1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
inet_get_local_port_range(struct net * net,int * low,int * high)120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122 unsigned int seq;
123
124 do {
125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127 *low = net->ipv4.ip_local_ports.range[0];
128 *high = net->ipv4.ip_local_ports.range[1];
129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
inet_use_bhash2_on_bind(const struct sock * sk)133 static bool inet_use_bhash2_on_bind(const struct sock *sk)
134 {
135 #if IS_ENABLED(CONFIG_IPV6)
136 if (sk->sk_family == AF_INET6) {
137 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
138
139 return addr_type != IPV6_ADDR_ANY &&
140 addr_type != IPV6_ADDR_MAPPED;
141 }
142 #endif
143 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
144 }
145
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)146 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
147 kuid_t sk_uid, bool relax,
148 bool reuseport_cb_ok, bool reuseport_ok)
149 {
150 int bound_dev_if2;
151
152 if (sk == sk2)
153 return false;
154
155 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
156
157 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
158 sk->sk_bound_dev_if == bound_dev_if2) {
159 if (sk->sk_reuse && sk2->sk_reuse &&
160 sk2->sk_state != TCP_LISTEN) {
161 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
162 sk2->sk_reuseport && reuseport_cb_ok &&
163 (sk2->sk_state == TCP_TIME_WAIT ||
164 uid_eq(sk_uid, sock_i_uid(sk2)))))
165 return true;
166 } else if (!reuseport_ok || !sk->sk_reuseport ||
167 !sk2->sk_reuseport || !reuseport_cb_ok ||
168 (sk2->sk_state != TCP_TIME_WAIT &&
169 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
170 return true;
171 }
172 }
173 return false;
174 }
175
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)176 static bool inet_bhash2_conflict(const struct sock *sk,
177 const struct inet_bind2_bucket *tb2,
178 kuid_t sk_uid,
179 bool relax, bool reuseport_cb_ok,
180 bool reuseport_ok)
181 {
182 struct sock *sk2;
183
184 sk_for_each_bound_bhash2(sk2, &tb2->owners) {
185 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
186 continue;
187
188 if (inet_bind_conflict(sk, sk2, sk_uid, relax,
189 reuseport_cb_ok, reuseport_ok))
190 return true;
191 }
192 return false;
193 }
194
195 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)196 static int inet_csk_bind_conflict(const struct sock *sk,
197 const struct inet_bind_bucket *tb,
198 const struct inet_bind2_bucket *tb2, /* may be null */
199 bool relax, bool reuseport_ok)
200 {
201 bool reuseport_cb_ok;
202 struct sock_reuseport *reuseport_cb;
203 kuid_t uid = sock_i_uid((struct sock *)sk);
204
205 rcu_read_lock();
206 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
207 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
208 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
209 rcu_read_unlock();
210
211 /*
212 * Unlike other sk lookup places we do not check
213 * for sk_net here, since _all_ the socks listed
214 * in tb->owners and tb2->owners list belong
215 * to the same net - the one this bucket belongs to.
216 */
217
218 if (!inet_use_bhash2_on_bind(sk)) {
219 struct sock *sk2;
220
221 sk_for_each_bound(sk2, &tb->owners)
222 if (inet_bind_conflict(sk, sk2, uid, relax,
223 reuseport_cb_ok, reuseport_ok) &&
224 inet_rcv_saddr_equal(sk, sk2, true))
225 return true;
226
227 return false;
228 }
229
230 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
231 * ipv4) should have been checked already. We need to do these two
232 * checks separately because their spinlocks have to be acquired/released
233 * independently of each other, to prevent possible deadlocks
234 */
235 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
236 reuseport_ok);
237 }
238
239 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
240 * INADDR_ANY (if ipv4) socket.
241 *
242 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
243 * against concurrent binds on the port for addr any
244 */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)245 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
246 bool relax, bool reuseport_ok)
247 {
248 kuid_t uid = sock_i_uid((struct sock *)sk);
249 const struct net *net = sock_net(sk);
250 struct sock_reuseport *reuseport_cb;
251 struct inet_bind_hashbucket *head2;
252 struct inet_bind2_bucket *tb2;
253 bool reuseport_cb_ok;
254
255 rcu_read_lock();
256 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
257 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
258 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
259 rcu_read_unlock();
260
261 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
262
263 spin_lock(&head2->lock);
264
265 inet_bind_bucket_for_each(tb2, &head2->chain)
266 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
267 break;
268
269 if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
270 reuseport_ok)) {
271 spin_unlock(&head2->lock);
272 return true;
273 }
274
275 spin_unlock(&head2->lock);
276 return false;
277 }
278
279 /*
280 * Find an open port number for the socket. Returns with the
281 * inet_bind_hashbucket locks held if successful.
