1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * Copyright 2016-2019 HabanaLabs, Ltd. 4 * All Rights Reserved. 5 * 6 */ 7 8 #ifndef HABANALABSP_H_ 9 #define HABANALABSP_H_ 10 11 #include "include/armcp_if.h" 12 #include "include/qman_if.h" 13 14 #include <linux/cdev.h> 15 #include <linux/iopoll.h> 16 #include <linux/irqreturn.h> 17 #include <linux/dma-fence.h> 18 #include <linux/dma-direction.h> 19 #include <linux/scatterlist.h> 20 #include <linux/hashtable.h> 21 22 #define HL_NAME "habanalabs" 23 24 #define HL_MMAP_CB_MASK (0x8000000000000000ull >> PAGE_SHIFT) 25 26 #define HL_PENDING_RESET_PER_SEC 5 27 28 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ 29 30 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ 31 32 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ 33 34 #define HL_ARMCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ 35 #define HL_ARMCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ 36 37 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ 38 39 #define HL_SIM_MAX_TIMEOUT_US 10000000 /* 10s */ 40 41 #define HL_MAX_QUEUES 128 42 43 #define HL_MAX_JOBS_PER_CS 64 44 45 /* MUST BE POWER OF 2 and larger than 1 */ 46 #define HL_MAX_PENDING_CS 64 47 48 #define HL_IDLE_BUSY_TS_ARR_SIZE 4096 49 50 /* Memory */ 51 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 52 53 /* MMU */ 54 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 55 56 /** 57 * struct pgt_info - MMU hop page info. 58 * @node: hash linked-list node for the pgts shadow hash of pgts. 59 * @phys_addr: physical address of the pgt. 60 * @shadow_addr: shadow hop in the host. 61 * @ctx: pointer to the owner ctx. 62 * @num_of_ptes: indicates how many ptes are used in the pgt. 63 * 64 * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop) 65 * is needed during mapping, a new page is allocated and this structure holds 66 * its essential information. During unmapping, if no valid PTEs remained in the 67 * page, it is freed with its pgt_info structure. 68 */ 69 struct pgt_info { 70 struct hlist_node node; 71 u64 phys_addr; 72 u64 shadow_addr; 73 struct hl_ctx *ctx; 74 int num_of_ptes; 75 }; 76 77 struct hl_device; 78 struct hl_fpriv; 79 80 /** 81 * enum hl_queue_type - Supported QUEUE types. 82 * @QUEUE_TYPE_NA: queue is not available. 83 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the 84 * host. 85 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's 86 * memories and/or operates the compute engines. 87 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. 88 */ 89 enum hl_queue_type { 90 QUEUE_TYPE_NA, 91 QUEUE_TYPE_EXT, 92 QUEUE_TYPE_INT, 93 QUEUE_TYPE_CPU 94 }; 95 96 /** 97 * struct hw_queue_properties - queue information. 98 * @type: queue type. 99 * @driver_only: true if only the driver is allowed to send a job to this queue, 100 * false otherwise. 101 */ 102 struct hw_queue_properties { 103 enum hl_queue_type type; 104 u8 driver_only; 105 }; 106 107 /** 108 * enum vm_type_t - virtual memory mapping request information. 109 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. 110 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. 111 */ 112 enum vm_type_t { 113 VM_TYPE_USERPTR, 114 VM_TYPE_PHYS_PACK 115 }; 116 117 /** 118 * enum hl_device_hw_state - H/W device state. use this to understand whether 119 * to do reset before hw_init or not 120 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset 121 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute 122 * hw_init 123 */ 124 enum hl_device_hw_state { 125 HL_DEVICE_HW_STATE_CLEAN = 0, 126 HL_DEVICE_HW_STATE_DIRTY 127 }; 128 129 /** 130 * struct asic_fixed_properties - ASIC specific immutable properties. 131 * @hw_queues_props: H/W queues properties. 132 * @armcp_info: received various information from ArmCP regarding the H/W, e.g. 133 * available sensors. 134 * @uboot_ver: F/W U-boot version. 135 * @preboot_ver: F/W Preboot version. 136 * @sram_base_address: SRAM physical start address. 137 * @sram_end_address: SRAM physical end address. 138 * @sram_user_base_address - SRAM physical start address for user access. 139 * @dram_base_address: DRAM physical start address. 140 * @dram_end_address: DRAM physical end address. 141 * @dram_user_base_address: DRAM physical start address for user access. 142 * @dram_size: DRAM total size. 143 * @dram_pci_bar_size: size of PCI bar towards DRAM. 144 * @max_power_default: max power of the device after reset 145 * @va_space_host_start_address: base address of virtual memory range for 146 * mapping host memory. 147 * @va_space_host_end_address: end address of virtual memory range for 148 * mapping host memory. 149 * @va_space_dram_start_address: base address of virtual memory range for 150 * mapping DRAM memory. 151 * @va_space_dram_end_address: end address of virtual memory range for 152 * mapping DRAM memory. 153 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page 154 * fault. 155 * @pcie_dbi_base_address: Base address of the PCIE_DBI block. 156 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. 157 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. 158 * @mmu_dram_default_page_addr: DRAM default page physical address. 159 * @mmu_pgt_size: MMU page tables total size. 160 * @mmu_pte_size: PTE size in MMU page tables. 161 * @mmu_hop_table_size: MMU hop table size. 162 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. 163 * @dram_page_size: page size for MMU DRAM allocation. 164 * @cfg_size: configuration space size on SRAM. 165 * @sram_size: total size of SRAM. 166 * @max_asid: maximum number of open contexts (ASIDs). 167 * @num_of_events: number of possible internal H/W IRQs. 168 * @psoc_pci_pll_nr: PCI PLL NR value. 169 * @psoc_pci_pll_nf: PCI PLL NF value. 170 * @psoc_pci_pll_od: PCI PLL OD value. 171 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. 172 * @completion_queues_count: number of completion queues. 173 * @high_pll: high PLL frequency used by the device. 174 * @cb_pool_cb_cnt: number of CBs in the CB pool. 175 * @cb_pool_cb_size: size of each CB in the CB pool. 176 * @tpc_enabled_mask: which TPCs are enabled. 177 */ 178 struct asic_fixed_properties { 179 struct hw_queue_properties hw_queues_props[HL_MAX_QUEUES]; 180 struct armcp_info armcp_info; 181 char uboot_ver[VERSION_MAX_LEN]; 182 char preboot_ver[VERSION_MAX_LEN]; 183 u64 sram_base_address; 184 u64 sram_end_address; 185 u64 sram_user_base_address; 186 u64 dram_base_address; 187 u64 dram_end_address; 188 u64 dram_user_base_address; 189 u64 dram_size; 190 u64 dram_pci_bar_size; 191 u64 max_power_default; 192 u64 va_space_host_start_address; 193 u64 va_space_host_end_address; 194 u64 va_space_dram_start_address; 195 u64 va_space_dram_end_address; 196 u64 dram_size_for_default_page_mapping; 197 u64 pcie_dbi_base_address; 198 u64 pcie_aux_dbi_reg_addr; 199 u64 mmu_pgt_addr; 200 u64 mmu_dram_default_page_addr; 201 u32 mmu_pgt_size; 202 u32 mmu_pte_size; 203 u32 mmu_hop_table_size; 204 u32 mmu_hop0_tables_total_size; 205 u32 dram_page_size; 206 u32 cfg_size; 207 u32 sram_size; 208 u32 max_asid; 209 u32 num_of_events; 210 u32 psoc_pci_pll_nr; 211 u32 psoc_pci_pll_nf; 212 u32 psoc_pci_pll_od; 213 u32 psoc_pci_pll_div_factor; 214 u32 high_pll; 215 u32 cb_pool_cb_cnt; 216 u32 cb_pool_cb_size; 217 u8 completion_queues_count; 218 u8 tpc_enabled_mask; 219 }; 220 221 /** 222 * struct hl_dma_fence - wrapper for fence object used by command submissions. 223 * @base_fence: kernel fence object. 224 * @lock: spinlock to protect fence. 225 * @hdev: habanalabs device structure. 226 * @cs_seq: command submission sequence number. 227 */ 228 struct hl_dma_fence { 229 struct dma_fence base_fence; 230 spinlock_t lock; 231 struct hl_device *hdev; 232 u64 cs_seq; 233 }; 234 235 /* 236 * Command Buffers 237 */ 238 239 #define HL_MAX_CB_SIZE 0x200000 /* 2MB */ 240 241 /** 242 * struct hl_cb_mgr - describes a Command Buffer Manager. 