1  /* SPDX-License-Identifier: GPL-2.0
2   *
3   * Copyright 2016-2019 HabanaLabs, Ltd.
4   * All Rights Reserved.
5   *
6   */
7  
8  #ifndef HABANALABSP_H_
9  #define HABANALABSP_H_
10  
11  #include "include/armcp_if.h"
12  #include "include/qman_if.h"
13  
14  #include <linux/cdev.h>
15  #include <linux/iopoll.h>
16  #include <linux/irqreturn.h>
17  #include <linux/dma-fence.h>
18  #include <linux/dma-direction.h>
19  #include <linux/scatterlist.h>
20  #include <linux/hashtable.h>
21  
22  #define HL_NAME				"habanalabs"
23  
24  #define HL_MMAP_CB_MASK			(0x8000000000000000ull >> PAGE_SHIFT)
25  
26  #define HL_PENDING_RESET_PER_SEC	5
27  
28  #define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
29  
30  #define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */
31  
32  #define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
33  
34  #define HL_ARMCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
35  #define HL_ARMCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
36  
37  #define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
38  
39  #define HL_SIM_MAX_TIMEOUT_US		10000000 /* 10s */
40  
41  #define HL_MAX_QUEUES			128
42  
43  #define HL_MAX_JOBS_PER_CS		64
44  
45  /* MUST BE POWER OF 2 and larger than 1 */
46  #define HL_MAX_PENDING_CS		64
47  
48  #define HL_IDLE_BUSY_TS_ARR_SIZE	4096
49  
50  /* Memory */
51  #define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
52  
53  /* MMU */
54  #define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
55  
56  /**
57   * struct pgt_info - MMU hop page info.
58   * @node: hash linked-list node for the pgts shadow hash of pgts.
59   * @phys_addr: physical address of the pgt.
60   * @shadow_addr: shadow hop in the host.
61   * @ctx: pointer to the owner ctx.
62   * @num_of_ptes: indicates how many ptes are used in the pgt.
63   *
64   * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
65   * is needed during mapping, a new page is allocated and this structure holds
66   * its essential information. During unmapping, if no valid PTEs remained in the
67   * page, it is freed with its pgt_info structure.
68   */
69  struct pgt_info {
70  	struct hlist_node	node;
71  	u64			phys_addr;
72  	u64			shadow_addr;
73  	struct hl_ctx		*ctx;
74  	int			num_of_ptes;
75  };
76  
77  struct hl_device;
78  struct hl_fpriv;
79  
80  /**
81   * enum hl_queue_type - Supported QUEUE types.
82   * @QUEUE_TYPE_NA: queue is not available.
83   * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
84   *                  host.
85   * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
86   *			memories and/or operates the compute engines.
87   * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
88   */
89  enum hl_queue_type {
90  	QUEUE_TYPE_NA,
91  	QUEUE_TYPE_EXT,
92  	QUEUE_TYPE_INT,
93  	QUEUE_TYPE_CPU
94  };
95  
96  /**
97   * struct hw_queue_properties - queue information.
98   * @type: queue type.
99   * @driver_only: true if only the driver is allowed to send a job to this queue,
100   *               false otherwise.
101   */
102  struct hw_queue_properties {
103  	enum hl_queue_type	type;
104  	u8			driver_only;
105  };
106  
107  /**
108   * enum vm_type_t - virtual memory mapping request information.
109   * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
110   * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
111   */
112  enum vm_type_t {
113  	VM_TYPE_USERPTR,
114  	VM_TYPE_PHYS_PACK
115  };
116  
117  /**
118   * enum hl_device_hw_state - H/W device state. use this to understand whether
119   *                           to do reset before hw_init or not
120   * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
121   * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
122   *                            hw_init
123   */
124  enum hl_device_hw_state {
125  	HL_DEVICE_HW_STATE_CLEAN = 0,
126  	HL_DEVICE_HW_STATE_DIRTY
127  };
128  
129  /**
130   * struct asic_fixed_properties - ASIC specific immutable properties.
131   * @hw_queues_props: H/W queues properties.
132   * @armcp_info: received various information from ArmCP regarding the H/W, e.g.
133   *		available sensors.
134   * @uboot_ver: F/W U-boot version.
135   * @preboot_ver: F/W Preboot version.
136   * @sram_base_address: SRAM physical start address.
137   * @sram_end_address: SRAM physical end address.
138   * @sram_user_base_address - SRAM physical start address for user access.
139   * @dram_base_address: DRAM physical start address.
140   * @dram_end_address: DRAM physical end address.
141   * @dram_user_base_address: DRAM physical start address for user access.
142   * @dram_size: DRAM total size.
143   * @dram_pci_bar_size: size of PCI bar towards DRAM.
144   * @max_power_default: max power of the device after reset
145   * @va_space_host_start_address: base address of virtual memory range for
146   *                               mapping host memory.
147   * @va_space_host_end_address: end address of virtual memory range for
148   *                             mapping host memory.
149   * @va_space_dram_start_address: base address of virtual memory range for
150   *                               mapping DRAM memory.
151   * @va_space_dram_end_address: end address of virtual memory range for
152   *                             mapping DRAM memory.
153   * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
154   *                                      fault.
155   * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
156   * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
157   * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
158   * @mmu_dram_default_page_addr: DRAM default page physical address.
159   * @mmu_pgt_size: MMU page tables total size.
160   * @mmu_pte_size: PTE size in MMU page tables.
161   * @mmu_hop_table_size: MMU hop table size.
162   * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
163   * @dram_page_size: page size for MMU DRAM allocation.
164   * @cfg_size: configuration space size on SRAM.
165   * @sram_size: total size of SRAM.
166   * @max_asid: maximum number of open contexts (ASIDs).
167   * @num_of_events: number of possible internal H/W IRQs.
168   * @psoc_pci_pll_nr: PCI PLL NR value.
169   * @psoc_pci_pll_nf: PCI PLL NF value.
170   * @psoc_pci_pll_od: PCI PLL OD value.
171   * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
172   * @completion_queues_count: number of completion queues.
173   * @high_pll: high PLL frequency used by the device.
174   * @cb_pool_cb_cnt: number of CBs in the CB pool.
175   * @cb_pool_cb_size: size of each CB in the CB pool.
176   * @tpc_enabled_mask: which TPCs are enabled.
177   */
178  struct asic_fixed_properties {
179  	struct hw_queue_properties	hw_queues_props[HL_MAX_QUEUES];
180  	struct armcp_info	armcp_info;
181  	char			uboot_ver[VERSION_MAX_LEN];
182  	char			preboot_ver[VERSION_MAX_LEN];
183  	u64			sram_base_address;
184  	u64			sram_end_address;
185  	u64			sram_user_base_address;
186  	u64			dram_base_address;
187  	u64			dram_end_address;
188  	u64			dram_user_base_address;
189  	u64			dram_size;
190  	u64			dram_pci_bar_size;
191  	u64			max_power_default;
192  	u64			va_space_host_start_address;
193  	u64			va_space_host_end_address;
194  	u64			va_space_dram_start_address;
195  	u64			va_space_dram_end_address;
196  	u64			dram_size_for_default_page_mapping;
197  	u64			pcie_dbi_base_address;
198  	u64			pcie_aux_dbi_reg_addr;
199  	u64			mmu_pgt_addr;
200  	u64			mmu_dram_default_page_addr;
201  	u32			mmu_pgt_size;
202  	u32			mmu_pte_size;
203  	u32			mmu_hop_table_size;
204  	u32			mmu_hop0_tables_total_size;
205  	u32			dram_page_size;
206  	u32			cfg_size;
207  	u32			sram_size;
208  	u32			max_asid;
209  	u32			num_of_events;
210  	u32			psoc_pci_pll_nr;
211  	u32			psoc_pci_pll_nf;
212  	u32			psoc_pci_pll_od;
213  	u32			psoc_pci_pll_div_factor;
214  	u32			high_pll;
215  	u32			cb_pool_cb_cnt;
216  	u32			cb_pool_cb_size;
217  	u8			completion_queues_count;
218  	u8			tpc_enabled_mask;
219  };
220  
221  /**
222   * struct hl_dma_fence - wrapper for fence object used by command submissions.