282 */
283 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)284 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
285 struct inet_bind2_bucket **tb2_ret,
286 struct inet_bind_hashbucket **head2_ret, int *port_ret)
287 {
288 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
289 int i, low, high, attempt_half, port, l3mdev;
290 struct inet_bind_hashbucket *head, *head2;
291 struct net *net = sock_net(sk);
292 struct inet_bind2_bucket *tb2;
293 struct inet_bind_bucket *tb;
294 u32 remaining, offset;
295 bool relax = false;
296
297 l3mdev = inet_sk_bound_l3mdev(sk);
298 ports_exhausted:
299 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
300 other_half_scan:
301 inet_get_local_port_range(net, &low, &high);
302 high++; /* [32768, 60999] -> [32768, 61000[ */
303 if (high - low < 4)
304 attempt_half = 0;
305 if (attempt_half) {
306 int half = low + (((high - low) >> 2) << 1);
307
308 if (attempt_half == 1)
309 high = half;
310 else
311 low = half;
312 }
313 remaining = high - low;
314 if (likely(remaining > 1))
315 remaining &= ~1U;
316
317 offset = prandom_u32_max(remaining);
318 /* __inet_hash_connect() favors ports having @low parity
319 * We do the opposite to not pollute connect() users.
320 */
321 offset |= 1U;
322
323 other_parity_scan:
324 port = low + offset;
325 for (i = 0; i < remaining; i += 2, port += 2) {
326 if (unlikely(port >= high))
327 port -= remaining;
328 if (inet_is_local_reserved_port(net, port))
329 continue;
330 head = &hinfo->bhash[inet_bhashfn(net, port,
331 hinfo->bhash_size)];
332 spin_lock_bh(&head->lock);
333 if (inet_use_bhash2_on_bind(sk)) {
334 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
335 goto next_port;
336 }
337
338 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
339 spin_lock(&head2->lock);
340 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
341 inet_bind_bucket_for_each(tb, &head->chain)
342 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
343 if (!inet_csk_bind_conflict(sk, tb, tb2,
344 relax, false))
345 goto success;
346 spin_unlock(&head2->lock);
347 goto next_port;
348 }
349 tb = NULL;
350 goto success;
351 next_port:
352 spin_unlock_bh(&head->lock);
353 cond_resched();
354 }
355
356 offset--;
357 if (!(offset & 1))
358 goto other_parity_scan;
359
360 if (attempt_half == 1) {
361 /* OK we now try the upper half of the range */
362 attempt_half = 2;
363 goto other_half_scan;
364 }
365
366 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
367 /* We still have a chance to connect to different destinations */
368 relax = true;
369 goto ports_exhausted;
370 }
371 return NULL;
372 success:
373 *port_ret = port;
374 *tb_ret = tb;
375 *tb2_ret = tb2;
376 *head2_ret = head2;
377 return head;
378 }
379
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)380 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
381 struct sock *sk)
382 {
383 kuid_t uid = sock_i_uid(sk);
384
385 if (tb->fastreuseport <= 0)
386 return 0;
387 if (!sk->sk_reuseport)
388 return 0;
389 if (rcu_access_pointer(sk->sk_reuseport_cb))
390 return 0;
391 if (!uid_eq(tb->fastuid, uid))
392 return 0;
393 /* We only need to check the rcv_saddr if this tb was once marked
394 * without fastreuseport and then was reset, as we can only know that
395 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
396 * owners list.
397 */
398 if (tb->fastreuseport == FASTREUSEPORT_ANY)
399 return 1;
400 #if IS_ENABLED(CONFIG_IPV6)
401 if (tb->fast_sk_family == AF_INET6)
402 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
403 inet6_rcv_saddr(sk),
404 tb->fast_rcv_saddr,
405 sk->sk_rcv_saddr,
406 tb->fast_ipv6_only,
407 ipv6_only_sock(sk), true, false);
408 #endif
409 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
410 ipv6_only_sock(sk), true, false);
411 }
412
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)413 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
414 struct sock *sk)
415 {
416 kuid_t uid = sock_i_uid(sk);
417 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
418
419 if (hlist_empty(&tb->owners)) {
420 tb->fastreuse = reuse;
421 if (sk->sk_reuseport) {
422 tb->fastreuseport = FASTREUSEPORT_ANY;
423 tb->fastuid = uid;
424 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
425 tb->fast_ipv6_only = ipv6_only_sock(sk);
426 tb->fast_sk_family = sk->sk_family;
427 #if IS_ENABLED(CONFIG_IPV6)
428 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
429 #endif
430 } else {
431 tb->fastreuseport = 0;
432 }
433 } else {
434 if (!reuse)
435 tb->fastreuse = 0;
436 if (sk->sk_reuseport) {
437 /* We didn't match or we don't have fastreuseport set on
438 * the tb, but we have sk_reuseport set on this socket
439 * and we know that there are no bind conflicts with
440 * this socket in this tb, so reset our tb's reuseport
441 * settings so that any subsequent sockets that match
442 * our current socket will be put on the fast path.
443 *
444 * If we reset we need to set FASTREUSEPORT_STRICT so we
445 * do extra checking for all subsequent sk_reuseport
446 * socks.
