1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13
14 #include <net/ipv6.h>
15
16 #include "igc.h"
17 #include "igc_hw.h"
18 #include "igc_tsn.h"
19
20 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
21
22 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
23
24 static int debug = -1;
25
26 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
27 MODULE_DESCRIPTION(DRV_SUMMARY);
28 MODULE_LICENSE("GPL v2");
29 module_param(debug, int, 0);
30 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
31
32 char igc_driver_name[] = "igc";
33 static const char igc_driver_string[] = DRV_SUMMARY;
34 static const char igc_copyright[] =
35 "Copyright(c) 2018 Intel Corporation.";
36
37 static const struct igc_info *igc_info_tbl[] = {
38 [board_base] = &igc_base_info,
39 };
40
41 static const struct pci_device_id igc_pci_tbl[] = {
42 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
48 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
49 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
56 /* required last entry */
57 {0, }
58 };
59
60 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
61
62 enum latency_range {
63 lowest_latency = 0,
64 low_latency = 1,
65 bulk_latency = 2,
66 latency_invalid = 255
67 };
68
igc_reset(struct igc_adapter * adapter)69 void igc_reset(struct igc_adapter *adapter)
70 {
71 struct net_device *dev = adapter->netdev;
72 struct igc_hw *hw = &adapter->hw;
73 struct igc_fc_info *fc = &hw->fc;
74 u32 pba, hwm;
75
76 /* Repartition PBA for greater than 9k MTU if required */
77 pba = IGC_PBA_34K;
78
79 /* flow control settings
80 * The high water mark must be low enough to fit one full frame
81 * after transmitting the pause frame. As such we must have enough
82 * space to allow for us to complete our current transmit and then
83 * receive the frame that is in progress from the link partner.
84 * Set it to:
85 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
86 */
87 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
88
89 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
90 fc->low_water = fc->high_water - 16;
91 fc->pause_time = 0xFFFF;
92 fc->send_xon = 1;
93 fc->current_mode = fc->requested_mode;
94
95 hw->mac.ops.reset_hw(hw);
96
97 if (hw->mac.ops.init_hw(hw))
98 netdev_err(dev, "Error on hardware initialization\n");
99
100 /* Re-establish EEE setting */
101 igc_set_eee_i225(hw, true, true, true);
102
103 if (!netif_running(adapter->netdev))
104 igc_power_down_phy_copper_base(&adapter->hw);
105
106 /* Re-enable PTP, where applicable. */
107 igc_ptp_reset(adapter);
108
109 /* Re-enable TSN offloading, where applicable. */
110 igc_tsn_offload_apply(adapter);
111
112 igc_get_phy_info(hw);
113 }
114
115 /**
116 * igc_power_up_link - Power up the phy link
117 * @adapter: address of board private structure
118 */
igc_power_up_link(struct igc_adapter * adapter)119 static void igc_power_up_link(struct igc_adapter *adapter)
120 {
121 igc_reset_phy(&adapter->hw);
122
123 igc_power_up_phy_copper(&adapter->hw);
124
125 igc_setup_link(&adapter->hw);
126 }
127
128 /**
129 * igc_release_hw_control - release control of the h/w to f/w
130 * @adapter: address of board private structure
131 *
132 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
133 * For ASF and Pass Through versions of f/w this means that the
134 * driver is no longer loaded.
135 */
igc_release_hw_control(struct igc_adapter * adapter)136 static void igc_release_hw_control(struct igc_adapter *adapter)
137 {
138 struct igc_hw *hw = &adapter->hw;
139 u32 ctrl_ext;
140
141 /* Let firmware take over control of h/w */
142 ctrl_ext = rd32(IGC_CTRL_EXT);
143 wr32(IGC_CTRL_EXT,
144 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
145 }
146
147 /**
148 * igc_get_hw_control - get control of the h/w from f/w
149 * @adapter: address of board private structure
150 *
151 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
152 * For ASF and Pass Through versions of f/w this means that
153 * the driver is loaded.
154 */
igc_get_hw_control(struct igc_adapter * adapter)155 static void igc_get_hw_control(struct igc_adapter *adapter)
156 {
157 struct igc_hw *hw = &adapter->hw;
158 u32 ctrl_ext;
159
160 /* Let firmware know the driver has taken over */
161 ctrl_ext = rd32(IGC_CTRL_EXT);
162 wr32(IGC_CTRL_EXT,
163 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
164 }
165
166 /**
167 * igc_clean_tx_ring - Free Tx Buffers
168 * @tx_ring: ring to be cleaned
169 */
igc_clean_tx_ring(struct igc_ring * tx_ring)170 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
171 {
172 u16 i = tx_ring->next_to_clean;
173 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
174
175 while (i != tx_ring->next_to_use) {
176 union igc_adv_tx_desc *eop_desc, *tx_desc;
177
178 /* Free all the Tx ring sk_buffs */
179 dev_kfree_skb_any(tx_buffer->skb);
180
181 /* unmap skb header data */
182 dma_unmap_single(tx_ring->dev,
183 dma_unmap_addr(tx_buffer, dma),
184 dma_unmap_len(tx_buffer, len),
185 DMA_TO_DEVICE);
186
187 /* check for eop_desc to determine the end of the packet */
188 eop_desc = tx_buffer->next_to_watch;
189 tx_desc = IGC_TX_DESC(tx_ring, i);
190
191 /* unmap remaining buffers */
192 while (tx_desc != eop_desc) {
193 tx_buffer++;
194 tx_desc++;
195 i++;
196 if (unlikely(i == tx_ring->count)) {
197 i = 0;
198 tx_buffer = tx_ring->tx_buffer_info;
199 tx_desc = IGC_TX_DESC(tx_ring, 0);
200 }
201
202 /* unmap any remaining paged data */
203 if (dma_unmap_len(tx_buffer, len))
204 dma_unmap_page(tx_ring->dev,
205 dma_unmap_addr(tx_buffer, dma),
206 dma_unmap_len(tx_buffer, len),
207 DMA_TO_DEVICE);
208 }
209
210 /* move us one more past the eop_desc for start of next pkt */
211 tx_buffer++;
212 i++;
213 if (unlikely(i == tx_ring->count)) {
214 i = 0;
215 tx_buffer = tx_ring->tx_buffer_info;
216 }
217 }
218
219 /* reset BQL for queue */
220 netdev_tx_reset_queue(txring_txq(tx_ring));
221
222 /* reset next_to_use and next_to_clean */
223 tx_ring->next_to_use = 0;
224 tx_ring->next_to_clean = 0;
225 }
226
227 /**
228 * igc_free_tx_resources - Free Tx Resources per Queue
229 * @tx_ring: Tx descriptor ring for a specific queue
230 *
231 * Free all transmit software resources
232 */
igc_free_tx_resources(struct igc_ring * tx_ring)233 void igc_free_tx_resources(struct igc_ring *tx_ring)
234 {
235 igc_clean_tx_ring(tx_ring);
236
237 vfree(tx_ring->tx_buffer_info);
238 tx_ring->tx_buffer_info = NULL;
239
240 /* if not set, then don't free */
241 if (!tx_ring->desc)
242 return;
243
244 dma_free_coherent(tx_ring->dev, tx_ring->size,
245 tx_ring->desc, tx_ring->dma);
246
247 tx_ring->desc = NULL;
248 }
249
250 /**
251 * igc_free_all_tx_resources - Free Tx Resources for All Queues
252 * @adapter: board private structure
253 *
254 * Free all transmit software resources
255 */
igc_free_all_tx_resources(struct igc_adapter * adapter)256 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
257 {
258 int i;
259
260 for (i = 0; i < adapter->num_tx_queues; i++)
261 igc_free_tx_resources(adapter->tx_ring[i]);
262 }
263
264 /**
265 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
266 * @adapter: board private structure
267 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)268 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
269 {
270 int i;
271
272 for (i = 0; i < adapter->num_tx_queues; i++)
273 if (adapter->tx_ring[i])
274 igc_clean_tx_ring(adapter->tx_ring[i]);
275 }
276
277 /**
278 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
279 * @tx_ring: tx descriptor ring (for a specific queue) to setup
280 *
281 * Return 0 on success, negative on failure
282 */
igc_setup_tx_resources(struct igc_ring * tx_ring)283 int igc_setup_tx_resources(struct igc_ring *tx_ring)
284 {
285 struct net_device *ndev = tx_ring->netdev;
286 struct device *dev = tx_ring->dev;
287 int size = 0;
288
289 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
290 tx_ring->tx_buffer_info = vzalloc(size);
291 if (!tx_ring->tx_buffer_info)
292 goto err;
293
294 /* round up to nearest 4K */
295 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
296 tx_ring->size = ALIGN(tx_ring->size, 4096);
297
298 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
299 &tx_ring->dma, GFP_KERNEL);
300
301 if (!tx_ring->desc)
302 goto err;
303
304 tx_ring->next_to_use = 0;
305 tx_ring->next_to_clean = 0;
306
307 return 0;
308
309 err:
310 vfree(tx_ring->tx_buffer_info);
311 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
312 return -ENOMEM;
313 }
314
315 /**
316 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
317 * @adapter: board private structure
318 *
319 * Return 0 on success, negative on failure
320 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)321 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
322 {
323 struct net_device *dev = adapter->netdev;
324 int i, err = 0;
325
326 for (i = 0; i < adapter->num_tx_queues; i++) {
327 err = igc_setup_tx_resources(adapter->tx_ring[i]);
328 if (err) {
329 netdev_err(dev, "Error on Tx queue %u setup\n", i);
330 for (i--; i >= 0; i--)
331 igc_free_tx_resources(adapter->tx_ring[i]);
332 break;
333 }
334 }
335
336 return err;
337 }
338
339 /**
340 * igc_clean_rx_ring - Free Rx Buffers per Queue
341 * @rx_ring: ring to free buffers from
342 */
igc_clean_rx_ring(struct igc_ring * rx_ring)343 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
344 {
345 u16 i = rx_ring->next_to_clean;
346
347 dev_kfree_skb(rx_ring->skb);
348 rx_ring->skb = NULL;
349
350 /* Free all the Rx ring sk_buffs */
351 while (i != rx_ring->next_to_alloc) {
352 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
353
354 /* Invalidate cache lines that may have been written to by
355 * device so that we avoid corrupting memory.
356 */
357 dma_sync_single_range_for_cpu(rx_ring->dev,
358 buffer_info->dma,
359 buffer_info->page_offset,
360 igc_rx_bufsz(rx_ring),
361 DMA_FROM_DEVICE);
362
363 /* free resources associated with mapping */
364 dma_unmap_page_attrs(rx_ring->dev,
365 buffer_info->dma,
366 igc_rx_pg_size(rx_ring),
367 DMA_FROM_DEVICE,
368 IGC_RX_DMA_ATTR);
369 __page_frag_cache_drain(buffer_info->page,
370 buffer_info->pagecnt_bias);
371
372 i++;
373 if (i == rx_ring->count)
374 i = 0;
375 }
376
377 rx_ring->next_to_alloc = 0;
378 rx_ring->next_to_clean = 0;
379 rx_ring->next_to_use = 0;
380 }
381
382 /**
383 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
384 * @adapter: board private structure
385 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)386 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
387 {
388 int i;
389
390 for (i = 0; i < adapter->num_rx_queues; i++)
391 if (adapter->rx_ring[i])
392 igc_clean_rx_ring(adapter->rx_ring[i]);
393 }
394
395 /**
396 * igc_free_rx_resources - Free Rx Resources
397 * @rx_ring: ring to clean the resources from
398 *
399 * Free all receive software resources
400 */
igc_free_rx_resources(struct igc_ring * rx_ring)401 void igc_free_rx_resources(struct igc_ring *rx_ring)
402 {
403 igc_clean_rx_ring(rx_ring);
404
405 vfree(rx_ring->rx_buffer_info);
406 rx_ring->rx_buffer_info = NULL;
407
408 /* if not set, then don't free */
409 if (!rx_ring->desc)
410 return;
411
412 dma_free_coherent(rx_ring->dev, rx_ring->size,
413 rx_ring->desc, rx_ring->dma);
414
415 rx_ring->desc = NULL;
416 }
417
418 /**
419 * igc_free_all_rx_resources - Free Rx Resources for All Queues
420 * @adapter: board private structure
421 *
422 * Free all receive software resources
423 */
igc_free_all_rx_resources(struct igc_adapter * adapter)424 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
425 {
426 int i;
427
428 for (i = 0; i < adapter->num_rx_queues; i++)
429 igc_free_rx_resources(adapter->rx_ring[i]);
430 }
431
432 /**
433 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
434 * @rx_ring: rx descriptor ring (for a specific queue) to setup
435 *
436 * Returns 0 on success, negative on failure
437 */
igc_setup_rx_resources(struct igc_ring * rx_ring)438 int igc_setup_rx_resources(struct igc_ring *rx_ring)
439 {
440 struct net_device *ndev = rx_ring->netdev;
441 struct device *dev = rx_ring->dev;
442 int size, desc_len;
443
444 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
445 rx_ring->rx_buffer_info = vzalloc(size);
446 if (!rx_ring->rx_buffer_info)
447 goto err;
448
449 desc_len = sizeof(union igc_adv_rx_desc);
450
451 /* Round up to nearest 4K */
452 rx_ring->size = rx_ring->count * desc_len;
453 rx_ring->size = ALIGN(rx_ring->size, 4096);
454
455 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
456 &rx_ring->dma, GFP_KERNEL);
457
458 if (!rx_ring->desc)
459 goto err;
460
461 rx_ring->next_to_alloc = 0;
462 rx_ring->next_to_clean = 0;
463 rx_ring->next_to_use = 0;
464
465 return 0;
466
467 err:
468 vfree(rx_ring->rx_buffer_info);
469 rx_ring->rx_buffer_info = NULL;
470 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
471 return -ENOMEM;
472 }
473
474 /**
475 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
476 * (Descriptors) for all queues
477 * @adapter: board private structure
478 *
479 * Return 0 on success, negative on failure
480 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)481 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
482 {
483 struct net_device *dev = adapter->netdev;
484 int i, err = 0;
485
486 for (i = 0; i < adapter->num_rx_queues; i++) {
487 err = igc_setup_rx_resources(adapter->rx_ring[i]);
488 if (err) {
489 netdev_err(dev, "Error on Rx queue %u setup\n", i);
490 for (i--; i >= 0; i--)
491 igc_free_rx_resources(adapter->rx_ring[i]);
492 break;
493 }
494 }
495
496 return err;
497 }
498
499 /**
500 * igc_configure_rx_ring - Configure a receive ring after Reset
501 * @adapter: board private structure
502 * @ring: receive ring to be configured
503 *
504 * Configure the Rx unit of the MAC after a reset.
505 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)506 static void igc_configure_rx_ring(struct igc_adapter *adapter,
507 struct igc_ring *ring)
508 {
509 struct igc_hw *hw = &adapter->hw;
510 union igc_adv_rx_desc *rx_desc;
511 int reg_idx = ring->reg_idx;
512 u32 srrctl = 0, rxdctl = 0;
513 u64 rdba = ring->dma;
514
515 /* disable the queue */
516 wr32(IGC_RXDCTL(reg_idx), 0);
517
518 /* Set DMA base address registers */
519 wr32(IGC_RDBAL(reg_idx),
520 rdba & 0x00000000ffffffffULL);
521 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
522 wr32(IGC_RDLEN(reg_idx),
523 ring->count * sizeof(union igc_adv_rx_desc));
524
525 /* initialize head and tail */
526 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
527 wr32(IGC_RDH(reg_idx), 0);
528 writel(0, ring->tail);
529
530 /* reset next-to- use/clean to place SW in sync with hardware */
531 ring->next_to_clean = 0;
532 ring->next_to_use = 0;
533
534 /* set descriptor configuration */
535 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
536 if (ring_uses_large_buffer(ring))
537 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
538 else
539 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
540 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
541
542 wr32(IGC_SRRCTL(reg_idx), srrctl);
543
544 rxdctl |= IGC_RX_PTHRESH;
545 rxdctl |= IGC_RX_HTHRESH << 8;
546 rxdctl |= IGC_RX_WTHRESH << 16;
547
548 /* initialize rx_buffer_info */
549 memset(ring->rx_buffer_info, 0,
550 sizeof(struct igc_rx_buffer) * ring->count);
551
552 /* initialize Rx descriptor 0 */
553 rx_desc = IGC_RX_DESC(ring, 0);
554 rx_desc->wb.upper.length = 0;
555
556 /* enable receive descriptor fetching */
557 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
558
559 wr32(IGC_RXDCTL(reg_idx), rxdctl);
560 }
561
562 /**
563 * igc_configure_rx - Configure receive Unit after Reset
564 * @adapter: board private structure
565 *
566 * Configure the Rx unit of the MAC after a reset.
567 */
igc_configure_rx(struct igc_adapter * adapter)568 static void igc_configure_rx(struct igc_adapter *adapter)
569 {
570 int i;
571
572 /* Setup the HW Rx Head and Tail Descriptor Pointers and
573 * the Base and Length of the Rx Descriptor Ring
574 */
575 for (i = 0; i < adapter->num_rx_queues; i++)
576 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
577 }
578
579 /**
580 * igc_configure_tx_ring - Configure transmit ring after Reset
581 * @adapter: board private structure
582 * @ring: tx ring to configure
583 *
584 * Configure a transmit ring after a reset.
585 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)586 static void igc_configure_tx_ring(struct igc_adapter *adapter,
587 struct igc_ring *ring)
588 {
589 struct igc_hw *hw = &adapter->hw;
590 int reg_idx = ring->reg_idx;
591 u64 tdba = ring->dma;
592 u32 txdctl = 0;
593
594 /* disable the queue */
595 wr32(IGC_TXDCTL(reg_idx), 0);
596 wrfl();
597 mdelay(10);
598
599 wr32(IGC_TDLEN(reg_idx),
600 ring->count * sizeof(union igc_adv_tx_desc));
601 wr32(IGC_TDBAL(reg_idx),
602 tdba & 0x00000000ffffffffULL);
603 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
604
605 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
606 wr32(IGC_TDH(reg_idx), 0);
607 writel(0, ring->tail);
608
609 txdctl |= IGC_TX_PTHRESH;
610 txdctl |= IGC_TX_HTHRESH << 8;
611 txdctl |= IGC_TX_WTHRESH << 16;
612
613 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
614 wr32(IGC_TXDCTL(reg_idx), txdctl);
615 }
616
617 /**
618 * igc_configure_tx - Configure transmit Unit after Reset
619 * @adapter: board private structure
620 *
621 * Configure the Tx unit of the MAC after a reset.
622 */
igc_configure_tx(struct igc_adapter * adapter)623 static void igc_configure_tx(struct igc_adapter *adapter)
624 {
625 int i;
626
627 for (i = 0; i < adapter->num_tx_queues; i++)
628 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
629 }
630
631 /**
632 * igc_setup_mrqc - configure the multiple receive queue control registers
633 * @adapter: Board private structure
634 */
igc_setup_mrqc(struct igc_adapter * adapter)635 static void igc_setup_mrqc(struct igc_adapter *adapter)
636 {
637 struct igc_hw *hw = &adapter->hw;
638 u32 j, num_rx_queues;
639 u32 mrqc, rxcsum;
640 u32 rss_key[10];
641
642 netdev_rss_key_fill(rss_key, sizeof(rss_key));
643 for (j = 0; j < 10; j++)
644 wr32(IGC_RSSRK(j), rss_key[j]);
645
646 num_rx_queues = adapter->rss_queues;
647
648 if (adapter->rss_indir_tbl_init != num_rx_queues) {
649 for (j = 0; j < IGC_RETA_SIZE; j++)
650 adapter->rss_indir_tbl[j] =
651 (j * num_rx_queues) / IGC_RETA_SIZE;
652 adapter->rss_indir_tbl_init = num_rx_queues;
653 }
654 igc_write_rss_indir_tbl(adapter);
655
656 /* Disable raw packet checksumming so that RSS hash is placed in
657 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
658 * offloads as they are enabled by default
659 */
660 rxcsum = rd32(IGC_RXCSUM);
661 rxcsum |= IGC_RXCSUM_PCSD;
662
663 /* Enable Receive Checksum Offload for SCTP */
664 rxcsum |= IGC_RXCSUM_CRCOFL;
665
666 /* Don't need to set TUOFL or IPOFL, they default to 1 */
667 wr32(IGC_RXCSUM, rxcsum);
668
669 /* Generate RSS hash based on packet types, TCP/UDP
670 * port numbers and/or IPv4/v6 src and dst addresses
671 */
672 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
673 IGC_MRQC_RSS_FIELD_IPV4_TCP |
674 IGC_MRQC_RSS_FIELD_IPV6 |
675 IGC_MRQC_RSS_FIELD_IPV6_TCP |
676 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
677
678 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
679 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
680 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
681 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
682
683 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
684
685 wr32(IGC_MRQC, mrqc);
686 }
687
688 /**
689 * igc_setup_rctl - configure the receive control registers
690 * @adapter: Board private structure
691 */
igc_setup_rctl(struct igc_adapter * adapter)692 static void igc_setup_rctl(struct igc_adapter *adapter)
693 {
694 struct igc_hw *hw = &adapter->hw;
695 u32 rctl;
696
697 rctl = rd32(IGC_RCTL);
698
699 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
700 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
701
702 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
703 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
704
705 /* enable stripping of CRC. Newer features require
706 * that the HW strips the CRC.
