user "error:
6134 * connection reset", drop the segment, enter CLOSED state,
6135 * delete TCB, and return."
6136 */
6137
6138 if (th->rst) {
6139 tcp_reset(sk, skb);
6140 goto discard;
6141 }
6142
6143 /* rfc793:
6144 * "fifth, if neither of the SYN or RST bits is set then
6145 * drop the segment and return."
6146 *
6147 * See note below!
6148 * --ANK(990513)
6149 */
6150 if (!th->syn)
6151 goto discard_and_undo;
6152
6153 /* rfc793:
6154 * "If the SYN bit is on ...
6155 * are acceptable then ...
6156 * (our SYN has been ACKed), change the connection
6157 * state to ESTABLISHED..."
6158 */
6159
6160 tcp_ecn_rcv_synack(tp, th);
6161
6162 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6163 tcp_try_undo_spurious_syn(sk);
6164 tcp_ack(sk, skb, FLAG_SLOWPATH);
6165
6166 /* Ok.. it's good. Set up sequence numbers and
6167 * move to established.
6168 */
6169 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6170 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6171
6172 /* RFC1323: The window in SYN & SYN/ACK segments is
6173 * never scaled.
6174 */
6175 tp->snd_wnd = ntohs(th->window);
6176
6177 if (!tp->rx_opt.wscale_ok) {
6178 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6179 tp->window_clamp = min(tp->window_clamp, 65535U);
6180 }
6181
6182 if (tp->rx_opt.saw_tstamp) {
6183 tp->rx_opt.tstamp_ok = 1;
6184 tp->tcp_header_len =
6185 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6186 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6187 tcp_store_ts_recent(tp);
6188 } else {
6189 tp->tcp_header_len = sizeof(struct tcphdr);
6190 }
6191
6192 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6193 tcp_initialize_rcv_mss(sk);
6194
6195 /* Remember, tcp_poll() does not lock socket!
6196 * Change state from SYN-SENT only after copied_seq
6197 * is initialized. */
6198 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6199
6200 smc_check_reset_syn(tp);
6201
6202 smp_mb();
6203
6204 tcp_finish_connect(sk, skb);
6205
6206 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6207 tcp_rcv_fastopen_synack(sk, skb, &foc);
6208
6209 if (!sock_flag(sk, SOCK_DEAD)) {
6210 sk->sk_state_change(sk);
6211 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6212 }
6213 if (fastopen_fail)
6214 return -1;
6215 if (sk->sk_write_pending ||
6216 icsk->icsk_accept_queue.rskq_defer_accept ||
6217 inet_csk_in_pingpong_mode(sk)) {
6218 /* Save one ACK. Data will be ready after
6219 * several ticks, if write_pending is set.
6220 *
6221 * It may be deleted, but with this feature tcpdumps
6222 * look so _wonderfully_ clever, that I was not able
6223 * to stand against the temptation 8) --ANK
6224 */
6225 inet_csk_schedule_ack(sk);
6226 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6227 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6228 TCP_DELACK_MAX, TCP_RTO_MAX);
6229
6230 discard:
6231 tcp_drop(sk, skb);
6232 return 0;
6233 } else {
6234 tcp_send_ack(sk);
6235 }
6236 return -1;
6237 }
6238
6239 /* No ACK in the segment */
6240
6241 if (th->rst) {
6242 /* rfc793:
6243 * "If the RST bit is set
6244 *
6245 * Otherwise (no ACK) drop the segment and return."
6246 */
6247
6248 goto discard_and_undo;
6249 }
6250
6251 /* PAWS check. */
6252 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6253 tcp_paws_reject(&tp->rx_opt, 0))
6254 goto discard_and_undo;
6255
6256 if (th->syn) {
6257 /* We see SYN without ACK. It is attempt of
6258 * simultaneous connect with crossed SYNs.
6259 * Particularly, it can be connect to self.
6260 */
6261 tcp_set_state(sk, TCP_SYN_RECV);
6262
6263 if (tp->rx_opt.saw_tstamp) {
6264 tp->rx_opt.tstamp_ok = 1;
6265 tcp_store_ts_recent(tp);
6266 tp->tcp_header_len =
6267 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6268 } else {
6269 tp->tcp_header_len = sizeof(struct tcphdr);
6270 }
6271
6272 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6273 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6274 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6275
6276 /* RFC1323: The window in SYN & SYN/ACK segments is
6277 * never scaled.
