1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
28 * only, and any IPv4 addresses if not IPv6 only
29 * match_wildcard == false: addresses must be exactly the same, i.e.
30 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
31 * and 0.0.0.0 equals to 0.0.0.0 only
32 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_wildcard)33 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
34 const struct in6_addr *sk2_rcv_saddr6,
35 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
36 bool sk1_ipv6only, bool sk2_ipv6only,
37 bool match_wildcard)
38 {
39 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
40 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
41
42 /* if both are mapped, treat as IPv4 */
43 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
44 if (!sk2_ipv6only) {
45 if (sk1_rcv_saddr == sk2_rcv_saddr)
46 return true;
47 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
48 return match_wildcard;
49 }
50 return false;
51 }
52
53 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
54 return true;
55
56 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
57 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
58 return true;
59
60 if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
61 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
62 return true;
63
64 if (sk2_rcv_saddr6 &&
65 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
66 return true;
67
68 return false;
69 }
70 #endif
71
72 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
73 * match_wildcard == false: addresses must be exactly the same, i.e.
74 * 0.0.0.0 only equals to 0.0.0.0
75 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_wildcard)76 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
77 bool sk2_ipv6only, bool match_wildcard)
78 {
79 if (!sk2_ipv6only) {
80 if (sk1_rcv_saddr == sk2_rcv_saddr)
81 return true;
82 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
83 return match_wildcard;
84 }
85 return false;
86 }
87
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)88 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
89 bool match_wildcard)
90 {
91 #if IS_ENABLED(CONFIG_IPV6)
92 if (sk->sk_family == AF_INET6)
93 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
94 inet6_rcv_saddr(sk2),
95 sk->sk_rcv_saddr,
96 sk2->sk_rcv_saddr,
97 ipv6_only_sock(sk),
98 ipv6_only_sock(sk2),
99 match_wildcard);
100 #endif
101 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
102 ipv6_only_sock(sk2), match_wildcard);
103 }
104 EXPORT_SYMBOL(inet_rcv_saddr_equal);
105
inet_rcv_saddr_any(const struct sock * sk)106 bool inet_rcv_saddr_any(const struct sock *sk)
107 {
108 #if IS_ENABLED(CONFIG_IPV6)
109 if (sk->sk_family == AF_INET6)
110 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
111 #endif
112 return !sk->sk_rcv_saddr;
113 }
114
inet_get_local_port_range(struct net * net,int * low,int * high)115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117 unsigned int seq;
118
119 do {
120 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121
122 *low = net->ipv4.ip_local_ports.range[0];
123 *high = net->ipv4.ip_local_ports.range[1];
124 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,bool relax,bool reuseport_ok)128 static int inet_csk_bind_conflict(const struct sock *sk,
129 const struct inet_bind_bucket *tb,
130 bool relax, bool reuseport_ok)
131 {
132 struct sock *sk2;
133 bool reuse = sk->sk_reuse;
134 bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135 kuid_t uid = sock_i_uid((struct sock *)sk);
136
137 /*
138 * Unlike other sk lookup places we do not check
139 * for sk_net here, since _all_ the socks listed
140 * in tb->owners list belong to the same net - the
141 * one this bucket belongs to.
142 */
143
144 sk_for_each_bound(sk2, &tb->owners) {
145 if (sk != sk2 &&
146 (!sk->sk_bound_dev_if ||
147 !sk2->sk_bound_dev_if ||
148 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149 if ((!reuse || !sk2->sk_reuse ||
150 sk2->sk_state == TCP_LISTEN) &&
151 (!reuseport || !sk2->sk_reuseport ||
152 rcu_access_pointer(sk->sk_reuseport_cb) ||
153 (sk2->sk_state != TCP_TIME_WAIT &&
154 !uid_eq(uid, sock_i_uid(sk2))))) {
155 if (inet_rcv_saddr_equal(sk, sk2, true))
156 break;
157 }
158 if (!relax && reuse && sk2->sk_reuse &&
159 sk2->sk_state != TCP_LISTEN) {
160 if (inet_rcv_saddr_equal(sk, sk2, true))
161 break;
162 }
163 }
164 }
165 return sk2 != NULL;
166 }
167
168 /*
169 * Find an open port number for the socket. Returns with the
170 * inet_bind_hashbucket lock held.