243 * @cb_lock: protects cb_handles. 244 * @cb_handles: an idr to hold all command buffer handles. 245 */ 246 struct hl_cb_mgr { 247 spinlock_t cb_lock; 248 struct idr cb_handles; /* protected by cb_lock */ 249 }; 250 251 /** 252 * struct hl_cb - describes a Command Buffer. 253 * @refcount: reference counter for usage of the CB. 254 * @hdev: pointer to device this CB belongs to. 255 * @lock: spinlock to protect mmap/cs flows. 256 * @debugfs_list: node in debugfs list of command buffers. 257 * @pool_list: node in pool list of command buffers. 258 * @kernel_address: Holds the CB's kernel virtual address. 259 * @bus_address: Holds the CB's DMA address. 260 * @mmap_size: Holds the CB's size that was mmaped. 261 * @size: holds the CB's size. 262 * @id: the CB's ID. 263 * @cs_cnt: holds number of CS that this CB participates in. 264 * @ctx_id: holds the ID of the owner's context. 265 * @mmap: true if the CB is currently mmaped to user. 266 * @is_pool: true if CB was acquired from the pool, false otherwise. 267 */ 268 struct hl_cb { 269 struct kref refcount; 270 struct hl_device *hdev; 271 spinlock_t lock; 272 struct list_head debugfs_list; 273 struct list_head pool_list; 274 u64 kernel_address; 275 dma_addr_t bus_address; 276 u32 mmap_size; 277 u32 size; 278 u32 id; 279 u32 cs_cnt; 280 u32 ctx_id; 281 u8 mmap; 282 u8 is_pool; 283 }; 284 285 286 /* 287 * QUEUES 288 */ 289 290 struct hl_cs_job; 291 292 /* 293 * Currently, there are two limitations on the maximum length of a queue: 294 * 295 * 1. The memory footprint of the queue. The current allocated space for the 296 * queue is PAGE_SIZE. Because each entry in the queue is HL_BD_SIZE, 297 * the maximum length of the queue can be PAGE_SIZE / HL_BD_SIZE, 298 * which currently is 4096/16 = 256 entries. 299 * 300 * To increase that, we need either to decrease the size of the 301 * BD (difficult), or allocate more than a single page (easier). 302 * 303 * 2. Because the size of the JOB handle field in the BD CTL / completion queue 304 * is 10-bit, we can have up to 1024 open jobs per hardware queue. 305 * Therefore, each queue can hold up to 1024 entries. 306 * 307 * HL_QUEUE_LENGTH is in units of struct hl_bd. 308 * HL_QUEUE_LENGTH * sizeof(struct hl_bd) should be <= HL_PAGE_SIZE 309 */ 310 311 #define HL_PAGE_SIZE 4096 /* minimum page size */ 312 /* Must be power of 2 (HL_PAGE_SIZE / HL_BD_SIZE) */ 313 #define HL_QUEUE_LENGTH 256 314 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) 315 316 /* 317 * HL_CQ_LENGTH is in units of struct hl_cq_entry. 318 * HL_CQ_LENGTH should be <= HL_PAGE_SIZE 319 */ 320 #define HL_CQ_LENGTH HL_QUEUE_LENGTH 321 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) 322 323 /* Must be power of 2 (HL_PAGE_SIZE / HL_EQ_ENTRY_SIZE) */ 324 #define HL_EQ_LENGTH 64 325 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) 326 327 /* Host <-> ArmCP shared memory size */ 328 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M 329 330 /** 331 * struct hl_hw_queue - describes a H/W transport queue. 332 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. 333 * @queue_type: type of queue. 334 * @kernel_address: holds the queue's kernel virtual address. 335 * @bus_address: holds the queue's DMA address. 336 * @pi: holds the queue's pi value. 337 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). 338 * @hw_queue_id: the id of the H/W queue. 339 * @int_queue_len: length of internal queue (number of entries). 340 * @valid: is the queue valid (we have array of 32 queues, not all of them 341 * exists). 342 */ 343 struct hl_hw_queue { 344 struct hl_cs_job **shadow_queue; 345 enum hl_queue_type queue_type; 346 u64 kernel_address; 347 dma_addr_t bus_address; 348 u32 pi; 349 u32 ci; 350 u32 hw_queue_id; 351 u16 int_queue_len; 352 u8 valid; 353 }; 354 355 /** 356 * struct hl_cq - describes a completion queue 357 * @hdev: pointer to the device structure 358 * @kernel_address: holds the queue's kernel virtual address 359 * @bus_address: holds the queue's DMA address 360 * @hw_queue_id: the id of the matching H/W queue 361 * @ci: ci inside the queue 362 * @pi: pi inside the queue 363 * @free_slots_cnt: counter of free slots in queue 364 */ 365 struct hl_cq { 366 struct hl_device *hdev; 367 u64 kernel_address; 368 dma_addr_t bus_address; 369 u32 hw_queue_id; 370 u32 ci; 371 u32 pi; 372 atomic_t free_slots_cnt; 373 }; 374 375 /** 376 * struct hl_eq - describes the event queue (single one per device) 377 * @hdev: pointer to the device structure 378 * @kernel_address: holds the queue's kernel virtual address 379 * @bus_address: holds the queue's DMA address 380 * @ci: ci inside the queue 381 */ 382 struct hl_eq { 383 struct hl_device *hdev; 384 u64 kernel_address; 385 dma_addr_t bus_address; 386 u32 ci; 387 }; 388 389 390 /* 391 * ASICs 392 */ 393 394 /** 395 * enum hl_asic_type - supported ASIC types. 396 * @ASIC_INVALID: Invalid ASIC type. 397 * @ASIC_GOYA: Goya device. 398 */ 399 enum hl_asic_type { 400 ASIC_INVALID, 401 ASIC_GOYA 402 }; 403 404 struct hl_cs_parser; 405 406 /** 407 * enum hl_pm_mng_profile - power management profile. 408 * @PM_AUTO: internal clock is set by the Linux driver. 409 * @PM_MANUAL: internal clock is set by the user. 410 * @PM_LAST: last power management type. 411 */ 412 enum hl_pm_mng_profile { 413 PM_AUTO = 1, 414 PM_MANUAL, 415 PM_LAST 416 }; 417 418 /** 419 * enum hl_pll_frequency - PLL frequency. 420 * @PLL_HIGH: high frequency. 421 * @PLL_LOW: low frequency. 422 * @PLL_LAST: last frequency values that were configured by the user. 423 */ 424 enum hl_pll_frequency { 425 PLL_HIGH = 1, 426 PLL_LOW, 427 PLL_LAST 428 }; 429 430 /** 431 * struct hl_asic_funcs - ASIC specific functions that are can be called from 432 * common code. 433 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. 434 * @early_fini: tears down what was done in early_init. 435 * @late_init: sets up late driver/hw state (post hw_init) - Optional. 436 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. 437 * @sw_init: sets up driver state, does not configure H/W. 438 * @sw_fini: tears down driver state, does not configure H/W. 439 * @hw_init: sets up the H/W state. 440 * @hw_fini: tears down the H/W state. 441 * @halt_engines: halt engines, needed for reset sequence. This also disables 442 * interrupts from the device. Should be called before 443 * hw_fini and before CS rollback. 444 * @suspend: handles IP specific H/W or SW changes for suspend. 445 * @resume: handles IP specific H/W or SW changes for resume. 446 * @cb_mmap: maps a CB. 447 * @ring_doorbell: increment PI on a given QMAN. 448 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific 449 * function because the PQs are located in different memory areas 450 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of 451 * writing the PQE must match the destination memory area 452 * properties. 453 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling 454 * dma_alloc_coherent(). This is ASIC function because 455 * its implementation is not trivial when the driver 456 * is loaded in simulation mode (not upstreamed). 457 * @asic_dma_free_coherent: Free coherent DMA memory by calling 458 * dma_free_coherent(). This is ASIC function because 459 * its implementation is not trivial when the driver 460 * is loaded in simulation mode (not upstreamed). 461 * @get_int_queue_base: get the internal queue base address. 462 * @test_queues: run simple test on all queues for sanity check. 463 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. 464 * size of allocation is HL_DMA_POOL_BLK_SIZE. 465 * @asic_dma_pool_free: free small DMA allocation from pool. 466 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. 