707 */
708 rctl |= IGC_RCTL_SECRC;
709
710 /* disable store bad packets and clear size bits. */
711 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
712
713 /* enable LPE to allow for reception of jumbo frames */
714 rctl |= IGC_RCTL_LPE;
715
716 /* disable queue 0 to prevent tail write w/o re-config */
717 wr32(IGC_RXDCTL(0), 0);
718
719 /* This is useful for sniffing bad packets. */
720 if (adapter->netdev->features & NETIF_F_RXALL) {
721 /* UPE and MPE will be handled by normal PROMISC logic
722 * in set_rx_mode
723 */
724 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
725 IGC_RCTL_BAM | /* RX All Bcast Pkts */
726 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
727
728 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
729 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
730 }
731
732 wr32(IGC_RCTL, rctl);
733 }
734
735 /**
736 * igc_setup_tctl - configure the transmit control registers
737 * @adapter: Board private structure
738 */
igc_setup_tctl(struct igc_adapter * adapter)739 static void igc_setup_tctl(struct igc_adapter *adapter)
740 {
741 struct igc_hw *hw = &adapter->hw;
742 u32 tctl;
743
744 /* disable queue 0 which icould be enabled by default */
745 wr32(IGC_TXDCTL(0), 0);
746
747 /* Program the Transmit Control Register */
748 tctl = rd32(IGC_TCTL);
749 tctl &= ~IGC_TCTL_CT;
750 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
751 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
752
753 /* Enable transmits */
754 tctl |= IGC_TCTL_EN;
755
756 wr32(IGC_TCTL, tctl);
757 }
758
759 /**
760 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
761 * @adapter: Pointer to adapter where the filter should be set
762 * @index: Filter index
763 * @type: MAC address filter type (source or destination)
764 * @addr: MAC address
765 * @queue: If non-negative, queue assignment feature is enabled and frames
766 * matching the filter are enqueued onto 'queue'. Otherwise, queue
767 * assignment is disabled.
768 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)769 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
770 enum igc_mac_filter_type type,
771 const u8 *addr, int queue)
772 {
773 struct net_device *dev = adapter->netdev;
774 struct igc_hw *hw = &adapter->hw;
775 u32 ral, rah;
776
777 if (WARN_ON(index >= hw->mac.rar_entry_count))
778 return;
779
780 ral = le32_to_cpup((__le32 *)(addr));
781 rah = le16_to_cpup((__le16 *)(addr + 4));
782
783 if (type == IGC_MAC_FILTER_TYPE_SRC) {
784 rah &= ~IGC_RAH_ASEL_MASK;
785 rah |= IGC_RAH_ASEL_SRC_ADDR;
786 }
787
788 if (queue >= 0) {
789 rah &= ~IGC_RAH_QSEL_MASK;
790 rah |= (queue << IGC_RAH_QSEL_SHIFT);
791 rah |= IGC_RAH_QSEL_ENABLE;
792 }
793
794 rah |= IGC_RAH_AV;
795
796 wr32(IGC_RAL(index), ral);
797 wr32(IGC_RAH(index), rah);
798
799 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
800 }
801
802 /**
803 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
804 * @adapter: Pointer to adapter where the filter should be cleared
805 * @index: Filter index
806 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)807 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
808 {
809 struct net_device *dev = adapter->netdev;
810 struct igc_hw *hw = &adapter->hw;
811
812 if (WARN_ON(index >= hw->mac.rar_entry_count))
813 return;
814
815 wr32(IGC_RAL(index), 0);
816 wr32(IGC_RAH(index), 0);
817
818 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
819 }
820
821 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)822 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
823 {
824 struct net_device *dev = adapter->netdev;
825 u8 *addr = adapter->hw.mac.addr;
826
827 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
828
829 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
830 }
831
832 /**
833 * igc_set_mac - Change the Ethernet Address of the NIC
834 * @netdev: network interface device structure
835 * @p: pointer to an address structure
836 *
837 * Returns 0 on success, negative on failure
838 */
igc_set_mac(struct net_device * netdev,void * p)839 static int igc_set_mac(struct net_device *netdev, void *p)
840 {
841 struct igc_adapter *adapter = netdev_priv(netdev);
842 struct igc_hw *hw = &adapter->hw;
843 struct sockaddr *addr = p;
844
845 if (!is_valid_ether_addr(addr->sa_data))
846 return -EADDRNOTAVAIL;
847
848 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
849 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
850
851 /* set the correct pool for the new PF MAC address in entry 0 */
852 igc_set_default_mac_filter(adapter);
853
854 return 0;
855 }
856
857 /**
858 * igc_write_mc_addr_list - write multicast addresses to MTA
859 * @netdev: network interface device structure
860 *
861 * Writes multicast address list to the MTA hash table.
862 * Returns: -ENOMEM on failure
863 * 0 on no addresses written
864 * X on writing X addresses to MTA
865 **/
igc_write_mc_addr_list(struct net_device * netdev)866 static int igc_write_mc_addr_list(struct net_device *netdev)
867 {
868 struct igc_adapter *adapter = netdev_priv(netdev);
869 struct igc_hw *hw = &adapter->hw;
870 struct netdev_hw_addr *ha;
871 u8 *mta_list;
872 int i;
873
874 if (netdev_mc_empty(netdev)) {
875 /* nothing to program, so clear mc list */
876 igc_update_mc_addr_list(hw, NULL, 0);
877 return 0;
878 }
879
880 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
881 if (!mta_list)
882 return -ENOMEM;
883
884 /* The shared function expects a packed array of only addresses. */
885 i = 0;
886 netdev_for_each_mc_addr(ha, netdev)
887 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
888
889 igc_update_mc_addr_list(hw, mta_list, i);
890 kfree(mta_list);
891
892 return netdev_mc_count(netdev);
893 }
894
igc_tx_launchtime(struct igc_adapter * adapter,ktime_t txtime)895 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
896 {
897 ktime_t cycle_time = adapter->cycle_time;
898 ktime_t base_time = adapter->base_time;
899 u32 launchtime;
900
901 /* FIXME: when using ETF together with taprio, we may have a
902 * case where 'delta' is larger than the cycle_time, this may
903 * cause problems if we don't read the current value of
904 * IGC_BASET, as the value writen into the launchtime
905 * descriptor field may be misinterpreted.
906 */
907 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
908
909 return cpu_to_le32(launchtime);
910 }
911
igc_tx_ctxtdesc(struct igc_ring * tx_ring,struct igc_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)912 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
913 struct igc_tx_buffer *first,
914 u32 vlan_macip_lens, u32 type_tucmd,
915 u32 mss_l4len_idx)
916 {
917 struct igc_adv_tx_context_desc *context_desc;
918 u16 i = tx_ring->next_to_use;
919
920 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
921
922 i++;
923 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
924
925 /* set bits to identify this as an advanced context descriptor */
926 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
927
928 /* For i225, context index must be unique per ring. */
929 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
930 mss_l4len_idx |= tx_ring->reg_idx << 4;
931
932 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
933 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
934 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
935
936 /* We assume there is always a valid Tx time available. Invalid times
937 * should have been handled by the upper layers.
938 */
939 if (tx_ring->launchtime_enable) {
940 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
941 ktime_t txtime = first->skb->tstamp;
942
943 first->skb->tstamp = ktime_set(0, 0);
944 context_desc->launch_time = igc_tx_launchtime(adapter,
945 txtime);
946 } else {
947 context_desc->launch_time = 0;
948 }
949 }
950
igc_ipv6_csum_is_sctp(struct sk_buff * skb)951 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
952 {
953 unsigned int offset = 0;
954
955 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
956
957 return offset == skb_checksum_start_offset(skb);
958 }
959
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first)960 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
961 {
962 struct sk_buff *skb = first->skb;
963 u32 vlan_macip_lens = 0;
964 u32 type_tucmd = 0;
965
966 if (skb->ip_summed != CHECKSUM_PARTIAL) {
967 csum_failed:
968 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
969 !tx_ring->launchtime_enable)
970 return;
971 goto no_csum;
972 }
973
974 switch (skb->csum_offset) {
975 case offsetof(struct tcphdr, check):
976 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
977 fallthrough;
978 case offsetof(struct udphdr, check):
979 break;
980 case offsetof(struct sctphdr, checksum):
981 /* validate that this is actually an SCTP request */
982 if ((first->protocol == htons(ETH_P_IP) &&
983 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
984 (first->protocol == htons(ETH_P_IPV6) &&
985 igc_ipv6_csum_is_sctp(skb))) {
986 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
987 break;
988 }
989 fallthrough;
990 default:
991 skb_checksum_help(skb);
992 goto csum_failed;
993 }
994
995 /* update TX checksum flag */
996 first->tx_flags |= IGC_TX_FLAGS_CSUM;
997 vlan_macip_lens = skb_checksum_start_offset(skb) -
998 skb_network_offset(skb);
999 no_csum:
1000 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1001 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1002
1003 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1004 }
1005
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1006 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1007 {
1008 struct net_device *netdev = tx_ring->netdev;
1009
1010 netif_stop_subqueue(netdev, tx_ring->queue_index);
1011
1012 /* memory barriier comment */
1013 smp_mb();
1014
1015 /* We need to check again in a case another CPU has just
1016 * made room available.
1017 */
1018 if (igc_desc_unused(tx_ring) < size)
1019 return -EBUSY;
1020
1021 /* A reprieve! */
1022 netif_wake_subqueue(netdev, tx_ring->queue_index);
1023
1024 u64_stats_update_begin(&tx_ring->tx_syncp2);
1025 tx_ring->tx_stats.restart_queue2++;
1026 u64_stats_update_end(&tx_ring->tx_syncp2);
1027
1028 return 0;
1029 }
1030
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1031 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1032 {
1033 if (igc_desc_unused(tx_ring) >= size)
1034 return 0;
1035 return __igc_maybe_stop_tx(tx_ring, size);
1036 }
1037
1038 #define IGC_SET_FLAG(_input, _flag, _result) \
1039 (((_flag) <= (_result)) ? \
1040 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1041 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1042
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1043 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1044 {
1045 /* set type for advanced descriptor with frame checksum insertion */
1046 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1047 IGC_ADVTXD_DCMD_DEXT |
1048 IGC_ADVTXD_DCMD_IFCS;
1049
1050 /* set segmentation bits for TSO */
1051 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1052 (IGC_ADVTXD_DCMD_TSE));
1053
1054 /* set timestamp bit if present */
1055 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1056 (IGC_ADVTXD_MAC_TSTAMP));
1057
1058 return cmd_type;
1059 }
1060
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1061 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1062 union igc_adv_tx_desc *tx_desc,
1063 u32 tx_flags, unsigned int paylen)
1064 {
1065 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1066
1067 /* insert L4 checksum */
1068 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1069 ((IGC_TXD_POPTS_TXSM << 8) /
1070 IGC_TX_FLAGS_CSUM);
1071
1072 /* insert IPv4 checksum */
1073 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1074 (((IGC_TXD_POPTS_IXSM << 8)) /
1075 IGC_TX_FLAGS_IPV4);
1076
1077 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1078 }
1079
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1080 static int igc_tx_map(struct igc_ring *tx_ring,
1081 struct igc_tx_buffer *first,
1082 const u8 hdr_len)
1083 {
1084 struct sk_buff *skb = first->skb;
1085 struct igc_tx_buffer *tx_buffer;
1086 union igc_adv_tx_desc *tx_desc;
1087 u32 tx_flags = first->tx_flags;
1088 skb_frag_t *frag;
1089 u16 i = tx_ring->next_to_use;
1090 unsigned int data_len, size;
1091 dma_addr_t dma;
1092 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1093
1094 tx_desc = IGC_TX_DESC(tx_ring, i);
1095
1096 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1097
1098 size = skb_headlen(skb);
1099 data_len = skb->data_len;
1100
1101 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1102
1103 tx_buffer = first;
1104
1105 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1106 if (dma_mapping_error(tx_ring->dev, dma))
1107 goto dma_error;
1108
1109 /* record length, and DMA address */
1110 dma_unmap_len_set(tx_buffer, len, size);
1111 dma_unmap_addr_set(tx_buffer, dma, dma);
1112
1113 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1114
1115 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1116 tx_desc->read.cmd_type_len =
1117 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1118
1119 i++;
1120 tx_desc++;
1121 if (i == tx_ring->count) {
1122 tx_desc = IGC_TX_DESC(tx_ring, 0);
1123 i = 0;
1124 }
1125 tx_desc->read.olinfo_status = 0;
1126
1127 dma += IGC_MAX_DATA_PER_TXD;
1128 size -= IGC_MAX_DATA_PER_TXD;
1129
1130 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1131 }
1132
1133 if (likely(!data_len))
1134 break;
1135
1136 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1137
1138 i++;
1139 tx_desc++;
1140 if (i == tx_ring->count) {
1141 tx_desc = IGC_TX_DESC(tx_ring, 0);
1142 i = 0;
1143 }
1144 tx_desc->read.olinfo_status = 0;
1145
1146 size = skb_frag_size(frag);
1147 data_len -= size;
1148
1149 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1150 size, DMA_TO_DEVICE);
1151
1152 tx_buffer = &tx_ring->tx_buffer_info[i];
1153 }
1154
1155 /* write last descriptor with RS and EOP bits */
1156 cmd_type |= size | IGC_TXD_DCMD;
1157 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1158
1159 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1160
1161 /* set the timestamp */
1162 first->time_stamp = jiffies;
1163
1164 skb_tx_timestamp(skb);
1165
1166 /* Force memory writes to complete before letting h/w know there
1167 * are new descriptors to fetch. (Only applicable for weak-ordered
1168 * memory model archs, such as IA-64).
1169 *
1170 * We also need this memory barrier to make certain all of the
1171 * status bits have been updated before next_to_watch is written.
1172 */
1173 wmb();
1174
1175 /* set next_to_watch value indicating a packet is present */
1176 first->next_to_watch = tx_desc;
1177
1178 i++;
1179 if (i == tx_ring->count)
1180 i = 0;
1181
1182 tx_ring->next_to_use = i;
1183
1184 /* Make sure there is space in the ring for the next send. */
1185 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1186
1187 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1188 writel(i, tx_ring->tail);
1189 }
1190
1191 return 0;
1192 dma_error:
1193 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1194 tx_buffer = &tx_ring->tx_buffer_info[i];
1195
1196 /* clear dma mappings for failed tx_buffer_info map */
1197 while (tx_buffer != first) {
1198 if (dma_unmap_len(tx_buffer, len))
1199 dma_unmap_page(tx_ring->dev,
1200 dma_unmap_addr(tx_buffer, dma),
1201 dma_unmap_len(tx_buffer, len),
1202 DMA_TO_DEVICE);
1203 dma_unmap_len_set(tx_buffer, len, 0);
1204
1205 if (i-- == 0)
1206 i += tx_ring->count;
1207 tx_buffer = &tx_ring->tx_buffer_info[i];
1208 }
1209
1210 if (dma_unmap_len(tx_buffer, len))
1211 dma_unmap_single(tx_ring->dev,
1212 dma_unmap_addr(tx_buffer, dma),
1213 dma_unmap_len(tx_buffer, len),
1214 DMA_TO_DEVICE);
1215 dma_unmap_len_set(tx_buffer, len, 0);
1216
1217 dev_kfree_skb_any(tx_buffer->skb);
1218 tx_buffer->skb = NULL;
1219
1220 tx_ring->next_to_use = i;
1221
1222 return -1;
1223 }
1224
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,u8 * hdr_len)1225 static int igc_tso(struct igc_ring *tx_ring,
1226 struct igc_tx_buffer *first,
1227 u8 *hdr_len)
1228 {
1229 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1230 struct sk_buff *skb = first->skb;
1231 union {
1232 struct iphdr *v4;
1233 struct ipv6hdr *v6;
1234 unsigned char *hdr;
1235 } ip;
1236 union {
1237 struct tcphdr *tcp;
1238 struct udphdr *udp;
1239 unsigned char *hdr;
1240 } l4;
1241 u32 paylen, l4_offset;
1242 int err;
1243
1244 if (skb->ip_summed != CHECKSUM_PARTIAL)
1245 return 0;
1246
1247 if (!skb_is_gso(skb))
1248 return 0;
1249
1250 err = skb_cow_head(skb, 0);
1251 if (err < 0)
1252 return err;
1253
1254 ip.hdr = skb_network_header(skb);
1255 l4.hdr = skb_checksum_start(skb);
1256
1257 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1258 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1259
1260 /* initialize outer IP header fields */
1261 if (ip.v4->version == 4) {
1262 unsigned char *csum_start = skb_checksum_start(skb);
1263 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1264
1265 /* IP header will have to cancel out any data that
1266 * is not a part of the outer IP header
1267 */
1268 ip.v4->check = csum_fold(csum_partial(trans_start,
1269 csum_start - trans_start,
1270 0));
1271 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1272
1273 ip.v4->tot_len = 0;
1274 first->tx_flags |= IGC_TX_FLAGS_TSO |
1275 IGC_TX_FLAGS_CSUM |
1276 IGC_TX_FLAGS_IPV4;
1277 } else {
1278 ip.v6->payload_len = 0;
1279 first->tx_flags |= IGC_TX_FLAGS_TSO |
1280 IGC_TX_FLAGS_CSUM;
1281 }
1282
1283 /* determine offset of inner transport header */
1284 l4_offset = l4.hdr - skb->data;
1285
1286 /* remove payload length from inner checksum */
1287 paylen = skb->len - l4_offset;
1288 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1289 /* compute length of segmentation header */
1290 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1291 csum_replace_by_diff(&l4.tcp->check,
1292 (__force __wsum)htonl(paylen));
1293 } else {
1294 /* compute length of segmentation header */
1295 *hdr_len = sizeof(*l4.udp) + l4_offset;
1296 csum_replace_by_diff(&l4.udp->check,
1297 (__force __wsum)htonl(paylen));
1298 }
1299
1300 /* update gso size and bytecount with header size */
1301 first->gso_segs = skb_shinfo(skb)->gso_segs;
1302 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1303
1304 /* MSS L4LEN IDX */
1305 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1306 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1307
1308 /* VLAN MACLEN IPLEN */
1309 vlan_macip_lens = l4.hdr - ip.hdr;
1310 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1311 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1312
1313 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1314 type_tucmd, mss_l4len_idx);
1315
1316 return 1;
1317 }
1318
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1319 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1320 struct igc_ring *tx_ring)
1321 {
1322 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1323 __be16 protocol = vlan_get_protocol(skb);
1324 struct igc_tx_buffer *first;
1325 u32 tx_flags = 0;
1326 unsigned short f;
1327 u8 hdr_len = 0;
1328 int tso = 0;
1329
1330 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1331 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1332 * + 2 desc gap to keep tail from touching head,
1333 * + 1 desc for context descriptor,
1334 * otherwise try next time
1335 */
1336 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1337 count += TXD_USE_COUNT(skb_frag_size(
1338 &skb_shinfo(skb)->frags[f]));
1339
1340 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1341 /* this is a hard error */
1342 return NETDEV_TX_BUSY;
1343 }
1344
1345 /* record the location of the first descriptor for this packet */
1346 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1347 first->skb = skb;
1348 first->bytecount = skb->len;
1349 first->gso_segs = 1;
1350
1351 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1352 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1353
1354 /* FIXME: add support for retrieving timestamps from
1355 * the other timer registers before skipping the
1356 * timestamping request.
1357 */
1358 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1359 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1360 &adapter->state)) {
1361 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1362 tx_flags |= IGC_TX_FLAGS_TSTAMP;
1363
1364 adapter->ptp_tx_skb = skb_get(skb);
1365 adapter->ptp_tx_start = jiffies;
1366 } else {
1367 adapter->tx_hwtstamp_skipped++;
1368 }
1369 }
1370
1371 /* record initial flags and protocol */
1372 first->tx_flags = tx_flags;
1373 first->protocol = protocol;
1374
1375 tso = igc_tso(tx_ring, first, &hdr_len);
1376 if (tso < 0)
1377 goto out_drop;
1378 else if (!tso)
1379 igc_tx_csum(tx_ring, first);
1380
1381 igc_tx_map(tx_ring, first, hdr_len);
1382
1383 return NETDEV_TX_OK;
1384
1385 out_drop:
1386 dev_kfree_skb_any(first->skb);
1387 first->skb = NULL;
1388
1389 return NETDEV_TX_OK;
1390 }
1391
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1392 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1393 struct sk_buff *skb)
1394 {
1395 unsigned int r_idx = skb->queue_mapping;
1396
1397 if (r_idx >= adapter->num_tx_queues)
1398 r_idx = r_idx % adapter->num_tx_queues;
1399
1400 return adapter->tx_ring[r_idx];
1401 }
1402
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1403 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1404 struct net_device *netdev)
1405 {
1406 struct igc_adapter *adapter = netdev_priv(netdev);
1407
1408 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1409 * in order to meet this minimum size requirement.
1410 */
1411 if (skb->len < 17) {
1412 if (skb_padto(skb, 17))
1413 return NETDEV_TX_OK;
1414 skb->len = 17;
1415 }
1416
1417 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1418 }
1419
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1420 static void igc_rx_checksum(struct igc_ring *ring,
1421 union igc_adv_rx_desc *rx_desc,
1422 struct sk_buff *skb)
1423 {
1424 skb_checksum_none_assert(skb);
1425
1426 /* Ignore Checksum bit is set */
1427 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1428 return;
1429
1430 /* Rx checksum disabled via ethtool */
1431 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1432 return;
1433
1434 /* TCP/UDP checksum error bit is set */
1435 if (igc_test_staterr(rx_desc,
1436 IGC_RXDEXT_STATERR_L4E |
1437 IGC_RXDEXT_STATERR_IPE)) {
1438 /* work around errata with sctp packets where the TCPE aka
1439 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1440 * packets (aka let the stack check the crc32c)
1441 */
1442 if (!(skb->len == 60 &&
1443 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1444 u64_stats_update_begin(&ring->rx_syncp);
1445 ring->rx_stats.csum_err++;
1446 u64_stats_update_end(&ring->rx_syncp);
1447 }
1448 /* let the stack verify checksum errors */
1449 return;
1450 }
1451 /* It must be a TCP or UDP packet with a valid checksum */
1452 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1453 IGC_RXD_STAT_UDPCS))
1454 skb->ip_summed = CHECKSUM_UNNECESSARY;
1455
1456 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1457 le32_to_cpu(rx_desc->wb.upper.status_error));
1458 }
1459
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1460 static inline void igc_rx_hash(struct igc_ring *ring,
1461 union igc_adv_rx_desc *rx_desc,
1462 struct sk_buff *skb)
1463 {
1464 if (ring->netdev->features & NETIF_F_RXHASH)
1465 skb_set_hash(skb,
1466 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1467 PKT_HASH_TYPE_L3);
1468 }
1469
1470 /**
1471 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1472 * @rx_ring: rx descriptor ring packet is being transacted on
1473 * @rx_desc: pointer to the EOP Rx descriptor
1474 * @skb: pointer to current skb being populated
1475 *
1476 * This function checks the ring, descriptor, and packet information in order
1477 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1478 * skb.