6278 */
6279 tp->snd_wnd = ntohs(th->window);
6280 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6281 tp->max_window = tp->snd_wnd;
6282
6283 tcp_ecn_rcv_syn(tp, th);
6284
6285 tcp_mtup_init(sk);
6286 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6287 tcp_initialize_rcv_mss(sk);
6288
6289 tcp_send_synack(sk);
6290 #if 0
6291 /* Note, we could accept data and URG from this segment.
6292 * There are no obstacles to make this (except that we must
6293 * either change tcp_recvmsg() to prevent it from returning data
6294 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6295 *
6296 * However, if we ignore data in ACKless segments sometimes,
6297 * we have no reasons to accept it sometimes.
6298 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6299 * is not flawless. So, discard packet for sanity.
6300 * Uncomment this return to process the data.
6301 */
6302 return -1;
6303 #else
6304 goto discard;
6305 #endif
6306 }
6307 /* "fifth, if neither of the SYN or RST bits is set then
6308 * drop the segment and return."
6309 */
6310
6311 discard_and_undo:
6312 tcp_clear_options(&tp->rx_opt);
6313 tp->rx_opt.mss_clamp = saved_clamp;
6314 goto discard;
6315
6316 reset_and_undo:
6317 tcp_clear_options(&tp->rx_opt);
6318 tp->rx_opt.mss_clamp = saved_clamp;
6319 return 1;
6320 }
6321
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6322 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6323 {
6324 struct request_sock *req;
6325
6326 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6327 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6328 */
6329 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6330 tcp_try_undo_loss(sk, false);
6331
6332 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6333 tcp_sk(sk)->retrans_stamp = 0;
6334 inet_csk(sk)->icsk_retransmits = 0;
6335
6336 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6337 * we no longer need req so release it.
6338 */
6339 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6340 lockdep_sock_is_held(sk));
6341 reqsk_fastopen_remove(sk, req, false);
6342
6343 /* Re-arm the timer because data may have been sent out.
6344 * This is similar to the regular data transmission case
6345 * when new data has just been ack'ed.
6346 *
6347 * (TFO) - we could try to be more aggressive and
6348 * retransmitting any data sooner based on when they
6349 * are sent out.
6350 */
6351 tcp_rearm_rto(sk);
6352 }
6353
6354 /*
6355 * This function implements the receiving procedure of RFC 793 for
6356 * all states except ESTABLISHED and TIME_WAIT.
6357 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6358 * address independent.
6359 */
6360
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6361 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6362 {
6363 struct tcp_sock *tp = tcp_sk(sk);
6364 struct inet_connection_sock *icsk = inet_csk(sk);
6365 const struct tcphdr *th = tcp_hdr(skb);
6366 struct request_sock *req;
6367 int queued = 0;
6368 bool acceptable;
6369
6370 switch (sk->sk_state) {
6371 case TCP_CLOSE:
6372 goto discard;
6373
6374 case TCP_LISTEN:
6375 if (th->ack)
6376 return 1;
6377
6378 if (th->rst)
6379 goto discard;
6380
6381 if (th->syn) {
6382 if (th->fin)
6383 goto discard;
6384 /* It is possible that we process SYN packets from backlog,
6385 * so we need to make sure to disable BH and RCU right there.
