1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/delay.h>
5 
6 #include "igc_hw.h"
7 
8 /**
9  * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
10  * @hw: pointer to the HW structure
11  *
12  * Acquire the necessary semaphores for exclusive access to the EEPROM.
13  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
14  * Return successful if access grant bit set, else clear the request for
15  * EEPROM access and return -IGC_ERR_NVM (-1).
16  */
igc_acquire_nvm_i225(struct igc_hw * hw)17 static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
18 {
19 	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
20 }
21 
22 /**
23  * igc_release_nvm_i225 - Release exclusive access to EEPROM
24  * @hw: pointer to the HW structure
25  *
26  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
27  * then release the semaphores acquired.
28  */
igc_release_nvm_i225(struct igc_hw * hw)29 static void igc_release_nvm_i225(struct igc_hw *hw)
30 {
31 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
32 }
33 
34 /**
35  * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
36  * @hw: pointer to the HW structure
37  *
38  * Acquire the HW semaphore to access the PHY or NVM
39  */
igc_get_hw_semaphore_i225(struct igc_hw * hw)40 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
41 {
42 	s32 timeout = hw->nvm.word_size + 1;
43 	s32 i = 0;
44 	u32 swsm;
45 
46 	/* Get the SW semaphore */
47 	while (i < timeout) {
48 		swsm = rd32(IGC_SWSM);
49 		if (!(swsm & IGC_SWSM_SMBI))
50 			break;
51 
52 		usleep_range(500, 600);
53 		i++;
54 	}
55 
56 	if (i == timeout) {
57 		/* In rare circumstances, the SW semaphore may already be held
58 		 * unintentionally. Clear the semaphore once before giving up.
59 		 */
60 		if (hw->dev_spec._base.clear_semaphore_once) {
61 			hw->dev_spec._base.clear_semaphore_once = false;
62 			igc_put_hw_semaphore(hw);
63 			for (i = 0; i < timeout; i++) {
64 				swsm = rd32(IGC_SWSM);
65 				if (!(swsm & IGC_SWSM_SMBI))
66 					break;
67 
68 				usleep_range(500, 600);
69 			}
70 		}
71 
72 		/* If we do not have the semaphore here, we have to give up. */
73 		if (i == timeout) {
74 			hw_dbg("Driver can't access device - SMBI bit is set.\n");
75 			return -IGC_ERR_NVM;
76 		}
77 	}
78 
79 	/* Get the FW semaphore. */
80 	for (i = 0; i < timeout; i++) {
81 		swsm = rd32(IGC_SWSM);
82 		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
83 
84 		/* Semaphore acquired if bit latched */
85 		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
86 			break;
87 
88 		usleep_range(500, 600);
89 	}
90 
91 	if (i == timeout) {
92 		/* Release semaphores */
93 		igc_put_hw_semaphore(hw);
94 		hw_dbg("Driver can't access the NVM\n");
95 		return -IGC_ERR_NVM;
96 	}
97 
98 	return 0;
99 }
100 
101 /**
102  * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
103  * @hw: pointer to the HW structure
104  * @mask: specifies which semaphore to acquire
105  *
106  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
107  * will also specify which port we're acquiring the lock for.
108  */
igc_acquire_swfw_sync_i225(struct igc_hw * hw,u16 mask)109 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
110 {
111 	s32 i = 0, timeout = 200;
112 	u32 fwmask = mask << 16;
113 	u32 swmask = mask;
114 	s32 ret_val = 0;
115 	u32 swfw_sync;
116 
117 	while (i < timeout) {
118 		if (igc_get_hw_semaphore_i225(hw)) {
119 			ret_val = -IGC_ERR_SWFW_SYNC;
120 			goto out;
121 		}
122 
123 		swfw_sync = rd32(IGC_SW_FW_SYNC);
124 		if (!(swfw_sync & (fwmask | swmask)))
125 			break;
126 
127 		/* Firmware currently using resource (fwmask) */
128 		igc_put_hw_semaphore(hw);
129 		mdelay(5);
130 		i++;
131 	}
132 
133 	if (i == timeout) {
134 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
135 		ret_val = -IGC_ERR_SWFW_SYNC;
136 		goto out;
137 	}
138 
139 	swfw_sync |= swmask;
140 	wr32(IGC_SW_FW_SYNC, swfw_sync);
141 
142 	igc_put_hw_semaphore(hw);
143 out:
144 	return ret_val;
145 }
146 
147 /**
148  * igc_release_swfw_sync_i225 - Release SW/FW semaphore
149  * @hw: pointer to the HW structure
150  * @mask: specifies which semaphore to acquire
151  *
152  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
153  * will also specify which port we're releasing the lock for.
154  */
igc_release_swfw_sync_i225(struct igc_hw * hw,u16 mask)155 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
156 {
157 	u32 swfw_sync;
158 
159 	while (igc_get_hw_semaphore_i225(hw))
160 		; /* Empty */
161 
162 	swfw_sync = rd32(IGC_SW_FW_SYNC);
163 	swfw_sync &= ~mask;
164 	wr32(IGC_SW_FW_SYNC, swfw_sync);
165 
166 	igc_put_hw_semaphore(hw);
167 }
168 
169 /**
170  * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
171  * @hw: pointer to the HW structure
172  * @offset: offset of word in the Shadow Ram to read
173  * @words: number of words to read
174  * @data: word read from the Shadow Ram
175  *
176  * Reads a 16 bit word from the Shadow Ram using the EERD register.
177  * Uses necessary synchronization semaphores.
