1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Support for INET connection oriented protocols.
7  *
8  * Authors:	See the TCP sources
9  *
10  *		This program is free software; you can redistribute it and/or
11  *		modify it under the terms of the GNU General Public License
12  *		as published by the Free Software Foundation; either version
13  *		2 of the License, or(at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/jhash.h>
18 
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
22 #include <net/ip.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
25 #include <net/xfrm.h>
26 #include <net/tcp.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
29 
30 #if IS_ENABLED(CONFIG_IPV6)
31 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
32  *                          only, and any IPv4 addresses if not IPv6 only
33  * match_wildcard == false: addresses must be exactly the same, i.e.
34  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
35  *                          and 0.0.0.0 equals to 0.0.0.0 only
36  */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_wildcard)37 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
38 				 const struct in6_addr *sk2_rcv_saddr6,
39 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
40 				 bool sk1_ipv6only, bool sk2_ipv6only,
41 				 bool match_wildcard)
42 {
43 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
44 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
45 
46 	/* if both are mapped, treat as IPv4 */
47 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
48 		if (!sk2_ipv6only) {
49 			if (sk1_rcv_saddr == sk2_rcv_saddr)
50 				return true;
51 			if (!sk1_rcv_saddr || !sk2_rcv_saddr)
52 				return match_wildcard;
53 		}
54 		return false;
55 	}
56 
57 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
58 		return true;
59 
60 	if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
61 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
62 		return true;
63 
64 	if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
65 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
66 		return true;
67 
68 	if (sk2_rcv_saddr6 &&
69 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
70 		return true;
71 
72 	return false;
73 }
74 #endif
75 
76 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
77  * match_wildcard == false: addresses must be exactly the same, i.e.
78  *                          0.0.0.0 only equals to 0.0.0.0
79  */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_wildcard)80 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
81 				 bool sk2_ipv6only, bool match_wildcard)
82 {
83 	if (!sk2_ipv6only) {
84 		if (sk1_rcv_saddr == sk2_rcv_saddr)
85 			return true;
86 		if (!sk1_rcv_saddr || !sk2_rcv_saddr)
87 			return match_wildcard;
88 	}
89 	return false;
90 }
91 
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)92 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
93 			  bool match_wildcard)
94 {
95 #if IS_ENABLED(CONFIG_IPV6)
96 	if (sk->sk_family == AF_INET6)
97 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
98 					    inet6_rcv_saddr(sk2),
99 					    sk->sk_rcv_saddr,
100 					    sk2->sk_rcv_saddr,
101 					    ipv6_only_sock(sk),
102 					    ipv6_only_sock(sk2),
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard);
107 }
108 EXPORT_SYMBOL(inet_rcv_saddr_equal);
109 
inet_rcv_saddr_any(const struct sock * sk)110 bool inet_rcv_saddr_any(const struct sock *sk)
111 {
112 #if IS_ENABLED(CONFIG_IPV6)
113 	if (sk->sk_family == AF_INET6)
114 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
115 #endif
116 	return !sk->sk_rcv_saddr;
117 }
118 
inet_get_local_port_range(struct net * net,int * low,int * high)119 void inet_get_local_port_range(struct net *net, int *low, int *high)
120 {
121 	unsigned int seq;
122 
123 	do {
124 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
125 
126 		*low = net->ipv4.ip_local_ports.range[0];
127 		*high = net->ipv4.ip_local_ports.range[1];
128 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
129 }
130 EXPORT_SYMBOL(inet_get_local_port_range);
131 
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,bool relax,bool reuseport_ok)132 static int inet_csk_bind_conflict(const struct sock *sk,
133 				  const struct inet_bind_bucket *tb,
134 				  bool relax, bool reuseport_ok)
135 {
136 	struct sock *sk2;
137 	bool reuse = sk->sk_reuse;
138 	bool reuseport = !!sk->sk_reuseport && reuseport_ok;
139 	kuid_t uid = sock_i_uid((struct sock *)sk);
140 
141 	/*
142 	 * Unlike other sk lookup places we do not check
143 	 * for sk_net here, since _all_ the socks listed
144 	 * in tb->owners list belong to the same net - the
145 	 * one this bucket belongs to.
