1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 * Avi Kivity <avi@redhat.com>
9 * Gleb Natapov <gleb@redhat.com>
10 * Wei Huang <wei@redhat.com>
11 */
12
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <asm/perf_event.h>
17 #include "x86.h"
18 #include "cpuid.h"
19 #include "lapic.h"
20 #include "pmu.h"
21
22 /* This is enough to filter the vast majority of currently defined events. */
23 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
24
25 /* NOTE:
26 * - Each perf counter is defined as "struct kvm_pmc";
27 * - There are two types of perf counters: general purpose (gp) and fixed.
28 * gp counters are stored in gp_counters[] and fixed counters are stored
29 * in fixed_counters[] respectively. Both of them are part of "struct
30 * kvm_pmu";
31 * - pmu.c understands the difference between gp counters and fixed counters.
32 * However AMD doesn't support fixed-counters;
33 * - There are three types of index to access perf counters (PMC):
34 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
35 * has MSR_K7_PERFCTRn.
36 * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
37 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
38 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
39 * that it also supports fixed counters. idx can be used to as index to
40 * gp and fixed counters.
41 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
42 * code. Each pmc, stored in kvm_pmc.idx field, is unique across
43 * all perf counters (both gp and fixed). The mapping relationship
44 * between pmc and perf counters is as the following:
45 * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
46 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
47 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
48 */
49
kvm_pmi_trigger_fn(struct irq_work * irq_work)50 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
51 {
52 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
53 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
54
55 kvm_pmu_deliver_pmi(vcpu);
56 }
57
kvm_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)58 static void kvm_perf_overflow(struct perf_event *perf_event,
59 struct perf_sample_data *data,
60 struct pt_regs *regs)
61 {
62 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
63 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
64
65 if (!test_and_set_bit(pmc->idx,
66 (unsigned long *)&pmu->reprogram_pmi)) {
67 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
68 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
69 }
70 }
71
kvm_perf_overflow_intr(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)72 static void kvm_perf_overflow_intr(struct perf_event *perf_event,
73 struct perf_sample_data *data,
74 struct pt_regs *regs)
75 {
76 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
77 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
78
79 if (!test_and_set_bit(pmc->idx,
80 (unsigned long *)&pmu->reprogram_pmi)) {
81 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
82 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
83
84 /*
85 * Inject PMI. If vcpu was in a guest mode during NMI PMI
86 * can be ejected on a guest mode re-entry. Otherwise we can't
87 * be sure that vcpu wasn't executing hlt instruction at the
88 * time of vmexit and is not going to re-enter guest mode until
89 * woken up. So we should wake it, but this is impossible from
90 * NMI context. Do it from irq work instead.
91 */
92 if (!kvm_is_in_guest())
93 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
94 else
95 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
96 }
97 }
98
pmc_reprogram_counter(struct kvm_pmc * pmc,u32 type,unsigned config,bool exclude_user,bool exclude_kernel,bool intr,bool in_tx,bool in_tx_cp)99 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
100 unsigned config, bool exclude_user,
101 bool exclude_kernel, bool intr,
102 bool in_tx, bool in_tx_cp)
103 {
104 struct perf_event *event;
105 struct perf_event_attr attr = {
106 .type = type,
107 .size = sizeof(attr),
108 .pinned = true,
109 .exclude_idle = true,
110 .exclude_host = 1,
111 .exclude_user = exclude_user,
112 .exclude_kernel = exclude_kernel,
113 .config = config,
114 };
115
116 attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc);
117
118 if (in_tx)
119 attr.config |= HSW_IN_TX;
120 if (in_tx_cp) {
121 /*
122 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
123 * period. Just clear the sample period so at least
124 * allocating the counter doesn't fail.