467 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. 468 * @hl_dma_unmap_sg: DMA unmap scatter-gather list. 469 * @cs_parser: parse Command Submission. 470 * @asic_dma_map_sg: DMA map scatter-gather list. 471 * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB. 472 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. 473 * @update_eq_ci: update event queue CI. 474 * @context_switch: called upon ASID context switch. 475 * @restore_phase_topology: clear all SOBs amd MONs. 476 * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM. 477 * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM. 478 * @add_device_attr: add ASIC specific device attributes. 479 * @handle_eqe: handle event queue entry (IRQ) from ArmCP. 480 * @set_pll_profile: change PLL profile (manual/automatic). 481 * @get_events_stat: retrieve event queue entries histogram. 482 * @read_pte: read MMU page table entry from DRAM. 483 * @write_pte: write MMU page table entry to DRAM. 484 * @mmu_invalidate_cache: flush MMU STLB cache, either with soft (L1 only) or 485 * hard (L0 & L1) flush. 486 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with 487 * ASID-VA-size mask. 488 * @send_heartbeat: send is-alive packet to ArmCP and verify response. 489 * @debug_coresight: perform certain actions on Coresight for debugging. 490 * @is_device_idle: return true if device is idle, false otherwise. 491 * @soft_reset_late_init: perform certain actions needed after soft reset. 492 * @hw_queues_lock: acquire H/W queues lock. 493 * @hw_queues_unlock: release H/W queues lock. 494 * @get_pci_id: retrieve PCI ID. 495 * @get_eeprom_data: retrieve EEPROM data from F/W. 496 * @send_cpu_message: send buffer to ArmCP. 497 * @get_hw_state: retrieve the H/W state 498 * @pci_bars_map: Map PCI BARs. 499 * @set_dram_bar_base: Set DRAM BAR to map specific device address. Returns 500 * old address the bar pointed to or U64_MAX for failure 501 * @init_iatu: Initialize the iATU unit inside the PCI controller. 502 * @rreg: Read a register. Needed for simulator support. 503 * @wreg: Write a register. Needed for simulator support. 504 * @halt_coresight: stop the ETF and ETR traces. 505 */ 506 struct hl_asic_funcs { 507 int (*early_init)(struct hl_device *hdev); 508 int (*early_fini)(struct hl_device *hdev); 509 int (*late_init)(struct hl_device *hdev); 510 void (*late_fini)(struct hl_device *hdev); 511 int (*sw_init)(struct hl_device *hdev); 512 int (*sw_fini)(struct hl_device *hdev); 513 int (*hw_init)(struct hl_device *hdev); 514 void (*hw_fini)(struct hl_device *hdev, bool hard_reset); 515 void (*halt_engines)(struct hl_device *hdev, bool hard_reset); 516 int (*suspend)(struct hl_device *hdev); 517 int (*resume)(struct hl_device *hdev); 518 int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 519 u64 kaddress, phys_addr_t paddress, u32 size); 520 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); 521 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, 522 struct hl_bd *bd); 523 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, 524 dma_addr_t *dma_handle, gfp_t flag); 525 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, 526 void *cpu_addr, dma_addr_t dma_handle); 527 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, 528 dma_addr_t *dma_handle, u16 *queue_len); 529 int (*test_queues)(struct hl_device *hdev); 530 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, 531 gfp_t mem_flags, dma_addr_t *dma_handle); 532 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, 533 dma_addr_t dma_addr); 534 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, 535 size_t size, dma_addr_t *dma_handle); 536 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, 537 size_t size, void *vaddr); 538 void (*hl_dma_unmap_sg)(struct hl_device *hdev, 539 struct scatterlist *sgl, int nents, 540 enum dma_data_direction dir); 541 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); 542 int (*asic_dma_map_sg)(struct hl_device *hdev, 543 struct scatterlist *sgl, int nents, 544 enum dma_data_direction dir); 545 u32 (*get_dma_desc_list_size)(struct hl_device *hdev, 546 struct sg_table *sgt); 547 void (*add_end_of_cb_packets)(struct hl_device *hdev, 548 u64 kernel_address, u32 len, 549 u64 cq_addr, u32 cq_val, u32 msix_num); 550 void (*update_eq_ci)(struct hl_device *hdev, u32 val); 551 int (*context_switch)(struct hl_device *hdev, u32 asid); 552 void (*restore_phase_topology)(struct hl_device *hdev); 553 int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val); 554 int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val); 555 void (*add_device_attr)(struct hl_device *hdev, 556 struct attribute_group *dev_attr_grp); 557 void (*handle_eqe)(struct hl_device *hdev, 558 struct hl_eq_entry *eq_entry); 559 void (*set_pll_profile)(struct hl_device *hdev, 560 enum hl_pll_frequency freq); 561 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, 562 u32 *size); 563 u64 (*read_pte)(struct hl_device *hdev, u64 addr); 564 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); 565 void (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard); 566 void (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, 567 u32 asid, u64 va, u64 size); 568 int (*send_heartbeat)(struct hl_device *hdev); 569 int (*debug_coresight)(struct hl_device *hdev, void *data); 570 bool (*is_device_idle)(struct hl_device *hdev, u32 *mask, 571 struct seq_file *s); 572 int (*soft_reset_late_init)(struct hl_device *hdev); 573 void (*hw_queues_lock)(struct hl_device *hdev); 574 void (*hw_queues_unlock)(struct hl_device *hdev); 575 u32 (*get_pci_id)(struct hl_device *hdev); 576 int (*get_eeprom_data)(struct hl_device *hdev, void *data, 577 size_t max_size); 578 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, 579 u16 len, u32 timeout, long *result); 580 enum hl_device_hw_state (*get_hw_state)(struct hl_device *hdev); 581 int (*pci_bars_map)(struct hl_device *hdev); 582 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); 583 int (*init_iatu)(struct hl_device *hdev); 584 u32 (*rreg)(struct hl_device *hdev, u32 reg); 585 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); 586 void (*halt_coresight)(struct hl_device *hdev); 587 }; 588 589 590 /* 591 * CONTEXTS 592 */ 593 594 #define HL_KERNEL_ASID_ID 0 595 596 /** 597 * struct hl_va_range - virtual addresses range. 598 * @lock: protects the virtual addresses list. 599 * @list: list of virtual addresses blocks available for mappings. 600 * @start_addr: range start address. 601 * @end_addr: range end address. 602 */ 603 struct hl_va_range { 604 struct mutex lock; 605 struct list_head list; 606 u64 start_addr; 607 u64 end_addr; 608 }; 609 610 /** 611 * struct hl_ctx - user/kernel context. 612 * @mem_hash: holds mapping from virtual address to virtual memory area 613 * descriptor (hl_vm_phys_pg_list or hl_userptr). 614 * @mmu_phys_hash: holds a mapping from physical address to pgt_info structure. 615 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. 616 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). 617 * @hdev: pointer to the device structure. 618 * @refcount: reference counter for the context. Context is released only when 619 * this hits 0l. It is incremented on CS and CS_WAIT. 620 * @cs_pending: array of DMA fence objects representing pending CS. 621 * @host_va_range: holds available virtual addresses for host mappings. 622 * @dram_va_range: holds available virtual addresses for DRAM mappings. 623 * @mem_hash_lock: protects the mem_hash. 624 * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifing the 625 * MMU hash or walking the PGT requires talking this lock 626 * @debugfs_list: node in debugfs list of contexts. 627 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed 628 * to user so user could inquire about CS. It is used as 629 * index to cs_pending array. 