1479 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1480 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1481 union igc_adv_rx_desc *rx_desc,
1482 struct sk_buff *skb)
1483 {
1484 igc_rx_hash(rx_ring, rx_desc, skb);
1485
1486 igc_rx_checksum(rx_ring, rx_desc, skb);
1487
1488 skb_record_rx_queue(skb, rx_ring->queue_index);
1489
1490 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1491 }
1492
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size)1493 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1494 const unsigned int size)
1495 {
1496 struct igc_rx_buffer *rx_buffer;
1497
1498 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1499 prefetchw(rx_buffer->page);
1500
1501 /* we are reusing so sync this buffer for CPU use */
1502 dma_sync_single_range_for_cpu(rx_ring->dev,
1503 rx_buffer->dma,
1504 rx_buffer->page_offset,
1505 size,
1506 DMA_FROM_DEVICE);
1507
1508 rx_buffer->pagecnt_bias--;
1509
1510 return rx_buffer;
1511 }
1512
1513 /**
1514 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1515 * @rx_ring: rx descriptor ring to transact packets on
1516 * @rx_buffer: buffer containing page to add
1517 * @skb: sk_buff to place the data into
1518 * @size: size of buffer to be added
1519 *
1520 * This function will add the data contained in rx_buffer->page to the skb.
1521 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1522 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1523 struct igc_rx_buffer *rx_buffer,
1524 struct sk_buff *skb,
1525 unsigned int size)
1526 {
1527 #if (PAGE_SIZE < 8192)
1528 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1529
1530 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1531 rx_buffer->page_offset, size, truesize);
1532 rx_buffer->page_offset ^= truesize;
1533 #else
1534 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1535 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1536 SKB_DATA_ALIGN(size);
1537 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1538 rx_buffer->page_offset, size, truesize);
1539 rx_buffer->page_offset += truesize;
1540 #endif
1541 }
1542
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,union igc_adv_rx_desc * rx_desc,unsigned int size)1543 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1544 struct igc_rx_buffer *rx_buffer,
1545 union igc_adv_rx_desc *rx_desc,
1546 unsigned int size)
1547 {
1548 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1549 #if (PAGE_SIZE < 8192)
1550 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1551 #else
1552 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1553 SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1554 #endif
1555 struct sk_buff *skb;
1556
1557 /* prefetch first cache line of first page */
1558 net_prefetch(va);
1559
1560 /* build an skb around the page buffer */
1561 skb = build_skb(va - IGC_SKB_PAD, truesize);
1562 if (unlikely(!skb))
1563 return NULL;
1564
1565 /* update pointers within the skb to store the data */
1566 skb_reserve(skb, IGC_SKB_PAD);
1567 __skb_put(skb, size);
1568
1569 /* update buffer offset */
1570 #if (PAGE_SIZE < 8192)
1571 rx_buffer->page_offset ^= truesize;
1572 #else
1573 rx_buffer->page_offset += truesize;
1574 #endif
1575
1576 return skb;
1577 }
1578
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,union igc_adv_rx_desc * rx_desc,unsigned int size)1579 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1580 struct igc_rx_buffer *rx_buffer,
1581 union igc_adv_rx_desc *rx_desc,
1582 unsigned int size)
1583 {
1584 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1585 #if (PAGE_SIZE < 8192)
1586 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1587 #else
1588 unsigned int truesize = SKB_DATA_ALIGN(size);
1589 #endif
1590 unsigned int headlen;
1591 struct sk_buff *skb;
1592
1593 /* prefetch first cache line of first page */
1594 net_prefetch(va);
1595
1596 /* allocate a skb to store the frags */
1597 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1598 if (unlikely(!skb))
1599 return NULL;
1600
1601 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1602 igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1603 va += IGC_TS_HDR_LEN;
1604 size -= IGC_TS_HDR_LEN;
1605 }
1606
1607 /* Determine available headroom for copy */
1608 headlen = size;
1609 if (headlen > IGC_RX_HDR_LEN)
1610 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1611
1612 /* align pull length to size of long to optimize memcpy performance */
1613 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1614
1615 /* update all of the pointers */
1616 size -= headlen;
1617 if (size) {
1618 skb_add_rx_frag(skb, 0, rx_buffer->page,
1619 (va + headlen) - page_address(rx_buffer->page),
1620 size, truesize);
1621 #if (PAGE_SIZE < 8192)
1622 rx_buffer->page_offset ^= truesize;
1623 #else
1624 rx_buffer->page_offset += truesize;
1625 #endif
1626 } else {
1627 rx_buffer->pagecnt_bias++;
1628 }
1629
1630 return skb;
1631 }
1632
1633 /**
1634 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1635 * @rx_ring: rx descriptor ring to store buffers on
1636 * @old_buff: donor buffer to have page reused
1637 *
1638 * Synchronizes page for reuse by the adapter
1639 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)1640 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1641 struct igc_rx_buffer *old_buff)
1642 {
1643 u16 nta = rx_ring->next_to_alloc;
1644 struct igc_rx_buffer *new_buff;
1645
1646 new_buff = &rx_ring->rx_buffer_info[nta];
1647
1648 /* update, and store next to alloc */
1649 nta++;
1650 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1651
1652 /* Transfer page from old buffer to new buffer.
1653 * Move each member individually to avoid possible store
1654 * forwarding stalls.
1655 */
1656 new_buff->dma = old_buff->dma;
1657 new_buff->page = old_buff->page;
1658 new_buff->page_offset = old_buff->page_offset;
1659 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1660 }
1661
igc_page_is_reserved(struct page * page)1662 static inline bool igc_page_is_reserved(struct page *page)
1663 {
1664 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1665 }
1666
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer)1667 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1668 {
1669 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1670 struct page *page = rx_buffer->page;
1671
1672 /* avoid re-using remote pages */
1673 if (unlikely(igc_page_is_reserved(page)))
1674 return false;
1675
1676 #if (PAGE_SIZE < 8192)
1677 /* if we are only owner of page we can reuse it */
1678 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1679 return false;
1680 #else
1681 #define IGC_LAST_OFFSET \
1682 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1683
1684 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1685 return false;
1686 #endif
1687
1688 /* If we have drained the page fragment pool we need to update
1689 * the pagecnt_bias and page count so that we fully restock the
1690 * number of references the driver holds.
1691 */
1692 if (unlikely(!pagecnt_bias)) {
1693 page_ref_add(page, USHRT_MAX);
1694 rx_buffer->pagecnt_bias = USHRT_MAX;
1695 }
1696
1697 return true;
1698 }
1699
1700 /**
1701 * igc_is_non_eop - process handling of non-EOP buffers
1702 * @rx_ring: Rx ring being processed
1703 * @rx_desc: Rx descriptor for current buffer
1704 *
1705 * This function updates next to clean. If the buffer is an EOP buffer
1706 * this function exits returning false, otherwise it will place the
1707 * sk_buff in the next buffer to be chained and return true indicating
1708 * that this is in fact a non-EOP buffer.
1709 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)1710 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1711 union igc_adv_rx_desc *rx_desc)
1712 {
1713 u32 ntc = rx_ring->next_to_clean + 1;
1714
1715 /* fetch, update, and store next to clean */
1716 ntc = (ntc < rx_ring->count) ? ntc : 0;
1717 rx_ring->next_to_clean = ntc;
1718
1719 prefetch(IGC_RX_DESC(rx_ring, ntc));
1720
1721 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1722 return false;
1723
1724 return true;
1725 }
1726
1727 /**
1728 * igc_cleanup_headers - Correct corrupted or empty headers
1729 * @rx_ring: rx descriptor ring packet is being transacted on
1730 * @rx_desc: pointer to the EOP Rx descriptor
1731 * @skb: pointer to current skb being fixed
1732 *
1733 * Address the case where we are pulling data in on pages only
1734 * and as such no data is present in the skb header.
1735 *
1736 * In addition if skb is not at least 60 bytes we need to pad it so that
1737 * it is large enough to qualify as a valid Ethernet frame.
1738 *
1739 * Returns true if an error was encountered and skb was freed.
1740 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1741 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1742 union igc_adv_rx_desc *rx_desc,
1743 struct sk_buff *skb)
1744 {
1745 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1746 struct net_device *netdev = rx_ring->netdev;
1747
1748 if (!(netdev->features & NETIF_F_RXALL)) {
1749 dev_kfree_skb_any(skb);
1750 return true;
1751 }
1752 }
1753
1754 /* if eth_skb_pad returns an error the skb was freed */
1755 if (eth_skb_pad(skb))
1756 return true;
1757
1758 return false;
1759 }
1760
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer)1761 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1762 struct igc_rx_buffer *rx_buffer)
1763 {
1764 if (igc_can_reuse_rx_page(rx_buffer)) {
1765 /* hand second half of page back to the ring */
1766 igc_reuse_rx_page(rx_ring, rx_buffer);
1767 } else {
1768 /* We are not reusing the buffer so unmap it and free
1769 * any references we are holding to it
1770 */
1771 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1772 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1773 IGC_RX_DMA_ATTR);
1774 __page_frag_cache_drain(rx_buffer->page,
1775 rx_buffer->pagecnt_bias);
1776 }
1777
1778 /* clear contents of rx_buffer */
1779 rx_buffer->page = NULL;
1780 }
1781
igc_rx_offset(struct igc_ring * rx_ring)1782 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1783 {
1784 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1785 }
1786
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)1787 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1788 struct igc_rx_buffer *bi)
1789 {
1790 struct page *page = bi->page;
1791 dma_addr_t dma;
1792
1793 /* since we are recycling buffers we should seldom need to alloc */
1794 if (likely(page))
1795 return true;
1796
1797 /* alloc new page for storage */
1798 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1799 if (unlikely(!page)) {
1800 rx_ring->rx_stats.alloc_failed++;
1801 return false;
1802 }
1803
1804 /* map page for use */
1805 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1806 igc_rx_pg_size(rx_ring),
1807 DMA_FROM_DEVICE,
1808 IGC_RX_DMA_ATTR);
1809
1810 /* if mapping failed free memory back to system since
1811 * there isn't much point in holding memory we can't use
1812 */
1813 if (dma_mapping_error(rx_ring->dev, dma)) {
1814 __free_page(page);
1815
1816 rx_ring->rx_stats.alloc_failed++;
1817 return false;
1818 }
1819
1820 bi->dma = dma;
1821 bi->page = page;
1822 bi->page_offset = igc_rx_offset(rx_ring);
1823 bi->pagecnt_bias = 1;
1824
1825 return true;
1826 }
1827
1828 /**
1829 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1830 * @rx_ring: rx descriptor ring
1831 * @cleaned_count: number of buffers to clean
1832 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)1833 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1834 {
1835 union igc_adv_rx_desc *rx_desc;
1836 u16 i = rx_ring->next_to_use;
1837 struct igc_rx_buffer *bi;
1838 u16 bufsz;
1839
1840 /* nothing to do */
1841 if (!cleaned_count)
1842 return;
1843
1844 rx_desc = IGC_RX_DESC(rx_ring, i);
1845 bi = &rx_ring->rx_buffer_info[i];
1846 i -= rx_ring->count;
1847
1848 bufsz = igc_rx_bufsz(rx_ring);
1849
1850 do {
1851 if (!igc_alloc_mapped_page(rx_ring, bi))
1852 break;
1853
1854 /* sync the buffer for use by the device */
1855 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1856 bi->page_offset, bufsz,
1857 DMA_FROM_DEVICE);
1858
1859 /* Refresh the desc even if buffer_addrs didn't change
1860 * because each write-back erases this info.
1861 */
1862 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1863
1864 rx_desc++;
1865 bi++;
1866 i++;
1867 if (unlikely(!i)) {
1868 rx_desc = IGC_RX_DESC(rx_ring, 0);
1869 bi = rx_ring->rx_buffer_info;
1870 i -= rx_ring->count;
1871 }
1872
1873 /* clear the length for the next_to_use descriptor */
1874 rx_desc->wb.upper.length = 0;
1875
1876 cleaned_count--;
1877 } while (cleaned_count);
1878
1879 i += rx_ring->count;
1880
1881 if (rx_ring->next_to_use != i) {
1882 /* record the next descriptor to use */
1883 rx_ring->next_to_use = i;
1884
1885 /* update next to alloc since we have filled the ring */
1886 rx_ring->next_to_alloc = i;
1887
1888 /* Force memory writes to complete before letting h/w
1889 * know there are new descriptors to fetch. (Only
1890 * applicable for weak-ordered memory model archs,
1891 * such as IA-64).
1892 */
1893 wmb();
1894 writel(i, rx_ring->tail);
1895 }
1896 }
1897
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)1898 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1899 {
1900 unsigned int total_bytes = 0, total_packets = 0;
1901 struct igc_ring *rx_ring = q_vector->rx.ring;
1902 struct sk_buff *skb = rx_ring->skb;
1903 u16 cleaned_count = igc_desc_unused(rx_ring);
1904
1905 while (likely(total_packets < budget)) {
1906 union igc_adv_rx_desc *rx_desc;
1907 struct igc_rx_buffer *rx_buffer;
1908 unsigned int size;
1909
1910 /* return some buffers to hardware, one at a time is too slow */
1911 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1912 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1913 cleaned_count = 0;
1914 }
1915
1916 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1917 size = le16_to_cpu(rx_desc->wb.upper.length);
1918 if (!size)
1919 break;
1920
1921 /* This memory barrier is needed to keep us from reading
1922 * any other fields out of the rx_desc until we know the
1923 * descriptor has been written back
1924 */
1925 dma_rmb();
1926
1927 rx_buffer = igc_get_rx_buffer(rx_ring, size);
1928
1929 /* retrieve a buffer from the ring */
1930 if (skb)
1931 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1932 else if (ring_uses_build_skb(rx_ring))
1933 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1934 else
1935 skb = igc_construct_skb(rx_ring, rx_buffer,
1936 rx_desc, size);
1937
1938 /* exit if we failed to retrieve a buffer */
1939 if (!skb) {
1940 rx_ring->rx_stats.alloc_failed++;
1941 rx_buffer->pagecnt_bias++;
1942 break;
1943 }
1944
1945 igc_put_rx_buffer(rx_ring, rx_buffer);
1946 cleaned_count++;
1947
1948 /* fetch next buffer in frame if non-eop */
1949 if (igc_is_non_eop(rx_ring, rx_desc))
1950 continue;
1951
1952 /* verify the packet layout is correct */
1953 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1954 skb = NULL;
1955 continue;
1956 }
1957
1958 /* probably a little skewed due to removing CRC */
1959 total_bytes += skb->len;
1960
1961 /* populate checksum, VLAN, and protocol */
1962 igc_process_skb_fields(rx_ring, rx_desc, skb);
1963
1964 napi_gro_receive(&q_vector->napi, skb);
1965
1966 /* reset skb pointer */
1967 skb = NULL;
1968
1969 /* update budget accounting */
1970 total_packets++;
1971 }
1972
1973 /* place incomplete frames back on ring for completion */
1974 rx_ring->skb = skb;
1975
1976 u64_stats_update_begin(&rx_ring->rx_syncp);
1977 rx_ring->rx_stats.packets += total_packets;
1978 rx_ring->rx_stats.bytes += total_bytes;
1979 u64_stats_update_end(&rx_ring->rx_syncp);
1980 q_vector->rx.total_packets += total_packets;
1981 q_vector->rx.total_bytes += total_bytes;
1982
1983 if (cleaned_count)
1984 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1985
1986 return total_packets;
1987 }
1988
1989 /**
1990 * igc_clean_tx_irq - Reclaim resources after transmit completes
1991 * @q_vector: pointer to q_vector containing needed info
1992 * @napi_budget: Used to determine if we are in netpoll
1993 *
1994 * returns true if ring is completely cleaned
1995 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)1996 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1997 {
1998 struct igc_adapter *adapter = q_vector->adapter;
1999 unsigned int total_bytes = 0, total_packets = 0;
2000 unsigned int budget = q_vector->tx.work_limit;
2001 struct igc_ring *tx_ring = q_vector->tx.ring;
2002 unsigned int i = tx_ring->next_to_clean;
2003 struct igc_tx_buffer *tx_buffer;
2004 union igc_adv_tx_desc *tx_desc;
2005
2006 if (test_bit(__IGC_DOWN, &adapter->state))
2007 return true;
2008
2009 tx_buffer = &tx_ring->tx_buffer_info[i];
2010 tx_desc = IGC_TX_DESC(tx_ring, i);
2011 i -= tx_ring->count;
2012
2013 do {
2014 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2015
2016 /* if next_to_watch is not set then there is no work pending */
2017 if (!eop_desc)
2018 break;
2019
2020 /* prevent any other reads prior to eop_desc */
2021 smp_rmb();
2022
2023 /* if DD is not set pending work has not been completed */
2024 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2025 break;
2026
2027 /* clear next_to_watch to prevent false hangs */
2028 tx_buffer->next_to_watch = NULL;
2029
2030 /* update the statistics for this packet */
2031 total_bytes += tx_buffer->bytecount;
2032 total_packets += tx_buffer->gso_segs;
2033
2034 /* free the skb */
2035 napi_consume_skb(tx_buffer->skb, napi_budget);
2036
2037 /* unmap skb header data */
2038 dma_unmap_single(tx_ring->dev,
2039 dma_unmap_addr(tx_buffer, dma),
2040 dma_unmap_len(tx_buffer, len),
2041 DMA_TO_DEVICE);
2042
2043 /* clear tx_buffer data */
2044 dma_unmap_len_set(tx_buffer, len, 0);
2045
2046 /* clear last DMA location and unmap remaining buffers */
2047 while (tx_desc != eop_desc) {
2048 tx_buffer++;
2049 tx_desc++;
2050 i++;
2051 if (unlikely(!i)) {
2052 i -= tx_ring->count;
2053 tx_buffer = tx_ring->tx_buffer_info;
2054 tx_desc = IGC_TX_DESC(tx_ring, 0);
2055 }
2056
2057 /* unmap any remaining paged data */
2058 if (dma_unmap_len(tx_buffer, len)) {
2059 dma_unmap_page(tx_ring->dev,
2060 dma_unmap_addr(tx_buffer, dma),
2061 dma_unmap_len(tx_buffer, len),
2062 DMA_TO_DEVICE);
2063 dma_unmap_len_set(tx_buffer, len, 0);
2064 }
2065 }
2066
2067 /* move us one more past the eop_desc for start of next pkt */
2068 tx_buffer++;
2069 tx_desc++;
2070 i++;
2071 if (unlikely(!i)) {
2072 i -= tx_ring->count;
2073 tx_buffer = tx_ring->tx_buffer_info;
2074 tx_desc = IGC_TX_DESC(tx_ring, 0);
2075 }
2076
2077 /* issue prefetch for next Tx descriptor */
2078 prefetch(tx_desc);
2079
2080 /* update budget accounting */
2081 budget--;
2082 } while (likely(budget));
2083
2084 netdev_tx_completed_queue(txring_txq(tx_ring),
2085 total_packets, total_bytes);
2086
2087 i += tx_ring->count;
2088 tx_ring->next_to_clean = i;
2089 u64_stats_update_begin(&tx_ring->tx_syncp);
2090 tx_ring->tx_stats.bytes += total_bytes;
2091 tx_ring->tx_stats.packets += total_packets;
2092 u64_stats_update_end(&tx_ring->tx_syncp);
2093 q_vector->tx.total_bytes += total_bytes;
2094 q_vector->tx.total_packets += total_packets;
2095
2096 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2097 struct igc_hw *hw = &adapter->hw;
2098
2099 /* Detect a transmit hang in hardware, this serializes the
2100 * check with the clearing of time_stamp and movement of i
2101 */
2102 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2103 if (tx_buffer->next_to_watch &&
2104 time_after(jiffies, tx_buffer->time_stamp +
2105 (adapter->tx_timeout_factor * HZ)) &&
2106 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2107 /* detected Tx unit hang */
2108 netdev_err(tx_ring->netdev,
2109 "Detected Tx Unit Hang\n"
2110 " Tx Queue <%d>\n"
2111 " TDH <%x>\n"
2112 " TDT <%x>\n"
2113 " next_to_use <%x>\n"
2114 " next_to_clean <%x>\n"
2115 "buffer_info[next_to_clean]\n"
2116 " time_stamp <%lx>\n"
2117 " next_to_watch <%p>\n"
2118 " jiffies <%lx>\n"
2119 " desc.status <%x>\n",
2120 tx_ring->queue_index,
2121 rd32(IGC_TDH(tx_ring->reg_idx)),
2122 readl(tx_ring->tail),
2123 tx_ring->next_to_use,
2124 tx_ring->next_to_clean,
2125 tx_buffer->time_stamp,
2126 tx_buffer->next_to_watch,
2127 jiffies,
2128 tx_buffer->next_to_watch->wb.status);
2129 netif_stop_subqueue(tx_ring->netdev,
2130 tx_ring->queue_index);
2131
2132 /* we are about to reset, no point in enabling stuff */
2133 return true;
2134 }
2135 }
2136
2137 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2138 if (unlikely(total_packets &&
2139 netif_carrier_ok(tx_ring->netdev) &&
2140 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2141 /* Make sure that anybody stopping the queue after this
2142 * sees the new next_to_clean.