447 */
448 if (!sk_reuseport_match(tb, sk)) {
449 tb->fastreuseport = FASTREUSEPORT_STRICT;
450 tb->fastuid = uid;
451 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
452 tb->fast_ipv6_only = ipv6_only_sock(sk);
453 tb->fast_sk_family = sk->sk_family;
454 #if IS_ENABLED(CONFIG_IPV6)
455 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
456 #endif
457 }
458 } else {
459 tb->fastreuseport = 0;
460 }
461 }
462 }
463
464 /* Obtain a reference to a local port for the given sock,
465 * if snum is zero it means select any available local port.
466 * We try to allocate an odd port (and leave even ports for connect())
467 */
inet_csk_get_port(struct sock * sk,unsigned short snum)468 int inet_csk_get_port(struct sock *sk, unsigned short snum)
469 {
470 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
471 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
472 bool found_port = false, check_bind_conflict = true;
473 bool bhash_created = false, bhash2_created = false;
474 struct inet_bind_hashbucket *head, *head2;
475 struct inet_bind2_bucket *tb2 = NULL;
476 struct inet_bind_bucket *tb = NULL;
477 bool head2_lock_acquired = false;
478 int ret = 1, port = snum, l3mdev;
479 struct net *net = sock_net(sk);
480
481 l3mdev = inet_sk_bound_l3mdev(sk);
482
483 if (!port) {
484 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
485 if (!head)
486 return ret;
487
488 head2_lock_acquired = true;
489
490 if (tb && tb2)
491 goto success;
492 found_port = true;
493 } else {
494 head = &hinfo->bhash[inet_bhashfn(net, port,
495 hinfo->bhash_size)];
496 spin_lock_bh(&head->lock);
497 inet_bind_bucket_for_each(tb, &head->chain)
498 if (inet_bind_bucket_match(tb, net, port, l3mdev))
499 break;
500 }
501
502 if (!tb) {
503 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
504 head, port, l3mdev);
505 if (!tb)
506 goto fail_unlock;
507 bhash_created = true;
508 }
509
510 if (!found_port) {
511 if (!hlist_empty(&tb->owners)) {
512 if (sk->sk_reuse == SK_FORCE_REUSE ||
513 (tb->fastreuse > 0 && reuse) ||
514 sk_reuseport_match(tb, sk))
515 check_bind_conflict = false;
516 }
517
518 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
519 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
520 goto fail_unlock;
521 }
522
523 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
524 spin_lock(&head2->lock);
525 head2_lock_acquired = true;
526 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
527 }
528
529 if (!tb2) {
530 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
531 net, head2, port, l3mdev, sk);
532 if (!tb2)
533 goto fail_unlock;
534 bhash2_created = true;
535 }
536
537 if (!found_port && check_bind_conflict) {
538 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
539 goto fail_unlock;
540 }
541
542 success:
543 inet_csk_update_fastreuse(tb, sk);
544
545 if (!inet_csk(sk)->icsk_bind_hash)
546 inet_bind_hash(sk, tb, tb2, port);
547 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
548 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
549 ret = 0;
550
551 fail_unlock:
552 if (ret) {
553 if (bhash_created)
554 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
555 if (bhash2_created)
556 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
557 tb2);
558 }
559 if (head2_lock_acquired)
560 spin_unlock(&head2->lock);
561 spin_unlock_bh(&head->lock);
562 return ret;
563 }
564 EXPORT_SYMBOL_GPL(inet_csk_get_port);
565
566 /*
567 * Wait for an incoming connection, avoid race conditions. This must be called
568 * with the socket locked.
569 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)570 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
571 {
572 struct inet_connection_sock *icsk = inet_csk(sk);
573 DEFINE_WAIT(wait);
574 int err;
575
576 /*
577 * True wake-one mechanism for incoming connections: only
578 * one process gets woken up, not the 'whole herd'.
579 * Since we do not 'race & poll' for established sockets
580 * anymore, the common case will execute the loop only once.
581 *
582 * Subtle issue: "add_wait_queue_exclusive()" will be added
583 * after any current non-exclusive waiters, and we know that
584 * it will always _stay_ after any new non-exclusive waiters
585 * because all non-exclusive waiters are added at the
586 * beginning of the wait-queue. As such, it's ok to "drop"
587 * our exclusiveness temporarily when we get woken up without
588 * having to remove and re-insert us on the wait queue.
589 */
590 for (;;) {
591 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
592 TASK_INTERRUPTIBLE);
593 release_sock(sk);
594 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
595 timeo = schedule_timeout(timeo);
596 sched_annotate_sleep();
597 lock_sock(sk);
598 err = 0;
599 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
600 break;
601 err = -EINVAL;
602 if (sk->sk_state != TCP_LISTEN)
603 break;
604 err = sock_intr_errno(timeo);
605 if (signal_pending(current))
606 break;
607 err = -EAGAIN;
608 if (!timeo)
609 break;
610 }
611 finish_wait(sk_sleep(sk), &wait);
612 return err;
613 }
614
615 /*
616 * This will accept the next outstanding connection.
617 */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)618 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
619 {
620 struct inet_connection_sock *icsk = inet_csk(sk);
621 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
622 struct request_sock *req;
623 struct sock *newsk;
624 int error;
625
626 lock_sock(sk);
627
628 /* We need to make sure that this socket is listening,
629 * and that it has something pending.