630 * @dram_default_hops: array that holds all hops addresses needed for default 631 * DRAM mapping. 632 * @cs_lock: spinlock to protect cs_sequence. 633 * @dram_phys_mem: amount of used physical DRAM memory by this context. 634 * @thread_ctx_switch_token: token to prevent multiple threads of the same 635 * context from running the context switch phase. 636 * Only a single thread should run it. 637 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run 638 * the context switch phase from moving to their 639 * execution phase before the context switch phase 640 * has finished. 641 * @asid: context's unique address space ID in the device's MMU. 642 * @handle: context's opaque handle for user 643 */ 644 struct hl_ctx { 645 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); 646 DECLARE_HASHTABLE(mmu_phys_hash, MMU_HASH_TABLE_BITS); 647 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); 648 struct hl_fpriv *hpriv; 649 struct hl_device *hdev; 650 struct kref refcount; 651 struct dma_fence *cs_pending[HL_MAX_PENDING_CS]; 652 struct hl_va_range host_va_range; 653 struct hl_va_range dram_va_range; 654 struct mutex mem_hash_lock; 655 struct mutex mmu_lock; 656 struct list_head debugfs_list; 657 u64 cs_sequence; 658 u64 *dram_default_hops; 659 spinlock_t cs_lock; 660 atomic64_t dram_phys_mem; 661 atomic_t thread_ctx_switch_token; 662 u32 thread_ctx_switch_wait_token; 663 u32 asid; 664 u32 handle; 665 }; 666 667 /** 668 * struct hl_ctx_mgr - for handling multiple contexts. 669 * @ctx_lock: protects ctx_handles. 670 * @ctx_handles: idr to hold all ctx handles. 671 */ 672 struct hl_ctx_mgr { 673 struct mutex ctx_lock; 674 struct idr ctx_handles; 675 }; 676 677 678 679 /* 680 * COMMAND SUBMISSIONS 681 */ 682 683 /** 684 * struct hl_userptr - memory mapping chunk information 685 * @vm_type: type of the VM. 686 * @job_node: linked-list node for hanging the object on the Job's list. 687 * @vec: pointer to the frame vector. 688 * @sgt: pointer to the scatter-gather table that holds the pages. 689 * @dir: for DMA unmapping, the direction must be supplied, so save it. 690 * @debugfs_list: node in debugfs list of command submissions. 691 * @addr: user-space virtual pointer to the start of the memory area. 692 * @size: size of the memory area to pin & map. 693 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. 694 */ 695 struct hl_userptr { 696 enum vm_type_t vm_type; /* must be first */ 697 struct list_head job_node; 698 struct frame_vector *vec; 699 struct sg_table *sgt; 700 enum dma_data_direction dir; 701 struct list_head debugfs_list; 702 u64 addr; 703 u32 size; 704 u8 dma_mapped; 705 }; 706 707 /** 708 * struct hl_cs - command submission. 709 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. 710 * @ctx: the context this CS belongs to. 711 * @job_list: list of the CS's jobs in the various queues. 712 * @job_lock: spinlock for the CS's jobs list. Needed for free_job. 713 * @refcount: reference counter for usage of the CS. 714 * @fence: pointer to the fence object of this CS. 715 * @work_tdr: delayed work node for TDR. 716 * @mirror_node : node in device mirror list of command submissions. 717 * @debugfs_list: node in debugfs list of command submissions. 718 * @sequence: the sequence number of this CS. 719 * @submitted: true if CS was submitted to H/W. 720 * @completed: true if CS was completed by device. 721 * @timedout : true if CS was timedout. 722 * @tdr_active: true if TDR was activated for this CS (to prevent 723 * double TDR activation). 724 * @aborted: true if CS was aborted due to some device error. 725 */ 726 struct hl_cs { 727 u8 jobs_in_queue_cnt[HL_MAX_QUEUES]; 728 struct hl_ctx *ctx; 729 struct list_head job_list; 730 spinlock_t job_lock; 731 struct kref refcount; 732 struct dma_fence *fence; 733 struct delayed_work work_tdr; 734 struct list_head mirror_node; 735 struct list_head debugfs_list; 736 u64 sequence; 737 u8 submitted; 738 u8 completed; 739 u8 timedout; 740 u8 tdr_active; 741 u8 aborted; 742 }; 743 744 /** 745 * struct hl_cs_job - command submission job. 746 * @cs_node: the node to hang on the CS jobs list. 747 * @cs: the CS this job belongs to. 748 * @user_cb: the CB we got from the user. 749 * @patched_cb: in case of patching, this is internal CB which is submitted on 750 * the queue instead of the CB we got from the IOCTL. 751 * @finish_work: workqueue object to run when job is completed. 752 * @userptr_list: linked-list of userptr mappings that belong to this job and 753 * wait for completion. 754 * @debugfs_list: node in debugfs list of command submission jobs. 755 * @id: the id of this job inside a CS. 756 * @hw_queue_id: the id of the H/W queue this job is submitted to. 757 * @user_cb_size: the actual size of the CB we got from the user. 758 * @job_cb_size: the actual size of the CB that we put on the queue. 759 * @ext_queue: whether the job is for external queue or internal queue. 760 */ 761 struct hl_cs_job { 762 struct list_head cs_node; 763 struct hl_cs *cs; 764 struct hl_cb *user_cb; 765 struct hl_cb *patched_cb; 766 struct work_struct finish_work; 767 struct list_head userptr_list; 768 struct list_head debugfs_list; 769 u32 id; 770 u32 hw_queue_id; 771 u32 user_cb_size; 772 u32 job_cb_size; 773 u8 ext_queue; 774 }; 775 776 /** 777 * struct hl_cs_parser - command submission paerser properties. 778 * @user_cb: the CB we got from the user. 779 * @patched_cb: in case of patching, this is internal CB which is submitted on 780 * the queue instead of the CB we got from the IOCTL. 781 * @job_userptr_list: linked-list of userptr mappings that belong to the related 782 * job and wait for completion. 783 * @cs_sequence: the sequence number of the related CS. 784 * @ctx_id: the ID of the context the related CS belongs to. 785 * @hw_queue_id: the id of the H/W queue this job is submitted to. 786 * @user_cb_size: the actual size of the CB we got from the user. 787 * @patched_cb_size: the size of the CB after parsing. 788 * @ext_queue: whether the job is for external queue or internal queue. 789 * @job_id: the id of the related job inside the related CS. 790 */ 791 struct hl_cs_parser { 792 struct hl_cb *user_cb; 793 struct hl_cb *patched_cb; 794 struct list_head *job_userptr_list; 795 u64 cs_sequence; 796 u32 ctx_id; 797 u32 hw_queue_id; 798 u32 user_cb_size; 799 u32 patched_cb_size; 800 u8 ext_queue; 801 u8 job_id; 802 }; 803 804 805 /* 806 * MEMORY STRUCTURE 807 */ 808 809 /** 810 * struct hl_vm_hash_node - hash element from virtual address to virtual 811 * memory area descriptor (hl_vm_phys_pg_list or 812 * hl_userptr). 813 * @node: node to hang on the hash table in context object. 814 * @vaddr: key virtual address. 815 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). 816 */ 817 struct hl_vm_hash_node { 818 struct hlist_node node; 819 u64 vaddr; 820 void *ptr; 821 }; 822 823 /** 824 * struct hl_vm_phys_pg_pack - physical page pack. 825 * @vm_type: describes the type of the virtual area descriptor. 826 * @pages: the physical page array. 827 * @npages: num physical pages in the pack. 828 * @total_size: total size of all the pages in this list. 829 * @mapping_cnt: number of shared mappings. 830 * @asid: the context related to this list. 831 * @page_size: size of each page in the pack. 832 * @flags: HL_MEM_* flags related to this list. 833 * @handle: the provided handle related to this list. 834 * @offset: offset from the first page. 835 * @contiguous: is contiguous physical memory. 836 * @created_from_userptr: is product of host virtual address. 837 */ 838 struct hl_vm_phys_pg_pack { 839 enum vm_type_t vm_type; /* must be first */ 840 u64 *pages; 841 u64 npages; 842 u64 total_size; 843 atomic_t mapping_cnt; 844 u32 asid; 845 u32 page_size; 846 u32 flags; 847 u32 handle; 848 u32 offset; 849 u8 contiguous; 850 u8 created_from_userptr; 851 }; 852 853 /** 854 * struct hl_vm_va_block - virtual range block information. 