146 	 */
147 
148 	sk_for_each_bound(sk2, &tb->owners) {
149 		if (sk != sk2 &&
150 		    (!sk->sk_bound_dev_if ||
151 		     !sk2->sk_bound_dev_if ||
152 		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
153 			if ((!reuse || !sk2->sk_reuse ||
154 			    sk2->sk_state == TCP_LISTEN) &&
155 			    (!reuseport || !sk2->sk_reuseport ||
156 			     rcu_access_pointer(sk->sk_reuseport_cb) ||
157 			     (sk2->sk_state != TCP_TIME_WAIT &&
158 			     !uid_eq(uid, sock_i_uid(sk2))))) {
159 				if (inet_rcv_saddr_equal(sk, sk2, true))
160 					break;
161 			}
162 			if (!relax && reuse && sk2->sk_reuse &&
163 			    sk2->sk_state != TCP_LISTEN) {
164 				if (inet_rcv_saddr_equal(sk, sk2, true))
165 					break;
166 			}
167 		}
168 	}
169 	return sk2 != NULL;
170 }
171 
172 /*
173  * Find an open port number for the socket.  Returns with the
174  * inet_bind_hashbucket lock held.
175  */
176 static struct inet_bind_hashbucket *
inet_csk_find_open_port(struct sock * sk,struct inet_bind_bucket ** tb_ret,int * port_ret)177 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
178 {
179 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
180 	int port = 0;
181 	struct inet_bind_hashbucket *head;
182 	struct net *net = sock_net(sk);
183 	int i, low, high, attempt_half;
184 	struct inet_bind_bucket *tb;
185 	u32 remaining, offset;
186 
187 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
188 other_half_scan:
189 	inet_get_local_port_range(net, &low, &high);
190 	high++; /* [32768, 60999] -> [32768, 61000[ */
191 	if (high - low < 4)
192 		attempt_half = 0;
193 	if (attempt_half) {
194 		int half = low + (((high - low) >> 2) << 1);
195 
196 		if (attempt_half == 1)
197 			high = half;
198 		else
199 			low = half;
200 	}
201 	remaining = high - low;
202 	if (likely(remaining > 1))
203 		remaining &= ~1U;
204 
205 	offset = prandom_u32() % remaining;
206 	/* __inet_hash_connect() favors ports having @low parity
207 	 * We do the opposite to not pollute connect() users.
208 	 */
209 	offset |= 1U;
210 
211 other_parity_scan:
212 	port = low + offset;
213 	for (i = 0; i < remaining; i += 2, port += 2) {
214 		if (unlikely(port >= high))
215 			port -= remaining;
216 		if (inet_is_local_reserved_port(net, port))
217 			continue;
218 		head = &hinfo->bhash[inet_bhashfn(net, port,
219 						  hinfo->bhash_size)];
220 		spin_lock_bh(&head->lock);
221 		inet_bind_bucket_for_each(tb, &head->chain)
222 			if (net_eq(ib_net(tb), net) && tb->port == port) {
223 				if (!inet_csk_bind_conflict(sk, tb, false, false))
224 					goto success;
225 				goto next_port;
226 			}
227 		tb = NULL;
228 		goto success;
229 next_port:
230 		spin_unlock_bh(&head->lock);
231 		cond_resched();
232 	}
233 
234 	offset--;
235 	if (!(offset & 1))
236 		goto other_parity_scan;
237 
238 	if (attempt_half == 1) {
239 		/* OK we now try the upper half of the range */
240 		attempt_half = 2;
241 		goto other_half_scan;
242 	}
243 	return NULL;
244 success:
245 	*port_ret = port;
246 	*tb_ret = tb;
247 	return head;
248 }
249 
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)250 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
251 				     struct sock *sk)
252 {
253 	kuid_t uid = sock_i_uid(sk);
254 
255 	if (tb->fastreuseport <= 0)
256 		return 0;
257 	if (!sk->sk_reuseport)
258 		return 0;
259 	if (rcu_access_pointer(sk->sk_reuseport_cb))
260 		return 0;
261 	if (!uid_eq(tb->fastuid, uid))
262 		return 0;
263 	/* We only need to check the rcv_saddr if this tb was once marked
264 	 * without fastreuseport and then was reset, as we can only know that
265 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
266 	 * owners list.
267 	 */
268 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
269 		return 1;
270 #if IS_ENABLED(CONFIG_IPV6)
271 	if (tb->fast_sk_family == AF_INET6)
272 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
273 					    inet6_rcv_saddr(sk),
274 					    tb->fast_rcv_saddr,
275 					    sk->sk_rcv_saddr,
276 					    tb->fast_ipv6_only,
277 					    ipv6_only_sock(sk), true);
278 #endif
279 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
280 				    ipv6_only_sock(sk), true);
281 }
282 
283 /* Obtain a reference to a local port for the given sock,
284  * if snum is zero it means select any available local port.