6386 */
6387 rcu_read_lock();
6388 local_bh_disable();
6389 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6390 local_bh_enable();
6391 rcu_read_unlock();
6392
6393 if (!acceptable)
6394 return 1;
6395 consume_skb(skb);
6396 return 0;
6397 }
6398 goto discard;
6399
6400 case TCP_SYN_SENT:
6401 tp->rx_opt.saw_tstamp = 0;
6402 tcp_mstamp_refresh(tp);
6403 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6404 if (queued >= 0)
6405 return queued;
6406
6407 /* Do step6 onward by hand. */
6408 tcp_urg(sk, skb, th);
6409 __kfree_skb(skb);
6410 tcp_data_snd_check(sk);
6411 return 0;
6412 }
6413
6414 tcp_mstamp_refresh(tp);
6415 tp->rx_opt.saw_tstamp = 0;
6416 req = rcu_dereference_protected(tp->fastopen_rsk,
6417 lockdep_sock_is_held(sk));
6418 if (req) {
6419 bool req_stolen;
6420
6421 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6422 sk->sk_state != TCP_FIN_WAIT1);
6423
6424 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6425 goto discard;
6426 }
6427
6428 if (!th->ack && !th->rst && !th->syn)
6429 goto discard;
6430
6431 if (!tcp_validate_incoming(sk, skb, th, 0))
6432 return 0;
6433
6434 /* step 5: check the ACK field */
6435 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6436 FLAG_UPDATE_TS_RECENT |
6437 FLAG_NO_CHALLENGE_ACK) > 0;
6438
6439 if (!acceptable) {
6440 if (sk->sk_state == TCP_SYN_RECV)
6441 return 1; /* send one RST */
6442 tcp_send_challenge_ack(sk, skb);
6443 goto discard;
6444 }
6445 switch (sk->sk_state) {
6446 case TCP_SYN_RECV:
6447 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6448 if (!tp->srtt_us)
6449 tcp_synack_rtt_meas(sk, req);
6450
6451 if (req) {
6452 tcp_rcv_synrecv_state_fastopen(sk);
6453 } else {
6454 tcp_try_undo_spurious_syn(sk);
6455 tp->retrans_stamp = 0;
6456 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6457 skb);
6458 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6459 }
6460 smp_mb();
6461 tcp_set_state(sk, TCP_ESTABLISHED);
6462 sk->sk_state_change(sk);
6463
6464 /* Note, that this wakeup is only for marginal crossed SYN case.
6465 * Passively open sockets are not waked up, because
6466 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6467 */
6468 if (sk->sk_socket)
6469 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6470
6471 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6472 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6473 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6474
6475 if (tp->rx_opt.tstamp_ok)
6476 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6477
6478 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6479 tcp_update_pacing_rate(sk);
6480
6481 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6482 tp->lsndtime = tcp_jiffies32;
6483
6484 tcp_initialize_rcv_mss(sk);
6485 tcp_fast_path_on(tp);
6486 break;
6487
6488 case TCP_FIN_WAIT1: {
6489 int tmo;
6490
6491 if (req)
6492 tcp_rcv_synrecv_state_fastopen(sk);
6493
6494 if (tp->snd_una != tp->write_seq)
6495 break;
6496
6497 tcp_set_state(sk, TCP_FIN_WAIT2);
6498 sk->sk_shutdown |= SEND_SHUTDOWN;
6499
6500 sk_dst_confirm(sk);
6501
6502 if (!sock_flag(sk, SOCK_DEAD)) {
6503 /* Wake up lingering close() */
6504 sk->sk_state_change(sk);
6505 break;
6506 }
6507
6508 if (tp->linger2 < 0) {
6509 tcp_done(sk);
6510 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6511 return 1;
6512 }
6513 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6514 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6515 /* Receive out of order FIN after close() */
6516 if (tp->syn_fastopen && th->fin)
6517 tcp_fastopen_active_disable(sk);
6518 tcp_done(sk);
6519 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6520 return 1;
6521 }
6522
6523 tmo = tcp_fin_time(sk);
6524 if (tmo > TCP_TIMEWAIT_LEN) {
6525 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6526 } else if (th->fin || sock_owned_by_user(sk)) {
6527 /* Bad case. We could lose such FIN otherwise.
6528 * It is not a big problem, but it looks confusing
6529 * and not so rare event. We still can lose it now,
6530 * if it spins in bh_lock_sock(), but it is really
6531 * marginal case.
6532 */
6533 inet_csk_reset_keepalive_timer(sk, tmo);
6534 } else {
6535 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6536 goto discard;
6537 }
6538 break;
6539 }
6540
6541 case TCP_CLOSING:
6542 if (tp->snd_una == tp->write_seq) {
6543 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6544 goto discard;
6545 }
6546 break;
6547
6548 case TCP_LAST_ACK:
6549 if (tp->snd_una == tp->write_seq) {
6550 tcp_update_metrics(sk);
6551 tcp_done(sk);
6552 goto discard;
6553 }
6554 break;
6555 }
6556
6557 /* step 6: check the URG bit */
6558 tcp_urg(sk, skb, th);
6559
6560 /* step 7: process the segment text */
6561 switch (sk->sk_state) {
6562 case TCP_CLOSE_WAIT:
6563 case TCP_CLOSING:
6564 case TCP_LAST_ACK:
6565 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6566 /* If a subflow has been reset, the packet should not
6567 * continue to be processed, drop the packet.