223   * @base_fence: kernel fence object.
224   * @lock: spinlock to protect fence.
225   * @hdev: habanalabs device structure.
226   * @cs_seq: command submission sequence number.
227   */
228  struct hl_dma_fence {
229  	struct dma_fence	base_fence;
230  	spinlock_t		lock;
231  	struct hl_device	*hdev;
232  	u64			cs_seq;
233  };
234  
235  /*
236   * Command Buffers
237   */
238  
239  #define HL_MAX_CB_SIZE		0x200000	/* 2MB */
240  
241  /**
242   * struct hl_cb_mgr - describes a Command Buffer Manager.
243   * @cb_lock: protects cb_handles.
244   * @cb_handles: an idr to hold all command buffer handles.
245   */
246  struct hl_cb_mgr {
247  	spinlock_t		cb_lock;
248  	struct idr		cb_handles; /* protected by cb_lock */
249  };
250  
251  /**
252   * struct hl_cb - describes a Command Buffer.
253   * @refcount: reference counter for usage of the CB.
254   * @hdev: pointer to device this CB belongs to.
255   * @lock: spinlock to protect mmap/cs flows.
256   * @debugfs_list: node in debugfs list of command buffers.
257   * @pool_list: node in pool list of command buffers.
258   * @kernel_address: Holds the CB's kernel virtual address.
259   * @bus_address: Holds the CB's DMA address.
260   * @mmap_size: Holds the CB's size that was mmaped.
261   * @size: holds the CB's size.
262   * @id: the CB's ID.
263   * @cs_cnt: holds number of CS that this CB participates in.
264   * @ctx_id: holds the ID of the owner's context.
265   * @mmap: true if the CB is currently mmaped to user.
266   * @is_pool: true if CB was acquired from the pool, false otherwise.
267   */
268  struct hl_cb {
269  	struct kref		refcount;
270  	struct hl_device	*hdev;
271  	spinlock_t		lock;
272  	struct list_head	debugfs_list;
273  	struct list_head	pool_list;
274  	u64			kernel_address;
275  	dma_addr_t		bus_address;
276  	u32			mmap_size;
277  	u32			size;
278  	u32			id;
279  	u32			cs_cnt;
280  	u32			ctx_id;
281  	u8			mmap;
282  	u8			is_pool;
283  };
284  
285  
286  /*
287   * QUEUES
288   */
289  
290  struct hl_cs_job;
291  
292  /*
293   * Currently, there are two limitations on the maximum length of a queue:
294   *
295   * 1. The memory footprint of the queue. The current allocated space for the
296   *    queue is PAGE_SIZE. Because each entry in the queue is HL_BD_SIZE,
297   *    the maximum length of the queue can be PAGE_SIZE / HL_BD_SIZE,
298   *    which currently is 4096/16 = 256 entries.
299   *
300   *    To increase that, we need either to decrease the size of the
301   *    BD (difficult), or allocate more than a single page (easier).
302   *
303   * 2. Because the size of the JOB handle field in the BD CTL / completion queue
304   *    is 10-bit, we can have up to 1024 open jobs per hardware queue.
305   *    Therefore, each queue can hold up to 1024 entries.
306   *
307   * HL_QUEUE_LENGTH is in units of struct hl_bd.
308   * HL_QUEUE_LENGTH * sizeof(struct hl_bd) should be <= HL_PAGE_SIZE
309   */
310  
311  #define HL_PAGE_SIZE			4096 /* minimum page size */
312  /* Must be power of 2 (HL_PAGE_SIZE / HL_BD_SIZE) */
313  #define HL_QUEUE_LENGTH			256
314  #define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
315  
316  /*
317   * HL_CQ_LENGTH is in units of struct hl_cq_entry.
318   * HL_CQ_LENGTH should be <= HL_PAGE_SIZE
319   */
320  #define HL_CQ_LENGTH			HL_QUEUE_LENGTH
321  #define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
322  
323  /* Must be power of 2 (HL_PAGE_SIZE / HL_EQ_ENTRY_SIZE) */
324  #define HL_EQ_LENGTH			64
325  #define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
326  
327  /* Host <-> ArmCP shared memory size */
328  #define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
329  
330  /**
331   * struct hl_hw_queue - describes a H/W transport queue.
332   * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
333   * @queue_type: type of queue.
334   * @kernel_address: holds the queue's kernel virtual address.
335   * @bus_address: holds the queue's DMA address.
336   * @pi: holds the queue's pi value.
337   * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
338   * @hw_queue_id: the id of the H/W queue.
339   * @int_queue_len: length of internal queue (number of entries).
340   * @valid: is the queue valid (we have array of 32 queues, not all of them
341   *		exists).
342   */
343  struct hl_hw_queue {
344  	struct hl_cs_job	**shadow_queue;
345  	enum hl_queue_type	queue_type;
346  	u64			kernel_address;
347  	dma_addr_t		bus_address;
348  	u32			pi;
349  	u32			ci;
350  	u32			hw_queue_id;
351  	u16			int_queue_len;
352  	u8			valid;
353  };
354  
355  /**
356   * struct hl_cq - describes a completion queue
357   * @hdev: pointer to the device structure
358   * @kernel_address: holds the queue's kernel virtual address
359   * @bus_address: holds the queue's DMA address
360   * @hw_queue_id: the id of the matching H/W queue
361   * @ci: ci inside the queue
362   * @pi: pi inside the queue
363   * @free_slots_cnt: counter of free slots in queue
364   */
365  struct hl_cq {
366  	struct hl_device	*hdev;
367  	u64			kernel_address;
368  	dma_addr_t		bus_address;
369  	u32			hw_queue_id;
370  	u32			ci;
371  	u32			pi;
372  	atomic_t		free_slots_cnt;
373  };
374  
375  /**
376   * struct hl_eq - describes the event queue (single one per device)
377   * @hdev: pointer to the device structure
378   * @kernel_address: holds the queue's kernel virtual address
379   * @bus_address: holds the queue's DMA address
380   * @ci: ci inside the queue
381   */
382  struct hl_eq {
383  	struct hl_device	*hdev;
384  	u64			kernel_address;
385  	dma_addr_t		bus_address;
386  	u32			ci;
387  };
388  
389  
390  /*
391   * ASICs
392   */
393  
394  /**
395   * enum hl_asic_type - supported ASIC types.
396   * @ASIC_INVALID: Invalid ASIC type.
397   * @ASIC_GOYA: Goya device.
398   */
399  enum hl_asic_type {
400  	ASIC_INVALID,
401  	ASIC_GOYA
402  };
403  
404  struct hl_cs_parser;
405  
406  /**
407   * enum hl_pm_mng_profile - power management profile.
408   * @PM_AUTO: internal clock is set by the Linux driver.
409   * @PM_MANUAL: internal clock is set by the user.
410   * @PM_LAST: last power management type.
411   */
412  enum hl_pm_mng_profile {
413  	PM_AUTO = 1,
414  	PM_MANUAL,
415  	PM_LAST
416  };
417  
418  /**
419   * enum hl_pll_frequency - PLL frequency.
420   * @PLL_HIGH: high frequency.
421   * @PLL_LOW: low frequency.
422   * @PLL_LAST: last frequency values that were configured by the user.
423   */
424  enum hl_pll_frequency {
425  	PLL_HIGH = 1,
426  	PLL_LOW,
427  	PLL_LAST
428  };
429  
430  /**
431   * struct hl_asic_funcs - ASIC specific functions that are can be called from
432   *                        common code.
433   * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
434   * @early_fini: tears down what was done in early_init.
435   * @late_init: sets up late driver/hw state (post hw_init) - Optional.
436   * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
437   * @sw_init: sets up driver state, does not configure H/W.
438   * @sw_fini: tears down driver state, does not configure H/W.
439   * @hw_init: sets up the H/W state.
440   * @hw_fini: tears down the H/W state.
441   * @halt_engines: halt engines, needed for reset sequence. This also disables
442   *                interrupts from the device. Should be called before
443   *                hw_fini and before CS rollback.
444   * @suspend: handles IP specific H/W or SW changes for suspend.
