1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 Intel Corporation */
3
4 #include "igc.h"
5
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14
15 #define INCVALUE_MASK 0x7fffffff
16 #define ISGN 0x80000000
17
18 #define IGC_PTP_TX_TIMEOUT (HZ * 15)
19
20 #define IGC_PTM_STAT_SLEEP 2
21 #define IGC_PTM_STAT_TIMEOUT 100
22
23 /* SYSTIM read access for I225 */
igc_ptp_read(struct igc_adapter * adapter,struct timespec64 * ts)24 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25 {
26 struct igc_hw *hw = &adapter->hw;
27 u32 sec, nsec;
28
29 /* The timestamp is latched when SYSTIML is read. */
30 nsec = rd32(IGC_SYSTIML);
31 sec = rd32(IGC_SYSTIMH);
32
33 ts->tv_sec = sec;
34 ts->tv_nsec = nsec;
35 }
36
igc_ptp_write_i225(struct igc_adapter * adapter,const struct timespec64 * ts)37 static void igc_ptp_write_i225(struct igc_adapter *adapter,
38 const struct timespec64 *ts)
39 {
40 struct igc_hw *hw = &adapter->hw;
41
42 wr32(IGC_SYSTIML, ts->tv_nsec);
43 wr32(IGC_SYSTIMH, ts->tv_sec);
44 }
45
igc_ptp_adjfine_i225(struct ptp_clock_info * ptp,long scaled_ppm)46 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47 {
48 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49 ptp_caps);
50 struct igc_hw *hw = &igc->hw;
51 int neg_adj = 0;
52 u64 rate;
53 u32 inca;
54
55 if (scaled_ppm < 0) {
56 neg_adj = 1;
57 scaled_ppm = -scaled_ppm;
58 }
59 rate = scaled_ppm;
60 rate <<= 14;
61 rate = div_u64(rate, 78125);
62
63 inca = rate & INCVALUE_MASK;
64 if (neg_adj)
65 inca |= ISGN;
66
67 wr32(IGC_TIMINCA, inca);
68
69 return 0;
70 }
71
igc_ptp_adjtime_i225(struct ptp_clock_info * ptp,s64 delta)72 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73 {
74 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75 ptp_caps);
76 struct timespec64 now, then = ns_to_timespec64(delta);
77 unsigned long flags;
78
79 spin_lock_irqsave(&igc->tmreg_lock, flags);
80
81 igc_ptp_read(igc, &now);
82 now = timespec64_add(now, then);
83 igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84
85 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86
87 return 0;
88 }
89
igc_ptp_gettimex64_i225(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)90 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91 struct timespec64 *ts,
92 struct ptp_system_timestamp *sts)
93 {
94 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95 ptp_caps);
96 struct igc_hw *hw = &igc->hw;
97 unsigned long flags;
98
99 spin_lock_irqsave(&igc->tmreg_lock, flags);
100
101 ptp_read_system_prets(sts);
102 ts->tv_nsec = rd32(IGC_SYSTIML);
103 ts->tv_sec = rd32(IGC_SYSTIMH);
104 ptp_read_system_postts(sts);
105
106 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107
108 return 0;
109 }
110
igc_ptp_settime_i225(struct ptp_clock_info * ptp,const struct timespec64 * ts)111 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112 const struct timespec64 *ts)
113 {
114 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115 ptp_caps);
116 unsigned long flags;
117
118 spin_lock_irqsave(&igc->tmreg_lock, flags);
119
120 igc_ptp_write_i225(igc, ts);
121
122 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123
124 return 0;
125 }
126
igc_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)127 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128 {
129 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130 static const u32 mask[IGC_N_SDP] = {
131 IGC_CTRL_SDP0_DIR,
132 IGC_CTRL_SDP1_DIR,
133 IGC_CTRL_EXT_SDP2_DIR,
134 IGC_CTRL_EXT_SDP3_DIR,
135 };
136
137 if (input)
138 *ptr &= ~mask[pin];
139 else
140 *ptr |= mask[pin];
141 }
142
igc_pin_perout(struct igc_adapter * igc,int chan,int pin,int freq)143 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144 {
145 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147 };
148 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150 };
151 static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153 };
154 static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155 IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156 IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157 };