171 */
172 static struct inet_bind_hashbucket *
inet_csk_find_open_port(struct sock * sk,struct inet_bind_bucket ** tb_ret,int * port_ret)173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174 {
175 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176 int port = 0;
177 struct inet_bind_hashbucket *head;
178 struct net *net = sock_net(sk);
179 int i, low, high, attempt_half;
180 struct inet_bind_bucket *tb;
181 u32 remaining, offset;
182 int l3mdev;
183
184 l3mdev = inet_sk_bound_l3mdev(sk);
185 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
186 other_half_scan:
187 inet_get_local_port_range(net, &low, &high);
188 high++; /* [32768, 60999] -> [32768, 61000[ */
189 if (high - low < 4)
190 attempt_half = 0;
191 if (attempt_half) {
192 int half = low + (((high - low) >> 2) << 1);
193
194 if (attempt_half == 1)
195 high = half;
196 else
197 low = half;
198 }
199 remaining = high - low;
200 if (likely(remaining > 1))
201 remaining &= ~1U;
202
203 offset = prandom_u32() % remaining;
204 /* __inet_hash_connect() favors ports having @low parity
205 * We do the opposite to not pollute connect() users.
206 */
207 offset |= 1U;
208
209 other_parity_scan:
210 port = low + offset;
211 for (i = 0; i < remaining; i += 2, port += 2) {
212 if (unlikely(port >= high))
213 port -= remaining;
214 if (inet_is_local_reserved_port(net, port))
215 continue;
216 head = &hinfo->bhash[inet_bhashfn(net, port,
217 hinfo->bhash_size)];
218 spin_lock_bh(&head->lock);
219 inet_bind_bucket_for_each(tb, &head->chain)
220 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
221 tb->port == port) {
222 if (!inet_csk_bind_conflict(sk, tb, false, false))
223 goto success;
224 goto next_port;
225 }
226 tb = NULL;
227 goto success;
228 next_port:
229 spin_unlock_bh(&head->lock);
230 cond_resched();
231 }
232
233 offset--;
234 if (!(offset & 1))
235 goto other_parity_scan;
236
237 if (attempt_half == 1) {
238 /* OK we now try the upper half of the range */
239 attempt_half = 2;
240 goto other_half_scan;
241 }
242 return NULL;
243 success:
244 *port_ret = port;
245 *tb_ret = tb;
246 return head;
247 }
248
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)249 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
250 struct sock *sk)
251 {
252 kuid_t uid = sock_i_uid(sk);
253
254 if (tb->fastreuseport <= 0)
255 return 0;
256 if (!sk->sk_reuseport)
257 return 0;
258 if (rcu_access_pointer(sk->sk_reuseport_cb))
259 return 0;
260 if (!uid_eq(tb->fastuid, uid))
261 return 0;
262 /* We only need to check the rcv_saddr if this tb was once marked
263 * without fastreuseport and then was reset, as we can only know that
264 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
265 * owners list.
266 */
267 if (tb->fastreuseport == FASTREUSEPORT_ANY)
268 return 1;
269 #if IS_ENABLED(CONFIG_IPV6)
270 if (tb->fast_sk_family == AF_INET6)
271 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
272 inet6_rcv_saddr(sk),
273 tb->fast_rcv_saddr,
274 sk->sk_rcv_saddr,
275 tb->fast_ipv6_only,
276 ipv6_only_sock(sk), true);
277 #endif
278 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
279 ipv6_only_sock(sk), true);
280 }
281
282 /* Obtain a reference to a local port for the given sock,
283 * if snum is zero it means select any available local port.