445   * @resume: handles IP specific H/W or SW changes for resume.
446   * @cb_mmap: maps a CB.
447   * @ring_doorbell: increment PI on a given QMAN.
448   * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
449   *             function because the PQs are located in different memory areas
450   *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
451   *             writing the PQE must match the destination memory area
452   *             properties.
453   * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
454   *                           dma_alloc_coherent(). This is ASIC function because
455   *                           its implementation is not trivial when the driver
456   *                           is loaded in simulation mode (not upstreamed).
457   * @asic_dma_free_coherent:  Free coherent DMA memory by calling
458   *                           dma_free_coherent(). This is ASIC function because
459   *                           its implementation is not trivial when the driver
460   *                           is loaded in simulation mode (not upstreamed).
461   * @get_int_queue_base: get the internal queue base address.
462   * @test_queues: run simple test on all queues for sanity check.
463   * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
464   *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
465   * @asic_dma_pool_free: free small DMA allocation from pool.
466   * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
467   * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
468   * @hl_dma_unmap_sg: DMA unmap scatter-gather list.
469   * @cs_parser: parse Command Submission.
470   * @asic_dma_map_sg: DMA map scatter-gather list.
471   * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
472   * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
473   * @update_eq_ci: update event queue CI.
474   * @context_switch: called upon ASID context switch.
475   * @restore_phase_topology: clear all SOBs amd MONs.
476   * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM.
477   * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM.
478   * @add_device_attr: add ASIC specific device attributes.
479   * @handle_eqe: handle event queue entry (IRQ) from ArmCP.
480   * @set_pll_profile: change PLL profile (manual/automatic).
481   * @get_events_stat: retrieve event queue entries histogram.
482   * @read_pte: read MMU page table entry from DRAM.
483   * @write_pte: write MMU page table entry to DRAM.
484   * @mmu_invalidate_cache: flush MMU STLB cache, either with soft (L1 only) or
485   *                        hard (L0 & L1) flush.
486   * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
487   *                              ASID-VA-size mask.
488   * @send_heartbeat: send is-alive packet to ArmCP and verify response.
489   * @debug_coresight: perform certain actions on Coresight for debugging.
490   * @is_device_idle: return true if device is idle, false otherwise.
491   * @soft_reset_late_init: perform certain actions needed after soft reset.
492   * @hw_queues_lock: acquire H/W queues lock.
493   * @hw_queues_unlock: release H/W queues lock.
494   * @get_pci_id: retrieve PCI ID.
495   * @get_eeprom_data: retrieve EEPROM data from F/W.
496   * @send_cpu_message: send buffer to ArmCP.
497   * @get_hw_state: retrieve the H/W state
498   * @pci_bars_map: Map PCI BARs.
499   * @set_dram_bar_base: Set DRAM BAR to map specific device address. Returns
500   *                     old address the bar pointed to or U64_MAX for failure
501   * @init_iatu: Initialize the iATU unit inside the PCI controller.
502   * @rreg: Read a register. Needed for simulator support.
503   * @wreg: Write a register. Needed for simulator support.
504   * @halt_coresight: stop the ETF and ETR traces.
505   */
506  struct hl_asic_funcs {
507  	int (*early_init)(struct hl_device *hdev);
508  	int (*early_fini)(struct hl_device *hdev);
509  	int (*late_init)(struct hl_device *hdev);
510  	void (*late_fini)(struct hl_device *hdev);
511  	int (*sw_init)(struct hl_device *hdev);
512  	int (*sw_fini)(struct hl_device *hdev);
513  	int (*hw_init)(struct hl_device *hdev);
514  	void (*hw_fini)(struct hl_device *hdev, bool hard_reset);
515  	void (*halt_engines)(struct hl_device *hdev, bool hard_reset);
516  	int (*suspend)(struct hl_device *hdev);
517  	int (*resume)(struct hl_device *hdev);
518  	int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
519  			u64 kaddress, phys_addr_t paddress, u32 size);
520  	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
521  	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
522  			struct hl_bd *bd);
523  	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
524  					dma_addr_t *dma_handle, gfp_t flag);
525  	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
526  					void *cpu_addr, dma_addr_t dma_handle);
527  	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
528  				dma_addr_t *dma_handle, u16 *queue_len);
529  	int (*test_queues)(struct hl_device *hdev);
530  	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
531  				gfp_t mem_flags, dma_addr_t *dma_handle);
532  	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
533  				dma_addr_t dma_addr);
534  	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
535  				size_t size, dma_addr_t *dma_handle);
536  	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
537  				size_t size, void *vaddr);
538  	void (*hl_dma_unmap_sg)(struct hl_device *hdev,
539  				struct scatterlist *sgl, int nents,
540  				enum dma_data_direction dir);
541  	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
542  	int (*asic_dma_map_sg)(struct hl_device *hdev,
543  				struct scatterlist *sgl, int nents,
544  				enum dma_data_direction dir);
545  	u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
546  					struct sg_table *sgt);
547  	void (*add_end_of_cb_packets)(struct hl_device *hdev,
548  					u64 kernel_address, u32 len,
549  					u64 cq_addr, u32 cq_val, u32 msix_num);
550  	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
551  	int (*context_switch)(struct hl_device *hdev, u32 asid);
552  	void (*restore_phase_topology)(struct hl_device *hdev);
553  	int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val);
554  	int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val);
555  	void (*add_device_attr)(struct hl_device *hdev,
556  				struct attribute_group *dev_attr_grp);
557  	void (*handle_eqe)(struct hl_device *hdev,
558  				struct hl_eq_entry *eq_entry);
559  	void (*set_pll_profile)(struct hl_device *hdev,
560  			enum hl_pll_frequency freq);
561  	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
562  				u32 *size);
563  	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
564  	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
565  	void (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard);
566  	void (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
567  			u32 asid, u64 va, u64 size);
568  	int (*send_heartbeat)(struct hl_device *hdev);
569  	int (*debug_coresight)(struct hl_device *hdev, void *data);
570  	bool (*is_device_idle)(struct hl_device *hdev, u32 *mask,
571  				struct seq_file *s);
572  	int (*soft_reset_late_init)(struct hl_device *hdev);
573  	void (*hw_queues_lock)(struct hl_device *hdev);
574  	void (*hw_queues_unlock)(struct hl_device *hdev);
575  	u32 (*get_pci_id)(struct hl_device *hdev);
576  	int (*get_eeprom_data)(struct hl_device *hdev, void *data,
577  				size_t max_size);
578  	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
579  				u16 len, u32 timeout, long *result);
580  	enum hl_device_hw_state (*get_hw_state)(struct hl_device *hdev);
581  	int (*pci_bars_map)(struct hl_device *hdev);
582  	u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
583  	int (*init_iatu)(struct hl_device *hdev);
584  	u32 (*rreg)(struct hl_device *hdev, u32 reg);
585  	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
586  	void (*halt_coresight)(struct hl_device *hdev);
587  };
588  
589  
590  /*
591   * CONTEXTS
592   */
593  
594  #define HL_KERNEL_ASID_ID	0
595  
596  /**
597   * struct hl_va_range - virtual addresses range.
598   * @lock: protects the virtual addresses list.
599   * @list: list of virtual addresses blocks available for mappings.
600   * @start_addr: range start address.
601   * @end_addr: range end address.
602   */
603  struct hl_va_range {
604  	struct mutex		lock;
605  	struct list_head	list;
606  	u64			start_addr;
607  	u64			end_addr;
608  };
609  
610  /**
611   * struct hl_ctx - user/kernel context.
612   * @mem_hash: holds mapping from virtual address to virtual memory area
613   *		descriptor (hl_vm_phys_pg_list or hl_userptr).
614   * @mmu_phys_hash: holds a mapping from physical address to pgt_info structure.
615   * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
616   * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
617   * @hdev: pointer to the device structure.
618   * @refcount: reference counter for the context. Context is released only when
619   *		this hits 0l. It is incremented on CS and CS_WAIT.
620   * @cs_pending: array of DMA fence objects representing pending CS.
621   * @host_va_range: holds available virtual addresses for host mappings.
622   * @dram_va_range: holds available virtual addresses for DRAM mappings.