158 static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159 IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160 IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161 };
162 static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163 IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164 IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165 };
166 static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169 };
170 static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173 };
174 struct igc_hw *hw = &igc->hw;
175 u32 ctrl, ctrl_ext, tssdp = 0;
176
177 ctrl = rd32(IGC_CTRL);
178 ctrl_ext = rd32(IGC_CTRL_EXT);
179 tssdp = rd32(IGC_TSSDP);
180
181 igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182
183 /* Make sure this pin is not enabled as an input. */
184 if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185 tssdp &= ~IGC_AUX0_TS_SDP_EN;
186
187 if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188 tssdp &= ~IGC_AUX1_TS_SDP_EN;
189
190 tssdp &= ~igc_ts_sdp_sel_clr[pin];
191 if (freq) {
192 if (chan == 1)
193 tssdp |= igc_ts_sdp_sel_fc1[pin];
194 else
195 tssdp |= igc_ts_sdp_sel_fc0[pin];
196 } else {
197 if (chan == 1)
198 tssdp |= igc_ts_sdp_sel_tt1[pin];
199 else
200 tssdp |= igc_ts_sdp_sel_tt0[pin];
201 }
202 tssdp |= igc_ts_sdp_en[pin];
203
204 wr32(IGC_TSSDP, tssdp);
205 wr32(IGC_CTRL, ctrl);
206 wr32(IGC_CTRL_EXT, ctrl_ext);
207 }
208
igc_pin_extts(struct igc_adapter * igc,int chan,int pin)209 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210 {
211 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213 };
214 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216 };
217 static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219 };
220 struct igc_hw *hw = &igc->hw;
221 u32 ctrl, ctrl_ext, tssdp = 0;
222
223 ctrl = rd32(IGC_CTRL);
224 ctrl_ext = rd32(IGC_CTRL_EXT);
225 tssdp = rd32(IGC_TSSDP);
226
227 igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228
229 /* Make sure this pin is not enabled as an output. */
230 tssdp &= ~igc_ts_sdp_en[pin];
231
232 if (chan == 1) {
233 tssdp &= ~IGC_AUX1_SEL_SDP3;
234 tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235 } else {
236 tssdp &= ~IGC_AUX0_SEL_SDP3;
237 tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238 }
239
240 wr32(IGC_TSSDP, tssdp);
241 wr32(IGC_CTRL, ctrl);
242 wr32(IGC_CTRL_EXT, ctrl_ext);
243 }
244
igc_ptp_feature_enable_i225(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)245 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246 struct ptp_clock_request *rq, int on)
247 {
248 struct igc_adapter *igc =
249 container_of(ptp, struct igc_adapter, ptp_caps);
250 struct igc_hw *hw = &igc->hw;
251 unsigned long flags;
252 struct timespec64 ts;
253 int use_freq = 0, pin = -1;
254 u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255 s64 ns;
256
257 switch (rq->type) {
258 case PTP_CLK_REQ_EXTTS:
259 /* Reject requests with unsupported flags */
260 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261 PTP_RISING_EDGE |
262 PTP_FALLING_EDGE |
263 PTP_STRICT_FLAGS))
264 return -EOPNOTSUPP;
265
266 /* Reject requests failing to enable both edges. */
267 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270 return -EOPNOTSUPP;
271
272 if (on) {
273 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274 rq->extts.index);
275 if (pin < 0)
276 return -EBUSY;
277 }
278 if (rq->extts.index == 1) {
279 tsauxc_mask = IGC_TSAUXC_EN_TS1;
280 tsim_mask = IGC_TSICR_AUTT1;
281 } else {
282 tsauxc_mask = IGC_TSAUXC_EN_TS0;
283 tsim_mask = IGC_TSICR_AUTT0;
284 }
285 spin_lock_irqsave(&igc->tmreg_lock, flags);
286 tsauxc = rd32(IGC_TSAUXC);
287 tsim = rd32(IGC_TSIM);
288 if (on) {
289 igc_pin_extts(igc, rq->extts.index, pin);
290 tsauxc |= tsauxc_mask;
291 tsim |= tsim_mask;
292 } else {
293 tsauxc &= ~tsauxc_mask;
294 tsim &= ~tsim_mask;
295 }
296 wr32(IGC_TSAUXC, tsauxc);
297 wr32(IGC_TSIM, tsim);
298 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299 return 0;
300
301 case PTP_CLK_REQ_PEROUT:
302 /* Reject requests with unsupported flags */
303 if (rq->perout.flags)
304 return -EOPNOTSUPP;
305
306 if (on) {