284 * We try to allocate an odd port (and leave even ports for connect())
285 */
inet_csk_get_port(struct sock * sk,unsigned short snum)286 int inet_csk_get_port(struct sock *sk, unsigned short snum)
287 {
288 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
289 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
290 int ret = 1, port = snum;
291 struct inet_bind_hashbucket *head;
292 struct net *net = sock_net(sk);
293 struct inet_bind_bucket *tb = NULL;
294 kuid_t uid = sock_i_uid(sk);
295 int l3mdev;
296
297 l3mdev = inet_sk_bound_l3mdev(sk);
298
299 if (!port) {
300 head = inet_csk_find_open_port(sk, &tb, &port);
301 if (!head)
302 return ret;
303 if (!tb)
304 goto tb_not_found;
305 goto success;
306 }
307 head = &hinfo->bhash[inet_bhashfn(net, port,
308 hinfo->bhash_size)];
309 spin_lock_bh(&head->lock);
310 inet_bind_bucket_for_each(tb, &head->chain)
311 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
312 tb->port == port)
313 goto tb_found;
314 tb_not_found:
315 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
316 net, head, port, l3mdev);
317 if (!tb)
318 goto fail_unlock;
319 tb_found:
320 if (!hlist_empty(&tb->owners)) {
321 if (sk->sk_reuse == SK_FORCE_REUSE)
322 goto success;
323
324 if ((tb->fastreuse > 0 && reuse) ||
325 sk_reuseport_match(tb, sk))
326 goto success;
327 if (inet_csk_bind_conflict(sk, tb, true, true))
328 goto fail_unlock;
329 }
330 success:
331 if (hlist_empty(&tb->owners)) {
332 tb->fastreuse = reuse;
333 if (sk->sk_reuseport) {
334 tb->fastreuseport = FASTREUSEPORT_ANY;
335 tb->fastuid = uid;
336 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
337 tb->fast_ipv6_only = ipv6_only_sock(sk);
338 tb->fast_sk_family = sk->sk_family;
339 #if IS_ENABLED(CONFIG_IPV6)
340 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
341 #endif
342 } else {
343 tb->fastreuseport = 0;
344 }
345 } else {
346 if (!reuse)
347 tb->fastreuse = 0;
348 if (sk->sk_reuseport) {
349 /* We didn't match or we don't have fastreuseport set on
350 * the tb, but we have sk_reuseport set on this socket
351 * and we know that there are no bind conflicts with
352 * this socket in this tb, so reset our tb's reuseport
353 * settings so that any subsequent sockets that match
354 * our current socket will be put on the fast path.
355 *
356 * If we reset we need to set FASTREUSEPORT_STRICT so we
357 * do extra checking for all subsequent sk_reuseport
358 * socks.
359 */
360 if (!sk_reuseport_match(tb, sk)) {
361 tb->fastreuseport = FASTREUSEPORT_STRICT;
362 tb->fastuid = uid;
363 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
364 tb->fast_ipv6_only = ipv6_only_sock(sk);
365 tb->fast_sk_family = sk->sk_family;
366 #if IS_ENABLED(CONFIG_IPV6)
367 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
368 #endif
369 }
370 } else {
371 tb->fastreuseport = 0;
372 }
373 }
374 if (!inet_csk(sk)->icsk_bind_hash)
375 inet_bind_hash(sk, tb, port);
376 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
377 ret = 0;
378
379 fail_unlock:
380 spin_unlock_bh(&head->lock);
381 return ret;
382 }
383 EXPORT_SYMBOL_GPL(inet_csk_get_port);
384
385 /*
386 * Wait for an incoming connection, avoid race conditions. This must be called
387 * with the socket locked.
388 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)389 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
390 {
391 struct inet_connection_sock *icsk = inet_csk(sk);
392 DEFINE_WAIT(wait);
393 int err;
394
395 /*
396 * True wake-one mechanism for incoming connections: only
397 * one process gets woken up, not the 'whole herd'.
398 * Since we do not 'race & poll' for established sockets
399 * anymore, the common case will execute the loop only once.
400 *
401 * Subtle issue: "add_wait_queue_exclusive()" will be added
402 * after any current non-exclusive waiters, and we know that
403 * it will always _stay_ after any new non-exclusive waiters
404 * because all non-exclusive waiters are added at the
405 * beginning of the wait-queue. As such, it's ok to "drop"
406 * our exclusiveness temporarily when we get woken up without
407 * having to remove and re-insert us on the wait queue.