6568 */
6569 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6570 goto discard;
6571 break;
6572 }
6573 fallthrough;
6574 case TCP_FIN_WAIT1:
6575 case TCP_FIN_WAIT2:
6576 /* RFC 793 says to queue data in these states,
6577 * RFC 1122 says we MUST send a reset.
6578 * BSD 4.4 also does reset.
6579 */
6580 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6581 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6582 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6583 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6584 tcp_reset(sk, skb);
6585 return 1;
6586 }
6587 }
6588 fallthrough;
6589 case TCP_ESTABLISHED:
6590 tcp_data_queue(sk, skb);
6591 queued = 1;
6592 break;
6593 }
6594
6595 /* tcp_data could move socket to TIME-WAIT */
6596 if (sk->sk_state != TCP_CLOSE) {
6597 tcp_data_snd_check(sk);
6598 tcp_ack_snd_check(sk);
6599 }
6600
6601 if (!queued) {
6602 discard:
6603 tcp_drop(sk, skb);
6604 }
6605 return 0;
6606 }
6607 EXPORT_SYMBOL(tcp_rcv_state_process);
6608
pr_drop_req(struct request_sock * req,__u16 port,int family)6609 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6610 {
6611 struct inet_request_sock *ireq = inet_rsk(req);
6612
6613 if (family == AF_INET)
6614 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6615 &ireq->ir_rmt_addr, port);
6616 #if IS_ENABLED(CONFIG_IPV6)
6617 else if (family == AF_INET6)
6618 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6619 &ireq->ir_v6_rmt_addr, port);
6620 #endif
6621 }
6622
6623 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6624 *
6625 * If we receive a SYN packet with these bits set, it means a
6626 * network is playing bad games with TOS bits. In order to
6627 * avoid possible false congestion notifications, we disable
6628 * TCP ECN negotiation.
6629 *
6630 * Exception: tcp_ca wants ECN. This is required for DCTCP
6631 * congestion control: Linux DCTCP asserts ECT on all packets,
6632 * including SYN, which is most optimal solution; however,
6633 * others, such as FreeBSD do not.
6634 *
6635 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6636 * set, indicating the use of a future TCP extension (such as AccECN). See
6637 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6638 * extensions.
6639 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6640 static void tcp_ecn_create_request(struct request_sock *req,
6641 const struct sk_buff *skb,
6642 const struct sock *listen_sk,
6643 const struct dst_entry *dst)
6644 {
6645 const struct tcphdr *th = tcp_hdr(skb);
6646 const struct net *net = sock_net(listen_sk);
6647 bool th_ecn = th->ece && th->cwr;
6648 bool ect, ecn_ok;
6649 u32 ecn_ok_dst;
6650
6651 if (!th_ecn)
6652 return;
6653
6654 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6655 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6656 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6657
6658 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6659 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6660 tcp_bpf_ca_needs_ecn((struct sock *)req))
6661 inet_rsk(req)->ecn_ok = 1;
6662 }
6663
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6664 static void tcp_openreq_init(struct request_sock *req,
6665 const struct tcp_options_received *rx_opt,
6666 struct sk_buff *skb, const struct sock *sk)
6667 {
6668 struct inet_request_sock *ireq = inet_rsk(req);
6669
6670 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6671 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6672 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6673 tcp_rsk(req)->snt_synack = 0;
6674 tcp_rsk(req)->last_oow_ack_time = 0;
6675 req->mss = rx_opt->mss_clamp;
6676 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6677 ireq->tstamp_ok = rx_opt->tstamp_ok;
6678 ireq->sack_ok = rx_opt->sack_ok;
6679 ireq->snd_wscale = rx_opt->snd_wscale;
6680 ireq->wscale_ok = rx_opt->wscale_ok;
6681 ireq->acked = 0;
6682 ireq->ecn_ok = 0;
6683 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6684 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6685 ireq->ir_mark = inet_request_mark(sk, skb);
6686 #if IS_ENABLED(CONFIG_SMC)
6687 ireq->smc_ok = rx_opt->smc_ok;
6688 #endif
6689 }