855 * @node: node to hang on the virtual range list in context object. 856 * @start: virtual range start address. 857 * @end: virtual range end address. 858 * @size: virtual range size. 859 */ 860 struct hl_vm_va_block { 861 struct list_head node; 862 u64 start; 863 u64 end; 864 u64 size; 865 }; 866 867 /** 868 * struct hl_vm - virtual memory manager for MMU. 869 * @dram_pg_pool: pool for DRAM physical pages of 2MB. 870 * @dram_pg_pool_refcount: reference counter for the pool usage. 871 * @idr_lock: protects the phys_pg_list_handles. 872 * @phys_pg_pack_handles: idr to hold all device allocations handles. 873 * @init_done: whether initialization was done. We need this because VM 874 * initialization might be skipped during device initialization. 875 */ 876 struct hl_vm { 877 struct gen_pool *dram_pg_pool; 878 struct kref dram_pg_pool_refcount; 879 spinlock_t idr_lock; 880 struct idr phys_pg_pack_handles; 881 u8 init_done; 882 }; 883 884 885 /* 886 * DEBUG, PROFILING STRUCTURE 887 */ 888 889 /** 890 * struct hl_debug_params - Coresight debug parameters. 891 * @input: pointer to component specific input parameters. 892 * @output: pointer to component specific output parameters. 893 * @output_size: size of output buffer. 894 * @reg_idx: relevant register ID. 895 * @op: component operation to execute. 896 * @enable: true if to enable component debugging, false otherwise. 897 */ 898 struct hl_debug_params { 899 void *input; 900 void *output; 901 u32 output_size; 902 u32 reg_idx; 903 u32 op; 904 bool enable; 905 }; 906 907 /* 908 * FILE PRIVATE STRUCTURE 909 */ 910 911 /** 912 * struct hl_fpriv - process information stored in FD private data. 913 * @hdev: habanalabs device structure. 914 * @filp: pointer to the given file structure. 915 * @taskpid: current process ID. 916 * @ctx: current executing context. TODO: remove for multiple ctx per process 917 * @ctx_mgr: context manager to handle multiple context for this FD. 918 * @cb_mgr: command buffer manager to handle multiple buffers for this FD. 919 * @debugfs_list: list of relevant ASIC debugfs. 920 * @dev_node: node in the device list of file private data 921 * @refcount: number of related contexts. 922 * @restore_phase_mutex: lock for context switch and restore phase. 923 * @is_control: true for control device, false otherwise 924 */ 925 struct hl_fpriv { 926 struct hl_device *hdev; 927 struct file *filp; 928 struct pid *taskpid; 929 struct hl_ctx *ctx; 930 struct hl_ctx_mgr ctx_mgr; 931 struct hl_cb_mgr cb_mgr; 932 struct list_head debugfs_list; 933 struct list_head dev_node; 934 struct kref refcount; 935 struct mutex restore_phase_mutex; 936 u8 is_control; 937 }; 938 939 940 /* 941 * DebugFS 942 */ 943 944 /** 945 * struct hl_info_list - debugfs file ops. 946 * @name: file name. 947 * @show: function to output information. 948 * @write: function to write to the file. 949 */ 950 struct hl_info_list { 951 const char *name; 952 int (*show)(struct seq_file *s, void *data); 953 ssize_t (*write)(struct file *file, const char __user *buf, 954 size_t count, loff_t *f_pos); 955 }; 956 957 /** 958 * struct hl_debugfs_entry - debugfs dentry wrapper. 959 * @dent: base debugfs entry structure. 960 * @info_ent: dentry realted ops. 961 * @dev_entry: ASIC specific debugfs manager. 962 */ 963 struct hl_debugfs_entry { 964 struct dentry *dent; 965 const struct hl_info_list *info_ent; 966 struct hl_dbg_device_entry *dev_entry; 967 }; 968 969 /** 970 * struct hl_dbg_device_entry - ASIC specific debugfs manager. 971 * @root: root dentry. 972 * @hdev: habanalabs device structure. 973 * @entry_arr: array of available hl_debugfs_entry. 974 * @file_list: list of available debugfs files. 975 * @file_mutex: protects file_list. 976 * @cb_list: list of available CBs. 977 * @cb_spinlock: protects cb_list. 978 * @cs_list: list of available CSs. 979 * @cs_spinlock: protects cs_list. 980 * @cs_job_list: list of available CB jobs. 981 * @cs_job_spinlock: protects cs_job_list. 982 * @userptr_list: list of available userptrs (virtual memory chunk descriptor). 983 * @userptr_spinlock: protects userptr_list. 984 * @ctx_mem_hash_list: list of available contexts with MMU mappings. 985 * @ctx_mem_hash_spinlock: protects cb_list. 986 * @addr: next address to read/write from/to in read/write32. 987 * @mmu_addr: next virtual address to translate to physical address in mmu_show. 988 * @mmu_asid: ASID to use while translating in mmu_show. 989 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. 990 * @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read. 991 * @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read. 992 */ 993 struct hl_dbg_device_entry { 994 struct dentry *root; 995 struct hl_device *hdev; 996 struct hl_debugfs_entry *entry_arr; 997 struct list_head file_list; 998 struct mutex file_mutex; 999 struct list_head cb_list; 1000 spinlock_t cb_spinlock; 1001 struct list_head cs_list; 1002 spinlock_t cs_spinlock; 1003 struct list_head cs_job_list; 1004 spinlock_t cs_job_spinlock; 1005 struct list_head userptr_list; 1006 spinlock_t userptr_spinlock; 1007 struct list_head ctx_mem_hash_list; 1008 spinlock_t ctx_mem_hash_spinlock; 1009 u64 addr; 1010 u64 mmu_addr; 1011 u32 mmu_asid; 1012 u8 i2c_bus; 1013 u8 i2c_addr; 1014 u8 i2c_reg; 1015 }; 1016 1017 1018 /* 1019 * DEVICES 1020 */ 1021 1022 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe 1023 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. 1024 */ 1025 #define HL_MAX_MINORS 256 1026 1027 /* 1028 * Registers read & write functions. 1029 */ 1030 1031 u32 hl_rreg(struct hl_device *hdev, u32 reg); 1032 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); 1033 1034 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) 1035 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) 1036 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ 1037 hdev->asic_funcs->rreg(hdev, (reg))) 1038 1039 #define WREG32_P(reg, val, mask) \ 1040 do { \ 1041 u32 tmp_ = RREG32(reg); \ 1042 tmp_ &= (mask); \ 1043 tmp_ |= ((val) & ~(mask)); \ 1044 WREG32(reg, tmp_); \ 1045 } while (0) 1046 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) 1047 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) 1048 1049 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT 1050 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK 1051 #define WREG32_FIELD(reg, field, val) \ 1052 WREG32(mm##reg, (RREG32(mm##reg) & ~REG_FIELD_MASK(reg, field)) | \ 1053 (val) << REG_FIELD_SHIFT(reg, field)) 1054 1055 /* Timeout should be longer when working with simulator but cap the 1056 * increased timeout to some maximum 1057 */ 1058 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ 1059 ({ \ 1060 ktime_t __timeout; \ 1061 if (hdev->pdev) \ 1062 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 1063 else \ 1064 __timeout = ktime_add_us(ktime_get(),\ 1065 min((u64)(timeout_us * 10), \ 1066 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 1067 might_sleep_if(sleep_us); \ 1068 for (;;) { \ 1069 (val) = RREG32(addr); \ 1070 if (cond) \ 1071 break; \ 1072 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 1073 (val) = RREG32(addr); \ 1074 break; \ 1075 } \ 1076 if (sleep_us) \ 1077 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 1078 } \ 1079 (cond) ? 