307 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308 rq->perout.index);
309 if (pin < 0)
310 return -EBUSY;
311 }
312 ts.tv_sec = rq->perout.period.sec;
313 ts.tv_nsec = rq->perout.period.nsec;
314 ns = timespec64_to_ns(&ts);
315 ns = ns >> 1;
316 if (on && (ns <= 70000000LL || ns == 125000000LL ||
317 ns == 250000000LL || ns == 500000000LL)) {
318 if (ns < 8LL)
319 return -EINVAL;
320 use_freq = 1;
321 }
322 ts = ns_to_timespec64(ns);
323 if (rq->perout.index == 1) {
324 if (use_freq) {
325 tsauxc_mask = IGC_TSAUXC_EN_CLK1;
326 tsim_mask = 0;
327 } else {
328 tsauxc_mask = IGC_TSAUXC_EN_TT1;
329 tsim_mask = IGC_TSICR_TT1;
330 }
331 trgttiml = IGC_TRGTTIML1;
332 trgttimh = IGC_TRGTTIMH1;
333 freqout = IGC_FREQOUT1;
334 } else {
335 if (use_freq) {
336 tsauxc_mask = IGC_TSAUXC_EN_CLK0;
337 tsim_mask = 0;
338 } else {
339 tsauxc_mask = IGC_TSAUXC_EN_TT0;
340 tsim_mask = IGC_TSICR_TT0;
341 }
342 trgttiml = IGC_TRGTTIML0;
343 trgttimh = IGC_TRGTTIMH0;
344 freqout = IGC_FREQOUT0;
345 }
346 spin_lock_irqsave(&igc->tmreg_lock, flags);
347 tsauxc = rd32(IGC_TSAUXC);
348 tsim = rd32(IGC_TSIM);
349 if (rq->perout.index == 1) {
350 tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1);
351 tsim &= ~IGC_TSICR_TT1;
352 } else {
353 tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0);
354 tsim &= ~IGC_TSICR_TT0;
355 }
356 if (on) {
357 int i = rq->perout.index;
358
359 igc_pin_perout(igc, i, pin, use_freq);
360 igc->perout[i].start.tv_sec = rq->perout.start.sec;
361 igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
362 igc->perout[i].period.tv_sec = ts.tv_sec;
363 igc->perout[i].period.tv_nsec = ts.tv_nsec;
364 wr32(trgttimh, rq->perout.start.sec);
365 /* For now, always select timer 0 as source. */
366 wr32(trgttiml, rq->perout.start.nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
367 if (use_freq)
368 wr32(freqout, ns);
369 tsauxc |= tsauxc_mask;
370 tsim |= tsim_mask;
371 }
372 wr32(IGC_TSAUXC, tsauxc);
373 wr32(IGC_TSIM, tsim);
374 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
375 return 0;
376
377 case PTP_CLK_REQ_PPS:
378 spin_lock_irqsave(&igc->tmreg_lock, flags);
379 tsim = rd32(IGC_TSIM);
380 if (on)
381 tsim |= IGC_TSICR_SYS_WRAP;
382 else
383 tsim &= ~IGC_TSICR_SYS_WRAP;
384 igc->pps_sys_wrap_on = on;
385 wr32(IGC_TSIM, tsim);
386 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
387 return 0;
388
389 default:
390 break;
391 }
392
393 return -EOPNOTSUPP;
394 }
395
igc_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)396 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
397 enum ptp_pin_function func, unsigned int chan)
398 {
399 switch (func) {
400 case PTP_PF_NONE:
401 case PTP_PF_EXTTS:
402 case PTP_PF_PEROUT:
403 break;
404 case PTP_PF_PHYSYNC:
405 return -1;
406 }
407 return 0;
408 }
409
410 /**
411 * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
412 * @adapter: board private structure
413 * @hwtstamps: timestamp structure to update
414 * @systim: unsigned 64bit system time value
415 *
416 * We need to convert the system time value stored in the RX/TXSTMP registers
417 * into a hwtstamp which can be used by the upper level timestamping functions.
418 **/
igc_ptp_systim_to_hwtstamp(struct igc_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)419 static void igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
420 struct skb_shared_hwtstamps *hwtstamps,
421 u64 systim)
422 {
423 switch (adapter->hw.mac.type) {
424 case igc_i225:
425 memset(hwtstamps, 0, sizeof(*hwtstamps));
426 /* Upper 32 bits contain s, lower 32 bits contain ns. */
427 hwtstamps->hwtstamp = ktime_set(systim >> 32,
428 systim & 0xFFFFFFFF);
429 break;
430 default:
431 break;
432 }
433 }
434
435 /**
436 * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
437 * @adapter: Pointer to adapter the packet buffer belongs to
438 * @buf: Pointer to packet buffer
439 *
440 * This function retrieves the timestamp saved in the beginning of packet
441 * buffer. While two timestamps are available, one in timer0 reference and the
442 * other in timer1 reference, this function considers only the timestamp in
443 * timer0 reference.