408 */
409 for (;;) {
410 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
411 TASK_INTERRUPTIBLE);
412 release_sock(sk);
413 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
414 timeo = schedule_timeout(timeo);
415 sched_annotate_sleep();
416 lock_sock(sk);
417 err = 0;
418 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
419 break;
420 err = -EINVAL;
421 if (sk->sk_state != TCP_LISTEN)
422 break;
423 err = sock_intr_errno(timeo);
424 if (signal_pending(current))
425 break;
426 err = -EAGAIN;
427 if (!timeo)
428 break;
429 }
430 finish_wait(sk_sleep(sk), &wait);
431 return err;
432 }
433
434 /*
435 * This will accept the next outstanding connection.
436 */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)437 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
438 {
439 struct inet_connection_sock *icsk = inet_csk(sk);
440 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
441 struct request_sock *req;
442 struct sock *newsk;
443 int error;
444
445 lock_sock(sk);
446
447 /* We need to make sure that this socket is listening,
448 * and that it has something pending.
449 */
450 error = -EINVAL;
451 if (sk->sk_state != TCP_LISTEN)
452 goto out_err;
453
454 /* Find already established connection */
455 if (reqsk_queue_empty(queue)) {
456 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
457
458 /* If this is a non blocking socket don't sleep */
459 error = -EAGAIN;
460 if (!timeo)
461 goto out_err;
462
463 error = inet_csk_wait_for_connect(sk, timeo);
464 if (error)
465 goto out_err;
466 }
467 req = reqsk_queue_remove(queue, sk);
468 newsk = req->sk;
469
470 if (sk->sk_protocol == IPPROTO_TCP &&
471 tcp_rsk(req)->tfo_listener) {
472 spin_lock_bh(&queue->fastopenq.lock);
473 if (tcp_rsk(req)->tfo_listener) {
474 /* We are still waiting for the final ACK from 3WHS
475 * so can't free req now. Instead, we set req->sk to
476 * NULL to signify that the child socket is taken
477 * so reqsk_fastopen_remove() will free the req
478 * when 3WHS finishes (or is aborted).
479 */
480 req->sk = NULL;
481 req = NULL;
482 }
483 spin_unlock_bh(&queue->fastopenq.lock);
484 }
485 out:
486 release_sock(sk);
487 if (req)
488 reqsk_put(req);
489 return newsk;
490 out_err:
491 newsk = NULL;
492 req = NULL;
493 *err = error;
494 goto out;
495 }
496 EXPORT_SYMBOL(inet_csk_accept);
497
498 /*
499 * Using different timers for retransmit, delayed acks and probes
500 * We may wish use just one timer maintaining a list of expire jiffies
501 * to optimize.
502 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))503 void inet_csk_init_xmit_timers(struct sock *sk,
504 void (*retransmit_handler)(struct timer_list *t),
505 void (*delack_handler)(struct timer_list *t),
506 void (*keepalive_handler)(struct timer_list *t))
507 {
508 struct inet_connection_sock *icsk = inet_csk(sk);
509
510 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
511 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
512 timer_setup(&sk->sk_timer, keepalive_handler, 0);
513 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
514 }
515 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
516
inet_csk_clear_xmit_timers(struct sock * sk)517 void inet_csk_clear_xmit_timers(struct sock *sk)
518 {
519 struct inet_connection_sock *icsk = inet_csk(sk);
520
521 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
522
523 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
524 sk_stop_timer(sk, &icsk->icsk_delack_timer);
525 sk_stop_timer(sk, &sk->sk_timer);
526 }
527 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
528
inet_csk_delete_keepalive_timer(struct sock * sk)529 void inet_csk_delete_keepalive_timer(struct sock *sk)
530 {
531 sk_stop_timer(sk, &sk->sk_timer);
532 }
533 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
534
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)535 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
536 {
537 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
538 }
539 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
540
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)541 struct dst_entry *inet_csk_route_req(const struct sock *sk,
542 struct flowi4 *fl4,
543 const struct request_sock *req)
544 {
545 const struct inet_request_sock *ireq = inet_rsk(req);
546 struct net *net = read_pnet(&ireq->ireq_net);
547 struct ip_options_rcu *opt;
548 struct rtable *rt;
549
550 rcu_read_lock();
551 opt = rcu_dereference(ireq->ireq_opt);
552
553 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
554 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
555 sk->sk_protocol, inet_sk_flowi_flags(sk),
556 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
557 ireq->ir_loc_addr, ireq->ir_rmt_port,
558 htons(ireq->ir_num), sk->sk_uid);