0 : -ETIMEDOUT; \ 1080 }) 1081 1082 /* 1083 * address in this macro points always to a memory location in the 1084 * host's (server's) memory. That location is updated asynchronously 1085 * either by the direct access of the device or by another core. 1086 * 1087 * To work both in LE and BE architectures, we need to distinguish between the 1088 * two states (device or another core updates the memory location). Therefore, 1089 * if mem_written_by_device is true, the host memory being polled will be 1090 * updated directly by the device. If false, the host memory being polled will 1091 * be updated by host CPU. Required so host knows whether or not the memory 1092 * might need to be byte-swapped before returning value to caller. 1093 */ 1094 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ 1095 mem_written_by_device) \ 1096 ({ \ 1097 ktime_t __timeout; \ 1098 if (hdev->pdev) \ 1099 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 1100 else \ 1101 __timeout = ktime_add_us(ktime_get(),\ 1102 min((u64)(timeout_us * 10), \ 1103 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 1104 might_sleep_if(sleep_us); \ 1105 for (;;) { \ 1106 /* Verify we read updates done by other cores or by device */ \ 1107 mb(); \ 1108 (val) = *((u32 *) (uintptr_t) (addr)); \ 1109 if (mem_written_by_device) \ 1110 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 1111 if (cond) \ 1112 break; \ 1113 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 1114 (val) = *((u32 *) (uintptr_t) (addr)); \ 1115 if (mem_written_by_device) \ 1116 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 1117 break; \ 1118 } \ 1119 if (sleep_us) \ 1120 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 1121 } \ 1122 (cond) ? 0 : -ETIMEDOUT; \ 1123 }) 1124 1125 #define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \ 1126 timeout_us) \ 1127 ({ \ 1128 ktime_t __timeout; \ 1129 if (hdev->pdev) \ 1130 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 1131 else \ 1132 __timeout = ktime_add_us(ktime_get(),\ 1133 min((u64)(timeout_us * 10), \ 1134 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 1135 might_sleep_if(sleep_us); \ 1136 for (;;) { \ 1137 (val) = readl(addr); \ 1138 if (cond) \ 1139 break; \ 1140 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 1141 (val) = readl(addr); \ 1142 break; \ 1143 } \ 1144 if (sleep_us) \ 1145 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 1146 } \ 1147 (cond) ? 0 : -ETIMEDOUT; \ 1148 }) 1149 1150 struct hwmon_chip_info; 1151 1152 /** 1153 * struct hl_device_reset_work - reset workqueue task wrapper. 1154 * @reset_work: reset work to be done. 1155 * @hdev: habanalabs device structure. 1156 */ 1157 struct hl_device_reset_work { 1158 struct work_struct reset_work; 1159 struct hl_device *hdev; 1160 }; 1161 1162 /** 1163 * struct hl_device_idle_busy_ts - used for calculating device utilization rate. 1164 * @idle_to_busy_ts: timestamp where device changed from idle to busy. 1165 * @busy_to_idle_ts: timestamp where device changed from busy to idle. 1166 */ 1167 struct hl_device_idle_busy_ts { 1168 ktime_t idle_to_busy_ts; 1169 ktime_t busy_to_idle_ts; 1170 }; 1171 1172 /** 1173 * struct hl_device - habanalabs device structure. 1174 * @pdev: pointer to PCI device, can be NULL in case of simulator device. 1175 * @pcie_bar: array of available PCIe bars. 1176 * @rmmio: configuration area address on SRAM. 1177 * @cdev: related char device. 1178 * @cdev_ctrl: char device for control operations only (INFO IOCTL) 1179 * @dev: related kernel basic device structure. 1180 * @dev_ctrl: related kernel device structure for the control device 1181 * @work_freq: delayed work to lower device frequency if possible. 1182 * @work_heartbeat: delayed work for ArmCP is-alive check. 1183 * @asic_name: ASIC specific nmae. 1184 * @asic_type: ASIC specific type. 1185 * @completion_queue: array of hl_cq. 1186 * @cq_wq: work queue of completion queues for executing work in process context 1187 * @eq_wq: work queue of event queue for executing work in process context. 1188 * @kernel_ctx: Kernel driver context structure. 1189 * @kernel_queues: array of hl_hw_queue. 1190 * @hw_queues_mirror_list: CS mirror list for TDR. 1191 * @hw_queues_mirror_lock: protects hw_queues_mirror_list. 1192 * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs. 1193 * @event_queue: event queue for IRQ from ArmCP. 1194 * @dma_pool: DMA pool for small allocations. 1195 * @cpu_accessible_dma_mem: Host <-> ArmCP shared memory CPU address. 1196 * @cpu_accessible_dma_address: Host <-> ArmCP shared memory DMA address. 1197 * @cpu_accessible_dma_pool: Host <-> ArmCP shared memory pool. 1198 * @asid_bitmap: holds used/available ASIDs. 1199 * @asid_mutex: protects asid_bitmap. 1200 * @send_cpu_message_lock: enforces only one message in Host <-> ArmCP queue. 1201 * @debug_lock: protects critical section of setting debug mode for device 1202 * @asic_prop: ASIC specific immutable properties. 1203 * @asic_funcs: ASIC specific functions. 1204 * @asic_specific: ASIC specific information to use only from ASIC files. 1205 * @mmu_pgt_pool: pool of available MMU hops. 1206 * @vm: virtual memory manager for MMU. 1207 * @mmu_cache_lock: protects MMU cache invalidation as it can serve one context. 1208 * @mmu_shadow_hop0: shadow mapping of the MMU hop 0 zone. 1209 * @hwmon_dev: H/W monitor device. 1210 * @pm_mng_profile: current power management profile. 1211 * @hl_chip_info: ASIC's sensors information. 1212 * @hl_debugfs: device's debugfs manager. 1213 * @cb_pool: list of preallocated CBs. 1214 * @cb_pool_lock: protects the CB pool. 1215 * @fpriv_list: list of file private data structures. Each structure is created 1216 * when a user opens the device 1217 * @fpriv_list_lock: protects the fpriv_list 1218 * @compute_ctx: current compute context executing. 1219 * @idle_busy_ts_arr: array to hold time stamps of transitions from idle to busy 1220 * and vice-versa 1221 * @dram_used_mem: current DRAM memory consumption. 1222 * @timeout_jiffies: device CS timeout value. 1223 * @max_power: the max power of the device, as configured by the sysadmin. This 1224 * value is saved so in case of hard-reset, the driver will restore 1225 * this value and update the F/W after the re-initialization 1226 * @in_reset: is device in reset flow. 1227 * @curr_pll_profile: current PLL profile. 1228 * @cs_active_cnt: number of active command submissions on this device (active 1229 * means already in H/W queues) 1230 * @major: habanalabs kernel driver major. 1231 * @high_pll: high PLL profile frequency. 1232 * @soft_reset_cnt: number of soft reset since the driver was loaded. 1233 * @hard_reset_cnt: number of hard reset since the driver was loaded. 1234 * @idle_busy_ts_idx: index of current entry in idle_busy_ts_arr 1235 * @id: device minor. 1236 * @id_control: minor of the control device 1237 * @disabled: is device disabled. 1238 * @late_init_done: is late init stage was done during initialization. 1239 * @hwmon_initialized: is H/W monitor sensors was initialized. 1240 * @hard_reset_pending: is there a hard reset work pending. 1241 * @heartbeat: is heartbeat sanity check towards ArmCP enabled. 1242 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false 1243 * otherwise. 1244 * @dram_supports_virtual_memory: is MMU enabled towards DRAM. 1245 * @dram_default_page_mapping: is DRAM default page mapping enabled. 1246 * @init_done: is the initialization of the device done. 1247 * @mmu_enable: is MMU enabled. 1248 * @device_cpu_disabled: is the device CPU disabled (due to timeouts) 1249 * @dma_mask: the dma mask that was set for this device 1250 * @in_debug: is device under debug. This, together with fpriv_list, enforces 1251 * that only a single user is configuring the debug infrastructure. 1252 * @cdev_sysfs_created: were char devices and sysfs nodes created. 