444 *
445 * Returns timestamp value.
446 */
igc_ptp_rx_pktstamp(struct igc_adapter * adapter,__le32 * buf)447 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
448 {
449 ktime_t timestamp;
450 u32 secs, nsecs;
451 int adjust;
452
453 /* Timestamps are saved in little endian at the beginning of the packet
454 * buffer following the layout:
455 *
456 * DWORD: | 0 | 1 | 2 | 3 |
457 * Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH |
458 *
459 * SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds
460 * part of the timestamp.
461 */
462 nsecs = le32_to_cpu(buf[2]);
463 secs = le32_to_cpu(buf[3]);
464
465 timestamp = ktime_set(secs, nsecs);
466
467 /* Adjust timestamp for the RX latency based on link speed */
468 switch (adapter->link_speed) {
469 case SPEED_10:
470 adjust = IGC_I225_RX_LATENCY_10;
471 break;
472 case SPEED_100:
473 adjust = IGC_I225_RX_LATENCY_100;
474 break;
475 case SPEED_1000:
476 adjust = IGC_I225_RX_LATENCY_1000;
477 break;
478 case SPEED_2500:
479 adjust = IGC_I225_RX_LATENCY_2500;
480 break;
481 default:
482 adjust = 0;
483 netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
484 break;
485 }
486
487 return ktime_sub_ns(timestamp, adjust);
488 }
489
igc_ptp_disable_rx_timestamp(struct igc_adapter * adapter)490 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
491 {
492 struct igc_hw *hw = &adapter->hw;
493 u32 val;
494 int i;
495
496 wr32(IGC_TSYNCRXCTL, 0);
497
498 for (i = 0; i < adapter->num_rx_queues; i++) {
499 val = rd32(IGC_SRRCTL(i));
500 val &= ~IGC_SRRCTL_TIMESTAMP;
501 wr32(IGC_SRRCTL(i), val);
502 }
503
504 val = rd32(IGC_RXPBS);
505 val &= ~IGC_RXPBS_CFG_TS_EN;
506 wr32(IGC_RXPBS, val);
507 }
508
igc_ptp_enable_rx_timestamp(struct igc_adapter * adapter)509 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
510 {
511 struct igc_hw *hw = &adapter->hw;
512 u32 val;
513 int i;
514
515 val = rd32(IGC_RXPBS);
516 val |= IGC_RXPBS_CFG_TS_EN;
517 wr32(IGC_RXPBS, val);
518
519 for (i = 0; i < adapter->num_rx_queues; i++) {
520 val = rd32(IGC_SRRCTL(i));
521 /* FIXME: For now, only support retrieving RX timestamps from
522 * timer 0.
523 */
524 val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) |
525 IGC_SRRCTL_TIMESTAMP;
526 wr32(IGC_SRRCTL(i), val);
527 }
528
529 val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
530 IGC_TSYNCRXCTL_RXSYNSIG;
531 wr32(IGC_TSYNCRXCTL, val);
532 }
533
igc_ptp_disable_tx_timestamp(struct igc_adapter * adapter)534 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
535 {
536 struct igc_hw *hw = &adapter->hw;
537
538 wr32(IGC_TSYNCTXCTL, 0);
539 }
540
igc_ptp_enable_tx_timestamp(struct igc_adapter * adapter)541 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
542 {
543 struct igc_hw *hw = &adapter->hw;
544
545 wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
546
547 /* Read TXSTMP registers to discard any timestamp previously stored. */
548 rd32(IGC_TXSTMPL);
549 rd32(IGC_TXSTMPH);
550 }
551
552 /**
553 * igc_ptp_set_timestamp_mode - setup hardware for timestamping
554 * @adapter: networking device structure
555 * @config: hwtstamp configuration
556 *
557 * Return: 0 in case of success, negative errno code otherwise.