559 security_req_classify_flow(req, flowi4_to_flowi(fl4));
560 rt = ip_route_output_flow(net, fl4, sk);
561 if (IS_ERR(rt))
562 goto no_route;
563 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
564 goto route_err;
565 rcu_read_unlock();
566 return &rt->dst;
567
568 route_err:
569 ip_rt_put(rt);
570 no_route:
571 rcu_read_unlock();
572 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
573 return NULL;
574 }
575 EXPORT_SYMBOL_GPL(inet_csk_route_req);
576
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)577 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
578 struct sock *newsk,
579 const struct request_sock *req)
580 {
581 const struct inet_request_sock *ireq = inet_rsk(req);
582 struct net *net = read_pnet(&ireq->ireq_net);
583 struct inet_sock *newinet = inet_sk(newsk);
584 struct ip_options_rcu *opt;
585 struct flowi4 *fl4;
586 struct rtable *rt;
587
588 opt = rcu_dereference(ireq->ireq_opt);
589 fl4 = &newinet->cork.fl.u.ip4;
590
591 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
592 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
593 sk->sk_protocol, inet_sk_flowi_flags(sk),
594 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
595 ireq->ir_loc_addr, ireq->ir_rmt_port,
596 htons(ireq->ir_num), sk->sk_uid);
597 security_req_classify_flow(req, flowi4_to_flowi(fl4));
598 rt = ip_route_output_flow(net, fl4, sk);
599 if (IS_ERR(rt))
600 goto no_route;
601 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
602 goto route_err;
603 return &rt->dst;
604
605 route_err:
606 ip_rt_put(rt);
607 no_route:
608 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
609 return NULL;
610 }
611 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
612
613 #if IS_ENABLED(CONFIG_IPV6)
614 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
615 #else
616 #define AF_INET_FAMILY(fam) true
617 #endif
618
619 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int thresh,const int max_retries,const u8 rskq_defer_accept,int * expire,int * resend)620 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
621 const int max_retries,
622 const u8 rskq_defer_accept,
623 int *expire, int *resend)
624 {
625 if (!rskq_defer_accept) {
626 *expire = req->num_timeout >= thresh;
627 *resend = 1;
628 return;
629 }
630 *expire = req->num_timeout >= thresh &&
631 (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
632 /*
633 * Do not resend while waiting for data after ACK,
634 * start to resend on end of deferring period to give
635 * last chance for data or ACK to create established socket.
636 */
637 *resend = !inet_rsk(req)->acked ||
638 req->num_timeout >= rskq_defer_accept - 1;
639 }
640
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)641 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
642 {
643 int err = req->rsk_ops->rtx_syn_ack(parent, req);
644
645 if (!err)
646 req->num_retrans++;
647 return err;
648 }
649 EXPORT_SYMBOL(inet_rtx_syn_ack);
650
651 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)652 static bool reqsk_queue_unlink(struct request_sock *req)
653 {
654 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
655 bool found = false;
656
657 if (sk_hashed(req_to_sk(req))) {
658 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
659
660 spin_lock(lock);
661 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
662 spin_unlock(lock);
663 }
664 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
665 reqsk_put(req);
666 return found;
667 }
668
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)669 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
670 {
671 if (reqsk_queue_unlink(req)) {
672 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
673 reqsk_put(req);
674 }
675 }
676 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
677
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)678 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
679 {
680 inet_csk_reqsk_queue_drop(sk, req);
681 reqsk_put(req);
682 }
683 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
684
reqsk_timer_handler(struct timer_list * t)685 static void reqsk_timer_handler(struct timer_list *t)
686 {
687 struct request_sock *req = from_timer(req, t, rsk_timer);
688 struct sock *sk_listener = req->rsk_listener;
689 struct net *net = sock_net(sk_listener);
690 struct inet_connection_sock *icsk = inet_csk(sk_listener);
691 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
692 int qlen, expire = 0, resend = 0;
693 int max_retries, thresh;
694 u8 defer_accept;
695
696 if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
697 goto drop;
698
699 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
700 thresh = max_retries;
701 /* Normally all the openreqs are young and become mature
702 * (i.e. converted to established socket) for first timeout.