623   * @mem_hash_lock: protects the mem_hash.
624   * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifing the
625   *            MMU hash or walking the PGT requires talking this lock
626   * @debugfs_list: node in debugfs list of contexts.
627   * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
628   *			to user so user could inquire about CS. It is used as
629   *			index to cs_pending array.
630   * @dram_default_hops: array that holds all hops addresses needed for default
631   *                     DRAM mapping.
632   * @cs_lock: spinlock to protect cs_sequence.
633   * @dram_phys_mem: amount of used physical DRAM memory by this context.
634   * @thread_ctx_switch_token: token to prevent multiple threads of the same
635   *				context	from running the context switch phase.
636   *				Only a single thread should run it.
637   * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
638   *				the context switch phase from moving to their
639   *				execution phase before the context switch phase
640   *				has finished.
641   * @asid: context's unique address space ID in the device's MMU.
642   * @handle: context's opaque handle for user
643   */
644  struct hl_ctx {
645  	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
646  	DECLARE_HASHTABLE(mmu_phys_hash, MMU_HASH_TABLE_BITS);
647  	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
648  	struct hl_fpriv		*hpriv;
649  	struct hl_device	*hdev;
650  	struct kref		refcount;
651  	struct dma_fence	*cs_pending[HL_MAX_PENDING_CS];
652  	struct hl_va_range	host_va_range;
653  	struct hl_va_range	dram_va_range;
654  	struct mutex		mem_hash_lock;
655  	struct mutex		mmu_lock;
656  	struct list_head	debugfs_list;
657  	u64			cs_sequence;
658  	u64			*dram_default_hops;
659  	spinlock_t		cs_lock;
660  	atomic64_t		dram_phys_mem;
661  	atomic_t		thread_ctx_switch_token;
662  	u32			thread_ctx_switch_wait_token;
663  	u32			asid;
664  	u32			handle;
665  };
666  
667  /**
668   * struct hl_ctx_mgr - for handling multiple contexts.
669   * @ctx_lock: protects ctx_handles.
670   * @ctx_handles: idr to hold all ctx handles.
671   */
672  struct hl_ctx_mgr {
673  	struct mutex		ctx_lock;
674  	struct idr		ctx_handles;
675  };
676  
677  
678  
679  /*
680   * COMMAND SUBMISSIONS
681   */
682  
683  /**
684   * struct hl_userptr - memory mapping chunk information
685   * @vm_type: type of the VM.
686   * @job_node: linked-list node for hanging the object on the Job's list.
687   * @vec: pointer to the frame vector.
688   * @sgt: pointer to the scatter-gather table that holds the pages.
689   * @dir: for DMA unmapping, the direction must be supplied, so save it.
690   * @debugfs_list: node in debugfs list of command submissions.
691   * @addr: user-space virtual pointer to the start of the memory area.
692   * @size: size of the memory area to pin & map.
693   * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
694   */
695  struct hl_userptr {
696  	enum vm_type_t		vm_type; /* must be first */
697  	struct list_head	job_node;
698  	struct frame_vector	*vec;
699  	struct sg_table		*sgt;
700  	enum dma_data_direction dir;
701  	struct list_head	debugfs_list;
702  	u64			addr;
703  	u32			size;
704  	u8			dma_mapped;
705  };
706  
707  /**
708   * struct hl_cs - command submission.
709   * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
710   * @ctx: the context this CS belongs to.
711   * @job_list: list of the CS's jobs in the various queues.
712   * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
713   * @refcount: reference counter for usage of the CS.
714   * @fence: pointer to the fence object of this CS.
715   * @work_tdr: delayed work node for TDR.
716   * @mirror_node : node in device mirror list of command submissions.
717   * @debugfs_list: node in debugfs list of command submissions.
718   * @sequence: the sequence number of this CS.
719   * @submitted: true if CS was submitted to H/W.
720   * @completed: true if CS was completed by device.
721   * @timedout : true if CS was timedout.
722   * @tdr_active: true if TDR was activated for this CS (to prevent
723   *		double TDR activation).
724   * @aborted: true if CS was aborted due to some device error.
725   */
726  struct hl_cs {
727  	u8			jobs_in_queue_cnt[HL_MAX_QUEUES];
728  	struct hl_ctx		*ctx;
729  	struct list_head	job_list;
730  	spinlock_t		job_lock;
731  	struct kref		refcount;
732  	struct dma_fence	*fence;
733  	struct delayed_work	work_tdr;
734  	struct list_head	mirror_node;
735  	struct list_head	debugfs_list;
736  	u64			sequence;
737  	u8			submitted;
738  	u8			completed;
739  	u8			timedout;
740  	u8			tdr_active;
741  	u8			aborted;
742  };
743  
744  /**
745   * struct hl_cs_job - command submission job.
746   * @cs_node: the node to hang on the CS jobs list.
747   * @cs: the CS this job belongs to.
748   * @user_cb: the CB we got from the user.
749   * @patched_cb: in case of patching, this is internal CB which is submitted on
750   *		the queue instead of the CB we got from the IOCTL.
751   * @finish_work: workqueue object to run when job is completed.
752   * @userptr_list: linked-list of userptr mappings that belong to this job and
753   *			wait for completion.
754   * @debugfs_list: node in debugfs list of command submission jobs.
755   * @id: the id of this job inside a CS.
756   * @hw_queue_id: the id of the H/W queue this job is submitted to.
757   * @user_cb_size: the actual size of the CB we got from the user.
758   * @job_cb_size: the actual size of the CB that we put on the queue.
759   * @ext_queue: whether the job is for external queue or internal queue.
760   */
761  struct hl_cs_job {
762  	struct list_head	cs_node;
763  	struct hl_cs		*cs;
764  	struct hl_cb		*user_cb;
765  	struct hl_cb		*patched_cb;
766  	struct work_struct	finish_work;
767  	struct list_head	userptr_list;
768  	struct list_head	debugfs_list;
769  	u32			id;
770  	u32			hw_queue_id;
771  	u32			user_cb_size;
772  	u32			job_cb_size;
773  	u8			ext_queue;
774  };
775  
776  /**
777   * struct hl_cs_parser - command submission paerser properties.
778   * @user_cb: the CB we got from the user.
779   * @patched_cb: in case of patching, this is internal CB which is submitted on
780   *		the queue instead of the CB we got from the IOCTL.
781   * @job_userptr_list: linked-list of userptr mappings that belong to the related
782   *			job and wait for completion.
783   * @cs_sequence: the sequence number of the related CS.
784   * @ctx_id: the ID of the context the related CS belongs to.
785   * @hw_queue_id: the id of the H/W queue this job is submitted to.
786   * @user_cb_size: the actual size of the CB we got from the user.
787   * @patched_cb_size: the size of the CB after parsing.
788   * @ext_queue: whether the job is for external queue or internal queue.
789   * @job_id: the id of the related job inside the related CS.
790   */
791  struct hl_cs_parser {
792  	struct hl_cb		*user_cb;
793  	struct hl_cb		*patched_cb;
794  	struct list_head	*job_userptr_list;
795  	u64			cs_sequence;
796  	u32			ctx_id;
797  	u32			hw_queue_id;
798  	u32			user_cb_size;
799  	u32			patched_cb_size;
800  	u8			ext_queue;
801  	u8			job_id;
802  };
803  
804  
805  /*
806   * MEMORY STRUCTURE
807   */
808  
809  /**
810   * struct hl_vm_hash_node - hash element from virtual address to virtual
811   *				memory area descriptor (hl_vm_phys_pg_list or
812   *				hl_userptr).
813   * @node: node to hang on the hash table in context object.
814   * @vaddr: key virtual address.
815   * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
816   */
817  struct hl_vm_hash_node {
818  	struct hlist_node	node;
819  	u64			vaddr;
820  	void			*ptr;
821  };
822  
823  /**
824   * struct hl_vm_phys_pg_pack - physical page pack.
825   * @vm_type: describes the type of the virtual area descriptor.
826   * @pages: the physical page array.
827   * @npages: num physical pages in the pack.
828   * @total_size: total size of all the pages in this list.
829   * @mapping_cnt: number of shared mappings.