285  * We try to allocate an odd port (and leave even ports for connect())
286  */
inet_csk_get_port(struct sock * sk,unsigned short snum)287 int inet_csk_get_port(struct sock *sk, unsigned short snum)
288 {
289 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
290 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
291 	int ret = 1, port = snum;
292 	struct inet_bind_hashbucket *head;
293 	struct net *net = sock_net(sk);
294 	struct inet_bind_bucket *tb = NULL;
295 	kuid_t uid = sock_i_uid(sk);
296 
297 	if (!port) {
298 		head = inet_csk_find_open_port(sk, &tb, &port);
299 		if (!head)
300 			return ret;
301 		if (!tb)
302 			goto tb_not_found;
303 		goto success;
304 	}
305 	head = &hinfo->bhash[inet_bhashfn(net, port,
306 					  hinfo->bhash_size)];
307 	spin_lock_bh(&head->lock);
308 	inet_bind_bucket_for_each(tb, &head->chain)
309 		if (net_eq(ib_net(tb), net) && tb->port == port)
310 			goto tb_found;
311 tb_not_found:
312 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
313 				     net, head, port);
314 	if (!tb)
315 		goto fail_unlock;
316 tb_found:
317 	if (!hlist_empty(&tb->owners)) {
318 		if (sk->sk_reuse == SK_FORCE_REUSE)
319 			goto success;
320 
321 		if ((tb->fastreuse > 0 && reuse) ||
322 		    sk_reuseport_match(tb, sk))
323 			goto success;
324 		if (inet_csk_bind_conflict(sk, tb, true, true))
325 			goto fail_unlock;
326 	}
327 success:
328 	if (hlist_empty(&tb->owners)) {
329 		tb->fastreuse = reuse;
330 		if (sk->sk_reuseport) {
331 			tb->fastreuseport = FASTREUSEPORT_ANY;
332 			tb->fastuid = uid;
333 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
334 			tb->fast_ipv6_only = ipv6_only_sock(sk);
335 			tb->fast_sk_family = sk->sk_family;
336 #if IS_ENABLED(CONFIG_IPV6)
337 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
338 #endif
339 		} else {
340 			tb->fastreuseport = 0;
341 		}
342 	} else {
343 		if (!reuse)
344 			tb->fastreuse = 0;
345 		if (sk->sk_reuseport) {
346 			/* We didn't match or we don't have fastreuseport set on
347 			 * the tb, but we have sk_reuseport set on this socket
348 			 * and we know that there are no bind conflicts with
349 			 * this socket in this tb, so reset our tb's reuseport
350 			 * settings so that any subsequent sockets that match
351 			 * our current socket will be put on the fast path.
352 			 *
353 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
354 			 * do extra checking for all subsequent sk_reuseport
355 			 * socks.
356 			 */
357 			if (!sk_reuseport_match(tb, sk)) {
358 				tb->fastreuseport = FASTREUSEPORT_STRICT;
359 				tb->fastuid = uid;
360 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
361 				tb->fast_ipv6_only = ipv6_only_sock(sk);
362 				tb->fast_sk_family = sk->sk_family;
363 #if IS_ENABLED(CONFIG_IPV6)
364 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
365 #endif
366 			}
367 		} else {
368 			tb->fastreuseport = 0;
369 		}
370 	}
371 	if (!inet_csk(sk)->icsk_bind_hash)
372 		inet_bind_hash(sk, tb, port);
373 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
374 	ret = 0;
375 
376 fail_unlock:
377 	spin_unlock_bh(&head->lock);
378 	return ret;
379 }
380 EXPORT_SYMBOL_GPL(inet_csk_get_port);
381 
382 /*
383  * Wait for an incoming connection, avoid race conditions. This must be called
384  * with the socket locked.
385  */
inet_csk_wait_for_connect(struct sock * sk,long timeo)386 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
387 {
388 	struct inet_connection_sock *icsk = inet_csk(sk);
389 	DEFINE_WAIT(wait);
390 	int err;
391 
392 	/*
393 	 * True wake-one mechanism for incoming connections: only
394 	 * one process gets woken up, not the 'whole herd'.
395 	 * Since we do not 'race & poll' for established sockets
396 	 * anymore, the common case will execute the loop only once.
397 	 *
398 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
399 	 * after any current non-exclusive waiters, and we know that
400 	 * it will always _stay_ after any new non-exclusive waiters
401 	 * because all non-exclusive waiters are added at the
402 	 * beginning of the wait-queue. As such, it's ok to "drop"
403 	 * our exclusiveness temporarily when we get woken up without
404 	 * having to remove and re-insert us on the wait queue.