2143 */
2144 smp_mb();
2145 if (__netif_subqueue_stopped(tx_ring->netdev,
2146 tx_ring->queue_index) &&
2147 !(test_bit(__IGC_DOWN, &adapter->state))) {
2148 netif_wake_subqueue(tx_ring->netdev,
2149 tx_ring->queue_index);
2150
2151 u64_stats_update_begin(&tx_ring->tx_syncp);
2152 tx_ring->tx_stats.restart_queue++;
2153 u64_stats_update_end(&tx_ring->tx_syncp);
2154 }
2155 }
2156
2157 return !!budget;
2158 }
2159
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)2160 static int igc_find_mac_filter(struct igc_adapter *adapter,
2161 enum igc_mac_filter_type type, const u8 *addr)
2162 {
2163 struct igc_hw *hw = &adapter->hw;
2164 int max_entries = hw->mac.rar_entry_count;
2165 u32 ral, rah;
2166 int i;
2167
2168 for (i = 0; i < max_entries; i++) {
2169 ral = rd32(IGC_RAL(i));
2170 rah = rd32(IGC_RAH(i));
2171
2172 if (!(rah & IGC_RAH_AV))
2173 continue;
2174 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2175 continue;
2176 if ((rah & IGC_RAH_RAH_MASK) !=
2177 le16_to_cpup((__le16 *)(addr + 4)))
2178 continue;
2179 if (ral != le32_to_cpup((__le32 *)(addr)))
2180 continue;
2181
2182 return i;
2183 }
2184
2185 return -1;
2186 }
2187
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)2188 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2189 {
2190 struct igc_hw *hw = &adapter->hw;
2191 int max_entries = hw->mac.rar_entry_count;
2192 u32 rah;
2193 int i;
2194
2195 for (i = 0; i < max_entries; i++) {
2196 rah = rd32(IGC_RAH(i));
2197
2198 if (!(rah & IGC_RAH_AV))
2199 return i;
2200 }
2201
2202 return -1;
2203 }
2204
2205 /**
2206 * igc_add_mac_filter() - Add MAC address filter
2207 * @adapter: Pointer to adapter where the filter should be added
2208 * @type: MAC address filter type (source or destination)
2209 * @addr: MAC address
2210 * @queue: If non-negative, queue assignment feature is enabled and frames
2211 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2212 * assignment is disabled.
2213 *
2214 * Return: 0 in case of success, negative errno code otherwise.
2215 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)2216 static int igc_add_mac_filter(struct igc_adapter *adapter,
2217 enum igc_mac_filter_type type, const u8 *addr,
2218 int queue)
2219 {
2220 struct net_device *dev = adapter->netdev;
2221 int index;
2222
2223 index = igc_find_mac_filter(adapter, type, addr);
2224 if (index >= 0)
2225 goto update_filter;
2226
2227 index = igc_get_avail_mac_filter_slot(adapter);
2228 if (index < 0)
2229 return -ENOSPC;
2230
2231 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2232 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2233 addr, queue);
2234
2235 update_filter:
2236 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2237 return 0;
2238 }
2239
2240 /**
2241 * igc_del_mac_filter() - Delete MAC address filter
2242 * @adapter: Pointer to adapter where the filter should be deleted from
2243 * @type: MAC address filter type (source or destination)
2244 * @addr: MAC address
2245 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)2246 static void igc_del_mac_filter(struct igc_adapter *adapter,
2247 enum igc_mac_filter_type type, const u8 *addr)
2248 {
2249 struct net_device *dev = adapter->netdev;
2250 int index;
2251
2252 index = igc_find_mac_filter(adapter, type, addr);
2253 if (index < 0)
2254 return;
2255
2256 if (index == 0) {
2257 /* If this is the default filter, we don't actually delete it.
2258 * We just reset to its default value i.e. disable queue
2259 * assignment.
2260 */
2261 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2262
2263 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2264 } else {
2265 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2266 index,
2267 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2268 addr);
2269
2270 igc_clear_mac_filter_hw(adapter, index);
2271 }
2272 }
2273
2274 /**
2275 * igc_add_vlan_prio_filter() - Add VLAN priority filter
2276 * @adapter: Pointer to adapter where the filter should be added
2277 * @prio: VLAN priority value
2278 * @queue: Queue number which matching frames are assigned to
2279 *
2280 * Return: 0 in case of success, negative errno code otherwise.
2281 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)2282 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2283 int queue)
2284 {
2285 struct net_device *dev = adapter->netdev;
2286 struct igc_hw *hw = &adapter->hw;
2287 u32 vlanpqf;
2288
2289 vlanpqf = rd32(IGC_VLANPQF);
2290
2291 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2292 netdev_dbg(dev, "VLAN priority filter already in use\n");
2293 return -EEXIST;
2294 }
2295
2296 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2297 vlanpqf |= IGC_VLANPQF_VALID(prio);
2298
2299 wr32(IGC_VLANPQF, vlanpqf);
2300
2301 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2302 prio, queue);
2303 return 0;
2304 }
2305
2306 /**
2307 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2308 * @adapter: Pointer to adapter where the filter should be deleted from
2309 * @prio: VLAN priority value
2310 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)2311 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2312 {
2313 struct igc_hw *hw = &adapter->hw;
2314 u32 vlanpqf;
2315
2316 vlanpqf = rd32(IGC_VLANPQF);
2317
2318 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2319 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2320
2321 wr32(IGC_VLANPQF, vlanpqf);
2322
2323 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2324 prio);
2325 }
2326
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)2327 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2328 {
2329 struct igc_hw *hw = &adapter->hw;
2330 int i;
2331
2332 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2333 u32 etqf = rd32(IGC_ETQF(i));
2334
2335 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2336 return i;
2337 }
2338
2339 return -1;
2340 }
2341
2342 /**
2343 * igc_add_etype_filter() - Add ethertype filter
2344 * @adapter: Pointer to adapter where the filter should be added
2345 * @etype: Ethertype value
2346 * @queue: If non-negative, queue assignment feature is enabled and frames
2347 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2348 * assignment is disabled.
2349 *
2350 * Return: 0 in case of success, negative errno code otherwise.
2351 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)2352 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2353 int queue)
2354 {
2355 struct igc_hw *hw = &adapter->hw;
2356 int index;
2357 u32 etqf;
2358
2359 index = igc_get_avail_etype_filter_slot(adapter);
2360 if (index < 0)
2361 return -ENOSPC;
2362
2363 etqf = rd32(IGC_ETQF(index));
2364
2365 etqf &= ~IGC_ETQF_ETYPE_MASK;
2366 etqf |= etype;
2367
2368 if (queue >= 0) {
2369 etqf &= ~IGC_ETQF_QUEUE_MASK;
2370 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2371 etqf |= IGC_ETQF_QUEUE_ENABLE;
2372 }
2373
2374 etqf |= IGC_ETQF_FILTER_ENABLE;
2375
2376 wr32(IGC_ETQF(index), etqf);
2377
2378 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2379 etype, queue);
2380 return 0;
2381 }
2382
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)2383 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2384 {
2385 struct igc_hw *hw = &adapter->hw;
2386 int i;
2387
2388 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2389 u32 etqf = rd32(IGC_ETQF(i));
2390
2391 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2392 return i;
2393 }
2394
2395 return -1;
2396 }
2397
2398 /**
2399 * igc_del_etype_filter() - Delete ethertype filter
2400 * @adapter: Pointer to adapter where the filter should be deleted from
2401 * @etype: Ethertype value
2402 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)2403 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2404 {
2405 struct igc_hw *hw = &adapter->hw;
2406 int index;
2407
2408 index = igc_find_etype_filter(adapter, etype);
2409 if (index < 0)
2410 return;
2411
2412 wr32(IGC_ETQF(index), 0);
2413
2414 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2415 etype);
2416 }
2417
igc_enable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)2418 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2419 const struct igc_nfc_rule *rule)
2420 {
2421 int err;
2422
2423 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2424 err = igc_add_etype_filter(adapter, rule->filter.etype,
2425 rule->action);
2426 if (err)
2427 return err;
2428 }
2429
2430 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2431 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2432 rule->filter.src_addr, rule->action);
2433 if (err)
2434 return err;
2435 }
2436
2437 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2438 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2439 rule->filter.dst_addr, rule->action);
2440 if (err)
2441 return err;
2442 }
2443
2444 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2445 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2446 VLAN_PRIO_SHIFT;
2447
2448 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2449 if (err)
2450 return err;
2451 }
2452
2453 return 0;
2454 }
2455
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)2456 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2457 const struct igc_nfc_rule *rule)
2458 {
2459 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2460 igc_del_etype_filter(adapter, rule->filter.etype);
2461
2462 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2463 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2464 VLAN_PRIO_SHIFT;
2465
2466 igc_del_vlan_prio_filter(adapter, prio);
2467 }
2468
2469 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2470 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2471 rule->filter.src_addr);
2472
2473 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2474 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2475 rule->filter.dst_addr);
2476 }
2477
2478 /**
2479 * igc_get_nfc_rule() - Get NFC rule
2480 * @adapter: Pointer to adapter
2481 * @location: Rule location
2482 *
2483 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2484 *
2485 * Return: Pointer to NFC rule at @location. If not found, NULL.
2486 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)2487 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2488 u32 location)
2489 {
2490 struct igc_nfc_rule *rule;
2491
2492 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2493 if (rule->location == location)
2494 return rule;
2495 if (rule->location > location)
2496 break;
2497 }
2498
2499 return NULL;
2500 }
2501
2502 /**
2503 * igc_del_nfc_rule() - Delete NFC rule
2504 * @adapter: Pointer to adapter
2505 * @rule: Pointer to rule to be deleted
2506 *
2507 * Disable NFC rule in hardware and delete it from adapter.
2508 *
2509 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2510 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)2511 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2512 {
2513 igc_disable_nfc_rule(adapter, rule);
2514
2515 list_del(&rule->list);
2516 adapter->nfc_rule_count--;
2517
2518 kfree(rule);
2519 }
2520
igc_flush_nfc_rules(struct igc_adapter * adapter)2521 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2522 {
2523 struct igc_nfc_rule *rule, *tmp;
2524
2525 mutex_lock(&adapter->nfc_rule_lock);
2526
2527 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2528 igc_del_nfc_rule(adapter, rule);
2529
2530 mutex_unlock(&adapter->nfc_rule_lock);
2531 }
2532
2533 /**
2534 * igc_add_nfc_rule() - Add NFC rule
2535 * @adapter: Pointer to adapter
2536 * @rule: Pointer to rule to be added
2537 *
2538 * Enable NFC rule in hardware and add it to adapter.
2539 *
2540 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2541 *
2542 * Return: 0 on success, negative errno on failure.
2543 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)2544 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2545 {
2546 struct igc_nfc_rule *pred, *cur;
2547 int err;
2548
2549 err = igc_enable_nfc_rule(adapter, rule);
2550 if (err)
2551 return err;
2552
2553 pred = NULL;
2554 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2555 if (cur->location >= rule->location)
2556 break;
2557 pred = cur;
2558 }
2559
2560 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2561 adapter->nfc_rule_count++;
2562 return 0;
2563 }
2564
igc_restore_nfc_rules(struct igc_adapter * adapter)2565 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2566 {
2567 struct igc_nfc_rule *rule;
2568
2569 mutex_lock(&adapter->nfc_rule_lock);
2570
2571 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2572 igc_enable_nfc_rule(adapter, rule);
2573
2574 mutex_unlock(&adapter->nfc_rule_lock);
2575 }
2576
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)2577 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2578 {
2579 struct igc_adapter *adapter = netdev_priv(netdev);
2580
2581 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2582 }
2583
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)2584 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2585 {
2586 struct igc_adapter *adapter = netdev_priv(netdev);
2587
2588 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2589 return 0;
2590 }
2591
2592 /**
2593 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2594 * @netdev: network interface device structure
2595 *
2596 * The set_rx_mode entry point is called whenever the unicast or multicast
2597 * address lists or the network interface flags are updated. This routine is
2598 * responsible for configuring the hardware for proper unicast, multicast,
2599 * promiscuous mode, and all-multi behavior.
2600 */
igc_set_rx_mode(struct net_device * netdev)2601 static void igc_set_rx_mode(struct net_device *netdev)
2602 {
2603 struct igc_adapter *adapter = netdev_priv(netdev);
2604 struct igc_hw *hw = &adapter->hw;
2605 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2606 int count;
2607
2608 /* Check for Promiscuous and All Multicast modes */
2609 if (netdev->flags & IFF_PROMISC) {
2610 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2611 } else {
2612 if (netdev->flags & IFF_ALLMULTI) {
2613 rctl |= IGC_RCTL_MPE;
2614 } else {
2615 /* Write addresses to the MTA, if the attempt fails
2616 * then we should just turn on promiscuous mode so
2617 * that we can at least receive multicast traffic
2618 */
2619 count = igc_write_mc_addr_list(netdev);
2620 if (count < 0)
2621 rctl |= IGC_RCTL_MPE;
2622 }
2623 }
2624
2625 /* Write addresses to available RAR registers, if there is not
2626 * sufficient space to store all the addresses then enable
2627 * unicast promiscuous mode
2628 */
2629 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2630 rctl |= IGC_RCTL_UPE;
2631
2632 /* update state of unicast and multicast */
2633 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2634 wr32(IGC_RCTL, rctl);
2635
2636 #if (PAGE_SIZE < 8192)
2637 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2638 rlpml = IGC_MAX_FRAME_BUILD_SKB;
2639 #endif
2640 wr32(IGC_RLPML, rlpml);
2641 }
2642
2643 /**
2644 * igc_configure - configure the hardware for RX and TX
2645 * @adapter: private board structure
2646 */
igc_configure(struct igc_adapter * adapter)2647 static void igc_configure(struct igc_adapter *adapter)
2648 {
2649 struct net_device *netdev = adapter->netdev;
2650 int i = 0;
2651
2652 igc_get_hw_control(adapter);
2653 igc_set_rx_mode(netdev);
2654
2655 igc_setup_tctl(adapter);
2656 igc_setup_mrqc(adapter);
2657 igc_setup_rctl(adapter);
2658
2659 igc_set_default_mac_filter(adapter);
2660 igc_restore_nfc_rules(adapter);
2661
2662 igc_configure_tx(adapter);
2663 igc_configure_rx(adapter);
2664
2665 igc_rx_fifo_flush_base(&adapter->hw);
2666
2667 /* call igc_desc_unused which always leaves
2668 * at least 1 descriptor unused to make sure
2669 * next_to_use != next_to_clean
2670 */
2671 for (i = 0; i < adapter->num_rx_queues; i++) {
2672 struct igc_ring *ring = adapter->rx_ring[i];
2673
2674 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2675 }
2676 }
2677
2678 /**
2679 * igc_write_ivar - configure ivar for given MSI-X vector
2680 * @hw: pointer to the HW structure
2681 * @msix_vector: vector number we are allocating to a given ring
2682 * @index: row index of IVAR register to write within IVAR table
2683 * @offset: column offset of in IVAR, should be multiple of 8
2684 *
2685 * The IVAR table consists of 2 columns,
2686 * each containing an cause allocation for an Rx and Tx ring, and a
2687 * variable number of rows depending on the number of queues supported.
2688 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)2689 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2690 int index, int offset)
2691 {
2692 u32 ivar = array_rd32(IGC_IVAR0, index);
2693
2694 /* clear any bits that are currently set */
2695 ivar &= ~((u32)0xFF << offset);
2696
2697 /* write vector and valid bit */
2698 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2699
2700 array_wr32(IGC_IVAR0, index, ivar);
2701 }
2702
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)2703 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2704 {
2705 struct igc_adapter *adapter = q_vector->adapter;
2706 struct igc_hw *hw = &adapter->hw;
2707 int rx_queue = IGC_N0_QUEUE;
2708 int tx_queue = IGC_N0_QUEUE;
2709
2710 if (q_vector->rx.ring)
2711 rx_queue = q_vector->rx.ring->reg_idx;
2712 if (q_vector->tx.ring)
2713 tx_queue = q_vector->tx.ring->reg_idx;
2714
2715 switch (hw->mac.type) {
2716 case igc_i225:
2717 if (rx_queue > IGC_N0_QUEUE)
2718 igc_write_ivar(hw, msix_vector,
2719 rx_queue >> 1,
2720 (rx_queue & 0x1) << 4);
2721 if (tx_queue > IGC_N0_QUEUE)
2722 igc_write_ivar(hw, msix_vector,
2723 tx_queue >> 1,
2724 ((tx_queue & 0x1) << 4) + 8);
2725 q_vector->eims_value = BIT(msix_vector);
2726 break;
2727 default:
2728 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2729 break;
2730 }
2731
2732 /* add q_vector eims value to global eims_enable_mask */
2733 adapter->eims_enable_mask |= q_vector->eims_value;
2734
2735 /* configure q_vector to set itr on first interrupt */
2736 q_vector->set_itr = 1;
2737 }
2738
2739 /**
2740 * igc_configure_msix - Configure MSI-X hardware
2741 * @adapter: Pointer to adapter structure
2742 *
2743 * igc_configure_msix sets up the hardware to properly
2744 * generate MSI-X interrupts.
2745 */
igc_configure_msix(struct igc_adapter * adapter)2746 static void igc_configure_msix(struct igc_adapter *adapter)
2747 {
2748 struct igc_hw *hw = &adapter->hw;
2749 int i, vector = 0;
2750 u32 tmp;
2751
2752 adapter->eims_enable_mask = 0;
2753
2754 /* set vector for other causes, i.e. link changes */
2755 switch (hw->mac.type) {
2756 case igc_i225:
2757 /* Turn on MSI-X capability first, or our settings
2758 * won't stick. And it will take days to debug.
2759 */
2760 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2761 IGC_GPIE_PBA | IGC_GPIE_EIAME |
2762 IGC_GPIE_NSICR);
2763
2764 /* enable msix_other interrupt */
2765 adapter->eims_other = BIT(vector);
2766 tmp = (vector++ | IGC_IVAR_VALID) << 8;
2767
2768 wr32(IGC_IVAR_MISC, tmp);
2769 break;
2770 default:
2771 /* do nothing, since nothing else supports MSI-X */
2772 break;
2773 } /* switch (hw->mac.type) */
2774
2775 adapter->eims_enable_mask |= adapter->eims_other;
2776
2777 for (i = 0; i < adapter->num_q_vectors; i++)
2778 igc_assign_vector(adapter->q_vector[i], vector++);
2779
2780 wrfl();
2781 }
2782
2783 /**
2784 * igc_irq_enable - Enable default interrupt generation settings
2785 * @adapter: board private structure
2786 */
igc_irq_enable(struct igc_adapter * adapter)2787 static void igc_irq_enable(struct igc_adapter *adapter)
2788 {
2789 struct igc_hw *hw = &adapter->hw;
2790
2791 if (adapter->msix_entries) {
2792 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2793 u32 regval = rd32(IGC_EIAC);
2794
2795 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2796 regval = rd32(IGC_EIAM);
2797 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2798 wr32(IGC_EIMS, adapter->eims_enable_mask);
2799 wr32(IGC_IMS, ims);
2800 } else {
2801 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2802 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2803 }
2804 }
2805
2806 /**
2807 * igc_irq_disable - Mask off interrupt generation on the NIC
2808 * @adapter: board private structure
2809 */
igc_irq_disable(struct igc_adapter * adapter)2810 static void igc_irq_disable(struct igc_adapter *adapter)
2811 {
2812 struct igc_hw *hw = &adapter->hw;
2813
2814 if (adapter->msix_entries) {
2815 u32 regval = rd32(IGC_EIAM);
2816
2817 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2818 wr32(IGC_EIMC, adapter->eims_enable_mask);
2819 regval = rd32(IGC_EIAC);
2820 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2821 }
2822
2823 wr32(IGC_IAM, 0);
2824 wr32(IGC_IMC, ~0);
2825 wrfl();
2826
2827 if (adapter->msix_entries) {
2828 int vector = 0, i;
2829
2830 synchronize_irq(adapter->msix_entries[vector++].vector);
2831
2832 for (i = 0; i < adapter->num_q_vectors; i++)
2833 synchronize_irq(adapter->msix_entries[vector++].vector);
2834 } else {
2835 synchronize_irq(adapter->pdev->irq);
2836 }
2837 }
2838
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)2839 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2840 const u32 max_rss_queues)
2841 {
2842 /* Determine if we need to pair queues. */
2843 /* If rss_queues > half of max_rss_queues, pair the queues in
2844 * order to conserve interrupts due to limited supply.
2845 */
2846 if (adapter->rss_queues > (max_rss_queues / 2))
2847 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2848 else
2849 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2850 }
2851
igc_get_max_rss_queues(struct igc_adapter * adapter)2852 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2853 {
2854 return IGC_MAX_RX_QUEUES;
2855 }
2856
igc_init_queue_configuration(struct igc_adapter * adapter)2857 static void igc_init_queue_configuration(struct igc_adapter *adapter)
2858 {
2859 u32 max_rss_queues;
2860
2861 max_rss_queues = igc_get_max_rss_queues(adapter);
2862 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2863
2864 igc_set_flag_queue_pairs(adapter, max_rss_queues);
2865 }
2866
2867 /**
2868 * igc_reset_q_vector - Reset config for interrupt vector
2869 * @adapter: board private structure to initialize
2870 * @v_idx: Index of vector to be reset
2871 *
2872 * If NAPI is enabled it will delete any references to the
2873 * NAPI struct. This is preparation for igc_free_q_vector.
2874 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)2875 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2876 {
2877 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2878
2879 /* if we're coming from igc_set_interrupt_capability, the vectors are
2880 * not yet allocated
2881 */
2882 if (!q_vector)
2883 return;
2884
2885 if (q_vector->tx.ring)
2886 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2887
2888 if (q_vector->rx.ring)
2889 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2890
2891 netif_napi_del(&q_vector->napi);
2892 }
2893
2894 /**
2895 * igc_free_q_vector - Free memory allocated for specific interrupt vector
2896 * @adapter: board private structure to initialize
2897 * @v_idx: Index of vector to be freed
2898 *
2899 * This function frees the memory allocated to the q_vector.
2900 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)2901 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2902 {
2903 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2904
2905 adapter->q_vector[v_idx] = NULL;
2906
2907 /* igc_get_stats64() might access the rings on this vector,
2908 * we must wait a grace period before freeing it.
2909 */
2910 if (q_vector)
2911 kfree_rcu(q_vector, rcu);
2912 }
2913
2914 /**
2915 * igc_free_q_vectors - Free memory allocated for interrupt vectors
2916 * @adapter: board private structure to initialize
2917 *
2918 * This function frees the memory allocated to the q_vectors. In addition if
2919 * NAPI is enabled it will delete any references to the NAPI struct prior
2920 * to freeing the q_vector.