830   * @asid: the context related to this list.
831   * @page_size: size of each page in the pack.
832   * @flags: HL_MEM_* flags related to this list.
833   * @handle: the provided handle related to this list.
834   * @offset: offset from the first page.
835   * @contiguous: is contiguous physical memory.
836   * @created_from_userptr: is product of host virtual address.
837   */
838  struct hl_vm_phys_pg_pack {
839  	enum vm_type_t		vm_type; /* must be first */
840  	u64			*pages;
841  	u64			npages;
842  	u64			total_size;
843  	atomic_t		mapping_cnt;
844  	u32			asid;
845  	u32			page_size;
846  	u32			flags;
847  	u32			handle;
848  	u32			offset;
849  	u8			contiguous;
850  	u8			created_from_userptr;
851  };
852  
853  /**
854   * struct hl_vm_va_block - virtual range block information.
855   * @node: node to hang on the virtual range list in context object.
856   * @start: virtual range start address.
857   * @end: virtual range end address.
858   * @size: virtual range size.
859   */
860  struct hl_vm_va_block {
861  	struct list_head	node;
862  	u64			start;
863  	u64			end;
864  	u64			size;
865  };
866  
867  /**
868   * struct hl_vm - virtual memory manager for MMU.
869   * @dram_pg_pool: pool for DRAM physical pages of 2MB.
870   * @dram_pg_pool_refcount: reference counter for the pool usage.
871   * @idr_lock: protects the phys_pg_list_handles.
872   * @phys_pg_pack_handles: idr to hold all device allocations handles.
873   * @init_done: whether initialization was done. We need this because VM
874   *		initialization might be skipped during device initialization.
875   */
876  struct hl_vm {
877  	struct gen_pool		*dram_pg_pool;
878  	struct kref		dram_pg_pool_refcount;
879  	spinlock_t		idr_lock;
880  	struct idr		phys_pg_pack_handles;
881  	u8			init_done;
882  };
883  
884  
885  /*
886   * DEBUG, PROFILING STRUCTURE
887   */
888  
889  /**
890   * struct hl_debug_params - Coresight debug parameters.
891   * @input: pointer to component specific input parameters.
892   * @output: pointer to component specific output parameters.
893   * @output_size: size of output buffer.
894   * @reg_idx: relevant register ID.
895   * @op: component operation to execute.
896   * @enable: true if to enable component debugging, false otherwise.
897   */
898  struct hl_debug_params {
899  	void *input;
900  	void *output;
901  	u32 output_size;
902  	u32 reg_idx;
903  	u32 op;
904  	bool enable;
905  };
906  
907  /*
908   * FILE PRIVATE STRUCTURE
909   */
910  
911  /**
912   * struct hl_fpriv - process information stored in FD private data.
913   * @hdev: habanalabs device structure.
914   * @filp: pointer to the given file structure.
915   * @taskpid: current process ID.
916   * @ctx: current executing context. TODO: remove for multiple ctx per process
917   * @ctx_mgr: context manager to handle multiple context for this FD.
918   * @cb_mgr: command buffer manager to handle multiple buffers for this FD.
919   * @debugfs_list: list of relevant ASIC debugfs.
920   * @dev_node: node in the device list of file private data
921   * @refcount: number of related contexts.
922   * @restore_phase_mutex: lock for context switch and restore phase.
923   * @is_control: true for control device, false otherwise
924   */
925  struct hl_fpriv {
926  	struct hl_device	*hdev;
927  	struct file		*filp;
928  	struct pid		*taskpid;
929  	struct hl_ctx		*ctx;
930  	struct hl_ctx_mgr	ctx_mgr;
931  	struct hl_cb_mgr	cb_mgr;
932  	struct list_head	debugfs_list;
933  	struct list_head	dev_node;
934  	struct kref		refcount;
935  	struct mutex		restore_phase_mutex;
936  	u8			is_control;
937  };
938  
939  
940  /*
941   * DebugFS
942   */
943  
944  /**
945   * struct hl_info_list - debugfs file ops.
946   * @name: file name.
947   * @show: function to output information.
948   * @write: function to write to the file.
949   */
950  struct hl_info_list {
951  	const char	*name;
952  	int		(*show)(struct seq_file *s, void *data);
953  	ssize_t		(*write)(struct file *file, const char __user *buf,
954  				size_t count, loff_t *f_pos);
955  };
956  
957  /**
958   * struct hl_debugfs_entry - debugfs dentry wrapper.
959   * @dent: base debugfs entry structure.
960   * @info_ent: dentry realted ops.
961   * @dev_entry: ASIC specific debugfs manager.
962   */
963  struct hl_debugfs_entry {
964  	struct dentry			*dent;
965  	const struct hl_info_list	*info_ent;
966  	struct hl_dbg_device_entry	*dev_entry;
967  };
968  
969  /**
970   * struct hl_dbg_device_entry - ASIC specific debugfs manager.
971   * @root: root dentry.
972   * @hdev: habanalabs device structure.
973   * @entry_arr: array of available hl_debugfs_entry.
974   * @file_list: list of available debugfs files.
975   * @file_mutex: protects file_list.
976   * @cb_list: list of available CBs.
977   * @cb_spinlock: protects cb_list.
978   * @cs_list: list of available CSs.
979   * @cs_spinlock: protects cs_list.
980   * @cs_job_list: list of available CB jobs.
981   * @cs_job_spinlock: protects cs_job_list.
982   * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
983   * @userptr_spinlock: protects userptr_list.
984   * @ctx_mem_hash_list: list of available contexts with MMU mappings.
985   * @ctx_mem_hash_spinlock: protects cb_list.
986   * @addr: next address to read/write from/to in read/write32.
987   * @mmu_addr: next virtual address to translate to physical address in mmu_show.
988   * @mmu_asid: ASID to use while translating in mmu_show.
989   * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
990   * @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read.
991   * @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read.
992   */
993  struct hl_dbg_device_entry {
994  	struct dentry			*root;
995  	struct hl_device		*hdev;
996  	struct hl_debugfs_entry		*entry_arr;
997  	struct list_head		file_list;
998  	struct mutex			file_mutex;
999  	struct list_head		cb_list;
1000  	spinlock_t			cb_spinlock;
1001  	struct list_head		cs_list;
1002  	spinlock_t			cs_spinlock;
1003  	struct list_head		cs_job_list;
1004  	spinlock_t			cs_job_spinlock;
1005  	struct list_head		userptr_list;
1006  	spinlock_t			userptr_spinlock;
1007  	struct list_head		ctx_mem_hash_list;
1008  	spinlock_t			ctx_mem_hash_spinlock;
1009  	u64				addr;
1010  	u64				mmu_addr;
1011  	u32				mmu_asid;
1012  	u8				i2c_bus;
1013  	u8				i2c_addr;
1014  	u8				i2c_reg;
1015  };
1016  
1017  
1018  /*
1019   * DEVICES
1020   */
1021  
1022  /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
1023   * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
1024   */
1025  #define HL_MAX_MINORS	256
1026  
1027  /*
1028   * Registers read & write functions.
1029   */
1030  
1031  u32 hl_rreg(struct hl_device *hdev, u32 reg);
1032  void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
1033  
1034  #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
1035  #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
1036  #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
1037  			hdev->asic_funcs->rreg(hdev, (reg)))
1038  
1039  #define WREG32_P(reg, val, mask)				\
1040  	do {							\
1041  		u32 tmp_ = RREG32(reg);				\
1042  		tmp_ &= (mask);					\
1043  		tmp_ |= ((val) & ~(mask));			\
1044  		WREG32(reg, tmp_);				\
1045  	} while (0)
1046  #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
1047  #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
1048  
1049  #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
1050  #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
1051  #define WREG32_FIELD(reg, field, val)	\
1052  	WREG32(mm##reg, (RREG32(mm##reg) & ~REG_FIELD_MASK(reg, field)) | \
1053  			(val) << REG_FIELD_SHIFT(reg, field))
1054  
1055  /* Timeout should be longer when working with simulator but cap the
1056   * increased timeout to some maximum
1057   */
1058  #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
1059  ({ \
1060  	ktime_t __timeout; \
1061  	if (hdev->pdev) \
1062  		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1063  	else \
1064  		__timeout = ktime_add_us(ktime_get(),\
1065  				min((u64)(timeout_us * 10), \
1066  					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1067  	might_sleep_if(sleep_us); \
1068  	for (;;) { \
1069  		(val) = RREG32(addr); \
1070  		if (cond) \
1071  			break; \
1072  		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1073  			(val) = RREG32(addr); \
1074  			break; \
1075  		} \
1076  		if (sleep_us) \
1077  			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1078  	} \
1079  	(cond) ? 0 : -ETIMEDOUT; \
1080  })
1081  
1082  /*
1083   * address in this macro points always to a memory location in the
1084   * host's (server's) memory. That location is updated asynchronously
1085   * either by the direct access of the device or by another core.
