1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
inet_get_local_port_range(const struct net * net,int * low,int * high)120 void inet_get_local_port_range(const struct net *net, int *low, int *high)
121 {
122 unsigned int seq;
123
124 do {
125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127 *low = net->ipv4.ip_local_ports.range[0];
128 *high = net->ipv4.ip_local_ports.range[1];
129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
inet_sk_get_local_port_range(const struct sock * sk,int * low,int * high)133 void inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
134 {
135 const struct inet_sock *inet = inet_sk(sk);
136 const struct net *net = sock_net(sk);
137 int lo, hi, sk_lo, sk_hi;
138
139 inet_get_local_port_range(net, &lo, &hi);
140
141 sk_lo = inet->local_port_range.lo;
142 sk_hi = inet->local_port_range.hi;
143
144 if (unlikely(lo <= sk_lo && sk_lo <= hi))
145 lo = sk_lo;
146 if (unlikely(lo <= sk_hi && sk_hi <= hi))
147 hi = sk_hi;
148
149 *low = lo;
150 *high = hi;
151 }
152 EXPORT_SYMBOL(inet_sk_get_local_port_range);
153
inet_use_bhash2_on_bind(const struct sock * sk)154 static bool inet_use_bhash2_on_bind(const struct sock *sk)
155 {
156 #if IS_ENABLED(CONFIG_IPV6)
157 if (sk->sk_family == AF_INET6) {
158 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
159
160 return addr_type != IPV6_ADDR_ANY &&
161 addr_type != IPV6_ADDR_MAPPED;
162 }
163 #endif
164 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
165 }
166
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)167 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
168 kuid_t sk_uid, bool relax,
169 bool reuseport_cb_ok, bool reuseport_ok)
170 {
171 int bound_dev_if2;
172
173 if (sk == sk2)
174 return false;
175
176 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
177
178 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
179 sk->sk_bound_dev_if == bound_dev_if2) {
180 if (sk->sk_reuse && sk2->sk_reuse &&
181 sk2->sk_state != TCP_LISTEN) {
182 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
183 sk2->sk_reuseport && reuseport_cb_ok &&
184 (sk2->sk_state == TCP_TIME_WAIT ||
185 uid_eq(sk_uid, sock_i_uid(sk2)))))
186 return true;
187 } else if (!reuseport_ok || !sk->sk_reuseport ||
188 !sk2->sk_reuseport || !reuseport_cb_ok ||
189 (sk2->sk_state != TCP_TIME_WAIT &&
190 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
191 return true;
192 }
193 }
194 return false;
195 }
196
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)197 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
198 kuid_t sk_uid, bool relax,
199 bool reuseport_cb_ok, bool reuseport_ok)
200 {
201 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
202 return false;
203
204 return inet_bind_conflict(sk, sk2, sk_uid, relax,
205 reuseport_cb_ok, reuseport_ok);
206 }
207
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)208 static bool inet_bhash2_conflict(const struct sock *sk,
209 const struct inet_bind2_bucket *tb2,
210 kuid_t sk_uid,
211 bool relax, bool reuseport_cb_ok,
212 bool reuseport_ok)
213 {
214 struct inet_timewait_sock *tw2;
215 struct sock *sk2;
216
217 sk_for_each_bound_bhash2(sk2, &tb2->owners) {
218 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
219 reuseport_cb_ok, reuseport_ok))
220 return true;
221 }
222
223 twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) {
224 sk2 = (struct sock *)tw2;
225
226 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
227 reuseport_cb_ok, reuseport_ok))
228 return true;
229 }
230
231 return false;
232 }
233
234 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)235 static int inet_csk_bind_conflict(const struct sock *sk,
236 const struct inet_bind_bucket *tb,
237 const struct inet_bind2_bucket *tb2, /* may be null */
238 bool relax, bool reuseport_ok)
239 {
240 bool reuseport_cb_ok;
241 struct sock_reuseport *reuseport_cb;
242 kuid_t uid = sock_i_uid((struct sock *)sk);
243
244 rcu_read_lock();
245 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
246 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
247 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
248 rcu_read_unlock();
249
250 /*
251 * Unlike other sk lookup places we do not check
252 * for sk_net here, since _all_ the socks listed
253 * in tb->owners and tb2->owners list belong
254 * to the same net - the one this bucket belongs to.
255 */
256
257 if (!inet_use_bhash2_on_bind(sk)) {
258 struct sock *sk2;
259
260 sk_for_each_bound(sk2, &tb->owners)
261 if (inet_bind_conflict(sk, sk2, uid, relax,
262 reuseport_cb_ok, reuseport_ok) &&
263 inet_rcv_saddr_equal(sk, sk2, true))
264 return true;
265
266 return false;
267 }
268
269 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
270 * ipv4) should have been checked already. We need to do these two
271 * checks separately because their spinlocks have to be acquired/released
272 * independently of each other, to prevent possible deadlocks
273 */
274 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
275 reuseport_ok);
276 }
277
278 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
279 * INADDR_ANY (if ipv4) socket.