703 * If synack was not acknowledged for 1 second, it means
704 * one of the following things: synack was lost, ack was lost,
705 * rtt is high or nobody planned to ack (i.e. synflood).
706 * When server is a bit loaded, queue is populated with old
707 * open requests, reducing effective size of queue.
708 * When server is well loaded, queue size reduces to zero
709 * after several minutes of work. It is not synflood,
710 * it is normal operation. The solution is pruning
711 * too old entries overriding normal timeout, when
712 * situation becomes dangerous.
713 *
714 * Essentially, we reserve half of room for young
715 * embrions; and abort old ones without pity, if old
716 * ones are about to clog our table.
717 */
718 qlen = reqsk_queue_len(queue);
719 if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
720 int young = reqsk_queue_len_young(queue) << 1;
721
722 while (thresh > 2) {
723 if (qlen < young)
724 break;
725 thresh--;
726 young <<= 1;
727 }
728 }
729 defer_accept = READ_ONCE(queue->rskq_defer_accept);
730 if (defer_accept)
731 max_retries = defer_accept;
732 syn_ack_recalc(req, thresh, max_retries, defer_accept,
733 &expire, &resend);
734 req->rsk_ops->syn_ack_timeout(req);
735 if (!expire &&
736 (!resend ||
737 !inet_rtx_syn_ack(sk_listener, req) ||
738 inet_rsk(req)->acked)) {
739 unsigned long timeo;
740
741 if (req->num_timeout++ == 0)
742 atomic_dec(&queue->young);
743 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
744 mod_timer(&req->rsk_timer, jiffies + timeo);
745 return;
746 }
747 drop:
748 inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
749 }
750
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)751 static void reqsk_queue_hash_req(struct request_sock *req,
752 unsigned long timeout)
753 {
754 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
755 mod_timer(&req->rsk_timer, jiffies + timeout);
756
757 inet_ehash_insert(req_to_sk(req), NULL);
758 /* before letting lookups find us, make sure all req fields
759 * are committed to memory and refcnt initialized.
760 */
761 smp_wmb();
762 refcount_set(&req->rsk_refcnt, 2 + 1);
763 }
764
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)765 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
766 unsigned long timeout)
767 {
768 reqsk_queue_hash_req(req, timeout);
769 inet_csk_reqsk_queue_added(sk);
770 }
771 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
772
773 /**
774 * inet_csk_clone_lock - clone an inet socket, and lock its clone
775 * @sk: the socket to clone
776 * @req: request_sock
777 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
778 *
779 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
780 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)781 struct sock *inet_csk_clone_lock(const struct sock *sk,
782 const struct request_sock *req,
783 const gfp_t priority)
784 {
785 struct sock *newsk = sk_clone_lock(sk, priority);
786
787 if (newsk) {
788 struct inet_connection_sock *newicsk = inet_csk(newsk);
789
790 inet_sk_set_state(newsk, TCP_SYN_RECV);
791 newicsk->icsk_bind_hash = NULL;
792
793 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
794 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
795 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
796
797 /* listeners have SOCK_RCU_FREE, not the children */
798 sock_reset_flag(newsk, SOCK_RCU_FREE);
799
800 inet_sk(newsk)->mc_list = NULL;
801
802 newsk->sk_mark = inet_rsk(req)->ir_mark;
803 atomic64_set(&newsk->sk_cookie,
804 atomic64_read(&inet_rsk(req)->ir_cookie));
805
806 newicsk->icsk_retransmits = 0;
807 newicsk->icsk_backoff = 0;
808 newicsk->icsk_probes_out = 0;
809
810 /* Deinitialize accept_queue to trap illegal accesses. */
811 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
812
813 security_inet_csk_clone(newsk, req);
814 }
815 return newsk;
816 }
817 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
818
819 /*
820 * At this point, there should be no process reference to this
821 * socket, and thus no user references at all. Therefore we
822 * can assume the socket waitqueue is inactive and nobody will
823 * try to jump onto it.