1086   *
1087   * To work both in LE and BE architectures, we need to distinguish between the
1088   * two states (device or another core updates the memory location). Therefore,
1089   * if mem_written_by_device is true, the host memory being polled will be
1090   * updated directly by the device. If false, the host memory being polled will
1091   * be updated by host CPU. Required so host knows whether or not the memory
1092   * might need to be byte-swapped before returning value to caller.
1093   */
1094  #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
1095  				mem_written_by_device) \
1096  ({ \
1097  	ktime_t __timeout; \
1098  	if (hdev->pdev) \
1099  		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1100  	else \
1101  		__timeout = ktime_add_us(ktime_get(),\
1102  				min((u64)(timeout_us * 10), \
1103  					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1104  	might_sleep_if(sleep_us); \
1105  	for (;;) { \
1106  		/* Verify we read updates done by other cores or by device */ \
1107  		mb(); \
1108  		(val) = *((u32 *) (uintptr_t) (addr)); \
1109  		if (mem_written_by_device) \
1110  			(val) = le32_to_cpu(*(__le32 *) &(val)); \
1111  		if (cond) \
1112  			break; \
1113  		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1114  			(val) = *((u32 *) (uintptr_t) (addr)); \
1115  			if (mem_written_by_device) \
1116  				(val) = le32_to_cpu(*(__le32 *) &(val)); \
1117  			break; \
1118  		} \
1119  		if (sleep_us) \
1120  			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1121  	} \
1122  	(cond) ? 0 : -ETIMEDOUT; \
1123  })
1124  
1125  #define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
1126  					timeout_us) \
1127  ({ \
1128  	ktime_t __timeout; \
1129  	if (hdev->pdev) \
1130  		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1131  	else \
1132  		__timeout = ktime_add_us(ktime_get(),\
1133  				min((u64)(timeout_us * 10), \
1134  					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1135  	might_sleep_if(sleep_us); \
1136  	for (;;) { \
1137  		(val) = readl(addr); \
1138  		if (cond) \
1139  			break; \
1140  		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1141  			(val) = readl(addr); \
1142  			break; \
1143  		} \
1144  		if (sleep_us) \
1145  			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1146  	} \
1147  	(cond) ? 0 : -ETIMEDOUT; \
1148  })
1149  
1150  struct hwmon_chip_info;
1151  
1152  /**
1153   * struct hl_device_reset_work - reset workqueue task wrapper.
1154   * @reset_work: reset work to be done.
1155   * @hdev: habanalabs device structure.
1156   */
1157  struct hl_device_reset_work {
1158  	struct work_struct		reset_work;
1159  	struct hl_device		*hdev;
1160  };
1161  
1162  /**
1163   * struct hl_device_idle_busy_ts - used for calculating device utilization rate.
1164   * @idle_to_busy_ts: timestamp where device changed from idle to busy.
1165   * @busy_to_idle_ts: timestamp where device changed from busy to idle.
1166   */
1167  struct hl_device_idle_busy_ts {
1168  	ktime_t				idle_to_busy_ts;
1169  	ktime_t				busy_to_idle_ts;
1170  };
1171  
1172  /**
1173   * struct hl_device - habanalabs device structure.
1174   * @pdev: pointer to PCI device, can be NULL in case of simulator device.
1175   * @pcie_bar: array of available PCIe bars.
1176   * @rmmio: configuration area address on SRAM.
1177   * @cdev: related char device.
1178   * @cdev_ctrl: char device for control operations only (INFO IOCTL)
1179   * @dev: related kernel basic device structure.
1180   * @dev_ctrl: related kernel device structure for the control device
1181   * @work_freq: delayed work to lower device frequency if possible.
1182   * @work_heartbeat: delayed work for ArmCP is-alive check.
1183   * @asic_name: ASIC specific nmae.
1184   * @asic_type: ASIC specific type.
1185   * @completion_queue: array of hl_cq.
1186   * @cq_wq: work queue of completion queues for executing work in process context
1187   * @eq_wq: work queue of event queue for executing work in process context.
1188   * @kernel_ctx: Kernel driver context structure.
1189   * @kernel_queues: array of hl_hw_queue.
1190   * @hw_queues_mirror_list: CS mirror list for TDR.
1191   * @hw_queues_mirror_lock: protects hw_queues_mirror_list.
1192   * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
1193   * @event_queue: event queue for IRQ from ArmCP.
1194   * @dma_pool: DMA pool for small allocations.
1195   * @cpu_accessible_dma_mem: Host <-> ArmCP shared memory CPU address.
1196   * @cpu_accessible_dma_address: Host <-> ArmCP shared memory DMA address.
1197   * @cpu_accessible_dma_pool: Host <-> ArmCP shared memory pool.
1198   * @asid_bitmap: holds used/available ASIDs.
1199   * @asid_mutex: protects asid_bitmap.
1200   * @send_cpu_message_lock: enforces only one message in Host <-> ArmCP queue.
1201   * @debug_lock: protects critical section of setting debug mode for device
1202   * @asic_prop: ASIC specific immutable properties.
1203   * @asic_funcs: ASIC specific functions.
1204   * @asic_specific: ASIC specific information to use only from ASIC files.
1205   * @mmu_pgt_pool: pool of available MMU hops.
1206   * @vm: virtual memory manager for MMU.
1207   * @mmu_cache_lock: protects MMU cache invalidation as it can serve one context.
1208   * @mmu_shadow_hop0: shadow mapping of the MMU hop 0 zone.
1209   * @hwmon_dev: H/W monitor device.
1210   * @pm_mng_profile: current power management profile.
1211   * @hl_chip_info: ASIC's sensors information.
1212   * @hl_debugfs: device's debugfs manager.
1213   * @cb_pool: list of preallocated CBs.
1214   * @cb_pool_lock: protects the CB pool.
1215   * @fpriv_list: list of file private data structures. Each structure is created
1216   *              when a user opens the device
1217   * @fpriv_list_lock: protects the fpriv_list
1218   * @compute_ctx: current compute context executing.
1219   * @idle_busy_ts_arr: array to hold time stamps of transitions from idle to busy
1220   *                    and vice-versa
1221   * @dram_used_mem: current DRAM memory consumption.
1222   * @timeout_jiffies: device CS timeout value.
1223   * @max_power: the max power of the device, as configured by the sysadmin. This
1224   *             value is saved so in case of hard-reset, the driver will restore
1225   *             this value and update the F/W after the re-initialization
1226   * @in_reset: is device in reset flow.
1227   * @curr_pll_profile: current PLL profile.
1228   * @cs_active_cnt: number of active command submissions on this device (active
1229   *                 means already in H/W queues)
1230   * @major: habanalabs kernel driver major.
1231   * @high_pll: high PLL profile frequency.
1232   * @soft_reset_cnt: number of soft reset since the driver was loaded.
1233   * @hard_reset_cnt: number of hard reset since the driver was loaded.
1234   * @idle_busy_ts_idx: index of current entry in idle_busy_ts_arr
1235   * @id: device minor.
1236   * @id_control: minor of the control device
1237   * @disabled: is device disabled.
1238   * @late_init_done: is late init stage was done during initialization.
1239   * @hwmon_initialized: is H/W monitor sensors was initialized.
1240   * @hard_reset_pending: is there a hard reset work pending.
1241   * @heartbeat: is heartbeat sanity check towards ArmCP enabled.
1242   * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
1243   *                   otherwise.