2921 */
igc_free_q_vectors(struct igc_adapter * adapter)2922 static void igc_free_q_vectors(struct igc_adapter *adapter)
2923 {
2924 int v_idx = adapter->num_q_vectors;
2925
2926 adapter->num_tx_queues = 0;
2927 adapter->num_rx_queues = 0;
2928 adapter->num_q_vectors = 0;
2929
2930 while (v_idx--) {
2931 igc_reset_q_vector(adapter, v_idx);
2932 igc_free_q_vector(adapter, v_idx);
2933 }
2934 }
2935
2936 /**
2937 * igc_update_itr - update the dynamic ITR value based on statistics
2938 * @q_vector: pointer to q_vector
2939 * @ring_container: ring info to update the itr for
2940 *
2941 * Stores a new ITR value based on packets and byte
2942 * counts during the last interrupt. The advantage of per interrupt
2943 * computation is faster updates and more accurate ITR for the current
2944 * traffic pattern. Constants in this function were computed
2945 * based on theoretical maximum wire speed and thresholds were set based
2946 * on testing data as well as attempting to minimize response time
2947 * while increasing bulk throughput.
2948 * NOTE: These calculations are only valid when operating in a single-
2949 * queue environment.
2950 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)2951 static void igc_update_itr(struct igc_q_vector *q_vector,
2952 struct igc_ring_container *ring_container)
2953 {
2954 unsigned int packets = ring_container->total_packets;
2955 unsigned int bytes = ring_container->total_bytes;
2956 u8 itrval = ring_container->itr;
2957
2958 /* no packets, exit with status unchanged */
2959 if (packets == 0)
2960 return;
2961
2962 switch (itrval) {
2963 case lowest_latency:
2964 /* handle TSO and jumbo frames */
2965 if (bytes / packets > 8000)
2966 itrval = bulk_latency;
2967 else if ((packets < 5) && (bytes > 512))
2968 itrval = low_latency;
2969 break;
2970 case low_latency: /* 50 usec aka 20000 ints/s */
2971 if (bytes > 10000) {
2972 /* this if handles the TSO accounting */
2973 if (bytes / packets > 8000)
2974 itrval = bulk_latency;
2975 else if ((packets < 10) || ((bytes / packets) > 1200))
2976 itrval = bulk_latency;
2977 else if ((packets > 35))
2978 itrval = lowest_latency;
2979 } else if (bytes / packets > 2000) {
2980 itrval = bulk_latency;
2981 } else if (packets <= 2 && bytes < 512) {
2982 itrval = lowest_latency;
2983 }
2984 break;
2985 case bulk_latency: /* 250 usec aka 4000 ints/s */
2986 if (bytes > 25000) {
2987 if (packets > 35)
2988 itrval = low_latency;
2989 } else if (bytes < 1500) {
2990 itrval = low_latency;
2991 }
2992 break;
2993 }
2994
2995 /* clear work counters since we have the values we need */
2996 ring_container->total_bytes = 0;
2997 ring_container->total_packets = 0;
2998
2999 /* write updated itr to ring container */
3000 ring_container->itr = itrval;
3001 }
3002
igc_set_itr(struct igc_q_vector * q_vector)3003 static void igc_set_itr(struct igc_q_vector *q_vector)
3004 {
3005 struct igc_adapter *adapter = q_vector->adapter;
3006 u32 new_itr = q_vector->itr_val;
3007 u8 current_itr = 0;
3008
3009 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3010 switch (adapter->link_speed) {
3011 case SPEED_10:
3012 case SPEED_100:
3013 current_itr = 0;
3014 new_itr = IGC_4K_ITR;
3015 goto set_itr_now;
3016 default:
3017 break;
3018 }
3019
3020 igc_update_itr(q_vector, &q_vector->tx);
3021 igc_update_itr(q_vector, &q_vector->rx);
3022
3023 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3024
3025 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3026 if (current_itr == lowest_latency &&
3027 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3028 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3029 current_itr = low_latency;
3030
3031 switch (current_itr) {
3032 /* counts and packets in update_itr are dependent on these numbers */
3033 case lowest_latency:
3034 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3035 break;
3036 case low_latency:
3037 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3038 break;
3039 case bulk_latency:
3040 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3041 break;
3042 default:
3043 break;
3044 }
3045
3046 set_itr_now:
3047 if (new_itr != q_vector->itr_val) {
3048 /* this attempts to bias the interrupt rate towards Bulk
3049 * by adding intermediate steps when interrupt rate is
3050 * increasing
3051 */
3052 new_itr = new_itr > q_vector->itr_val ?
3053 max((new_itr * q_vector->itr_val) /
3054 (new_itr + (q_vector->itr_val >> 2)),
3055 new_itr) : new_itr;
3056 /* Don't write the value here; it resets the adapter's
3057 * internal timer, and causes us to delay far longer than
3058 * we should between interrupts. Instead, we write the ITR
3059 * value at the beginning of the next interrupt so the timing
3060 * ends up being correct.
3061 */
3062 q_vector->itr_val = new_itr;
3063 q_vector->set_itr = 1;
3064 }
3065 }
3066
igc_reset_interrupt_capability(struct igc_adapter * adapter)3067 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3068 {
3069 int v_idx = adapter->num_q_vectors;
3070
3071 if (adapter->msix_entries) {
3072 pci_disable_msix(adapter->pdev);
3073 kfree(adapter->msix_entries);
3074 adapter->msix_entries = NULL;
3075 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3076 pci_disable_msi(adapter->pdev);
3077 }
3078
3079 while (v_idx--)
3080 igc_reset_q_vector(adapter, v_idx);
3081 }
3082
3083 /**
3084 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3085 * @adapter: Pointer to adapter structure
3086 * @msix: boolean value for MSI-X capability
3087 *
3088 * Attempt to configure interrupts using the best available
3089 * capabilities of the hardware and kernel.
3090 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)3091 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3092 bool msix)
3093 {
3094 int numvecs, i;
3095 int err;
3096
3097 if (!msix)
3098 goto msi_only;
3099 adapter->flags |= IGC_FLAG_HAS_MSIX;
3100
3101 /* Number of supported queues. */
3102 adapter->num_rx_queues = adapter->rss_queues;
3103
3104 adapter->num_tx_queues = adapter->rss_queues;
3105
3106 /* start with one vector for every Rx queue */
3107 numvecs = adapter->num_rx_queues;
3108
3109 /* if Tx handler is separate add 1 for every Tx queue */
3110 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3111 numvecs += adapter->num_tx_queues;
3112
3113 /* store the number of vectors reserved for queues */
3114 adapter->num_q_vectors = numvecs;
3115
3116 /* add 1 vector for link status interrupts */
3117 numvecs++;
3118
3119 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3120 GFP_KERNEL);
3121
3122 if (!adapter->msix_entries)
3123 return;
3124
3125 /* populate entry values */
3126 for (i = 0; i < numvecs; i++)
3127 adapter->msix_entries[i].entry = i;
3128
3129 err = pci_enable_msix_range(adapter->pdev,
3130 adapter->msix_entries,
3131 numvecs,
3132 numvecs);
3133 if (err > 0)
3134 return;
3135
3136 kfree(adapter->msix_entries);
3137 adapter->msix_entries = NULL;
3138
3139 igc_reset_interrupt_capability(adapter);
3140
3141 msi_only:
3142 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3143
3144 adapter->rss_queues = 1;
3145 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3146 adapter->num_rx_queues = 1;
3147 adapter->num_tx_queues = 1;
3148 adapter->num_q_vectors = 1;
3149 if (!pci_enable_msi(adapter->pdev))
3150 adapter->flags |= IGC_FLAG_HAS_MSI;
3151 }
3152
3153 /**
3154 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3155 * @q_vector: pointer to q_vector
3156 *
3157 * Stores a new ITR value based on strictly on packet size. This
3158 * algorithm is less sophisticated than that used in igc_update_itr,
3159 * due to the difficulty of synchronizing statistics across multiple
3160 * receive rings. The divisors and thresholds used by this function
3161 * were determined based on theoretical maximum wire speed and testing
3162 * data, in order to minimize response time while increasing bulk
3163 * throughput.
3164 * NOTE: This function is called only when operating in a multiqueue
3165 * receive environment.
3166 */
igc_update_ring_itr(struct igc_q_vector * q_vector)3167 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3168 {
3169 struct igc_adapter *adapter = q_vector->adapter;
3170 int new_val = q_vector->itr_val;
3171 int avg_wire_size = 0;
3172 unsigned int packets;
3173
3174 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3175 * ints/sec - ITR timer value of 120 ticks.
3176 */
3177 switch (adapter->link_speed) {
3178 case SPEED_10:
3179 case SPEED_100:
3180 new_val = IGC_4K_ITR;
3181 goto set_itr_val;
3182 default:
3183 break;
3184 }
3185
3186 packets = q_vector->rx.total_packets;
3187 if (packets)
3188 avg_wire_size = q_vector->rx.total_bytes / packets;
3189
3190 packets = q_vector->tx.total_packets;
3191 if (packets)
3192 avg_wire_size = max_t(u32, avg_wire_size,
3193 q_vector->tx.total_bytes / packets);
3194
3195 /* if avg_wire_size isn't set no work was done */
3196 if (!avg_wire_size)
3197 goto clear_counts;
3198
3199 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3200 avg_wire_size += 24;
3201
3202 /* Don't starve jumbo frames */
3203 avg_wire_size = min(avg_wire_size, 3000);
3204
3205 /* Give a little boost to mid-size frames */
3206 if (avg_wire_size > 300 && avg_wire_size < 1200)
3207 new_val = avg_wire_size / 3;
3208 else
3209 new_val = avg_wire_size / 2;
3210
3211 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3212 if (new_val < IGC_20K_ITR &&
3213 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3214 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3215 new_val = IGC_20K_ITR;
3216
3217 set_itr_val:
3218 if (new_val != q_vector->itr_val) {
3219 q_vector->itr_val = new_val;
3220 q_vector->set_itr = 1;
3221 }
3222 clear_counts:
3223 q_vector->rx.total_bytes = 0;
3224 q_vector->rx.total_packets = 0;
3225 q_vector->tx.total_bytes = 0;
3226 q_vector->tx.total_packets = 0;
3227 }
3228
igc_ring_irq_enable(struct igc_q_vector * q_vector)3229 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3230 {
3231 struct igc_adapter *adapter = q_vector->adapter;
3232 struct igc_hw *hw = &adapter->hw;
3233
3234 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3235 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3236 if (adapter->num_q_vectors == 1)
3237 igc_set_itr(q_vector);
3238 else
3239 igc_update_ring_itr(q_vector);
3240 }
3241
3242 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3243 if (adapter->msix_entries)
3244 wr32(IGC_EIMS, q_vector->eims_value);
3245 else
3246 igc_irq_enable(adapter);
3247 }
3248 }
3249
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)3250 static void igc_add_ring(struct igc_ring *ring,
3251 struct igc_ring_container *head)
3252 {
3253 head->ring = ring;
3254 head->count++;
3255 }
3256
3257 /**
3258 * igc_cache_ring_register - Descriptor ring to register mapping
3259 * @adapter: board private structure to initialize
3260 *
3261 * Once we know the feature-set enabled for the device, we'll cache
3262 * the register offset the descriptor ring is assigned to.
3263 */
igc_cache_ring_register(struct igc_adapter * adapter)3264 static void igc_cache_ring_register(struct igc_adapter *adapter)
3265 {
3266 int i = 0, j = 0;
3267
3268 switch (adapter->hw.mac.type) {
3269 case igc_i225:
3270 default:
3271 for (; i < adapter->num_rx_queues; i++)
3272 adapter->rx_ring[i]->reg_idx = i;
3273 for (; j < adapter->num_tx_queues; j++)
3274 adapter->tx_ring[j]->reg_idx = j;
3275 break;
3276 }
3277 }
3278
3279 /**
3280 * igc_poll - NAPI Rx polling callback
3281 * @napi: napi polling structure
3282 * @budget: count of how many packets we should handle
3283 */
igc_poll(struct napi_struct * napi,int budget)3284 static int igc_poll(struct napi_struct *napi, int budget)
3285 {
3286 struct igc_q_vector *q_vector = container_of(napi,
3287 struct igc_q_vector,
3288 napi);
3289 bool clean_complete = true;
3290 int work_done = 0;
3291
3292 if (q_vector->tx.ring)
3293 clean_complete = igc_clean_tx_irq(q_vector, budget);
3294
3295 if (q_vector->rx.ring) {
3296 int cleaned = igc_clean_rx_irq(q_vector, budget);
3297
3298 work_done += cleaned;
3299 if (cleaned >= budget)
3300 clean_complete = false;
3301 }
3302
3303 /* If all work not completed, return budget and keep polling */
3304 if (!clean_complete)
3305 return budget;
3306
3307 /* Exit the polling mode, but don't re-enable interrupts if stack might
3308 * poll us due to busy-polling
3309 */
3310 if (likely(napi_complete_done(napi, work_done)))
3311 igc_ring_irq_enable(q_vector);
3312
3313 return min(work_done, budget - 1);
3314 }
3315
3316 /**
3317 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3318 * @adapter: board private structure to initialize
3319 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3320 * @v_idx: index of vector in adapter struct
3321 * @txr_count: total number of Tx rings to allocate
3322 * @txr_idx: index of first Tx ring to allocate
3323 * @rxr_count: total number of Rx rings to allocate
3324 * @rxr_idx: index of first Rx ring to allocate
3325 *
3326 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3327 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)3328 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3329 unsigned int v_count, unsigned int v_idx,
3330 unsigned int txr_count, unsigned int txr_idx,
3331 unsigned int rxr_count, unsigned int rxr_idx)
3332 {
3333 struct igc_q_vector *q_vector;
3334 struct igc_ring *ring;
3335 int ring_count;
3336
3337 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3338 if (txr_count > 1 || rxr_count > 1)
3339 return -ENOMEM;
3340
3341 ring_count = txr_count + rxr_count;
3342
3343 /* allocate q_vector and rings */
3344 q_vector = adapter->q_vector[v_idx];
3345 if (!q_vector)
3346 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3347 GFP_KERNEL);
3348 else
3349 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3350 if (!q_vector)
3351 return -ENOMEM;
3352
3353 /* initialize NAPI */
3354 netif_napi_add(adapter->netdev, &q_vector->napi,
3355 igc_poll, 64);
3356
3357 /* tie q_vector and adapter together */
3358 adapter->q_vector[v_idx] = q_vector;
3359 q_vector->adapter = adapter;
3360
3361 /* initialize work limits */
3362 q_vector->tx.work_limit = adapter->tx_work_limit;
3363
3364 /* initialize ITR configuration */
3365 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3366 q_vector->itr_val = IGC_START_ITR;
3367
3368 /* initialize pointer to rings */
3369 ring = q_vector->ring;
3370
3371 /* initialize ITR */
3372 if (rxr_count) {
3373 /* rx or rx/tx vector */
3374 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3375 q_vector->itr_val = adapter->rx_itr_setting;
3376 } else {
3377 /* tx only vector */
3378 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3379 q_vector->itr_val = adapter->tx_itr_setting;
3380 }
3381
3382 if (txr_count) {
3383 /* assign generic ring traits */
3384 ring->dev = &adapter->pdev->dev;
3385 ring->netdev = adapter->netdev;
3386
3387 /* configure backlink on ring */
3388 ring->q_vector = q_vector;
3389
3390 /* update q_vector Tx values */
3391 igc_add_ring(ring, &q_vector->tx);
3392
3393 /* apply Tx specific ring traits */
3394 ring->count = adapter->tx_ring_count;
3395 ring->queue_index = txr_idx;
3396
3397 /* assign ring to adapter */
3398 adapter->tx_ring[txr_idx] = ring;
3399
3400 /* push pointer to next ring */
3401 ring++;
3402 }
3403
3404 if (rxr_count) {
3405 /* assign generic ring traits */
3406 ring->dev = &adapter->pdev->dev;
3407 ring->netdev = adapter->netdev;
3408
3409 /* configure backlink on ring */
3410 ring->q_vector = q_vector;
3411
3412 /* update q_vector Rx values */
3413 igc_add_ring(ring, &q_vector->rx);
3414
3415 /* apply Rx specific ring traits */
3416 ring->count = adapter->rx_ring_count;
3417 ring->queue_index = rxr_idx;
3418
3419 /* assign ring to adapter */
3420 adapter->rx_ring[rxr_idx] = ring;
3421 }
3422
3423 return 0;
3424 }
3425
3426 /**
3427 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3428 * @adapter: board private structure to initialize
3429 *
3430 * We allocate one q_vector per queue interrupt. If allocation fails we
3431 * return -ENOMEM.
3432 */
igc_alloc_q_vectors(struct igc_adapter * adapter)3433 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3434 {
3435 int rxr_remaining = adapter->num_rx_queues;
3436 int txr_remaining = adapter->num_tx_queues;
3437 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3438 int q_vectors = adapter->num_q_vectors;
3439 int err;
3440
3441 if (q_vectors >= (rxr_remaining + txr_remaining)) {
3442 for (; rxr_remaining; v_idx++) {
3443 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3444 0, 0, 1, rxr_idx);
3445
3446 if (err)
3447 goto err_out;
3448
3449 /* update counts and index */
3450 rxr_remaining--;
3451 rxr_idx++;
3452 }
3453 }
3454
3455 for (; v_idx < q_vectors; v_idx++) {
3456 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3457 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3458
3459 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3460 tqpv, txr_idx, rqpv, rxr_idx);
3461
3462 if (err)
3463 goto err_out;
3464
3465 /* update counts and index */
3466 rxr_remaining -= rqpv;
3467 txr_remaining -= tqpv;
3468 rxr_idx++;
3469 txr_idx++;
3470 }
3471
3472 return 0;
3473
3474 err_out:
3475 adapter->num_tx_queues = 0;
3476 adapter->num_rx_queues = 0;
3477 adapter->num_q_vectors = 0;
3478
3479 while (v_idx--)
3480 igc_free_q_vector(adapter, v_idx);
3481
3482 return -ENOMEM;
3483 }
3484
3485 /**
3486 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3487 * @adapter: Pointer to adapter structure
3488 * @msix: boolean for MSI-X capability
3489 *
3490 * This function initializes the interrupts and allocates all of the queues.
3491 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)3492 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3493 {
3494 struct net_device *dev = adapter->netdev;
3495 int err = 0;
3496
3497 igc_set_interrupt_capability(adapter, msix);
3498
3499 err = igc_alloc_q_vectors(adapter);
3500 if (err) {
3501 netdev_err(dev, "Unable to allocate memory for vectors\n");
3502 goto err_alloc_q_vectors;
3503 }
3504
3505 igc_cache_ring_register(adapter);
3506
3507 return 0;
3508
3509 err_alloc_q_vectors:
3510 igc_reset_interrupt_capability(adapter);
3511 return err;
3512 }
3513
3514 /**
3515 * igc_sw_init - Initialize general software structures (struct igc_adapter)
3516 * @adapter: board private structure to initialize
3517 *
3518 * igc_sw_init initializes the Adapter private data structure.
3519 * Fields are initialized based on PCI device information and
3520 * OS network device settings (MTU size).
3521 */
igc_sw_init(struct igc_adapter * adapter)3522 static int igc_sw_init(struct igc_adapter *adapter)
3523 {
3524 struct net_device *netdev = adapter->netdev;
3525 struct pci_dev *pdev = adapter->pdev;
3526 struct igc_hw *hw = &adapter->hw;
3527
3528 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3529
3530 /* set default ring sizes */
3531 adapter->tx_ring_count = IGC_DEFAULT_TXD;
3532 adapter->rx_ring_count = IGC_DEFAULT_RXD;
3533
3534 /* set default ITR values */
3535 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3536 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3537
3538 /* set default work limits */
3539 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3540
3541 /* adjust max frame to be at least the size of a standard frame */
3542 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3543 VLAN_HLEN;
3544 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3545
3546 mutex_init(&adapter->nfc_rule_lock);
3547 INIT_LIST_HEAD(&adapter->nfc_rule_list);
3548 adapter->nfc_rule_count = 0;
3549
3550 spin_lock_init(&adapter->stats64_lock);
3551 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3552 adapter->flags |= IGC_FLAG_HAS_MSIX;
3553
3554 igc_init_queue_configuration(adapter);
3555
3556 /* This call may decrease the number of queues */
3557 if (igc_init_interrupt_scheme(adapter, true)) {
3558 netdev_err(netdev, "Unable to allocate memory for queues\n");
3559 return -ENOMEM;
3560 }
3561
3562 /* Explicitly disable IRQ since the NIC can be in any state. */
3563 igc_irq_disable(adapter);
3564
3565 set_bit(__IGC_DOWN, &adapter->state);
3566
3567 return 0;
3568 }
3569
3570 /**
3571 * igc_up - Open the interface and prepare it to handle traffic
3572 * @adapter: board private structure
3573 */
igc_up(struct igc_adapter * adapter)3574 void igc_up(struct igc_adapter *adapter)
3575 {
3576 struct igc_hw *hw = &adapter->hw;
3577 int i = 0;
3578
3579 /* hardware has been reset, we need to reload some things */
3580 igc_configure(adapter);
3581
3582 clear_bit(__IGC_DOWN, &adapter->state);
3583
3584 for (i = 0; i < adapter->num_q_vectors; i++)
3585 napi_enable(&adapter->q_vector[i]->napi);
3586
3587 if (adapter->msix_entries)
3588 igc_configure_msix(adapter);
3589 else
3590 igc_assign_vector(adapter->q_vector[0], 0);
3591
3592 /* Clear any pending interrupts. */
3593 rd32(IGC_ICR);
3594 igc_irq_enable(adapter);
3595
3596 netif_tx_start_all_queues(adapter->netdev);
3597
3598 /* start the watchdog. */
3599 hw->mac.get_link_status = 1;
3600 schedule_work(&adapter->watchdog_task);
3601 }
3602
3603 /**
3604 * igc_update_stats - Update the board statistics counters
3605 * @adapter: board private structure
3606 */
igc_update_stats(struct igc_adapter * adapter)3607 void igc_update_stats(struct igc_adapter *adapter)
3608 {
3609 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3610 struct pci_dev *pdev = adapter->pdev;
3611 struct igc_hw *hw = &adapter->hw;
3612 u64 _bytes, _packets;
3613 u64 bytes, packets;
3614 unsigned int start;
3615 u32 mpc;
3616 int i;
3617
3618 /* Prevent stats update while adapter is being reset, or if the pci
3619 * connection is down.