824 */
inet_csk_destroy_sock(struct sock * sk)825 void inet_csk_destroy_sock(struct sock *sk)
826 {
827 WARN_ON(sk->sk_state != TCP_CLOSE);
828 WARN_ON(!sock_flag(sk, SOCK_DEAD));
829
830 /* It cannot be in hash table! */
831 WARN_ON(!sk_unhashed(sk));
832
833 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
834 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
835
836 sk->sk_prot->destroy(sk);
837
838 sk_stream_kill_queues(sk);
839
840 xfrm_sk_free_policy(sk);
841
842 sk_refcnt_debug_release(sk);
843
844 percpu_counter_dec(sk->sk_prot->orphan_count);
845
846 sock_put(sk);
847 }
848 EXPORT_SYMBOL(inet_csk_destroy_sock);
849
850 /* This function allows to force a closure of a socket after the call to
851 * tcp/dccp_create_openreq_child().
852 */
inet_csk_prepare_forced_close(struct sock * sk)853 void inet_csk_prepare_forced_close(struct sock *sk)
854 __releases(&sk->sk_lock.slock)
855 {
856 /* sk_clone_lock locked the socket and set refcnt to 2 */
857 bh_unlock_sock(sk);
858 sock_put(sk);
859
860 /* The below has to be done to allow calling inet_csk_destroy_sock */
861 sock_set_flag(sk, SOCK_DEAD);
862 percpu_counter_inc(sk->sk_prot->orphan_count);
863 inet_sk(sk)->inet_num = 0;
864 }
865 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
866
inet_csk_listen_start(struct sock * sk,int backlog)867 int inet_csk_listen_start(struct sock *sk, int backlog)
868 {
869 struct inet_connection_sock *icsk = inet_csk(sk);
870 struct inet_sock *inet = inet_sk(sk);
871 int err = -EADDRINUSE;
872
873 reqsk_queue_alloc(&icsk->icsk_accept_queue);
874
875 sk->sk_ack_backlog = 0;
876 inet_csk_delack_init(sk);
877
878 /* There is race window here: we announce ourselves listening,
879 * but this transition is still not validated by get_port().
880 * It is OK, because this socket enters to hash table only
881 * after validation is complete.
882 */
883 inet_sk_state_store(sk, TCP_LISTEN);
884 if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
885 inet->inet_sport = htons(inet->inet_num);
886
887 sk_dst_reset(sk);
888 err = sk->sk_prot->hash(sk);
889
890 if (likely(!err))
891 return 0;
892 }
893
894 inet_sk_set_state(sk, TCP_CLOSE);
895 return err;
896 }
897 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
898
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)899 static void inet_child_forget(struct sock *sk, struct request_sock *req,
900 struct sock *child)
901 {
902 sk->sk_prot->disconnect(child, O_NONBLOCK);
903
904 sock_orphan(child);
905
906 percpu_counter_inc(sk->sk_prot->orphan_count);
907
908 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
909 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
910 BUG_ON(sk != req->rsk_listener);
911
912 /* Paranoid, to prevent race condition if
913 * an inbound pkt destined for child is
914 * blocked by sock lock in tcp_v4_rcv().
915 * Also to satisfy an assertion in
916 * tcp_v4_destroy_sock().
917 */
918 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
919 }
920 inet_csk_destroy_sock(child);
921 }
922
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)923 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
924 struct request_sock *req,
925 struct sock *child)
926 {
927 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
928
929 spin_lock(&queue->rskq_lock);
930 if (unlikely(sk->sk_state != TCP_LISTEN)) {
931 inet_child_forget(sk, req, child);
932 child = NULL;
933 } else {
934 req->sk = child;
935 req->dl_next = NULL;
936 if (queue->rskq_accept_head == NULL)
937 WRITE_ONCE(queue->rskq_accept_head, req);
938 else
939 queue->rskq_accept_tail->dl_next = req;
940 queue->rskq_accept_tail = req;
941 sk_acceptq_added(sk);
942 }
943 spin_unlock(&queue->rskq_lock);
944 return child;
945 }
946 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
947
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)948 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
949 struct request_sock *req, bool own_req)
950 {
951 if (own_req) {
952 inet_csk_reqsk_queue_drop(sk, req);
953 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
954 if (inet_csk_reqsk_queue_add(sk, req, child))
955 return child;
956 }
957 /* Too bad, another child took ownership of the request, undo. */
958 bh_unlock_sock(child);
959 sock_put(child);
960 return NULL;
961 }
962 EXPORT_SYMBOL(inet_csk_complete_hashdance);
963
964 /*
965 * This routine closes sockets which have been at least partially
966 * opened, but not yet accepted.