630 */
631 error = -EINVAL;
632 if (sk->sk_state != TCP_LISTEN)
633 goto out_err;
634
635 /* Find already established connection */
636 if (reqsk_queue_empty(queue)) {
637 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
638
639 /* If this is a non blocking socket don't sleep */
640 error = -EAGAIN;
641 if (!timeo)
642 goto out_err;
643
644 error = inet_csk_wait_for_connect(sk, timeo);
645 if (error)
646 goto out_err;
647 }
648 req = reqsk_queue_remove(queue, sk);
649 newsk = req->sk;
650
651 if (sk->sk_protocol == IPPROTO_TCP &&
652 tcp_rsk(req)->tfo_listener) {
653 spin_lock_bh(&queue->fastopenq.lock);
654 if (tcp_rsk(req)->tfo_listener) {
655 /* We are still waiting for the final ACK from 3WHS
656 * so can't free req now. Instead, we set req->sk to
657 * NULL to signify that the child socket is taken
658 * so reqsk_fastopen_remove() will free the req
659 * when 3WHS finishes (or is aborted).
660 */
661 req->sk = NULL;
662 req = NULL;
663 }
664 spin_unlock_bh(&queue->fastopenq.lock);
665 }
666
667 out:
668 release_sock(sk);
669 if (newsk && mem_cgroup_sockets_enabled) {
670 int amt;
671
672 /* atomically get the memory usage, set and charge the
673 * newsk->sk_memcg.
674 */
675 lock_sock(newsk);
676
677 /* The socket has not been accepted yet, no need to look at
678 * newsk->sk_wmem_queued.
679 */
680 amt = sk_mem_pages(newsk->sk_forward_alloc +
681 atomic_read(&newsk->sk_rmem_alloc));
682 mem_cgroup_sk_alloc(newsk);
683 if (newsk->sk_memcg && amt)
684 mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
685 GFP_KERNEL | __GFP_NOFAIL);
686
687 release_sock(newsk);
688 }
689 if (req)
690 reqsk_put(req);
691 return newsk;
692 out_err:
693 newsk = NULL;
694 req = NULL;
695 *err = error;
696 goto out;
697 }
698 EXPORT_SYMBOL(inet_csk_accept);
699
700 /*
701 * Using different timers for retransmit, delayed acks and probes
702 * We may wish use just one timer maintaining a list of expire jiffies
703 * to optimize.
704 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))705 void inet_csk_init_xmit_timers(struct sock *sk,
706 void (*retransmit_handler)(struct timer_list *t),
707 void (*delack_handler)(struct timer_list *t),
708 void (*keepalive_handler)(struct timer_list *t))
709 {
710 struct inet_connection_sock *icsk = inet_csk(sk);
711
712 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
713 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
714 timer_setup(&sk->sk_timer, keepalive_handler, 0);
715 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
716 }
717 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
718
inet_csk_clear_xmit_timers(struct sock * sk)719 void inet_csk_clear_xmit_timers(struct sock *sk)
720 {
721 struct inet_connection_sock *icsk = inet_csk(sk);
722
723 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
724
725 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
726 sk_stop_timer(sk, &icsk->icsk_delack_timer);
727 sk_stop_timer(sk, &sk->sk_timer);
728 }
729 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
730
inet_csk_delete_keepalive_timer(struct sock * sk)731 void inet_csk_delete_keepalive_timer(struct sock *sk)
732 {
733 sk_stop_timer(sk, &sk->sk_timer);
734 }
735 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
736
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)737 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
738 {
739 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
740 }
741 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
742
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)743 struct dst_entry *inet_csk_route_req(const struct sock *sk,
744 struct flowi4 *fl4,
745 const struct request_sock *req)
746 {
747 const struct inet_request_sock *ireq = inet_rsk(req);
748 struct net *net = read_pnet(&ireq->ireq_net);
749 struct ip_options_rcu *opt;
750 struct rtable *rt;
751
752 rcu_read_lock();
753 opt = rcu_dereference(ireq->ireq_opt);
754
755 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
756 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
757 sk->sk_protocol, inet_sk_flowi_flags(sk),
758 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
759 ireq->ir_loc_addr, ireq->ir_rmt_port,
760 htons(ireq->ir_num), sk->sk_uid);
761 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
762 rt = ip_route_output_flow(net, fl4, sk);
763 if (IS_ERR(rt))
764 goto no_route;
765 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
766 goto route_err;
767 rcu_read_unlock();
768 return &rt->dst;
769
770 route_err:
771 ip_rt_put(rt);
772 no_route:
773 rcu_read_unlock();
774 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
775 return NULL;
776 }
777 EXPORT_SYMBOL_GPL(inet_csk_route_req);
778
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)779 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
780 struct sock *newsk,
781 const struct request_sock *req)
782 {
783 const struct inet_request_sock *ireq = inet_rsk(req);
784 struct net *net = read_pnet(&ireq->ireq_net);
785 struct inet_sock *newinet = inet_sk(newsk);
786 struct ip_options_rcu *opt;
787 struct flowi4 *fl4;
788 struct rtable *rt;
789
790 opt = rcu_dereference(ireq->ireq_opt);
791 fl4 = &newinet->cork.fl.u.ip4;
792
793 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
794 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
795 sk->sk_protocol, inet_sk_flowi_flags(sk),
796 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
797 ireq->ir_loc_addr, ireq->ir_rmt_port,
798 htons(ireq->ir_num), sk->sk_uid);
799 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
800 rt = ip_route_output_flow(net, fl4, sk);
801 if (IS_ERR(rt))
802 goto no_route;
803 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
804 goto route_err;
805 return &rt->dst;
806
807 route_err:
808 ip_rt_put(rt);
809 no_route:
810 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
811 return NULL;
812 }
813 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
814
815 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)816 static void syn_ack_recalc(struct request_sock *req,
817 const int max_syn_ack_retries,
818 const u8 rskq_defer_accept,
819 int *expire, int *resend)
820 {
821 if (!rskq_defer_accept) {
822 *expire = req->num_timeout >= max_syn_ack_retries;
823 *resend = 1;
824 return;
825 }
826 *expire = req->num_timeout >= max_syn_ack_retries &&
827 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
828 /* Do not resend while waiting for data after ACK,
829 * start to resend on end of deferring period to give
830 * last chance for data or ACK to create established socket.