405 	 */
406 	for (;;) {
407 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
408 					  TASK_INTERRUPTIBLE);
409 		release_sock(sk);
410 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
411 			timeo = schedule_timeout(timeo);
412 		sched_annotate_sleep();
413 		lock_sock(sk);
414 		err = 0;
415 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
416 			break;
417 		err = -EINVAL;
418 		if (sk->sk_state != TCP_LISTEN)
419 			break;
420 		err = sock_intr_errno(timeo);
421 		if (signal_pending(current))
422 			break;
423 		err = -EAGAIN;
424 		if (!timeo)
425 			break;
426 	}
427 	finish_wait(sk_sleep(sk), &wait);
428 	return err;
429 }
430 
431 /*
432  * This will accept the next outstanding connection.
433  */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)434 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
435 {
436 	struct inet_connection_sock *icsk = inet_csk(sk);
437 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
438 	struct request_sock *req;
439 	struct sock *newsk;
440 	int error;
441 
442 	lock_sock(sk);
443 
444 	/* We need to make sure that this socket is listening,
445 	 * and that it has something pending.
446 	 */
447 	error = -EINVAL;
448 	if (sk->sk_state != TCP_LISTEN)
449 		goto out_err;
450 
451 	/* Find already established connection */
452 	if (reqsk_queue_empty(queue)) {
453 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
454 
455 		/* If this is a non blocking socket don't sleep */
456 		error = -EAGAIN;
457 		if (!timeo)
458 			goto out_err;
459 
460 		error = inet_csk_wait_for_connect(sk, timeo);
461 		if (error)
462 			goto out_err;
463 	}
464 	req = reqsk_queue_remove(queue, sk);
465 	newsk = req->sk;
466 
467 	if (sk->sk_protocol == IPPROTO_TCP &&
468 	    tcp_rsk(req)->tfo_listener) {
469 		spin_lock_bh(&queue->fastopenq.lock);
470 		if (tcp_rsk(req)->tfo_listener) {
471 			/* We are still waiting for the final ACK from 3WHS
472 			 * so can't free req now. Instead, we set req->sk to
473 			 * NULL to signify that the child socket is taken
474 			 * so reqsk_fastopen_remove() will free the req
475 			 * when 3WHS finishes (or is aborted).
476 			 */
477 			req->sk = NULL;
478 			req = NULL;
479 		}
480 		spin_unlock_bh(&queue->fastopenq.lock);
481 	}
482 out:
483 	release_sock(sk);
484 	if (req)
485 		reqsk_put(req);
486 	return newsk;
487 out_err:
488 	newsk = NULL;
489 	req = NULL;
490 	*err = error;
491 	goto out;
492 }
493 EXPORT_SYMBOL(inet_csk_accept);
494 
495 /*
496  * Using different timers for retransmit, delayed acks and probes
497  * We may wish use just one timer maintaining a list of expire jiffies
498  * to optimize.
499  */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))500 void inet_csk_init_xmit_timers(struct sock *sk,
501 			       void (*retransmit_handler)(struct timer_list *t),
502 			       void (*delack_handler)(struct timer_list *t),
503 			       void (*keepalive_handler)(struct timer_list *t))
504 {
505 	struct inet_connection_sock *icsk = inet_csk(sk);
506 
507 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
508 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
509 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
510 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
511 }
512 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
513 
inet_csk_clear_xmit_timers(struct sock * sk)514 void inet_csk_clear_xmit_timers(struct sock *sk)
515 {
516 	struct inet_connection_sock *icsk = inet_csk(sk);
517 
518 	icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
519 
520 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
521 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
522 	sk_stop_timer(sk, &sk->sk_timer);
523 }
524 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
525 
inet_csk_delete_keepalive_timer(struct sock * sk)526 void inet_csk_delete_keepalive_timer(struct sock *sk)
527 {
528 	sk_stop_timer(sk, &sk->sk_timer);
529 }
530 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
531 
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)532 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
533 {
534 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
535 }
536 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
537 
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)538 struct dst_entry *inet_csk_route_req(const struct sock *sk,
539 				     struct flowi4 *fl4,
540 				     const struct request_sock *req)
541 {
542 	const struct inet_request_sock *ireq = inet_rsk(req);
543 	struct net *net = read_pnet(&ireq->ireq_net);
544 	struct ip_options_rcu *opt;
545 	struct rtable *rt;
546 
547 	rcu_read_lock();
548 	opt = rcu_dereference(ireq->ireq_opt);
549 
550 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
551 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
552 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
553 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
554 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
555 			   htons(ireq->ir_num), sk->sk_uid);