6690
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6691 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6692 struct sock *sk_listener,
6693 bool attach_listener)
6694 {
6695 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6696 attach_listener);
6697
6698 if (req) {
6699 struct inet_request_sock *ireq = inet_rsk(req);
6700
6701 ireq->ireq_opt = NULL;
6702 #if IS_ENABLED(CONFIG_IPV6)
6703 ireq->pktopts = NULL;
6704 #endif
6705 atomic64_set(&ireq->ir_cookie, 0);
6706 ireq->ireq_state = TCP_NEW_SYN_RECV;
6707 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6708 ireq->ireq_family = sk_listener->sk_family;
6709 }
6710
6711 return req;
6712 }
6713 EXPORT_SYMBOL(inet_reqsk_alloc);
6714
6715 /*
6716 * Return true if a syncookie should be sent
6717 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6718 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6719 {
6720 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6721 const char *msg = "Dropping request";
6722 bool want_cookie = false;
6723 struct net *net = sock_net(sk);
6724
6725 #ifdef CONFIG_SYN_COOKIES
6726 if (net->ipv4.sysctl_tcp_syncookies) {
6727 msg = "Sending cookies";
6728 want_cookie = true;
6729 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6730 } else
6731 #endif
6732 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6733
6734 if (!queue->synflood_warned &&
6735 net->ipv4.sysctl_tcp_syncookies != 2 &&
6736 xchg(&queue->synflood_warned, 1) == 0)
6737 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6738 proto, sk->sk_num, msg);
6739
6740 return want_cookie;
6741 }
6742
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6743 static void tcp_reqsk_record_syn(const struct sock *sk,
6744 struct request_sock *req,
6745 const struct sk_buff *skb)
6746 {
6747 if (tcp_sk(sk)->save_syn) {
6748 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6749 struct saved_syn *saved_syn;
6750 u32 mac_hdrlen;
6751 void *base;
6752
6753 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6754 base = skb_mac_header(skb);
6755 mac_hdrlen = skb_mac_header_len(skb);
6756 len += mac_hdrlen;
6757 } else {
6758 base = skb_network_header(skb);
6759 mac_hdrlen = 0;
6760 }
6761
6762 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6763 GFP_ATOMIC);
6764 if (saved_syn) {
6765 saved_syn->mac_hdrlen = mac_hdrlen;
6766 saved_syn->network_hdrlen = skb_network_header_len(skb);
6767 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6768 memcpy(saved_syn->data, base, len);
6769 req->saved_syn = saved_syn;
6770 }
6771 }
6772 }
6773
6774 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6775 * used for SYN cookie generation.
6776 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6777 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6778 const struct tcp_request_sock_ops *af_ops,
6779 struct sock *sk, struct tcphdr *th)
6780 {
6781 struct tcp_sock *tp = tcp_sk(sk);
6782 u16 mss;
6783
6784 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6785 !inet_csk_reqsk_queue_is_full(sk))
6786 return 0;
6787
6788 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6789 return 0;
6790
6791 if (sk_acceptq_is_full(sk)) {
6792 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6793 return 0;
6794 }
6795
6796 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6797 if (!mss)
6798 mss = af_ops->mss_clamp;
6799
6800 return mss;
6801 }
6802 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6803
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6804 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6805 const struct tcp_request_sock_ops *af_ops,
6806 struct sock *sk, struct sk_buff *skb)
6807 {
6808 struct tcp_fastopen_cookie foc = { .len = -1 };
6809 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6810 struct tcp_options_received tmp_opt;
6811 struct tcp_sock *tp = tcp_sk(sk);
6812 struct net *net = sock_net(sk);
6813 struct sock *fastopen_sk = NULL;
6814 struct request_sock *req;
6815 bool want_cookie = false;
6816 struct dst_entry *dst;
6817 struct flowi fl;
6818
6819 /* TW buckets are converted to open requests without
6820 * limitations, they conserve resources and peer is
6821 * evidently real one.