1253 */ 1254 struct hl_device { 1255 struct pci_dev *pdev; 1256 void __iomem *pcie_bar[6]; 1257 void __iomem *rmmio; 1258 struct cdev cdev; 1259 struct cdev cdev_ctrl; 1260 struct device *dev; 1261 struct device *dev_ctrl; 1262 struct delayed_work work_freq; 1263 struct delayed_work work_heartbeat; 1264 char asic_name[16]; 1265 enum hl_asic_type asic_type; 1266 struct hl_cq *completion_queue; 1267 struct workqueue_struct *cq_wq; 1268 struct workqueue_struct *eq_wq; 1269 struct hl_ctx *kernel_ctx; 1270 struct hl_hw_queue *kernel_queues; 1271 struct list_head hw_queues_mirror_list; 1272 spinlock_t hw_queues_mirror_lock; 1273 struct hl_cb_mgr kernel_cb_mgr; 1274 struct hl_eq event_queue; 1275 struct dma_pool *dma_pool; 1276 void *cpu_accessible_dma_mem; 1277 dma_addr_t cpu_accessible_dma_address; 1278 struct gen_pool *cpu_accessible_dma_pool; 1279 unsigned long *asid_bitmap; 1280 struct mutex asid_mutex; 1281 struct mutex send_cpu_message_lock; 1282 struct mutex debug_lock; 1283 struct asic_fixed_properties asic_prop; 1284 const struct hl_asic_funcs *asic_funcs; 1285 void *asic_specific; 1286 struct gen_pool *mmu_pgt_pool; 1287 struct hl_vm vm; 1288 struct mutex mmu_cache_lock; 1289 void *mmu_shadow_hop0; 1290 struct device *hwmon_dev; 1291 enum hl_pm_mng_profile pm_mng_profile; 1292 struct hwmon_chip_info *hl_chip_info; 1293 1294 struct hl_dbg_device_entry hl_debugfs; 1295 1296 struct list_head cb_pool; 1297 spinlock_t cb_pool_lock; 1298 1299 struct list_head fpriv_list; 1300 struct mutex fpriv_list_lock; 1301 1302 struct hl_ctx *compute_ctx; 1303 1304 struct hl_device_idle_busy_ts *idle_busy_ts_arr; 1305 1306 atomic64_t dram_used_mem; 1307 u64 timeout_jiffies; 1308 u64 max_power; 1309 atomic_t in_reset; 1310 enum hl_pll_frequency curr_pll_profile; 1311 int cs_active_cnt; 1312 u32 major; 1313 u32 high_pll; 1314 u32 soft_reset_cnt; 1315 u32 hard_reset_cnt; 1316 u32 idle_busy_ts_idx; 1317 u16 id; 1318 u16 id_control; 1319 u8 disabled; 1320 u8 late_init_done; 1321 u8 hwmon_initialized; 1322 u8 hard_reset_pending; 1323 u8 heartbeat; 1324 u8 reset_on_lockup; 1325 u8 dram_supports_virtual_memory; 1326 u8 dram_default_page_mapping; 1327 u8 init_done; 1328 u8 device_cpu_disabled; 1329 u8 dma_mask; 1330 u8 in_debug; 1331 u8 cdev_sysfs_created; 1332 1333 /* Parameters for bring-up */ 1334 u8 mmu_enable; 1335 u8 cpu_enable; 1336 u8 reset_pcilink; 1337 u8 cpu_queues_enable; 1338 u8 fw_loading; 1339 u8 pldm; 1340 }; 1341 1342 1343 /* 1344 * IOCTLs 1345 */ 1346 1347 /** 1348 * typedef hl_ioctl_t - typedef for ioctl function in the driver 1349 * @hpriv: pointer to the FD's private data, which contains state of 1350 * user process 1351 * @data: pointer to the input/output arguments structure of the IOCTL 1352 * 1353 * Return: 0 for success, negative value for error 1354 */ 1355 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); 1356 1357 /** 1358 * struct hl_ioctl_desc - describes an IOCTL entry of the driver. 1359 * @cmd: the IOCTL code as created by the kernel macros. 1360 * @func: pointer to the driver's function that should be called for this IOCTL. 1361 */ 1362 struct hl_ioctl_desc { 1363 unsigned int cmd; 1364 hl_ioctl_t *func; 1365 }; 1366 1367 1368 /* 1369 * Kernel module functions that can be accessed by entire module 1370 */ 1371 1372 /** 1373 * hl_mem_area_inside_range() - Checks whether address+size are inside a range. 1374 * @address: The start address of the area we want to validate. 1375 * @size: The size in bytes of the area we want to validate. 1376 * @range_start_address: The start address of the valid range. 1377 * @range_end_address: The end address of the valid range. 1378 * 1379 * Return: true if the area is inside the valid range, false otherwise. 1380 */ hl_mem_area_inside_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)1381 static inline bool hl_mem_area_inside_range(u64 address, u32 size, 1382 u64 range_start_address, u64 range_end_address) 1383 { 1384 u64 end_address = address + size; 1385 1386 if ((address >= range_start_address) && 1387 (end_address <= range_end_address) && 1388 (end_address > address)) 1389 return true; 1390 1391 return false; 1392 } 1393 1394 /** 1395 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. 1396 * @address: The start address of the area we want to validate. 1397 * @size: The size in bytes of the area we want to validate. 1398 * @range_start_address: The start address of the valid range. 1399 * @range_end_address: The end address of the valid range. 1400 * 1401 * Return: true if the area overlaps part or all of the valid range, 1402 * false otherwise. 1403 */ hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)1404 static inline bool hl_mem_area_crosses_range(u64 address, u32 size, 1405 u64 range_start_address, u64 range_end_address) 1406 { 1407 u64 end_address = address + size; 1408 1409 if ((address >= range_start_address) && 1410 (address < range_end_address)) 1411 return true; 1412 1413 if ((end_address >= range_start_address) && 1414 (end_address < range_end_address)) 1415 return true; 1416 1417 if ((address < range_start_address) && 1418 (end_address >= range_end_address)) 1419 return true; 1420 1421 return false; 1422 } 1423 1424 int hl_device_open(struct inode *inode, struct file *filp); 1425 int hl_device_open_ctrl(struct inode *inode, struct file *filp); 1426 bool hl_device_disabled_or_in_reset(struct hl_device *hdev); 1427 enum hl_device_status hl_device_status(struct hl_device *hdev); 1428 int hl_device_set_debug_mode(struct hl_device *hdev, bool enable); 1429 int create_hdev(struct hl_device **dev, struct pci_dev *pdev, 1430 enum hl_asic_type asic_type, int minor); 1431 void destroy_hdev(struct hl_device *hdev); 1432 int hl_hw_queues_create(struct hl_device *hdev); 1433 void hl_hw_queues_destroy(struct hl_device *hdev); 1434 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, 1435 u32 cb_size, u64 cb_ptr); 1436 int hl_hw_queue_schedule_cs(struct hl_cs *cs); 1437 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); 1438 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); 1439 void hl_int_hw_queue_update_ci(struct hl_cs *cs); 1440 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); 1441 1442 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) 1443 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) 1444 1445 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); 1446 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); 1447 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); 1448 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); 1449 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); 1450 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); 1451 irqreturn_t hl_irq_handler_cq(int irq, void *arg); 1452 irqreturn_t hl_irq_handler_eq(int irq, void *arg); 1453 u32 hl_cq_inc_ptr(u32 ptr); 1454 1455 int hl_asid_init(struct hl_device *hdev); 1456 void hl_asid_fini(struct hl_device *hdev); 1457 unsigned long hl_asid_alloc(struct hl_device *hdev); 1458 void hl_asid_free(struct hl_device *hdev, unsigned long asid); 1459 1460 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); 1461 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); 1462 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); 1463 void hl_ctx_do_release(struct kref *ref); 1464 void hl_ctx_get(struct hl_device *hdev, struct hl_ctx *ctx); 1465 int hl_ctx_put(struct hl_ctx *ctx); 1466 struct dma_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); 1467 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); 1468 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); 1469 1470 int hl_device_init(struct hl_device *hdev, struct class *hclass); 1471 void hl_device_fini(struct hl_device *hdev); 1472 int hl_device_suspend(struct hl_device *hdev); 1473 int hl_device_resume(struct hl_device *hdev); 1474 int hl_device_reset(struct hl_device *hdev, bool hard_reset, 1475 bool from_hard_reset_thread); 1476 void hl_hpriv_get(struct hl_fpriv *hpriv); 1477 void hl_hpriv_put(struct hl_fpriv *hpriv); 1478 