556 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
557 	rt = ip_route_output_flow(net, fl4, sk);
558 	if (IS_ERR(rt))
559 		goto no_route;
560 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
561 		goto route_err;
562 	rcu_read_unlock();
563 	return &rt->dst;
564 
565 route_err:
566 	ip_rt_put(rt);
567 no_route:
568 	rcu_read_unlock();
569 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
570 	return NULL;
571 }
572 EXPORT_SYMBOL_GPL(inet_csk_route_req);
573 
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)574 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
575 					    struct sock *newsk,
576 					    const struct request_sock *req)
577 {
578 	const struct inet_request_sock *ireq = inet_rsk(req);
579 	struct net *net = read_pnet(&ireq->ireq_net);
580 	struct inet_sock *newinet = inet_sk(newsk);
581 	struct ip_options_rcu *opt;
582 	struct flowi4 *fl4;
583 	struct rtable *rt;
584 
585 	opt = rcu_dereference(ireq->ireq_opt);
586 	fl4 = &newinet->cork.fl.u.ip4;
587 
588 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
589 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
590 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
591 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
592 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
593 			   htons(ireq->ir_num), sk->sk_uid);
594 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
595 	rt = ip_route_output_flow(net, fl4, sk);
596 	if (IS_ERR(rt))
597 		goto no_route;
598 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
599 		goto route_err;
600 	return &rt->dst;
601 
602 route_err:
603 	ip_rt_put(rt);
604 no_route:
605 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
606 	return NULL;
607 }
608 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
609 
610 #if IS_ENABLED(CONFIG_IPV6)
611 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
612 #else
613 #define AF_INET_FAMILY(fam) true
614 #endif
615 
616 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int thresh,const int max_retries,const u8 rskq_defer_accept,int * expire,int * resend)617 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
618 				  const int max_retries,
619 				  const u8 rskq_defer_accept,
620 				  int *expire, int *resend)
621 {
622 	if (!rskq_defer_accept) {
623 		*expire = req->num_timeout >= thresh;
624 		*resend = 1;
625 		return;
626 	}
627 	*expire = req->num_timeout >= thresh &&
628 		  (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
629 	/*
630 	 * Do not resend while waiting for data after ACK,
631 	 * start to resend on end of deferring period to give
632 	 * last chance for data or ACK to create established socket.
633 	 */
634 	*resend = !inet_rsk(req)->acked ||
635 		  req->num_timeout >= rskq_defer_accept - 1;
636 }
637 
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)638 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
639 {
640 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
641 
642 	if (!err)
643 		req->num_retrans++;
644 	return err;
645 }
646 EXPORT_SYMBOL(inet_rtx_syn_ack);
647 
648 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock_queue * queue,struct request_sock * req)649 static bool reqsk_queue_unlink(struct request_sock_queue *queue,
650 			       struct request_sock *req)
651 {
652 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
653 	bool found = false;
654 
655 	if (sk_hashed(req_to_sk(req))) {
656 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
657 
658 		spin_lock(lock);
659 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
660 		spin_unlock(lock);
661 	}
662 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
663 		reqsk_put(req);
664 	return found;
665 }
666 
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)667 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
668 {
669 	if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) {
670 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
671 		reqsk_put(req);
672 	}
673 }
674 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
675 
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)676 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
677 {
678 	inet_csk_reqsk_queue_drop(sk, req);
679 	reqsk_put(req);
680 }
681 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
682 
reqsk_timer_handler(struct timer_list * t)683 static void reqsk_timer_handler(struct timer_list *t)
684 {
685 	struct request_sock *req = from_timer(req, t, rsk_timer);
686 	struct sock *sk_listener = req->rsk_listener;
687 	struct net *net = sock_net(sk_listener);
688 	struct inet_connection_sock *icsk = inet_csk(sk_listener);
689 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
690 	int qlen, expire = 0, resend = 0;
691 	int max_retries, thresh;
692 	u8 defer_accept;
693 
694 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
695 		goto drop;
696 
697 	max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
698 	thresh = max_retries;
699 	/* Normally all the openreqs are young and become mature
700 	 * (i.e. converted to established socket) for first timeout.