831 */
832 *resend = !inet_rsk(req)->acked ||
833 req->num_timeout >= rskq_defer_accept - 1;
834 }
835
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)836 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
837 {
838 int err = req->rsk_ops->rtx_syn_ack(parent, req);
839
840 if (!err)
841 req->num_retrans++;
842 return err;
843 }
844 EXPORT_SYMBOL(inet_rtx_syn_ack);
845
inet_reqsk_clone(struct request_sock * req,struct sock * sk)846 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
847 struct sock *sk)
848 {
849 struct sock *req_sk, *nreq_sk;
850 struct request_sock *nreq;
851
852 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
853 if (!nreq) {
854 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
855
856 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
857 sock_put(sk);
858 return NULL;
859 }
860
861 req_sk = req_to_sk(req);
862 nreq_sk = req_to_sk(nreq);
863
864 memcpy(nreq_sk, req_sk,
865 offsetof(struct sock, sk_dontcopy_begin));
866 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
867 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
868
869 sk_node_init(&nreq_sk->sk_node);
870 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
871 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
872 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
873 #endif
874 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
875
876 nreq->rsk_listener = sk;
877
878 /* We need not acquire fastopenq->lock
879 * because the child socket is locked in inet_csk_listen_stop().
880 */
881 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
882 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
883
884 return nreq;
885 }
886
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)887 static void reqsk_queue_migrated(struct request_sock_queue *queue,
888 const struct request_sock *req)
889 {
890 if (req->num_timeout == 0)
891 atomic_inc(&queue->young);
892 atomic_inc(&queue->qlen);
893 }
894
reqsk_migrate_reset(struct request_sock * req)895 static void reqsk_migrate_reset(struct request_sock *req)
896 {
897 req->saved_syn = NULL;
898 #if IS_ENABLED(CONFIG_IPV6)
899 inet_rsk(req)->ipv6_opt = NULL;
900 inet_rsk(req)->pktopts = NULL;
901 #else
902 inet_rsk(req)->ireq_opt = NULL;
903 #endif
904 }
905
906 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)907 static bool reqsk_queue_unlink(struct request_sock *req)
908 {
909 struct sock *sk = req_to_sk(req);
910 bool found = false;
911
912 if (sk_hashed(sk)) {
913 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
914 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
915
916 spin_lock(lock);
917 found = __sk_nulls_del_node_init_rcu(sk);
918 spin_unlock(lock);
919 }
920 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
921 reqsk_put(req);
922 return found;
923 }
924
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)925 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
926 {
927 bool unlinked = reqsk_queue_unlink(req);
928
929 if (unlinked) {
930 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
931 reqsk_put(req);
932 }
933 return unlinked;
934 }
935 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
936
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)937 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
938 {
939 inet_csk_reqsk_queue_drop(sk, req);
940 reqsk_put(req);
941 }
942 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
943
reqsk_timer_handler(struct timer_list * t)944 static void reqsk_timer_handler(struct timer_list *t)
945 {
946 struct request_sock *req = from_timer(req, t, rsk_timer);
947 struct request_sock *nreq = NULL, *oreq = req;
948 struct sock *sk_listener = req->rsk_listener;
949 struct inet_connection_sock *icsk;
950 struct request_sock_queue *queue;
951 struct net *net;
952 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
953
954 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
955 struct sock *nsk;
956
957 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
958 if (!nsk)
959 goto drop;
960
961 nreq = inet_reqsk_clone(req, nsk);
962 if (!nreq)
963 goto drop;
964
965 /* The new timer for the cloned req can decrease the 2
966 * by calling inet_csk_reqsk_queue_drop_and_put(), so
967 * hold another count to prevent use-after-free and
968 * call reqsk_put() just before return.