558 */
igc_ptp_set_timestamp_mode(struct igc_adapter * adapter,struct hwtstamp_config * config)559 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
560 struct hwtstamp_config *config)
561 {
562 switch (config->tx_type) {
563 case HWTSTAMP_TX_OFF:
564 igc_ptp_disable_tx_timestamp(adapter);
565 break;
566 case HWTSTAMP_TX_ON:
567 igc_ptp_enable_tx_timestamp(adapter);
568 break;
569 default:
570 return -ERANGE;
571 }
572
573 switch (config->rx_filter) {
574 case HWTSTAMP_FILTER_NONE:
575 igc_ptp_disable_rx_timestamp(adapter);
576 break;
577 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
578 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
579 case HWTSTAMP_FILTER_PTP_V2_EVENT:
580 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
581 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
582 case HWTSTAMP_FILTER_PTP_V2_SYNC:
583 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
584 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
585 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
586 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
587 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
588 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
589 case HWTSTAMP_FILTER_NTP_ALL:
590 case HWTSTAMP_FILTER_ALL:
591 igc_ptp_enable_rx_timestamp(adapter);
592 config->rx_filter = HWTSTAMP_FILTER_ALL;
593 break;
594 default:
595 return -ERANGE;
596 }
597
598 return 0;
599 }
600
igc_ptp_tx_timeout(struct igc_adapter * adapter)601 static void igc_ptp_tx_timeout(struct igc_adapter *adapter)
602 {
603 struct igc_hw *hw = &adapter->hw;
604
605 dev_kfree_skb_any(adapter->ptp_tx_skb);
606 adapter->ptp_tx_skb = NULL;
607 adapter->tx_hwtstamp_timeouts++;
608 clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
609 /* Clear the tx valid bit in TSYNCTXCTL register to enable interrupt. */
610 rd32(IGC_TXSTMPH);
611 netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
612 }
613
igc_ptp_tx_hang(struct igc_adapter * adapter)614 void igc_ptp_tx_hang(struct igc_adapter *adapter)
615 {
616 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
617 IGC_PTP_TX_TIMEOUT);
618
619 if (!test_bit(__IGC_PTP_TX_IN_PROGRESS, &adapter->state))
620 return;
621
622 /* If we haven't received a timestamp within the timeout, it is
623 * reasonable to assume that it will never occur, so we can unlock the
624 * timestamp bit when this occurs.
625 */
626 if (timeout) {
627 cancel_work_sync(&adapter->ptp_tx_work);
628 igc_ptp_tx_timeout(adapter);
629 }
630 }
631
632 /**
633 * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
634 * @adapter: Board private structure
635 *
636 * If we were asked to do hardware stamping and such a time stamp is
637 * available, then it must have been for this skb here because we only
638 * allow only one such packet into the queue.
639 */
igc_ptp_tx_hwtstamp(struct igc_adapter * adapter)640 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
641 {
642 struct sk_buff *skb = adapter->ptp_tx_skb;
643 struct skb_shared_hwtstamps shhwtstamps;
644 struct igc_hw *hw = &adapter->hw;
645 int adjust = 0;
646 u64 regval;
647
648 if (WARN_ON_ONCE(!skb))
649 return;
650
651 regval = rd32(IGC_TXSTMPL);
652 regval |= (u64)rd32(IGC_TXSTMPH) << 32;
653 igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
654
655 switch (adapter->link_speed) {
656 case SPEED_10:
657 adjust = IGC_I225_TX_LATENCY_10;
658 break;
659 case SPEED_100:
660 adjust = IGC_I225_TX_LATENCY_100;
661 break;
662 case SPEED_1000:
663 adjust = IGC_I225_TX_LATENCY_1000;
664 break;
665 case SPEED_2500:
666 adjust = IGC_I225_TX_LATENCY_2500;
667 break;
668 }
669
670 shhwtstamps.hwtstamp =
671 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
672
673 /* Clear the lock early before calling skb_tstamp_tx so that
674 * applications are not woken up before the lock bit is clear. We use
675 * a copy of the skb pointer to ensure other threads can't change it
676 * while we're notifying the stack.
677 */
678 adapter->ptp_tx_skb = NULL;
679 clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
680
681 /* Notify the stack and free the skb after we've unlocked */
682 skb_tstamp_tx(skb, &shhwtstamps);
683 dev_kfree_skb_any(skb);
684 }
685
686 /**
687 * igc_ptp_tx_work
688 * @work: pointer to work struct
689 *
690 * This work function polls the TSYNCTXCTL valid bit to determine when a
691 * timestamp has been taken for the current stored skb.