701 	 * If synack was not acknowledged for 1 second, it means
702 	 * one of the following things: synack was lost, ack was lost,
703 	 * rtt is high or nobody planned to ack (i.e. synflood).
704 	 * When server is a bit loaded, queue is populated with old
705 	 * open requests, reducing effective size of queue.
706 	 * When server is well loaded, queue size reduces to zero
707 	 * after several minutes of work. It is not synflood,
708 	 * it is normal operation. The solution is pruning
709 	 * too old entries overriding normal timeout, when
710 	 * situation becomes dangerous.
711 	 *
712 	 * Essentially, we reserve half of room for young
713 	 * embrions; and abort old ones without pity, if old
714 	 * ones are about to clog our table.
715 	 */
716 	qlen = reqsk_queue_len(queue);
717 	if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
718 		int young = reqsk_queue_len_young(queue) << 1;
719 
720 		while (thresh > 2) {
721 			if (qlen < young)
722 				break;
723 			thresh--;
724 			young <<= 1;
725 		}
726 	}
727 	defer_accept = READ_ONCE(queue->rskq_defer_accept);
728 	if (defer_accept)
729 		max_retries = defer_accept;
730 	syn_ack_recalc(req, thresh, max_retries, defer_accept,
731 		       &expire, &resend);
732 	req->rsk_ops->syn_ack_timeout(req);
733 	if (!expire &&
734 	    (!resend ||
735 	     !inet_rtx_syn_ack(sk_listener, req) ||
736 	     inet_rsk(req)->acked)) {
737 		unsigned long timeo;
738 
739 		if (req->num_timeout++ == 0)
740 			atomic_dec(&queue->young);
741 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
742 		mod_timer(&req->rsk_timer, jiffies + timeo);
743 		return;
744 	}
745 drop:
746 	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
747 }
748 
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)749 static void reqsk_queue_hash_req(struct request_sock *req,
750 				 unsigned long timeout)
751 {
752 	req->num_retrans = 0;
753 	req->num_timeout = 0;
754 	req->sk = NULL;
755 
756 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
757 	mod_timer(&req->rsk_timer, jiffies + timeout);
758 
759 	inet_ehash_insert(req_to_sk(req), NULL);
760 	/* before letting lookups find us, make sure all req fields
761 	 * are committed to memory and refcnt initialized.
762 	 */
763 	smp_wmb();
764 	refcount_set(&req->rsk_refcnt, 2 + 1);
765 }
766 
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)767 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
768 				   unsigned long timeout)
769 {
770 	reqsk_queue_hash_req(req, timeout);
771 	inet_csk_reqsk_queue_added(sk);
772 }
773 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
774 
775 /**
776  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
777  *	@sk: the socket to clone
778  *	@req: request_sock
779  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
780  *
781  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
782  */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)783 struct sock *inet_csk_clone_lock(const struct sock *sk,
784 				 const struct request_sock *req,
785 				 const gfp_t priority)
786 {
787 	struct sock *newsk = sk_clone_lock(sk, priority);
788 
789 	if (newsk) {
790 		struct inet_connection_sock *newicsk = inet_csk(newsk);
791 
792 		inet_sk_set_state(newsk, TCP_SYN_RECV);
793 		newicsk->icsk_bind_hash = NULL;
794 
795 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
796 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
797 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
798 
799 		/* listeners have SOCK_RCU_FREE, not the children */
800 		sock_reset_flag(newsk, SOCK_RCU_FREE);
801 
802 		inet_sk(newsk)->mc_list = NULL;
803 
804 		newsk->sk_mark = inet_rsk(req)->ir_mark;
805 		atomic64_set(&newsk->sk_cookie,
806 			     atomic64_read(&inet_rsk(req)->ir_cookie));
807 
808 		newicsk->icsk_retransmits = 0;
809 		newicsk->icsk_backoff	  = 0;
810 		newicsk->icsk_probes_out  = 0;
811 
812 		/* Deinitialize accept_queue to trap illegal accesses. */
813 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
814 
815 		security_inet_csk_clone(newsk, req);
816 	}
817 	return newsk;
818 }
819 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
820 
821 /*
822  * At this point, there should be no process reference to this
823  * socket, and thus no user references at all.  Therefore we
824  * can assume the socket waitqueue is inactive and nobody will
825  * try to jump onto it.