3620 */
3621 if (adapter->link_speed == 0)
3622 return;
3623 if (pci_channel_offline(pdev))
3624 return;
3625
3626 packets = 0;
3627 bytes = 0;
3628
3629 rcu_read_lock();
3630 for (i = 0; i < adapter->num_rx_queues; i++) {
3631 struct igc_ring *ring = adapter->rx_ring[i];
3632 u32 rqdpc = rd32(IGC_RQDPC(i));
3633
3634 if (hw->mac.type >= igc_i225)
3635 wr32(IGC_RQDPC(i), 0);
3636
3637 if (rqdpc) {
3638 ring->rx_stats.drops += rqdpc;
3639 net_stats->rx_fifo_errors += rqdpc;
3640 }
3641
3642 do {
3643 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3644 _bytes = ring->rx_stats.bytes;
3645 _packets = ring->rx_stats.packets;
3646 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3647 bytes += _bytes;
3648 packets += _packets;
3649 }
3650
3651 net_stats->rx_bytes = bytes;
3652 net_stats->rx_packets = packets;
3653
3654 packets = 0;
3655 bytes = 0;
3656 for (i = 0; i < adapter->num_tx_queues; i++) {
3657 struct igc_ring *ring = adapter->tx_ring[i];
3658
3659 do {
3660 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3661 _bytes = ring->tx_stats.bytes;
3662 _packets = ring->tx_stats.packets;
3663 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3664 bytes += _bytes;
3665 packets += _packets;
3666 }
3667 net_stats->tx_bytes = bytes;
3668 net_stats->tx_packets = packets;
3669 rcu_read_unlock();
3670
3671 /* read stats registers */
3672 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3673 adapter->stats.gprc += rd32(IGC_GPRC);
3674 adapter->stats.gorc += rd32(IGC_GORCL);
3675 rd32(IGC_GORCH); /* clear GORCL */
3676 adapter->stats.bprc += rd32(IGC_BPRC);
3677 adapter->stats.mprc += rd32(IGC_MPRC);
3678 adapter->stats.roc += rd32(IGC_ROC);
3679
3680 adapter->stats.prc64 += rd32(IGC_PRC64);
3681 adapter->stats.prc127 += rd32(IGC_PRC127);
3682 adapter->stats.prc255 += rd32(IGC_PRC255);
3683 adapter->stats.prc511 += rd32(IGC_PRC511);
3684 adapter->stats.prc1023 += rd32(IGC_PRC1023);
3685 adapter->stats.prc1522 += rd32(IGC_PRC1522);
3686 adapter->stats.tlpic += rd32(IGC_TLPIC);
3687 adapter->stats.rlpic += rd32(IGC_RLPIC);
3688
3689 mpc = rd32(IGC_MPC);
3690 adapter->stats.mpc += mpc;
3691 net_stats->rx_fifo_errors += mpc;
3692 adapter->stats.scc += rd32(IGC_SCC);
3693 adapter->stats.ecol += rd32(IGC_ECOL);
3694 adapter->stats.mcc += rd32(IGC_MCC);
3695 adapter->stats.latecol += rd32(IGC_LATECOL);
3696 adapter->stats.dc += rd32(IGC_DC);
3697 adapter->stats.rlec += rd32(IGC_RLEC);
3698 adapter->stats.xonrxc += rd32(IGC_XONRXC);
3699 adapter->stats.xontxc += rd32(IGC_XONTXC);
3700 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3701 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3702 adapter->stats.fcruc += rd32(IGC_FCRUC);
3703 adapter->stats.gptc += rd32(IGC_GPTC);
3704 adapter->stats.gotc += rd32(IGC_GOTCL);
3705 rd32(IGC_GOTCH); /* clear GOTCL */
3706 adapter->stats.rnbc += rd32(IGC_RNBC);
3707 adapter->stats.ruc += rd32(IGC_RUC);
3708 adapter->stats.rfc += rd32(IGC_RFC);
3709 adapter->stats.rjc += rd32(IGC_RJC);
3710 adapter->stats.tor += rd32(IGC_TORH);
3711 adapter->stats.tot += rd32(IGC_TOTH);
3712 adapter->stats.tpr += rd32(IGC_TPR);
3713
3714 adapter->stats.ptc64 += rd32(IGC_PTC64);
3715 adapter->stats.ptc127 += rd32(IGC_PTC127);
3716 adapter->stats.ptc255 += rd32(IGC_PTC255);
3717 adapter->stats.ptc511 += rd32(IGC_PTC511);
3718 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3719 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3720
3721 adapter->stats.mptc += rd32(IGC_MPTC);
3722 adapter->stats.bptc += rd32(IGC_BPTC);
3723
3724 adapter->stats.tpt += rd32(IGC_TPT);
3725 adapter->stats.colc += rd32(IGC_COLC);
3726 adapter->stats.colc += rd32(IGC_RERC);
3727
3728 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3729
3730 adapter->stats.tsctc += rd32(IGC_TSCTC);
3731
3732 adapter->stats.iac += rd32(IGC_IAC);
3733
3734 /* Fill out the OS statistics structure */
3735 net_stats->multicast = adapter->stats.mprc;
3736 net_stats->collisions = adapter->stats.colc;
3737
3738 /* Rx Errors */
3739
3740 /* RLEC on some newer hardware can be incorrect so build
3741 * our own version based on RUC and ROC
3742 */
3743 net_stats->rx_errors = adapter->stats.rxerrc +
3744 adapter->stats.crcerrs + adapter->stats.algnerrc +
3745 adapter->stats.ruc + adapter->stats.roc +
3746 adapter->stats.cexterr;
3747 net_stats->rx_length_errors = adapter->stats.ruc +
3748 adapter->stats.roc;
3749 net_stats->rx_crc_errors = adapter->stats.crcerrs;
3750 net_stats->rx_frame_errors = adapter->stats.algnerrc;
3751 net_stats->rx_missed_errors = adapter->stats.mpc;
3752
3753 /* Tx Errors */
3754 net_stats->tx_errors = adapter->stats.ecol +
3755 adapter->stats.latecol;
3756 net_stats->tx_aborted_errors = adapter->stats.ecol;
3757 net_stats->tx_window_errors = adapter->stats.latecol;
3758 net_stats->tx_carrier_errors = adapter->stats.tncrs;
3759
3760 /* Tx Dropped needs to be maintained elsewhere */
3761
3762 /* Management Stats */
3763 adapter->stats.mgptc += rd32(IGC_MGTPTC);
3764 adapter->stats.mgprc += rd32(IGC_MGTPRC);
3765 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3766 }
3767
3768 /**
3769 * igc_down - Close the interface
3770 * @adapter: board private structure
3771 */
igc_down(struct igc_adapter * adapter)3772 void igc_down(struct igc_adapter *adapter)
3773 {
3774 struct net_device *netdev = adapter->netdev;
3775 struct igc_hw *hw = &adapter->hw;
3776 u32 tctl, rctl;
3777 int i = 0;
3778
3779 set_bit(__IGC_DOWN, &adapter->state);
3780
3781 igc_ptp_suspend(adapter);
3782
3783 /* disable receives in the hardware */
3784 rctl = rd32(IGC_RCTL);
3785 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3786 /* flush and sleep below */
3787
3788 /* set trans_start so we don't get spurious watchdogs during reset */
3789 netif_trans_update(netdev);
3790
3791 netif_carrier_off(netdev);
3792 netif_tx_stop_all_queues(netdev);
3793
3794 /* disable transmits in the hardware */
3795 tctl = rd32(IGC_TCTL);
3796 tctl &= ~IGC_TCTL_EN;
3797 wr32(IGC_TCTL, tctl);
3798 /* flush both disables and wait for them to finish */
3799 wrfl();
3800 usleep_range(10000, 20000);
3801
3802 igc_irq_disable(adapter);
3803
3804 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3805
3806 for (i = 0; i < adapter->num_q_vectors; i++) {
3807 if (adapter->q_vector[i]) {
3808 napi_synchronize(&adapter->q_vector[i]->napi);
3809 napi_disable(&adapter->q_vector[i]->napi);
3810 }
3811 }
3812
3813 del_timer_sync(&adapter->watchdog_timer);
3814 del_timer_sync(&adapter->phy_info_timer);
3815
3816 /* record the stats before reset*/
3817 spin_lock(&adapter->stats64_lock);
3818 igc_update_stats(adapter);
3819 spin_unlock(&adapter->stats64_lock);
3820
3821 adapter->link_speed = 0;
3822 adapter->link_duplex = 0;
3823
3824 if (!pci_channel_offline(adapter->pdev))
3825 igc_reset(adapter);
3826
3827 /* clear VLAN promisc flag so VFTA will be updated if necessary */
3828 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3829
3830 igc_clean_all_tx_rings(adapter);
3831 igc_clean_all_rx_rings(adapter);
3832 }
3833
igc_reinit_locked(struct igc_adapter * adapter)3834 void igc_reinit_locked(struct igc_adapter *adapter)
3835 {
3836 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3837 usleep_range(1000, 2000);
3838 igc_down(adapter);
3839 igc_up(adapter);
3840 clear_bit(__IGC_RESETTING, &adapter->state);
3841 }
3842
igc_reset_task(struct work_struct * work)3843 static void igc_reset_task(struct work_struct *work)
3844 {
3845 struct igc_adapter *adapter;
3846
3847 adapter = container_of(work, struct igc_adapter, reset_task);
3848
3849 igc_rings_dump(adapter);
3850 igc_regs_dump(adapter);
3851 netdev_err(adapter->netdev, "Reset adapter\n");
3852 igc_reinit_locked(adapter);
3853 }
3854
3855 /**
3856 * igc_change_mtu - Change the Maximum Transfer Unit
3857 * @netdev: network interface device structure
3858 * @new_mtu: new value for maximum frame size
3859 *
3860 * Returns 0 on success, negative on failure
3861 */
igc_change_mtu(struct net_device * netdev,int new_mtu)3862 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3863 {
3864 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3865 struct igc_adapter *adapter = netdev_priv(netdev);
3866
3867 /* adjust max frame to be at least the size of a standard frame */
3868 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3869 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3870
3871 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3872 usleep_range(1000, 2000);
3873
3874 /* igc_down has a dependency on max_frame_size */
3875 adapter->max_frame_size = max_frame;
3876
3877 if (netif_running(netdev))
3878 igc_down(adapter);
3879
3880 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3881 netdev->mtu = new_mtu;
3882
3883 if (netif_running(netdev))
3884 igc_up(adapter);
3885 else
3886 igc_reset(adapter);
3887
3888 clear_bit(__IGC_RESETTING, &adapter->state);
3889
3890 return 0;
3891 }
3892
3893 /**
3894 * igc_get_stats64 - Get System Network Statistics
3895 * @netdev: network interface device structure
3896 * @stats: rtnl_link_stats64 pointer
3897 *
3898 * Returns the address of the device statistics structure.
3899 * The statistics are updated here and also from the timer callback.
3900 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)3901 static void igc_get_stats64(struct net_device *netdev,
3902 struct rtnl_link_stats64 *stats)
3903 {
3904 struct igc_adapter *adapter = netdev_priv(netdev);
3905
3906 spin_lock(&adapter->stats64_lock);
3907 if (!test_bit(__IGC_RESETTING, &adapter->state))
3908 igc_update_stats(adapter);
3909 memcpy(stats, &adapter->stats64, sizeof(*stats));
3910 spin_unlock(&adapter->stats64_lock);
3911 }
3912
igc_fix_features(struct net_device * netdev,netdev_features_t features)3913 static netdev_features_t igc_fix_features(struct net_device *netdev,
3914 netdev_features_t features)
3915 {
3916 /* Since there is no support for separate Rx/Tx vlan accel
3917 * enable/disable make sure Tx flag is always in same state as Rx.
3918 */
3919 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3920 features |= NETIF_F_HW_VLAN_CTAG_TX;
3921 else
3922 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3923
3924 return features;
3925 }
3926
igc_set_features(struct net_device * netdev,netdev_features_t features)3927 static int igc_set_features(struct net_device *netdev,
3928 netdev_features_t features)
3929 {
3930 netdev_features_t changed = netdev->features ^ features;
3931 struct igc_adapter *adapter = netdev_priv(netdev);
3932
3933 /* Add VLAN support */
3934 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3935 return 0;
3936
3937 if (!(features & NETIF_F_NTUPLE))
3938 igc_flush_nfc_rules(adapter);
3939
3940 netdev->features = features;
3941
3942 if (netif_running(netdev))
3943 igc_reinit_locked(adapter);
3944 else
3945 igc_reset(adapter);
3946
3947 return 1;
3948 }
3949
3950 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3951 igc_features_check(struct sk_buff *skb, struct net_device *dev,
3952 netdev_features_t features)
3953 {
3954 unsigned int network_hdr_len, mac_hdr_len;
3955
3956 /* Make certain the headers can be described by a context descriptor */
3957 mac_hdr_len = skb_network_header(skb) - skb->data;
3958 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3959 return features & ~(NETIF_F_HW_CSUM |
3960 NETIF_F_SCTP_CRC |
3961 NETIF_F_HW_VLAN_CTAG_TX |
3962 NETIF_F_TSO |
3963 NETIF_F_TSO6);
3964
3965 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3966 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
3967 return features & ~(NETIF_F_HW_CSUM |
3968 NETIF_F_SCTP_CRC |
3969 NETIF_F_TSO |
3970 NETIF_F_TSO6);
3971
3972 /* We can only support IPv4 TSO in tunnels if we can mangle the
3973 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3974 */
3975 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3976 features &= ~NETIF_F_TSO;
3977
3978 return features;
3979 }
3980
igc_tsync_interrupt(struct igc_adapter * adapter)3981 static void igc_tsync_interrupt(struct igc_adapter *adapter)
3982 {
3983 struct igc_hw *hw = &adapter->hw;
3984 u32 tsicr = rd32(IGC_TSICR);
3985 u32 ack = 0;
3986
3987 if (tsicr & IGC_TSICR_TXTS) {
3988 /* retrieve hardware timestamp */
3989 schedule_work(&adapter->ptp_tx_work);
3990 ack |= IGC_TSICR_TXTS;
3991 }
3992
3993 /* acknowledge the interrupts */
3994 wr32(IGC_TSICR, ack);
3995 }
3996
3997 /**
3998 * igc_msix_other - msix other interrupt handler
3999 * @irq: interrupt number
4000 * @data: pointer to a q_vector
4001 */
igc_msix_other(int irq,void * data)4002 static irqreturn_t igc_msix_other(int irq, void *data)
4003 {
4004 struct igc_adapter *adapter = data;
4005 struct igc_hw *hw = &adapter->hw;
4006 u32 icr = rd32(IGC_ICR);
4007
4008 /* reading ICR causes bit 31 of EICR to be cleared */
4009 if (icr & IGC_ICR_DRSTA)
4010 schedule_work(&adapter->reset_task);
4011
4012 if (icr & IGC_ICR_DOUTSYNC) {
4013 /* HW is reporting DMA is out of sync */
4014 adapter->stats.doosync++;
4015 }
4016
4017 if (icr & IGC_ICR_LSC) {
4018 hw->mac.get_link_status = 1;
4019 /* guard against interrupt when we're going down */
4020 if (!test_bit(__IGC_DOWN, &adapter->state))
4021 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4022 }
4023
4024 if (icr & IGC_ICR_TS)
4025 igc_tsync_interrupt(adapter);
4026
4027 wr32(IGC_EIMS, adapter->eims_other);
4028
4029 return IRQ_HANDLED;
4030 }
4031
igc_write_itr(struct igc_q_vector * q_vector)4032 static void igc_write_itr(struct igc_q_vector *q_vector)
4033 {
4034 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4035
4036 if (!q_vector->set_itr)
4037 return;
4038
4039 if (!itr_val)
4040 itr_val = IGC_ITR_VAL_MASK;
4041
4042 itr_val |= IGC_EITR_CNT_IGNR;
4043
4044 writel(itr_val, q_vector->itr_register);
4045 q_vector->set_itr = 0;
4046 }
4047
igc_msix_ring(int irq,void * data)4048 static irqreturn_t igc_msix_ring(int irq, void *data)
4049 {
4050 struct igc_q_vector *q_vector = data;
4051
4052 /* Write the ITR value calculated from the previous interrupt. */
4053 igc_write_itr(q_vector);
4054
4055 napi_schedule(&q_vector->napi);
4056
4057 return IRQ_HANDLED;
4058 }
4059
4060 /**
4061 * igc_request_msix - Initialize MSI-X interrupts
4062 * @adapter: Pointer to adapter structure
4063 *
4064 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4065 * kernel.
4066 */
igc_request_msix(struct igc_adapter * adapter)4067 static int igc_request_msix(struct igc_adapter *adapter)
4068 {
4069 int i = 0, err = 0, vector = 0, free_vector = 0;
4070 struct net_device *netdev = adapter->netdev;
4071
4072 err = request_irq(adapter->msix_entries[vector].vector,
4073 &igc_msix_other, 0, netdev->name, adapter);
4074 if (err)
4075 goto err_out;
4076
4077 for (i = 0; i < adapter->num_q_vectors; i++) {
4078 struct igc_q_vector *q_vector = adapter->q_vector[i];
4079
4080 vector++;
4081
4082 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4083
4084 if (q_vector->rx.ring && q_vector->tx.ring)
4085 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4086 q_vector->rx.ring->queue_index);
4087 else if (q_vector->tx.ring)
4088 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4089 q_vector->tx.ring->queue_index);
4090 else if (q_vector->rx.ring)
4091 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4092 q_vector->rx.ring->queue_index);
4093 else
4094 sprintf(q_vector->name, "%s-unused", netdev->name);
4095
4096 err = request_irq(adapter->msix_entries[vector].vector,
4097 igc_msix_ring, 0, q_vector->name,
4098 q_vector);
4099 if (err)
4100 goto err_free;
4101 }
4102
4103 igc_configure_msix(adapter);
4104 return 0;
4105
4106 err_free:
4107 /* free already assigned IRQs */
4108 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4109
4110 vector--;
4111 for (i = 0; i < vector; i++) {
4112 free_irq(adapter->msix_entries[free_vector++].vector,
4113 adapter->q_vector[i]);
4114 }
4115 err_out:
4116 return err;
4117 }
4118
4119 /**
4120 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4121 * @adapter: Pointer to adapter structure
4122 *
4123 * This function resets the device so that it has 0 rx queues, tx queues, and
4124 * MSI-X interrupts allocated.
4125 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)4126 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4127 {
4128 igc_free_q_vectors(adapter);
4129 igc_reset_interrupt_capability(adapter);
4130 }
4131
4132 /* Need to wait a few seconds after link up to get diagnostic information from
4133 * the phy
4134 */
igc_update_phy_info(struct timer_list * t)4135 static void igc_update_phy_info(struct timer_list *t)
4136 {
4137 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4138
4139 igc_get_phy_info(&adapter->hw);
4140 }
4141
4142 /**
4143 * igc_has_link - check shared code for link and determine up/down
4144 * @adapter: pointer to driver private info
4145 */
igc_has_link(struct igc_adapter * adapter)4146 bool igc_has_link(struct igc_adapter *adapter)
4147 {
4148 struct igc_hw *hw = &adapter->hw;
4149 bool link_active = false;
4150
4151 /* get_link_status is set on LSC (link status) interrupt or
4152 * rx sequence error interrupt. get_link_status will stay
4153 * false until the igc_check_for_link establishes link
4154 * for copper adapters ONLY
4155 */
4156 switch (hw->phy.media_type) {
4157 case igc_media_type_copper:
4158 if (!hw->mac.get_link_status)
4159 return true;
4160 hw->mac.ops.check_for_link(hw);
4161 link_active = !hw->mac.get_link_status;
4162 break;
4163 default:
4164 case igc_media_type_unknown:
4165 break;
4166 }
4167
4168 if (hw->mac.type == igc_i225 &&
4169 hw->phy.id == I225_I_PHY_ID) {
4170 if (!netif_carrier_ok(adapter->netdev)) {
4171 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4172 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4173 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4174 adapter->link_check_timeout = jiffies;
4175 }
4176 }
4177
4178 return link_active;
4179 }
4180
4181 /**
4182 * igc_watchdog - Timer Call-back
4183 * @t: timer for the watchdog
4184 */
igc_watchdog(struct timer_list * t)4185 static void igc_watchdog(struct timer_list *t)
4186 {
4187 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4188 /* Do the rest outside of interrupt context */
4189 schedule_work(&adapter->watchdog_task);
4190 }
4191
igc_watchdog_task(struct work_struct * work)4192 static void igc_watchdog_task(struct work_struct *work)
4193 {
4194 struct igc_adapter *adapter = container_of(work,
4195 struct igc_adapter,
4196 watchdog_task);
4197 struct net_device *netdev = adapter->netdev;
4198 struct igc_hw *hw = &adapter->hw;
4199 struct igc_phy_info *phy = &hw->phy;
4200 u16 phy_data, retry_count = 20;
4201 u32 link;
4202 int i;
4203
4204 link = igc_has_link(adapter);
4205
4206 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4207 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4208 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4209 else
4210 link = false;
4211 }
4212
4213 if (link) {
4214 /* Cancel scheduled suspend requests. */
4215 pm_runtime_resume(netdev->dev.parent);
4216
4217 if (!netif_carrier_ok(netdev)) {
4218 u32 ctrl;
4219
4220 hw->mac.ops.get_speed_and_duplex(hw,
4221 &adapter->link_speed,
4222 &adapter->link_duplex);
4223
4224 ctrl = rd32(IGC_CTRL);
4225 /* Link status message must follow this format */
4226 netdev_info(netdev,
4227 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4228 adapter->link_speed,
4229 adapter->link_duplex == FULL_DUPLEX ?