692 */
igc_ptp_tx_work(struct work_struct * work)693 static void igc_ptp_tx_work(struct work_struct *work)
694 {
695 struct igc_adapter *adapter = container_of(work, struct igc_adapter,
696 ptp_tx_work);
697 struct igc_hw *hw = &adapter->hw;
698 u32 tsynctxctl;
699
700 if (!test_bit(__IGC_PTP_TX_IN_PROGRESS, &adapter->state))
701 return;
702
703 tsynctxctl = rd32(IGC_TSYNCTXCTL);
704 if (WARN_ON_ONCE(!(tsynctxctl & IGC_TSYNCTXCTL_TXTT_0)))
705 return;
706
707 igc_ptp_tx_hwtstamp(adapter);
708 }
709
710 /**
711 * igc_ptp_set_ts_config - set hardware time stamping config
712 * @netdev: network interface device structure
713 * @ifr: interface request data
714 *
715 **/
igc_ptp_set_ts_config(struct net_device * netdev,struct ifreq * ifr)716 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
717 {
718 struct igc_adapter *adapter = netdev_priv(netdev);
719 struct hwtstamp_config config;
720 int err;
721
722 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
723 return -EFAULT;
724
725 err = igc_ptp_set_timestamp_mode(adapter, &config);
726 if (err)
727 return err;
728
729 /* save these settings for future reference */
730 memcpy(&adapter->tstamp_config, &config,
731 sizeof(adapter->tstamp_config));
732
733 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
734 -EFAULT : 0;
735 }
736
737 /**
738 * igc_ptp_get_ts_config - get hardware time stamping config
739 * @netdev: network interface device structure
740 * @ifr: interface request data
741 *
742 * Get the hwtstamp_config settings to return to the user. Rather than attempt
743 * to deconstruct the settings from the registers, just return a shadow copy
744 * of the last known settings.
745 **/
igc_ptp_get_ts_config(struct net_device * netdev,struct ifreq * ifr)746 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
747 {
748 struct igc_adapter *adapter = netdev_priv(netdev);
749 struct hwtstamp_config *config = &adapter->tstamp_config;
750
751 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
752 -EFAULT : 0;
753 }
754
755 /* The two conditions below must be met for cross timestamping via
756 * PCIe PTM:
757 *
758 * 1. We have an way to convert the timestamps in the PTM messages
759 * to something related to the system clocks (right now, only
760 * X86 systems with support for the Always Running Timer allow that);
761 *
762 * 2. We have PTM enabled in the path from the device to the PCIe root port.
763 */
igc_is_crosststamp_supported(struct igc_adapter * adapter)764 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
765 {
766 if (!IS_ENABLED(CONFIG_X86_TSC))
767 return false;
768
769 /* FIXME: it was noticed that enabling support for PCIe PTM in
770 * some i225-V models could cause lockups when bringing the
771 * interface up/down. There should be no downsides to
772 * disabling crosstimestamping support for i225-V, as it
773 * doesn't have any PTP support. That way we gain some time
774 * while root causing the issue.
775 */
776 if (adapter->pdev->device == IGC_DEV_ID_I225_V)
777 return false;
778
779 return pcie_ptm_enabled(adapter->pdev);
780 }
781
igc_device_tstamp_to_system(u64 tstamp)782 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
783 {
784 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
785 return convert_art_ns_to_tsc(tstamp);
786 #else
787 return (struct system_counterval_t) { };
788 #endif
789 }
790
igc_ptm_log_error(struct igc_adapter * adapter,u32 ptm_stat)791 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
792 {
793 struct net_device *netdev = adapter->netdev;
794
795 switch (ptm_stat) {
796 case IGC_PTM_STAT_RET_ERR:
797 netdev_err(netdev, "PTM Error: Root port timeout\n");
798 break;
799 case IGC_PTM_STAT_BAD_PTM_RES:
800 netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
801 break;
802 case IGC_PTM_STAT_T4M1_OVFL:
803 netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
804 break;
805 case IGC_PTM_STAT_ADJUST_1ST:
806 netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
807 break;
808 case IGC_PTM_STAT_ADJUST_CYC:
809 netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
810 break;
811 default:
812 netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
813 break;
814 }
815 }
816
igc_phc_get_syncdevicetime(ktime_t * device,struct system_counterval_t * system,void * ctx)817 static int igc_phc_get_syncdevicetime(ktime_t *device,
818 struct system_counterval_t *system,
819 void *ctx)
820 {
821 u32 stat, t2_curr_h, t2_curr_l, ctrl;
822 struct igc_adapter *adapter = ctx;
823 struct igc_hw *hw = &adapter->hw;
824 int err, count = 100;
825 ktime_t t1, t2_curr;
826
827 /* Get a snapshot of system clocks to use as historic value. */
828 ktime_get_snapshot(&adapter->snapshot);
829
830 do {
831 /* Doing this in a loop because in the event of a
832 * badly timed (ha!) system clock adjustment, we may
833 * get PTM errors from the PCI root, but these errors
834 * are transitory. Repeating the process returns valid
835 * data eventually.