826  */
inet_csk_destroy_sock(struct sock * sk)827 void inet_csk_destroy_sock(struct sock *sk)
828 {
829 	WARN_ON(sk->sk_state != TCP_CLOSE);
830 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
831 
832 	/* It cannot be in hash table! */
833 	WARN_ON(!sk_unhashed(sk));
834 
835 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
836 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
837 
838 	sk->sk_prot->destroy(sk);
839 
840 	sk_stream_kill_queues(sk);
841 
842 	xfrm_sk_free_policy(sk);
843 
844 	sk_refcnt_debug_release(sk);
845 
846 	percpu_counter_dec(sk->sk_prot->orphan_count);
847 
848 	sock_put(sk);
849 }
850 EXPORT_SYMBOL(inet_csk_destroy_sock);
851 
852 /* This function allows to force a closure of a socket after the call to
853  * tcp/dccp_create_openreq_child().
854  */
inet_csk_prepare_forced_close(struct sock * sk)855 void inet_csk_prepare_forced_close(struct sock *sk)
856 	__releases(&sk->sk_lock.slock)
857 {
858 	/* sk_clone_lock locked the socket and set refcnt to 2 */
859 	bh_unlock_sock(sk);
860 	sock_put(sk);
861 
862 	/* The below has to be done to allow calling inet_csk_destroy_sock */
863 	sock_set_flag(sk, SOCK_DEAD);
864 	percpu_counter_inc(sk->sk_prot->orphan_count);
865 	inet_sk(sk)->inet_num = 0;
866 }
867 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
868 
inet_csk_listen_start(struct sock * sk,int backlog)869 int inet_csk_listen_start(struct sock *sk, int backlog)
870 {
871 	struct inet_connection_sock *icsk = inet_csk(sk);
872 	struct inet_sock *inet = inet_sk(sk);
873 	int err = -EADDRINUSE;
874 
875 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
876 
877 	sk->sk_max_ack_backlog = backlog;
878 	sk->sk_ack_backlog = 0;
879 	inet_csk_delack_init(sk);
880 
881 	/* There is race window here: we announce ourselves listening,
882 	 * but this transition is still not validated by get_port().
883 	 * It is OK, because this socket enters to hash table only
884 	 * after validation is complete.
885 	 */
886 	inet_sk_state_store(sk, TCP_LISTEN);
887 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
888 		inet->inet_sport = htons(inet->inet_num);
889 
890 		sk_dst_reset(sk);
891 		err = sk->sk_prot->hash(sk);
892 
893 		if (likely(!err))
894 			return 0;
895 	}
896 
897 	inet_sk_set_state(sk, TCP_CLOSE);
898 	return err;
899 }
900 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
901 
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)902 static void inet_child_forget(struct sock *sk, struct request_sock *req,
903 			      struct sock *child)
904 {
905 	sk->sk_prot->disconnect(child, O_NONBLOCK);
906 
907 	sock_orphan(child);
908 
909 	percpu_counter_inc(sk->sk_prot->orphan_count);
910 
911 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
912 		BUG_ON(tcp_sk(child)->fastopen_rsk != req);
913 		BUG_ON(sk != req->rsk_listener);
914 
915 		/* Paranoid, to prevent race condition if
916 		 * an inbound pkt destined for child is
917 		 * blocked by sock lock in tcp_v4_rcv().
918 		 * Also to satisfy an assertion in
919 		 * tcp_v4_destroy_sock().
920 		 */
921 		tcp_sk(child)->fastopen_rsk = NULL;
922 	}
923 	inet_csk_destroy_sock(child);
924 }
925 
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)926 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
927 				      struct request_sock *req,
928 				      struct sock *child)
929 {
930 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
931 
932 	spin_lock(&queue->rskq_lock);
933 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
934 		inet_child_forget(sk, req, child);
935 		child = NULL;
936 	} else {
937 		req->sk = child;
938 		req->dl_next = NULL;
939 		if (queue->rskq_accept_head == NULL)
940 			queue->rskq_accept_head = req;
941 		else
942 			queue->rskq_accept_tail->dl_next = req;
943 		queue->rskq_accept_tail = req;
944 		sk_acceptq_added(sk);
945 	}
946 	spin_unlock(&queue->rskq_lock);
947 	return child;
948 }
949 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
950 
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)951 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
952 					 struct request_sock *req, bool own_req)
953 {
954 	if (own_req) {
955 		inet_csk_reqsk_queue_drop(sk, req);
956 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
957 		if (inet_csk_reqsk_queue_add(sk, req, child))
958 			return child;
959 	}
960 	/* Too bad, another child took ownership of the request, undo. */
961 	bh_unlock_sock(child);
962 	sock_put(child);
963 	return NULL;
964 }
965 EXPORT_SYMBOL(inet_csk_complete_hashdance);
966 
967 /*
968  *	This routine closes sockets which have been at least partially
969  *	opened, but not yet accepted.