280 *
281 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
282 * against concurrent binds on the port for addr any
283 */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)284 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
285 bool relax, bool reuseport_ok)
286 {
287 kuid_t uid = sock_i_uid((struct sock *)sk);
288 const struct net *net = sock_net(sk);
289 struct sock_reuseport *reuseport_cb;
290 struct inet_bind_hashbucket *head2;
291 struct inet_bind2_bucket *tb2;
292 bool reuseport_cb_ok;
293
294 rcu_read_lock();
295 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
296 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
297 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
298 rcu_read_unlock();
299
300 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
301
302 spin_lock(&head2->lock);
303
304 inet_bind_bucket_for_each(tb2, &head2->chain)
305 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
306 break;
307
308 if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
309 reuseport_ok)) {
310 spin_unlock(&head2->lock);
311 return true;
312 }
313
314 spin_unlock(&head2->lock);
315 return false;
316 }
317
318 /*
319 * Find an open port number for the socket. Returns with the
320 * inet_bind_hashbucket locks held if successful.
321 */
322 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)323 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
324 struct inet_bind2_bucket **tb2_ret,
325 struct inet_bind_hashbucket **head2_ret, int *port_ret)
326 {
327 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
328 int i, low, high, attempt_half, port, l3mdev;
329 struct inet_bind_hashbucket *head, *head2;
330 struct net *net = sock_net(sk);
331 struct inet_bind2_bucket *tb2;
332 struct inet_bind_bucket *tb;
333 u32 remaining, offset;
334 bool relax = false;
335
336 l3mdev = inet_sk_bound_l3mdev(sk);
337 ports_exhausted:
338 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
339 other_half_scan:
340 inet_sk_get_local_port_range(sk, &low, &high);
341 high++; /* [32768, 60999] -> [32768, 61000[ */
342 if (high - low < 4)
343 attempt_half = 0;
344 if (attempt_half) {
345 int half = low + (((high - low) >> 2) << 1);
346
347 if (attempt_half == 1)
348 high = half;
349 else
350 low = half;
351 }
352 remaining = high - low;
353 if (likely(remaining > 1))
354 remaining &= ~1U;
355
356 offset = get_random_u32_below(remaining);
357 /* __inet_hash_connect() favors ports having @low parity
358 * We do the opposite to not pollute connect() users.
359 */
360 offset |= 1U;
361
362 other_parity_scan:
363 port = low + offset;
364 for (i = 0; i < remaining; i += 2, port += 2) {
365 if (unlikely(port >= high))
366 port -= remaining;
367 if (inet_is_local_reserved_port(net, port))
368 continue;
369 head = &hinfo->bhash[inet_bhashfn(net, port,
370 hinfo->bhash_size)];
371 spin_lock_bh(&head->lock);
372 if (inet_use_bhash2_on_bind(sk)) {
373 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
374 goto next_port;
375 }
376
377 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
378 spin_lock(&head2->lock);
379 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
380 inet_bind_bucket_for_each(tb, &head->chain)
381 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
382 if (!inet_csk_bind_conflict(sk, tb, tb2,
383 relax, false))
384 goto success;
385 spin_unlock(&head2->lock);
386 goto next_port;
387 }
388 tb = NULL;
389 goto success;
390 next_port:
391 spin_unlock_bh(&head->lock);
392 cond_resched();
393 }
394
395 offset--;
396 if (!(offset & 1))
397 goto other_parity_scan;
398
399 if (attempt_half == 1) {
400 /* OK we now try the upper half of the range */
401 attempt_half = 2;
402 goto other_half_scan;
403 }
404
405 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
406 /* We still have a chance to connect to different destinations */
407 relax = true;
408 goto ports_exhausted;
409 }
410 return NULL;
411 success:
412 *port_ret = port;
413 *tb_ret = tb;
414 *tb2_ret = tb2;
415 *head2_ret = head2;
416 return head;
417 }
418
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)419 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
420 struct sock *sk)
421 {
422 kuid_t uid = sock_i_uid(sk);
423
424 if (tb->fastreuseport <= 0)
425 return 0;
426 if (!sk->sk_reuseport)
427 return 0;
428 if (rcu_access_pointer(sk->sk_reuseport_cb))
429 return 0;
430 if (!uid_eq(tb->fastuid, uid))
431 return 0;
432 /* We only need to check the rcv_saddr if this tb was once marked
433 * without fastreuseport and then was reset, as we can only know that
434 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
435 * owners list.
436 */
437 if (tb->fastreuseport == FASTREUSEPORT_ANY)
438 return 1;
439 #if IS_ENABLED(CONFIG_IPV6)
440 if (tb->fast_sk_family == AF_INET6)
441 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
442 inet6_rcv_saddr(sk),
443 tb->fast_rcv_saddr,
444 sk->sk_rcv_saddr,
445 tb->fast_ipv6_only,
446 ipv6_only_sock(sk), true, false);
447 #endif
448 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
449 ipv6_only_sock(sk), true, false);
450 }
451
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)452 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
453 struct sock *sk)
454 {
455 kuid_t uid = sock_i_uid(sk);
456 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
457
458 if (hlist_empty(&tb->owners)) {
459 tb->fastreuse = reuse;
460 if (sk->sk_reuseport) {
461 tb->fastreuseport = FASTREUSEPORT_ANY;
462 tb->fastuid = uid;
463 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
464 tb->fast_ipv6_only = ipv6_only_sock(sk);
465 tb->fast_sk_family = sk->sk_family;
466 #if IS_ENABLED(CONFIG_IPV6)
467 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
468 #endif
469 } else {
470 tb->fastreuseport = 0;
471 }
472 } else {
473 if (!reuse)
474 tb->fastreuse = 0;
475 if (sk->sk_reuseport) {
476 /* We didn't match or we don't have fastreuseport set on
477 * the tb, but we have sk_reuseport set on this socket
478 * and we know that there are no bind conflicts with
479 * this socket in this tb, so reset our tb's reuseport
480 * settings so that any subsequent sockets that match
481 * our current socket will be put on the fast path.