836 */
837
838 /* To "manually" start the PTM cycle we need to clear and
839 * then set again the TRIG bit.
840 */
841 ctrl = rd32(IGC_PTM_CTRL);
842 ctrl &= ~IGC_PTM_CTRL_TRIG;
843 wr32(IGC_PTM_CTRL, ctrl);
844 ctrl |= IGC_PTM_CTRL_TRIG;
845 wr32(IGC_PTM_CTRL, ctrl);
846
847 /* The cycle only starts "for real" when software notifies
848 * that it has read the registers, this is done by setting
849 * VALID bit.
850 */
851 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
852
853 err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
854 stat, IGC_PTM_STAT_SLEEP,
855 IGC_PTM_STAT_TIMEOUT);
856 if (err < 0) {
857 netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
858 return err;
859 }
860
861 if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
862 break;
863
864 if (stat & ~IGC_PTM_STAT_VALID) {
865 /* An error occurred, log it. */
866 igc_ptm_log_error(adapter, stat);
867 /* The STAT register is write-1-to-clear (W1C),
868 * so write the previous error status to clear it.
869 */
870 wr32(IGC_PTM_STAT, stat);
871 continue;
872 }
873 } while (--count);
874
875 if (!count) {
876 netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
877 return -ETIMEDOUT;
878 }
879
880 t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
881
882 t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
883 t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
884
885 /* FIXME: When the register that tells the endianness of the
886 * PTM registers are implemented, check them here and add the
887 * appropriate conversion.
888 */
889 t2_curr_h = swab32(t2_curr_h);
890
891 t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
892
893 *device = t1;
894 *system = igc_device_tstamp_to_system(t2_curr);
895
896 return 0;
897 }
898
igc_ptp_getcrosststamp(struct ptp_clock_info * ptp,struct system_device_crosststamp * cts)899 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
900 struct system_device_crosststamp *cts)
901 {
902 struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
903 ptp_caps);
904
905 return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
906 adapter, &adapter->snapshot, cts);
907 }
908
909 /**
910 * igc_ptp_init - Initialize PTP functionality
911 * @adapter: Board private structure
912 *
913 * This function is called at device probe to initialize the PTP
914 * functionality.
915 */
igc_ptp_init(struct igc_adapter * adapter)916 void igc_ptp_init(struct igc_adapter *adapter)
917 {
918 struct net_device *netdev = adapter->netdev;
919 struct igc_hw *hw = &adapter->hw;
920 int i;
921
922 switch (hw->mac.type) {
923 case igc_i225:
924 for (i = 0; i < IGC_N_SDP; i++) {
925 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
926
927 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
928 ppd->index = i;
929 ppd->func = PTP_PF_NONE;
930 }
931 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
932 adapter->ptp_caps.owner = THIS_MODULE;
933 adapter->ptp_caps.max_adj = 62499999;
934 adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
935 adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
936 adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
937 adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
938 adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
939 adapter->ptp_caps.pps = 1;
940 adapter->ptp_caps.pin_config = adapter->sdp_config;
941 adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
942 adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
943 adapter->ptp_caps.n_pins = IGC_N_SDP;
944 adapter->ptp_caps.verify = igc_ptp_verify_pin;
945
946 if (!igc_is_crosststamp_supported(adapter))
947 break;
948
949 adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
950 break;
951 default:
952 adapter->ptp_clock = NULL;
953 return;
954 }
955
956 spin_lock_init(&adapter->tmreg_lock);
957 INIT_WORK(&adapter->ptp_tx_work, igc_ptp_tx_work);
958
959 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
960 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
961
962 adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
963 adapter->ptp_reset_start = ktime_get();
964
965 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
966 &adapter->pdev->dev);
967 if (IS_ERR(adapter->ptp_clock)) {
968 adapter->ptp_clock = NULL;
969 netdev_err(netdev, "ptp_clock_register failed\n");
970 } else if (adapter->ptp_clock) {
971 netdev_info(netdev, "PHC added\n");
972 adapter->ptp_flags |= IGC_PTP_ENABLED;
973 }
974 }
975
igc_ptp_time_save(struct igc_adapter * adapter)976 static void igc_ptp_time_save(struct igc_adapter *adapter)
977 {
978 igc_ptp_read(adapter, &adapter->prev_ptp_time);
979 adapter->ptp_reset_start = ktime_get();
980 }
981
igc_ptp_time_restore(struct igc_adapter * adapter)982 static void igc_ptp_time_restore(struct igc_adapter *adapter)
983 {
984 struct timespec64 ts = adapter->prev_ptp_time;
985 ktime_t delta;
986
987 delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
988
989 timespec64_add_ns(&ts, ktime_to_ns(delta));
990
991 igc_ptp_write_i225(adapter, &ts);
992 }
993
igc_ptm_stop(struct igc_adapter * adapter)994 static void igc_ptm_stop(struct igc_adapter *adapter)
995 {
996 struct igc_hw *hw = &adapter->hw;
997 u32 ctrl;
998
999 ctrl = rd32(IGC_PTM_CTRL);
1000 ctrl &= ~IGC_PTM_CTRL_EN;
1001
1002 wr32(IGC_PTM_CTRL, ctrl);
1003 }
1004
1005 /**
1006 * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1007 * @adapter: Board private structure
1008 *
1009 * This function stops the overflow check work and PTP Tx timestamp work, and
1010 * will prepare the device for OS suspend.