1244   * @dram_supports_virtual_memory: is MMU enabled towards DRAM.
1245   * @dram_default_page_mapping: is DRAM default page mapping enabled.
1246   * @init_done: is the initialization of the device done.
1247   * @mmu_enable: is MMU enabled.
1248   * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
1249   * @dma_mask: the dma mask that was set for this device
1250   * @in_debug: is device under debug. This, together with fpriv_list, enforces
1251   *            that only a single user is configuring the debug infrastructure.
1252   * @cdev_sysfs_created: were char devices and sysfs nodes created.
1253   */
1254  struct hl_device {
1255  	struct pci_dev			*pdev;
1256  	void __iomem			*pcie_bar[6];
1257  	void __iomem			*rmmio;
1258  	struct cdev			cdev;
1259  	struct cdev			cdev_ctrl;
1260  	struct device			*dev;
1261  	struct device			*dev_ctrl;
1262  	struct delayed_work		work_freq;
1263  	struct delayed_work		work_heartbeat;
1264  	char				asic_name[16];
1265  	enum hl_asic_type		asic_type;
1266  	struct hl_cq			*completion_queue;
1267  	struct workqueue_struct		*cq_wq;
1268  	struct workqueue_struct		*eq_wq;
1269  	struct hl_ctx			*kernel_ctx;
1270  	struct hl_hw_queue		*kernel_queues;
1271  	struct list_head		hw_queues_mirror_list;
1272  	spinlock_t			hw_queues_mirror_lock;
1273  	struct hl_cb_mgr		kernel_cb_mgr;
1274  	struct hl_eq			event_queue;
1275  	struct dma_pool			*dma_pool;
1276  	void				*cpu_accessible_dma_mem;
1277  	dma_addr_t			cpu_accessible_dma_address;
1278  	struct gen_pool			*cpu_accessible_dma_pool;
1279  	unsigned long			*asid_bitmap;
1280  	struct mutex			asid_mutex;
1281  	struct mutex			send_cpu_message_lock;
1282  	struct mutex			debug_lock;
1283  	struct asic_fixed_properties	asic_prop;
1284  	const struct hl_asic_funcs	*asic_funcs;
1285  	void				*asic_specific;
1286  	struct gen_pool			*mmu_pgt_pool;
1287  	struct hl_vm			vm;
1288  	struct mutex			mmu_cache_lock;
1289  	void				*mmu_shadow_hop0;
1290  	struct device			*hwmon_dev;
1291  	enum hl_pm_mng_profile		pm_mng_profile;
1292  	struct hwmon_chip_info		*hl_chip_info;
1293  
1294  	struct hl_dbg_device_entry	hl_debugfs;
1295  
1296  	struct list_head		cb_pool;
1297  	spinlock_t			cb_pool_lock;
1298  
1299  	struct list_head		fpriv_list;
1300  	struct mutex			fpriv_list_lock;
1301  
1302  	struct hl_ctx			*compute_ctx;
1303  
1304  	struct hl_device_idle_busy_ts	*idle_busy_ts_arr;
1305  
1306  	atomic64_t			dram_used_mem;
1307  	u64				timeout_jiffies;
1308  	u64				max_power;
1309  	atomic_t			in_reset;
1310  	enum hl_pll_frequency		curr_pll_profile;
1311  	int				cs_active_cnt;
1312  	u32				major;
1313  	u32				high_pll;
1314  	u32				soft_reset_cnt;
1315  	u32				hard_reset_cnt;
1316  	u32				idle_busy_ts_idx;
1317  	u16				id;
1318  	u16				id_control;
1319  	u8				disabled;
1320  	u8				late_init_done;
1321  	u8				hwmon_initialized;
1322  	u8				hard_reset_pending;
1323  	u8				heartbeat;
1324  	u8				reset_on_lockup;
1325  	u8				dram_supports_virtual_memory;
1326  	u8				dram_default_page_mapping;
1327  	u8				init_done;
1328  	u8				device_cpu_disabled;
1329  	u8				dma_mask;
1330  	u8				in_debug;
1331  	u8				cdev_sysfs_created;
1332  
1333  	/* Parameters for bring-up */
1334  	u8				mmu_enable;
1335  	u8				cpu_enable;
1336  	u8				reset_pcilink;
1337  	u8				cpu_queues_enable;
1338  	u8				fw_loading;
1339  	u8				pldm;
1340  };
1341  
1342  
1343  /*
1344   * IOCTLs
1345   */
1346  
1347  /**
1348   * typedef hl_ioctl_t - typedef for ioctl function in the driver
1349   * @hpriv: pointer to the FD's private data, which contains state of
1350   *		user process
1351   * @data: pointer to the input/output arguments structure of the IOCTL
1352   *
1353   * Return: 0 for success, negative value for error
1354   */
1355  typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
1356  
1357  /**
1358   * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
1359   * @cmd: the IOCTL code as created by the kernel macros.
1360   * @func: pointer to the driver's function that should be called for this IOCTL.
1361   */
1362  struct hl_ioctl_desc {
1363  	unsigned int cmd;
1364  	hl_ioctl_t *func;
1365  };
1366  
1367  
1368  /*
1369   * Kernel module functions that can be accessed by entire module
1370   */
1371  
1372  /**
1373   * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
1374   * @address: The start address of the area we want to validate.
1375   * @size: The size in bytes of the area we want to validate.
1376   * @range_start_address: The start address of the valid range.
1377   * @range_end_address: The end address of the valid range.
1378   *
1379   * Return: true if the area is inside the valid range, false otherwise.
1380   */
hl_mem_area_inside_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)1381  static inline bool hl_mem_area_inside_range(u64 address, u32 size,
1382  				u64 range_start_address, u64 range_end_address)
1383  {
1384  	u64 end_address = address + size;
1385  
1386  	if ((address >= range_start_address) &&
1387  			(end_address <= range_end_address) &&
1388  			(end_address > address))
1389  		return true;
1390  
1391  	return false;
1392  }
1393  
1394  /**
1395   * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
1396   * @address: The start address of the area we want to validate.
1397   * @size: The size in bytes of the area we want to validate.
1398   * @range_start_address: The start address of the valid range.
1399   * @range_end_address: The end address of the valid range.
1400   *
1401   * Return: true if the area overlaps part or all of the valid range,
1402   *		false otherwise.