482 *
483 * If we reset we need to set FASTREUSEPORT_STRICT so we
484 * do extra checking for all subsequent sk_reuseport
485 * socks.
486 */
487 if (!sk_reuseport_match(tb, sk)) {
488 tb->fastreuseport = FASTREUSEPORT_STRICT;
489 tb->fastuid = uid;
490 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
491 tb->fast_ipv6_only = ipv6_only_sock(sk);
492 tb->fast_sk_family = sk->sk_family;
493 #if IS_ENABLED(CONFIG_IPV6)
494 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
495 #endif
496 }
497 } else {
498 tb->fastreuseport = 0;
499 }
500 }
501 }
502
503 /* Obtain a reference to a local port for the given sock,
504 * if snum is zero it means select any available local port.
505 * We try to allocate an odd port (and leave even ports for connect())
506 */
inet_csk_get_port(struct sock * sk,unsigned short snum)507 int inet_csk_get_port(struct sock *sk, unsigned short snum)
508 {
509 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
510 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
511 bool found_port = false, check_bind_conflict = true;
512 bool bhash_created = false, bhash2_created = false;
513 int ret = -EADDRINUSE, port = snum, l3mdev;
514 struct inet_bind_hashbucket *head, *head2;
515 struct inet_bind2_bucket *tb2 = NULL;
516 struct inet_bind_bucket *tb = NULL;
517 bool head2_lock_acquired = false;
518 struct net *net = sock_net(sk);
519
520 l3mdev = inet_sk_bound_l3mdev(sk);
521
522 if (!port) {
523 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
524 if (!head)
525 return ret;
526
527 head2_lock_acquired = true;
528
529 if (tb && tb2)
530 goto success;
531 found_port = true;
532 } else {
533 head = &hinfo->bhash[inet_bhashfn(net, port,
534 hinfo->bhash_size)];
535 spin_lock_bh(&head->lock);
536 inet_bind_bucket_for_each(tb, &head->chain)
537 if (inet_bind_bucket_match(tb, net, port, l3mdev))
538 break;
539 }
540
541 if (!tb) {
542 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
543 head, port, l3mdev);
544 if (!tb)
545 goto fail_unlock;
546 bhash_created = true;
547 }
548
549 if (!found_port) {
550 if (!hlist_empty(&tb->owners)) {
551 if (sk->sk_reuse == SK_FORCE_REUSE ||
552 (tb->fastreuse > 0 && reuse) ||
553 sk_reuseport_match(tb, sk))
554 check_bind_conflict = false;
555 }
556
557 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
558 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
559 goto fail_unlock;
560 }
561
562 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
563 spin_lock(&head2->lock);
564 head2_lock_acquired = true;
565 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
566 }
567
568 if (!tb2) {
569 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
570 net, head2, port, l3mdev, sk);
571 if (!tb2)
572 goto fail_unlock;
573 bhash2_created = true;
574 }
575
576 if (!found_port && check_bind_conflict) {
577 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
578 goto fail_unlock;
579 }
580
581 success:
582 inet_csk_update_fastreuse(tb, sk);
583
584 if (!inet_csk(sk)->icsk_bind_hash)
585 inet_bind_hash(sk, tb, tb2, port);
586 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
587 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
588 ret = 0;
589
590 fail_unlock:
591 if (ret) {
592 if (bhash_created)
593 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
594 if (bhash2_created)
595 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
596 tb2);
597 }
598 if (head2_lock_acquired)
599 spin_unlock(&head2->lock);
600 spin_unlock_bh(&head->lock);
601 return ret;
602 }
603 EXPORT_SYMBOL_GPL(inet_csk_get_port);
604
605 /*
606 * Wait for an incoming connection, avoid race conditions. This must be called
607 * with the socket locked.
608 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)609 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
610 {
611 struct inet_connection_sock *icsk = inet_csk(sk);
612 DEFINE_WAIT(wait);
613 int err;
614
615 /*
616 * True wake-one mechanism for incoming connections: only
617 * one process gets woken up, not the 'whole herd'.
618 * Since we do not 'race & poll' for established sockets
619 * anymore, the common case will execute the loop only once.
620 *
621 * Subtle issue: "add_wait_queue_exclusive()" will be added
622 * after any current non-exclusive waiters, and we know that
623 * it will always _stay_ after any new non-exclusive waiters
624 * because all non-exclusive waiters are added at the
625 * beginning of the wait-queue. As such, it's ok to "drop"
626 * our exclusiveness temporarily when we get woken up without
627 * having to remove and re-insert us on the wait queue.