969 */
970 refcount_set(&nreq->rsk_refcnt, 2 + 1);
971 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
972 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
973
974 req = nreq;
975 sk_listener = nsk;
976 }
977
978 icsk = inet_csk(sk_listener);
979 net = sock_net(sk_listener);
980 max_syn_ack_retries = icsk->icsk_syn_retries ? :
981 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
982 /* Normally all the openreqs are young and become mature
983 * (i.e. converted to established socket) for first timeout.
984 * If synack was not acknowledged for 1 second, it means
985 * one of the following things: synack was lost, ack was lost,
986 * rtt is high or nobody planned to ack (i.e. synflood).
987 * When server is a bit loaded, queue is populated with old
988 * open requests, reducing effective size of queue.
989 * When server is well loaded, queue size reduces to zero
990 * after several minutes of work. It is not synflood,
991 * it is normal operation. The solution is pruning
992 * too old entries overriding normal timeout, when
993 * situation becomes dangerous.
994 *
995 * Essentially, we reserve half of room for young
996 * embrions; and abort old ones without pity, if old
997 * ones are about to clog our table.
998 */
999 queue = &icsk->icsk_accept_queue;
1000 qlen = reqsk_queue_len(queue);
1001 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1002 int young = reqsk_queue_len_young(queue) << 1;
1003
1004 while (max_syn_ack_retries > 2) {
1005 if (qlen < young)
1006 break;
1007 max_syn_ack_retries--;
1008 young <<= 1;
1009 }
1010 }
1011 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1012 &expire, &resend);
1013 req->rsk_ops->syn_ack_timeout(req);
1014 if (!expire &&
1015 (!resend ||
1016 !inet_rtx_syn_ack(sk_listener, req) ||
1017 inet_rsk(req)->acked)) {
1018 if (req->num_timeout++ == 0)
1019 atomic_dec(&queue->young);
1020 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1021
1022 if (!nreq)
1023 return;
1024
1025 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1026 /* delete timer */
1027 inet_csk_reqsk_queue_drop(sk_listener, nreq);
1028 goto no_ownership;
1029 }
1030
1031 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1032 reqsk_migrate_reset(oreq);
1033 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1034 reqsk_put(oreq);
1035
1036 reqsk_put(nreq);
1037 return;
1038 }
1039
1040 /* Even if we can clone the req, we may need not retransmit any more
1041 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1042 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1043 */
1044 if (nreq) {
1045 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1046 no_ownership:
1047 reqsk_migrate_reset(nreq);
1048 reqsk_queue_removed(queue, nreq);
1049 __reqsk_free(nreq);
1050 }
1051
1052 drop:
1053 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1054 }
1055
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1056 static void reqsk_queue_hash_req(struct request_sock *req,
1057 unsigned long timeout)
1058 {
1059 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1060 mod_timer(&req->rsk_timer, jiffies + timeout);
1061
1062 inet_ehash_insert(req_to_sk(req), NULL, NULL);
1063 /* before letting lookups find us, make sure all req fields
1064 * are committed to memory and refcnt initialized.
1065 */
1066 smp_wmb();
1067 refcount_set(&req->rsk_refcnt, 2 + 1);
1068 }
1069
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1070 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1071 unsigned long timeout)
1072 {
1073 reqsk_queue_hash_req(req, timeout);
1074 inet_csk_reqsk_queue_added(sk);
1075 }
1076 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1077
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1078 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1079 const gfp_t priority)
1080 {
1081 struct inet_connection_sock *icsk = inet_csk(newsk);
1082
1083 if (!icsk->icsk_ulp_ops)
1084 return;
1085
1086 if (icsk->icsk_ulp_ops->clone)
1087 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1088 }
1089
1090 /**
1091 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1092 * @sk: the socket to clone
1093 * @req: request_sock
1094 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1095 *
1096 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1097 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1098 struct sock *inet_csk_clone_lock(const struct sock *sk,
1099 const struct request_sock *req,
1100 const gfp_t priority)
1101 {
1102 struct sock *newsk = sk_clone_lock(sk, priority);
1103
1104 if (newsk) {
1105 struct inet_connection_sock *newicsk = inet_csk(newsk);
1106
1107 inet_sk_set_state(newsk, TCP_SYN_RECV);
1108 newicsk->icsk_bind_hash = NULL;
1109 newicsk->icsk_bind2_hash = NULL;
1110
1111 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1112 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1113 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1114
1115 /* listeners have SOCK_RCU_FREE, not the children */
1116 sock_reset_flag(newsk, SOCK_RCU_FREE);
1117
1118 inet_sk(newsk)->mc_list = NULL;
1119
1120 newsk->sk_mark = inet_rsk(req)->ir_mark;
1121 atomic64_set(&newsk->sk_cookie,
1122 atomic64_read(&inet_rsk(req)->ir_cookie));
1123
1124 newicsk->icsk_retransmits = 0;
1125 newicsk->icsk_backoff = 0;
1126 newicsk->icsk_probes_out = 0;
1127 newicsk->icsk_probes_tstamp = 0;
1128
1129 /* Deinitialize accept_queue to trap illegal accesses. */
1130 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1131
1132 inet_clone_ulp(req, newsk, priority);
1133
1134 security_inet_csk_clone(newsk, req);
1135 }
1136 return newsk;
1137 }
1138 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1139
1140 /*
1141 * At this point, there should be no process reference to this
1142 * socket, and thus no user references at all. Therefore we
1143 * can assume the socket waitqueue is inactive and nobody will
1144 * try to jump onto it.