970  */
inet_csk_listen_stop(struct sock * sk)971 void inet_csk_listen_stop(struct sock *sk)
972 {
973 	struct inet_connection_sock *icsk = inet_csk(sk);
974 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
975 	struct request_sock *next, *req;
976 
977 	/* Following specs, it would be better either to send FIN
978 	 * (and enter FIN-WAIT-1, it is normal close)
979 	 * or to send active reset (abort).
980 	 * Certainly, it is pretty dangerous while synflood, but it is
981 	 * bad justification for our negligence 8)
982 	 * To be honest, we are not able to make either
983 	 * of the variants now.			--ANK
984 	 */
985 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
986 		struct sock *child = req->sk;
987 
988 		local_bh_disable();
989 		bh_lock_sock(child);
990 		WARN_ON(sock_owned_by_user(child));
991 		sock_hold(child);
992 
993 		inet_child_forget(sk, req, child);
994 		reqsk_put(req);
995 		bh_unlock_sock(child);
996 		local_bh_enable();
997 		sock_put(child);
998 
999 		cond_resched();
1000 	}
1001 	if (queue->fastopenq.rskq_rst_head) {
1002 		/* Free all the reqs queued in rskq_rst_head. */
1003 		spin_lock_bh(&queue->fastopenq.lock);
1004 		req = queue->fastopenq.rskq_rst_head;
1005 		queue->fastopenq.rskq_rst_head = NULL;
1006 		spin_unlock_bh(&queue->fastopenq.lock);
1007 		while (req != NULL) {
1008 			next = req->dl_next;
1009 			reqsk_put(req);
1010 			req = next;
1011 		}
1012 	}
1013 	WARN_ON_ONCE(sk->sk_ack_backlog);
1014 }
1015 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1016 
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1017 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1018 {
1019 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1020 	const struct inet_sock *inet = inet_sk(sk);
1021 
1022 	sin->sin_family		= AF_INET;
1023 	sin->sin_addr.s_addr	= inet->inet_daddr;
1024 	sin->sin_port		= inet->inet_dport;
1025 }
1026 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1027 
1028 #ifdef CONFIG_COMPAT
inet_csk_compat_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1029 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1030 			       char __user *optval, int __user *optlen)
1031 {
1032 	const struct inet_connection_sock *icsk = inet_csk(sk);
1033 
1034 	if (icsk->icsk_af_ops->compat_getsockopt)
1035 		return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1036 							    optval, optlen);
1037 	return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1038 					     optval, optlen);
1039 }
1040 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1041 
inet_csk_compat_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1042 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1043 			       char __user *optval, unsigned int optlen)
1044 {
1045 	const struct inet_connection_sock *icsk = inet_csk(sk);
1046 
1047 	if (icsk->icsk_af_ops->compat_setsockopt)
1048 		return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1049 							    optval, optlen);
1050 	return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1051 					     optval, optlen);
1052 }
1053 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1054 #endif
1055 
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1056 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1057 {
1058 	const struct inet_sock *inet = inet_sk(sk);
1059 	const struct ip_options_rcu *inet_opt;
1060 	__be32 daddr = inet->inet_daddr;
1061 	struct flowi4 *fl4;
1062 	struct rtable *rt;
1063 
1064 	rcu_read_lock();
1065 	inet_opt = rcu_dereference(inet->inet_opt);
1066 	if (inet_opt && inet_opt->opt.srr)
1067 		daddr = inet_opt->opt.faddr;
1068 	fl4 = &fl->u.ip4;
1069 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1070 				   inet->inet_saddr, inet->inet_dport,
1071 				   inet->inet_sport, sk->sk_protocol,
1072 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1073 	if (IS_ERR(rt))
1074 		rt = NULL;
1075 	if (rt)
1076 		sk_setup_caps(sk, &rt->dst);
1077 	rcu_read_unlock();
1078 
1079 	return &rt->dst;
1080 }
1081 
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1082 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1083 {
1084 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1085 	struct inet_sock *inet = inet_sk(sk);
1086 
1087 	if (!dst) {
1088 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1089 		if (!dst)
1090 			goto out;
1091 	}
1092 	dst->ops->update_pmtu(dst, sk, NULL, mtu);
1093 
1094 	dst = __sk_dst_check(sk, 0);
1095 	if (!dst)
1096 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1097 out:
1098 	return dst;
1099 }
1100 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1101