628 */
629 for (;;) {
630 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
631 TASK_INTERRUPTIBLE);
632 release_sock(sk);
633 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
634 timeo = schedule_timeout(timeo);
635 sched_annotate_sleep();
636 lock_sock(sk);
637 err = 0;
638 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
639 break;
640 err = -EINVAL;
641 if (sk->sk_state != TCP_LISTEN)
642 break;
643 err = sock_intr_errno(timeo);
644 if (signal_pending(current))
645 break;
646 err = -EAGAIN;
647 if (!timeo)
648 break;
649 }
650 finish_wait(sk_sleep(sk), &wait);
651 return err;
652 }
653
654 /*
655 * This will accept the next outstanding connection.
656 */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)657 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
658 {
659 struct inet_connection_sock *icsk = inet_csk(sk);
660 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
661 struct request_sock *req;
662 struct sock *newsk;
663 int error;
664
665 lock_sock(sk);
666
667 /* We need to make sure that this socket is listening,
668 * and that it has something pending.
669 */
670 error = -EINVAL;
671 if (sk->sk_state != TCP_LISTEN)
672 goto out_err;
673
674 /* Find already established connection */
675 if (reqsk_queue_empty(queue)) {
676 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
677
678 /* If this is a non blocking socket don't sleep */
679 error = -EAGAIN;
680 if (!timeo)
681 goto out_err;
682
683 error = inet_csk_wait_for_connect(sk, timeo);
684 if (error)
685 goto out_err;
686 }
687 req = reqsk_queue_remove(queue, sk);
688 newsk = req->sk;
689
690 if (sk->sk_protocol == IPPROTO_TCP &&
691 tcp_rsk(req)->tfo_listener) {
692 spin_lock_bh(&queue->fastopenq.lock);
693 if (tcp_rsk(req)->tfo_listener) {
694 /* We are still waiting for the final ACK from 3WHS
695 * so can't free req now. Instead, we set req->sk to
696 * NULL to signify that the child socket is taken
697 * so reqsk_fastopen_remove() will free the req
698 * when 3WHS finishes (or is aborted).
699 */
700 req->sk = NULL;
701 req = NULL;
702 }
703 spin_unlock_bh(&queue->fastopenq.lock);
704 }
705
706 out:
707 release_sock(sk);
708 if (newsk && mem_cgroup_sockets_enabled) {
709 int amt = 0;
710
711 /* atomically get the memory usage, set and charge the
712 * newsk->sk_memcg.
713 */
714 lock_sock(newsk);
715
716 mem_cgroup_sk_alloc(newsk);
717 if (newsk->sk_memcg) {
718 /* The socket has not been accepted yet, no need
719 * to look at newsk->sk_wmem_queued.
720 */
721 amt = sk_mem_pages(newsk->sk_forward_alloc +
722 atomic_read(&newsk->sk_rmem_alloc));
723 }
724
725 if (amt)
726 mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
727 GFP_KERNEL | __GFP_NOFAIL);
728
729 release_sock(newsk);
730 }
731 if (req)
732 reqsk_put(req);
733 return newsk;
734 out_err:
735 newsk = NULL;
736 req = NULL;
737 *err = error;
738 goto out;
739 }
740 EXPORT_SYMBOL(inet_csk_accept);
741
742 /*
743 * Using different timers for retransmit, delayed acks and probes
744 * We may wish use just one timer maintaining a list of expire jiffies
745 * to optimize.
746 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))747 void inet_csk_init_xmit_timers(struct sock *sk,
748 void (*retransmit_handler)(struct timer_list *t),
749 void (*delack_handler)(struct timer_list *t),
750 void (*keepalive_handler)(struct timer_list *t))
751 {
752 struct inet_connection_sock *icsk = inet_csk(sk);
753
754 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
755 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
756 timer_setup(&sk->sk_timer, keepalive_handler, 0);
757 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
758 }
759 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
760
inet_csk_clear_xmit_timers(struct sock * sk)761 void inet_csk_clear_xmit_timers(struct sock *sk)
762 {
763 struct inet_connection_sock *icsk = inet_csk(sk);
764
765 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
766
767 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
768 sk_stop_timer(sk, &icsk->icsk_delack_timer);
769 sk_stop_timer(sk, &sk->sk_timer);
770 }
771 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
772
inet_csk_delete_keepalive_timer(struct sock * sk)773 void inet_csk_delete_keepalive_timer(struct sock *sk)
774 {
775 sk_stop_timer(sk, &sk->sk_timer);
776 }
777 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
778
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)779 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
780 {
781 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
782 }
783 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
784
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)785 struct dst_entry *inet_csk_route_req(const struct sock *sk,
786 struct flowi4 *fl4,
787 const struct request_sock *req)
788 {
789 const struct inet_request_sock *ireq = inet_rsk(req);
790 struct net *net = read_pnet(&ireq->ireq_net);
791 struct ip_options_rcu *opt;
792 struct rtable *rt;
793
794 rcu_read_lock();
795 opt = rcu_dereference(ireq->ireq_opt);
796
797 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
798 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
799 sk->sk_protocol, inet_sk_flowi_flags(sk),
800 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
801 ireq->ir_loc_addr, ireq->ir_rmt_port,
802 htons(ireq->ir_num), sk->sk_uid);
803 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
804 rt = ip_route_output_flow(net, fl4, sk);
805 if (IS_ERR(rt))
806 goto no_route;
807 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
808 goto route_err;
809 rcu_read_unlock();
810 return &rt->dst;
811
812 route_err:
813 ip_rt_put(rt);
814 no_route:
815 rcu_read_unlock();
816 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
817 return NULL;
818 }
819 EXPORT_SYMBOL_GPL(inet_csk_route_req);
820
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)821 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
822 struct sock *newsk,
823 const struct request_sock *req)
824 {