6822 */
6823 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6824 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6825 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6826 if (!want_cookie)
6827 goto drop;
6828 }
6829
6830 if (sk_acceptq_is_full(sk)) {
6831 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6832 goto drop;
6833 }
6834
6835 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6836 if (!req)
6837 goto drop;
6838
6839 req->syncookie = want_cookie;
6840 tcp_rsk(req)->af_specific = af_ops;
6841 tcp_rsk(req)->ts_off = 0;
6842 #if IS_ENABLED(CONFIG_MPTCP)
6843 tcp_rsk(req)->is_mptcp = 0;
6844 #endif
6845
6846 tcp_clear_options(&tmp_opt);
6847 tmp_opt.mss_clamp = af_ops->mss_clamp;
6848 tmp_opt.user_mss = tp->rx_opt.user_mss;
6849 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6850 want_cookie ? NULL : &foc);
6851
6852 if (want_cookie && !tmp_opt.saw_tstamp)
6853 tcp_clear_options(&tmp_opt);
6854
6855 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6856 tmp_opt.smc_ok = 0;
6857
6858 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6859 tcp_openreq_init(req, &tmp_opt, skb, sk);
6860 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6861
6862 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6863 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6864
6865 dst = af_ops->route_req(sk, skb, &fl, req);
6866 if (!dst)
6867 goto drop_and_free;
6868
6869 if (tmp_opt.tstamp_ok)
6870 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6871
6872 if (!want_cookie && !isn) {
6873 /* Kill the following clause, if you dislike this way. */
6874 if (!net->ipv4.sysctl_tcp_syncookies &&
6875 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6876 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6877 !tcp_peer_is_proven(req, dst)) {
6878 /* Without syncookies last quarter of
6879 * backlog is filled with destinations,
6880 * proven to be alive.
6881 * It means that we continue to communicate
6882 * to destinations, already remembered
6883 * to the moment of synflood.
6884 */
6885 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6886 rsk_ops->family);
6887 goto drop_and_release;
6888 }
6889
6890 isn = af_ops->init_seq(skb);
6891 }
6892
6893 tcp_ecn_create_request(req, skb, sk, dst);
6894
6895 if (want_cookie) {
6896 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6897 if (!tmp_opt.tstamp_ok)
6898 inet_rsk(req)->ecn_ok = 0;
6899 }
6900
6901 tcp_rsk(req)->snt_isn = isn;
6902 tcp_rsk(req)->txhash = net_tx_rndhash();
6903 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6904 tcp_openreq_init_rwin(req, sk, dst);
6905 sk_rx_queue_set(req_to_sk(req), skb);
6906 if (!want_cookie) {
6907 tcp_reqsk_record_syn(sk, req, skb);
6908 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6909 }
6910 if (fastopen_sk) {
6911 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6912 &foc, TCP_SYNACK_FASTOPEN, skb);
6913 /* Add the child socket directly into the accept queue */
6914 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6915 reqsk_fastopen_remove(fastopen_sk, req, false);
6916 bh_unlock_sock(fastopen_sk);
6917 sock_put(fastopen_sk);
6918 goto drop_and_free;
6919 }
6920 sk->sk_data_ready(sk);
6921 bh_unlock_sock(fastopen_sk);
6922 sock_put(fastopen_sk);
6923 } else {
6924 tcp_rsk(req)->tfo_listener = false;
6925 if (!want_cookie)
6926 inet_csk_reqsk_queue_hash_add(sk, req,
6927 tcp_timeout_init((struct sock *)req));
6928 af_ops->send_synack(sk, dst, &fl, req, &foc,
6929 !want_cookie ? TCP_SYNACK_NORMAL :
6930 TCP_SYNACK_COOKIE,
6931 skb);
6932 if (want_cookie) {
6933 reqsk_free(req);
6934 return 0;
6935 }
6936 }
6937 reqsk_put(req);
6938 return 0;
6939
6940 drop_and_release:
6941 dst_release(dst);
6942 drop_and_free:
6943 __reqsk_free(req);
6944 drop:
6945 tcp_listendrop(sk);
6946 return 0;
6947 }
6948 EXPORT_SYMBOL(tcp_conn_request);
6949