1011 */
igc_ptp_suspend(struct igc_adapter * adapter)1012 void igc_ptp_suspend(struct igc_adapter *adapter)
1013 {
1014 if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1015 return;
1016
1017 cancel_work_sync(&adapter->ptp_tx_work);
1018 dev_kfree_skb_any(adapter->ptp_tx_skb);
1019 adapter->ptp_tx_skb = NULL;
1020 clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
1021
1022 if (pci_device_is_present(adapter->pdev)) {
1023 igc_ptp_time_save(adapter);
1024 igc_ptm_stop(adapter);
1025 }
1026 }
1027
1028 /**
1029 * igc_ptp_stop - Disable PTP device and stop the overflow check.
1030 * @adapter: Board private structure.
1031 *
1032 * This function stops the PTP support and cancels the delayed work.
1033 **/
igc_ptp_stop(struct igc_adapter * adapter)1034 void igc_ptp_stop(struct igc_adapter *adapter)
1035 {
1036 igc_ptp_suspend(adapter);
1037
1038 if (adapter->ptp_clock) {
1039 ptp_clock_unregister(adapter->ptp_clock);
1040 netdev_info(adapter->netdev, "PHC removed\n");
1041 adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1042 }
1043 }
1044
1045 /**
1046 * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1047 * @adapter: Board private structure.
1048 *
1049 * This function handles the reset work required to re-enable the PTP device.
1050 **/
igc_ptp_reset(struct igc_adapter * adapter)1051 void igc_ptp_reset(struct igc_adapter *adapter)
1052 {
1053 struct igc_hw *hw = &adapter->hw;
1054 u32 cycle_ctrl, ctrl;
1055 unsigned long flags;
1056 u32 timadj;
1057
1058 /* reset the tstamp_config */
1059 igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1060
1061 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1062
1063 switch (adapter->hw.mac.type) {
1064 case igc_i225:
1065 timadj = rd32(IGC_TIMADJ);
1066 timadj |= IGC_TIMADJ_ADJUST_METH;
1067 wr32(IGC_TIMADJ, timadj);
1068
1069 wr32(IGC_TSAUXC, 0x0);
1070 wr32(IGC_TSSDP, 0x0);
1071 wr32(IGC_TSIM,
1072 IGC_TSICR_INTERRUPTS |
1073 (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1074 wr32(IGC_IMS, IGC_IMS_TS);
1075
1076 if (!igc_is_crosststamp_supported(adapter))
1077 break;
1078
1079 wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1080 wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1081
1082 cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1083
1084 wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1085
1086 ctrl = IGC_PTM_CTRL_EN |
1087 IGC_PTM_CTRL_START_NOW |
1088 IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1089 IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1090 IGC_PTM_CTRL_TRIG;
1091
1092 wr32(IGC_PTM_CTRL, ctrl);
1093
1094 /* Force the first cycle to run. */
1095 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1096
1097 break;
1098 default:
1099 /* No work to do. */
1100 goto out;
1101 }
1102
1103 /* Re-initialize the timer. */
1104 if (hw->mac.type == igc_i225) {
1105 igc_ptp_time_restore(adapter);
1106 } else {
1107 timecounter_init(&adapter->tc, &adapter->cc,
1108 ktime_to_ns(ktime_get_real()));
1109 }
1110 out:
1111 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1112
1113 wrfl();
1114 }
1115