825 const struct inet_request_sock *ireq = inet_rsk(req);
826 struct net *net = read_pnet(&ireq->ireq_net);
827 struct inet_sock *newinet = inet_sk(newsk);
828 struct ip_options_rcu *opt;
829 struct flowi4 *fl4;
830 struct rtable *rt;
831
832 opt = rcu_dereference(ireq->ireq_opt);
833 fl4 = &newinet->cork.fl.u.ip4;
834
835 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
836 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
837 sk->sk_protocol, inet_sk_flowi_flags(sk),
838 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
839 ireq->ir_loc_addr, ireq->ir_rmt_port,
840 htons(ireq->ir_num), sk->sk_uid);
841 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
842 rt = ip_route_output_flow(net, fl4, sk);
843 if (IS_ERR(rt))
844 goto no_route;
845 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
846 goto route_err;
847 return &rt->dst;
848
849 route_err:
850 ip_rt_put(rt);
851 no_route:
852 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
853 return NULL;
854 }
855 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
856
857 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)858 static void syn_ack_recalc(struct request_sock *req,
859 const int max_syn_ack_retries,
860 const u8 rskq_defer_accept,
861 int *expire, int *resend)
862 {
863 if (!rskq_defer_accept) {
864 *expire = req->num_timeout >= max_syn_ack_retries;
865 *resend = 1;
866 return;
867 }
868 *expire = req->num_timeout >= max_syn_ack_retries &&
869 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
870 /* Do not resend while waiting for data after ACK,
871 * start to resend on end of deferring period to give
872 * last chance for data or ACK to create established socket.
873 */
874 *resend = !inet_rsk(req)->acked ||
875 req->num_timeout >= rskq_defer_accept - 1;
876 }
877
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)878 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
879 {
880 int err = req->rsk_ops->rtx_syn_ack(parent, req);
881
882 if (!err)
883 req->num_retrans++;
884 return err;
885 }
886 EXPORT_SYMBOL(inet_rtx_syn_ack);
887
inet_reqsk_clone(struct request_sock * req,struct sock * sk)888 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
889 struct sock *sk)
890 {
891 struct sock *req_sk, *nreq_sk;
892 struct request_sock *nreq;
893
894 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
895 if (!nreq) {
896 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
897
898 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
899 sock_put(sk);
900 return NULL;
901 }
902
903 req_sk = req_to_sk(req);
904 nreq_sk = req_to_sk(nreq);
905
906 memcpy(nreq_sk, req_sk,
907 offsetof(struct sock, sk_dontcopy_begin));
908 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
909 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
910
911 sk_node_init(&nreq_sk->sk_node);
912 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
913 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
914 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
915 #endif
916 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
917
918 nreq->rsk_listener = sk;
919
920 /* We need not acquire fastopenq->lock
921 * because the child socket is locked in inet_csk_listen_stop().
922 */
923 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
924 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
925
926 return nreq;
927 }
928
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)929 static void reqsk_queue_migrated(struct request_sock_queue *queue,
930 const struct request_sock *req)
931 {
932 if (req->num_timeout == 0)
933 atomic_inc(&queue->young);
934 atomic_inc(&queue->qlen);
935 }
936
reqsk_migrate_reset(struct request_sock * req)937 static void reqsk_migrate_reset(struct request_sock *req)
938 {
939 req->saved_syn = NULL;
940 #if IS_ENABLED(CONFIG_IPV6)
941 inet_rsk(req)->ipv6_opt = NULL;
942 inet_rsk(req)->pktopts = NULL;
943 #else
944 inet_rsk(req)->ireq_opt = NULL;
945 #endif
946 }
947
948 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)949 static bool reqsk_queue_unlink(struct request_sock *req)
950 {
951 struct sock *sk = req_to_sk(req);
952 bool found = false;
953
954 if (sk_hashed(sk)) {
955 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
956 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
957
958 spin_lock(lock);
959 found = __sk_nulls_del_node_init_rcu(sk);
960 spin_unlock(lock);
961 }
962 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
963 reqsk_put(req);
964 return found;
965 }
966
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)967 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
968 {
969 bool unlinked = reqsk_queue_unlink(req);
970
971 if (unlinked) {
972 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
973 reqsk_put(req);
974 }
975 return unlinked;
976 }
977 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
978
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)979 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
980 {
981 inet_csk_reqsk_queue_drop(sk, req);
982 reqsk_put(req);
983 }
984 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
985
reqsk_timer_handler(struct timer_list * t)986 static void reqsk_timer_handler(struct timer_list *t)
987 {
988 struct request_sock *req = from_timer(req, t, rsk_timer);
989 struct request_sock *nreq = NULL, *oreq = req;
990 struct sock *sk_listener = req->rsk_listener;
991 struct inet_connection_sock *icsk;
992 struct request_sock_queue *queue;
993 struct net *net;
994 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
995
996 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
997 struct sock *nsk;
998
999 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1000 if (!nsk)
1001 goto drop;
1002
1003 nreq = inet_reqsk_clone(req, nsk);
1004 if (!nreq)
1005 goto drop;
1006
1007 /* The new timer for the cloned req can decrease the 2
1008 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1009 * hold another count to prevent use-after-free and
1010 * call reqsk_put() just before return.