967 */
inet_csk_listen_stop(struct sock * sk)968 void inet_csk_listen_stop(struct sock *sk)
969 {
970 struct inet_connection_sock *icsk = inet_csk(sk);
971 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
972 struct request_sock *next, *req;
973
974 /* Following specs, it would be better either to send FIN
975 * (and enter FIN-WAIT-1, it is normal close)
976 * or to send active reset (abort).
977 * Certainly, it is pretty dangerous while synflood, but it is
978 * bad justification for our negligence 8)
979 * To be honest, we are not able to make either
980 * of the variants now. --ANK
981 */
982 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
983 struct sock *child = req->sk;
984
985 local_bh_disable();
986 bh_lock_sock(child);
987 WARN_ON(sock_owned_by_user(child));
988 sock_hold(child);
989
990 inet_child_forget(sk, req, child);
991 reqsk_put(req);
992 bh_unlock_sock(child);
993 local_bh_enable();
994 sock_put(child);
995
996 cond_resched();
997 }
998 if (queue->fastopenq.rskq_rst_head) {
999 /* Free all the reqs queued in rskq_rst_head. */
1000 spin_lock_bh(&queue->fastopenq.lock);
1001 req = queue->fastopenq.rskq_rst_head;
1002 queue->fastopenq.rskq_rst_head = NULL;
1003 spin_unlock_bh(&queue->fastopenq.lock);
1004 while (req != NULL) {
1005 next = req->dl_next;
1006 reqsk_put(req);
1007 req = next;
1008 }
1009 }
1010 WARN_ON_ONCE(sk->sk_ack_backlog);
1011 }
1012 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1013
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1014 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1015 {
1016 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1017 const struct inet_sock *inet = inet_sk(sk);
1018
1019 sin->sin_family = AF_INET;
1020 sin->sin_addr.s_addr = inet->inet_daddr;
1021 sin->sin_port = inet->inet_dport;
1022 }
1023 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1024
1025 #ifdef CONFIG_COMPAT
inet_csk_compat_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1026 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1027 char __user *optval, int __user *optlen)
1028 {
1029 const struct inet_connection_sock *icsk = inet_csk(sk);
1030
1031 if (icsk->icsk_af_ops->compat_getsockopt)
1032 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1033 optval, optlen);
1034 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1035 optval, optlen);
1036 }
1037 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1038
inet_csk_compat_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1039 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1040 char __user *optval, unsigned int optlen)
1041 {
1042 const struct inet_connection_sock *icsk = inet_csk(sk);
1043
1044 if (icsk->icsk_af_ops->compat_setsockopt)
1045 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1046 optval, optlen);
1047 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1048 optval, optlen);
1049 }
1050 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1051 #endif
1052
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1053 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1054 {
1055 const struct inet_sock *inet = inet_sk(sk);
1056 const struct ip_options_rcu *inet_opt;
1057 __be32 daddr = inet->inet_daddr;
1058 struct flowi4 *fl4;
1059 struct rtable *rt;
1060
1061 rcu_read_lock();
1062 inet_opt = rcu_dereference(inet->inet_opt);
1063 if (inet_opt && inet_opt->opt.srr)
1064 daddr = inet_opt->opt.faddr;
1065 fl4 = &fl->u.ip4;
1066 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1067 inet->inet_saddr, inet->inet_dport,
1068 inet->inet_sport, sk->sk_protocol,
1069 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1070 if (IS_ERR(rt))
1071 rt = NULL;
1072 if (rt)
1073 sk_setup_caps(sk, &rt->dst);
1074 rcu_read_unlock();
1075
1076 return &rt->dst;
1077 }
1078
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1079 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1080 {
1081 struct dst_entry *dst = __sk_dst_check(sk, 0);
1082 struct inet_sock *inet = inet_sk(sk);
1083
1084 if (!dst) {
1085 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1086 if (!dst)
1087 goto out;
1088 }
1089 dst->ops->update_pmtu(dst, sk, NULL, mtu);
1090
1091 dst = __sk_dst_check(sk, 0);
1092 if (!dst)
1093 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1094 out:
1095 return dst;
1096 }
1097 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1098