1145 */
inet_csk_destroy_sock(struct sock * sk)1146 void inet_csk_destroy_sock(struct sock *sk)
1147 {
1148 WARN_ON(sk->sk_state != TCP_CLOSE);
1149 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1150
1151 /* It cannot be in hash table! */
1152 WARN_ON(!sk_unhashed(sk));
1153
1154 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1155 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1156
1157 sk->sk_prot->destroy(sk);
1158
1159 sk_stream_kill_queues(sk);
1160
1161 xfrm_sk_free_policy(sk);
1162
1163 sk_refcnt_debug_release(sk);
1164
1165 this_cpu_dec(*sk->sk_prot->orphan_count);
1166
1167 sock_put(sk);
1168 }
1169 EXPORT_SYMBOL(inet_csk_destroy_sock);
1170
1171 /* This function allows to force a closure of a socket after the call to
1172 * tcp/dccp_create_openreq_child().
1173 */
inet_csk_prepare_forced_close(struct sock * sk)1174 void inet_csk_prepare_forced_close(struct sock *sk)
1175 __releases(&sk->sk_lock.slock)
1176 {
1177 /* sk_clone_lock locked the socket and set refcnt to 2 */
1178 bh_unlock_sock(sk);
1179 sock_put(sk);
1180 inet_csk_prepare_for_destroy_sock(sk);
1181 inet_sk(sk)->inet_num = 0;
1182 }
1183 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1184
inet_csk_listen_start(struct sock * sk)1185 int inet_csk_listen_start(struct sock *sk)
1186 {
1187 struct inet_connection_sock *icsk = inet_csk(sk);
1188 struct inet_sock *inet = inet_sk(sk);
1189 int err = -EADDRINUSE;
1190
1191 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1192
1193 sk->sk_ack_backlog = 0;
1194 inet_csk_delack_init(sk);
1195
1196 if (sk->sk_txrehash == SOCK_TXREHASH_DEFAULT)
1197 sk->sk_txrehash = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1198
1199 /* There is race window here: we announce ourselves listening,
1200 * but this transition is still not validated by get_port().
1201 * It is OK, because this socket enters to hash table only
1202 * after validation is complete.
1203 */
1204 inet_sk_state_store(sk, TCP_LISTEN);
1205 if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
1206 inet->inet_sport = htons(inet->inet_num);
1207
1208 sk_dst_reset(sk);
1209 err = sk->sk_prot->hash(sk);
1210
1211 if (likely(!err))
1212 return 0;
1213 }
1214
1215 inet_sk_set_state(sk, TCP_CLOSE);
1216 return err;
1217 }
1218 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1219
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1220 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1221 struct sock *child)
1222 {
1223 sk->sk_prot->disconnect(child, O_NONBLOCK);
1224
1225 sock_orphan(child);
1226
1227 this_cpu_inc(*sk->sk_prot->orphan_count);
1228
1229 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1230 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1231 BUG_ON(sk != req->rsk_listener);
1232
1233 /* Paranoid, to prevent race condition if
1234 * an inbound pkt destined for child is
1235 * blocked by sock lock in tcp_v4_rcv().
1236 * Also to satisfy an assertion in
1237 * tcp_v4_destroy_sock().
1238 */
1239 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1240 }
1241 inet_csk_destroy_sock(child);
1242 }
1243
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1244 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1245 struct request_sock *req,
1246 struct sock *child)
1247 {
1248 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1249
1250 spin_lock(&queue->rskq_lock);
1251 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1252 inet_child_forget(sk, req, child);
1253 child = NULL;
1254 } else {
1255 req->sk = child;
1256 req->dl_next = NULL;
1257 if (queue->rskq_accept_head == NULL)
1258 WRITE_ONCE(queue->rskq_accept_head, req);
1259 else
1260 queue->rskq_accept_tail->dl_next = req;
1261 queue->rskq_accept_tail = req;
1262 sk_acceptq_added(sk);
1263 }
1264 spin_unlock(&queue->rskq_lock);
1265 return child;
1266 }
1267 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1268
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1269 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1270 struct request_sock *req, bool own_req)
1271 {
1272 if (own_req) {
1273 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1274 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1275
1276 if (sk != req->rsk_listener) {
1277 /* another listening sk has been selected,
1278 * migrate the req to it.