4230 "Full" : "Half",
4231 (ctrl & IGC_CTRL_TFCE) &&
4232 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4233 (ctrl & IGC_CTRL_RFCE) ? "RX" :
4234 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
4235
4236 /* disable EEE if enabled */
4237 if ((adapter->flags & IGC_FLAG_EEE) &&
4238 adapter->link_duplex == HALF_DUPLEX) {
4239 netdev_info(netdev,
4240 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4241 adapter->hw.dev_spec._base.eee_enable = false;
4242 adapter->flags &= ~IGC_FLAG_EEE;
4243 }
4244
4245 /* check if SmartSpeed worked */
4246 igc_check_downshift(hw);
4247 if (phy->speed_downgraded)
4248 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4249
4250 /* adjust timeout factor according to speed/duplex */
4251 adapter->tx_timeout_factor = 1;
4252 switch (adapter->link_speed) {
4253 case SPEED_10:
4254 adapter->tx_timeout_factor = 14;
4255 break;
4256 case SPEED_100:
4257 /* maybe add some timeout factor ? */
4258 break;
4259 }
4260
4261 if (adapter->link_speed != SPEED_1000)
4262 goto no_wait;
4263
4264 /* wait for Remote receiver status OK */
4265 retry_read_status:
4266 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4267 &phy_data)) {
4268 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4269 retry_count) {
4270 msleep(100);
4271 retry_count--;
4272 goto retry_read_status;
4273 } else if (!retry_count) {
4274 netdev_err(netdev, "exceed max 2 second\n");
4275 }
4276 } else {
4277 netdev_err(netdev, "read 1000Base-T Status Reg\n");
4278 }
4279 no_wait:
4280 netif_carrier_on(netdev);
4281
4282 /* link state has changed, schedule phy info update */
4283 if (!test_bit(__IGC_DOWN, &adapter->state))
4284 mod_timer(&adapter->phy_info_timer,
4285 round_jiffies(jiffies + 2 * HZ));
4286 }
4287 } else {
4288 if (netif_carrier_ok(netdev)) {
4289 adapter->link_speed = 0;
4290 adapter->link_duplex = 0;
4291
4292 /* Links status message must follow this format */
4293 netdev_info(netdev, "NIC Link is Down\n");
4294 netif_carrier_off(netdev);
4295
4296 /* link state has changed, schedule phy info update */
4297 if (!test_bit(__IGC_DOWN, &adapter->state))
4298 mod_timer(&adapter->phy_info_timer,
4299 round_jiffies(jiffies + 2 * HZ));
4300
4301 /* link is down, time to check for alternate media */
4302 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4303 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4304 schedule_work(&adapter->reset_task);
4305 /* return immediately */
4306 return;
4307 }
4308 }
4309 pm_schedule_suspend(netdev->dev.parent,
4310 MSEC_PER_SEC * 5);
4311
4312 /* also check for alternate media here */
4313 } else if (!netif_carrier_ok(netdev) &&
4314 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4315 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4316 schedule_work(&adapter->reset_task);
4317 /* return immediately */
4318 return;
4319 }
4320 }
4321 }
4322
4323 spin_lock(&adapter->stats64_lock);
4324 igc_update_stats(adapter);
4325 spin_unlock(&adapter->stats64_lock);
4326
4327 for (i = 0; i < adapter->num_tx_queues; i++) {
4328 struct igc_ring *tx_ring = adapter->tx_ring[i];
4329
4330 if (!netif_carrier_ok(netdev)) {
4331 /* We've lost link, so the controller stops DMA,
4332 * but we've got queued Tx work that's never going
4333 * to get done, so reset controller to flush Tx.
4334 * (Do the reset outside of interrupt context).
4335 */
4336 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4337 adapter->tx_timeout_count++;
4338 schedule_work(&adapter->reset_task);
4339 /* return immediately since reset is imminent */
4340 return;
4341 }
4342 }
4343
4344 /* Force detection of hung controller every watchdog period */
4345 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4346 }
4347
4348 /* Cause software interrupt to ensure Rx ring is cleaned */
4349 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4350 u32 eics = 0;
4351
4352 for (i = 0; i < adapter->num_q_vectors; i++)
4353 eics |= adapter->q_vector[i]->eims_value;
4354 wr32(IGC_EICS, eics);
4355 } else {
4356 wr32(IGC_ICS, IGC_ICS_RXDMT0);
4357 }
4358
4359 igc_ptp_tx_hang(adapter);
4360
4361 /* Reset the timer */
4362 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4363 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4364 mod_timer(&adapter->watchdog_timer,
4365 round_jiffies(jiffies + HZ));
4366 else
4367 mod_timer(&adapter->watchdog_timer,
4368 round_jiffies(jiffies + 2 * HZ));
4369 }
4370 }
4371
4372 /**
4373 * igc_intr_msi - Interrupt Handler
4374 * @irq: interrupt number
4375 * @data: pointer to a network interface device structure
4376 */
igc_intr_msi(int irq,void * data)4377 static irqreturn_t igc_intr_msi(int irq, void *data)
4378 {
4379 struct igc_adapter *adapter = data;
4380 struct igc_q_vector *q_vector = adapter->q_vector[0];
4381 struct igc_hw *hw = &adapter->hw;
4382 /* read ICR disables interrupts using IAM */
4383 u32 icr = rd32(IGC_ICR);
4384
4385 igc_write_itr(q_vector);
4386
4387 if (icr & IGC_ICR_DRSTA)
4388 schedule_work(&adapter->reset_task);
4389
4390 if (icr & IGC_ICR_DOUTSYNC) {
4391 /* HW is reporting DMA is out of sync */
4392 adapter->stats.doosync++;
4393 }
4394
4395 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4396 hw->mac.get_link_status = 1;
4397 if (!test_bit(__IGC_DOWN, &adapter->state))
4398 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4399 }
4400
4401 napi_schedule(&q_vector->napi);
4402
4403 return IRQ_HANDLED;
4404 }
4405
4406 /**
4407 * igc_intr - Legacy Interrupt Handler
4408 * @irq: interrupt number
4409 * @data: pointer to a network interface device structure
4410 */
igc_intr(int irq,void * data)4411 static irqreturn_t igc_intr(int irq, void *data)
4412 {
4413 struct igc_adapter *adapter = data;
4414 struct igc_q_vector *q_vector = adapter->q_vector[0];
4415 struct igc_hw *hw = &adapter->hw;
4416 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4417 * need for the IMC write
4418 */
4419 u32 icr = rd32(IGC_ICR);
4420
4421 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4422 * not set, then the adapter didn't send an interrupt
4423 */
4424 if (!(icr & IGC_ICR_INT_ASSERTED))
4425 return IRQ_NONE;
4426
4427 igc_write_itr(q_vector);
4428
4429 if (icr & IGC_ICR_DRSTA)
4430 schedule_work(&adapter->reset_task);
4431
4432 if (icr & IGC_ICR_DOUTSYNC) {
4433 /* HW is reporting DMA is out of sync */
4434 adapter->stats.doosync++;
4435 }
4436
4437 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4438 hw->mac.get_link_status = 1;
4439 /* guard against interrupt when we're going down */
4440 if (!test_bit(__IGC_DOWN, &adapter->state))
4441 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4442 }
4443
4444 napi_schedule(&q_vector->napi);
4445
4446 return IRQ_HANDLED;
4447 }
4448
igc_free_irq(struct igc_adapter * adapter)4449 static void igc_free_irq(struct igc_adapter *adapter)
4450 {
4451 if (adapter->msix_entries) {
4452 int vector = 0, i;
4453
4454 free_irq(adapter->msix_entries[vector++].vector, adapter);
4455
4456 for (i = 0; i < adapter->num_q_vectors; i++)
4457 free_irq(adapter->msix_entries[vector++].vector,
4458 adapter->q_vector[i]);
4459 } else {
4460 free_irq(adapter->pdev->irq, adapter);
4461 }
4462 }
4463
4464 /**
4465 * igc_request_irq - initialize interrupts
4466 * @adapter: Pointer to adapter structure
4467 *
4468 * Attempts to configure interrupts using the best available
4469 * capabilities of the hardware and kernel.
4470 */
igc_request_irq(struct igc_adapter * adapter)4471 static int igc_request_irq(struct igc_adapter *adapter)
4472 {
4473 struct net_device *netdev = adapter->netdev;
4474 struct pci_dev *pdev = adapter->pdev;
4475 int err = 0;
4476
4477 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4478 err = igc_request_msix(adapter);
4479 if (!err)
4480 goto request_done;
4481 /* fall back to MSI */
4482 igc_free_all_tx_resources(adapter);
4483 igc_free_all_rx_resources(adapter);
4484
4485 igc_clear_interrupt_scheme(adapter);
4486 err = igc_init_interrupt_scheme(adapter, false);
4487 if (err)
4488 goto request_done;
4489 igc_setup_all_tx_resources(adapter);
4490 igc_setup_all_rx_resources(adapter);
4491 igc_configure(adapter);
4492 }
4493
4494 igc_assign_vector(adapter->q_vector[0], 0);
4495
4496 if (adapter->flags & IGC_FLAG_HAS_MSI) {
4497 err = request_irq(pdev->irq, &igc_intr_msi, 0,
4498 netdev->name, adapter);
4499 if (!err)
4500 goto request_done;
4501
4502 /* fall back to legacy interrupts */
4503 igc_reset_interrupt_capability(adapter);
4504 adapter->flags &= ~IGC_FLAG_HAS_MSI;
4505 }
4506
4507 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4508 netdev->name, adapter);
4509
4510 if (err)
4511 netdev_err(netdev, "Error %d getting interrupt\n", err);
4512
4513 request_done:
4514 return err;
4515 }
4516
4517 /**
4518 * __igc_open - Called when a network interface is made active
4519 * @netdev: network interface device structure
4520 * @resuming: boolean indicating if the device is resuming
4521 *
4522 * Returns 0 on success, negative value on failure
4523 *
4524 * The open entry point is called when a network interface is made
4525 * active by the system (IFF_UP). At this point all resources needed
4526 * for transmit and receive operations are allocated, the interrupt
4527 * handler is registered with the OS, the watchdog timer is started,
4528 * and the stack is notified that the interface is ready.
4529 */
__igc_open(struct net_device * netdev,bool resuming)4530 static int __igc_open(struct net_device *netdev, bool resuming)
4531 {
4532 struct igc_adapter *adapter = netdev_priv(netdev);
4533 struct pci_dev *pdev = adapter->pdev;
4534 struct igc_hw *hw = &adapter->hw;
4535 int err = 0;
4536 int i = 0;
4537
4538 /* disallow open during test */
4539
4540 if (test_bit(__IGC_TESTING, &adapter->state)) {
4541 WARN_ON(resuming);
4542 return -EBUSY;
4543 }
4544
4545 if (!resuming)
4546 pm_runtime_get_sync(&pdev->dev);
4547
4548 netif_carrier_off(netdev);
4549
4550 /* allocate transmit descriptors */
4551 err = igc_setup_all_tx_resources(adapter);
4552 if (err)
4553 goto err_setup_tx;
4554
4555 /* allocate receive descriptors */
4556 err = igc_setup_all_rx_resources(adapter);
4557 if (err)
4558 goto err_setup_rx;
4559
4560 igc_power_up_link(adapter);
4561
4562 igc_configure(adapter);
4563
4564 err = igc_request_irq(adapter);
4565 if (err)
4566 goto err_req_irq;
4567
4568 /* Notify the stack of the actual queue counts. */
4569 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4570 if (err)
4571 goto err_set_queues;
4572
4573 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4574 if (err)
4575 goto err_set_queues;
4576
4577 clear_bit(__IGC_DOWN, &adapter->state);
4578
4579 for (i = 0; i < adapter->num_q_vectors; i++)
4580 napi_enable(&adapter->q_vector[i]->napi);
4581
4582 /* Clear any pending interrupts. */
4583 rd32(IGC_ICR);
4584 igc_irq_enable(adapter);
4585
4586 if (!resuming)
4587 pm_runtime_put(&pdev->dev);
4588
4589 netif_tx_start_all_queues(netdev);
4590
4591 /* start the watchdog. */
4592 hw->mac.get_link_status = 1;
4593 schedule_work(&adapter->watchdog_task);
4594
4595 return IGC_SUCCESS;
4596
4597 err_set_queues:
4598 igc_free_irq(adapter);
4599 err_req_irq:
4600 igc_release_hw_control(adapter);
4601 igc_power_down_phy_copper_base(&adapter->hw);
4602 igc_free_all_rx_resources(adapter);
4603 err_setup_rx:
4604 igc_free_all_tx_resources(adapter);
4605 err_setup_tx:
4606 igc_reset(adapter);
4607 if (!resuming)
4608 pm_runtime_put(&pdev->dev);
4609
4610 return err;
4611 }
4612
igc_open(struct net_device * netdev)4613 int igc_open(struct net_device *netdev)
4614 {
4615 return __igc_open(netdev, false);
4616 }
4617
4618 /**
4619 * __igc_close - Disables a network interface
4620 * @netdev: network interface device structure
4621 * @suspending: boolean indicating the device is suspending
4622 *
4623 * Returns 0, this is not allowed to fail
4624 *
4625 * The close entry point is called when an interface is de-activated
4626 * by the OS. The hardware is still under the driver's control, but
4627 * needs to be disabled. A global MAC reset is issued to stop the
4628 * hardware, and all transmit and receive resources are freed.
4629 */
__igc_close(struct net_device * netdev,bool suspending)4630 static int __igc_close(struct net_device *netdev, bool suspending)
4631 {
4632 struct igc_adapter *adapter = netdev_priv(netdev);
4633 struct pci_dev *pdev = adapter->pdev;
4634
4635 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4636
4637 if (!suspending)
4638 pm_runtime_get_sync(&pdev->dev);
4639
4640 igc_down(adapter);
4641
4642 igc_release_hw_control(adapter);
4643
4644 igc_free_irq(adapter);
4645
4646 igc_free_all_tx_resources(adapter);
4647 igc_free_all_rx_resources(adapter);
4648
4649 if (!suspending)
4650 pm_runtime_put_sync(&pdev->dev);
4651
4652 return 0;
4653 }
4654
igc_close(struct net_device * netdev)4655 int igc_close(struct net_device *netdev)
4656 {
4657 if (netif_device_present(netdev) || netdev->dismantle)
4658 return __igc_close(netdev, false);
4659 return 0;
4660 }
4661
4662 /**
4663 * igc_ioctl - Access the hwtstamp interface
4664 * @netdev: network interface device structure
4665 * @ifr: interface request data
4666 * @cmd: ioctl command
4667 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)4668 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4669 {
4670 switch (cmd) {
4671 case SIOCGHWTSTAMP:
4672 return igc_ptp_get_ts_config(netdev, ifr);
4673 case SIOCSHWTSTAMP:
4674 return igc_ptp_set_ts_config(netdev, ifr);
4675 default:
4676 return -EOPNOTSUPP;
4677 }
4678 }
4679
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)4680 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4681 bool enable)
4682 {
4683 struct igc_ring *ring;
4684 int i;
4685
4686 if (queue < 0 || queue >= adapter->num_tx_queues)
4687 return -EINVAL;
4688
4689 ring = adapter->tx_ring[queue];
4690 ring->launchtime_enable = enable;
4691
4692 if (adapter->base_time)
4693 return 0;
4694
4695 adapter->cycle_time = NSEC_PER_SEC;
4696
4697 for (i = 0; i < adapter->num_tx_queues; i++) {
4698 ring = adapter->tx_ring[i];
4699 ring->start_time = 0;
4700 ring->end_time = NSEC_PER_SEC;
4701 }
4702
4703 return 0;
4704 }
4705
is_base_time_past(ktime_t base_time,const struct timespec64 * now)4706 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
4707 {
4708 struct timespec64 b;
4709
4710 b = ktime_to_timespec64(base_time);
4711
4712 return timespec64_compare(now, &b) > 0;
4713 }
4714
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)4715 static bool validate_schedule(struct igc_adapter *adapter,
4716 const struct tc_taprio_qopt_offload *qopt)
4717 {
4718 int queue_uses[IGC_MAX_TX_QUEUES] = { };
4719 struct timespec64 now;
4720 size_t n;
4721
4722 if (qopt->cycle_time_extension)
4723 return false;
4724
4725 igc_ptp_read(adapter, &now);
4726
4727 /* If we program the controller's BASET registers with a time
4728 * in the future, it will hold all the packets until that
4729 * time, causing a lot of TX Hangs, so to avoid that, we
4730 * reject schedules that would start in the future.
4731 */
4732 if (!is_base_time_past(qopt->base_time, &now))
4733 return false;
4734
4735 for (n = 0; n < qopt->num_entries; n++) {
4736 const struct tc_taprio_sched_entry *e;
4737 int i;
4738
4739 e = &qopt->entries[n];
4740
4741 /* i225 only supports "global" frame preemption
4742 * settings.
4743 */
4744 if (e->command != TC_TAPRIO_CMD_SET_GATES)
4745 return false;
4746
4747 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4748 if (e->gate_mask & BIT(i))
4749 queue_uses[i]++;
4750
4751 if (queue_uses[i] > 1)
4752 return false;
4753 }
4754 }
4755
4756 return true;
4757 }
4758
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)4759 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4760 struct tc_etf_qopt_offload *qopt)
4761 {
4762 struct igc_hw *hw = &adapter->hw;
4763 int err;
4764
4765 if (hw->mac.type != igc_i225)
4766 return -EOPNOTSUPP;
4767
4768 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4769 if (err)
4770 return err;
4771
4772 return igc_tsn_offload_apply(adapter);
4773 }
4774
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)4775 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4776 struct tc_taprio_qopt_offload *qopt)
4777 {
4778 u32 start_time = 0, end_time = 0;
4779 size_t n;
4780
4781 if (!qopt->enable) {
4782 adapter->base_time = 0;
4783 return 0;
4784 }
4785
4786 if (adapter->base_time)
4787 return -EALREADY;
4788
4789 if (!validate_schedule(adapter, qopt))
4790 return -EINVAL;
4791
4792 adapter->cycle_time = qopt->cycle_time;
4793 adapter->base_time = qopt->base_time;
4794
4795 /* FIXME: be a little smarter about cases when the gate for a
4796 * queue stays open for more than one entry.
4797 */
4798 for (n = 0; n < qopt->num_entries; n++) {
4799 struct tc_taprio_sched_entry *e = &qopt->entries[n];
4800 int i;
4801
4802 end_time += e->interval;
4803
4804 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4805 struct igc_ring *ring = adapter->tx_ring[i];
4806
4807 if (!(e->gate_mask & BIT(i)))
4808 continue;
4809
4810 ring->start_time = start_time;
4811 ring->end_time = end_time;
4812 }
4813
4814 start_time += e->interval;
4815 }
4816
4817 return 0;
4818 }
4819
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)4820 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4821 struct tc_taprio_qopt_offload *qopt)
4822 {
4823 struct igc_hw *hw = &adapter->hw;
4824 int err;
4825
4826 if (hw->mac.type != igc_i225)
4827 return -EOPNOTSUPP;
4828
4829 err = igc_save_qbv_schedule(adapter, qopt);
4830 if (err)
4831 return err;
4832
4833 return igc_tsn_offload_apply(adapter);
4834 }
4835
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4836 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4837 void *type_data)
4838 {
4839 struct igc_adapter *adapter = netdev_priv(dev);
4840
4841 switch (type) {
4842 case TC_SETUP_QDISC_TAPRIO:
4843 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4844
4845 case TC_SETUP_QDISC_ETF:
4846 return igc_tsn_enable_launchtime(adapter, type_data);
4847
4848 default:
4849 return -EOPNOTSUPP;
4850 }
4851 }
4852
4853 static const struct net_device_ops igc_netdev_ops = {
4854 .ndo_open = igc_open,
4855 .ndo_stop = igc_close,
4856 .ndo_start_xmit = igc_xmit_frame,
4857 .ndo_set_rx_mode = igc_set_rx_mode,
4858 .ndo_set_mac_address = igc_set_mac,
4859 .ndo_change_mtu = igc_change_mtu,
4860 .ndo_get_stats64 = igc_get_stats64,
4861 .ndo_fix_features = igc_fix_features,
4862 .ndo_set_features = igc_set_features,
4863 .ndo_features_check = igc_features_check,
4864 .ndo_do_ioctl = igc_ioctl,
4865 .ndo_setup_tc = igc_setup_tc,
4866 };
4867
4868 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)4869 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4870 {
4871 struct igc_adapter *adapter = hw->back;
4872
4873 pci_read_config_word(adapter->pdev, reg, value);
4874 }
4875
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)4876 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4877 {
4878 struct igc_adapter *adapter = hw->back;
4879
4880 pci_write_config_word(adapter->pdev, reg, *value);
4881 }
4882
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)4883 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4884 {
4885 struct igc_adapter *adapter = hw->back;
4886
4887 if (!pci_is_pcie(adapter->pdev))
4888 return -IGC_ERR_CONFIG;
4889
4890 pcie_capability_read_word(adapter->pdev, reg, value);
4891
4892 return IGC_SUCCESS;
4893 }
4894
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)4895 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4896 {
4897 struct igc_adapter *adapter = hw->back;
4898
4899 if (!pci_is_pcie(adapter->pdev))
4900 return -IGC_ERR_CONFIG;
4901
4902 pcie_capability_write_word(adapter->pdev, reg, *value);
4903
4904 return IGC_SUCCESS;
4905 }
4906
igc_rd32(struct igc_hw * hw,u32 reg)4907 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4908 {
4909 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4910 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4911 u32 value = 0;
4912
4913 value = readl(&hw_addr[reg]);
4914
4915 /* reads should not return all F's */
4916 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4917 struct net_device *netdev = igc->netdev;
4918
4919 hw->hw_addr = NULL;
4920 netif_device_detach(netdev);
4921 netdev_err(netdev, "PCIe link lost, device now detached\n");
4922 WARN(pci_device_is_present(igc->pdev),
4923 "igc: Failed to read reg 0x%x!\n", reg);
4924 }
4925
4926 return value;
4927 }
4928
igc_set_spd_dplx(struct igc_adapter * adapter,u32 spd,u8 dplx)4929 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4930 {
4931 struct igc_mac_info *mac = &adapter->hw.mac;
4932
4933 mac->autoneg = 0;
4934
4935 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4936 * for the switch() below to work
4937 */
4938 if ((spd & 1) || (dplx & ~1))
4939 goto err_inval;
4940
4941 switch (spd + dplx) {
4942 case SPEED_10 + DUPLEX_HALF:
4943 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4944 break;
4945 case SPEED_10 + DUPLEX_FULL:
4946 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4947 break;
4948 case SPEED_100 + DUPLEX_HALF:
4949 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4950 break;
4951 case SPEED_100 + DUPLEX_FULL:
4952 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4953 break;
4954 case SPEED_1000 + DUPLEX_FULL:
4955 mac->autoneg = 1;
4956 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4957 break;
4958 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4959 goto err_inval;
4960 case SPEED_2500 + DUPLEX_FULL:
4961 mac->autoneg = 1;
4962 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4963 break;
4964 case SPEED_2500 + DUPLEX_HALF: /* not supported */
4965 default:
4966 goto err_inval;
4967 }
4968
4969 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4970 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4971
4972 return 0;
4973
4974 err_inval:
4975 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
4976 return -EINVAL;
4977 }
4978
4979 /**
4980 * igc_probe - Device Initialization Routine
4981 * @pdev: PCI device information struct
4982 * @ent: entry in igc_pci_tbl
4983 *
4984 * Returns 0 on success, negative on failure
4985 *
4986 * igc_probe initializes an adapter identified by a pci_dev structure.