1403   */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)1404  static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
1405  				u64 range_start_address, u64 range_end_address)
1406  {
1407  	u64 end_address = address + size;
1408  
1409  	if ((address >= range_start_address) &&
1410  			(address < range_end_address))
1411  		return true;
1412  
1413  	if ((end_address >= range_start_address) &&
1414  			(end_address < range_end_address))
1415  		return true;
1416  
1417  	if ((address < range_start_address) &&
1418  			(end_address >= range_end_address))
1419  		return true;
1420  
1421  	return false;
1422  }
1423  
1424  int hl_device_open(struct inode *inode, struct file *filp);
1425  int hl_device_open_ctrl(struct inode *inode, struct file *filp);
1426  bool hl_device_disabled_or_in_reset(struct hl_device *hdev);
1427  enum hl_device_status hl_device_status(struct hl_device *hdev);
1428  int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
1429  int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
1430  		enum hl_asic_type asic_type, int minor);
1431  void destroy_hdev(struct hl_device *hdev);
1432  int hl_hw_queues_create(struct hl_device *hdev);
1433  void hl_hw_queues_destroy(struct hl_device *hdev);
1434  int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
1435  				u32 cb_size, u64 cb_ptr);
1436  int hl_hw_queue_schedule_cs(struct hl_cs *cs);
1437  u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
1438  void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
1439  void hl_int_hw_queue_update_ci(struct hl_cs *cs);
1440  void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
1441  
1442  #define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
1443  #define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
1444  
1445  int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
1446  void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
1447  int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
1448  void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
1449  void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
1450  void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
1451  irqreturn_t hl_irq_handler_cq(int irq, void *arg);
1452  irqreturn_t hl_irq_handler_eq(int irq, void *arg);
1453  u32 hl_cq_inc_ptr(u32 ptr);
1454  
1455  int hl_asid_init(struct hl_device *hdev);
1456  void hl_asid_fini(struct hl_device *hdev);
1457  unsigned long hl_asid_alloc(struct hl_device *hdev);
1458  void hl_asid_free(struct hl_device *hdev, unsigned long asid);
1459  
1460  int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
1461  void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
1462  int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
1463  void hl_ctx_do_release(struct kref *ref);
1464  void hl_ctx_get(struct hl_device *hdev,	struct hl_ctx *ctx);
1465  int hl_ctx_put(struct hl_ctx *ctx);
1466  struct dma_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
1467  void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
1468  void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
1469  
1470  int hl_device_init(struct hl_device *hdev, struct class *hclass);
1471  void hl_device_fini(struct hl_device *hdev);
1472  int hl_device_suspend(struct hl_device *hdev);
1473  int hl_device_resume(struct hl_device *hdev);
1474  int hl_device_reset(struct hl_device *hdev, bool hard_reset,
1475  			bool from_hard_reset_thread);
1476  void hl_hpriv_get(struct hl_fpriv *hpriv);
1477  void hl_hpriv_put(struct hl_fpriv *hpriv);
1478  int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
1479  uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms);
1480  
1481  int hl_build_hwmon_channel_info(struct hl_device *hdev,
1482  		struct armcp_sensor *sensors_arr);
1483  
1484  int hl_sysfs_init(struct hl_device *hdev);
1485  void hl_sysfs_fini(struct hl_device *hdev);
1486  
1487  int hl_hwmon_init(struct hl_device *hdev);
1488  void hl_hwmon_fini(struct hl_device *hdev);
1489  
1490  int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 cb_size,
1491  		u64 *handle, int ctx_id);
1492  int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
1493  int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
1494  struct hl_cb *hl_cb_get(struct hl_device *hdev,	struct hl_cb_mgr *mgr,
1495  			u32 handle);
1496  void hl_cb_put(struct hl_cb *cb);
1497  void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
1498  void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
1499  struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size);
1500  int hl_cb_pool_init(struct hl_device *hdev);
1501  int hl_cb_pool_fini(struct hl_device *hdev);
1502  
1503  void hl_cs_rollback_all(struct hl_device *hdev);
1504  struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, bool ext_queue);
1505  
1506  void goya_set_asic_funcs(struct hl_device *hdev);
1507  
1508  int hl_vm_ctx_init(struct hl_ctx *ctx);
1509  void hl_vm_ctx_fini(struct hl_ctx *ctx);
1510  
1511  int hl_vm_init(struct hl_device *hdev);
1512  void hl_vm_fini(struct hl_device *hdev);
1513  
1514  int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1515  			struct hl_userptr *userptr);
1516  int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
1517  void hl_userptr_delete_list(struct hl_device *hdev,
1518  				struct list_head *userptr_list);
1519  bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
1520  				struct list_head *userptr_list,
1521  				struct hl_userptr **userptr);
1522  
1523  int hl_mmu_init(struct hl_device *hdev);
1524  void hl_mmu_fini(struct hl_device *hdev);
1525  int hl_mmu_ctx_init(struct hl_ctx *ctx);
1526  void hl_mmu_ctx_fini(struct hl_ctx *ctx);
1527  int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size);
1528  int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size);
1529  void hl_mmu_swap_out(struct hl_ctx *ctx);
1530  void hl_mmu_swap_in(struct hl_ctx *ctx);
1531  
1532  int hl_fw_push_fw_to_device(struct hl_device *hdev, const char *fw_name,
1533  				void __iomem *dst);
1534  int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
1535  int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
1536  				u16 len, u32 timeout, long *result);
1537  int hl_fw_test_cpu_queue(struct hl_device *hdev);
1538  void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
1539  						dma_addr_t *dma_handle);
1540  void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
1541  					void *vaddr);
1542  int hl_fw_send_heartbeat(struct hl_device *hdev);
1543  int hl_fw_armcp_info_get(struct hl_device *hdev);
1544  int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
1545  
1546  int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
1547  			bool is_wc[3]);
1548  int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
1549  int hl_pci_set_dram_bar_base(struct hl_device *hdev, u8 inbound_region, u8 bar,
1550  				u64 addr);
1551  int hl_pci_init_iatu(struct hl_device *hdev, u64 sram_base_address,
1552  			u64 dram_base_address, u64 host_phys_base_address,
1553  			u64 host_phys_size);
1554  int hl_pci_init(struct hl_device *hdev, u8 dma_mask);
1555  void hl_pci_fini(struct hl_device *hdev);
1556  int hl_pci_set_dma_mask(struct hl_device *hdev, u8 dma_mask);
1557  
1558  long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
1559  void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
1560  long hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr);
1561  long hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr);
1562  long hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr);
1563  long hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr);
1564  long hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr);
1565  void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
1566  			long value);
1567  u64 hl_get_max_power(struct hl_device *hdev);
1568  void hl_set_max_power(struct hl_device *hdev, u64 value);
1569  
1570  #ifdef CONFIG_DEBUG_FS
1571  
1572  void hl_debugfs_init(void);
1573  void hl_debugfs_fini(void);
1574  void hl_debugfs_add_device(struct hl_device *hdev);
1575  void hl_debugfs_remove_device(struct hl_device *hdev);
1576  void hl_debugfs_add_file(struct hl_fpriv *hpriv);
1577  void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
1578  void hl_debugfs_add_cb(struct hl_cb *cb);
1579  void hl_debugfs_remove_cb(struct hl_cb *cb);
1580  void hl_debugfs_add_cs(struct hl_cs *cs);
1581  void hl_debugfs_remove_cs(struct hl_cs *cs);
1582  void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
1583  void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
1584  void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
1585  void hl_debugfs_remove_userptr(struct hl_device *hdev,
1586  				struct hl_userptr *userptr);
1587  void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
1588  void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
1589  
1590  #else
1591  
hl_debugfs_init(void)1592  static inline void __init hl_debugfs_init(void)
1593  {
1594  }
1595  
hl_debugfs_fini(void)1596  static inline void hl_debugfs_fini(void)
1597  {
1598  }
1599  
hl_debugfs_add_device(struct hl_device * hdev)1600  static inline void hl_debugfs_add_device(struct hl_device *hdev)
1601  {
1602  }
1603  
hl_debugfs_remove_device(struct hl_device * hdev)1604  static inline void hl_debugfs_remove_device(struct hl_device *hdev)
1605  {
1606  }
1607  
hl_debugfs_add_file(struct hl_fpriv * hpriv)1608  static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
1609  {
1610  }
1611  
hl_debugfs_remove_file(struct hl_fpriv * hpriv)1612  static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
1613  {
1614  }
1615  
hl_debugfs_add_cb(struct hl_cb * cb)1616  static inline void hl_debugfs_add_cb(struct hl_cb *cb)
1617  {
1618  }
1619  
hl_debugfs_remove_cb(struct hl_cb * cb)1620  static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
1621  {
1622  }
1623  
hl_debugfs_add_cs(struct hl_cs * cs)1624  static inline void hl_debugfs_add_cs(struct hl_cs *cs)
1625  {
1626  }
1627  
hl_debugfs_remove_cs(struct hl_cs * cs)1628  static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
1629  {
1630  }
1631  
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)1632  static inline void hl_debugfs_add_job(struct hl_device *hdev,
1633  					struct hl_cs_job *job)
1634  {
1635  }
1636  
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)1637  static inline void hl_debugfs_remove_job(struct hl_device *hdev,
1638  					struct hl_cs_job *job)
1639  {
1640  }
1641  
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)1642  static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
1643  					struct hl_userptr *userptr)
1644  {
1645  }
1646  
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)1647  static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
1648  					struct hl_userptr *userptr)
1649  {
1650  }
1651  
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)1652  static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
1653  					struct hl_ctx *ctx)
1654  {
1655  }
1656  
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)1657  static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
1658  					struct hl_ctx *ctx)
1659  {
1660  }
1661  
1662  #endif
1663  
1664  /* IOCTLs */
1665  long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
1666  long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
1667  int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
1668  int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
1669  int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data);
1670  int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
1671  
1672  #endif /* HABANALABSP_H_ */
1673