125 */
126 attr.sample_period = 0;
127 attr.config |= HSW_IN_TX_CHECKPOINTED;
128 }
129
130 event = perf_event_create_kernel_counter(&attr, -1, current,
131 intr ? kvm_perf_overflow_intr :
132 kvm_perf_overflow, pmc);
133 if (IS_ERR(event)) {
134 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
135 PTR_ERR(event), pmc->idx);
136 return;
137 }
138
139 pmc->perf_event = event;
140 clear_bit(pmc->idx, (unsigned long*)&pmc_to_pmu(pmc)->reprogram_pmi);
141 }
142
reprogram_gp_counter(struct kvm_pmc * pmc,u64 eventsel)143 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
144 {
145 unsigned config, type = PERF_TYPE_RAW;
146 u8 event_select, unit_mask;
147 struct kvm *kvm = pmc->vcpu->kvm;
148 struct kvm_pmu_event_filter *filter;
149 int i;
150 bool allow_event = true;
151
152 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
153 printk_once("kvm pmu: pin control bit is ignored\n");
154
155 pmc->eventsel = eventsel;
156
157 pmc_stop_counter(pmc);
158
159 if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
160 return;
161
162 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
163 if (filter) {
164 for (i = 0; i < filter->nevents; i++)
165 if (filter->events[i] ==
166 (eventsel & AMD64_RAW_EVENT_MASK_NB))
167 break;
168 if (filter->action == KVM_PMU_EVENT_ALLOW &&
169 i == filter->nevents)
170 allow_event = false;
171 if (filter->action == KVM_PMU_EVENT_DENY &&
172 i < filter->nevents)
173 allow_event = false;
174 }
175 if (!allow_event)
176 return;
177
178 event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
179 unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
180
181 if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
182 ARCH_PERFMON_EVENTSEL_INV |
183 ARCH_PERFMON_EVENTSEL_CMASK |
184 HSW_IN_TX |
185 HSW_IN_TX_CHECKPOINTED))) {
186 config = kvm_x86_ops->pmu_ops->find_arch_event(pmc_to_pmu(pmc),
187 event_select,
188 unit_mask);
189 if (config != PERF_COUNT_HW_MAX)
190 type = PERF_TYPE_HARDWARE;
191 }
192
193 if (type == PERF_TYPE_RAW)
194 config = eventsel & X86_RAW_EVENT_MASK;
195
196 pmc_reprogram_counter(pmc, type, config,
197 !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
198 !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
199 eventsel & ARCH_PERFMON_EVENTSEL_INT,
200 (eventsel & HSW_IN_TX),
201 (eventsel & HSW_IN_TX_CHECKPOINTED));
202 }
203 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
204
reprogram_fixed_counter(struct kvm_pmc * pmc,u8 ctrl,int idx)205 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
206 {
207 unsigned en_field = ctrl & 0x3;
208 bool pmi = ctrl & 0x8;
209 struct kvm_pmu_event_filter *filter;
210 struct kvm *kvm = pmc->vcpu->kvm;
211
212 pmc_stop_counter(pmc);
213
214 if (!en_field || !pmc_is_enabled(pmc))
215 return;
216
217 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
218 if (filter) {
219 if (filter->action == KVM_PMU_EVENT_DENY &&
220 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
221 return;
222 if (filter->action == KVM_PMU_EVENT_ALLOW &&
223 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
224 return;
225 }
226
227 pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
228 kvm_x86_ops->pmu_ops->find_fixed_event(idx),
229 !(en_field & 0x2), /* exclude user */
230 !(en_field & 0x1), /* exclude kernel */
231 pmi, false, false);
232 }
233 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
234
reprogram_counter(struct kvm_pmu * pmu,int pmc_idx)235 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
236 {
237 struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
238
239 if (!pmc)
240 return;
241
242 if (pmc_is_gp(pmc))
243 reprogram_gp_counter(pmc, pmc->eventsel);
244 else {
245 int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
246 u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
247
248 reprogram_fixed_counter(pmc, ctrl, idx);
249 }
250 }
251 EXPORT_SYMBOL_GPL(reprogram_counter);
252
kvm_pmu_handle_event(struct kvm_vcpu * vcpu)253 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
254 {
255 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
256 u64 bitmask;
257 int bit;
258
259 bitmask = pmu->reprogram_pmi;
260
261 for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) {
262 struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, bit);
263
264 if (unlikely(!pmc || !pmc->perf_event)) {
265 clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi);
266 continue;
267 }
268
269 reprogram_counter(pmu, bit);
270 }
271 }
272
273 /* check if idx is a valid index to access PMU */
kvm_pmu_is_valid_msr_idx(struct kvm_vcpu * vcpu,unsigned idx)274 int kvm_pmu_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx)