1011 */
1012 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1013 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1014 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1015
1016 req = nreq;
1017 sk_listener = nsk;
1018 }
1019
1020 icsk = inet_csk(sk_listener);
1021 net = sock_net(sk_listener);
1022 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1023 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1024 /* Normally all the openreqs are young and become mature
1025 * (i.e. converted to established socket) for first timeout.
1026 * If synack was not acknowledged for 1 second, it means
1027 * one of the following things: synack was lost, ack was lost,
1028 * rtt is high or nobody planned to ack (i.e. synflood).
1029 * When server is a bit loaded, queue is populated with old
1030 * open requests, reducing effective size of queue.
1031 * When server is well loaded, queue size reduces to zero
1032 * after several minutes of work. It is not synflood,
1033 * it is normal operation. The solution is pruning
1034 * too old entries overriding normal timeout, when
1035 * situation becomes dangerous.
1036 *
1037 * Essentially, we reserve half of room for young
1038 * embrions; and abort old ones without pity, if old
1039 * ones are about to clog our table.
1040 */
1041 queue = &icsk->icsk_accept_queue;
1042 qlen = reqsk_queue_len(queue);
1043 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1044 int young = reqsk_queue_len_young(queue) << 1;
1045
1046 while (max_syn_ack_retries > 2) {
1047 if (qlen < young)
1048 break;
1049 max_syn_ack_retries--;
1050 young <<= 1;
1051 }
1052 }
1053 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1054 &expire, &resend);
1055 req->rsk_ops->syn_ack_timeout(req);
1056 if (!expire &&
1057 (!resend ||
1058 !inet_rtx_syn_ack(sk_listener, req) ||
1059 inet_rsk(req)->acked)) {
1060 if (req->num_timeout++ == 0)
1061 atomic_dec(&queue->young);
1062 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1063
1064 if (!nreq)
1065 return;
1066
1067 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1068 /* delete timer */
1069 inet_csk_reqsk_queue_drop(sk_listener, nreq);
1070 goto no_ownership;
1071 }
1072
1073 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1074 reqsk_migrate_reset(oreq);
1075 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1076 reqsk_put(oreq);
1077
1078 reqsk_put(nreq);
1079 return;
1080 }
1081
1082 /* Even if we can clone the req, we may need not retransmit any more
1083 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1084 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1085 */
1086 if (nreq) {
1087 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1088 no_ownership:
1089 reqsk_migrate_reset(nreq);
1090 reqsk_queue_removed(queue, nreq);
1091 __reqsk_free(nreq);
1092 }
1093
1094 drop:
1095 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1096 }
1097
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1098 static void reqsk_queue_hash_req(struct request_sock *req,
1099 unsigned long timeout)
1100 {
1101 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1102 mod_timer(&req->rsk_timer, jiffies + timeout);
1103
1104 inet_ehash_insert(req_to_sk(req), NULL, NULL);
1105 /* before letting lookups find us, make sure all req fields
1106 * are committed to memory and refcnt initialized.
1107 */
1108 smp_wmb();
1109 refcount_set(&req->rsk_refcnt, 2 + 1);
1110 }
1111
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1112 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1113 unsigned long timeout)
1114 {
1115 reqsk_queue_hash_req(req, timeout);
1116 inet_csk_reqsk_queue_added(sk);
1117 }
1118 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1119
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1120 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1121 const gfp_t priority)
1122 {
1123 struct inet_connection_sock *icsk = inet_csk(newsk);
1124
1125 if (!icsk->icsk_ulp_ops)
1126 return;
1127
1128 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1129 }
1130
1131 /**
1132 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1133 * @sk: the socket to clone
1134 * @req: request_sock
1135 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1136 *
1137 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1138 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1139 struct sock *inet_csk_clone_lock(const struct sock *sk,
1140 const struct request_sock *req,
1141 const gfp_t priority)
1142 {
1143 struct sock *newsk = sk_clone_lock(sk, priority);
1144
1145 if (newsk) {
1146 struct inet_connection_sock *newicsk = inet_csk(newsk);
1147
1148 inet_sk_set_state(newsk, TCP_SYN_RECV);
1149 newicsk->icsk_bind_hash = NULL;
1150 newicsk->icsk_bind2_hash = NULL;
1151
1152 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1153 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1154 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1155
1156 /* listeners have SOCK_RCU_FREE, not the children */
1157 sock_reset_flag(newsk, SOCK_RCU_FREE);
1158
1159 inet_sk(newsk)->mc_list = NULL;
1160
1161 newsk->sk_mark = inet_rsk(req)->ir_mark;
1162 atomic64_set(&newsk->sk_cookie,
1163 atomic64_read(&inet_rsk(req)->ir_cookie));
1164
1165 newicsk->icsk_retransmits = 0;
1166 newicsk->icsk_backoff = 0;
1167 newicsk->icsk_probes_out = 0;
1168 newicsk->icsk_probes_tstamp = 0;
1169
1170 /* Deinitialize accept_queue to trap illegal accesses. */
1171 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1172
1173 inet_clone_ulp(req, newsk, priority);
1174
1175 security_inet_csk_clone(newsk, req);
1176 }
1177 return newsk;
1178 }
1179 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1180
1181 /*
1182 * At this point, there should be no process reference to this
1183 * socket, and thus no user references at all. Therefore we
1184 * can assume the socket waitqueue is inactive and nobody will
1185 * try to jump onto it.