1279 */
1280 struct request_sock *nreq;
1281
1282 /* hold a refcnt for the nreq->rsk_listener
1283 * which is assigned in inet_reqsk_clone()
1284 */
1285 sock_hold(sk);
1286 nreq = inet_reqsk_clone(req, sk);
1287 if (!nreq) {
1288 inet_child_forget(sk, req, child);
1289 goto child_put;
1290 }
1291
1292 refcount_set(&nreq->rsk_refcnt, 1);
1293 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1294 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1295 reqsk_migrate_reset(req);
1296 reqsk_put(req);
1297 return child;
1298 }
1299
1300 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1301 reqsk_migrate_reset(nreq);
1302 __reqsk_free(nreq);
1303 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1304 return child;
1305 }
1306 }
1307 /* Too bad, another child took ownership of the request, undo. */
1308 child_put:
1309 bh_unlock_sock(child);
1310 sock_put(child);
1311 return NULL;
1312 }
1313 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1314
1315 /*
1316 * This routine closes sockets which have been at least partially
1317 * opened, but not yet accepted.
1318 */
inet_csk_listen_stop(struct sock * sk)1319 void inet_csk_listen_stop(struct sock *sk)
1320 {
1321 struct inet_connection_sock *icsk = inet_csk(sk);
1322 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1323 struct request_sock *next, *req;
1324
1325 /* Following specs, it would be better either to send FIN
1326 * (and enter FIN-WAIT-1, it is normal close)
1327 * or to send active reset (abort).
1328 * Certainly, it is pretty dangerous while synflood, but it is
1329 * bad justification for our negligence 8)
1330 * To be honest, we are not able to make either
1331 * of the variants now. --ANK
1332 */
1333 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1334 struct sock *child = req->sk, *nsk;
1335 struct request_sock *nreq;
1336
1337 local_bh_disable();
1338 bh_lock_sock(child);
1339 WARN_ON(sock_owned_by_user(child));
1340 sock_hold(child);
1341
1342 nsk = reuseport_migrate_sock(sk, child, NULL);
1343 if (nsk) {
1344 nreq = inet_reqsk_clone(req, nsk);
1345 if (nreq) {
1346 refcount_set(&nreq->rsk_refcnt, 1);
1347
1348 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1349 __NET_INC_STATS(sock_net(nsk),
1350 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1351 reqsk_migrate_reset(req);
1352 } else {
1353 __NET_INC_STATS(sock_net(nsk),
1354 LINUX_MIB_TCPMIGRATEREQFAILURE);
1355 reqsk_migrate_reset(nreq);
1356 __reqsk_free(nreq);
1357 }
1358
1359 /* inet_csk_reqsk_queue_add() has already
1360 * called inet_child_forget() on failure case.
1361 */
1362 goto skip_child_forget;
1363 }
1364 }
1365
1366 inet_child_forget(sk, req, child);
1367 skip_child_forget:
1368 reqsk_put(req);
1369 bh_unlock_sock(child);
1370 local_bh_enable();
1371 sock_put(child);
1372
1373 cond_resched();
1374 }
1375 if (queue->fastopenq.rskq_rst_head) {
1376 /* Free all the reqs queued in rskq_rst_head. */
1377 spin_lock_bh(&queue->fastopenq.lock);
1378 req = queue->fastopenq.rskq_rst_head;
1379 queue->fastopenq.rskq_rst_head = NULL;
1380 spin_unlock_bh(&queue->fastopenq.lock);
1381 while (req != NULL) {
1382 next = req->dl_next;
1383 reqsk_put(req);
1384 req = next;
1385 }
1386 }
1387 WARN_ON_ONCE(sk->sk_ack_backlog);
1388 }
1389 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1390
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1391 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1392 {
1393 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1394 const struct inet_sock *inet = inet_sk(sk);
1395
1396 sin->sin_family = AF_INET;
1397 sin->sin_addr.s_addr = inet->inet_daddr;
1398 sin->sin_port = inet->inet_dport;
1399 }
1400 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1401
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1402 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1403 {
1404 const struct inet_sock *inet = inet_sk(sk);
1405 const struct ip_options_rcu *inet_opt;
1406 __be32 daddr = inet->inet_daddr;
1407 struct flowi4 *fl4;
1408 struct rtable *rt;
1409
1410 rcu_read_lock();
1411 inet_opt = rcu_dereference(inet->inet_opt);
1412 if (inet_opt && inet_opt->opt.srr)
1413 daddr = inet_opt->opt.faddr;
1414 fl4 = &fl->u.ip4;
1415 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1416 inet->inet_saddr, inet->inet_dport,
1417 inet->inet_sport, sk->sk_protocol,
1418 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1419 if (IS_ERR(rt))
1420 rt = NULL;
1421 if (rt)
1422 sk_setup_caps(sk, &rt->dst);
1423 rcu_read_unlock();
1424
1425 return &rt->dst;
1426 }
1427
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1428 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1429 {
1430 struct dst_entry *dst = __sk_dst_check(sk, 0);
1431 struct inet_sock *inet = inet_sk(sk);
1432
1433 if (!dst) {
1434 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1435 if (!dst)
1436 goto out;
1437 }
1438 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1439
1440 dst = __sk_dst_check(sk, 0);
1441 if (!dst)
1442 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1443 out:
1444 return dst;
1445 }
1446 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1447