int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq); 1479 uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms); 1480 1481 int hl_build_hwmon_channel_info(struct hl_device *hdev, 1482 struct armcp_sensor *sensors_arr); 1483 1484 int hl_sysfs_init(struct hl_device *hdev); 1485 void hl_sysfs_fini(struct hl_device *hdev); 1486 1487 int hl_hwmon_init(struct hl_device *hdev); 1488 void hl_hwmon_fini(struct hl_device *hdev); 1489 1490 int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 cb_size, 1491 u64 *handle, int ctx_id); 1492 int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle); 1493 int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); 1494 struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr, 1495 u32 handle); 1496 void hl_cb_put(struct hl_cb *cb); 1497 void hl_cb_mgr_init(struct hl_cb_mgr *mgr); 1498 void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr); 1499 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size); 1500 int hl_cb_pool_init(struct hl_device *hdev); 1501 int hl_cb_pool_fini(struct hl_device *hdev); 1502 1503 void hl_cs_rollback_all(struct hl_device *hdev); 1504 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, bool ext_queue); 1505 1506 void goya_set_asic_funcs(struct hl_device *hdev); 1507 1508 int hl_vm_ctx_init(struct hl_ctx *ctx); 1509 void hl_vm_ctx_fini(struct hl_ctx *ctx); 1510 1511 int hl_vm_init(struct hl_device *hdev); 1512 void hl_vm_fini(struct hl_device *hdev); 1513 1514 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 1515 struct hl_userptr *userptr); 1516 int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); 1517 void hl_userptr_delete_list(struct hl_device *hdev, 1518 struct list_head *userptr_list); 1519 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, 1520 struct list_head *userptr_list, 1521 struct hl_userptr **userptr); 1522 1523 int hl_mmu_init(struct hl_device *hdev); 1524 void hl_mmu_fini(struct hl_device *hdev); 1525 int hl_mmu_ctx_init(struct hl_ctx *ctx); 1526 void hl_mmu_ctx_fini(struct hl_ctx *ctx); 1527 int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size); 1528 int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size); 1529 void hl_mmu_swap_out(struct hl_ctx *ctx); 1530 void hl_mmu_swap_in(struct hl_ctx *ctx); 1531 1532 int hl_fw_push_fw_to_device(struct hl_device *hdev, const char *fw_name, 1533 void __iomem *dst); 1534 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode); 1535 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, 1536 u16 len, u32 timeout, long *result); 1537 int hl_fw_test_cpu_queue(struct hl_device *hdev); 1538 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, 1539 dma_addr_t *dma_handle); 1540 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, 1541 void *vaddr); 1542 int hl_fw_send_heartbeat(struct hl_device *hdev); 1543 int hl_fw_armcp_info_get(struct hl_device *hdev); 1544 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); 1545 1546 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], 1547 bool is_wc[3]); 1548 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); 1549 int hl_pci_set_dram_bar_base(struct hl_device *hdev, u8 inbound_region, u8 bar, 1550 u64 addr); 1551 int hl_pci_init_iatu(struct hl_device *hdev, u64 sram_base_address, 1552 u64 dram_base_address, u64 host_phys_base_address, 1553 u64 host_phys_size); 1554 int hl_pci_init(struct hl_device *hdev, u8 dma_mask); 1555 void hl_pci_fini(struct hl_device *hdev); 1556 int hl_pci_set_dma_mask(struct hl_device *hdev, u8 dma_mask); 1557 1558 long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); 1559 void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); 1560 long hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr); 1561 long hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr); 1562 long hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr); 1563 long hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr); 1564 long hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr); 1565 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, 1566 long value); 1567 u64 hl_get_max_power(struct hl_device *hdev); 1568 void hl_set_max_power(struct hl_device *hdev, u64 value); 1569 1570 #ifdef CONFIG_DEBUG_FS 1571 1572 void hl_debugfs_init(void); 1573 void hl_debugfs_fini(void); 1574 void hl_debugfs_add_device(struct hl_device *hdev); 1575 void hl_debugfs_remove_device(struct hl_device *hdev); 1576 void hl_debugfs_add_file(struct hl_fpriv *hpriv); 1577 void hl_debugfs_remove_file(struct hl_fpriv *hpriv); 1578 void hl_debugfs_add_cb(struct hl_cb *cb); 1579 void hl_debugfs_remove_cb(struct hl_cb *cb); 1580 void hl_debugfs_add_cs(struct hl_cs *cs); 1581 void hl_debugfs_remove_cs(struct hl_cs *cs); 1582 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); 1583 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); 1584 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); 1585 void hl_debugfs_remove_userptr(struct hl_device *hdev, 1586 struct hl_userptr *userptr); 1587 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 1588 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 1589 1590 #else 1591 hl_debugfs_init(void)1592 static inline void __init hl_debugfs_init(void) 1593 { 1594 } 1595 hl_debugfs_fini(void)1596 static inline void hl_debugfs_fini(void) 1597 { 1598 } 1599 hl_debugfs_add_device(struct hl_device * hdev)1600 static inline void hl_debugfs_add_device(struct hl_device *hdev) 1601 { 1602 } 1603 hl_debugfs_remove_device(struct hl_device * hdev)1604 static inline void hl_debugfs_remove_device(struct hl_device *hdev) 1605 { 1606 } 1607 hl_debugfs_add_file(struct hl_fpriv * hpriv)1608 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) 1609 { 1610 } 1611 hl_debugfs_remove_file(struct hl_fpriv * hpriv)1612 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) 1613 { 1614 } 1615 hl_debugfs_add_cb(struct hl_cb * cb)1616 static inline void hl_debugfs_add_cb(struct hl_cb *cb) 1617 { 1618 } 1619 hl_debugfs_remove_cb(struct hl_cb * cb)1620 static inline void hl_debugfs_remove_cb(struct hl_cb *cb) 1621 { 1622 } 1623 hl_debugfs_add_cs(struct hl_cs * cs)1624 static inline void hl_debugfs_add_cs(struct hl_cs *cs) 1625 { 1626 } 1627 hl_debugfs_remove_cs(struct hl_cs * cs)1628 static inline void hl_debugfs_remove_cs(struct hl_cs *cs) 1629 { 1630 } 1631 hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)1632 static inline void hl_debugfs_add_job(struct hl_device *hdev, 1633 struct hl_cs_job *job) 1634 { 1635 } 1636 hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)1637 static inline void hl_debugfs_remove_job(struct hl_device *hdev, 1638 struct hl_cs_job *job) 1639 { 1640 } 1641 hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)1642 static inline void hl_debugfs_add_userptr(struct hl_device *hdev, 1643 struct hl_userptr *userptr) 1644 { 1645 } 1646 hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)1647 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, 1648 struct hl_userptr *userptr) 1649 { 1650 } 1651 hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)1652 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, 1653 struct hl_ctx *ctx) 1654 { 1655 } 1656 hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)1657 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, 1658 struct hl_ctx *ctx) 1659 { 1660 } 1661 1662 #endif 1663 1664 /* IOCTLs */ 1665 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); 1666 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); 1667 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); 1668 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data); 1669 int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data); 1670 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data); 1671 1672 #endif /* HABANALABSP_H_ */ 1673