4987 * The OS initialization, configuring the adapter private structure,
4988 * and a hardware reset occur.
4989 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)4990 static int igc_probe(struct pci_dev *pdev,
4991 const struct pci_device_id *ent)
4992 {
4993 struct igc_adapter *adapter;
4994 struct net_device *netdev;
4995 struct igc_hw *hw;
4996 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4997 int err, pci_using_dac;
4998
4999 err = pci_enable_device_mem(pdev);
5000 if (err)
5001 return err;
5002
5003 pci_using_dac = 0;
5004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5005 if (!err) {
5006 pci_using_dac = 1;
5007 } else {
5008 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5009 if (err) {
5010 dev_err(&pdev->dev,
5011 "No usable DMA configuration, aborting\n");
5012 goto err_dma;
5013 }
5014 }
5015
5016 err = pci_request_mem_regions(pdev, igc_driver_name);
5017 if (err)
5018 goto err_pci_reg;
5019
5020 pci_enable_pcie_error_reporting(pdev);
5021
5022 pci_set_master(pdev);
5023
5024 err = -ENOMEM;
5025 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5026 IGC_MAX_TX_QUEUES);
5027
5028 if (!netdev)
5029 goto err_alloc_etherdev;
5030
5031 SET_NETDEV_DEV(netdev, &pdev->dev);
5032
5033 pci_set_drvdata(pdev, netdev);
5034 adapter = netdev_priv(netdev);
5035 adapter->netdev = netdev;
5036 adapter->pdev = pdev;
5037 hw = &adapter->hw;
5038 hw->back = adapter;
5039 adapter->port_num = hw->bus.func;
5040 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5041
5042 err = pci_save_state(pdev);
5043 if (err)
5044 goto err_ioremap;
5045
5046 err = -EIO;
5047 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5048 pci_resource_len(pdev, 0));
5049 if (!adapter->io_addr)
5050 goto err_ioremap;
5051
5052 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5053 hw->hw_addr = adapter->io_addr;
5054
5055 netdev->netdev_ops = &igc_netdev_ops;
5056 igc_ethtool_set_ops(netdev);
5057 netdev->watchdog_timeo = 5 * HZ;
5058
5059 netdev->mem_start = pci_resource_start(pdev, 0);
5060 netdev->mem_end = pci_resource_end(pdev, 0);
5061
5062 /* PCI config space info */
5063 hw->vendor_id = pdev->vendor;
5064 hw->device_id = pdev->device;
5065 hw->revision_id = pdev->revision;
5066 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5067 hw->subsystem_device_id = pdev->subsystem_device;
5068
5069 /* Copy the default MAC and PHY function pointers */
5070 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5071 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5072
5073 /* Initialize skew-specific constants */
5074 err = ei->get_invariants(hw);
5075 if (err)
5076 goto err_sw_init;
5077
5078 /* Add supported features to the features list*/
5079 netdev->features |= NETIF_F_SG;
5080 netdev->features |= NETIF_F_TSO;
5081 netdev->features |= NETIF_F_TSO6;
5082 netdev->features |= NETIF_F_TSO_ECN;
5083 netdev->features |= NETIF_F_RXCSUM;
5084 netdev->features |= NETIF_F_HW_CSUM;
5085 netdev->features |= NETIF_F_SCTP_CRC;
5086 netdev->features |= NETIF_F_HW_TC;
5087
5088 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5089 NETIF_F_GSO_GRE_CSUM | \
5090 NETIF_F_GSO_IPXIP4 | \
5091 NETIF_F_GSO_IPXIP6 | \
5092 NETIF_F_GSO_UDP_TUNNEL | \
5093 NETIF_F_GSO_UDP_TUNNEL_CSUM)
5094
5095 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5096 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5097
5098 /* setup the private structure */
5099 err = igc_sw_init(adapter);
5100 if (err)
5101 goto err_sw_init;
5102
5103 /* copy netdev features into list of user selectable features */
5104 netdev->hw_features |= NETIF_F_NTUPLE;
5105 netdev->hw_features |= netdev->features;
5106
5107 if (pci_using_dac)
5108 netdev->features |= NETIF_F_HIGHDMA;
5109
5110 /* MTU range: 68 - 9216 */
5111 netdev->min_mtu = ETH_MIN_MTU;
5112 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5113
5114 /* before reading the NVM, reset the controller to put the device in a
5115 * known good starting state
5116 */
5117 hw->mac.ops.reset_hw(hw);
5118
5119 if (igc_get_flash_presence_i225(hw)) {
5120 if (hw->nvm.ops.validate(hw) < 0) {
5121 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5122 err = -EIO;
5123 goto err_eeprom;
5124 }
5125 }
5126
5127 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5128 /* copy the MAC address out of the NVM */
5129 if (hw->mac.ops.read_mac_addr(hw))
5130 dev_err(&pdev->dev, "NVM Read Error\n");
5131 }
5132
5133 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5134
5135 if (!is_valid_ether_addr(netdev->dev_addr)) {
5136 dev_err(&pdev->dev, "Invalid MAC Address\n");
5137 err = -EIO;
5138 goto err_eeprom;
5139 }
5140
5141 /* configure RXPBSIZE and TXPBSIZE */
5142 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5143 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5144
5145 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5146 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5147
5148 INIT_WORK(&adapter->reset_task, igc_reset_task);
5149 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5150
5151 /* Initialize link properties that are user-changeable */
5152 adapter->fc_autoneg = true;
5153 hw->mac.autoneg = true;
5154 hw->phy.autoneg_advertised = 0xaf;
5155
5156 hw->fc.requested_mode = igc_fc_default;
5157 hw->fc.current_mode = igc_fc_default;
5158
5159 /* By default, support wake on port A */
5160 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5161
5162 /* initialize the wol settings based on the eeprom settings */
5163 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5164 adapter->wol |= IGC_WUFC_MAG;
5165
5166 device_set_wakeup_enable(&adapter->pdev->dev,
5167 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5168
5169 igc_ptp_init(adapter);
5170
5171 /* reset the hardware with the new settings */
5172 igc_reset(adapter);
5173
5174 /* let the f/w know that the h/w is now under the control of the
5175 * driver.
5176 */
5177 igc_get_hw_control(adapter);
5178
5179 strncpy(netdev->name, "eth%d", IFNAMSIZ);
5180 err = register_netdev(netdev);
5181 if (err)
5182 goto err_register;
5183
5184 /* carrier off reporting is important to ethtool even BEFORE open */
5185 netif_carrier_off(netdev);
5186
5187 /* Check if Media Autosense is enabled */
5188 adapter->ei = *ei;
5189
5190 /* print pcie link status and MAC address */
5191 pcie_print_link_status(pdev);
5192 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5193
5194 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5195 /* Disable EEE for internal PHY devices */
5196 hw->dev_spec._base.eee_enable = false;
5197 adapter->flags &= ~IGC_FLAG_EEE;
5198 igc_set_eee_i225(hw, false, false, false);
5199
5200 pm_runtime_put_noidle(&pdev->dev);
5201
5202 return 0;
5203
5204 err_register:
5205 igc_release_hw_control(adapter);
5206 err_eeprom:
5207 if (!igc_check_reset_block(hw))
5208 igc_reset_phy(hw);
5209 err_sw_init:
5210 igc_clear_interrupt_scheme(adapter);
5211 iounmap(adapter->io_addr);
5212 err_ioremap:
5213 free_netdev(netdev);
5214 err_alloc_etherdev:
5215 pci_release_mem_regions(pdev);
5216 err_pci_reg:
5217 err_dma:
5218 pci_disable_device(pdev);
5219 return err;
5220 }
5221
5222 /**
5223 * igc_remove - Device Removal Routine
5224 * @pdev: PCI device information struct
5225 *
5226 * igc_remove is called by the PCI subsystem to alert the driver
5227 * that it should release a PCI device. This could be caused by a
5228 * Hot-Plug event, or because the driver is going to be removed from
5229 * memory.
5230 */
igc_remove(struct pci_dev * pdev)5231 static void igc_remove(struct pci_dev *pdev)
5232 {
5233 struct net_device *netdev = pci_get_drvdata(pdev);
5234 struct igc_adapter *adapter = netdev_priv(netdev);
5235
5236 pm_runtime_get_noresume(&pdev->dev);
5237
5238 igc_flush_nfc_rules(adapter);
5239
5240 igc_ptp_stop(adapter);
5241
5242 set_bit(__IGC_DOWN, &adapter->state);
5243
5244 del_timer_sync(&adapter->watchdog_timer);
5245 del_timer_sync(&adapter->phy_info_timer);
5246
5247 cancel_work_sync(&adapter->reset_task);
5248 cancel_work_sync(&adapter->watchdog_task);
5249
5250 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5251 * would have already happened in close and is redundant.
5252 */
5253 igc_release_hw_control(adapter);
5254 unregister_netdev(netdev);
5255
5256 igc_clear_interrupt_scheme(adapter);
5257 pci_iounmap(pdev, adapter->io_addr);
5258 pci_release_mem_regions(pdev);
5259
5260 free_netdev(netdev);
5261
5262 pci_disable_pcie_error_reporting(pdev);
5263
5264 pci_disable_device(pdev);
5265 }
5266
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)5267 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5268 bool runtime)
5269 {
5270 struct net_device *netdev = pci_get_drvdata(pdev);
5271 struct igc_adapter *adapter = netdev_priv(netdev);
5272 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5273 struct igc_hw *hw = &adapter->hw;
5274 u32 ctrl, rctl, status;
5275 bool wake;
5276
5277 rtnl_lock();
5278 netif_device_detach(netdev);
5279
5280 if (netif_running(netdev))
5281 __igc_close(netdev, true);
5282
5283 igc_ptp_suspend(adapter);
5284
5285 igc_clear_interrupt_scheme(adapter);
5286 rtnl_unlock();
5287
5288 status = rd32(IGC_STATUS);
5289 if (status & IGC_STATUS_LU)
5290 wufc &= ~IGC_WUFC_LNKC;
5291
5292 if (wufc) {
5293 igc_setup_rctl(adapter);
5294 igc_set_rx_mode(netdev);
5295
5296 /* turn on all-multi mode if wake on multicast is enabled */
5297 if (wufc & IGC_WUFC_MC) {
5298 rctl = rd32(IGC_RCTL);
5299 rctl |= IGC_RCTL_MPE;
5300 wr32(IGC_RCTL, rctl);
5301 }
5302
5303 ctrl = rd32(IGC_CTRL);
5304 ctrl |= IGC_CTRL_ADVD3WUC;
5305 wr32(IGC_CTRL, ctrl);
5306
5307 /* Allow time for pending master requests to run */
5308 igc_disable_pcie_master(hw);
5309
5310 wr32(IGC_WUC, IGC_WUC_PME_EN);
5311 wr32(IGC_WUFC, wufc);
5312 } else {
5313 wr32(IGC_WUC, 0);
5314 wr32(IGC_WUFC, 0);
5315 }
5316
5317 wake = wufc || adapter->en_mng_pt;
5318 if (!wake)
5319 igc_power_down_phy_copper_base(&adapter->hw);
5320 else
5321 igc_power_up_link(adapter);
5322
5323 if (enable_wake)
5324 *enable_wake = wake;
5325
5326 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5327 * would have already happened in close and is redundant.
5328 */
5329 igc_release_hw_control(adapter);
5330
5331 pci_disable_device(pdev);
5332
5333 return 0;
5334 }
5335
5336 #ifdef CONFIG_PM
igc_runtime_suspend(struct device * dev)5337 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5338 {
5339 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5340 }
5341
igc_deliver_wake_packet(struct net_device * netdev)5342 static void igc_deliver_wake_packet(struct net_device *netdev)
5343 {
5344 struct igc_adapter *adapter = netdev_priv(netdev);
5345 struct igc_hw *hw = &adapter->hw;
5346 struct sk_buff *skb;
5347 u32 wupl;
5348
5349 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5350
5351 /* WUPM stores only the first 128 bytes of the wake packet.
5352 * Read the packet only if we have the whole thing.
5353 */
5354 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5355 return;
5356
5357 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5358 if (!skb)
5359 return;
5360
5361 skb_put(skb, wupl);
5362
5363 /* Ensure reads are 32-bit aligned */
5364 wupl = roundup(wupl, 4);
5365
5366 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5367
5368 skb->protocol = eth_type_trans(skb, netdev);
5369 netif_rx(skb);
5370 }
5371
igc_resume(struct device * dev)5372 static int __maybe_unused igc_resume(struct device *dev)
5373 {
5374 struct pci_dev *pdev = to_pci_dev(dev);
5375 struct net_device *netdev = pci_get_drvdata(pdev);
5376 struct igc_adapter *adapter = netdev_priv(netdev);
5377 struct igc_hw *hw = &adapter->hw;
5378 u32 err, val;
5379
5380 pci_set_power_state(pdev, PCI_D0);
5381 pci_restore_state(pdev);
5382 pci_save_state(pdev);
5383
5384 if (!pci_device_is_present(pdev))
5385 return -ENODEV;
5386 err = pci_enable_device_mem(pdev);
5387 if (err) {
5388 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5389 return err;
5390 }
5391 pci_set_master(pdev);
5392
5393 pci_enable_wake(pdev, PCI_D3hot, 0);
5394 pci_enable_wake(pdev, PCI_D3cold, 0);
5395
5396 if (igc_init_interrupt_scheme(adapter, true)) {
5397 netdev_err(netdev, "Unable to allocate memory for queues\n");
5398 return -ENOMEM;
5399 }
5400
5401 igc_reset(adapter);
5402
5403 /* let the f/w know that the h/w is now under the control of the
5404 * driver.
5405 */
5406 igc_get_hw_control(adapter);
5407
5408 val = rd32(IGC_WUS);
5409 if (val & WAKE_PKT_WUS)
5410 igc_deliver_wake_packet(netdev);
5411
5412 wr32(IGC_WUS, ~0);
5413
5414 rtnl_lock();
5415 if (!err && netif_running(netdev))
5416 err = __igc_open(netdev, true);
5417
5418 if (!err)
5419 netif_device_attach(netdev);
5420 rtnl_unlock();
5421
5422 return err;
5423 }
5424
igc_runtime_resume(struct device * dev)5425 static int __maybe_unused igc_runtime_resume(struct device *dev)
5426 {
5427 return igc_resume(dev);
5428 }
5429
igc_suspend(struct device * dev)5430 static int __maybe_unused igc_suspend(struct device *dev)
5431 {
5432 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5433 }
5434
igc_runtime_idle(struct device * dev)5435 static int __maybe_unused igc_runtime_idle(struct device *dev)
5436 {
5437 struct net_device *netdev = dev_get_drvdata(dev);
5438 struct igc_adapter *adapter = netdev_priv(netdev);
5439
5440 if (!igc_has_link(adapter))
5441 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5442
5443 return -EBUSY;
5444 }
5445 #endif /* CONFIG_PM */
5446
igc_shutdown(struct pci_dev * pdev)5447 static void igc_shutdown(struct pci_dev *pdev)
5448 {
5449 bool wake;
5450
5451 __igc_shutdown(pdev, &wake, 0);
5452
5453 if (system_state == SYSTEM_POWER_OFF) {
5454 pci_wake_from_d3(pdev, wake);
5455 pci_set_power_state(pdev, PCI_D3hot);
5456 }
5457 }
5458
5459 /**
5460 * igc_io_error_detected - called when PCI error is detected
5461 * @pdev: Pointer to PCI device
5462 * @state: The current PCI connection state
5463 *
5464 * This function is called after a PCI bus error affecting
5465 * this device has been detected.
5466 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)5467 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5468 pci_channel_state_t state)
5469 {
5470 struct net_device *netdev = pci_get_drvdata(pdev);
5471 struct igc_adapter *adapter = netdev_priv(netdev);
5472
5473 netif_device_detach(netdev);
5474
5475 if (state == pci_channel_io_perm_failure)
5476 return PCI_ERS_RESULT_DISCONNECT;
5477
5478 if (netif_running(netdev))
5479 igc_down(adapter);
5480 pci_disable_device(pdev);
5481
5482 /* Request a slot reset. */
5483 return PCI_ERS_RESULT_NEED_RESET;
5484 }
5485
5486 /**
5487 * igc_io_slot_reset - called after the PCI bus has been reset.
5488 * @pdev: Pointer to PCI device
5489 *
5490 * Restart the card from scratch, as if from a cold-boot. Implementation
5491 * resembles the first-half of the igc_resume routine.
5492 **/
igc_io_slot_reset(struct pci_dev * pdev)5493 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5494 {
5495 struct net_device *netdev = pci_get_drvdata(pdev);
5496 struct igc_adapter *adapter = netdev_priv(netdev);
5497 struct igc_hw *hw = &adapter->hw;
5498 pci_ers_result_t result;
5499
5500 if (pci_enable_device_mem(pdev)) {
5501 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5502 result = PCI_ERS_RESULT_DISCONNECT;
5503 } else {
5504 pci_set_master(pdev);
5505 pci_restore_state(pdev);
5506 pci_save_state(pdev);
5507
5508 pci_enable_wake(pdev, PCI_D3hot, 0);
5509 pci_enable_wake(pdev, PCI_D3cold, 0);
5510
5511 /* In case of PCI error, adapter loses its HW address
5512 * so we should re-assign it here.
5513 */
5514 hw->hw_addr = adapter->io_addr;
5515
5516 igc_reset(adapter);
5517 wr32(IGC_WUS, ~0);
5518 result = PCI_ERS_RESULT_RECOVERED;
5519 }
5520
5521 return result;
5522 }
5523
5524 /**
5525 * igc_io_resume - called when traffic can start to flow again.
5526 * @pdev: Pointer to PCI device
5527 *
5528 * This callback is called when the error recovery driver tells us that
5529 * its OK to resume normal operation. Implementation resembles the
5530 * second-half of the igc_resume routine.
5531 */
igc_io_resume(struct pci_dev * pdev)5532 static void igc_io_resume(struct pci_dev *pdev)
5533 {
5534 struct net_device *netdev = pci_get_drvdata(pdev);
5535 struct igc_adapter *adapter = netdev_priv(netdev);
5536
5537 rtnl_lock();
5538 if (netif_running(netdev)) {
5539 if (igc_open(netdev)) {
5540 netdev_err(netdev, "igc_open failed after reset\n");
5541 return;
5542 }
5543 }
5544
5545 netif_device_attach(netdev);
5546
5547 /* let the f/w know that the h/w is now under the control of the
5548 * driver.
5549 */
5550 igc_get_hw_control(adapter);
5551 rtnl_unlock();
5552 }
5553
5554 static const struct pci_error_handlers igc_err_handler = {
5555 .error_detected = igc_io_error_detected,
5556 .slot_reset = igc_io_slot_reset,
5557 .resume = igc_io_resume,
5558 };
5559
5560 #ifdef CONFIG_PM
5561 static const struct dev_pm_ops igc_pm_ops = {
5562 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5563 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5564 igc_runtime_idle)
5565 };
5566 #endif
5567
5568 static struct pci_driver igc_driver = {
5569 .name = igc_driver_name,
5570 .id_table = igc_pci_tbl,
5571 .probe = igc_probe,
5572 .remove = igc_remove,
5573 #ifdef CONFIG_PM
5574 .driver.pm = &igc_pm_ops,
5575 #endif
5576 .shutdown = igc_shutdown,
5577 .err_handler = &igc_err_handler,
5578 };
5579
5580 /**
5581 * igc_reinit_queues - return error
5582 * @adapter: pointer to adapter structure
5583 */
igc_reinit_queues(struct igc_adapter * adapter)5584 int igc_reinit_queues(struct igc_adapter *adapter)
5585 {
5586 struct net_device *netdev = adapter->netdev;
5587 int err = 0;
5588
5589 if (netif_running(netdev))
5590 igc_close(netdev);
5591
5592 igc_reset_interrupt_capability(adapter);
5593
5594 if (igc_init_interrupt_scheme(adapter, true)) {
5595 netdev_err(netdev, "Unable to allocate memory for queues\n");
5596 return -ENOMEM;
5597 }
5598
5599 if (netif_running(netdev))
5600 err = igc_open(netdev);
5601
5602 return err;
5603 }
5604
5605 /**
5606 * igc_get_hw_dev - return device
5607 * @hw: pointer to hardware structure
5608 *
5609 * used by hardware layer to print debugging information
5610 */
igc_get_hw_dev(struct igc_hw * hw)5611 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5612 {
5613 struct igc_adapter *adapter = hw->back;
5614
5615 return adapter->netdev;
5616 }
5617
5618 /**
5619 * igc_init_module - Driver Registration Routine
5620 *
5621 * igc_init_module is the first routine called when the driver is
5622 * loaded. All it does is register with the PCI subsystem.
5623 */
igc_init_module(void)5624 static int __init igc_init_module(void)
5625 {
5626 int ret;
5627
5628 pr_info("%s\n", igc_driver_string);
5629 pr_info("%s\n", igc_copyright);
5630
5631 ret = pci_register_driver(&igc_driver);
5632 return ret;
5633 }
5634
5635 module_init(igc_init_module);
5636
5637 /**
5638 * igc_exit_module - Driver Exit Cleanup Routine
5639 *
5640 * igc_exit_module is called just before the driver is removed
5641 * from memory.
5642 */
igc_exit_module(void)5643 static void __exit igc_exit_module(void)
5644 {
5645 pci_unregister_driver(&igc_driver);
5646 }
5647
5648 module_exit(igc_exit_module);
5649 /* igc_main.c */
5650