1186 */
inet_csk_destroy_sock(struct sock * sk)1187 void inet_csk_destroy_sock(struct sock *sk)
1188 {
1189 WARN_ON(sk->sk_state != TCP_CLOSE);
1190 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1191
1192 /* It cannot be in hash table! */
1193 WARN_ON(!sk_unhashed(sk));
1194
1195 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1196 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1197
1198 sk->sk_prot->destroy(sk);
1199
1200 sk_stream_kill_queues(sk);
1201
1202 xfrm_sk_free_policy(sk);
1203
1204 this_cpu_dec(*sk->sk_prot->orphan_count);
1205
1206 sock_put(sk);
1207 }
1208 EXPORT_SYMBOL(inet_csk_destroy_sock);
1209
1210 /* This function allows to force a closure of a socket after the call to
1211 * tcp/dccp_create_openreq_child().
1212 */
inet_csk_prepare_forced_close(struct sock * sk)1213 void inet_csk_prepare_forced_close(struct sock *sk)
1214 __releases(&sk->sk_lock.slock)
1215 {
1216 /* sk_clone_lock locked the socket and set refcnt to 2 */
1217 bh_unlock_sock(sk);
1218 sock_put(sk);
1219 inet_csk_prepare_for_destroy_sock(sk);
1220 inet_sk(sk)->inet_num = 0;
1221 }
1222 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1223
inet_ulp_can_listen(const struct sock * sk)1224 static int inet_ulp_can_listen(const struct sock *sk)
1225 {
1226 const struct inet_connection_sock *icsk = inet_csk(sk);
1227
1228 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1229 return -EINVAL;
1230
1231 return 0;
1232 }
1233
inet_csk_listen_start(struct sock * sk)1234 int inet_csk_listen_start(struct sock *sk)
1235 {
1236 struct inet_connection_sock *icsk = inet_csk(sk);
1237 struct inet_sock *inet = inet_sk(sk);
1238 int err;
1239
1240 err = inet_ulp_can_listen(sk);
1241 if (unlikely(err))
1242 return err;
1243
1244 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1245
1246 sk->sk_ack_backlog = 0;
1247 inet_csk_delack_init(sk);
1248
1249 /* There is race window here: we announce ourselves listening,
1250 * but this transition is still not validated by get_port().
1251 * It is OK, because this socket enters to hash table only
1252 * after validation is complete.
1253 */
1254 inet_sk_state_store(sk, TCP_LISTEN);
1255 err = sk->sk_prot->get_port(sk, inet->inet_num);
1256 if (!err) {
1257 inet->inet_sport = htons(inet->inet_num);
1258
1259 sk_dst_reset(sk);
1260 err = sk->sk_prot->hash(sk);
1261
1262 if (likely(!err))
1263 return 0;
1264 }
1265
1266 inet_sk_set_state(sk, TCP_CLOSE);
1267 return err;
1268 }
1269 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1270
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1271 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1272 struct sock *child)
1273 {
1274 sk->sk_prot->disconnect(child, O_NONBLOCK);
1275
1276 sock_orphan(child);
1277
1278 this_cpu_inc(*sk->sk_prot->orphan_count);
1279
1280 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1281 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1282 BUG_ON(sk != req->rsk_listener);
1283
1284 /* Paranoid, to prevent race condition if
1285 * an inbound pkt destined for child is
1286 * blocked by sock lock in tcp_v4_rcv().
1287 * Also to satisfy an assertion in
1288 * tcp_v4_destroy_sock().
1289 */
1290 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1291 }
1292 inet_csk_destroy_sock(child);
1293 }
1294
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1295 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1296 struct request_sock *req,
1297 struct sock *child)
1298 {
1299 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1300
1301 spin_lock(&queue->rskq_lock);
1302 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1303 inet_child_forget(sk, req, child);
1304 child = NULL;
1305 } else {
1306 req->sk = child;
1307 req->dl_next = NULL;
1308 if (queue->rskq_accept_head == NULL)
1309 WRITE_ONCE(queue->rskq_accept_head, req);
1310 else
1311 queue->rskq_accept_tail->dl_next = req;
1312 queue->rskq_accept_tail = req;
1313 sk_acceptq_added(sk);
1314 }
1315 spin_unlock(&queue->rskq_lock);
1316 return child;
1317 }
1318 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1319
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1320 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1321 struct request_sock *req, bool own_req)
1322 {
1323 if (own_req) {
1324 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1325 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1326
1327 if (sk != req->rsk_listener) {
1328 /* another listening sk has been selected,
1329 * migrate the req to it.