275 {
276 return kvm_x86_ops->pmu_ops->is_valid_msr_idx(vcpu, idx);
277 }
278
is_vmware_backdoor_pmc(u32 pmc_idx)279 bool is_vmware_backdoor_pmc(u32 pmc_idx)
280 {
281 switch (pmc_idx) {
282 case VMWARE_BACKDOOR_PMC_HOST_TSC:
283 case VMWARE_BACKDOOR_PMC_REAL_TIME:
284 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
285 return true;
286 }
287 return false;
288 }
289
kvm_pmu_rdpmc_vmware(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)290 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
291 {
292 u64 ctr_val;
293
294 switch (idx) {
295 case VMWARE_BACKDOOR_PMC_HOST_TSC:
296 ctr_val = rdtsc();
297 break;
298 case VMWARE_BACKDOOR_PMC_REAL_TIME:
299 ctr_val = ktime_get_boottime_ns();
300 break;
301 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
302 ctr_val = ktime_get_boottime_ns() +
303 vcpu->kvm->arch.kvmclock_offset;
304 break;
305 default:
306 return 1;
307 }
308
309 *data = ctr_val;
310 return 0;
311 }
312
kvm_pmu_rdpmc(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)313 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
314 {
315 bool fast_mode = idx & (1u << 31);
316 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
317 struct kvm_pmc *pmc;
318 u64 mask = fast_mode ? ~0u : ~0ull;
319
320 if (!pmu->version)
321 return 1;
322
323 if (is_vmware_backdoor_pmc(idx))
324 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
325
326 pmc = kvm_x86_ops->pmu_ops->msr_idx_to_pmc(vcpu, idx, &mask);
327 if (!pmc)
328 return 1;
329
330 *data = pmc_read_counter(pmc) & mask;
331 return 0;
332 }
333
kvm_pmu_deliver_pmi(struct kvm_vcpu * vcpu)334 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
335 {
336 if (lapic_in_kernel(vcpu))
337 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
338 }
339
kvm_pmu_is_valid_msr(struct kvm_vcpu * vcpu,u32 msr)340 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
341 {
342 return kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, msr);
343 }
344
kvm_pmu_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * data)345 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
346 {
347 return kvm_x86_ops->pmu_ops->get_msr(vcpu, msr, data);
348 }
349
kvm_pmu_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)350 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
351 {
352 return kvm_x86_ops->pmu_ops->set_msr(vcpu, msr_info);
353 }
354
355 /* refresh PMU settings. This function generally is called when underlying
356 * settings are changed (such as changes of PMU CPUID by guest VMs), which
357 * should rarely happen.
358 */
kvm_pmu_refresh(struct kvm_vcpu * vcpu)359 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
360 {
361 kvm_x86_ops->pmu_ops->refresh(vcpu);
362 }
363
kvm_pmu_reset(struct kvm_vcpu * vcpu)364 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
365 {
366 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
367
368 irq_work_sync(&pmu->irq_work);
369 kvm_x86_ops->pmu_ops->reset(vcpu);
370 }
371
kvm_pmu_init(struct kvm_vcpu * vcpu)372 void kvm_pmu_init(struct kvm_vcpu *vcpu)
373 {
374 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
375
376 memset(pmu, 0, sizeof(*pmu));
377 kvm_x86_ops->pmu_ops->init(vcpu);
378 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
379 kvm_pmu_refresh(vcpu);
380 }
381
kvm_pmu_destroy(struct kvm_vcpu * vcpu)382 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
383 {
384 kvm_pmu_reset(vcpu);
385 }
386
kvm_vm_ioctl_set_pmu_event_filter(struct kvm * kvm,void __user * argp)387 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
388 {
389 struct kvm_pmu_event_filter tmp, *filter;
390 size_t size;
391 int r;
392
393 if (copy_from_user(&tmp, argp, sizeof(tmp)))
394 return -EFAULT;
395
396 if (tmp.action != KVM_PMU_EVENT_ALLOW &&
397 tmp.action != KVM_PMU_EVENT_DENY)
398 return -EINVAL;
399
400 if (tmp.flags != 0)
401 return -EINVAL;
402
403 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
404 return -E2BIG;
405
406 size = struct_size(filter, events, tmp.nevents);
407 filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
408 if (!filter)
409 return -ENOMEM;
410
411 r = -EFAULT;
412 if (copy_from_user(filter, argp, size))
413 goto cleanup;
414
415 /* Ensure nevents can't be changed between the user copies. */
416 *filter = tmp;
417
418 mutex_lock(&kvm->lock);
419 rcu_swap_protected(kvm->arch.pmu_event_filter, filter,
420 mutex_is_locked(&kvm->lock));
421 mutex_unlock(&kvm->lock);
422
423 synchronize_srcu_expedited(&kvm->srcu);
424 r = 0;
425 cleanup:
426 kfree(filter);
427 return r;
428 }
429