1330 */
1331 struct request_sock *nreq;
1332
1333 /* hold a refcnt for the nreq->rsk_listener
1334 * which is assigned in inet_reqsk_clone()
1335 */
1336 sock_hold(sk);
1337 nreq = inet_reqsk_clone(req, sk);
1338 if (!nreq) {
1339 inet_child_forget(sk, req, child);
1340 goto child_put;
1341 }
1342
1343 refcount_set(&nreq->rsk_refcnt, 1);
1344 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1345 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1346 reqsk_migrate_reset(req);
1347 reqsk_put(req);
1348 return child;
1349 }
1350
1351 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1352 reqsk_migrate_reset(nreq);
1353 __reqsk_free(nreq);
1354 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1355 return child;
1356 }
1357 }
1358 /* Too bad, another child took ownership of the request, undo. */
1359 child_put:
1360 bh_unlock_sock(child);
1361 sock_put(child);
1362 return NULL;
1363 }
1364 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1365
1366 /*
1367 * This routine closes sockets which have been at least partially
1368 * opened, but not yet accepted.
1369 */
inet_csk_listen_stop(struct sock * sk)1370 void inet_csk_listen_stop(struct sock *sk)
1371 {
1372 struct inet_connection_sock *icsk = inet_csk(sk);
1373 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1374 struct request_sock *next, *req;
1375
1376 /* Following specs, it would be better either to send FIN
1377 * (and enter FIN-WAIT-1, it is normal close)
1378 * or to send active reset (abort).
1379 * Certainly, it is pretty dangerous while synflood, but it is
1380 * bad justification for our negligence 8)
1381 * To be honest, we are not able to make either
1382 * of the variants now. --ANK
1383 */
1384 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1385 struct sock *child = req->sk, *nsk;
1386 struct request_sock *nreq;
1387
1388 local_bh_disable();
1389 bh_lock_sock(child);
1390 WARN_ON(sock_owned_by_user(child));
1391 sock_hold(child);
1392
1393 nsk = reuseport_migrate_sock(sk, child, NULL);
1394 if (nsk) {
1395 nreq = inet_reqsk_clone(req, nsk);
1396 if (nreq) {
1397 refcount_set(&nreq->rsk_refcnt, 1);
1398
1399 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1400 __NET_INC_STATS(sock_net(nsk),
1401 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1402 reqsk_migrate_reset(req);
1403 } else {
1404 __NET_INC_STATS(sock_net(nsk),
1405 LINUX_MIB_TCPMIGRATEREQFAILURE);
1406 reqsk_migrate_reset(nreq);
1407 __reqsk_free(nreq);
1408 }
1409
1410 /* inet_csk_reqsk_queue_add() has already
1411 * called inet_child_forget() on failure case.
1412 */
1413 goto skip_child_forget;
1414 }
1415 }
1416
1417 inet_child_forget(sk, req, child);
1418 skip_child_forget:
1419 reqsk_put(req);
1420 bh_unlock_sock(child);
1421 local_bh_enable();
1422 sock_put(child);
1423
1424 cond_resched();
1425 }
1426 if (queue->fastopenq.rskq_rst_head) {
1427 /* Free all the reqs queued in rskq_rst_head. */
1428 spin_lock_bh(&queue->fastopenq.lock);
1429 req = queue->fastopenq.rskq_rst_head;
1430 queue->fastopenq.rskq_rst_head = NULL;
1431 spin_unlock_bh(&queue->fastopenq.lock);
1432 while (req != NULL) {
1433 next = req->dl_next;
1434 reqsk_put(req);
1435 req = next;
1436 }
1437 }
1438 WARN_ON_ONCE(sk->sk_ack_backlog);
1439 }
1440 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1441
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1442 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1443 {
1444 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1445 const struct inet_sock *inet = inet_sk(sk);
1446
1447 sin->sin_family = AF_INET;
1448 sin->sin_addr.s_addr = inet->inet_daddr;
1449 sin->sin_port = inet->inet_dport;
1450 }
1451 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1452
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1453 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1454 {
1455 const struct inet_sock *inet = inet_sk(sk);
1456 const struct ip_options_rcu *inet_opt;
1457 __be32 daddr = inet->inet_daddr;
1458 struct flowi4 *fl4;
1459 struct rtable *rt;
1460
1461 rcu_read_lock();
1462 inet_opt = rcu_dereference(inet->inet_opt);
1463 if (inet_opt && inet_opt->opt.srr)
1464 daddr = inet_opt->opt.faddr;
1465 fl4 = &fl->u.ip4;
1466 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1467 inet->inet_saddr, inet->inet_dport,
1468 inet->inet_sport, sk->sk_protocol,
1469 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1470 if (IS_ERR(rt))
1471 rt = NULL;
1472 if (rt)
1473 sk_setup_caps(sk, &rt->dst);
1474 rcu_read_unlock();
1475
1476 return &rt->dst;
1477 }
1478
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1479 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1480 {
1481 struct dst_entry *dst = __sk_dst_check(sk, 0);
1482 struct inet_sock *inet = inet_sk(sk);
1483
1484 if (!dst) {
1485 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1486 if (!dst)
1487 goto out;
1488 }
1489 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1490
1491 dst = __sk_dst_check(sk, 0);
1492 if (!dst)
1493 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1494 out:
1495 return dst;
1496 }
1497 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1498