178  */
igc_read_nvm_srrd_i225(struct igc_hw * hw,u16 offset,u16 words,u16 * data)179 static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
180 				  u16 *data)
181 {
182 	s32 status = 0;
183 	u16 i, count;
184 
185 	/* We cannot hold synchronization semaphores for too long,
186 	 * because of forceful takeover procedure. However it is more efficient
187 	 * to read in bursts than synchronizing access for each word.
188 	 */
189 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
190 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
191 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
192 
193 		status = hw->nvm.ops.acquire(hw);
194 		if (status)
195 			break;
196 
197 		status = igc_read_nvm_eerd(hw, offset, count, data + i);
198 		hw->nvm.ops.release(hw);
199 		if (status)
200 			break;
201 	}
202 
203 	return status;
204 }
205 
206 /**
207  * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
208  * @hw: pointer to the HW structure
209  * @offset: offset within the Shadow Ram to be written to
210  * @words: number of words to write
211  * @data: 16 bit word(s) to be written to the Shadow Ram
212  *
213  * Writes data to Shadow Ram at offset using EEWR register.
214  *
215  * If igc_update_nvm_checksum is not called after this function , the
216  * Shadow Ram will most likely contain an invalid checksum.
217  */
igc_write_nvm_srwr(struct igc_hw * hw,u16 offset,u16 words,u16 * data)218 static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
219 			      u16 *data)
220 {
221 	struct igc_nvm_info *nvm = &hw->nvm;
222 	u32 attempts = 100000;
223 	u32 i, k, eewr = 0;
224 	s32 ret_val = 0;
225 
226 	/* A check for invalid values:  offset too large, too many words,
227 	 * too many words for the offset, and not enough words.
228 	 */
229 	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
230 	    words == 0) {
231 		hw_dbg("nvm parameter(s) out of bounds\n");
232 		ret_val = -IGC_ERR_NVM;
233 		goto out;
234 	}
235 
236 	for (i = 0; i < words; i++) {
237 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
238 			(data[i] << IGC_NVM_RW_REG_DATA) |
239 			IGC_NVM_RW_REG_START;
240 
241 		wr32(IGC_SRWR, eewr);
242 
243 		for (k = 0; k < attempts; k++) {
244 			if (IGC_NVM_RW_REG_DONE &
245 			    rd32(IGC_SRWR)) {
246 				ret_val = 0;
247 				break;
248 			}
249 			udelay(5);
250 		}
251 
252 		if (ret_val) {
253 			hw_dbg("Shadow RAM write EEWR timed out\n");
254 			break;
255 		}
256 	}
257 
258 out:
259 	return ret_val;
260 }
261 
262 /**
263  * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
264  * @hw: pointer to the HW structure
265  * @offset: offset within the Shadow RAM to be written to
266  * @words: number of words to write
267  * @data: 16 bit word(s) to be written to the Shadow RAM
268  *
269  * Writes data to Shadow RAM at offset using EEWR register.
270  *
271  * If igc_update_nvm_checksum is not called after this function , the
272  * data will not be committed to FLASH and also Shadow RAM will most likely
273  * contain an invalid checksum.
274  *
275  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
276  * partially written.
277  */
igc_write_nvm_srwr_i225(struct igc_hw * hw,u16 offset,u16 words,u16 * data)278 static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
279 				   u16 *data)
280 {
281 	s32 status = 0;
282 	u16 i, count;
283 
284 	/* We cannot hold synchronization semaphores for too long,
285 	 * because of forceful takeover procedure. However it is more efficient
286 	 * to write in bursts than synchronizing access for each word.
287 	 */
288 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
289 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
290 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
291 
292 		status = hw->nvm.ops.acquire(hw);
293 		if (status)
294 			break;
295 
296 		status = igc_write_nvm_srwr(hw, offset, count, data + i);
297 		hw->nvm.ops.release(hw);
298 		if (status)
299 			break;
300 	}
301 
302 	return status;
303 }
304 
305 /**
306  * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
307  * @hw: pointer to the HW structure
308  *
309  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
310  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
311  */
igc_validate_nvm_checksum_i225(struct igc_hw * hw)312 static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
313 {
314 	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
315 			   u16 *data);
316 	s32 status = 0;
317 
318 	status = hw->nvm.ops.acquire(hw);
319 	if (status)
320 		goto out;
321 
322 	/* Replace the read function with semaphore grabbing with
323 	 * the one that skips this for a while.
324 	 * We have semaphore taken already here.
325 	 */
326 	read_op_ptr = hw->nvm.ops.read;
327 	hw->nvm.ops.read = igc_read_nvm_eerd;
328 
329 	status = igc_validate_nvm_checksum(hw);
330 
331 	/* Revert original read operation. */
332 	hw->nvm.ops.read = read_op_ptr;
333 
334 	hw->nvm.ops.release(hw);
335 
336 out:
337 	return status;
338 }
339 
340 /**
341  * igc_pool_flash_update_done_i225 - Pool FLUDONE status
342  * @hw: pointer to the HW structure
343  */
igc_pool_flash_update_done_i225(struct igc_hw * hw)344 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
345 {
346 	s32 ret_val = -IGC_ERR_NVM;
347 	u32 i, reg;
348 
349 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
350 		reg = rd32(IGC_EECD);
351 		if (reg & IGC_EECD_FLUDONE_I225) {
352 			ret_val = 0;
353 			break;
354 		}
355 		udelay(5);
356 	}
357 
358 	return ret_val;
359 }
360 
361 /**
362  * igc_update_flash_i225 - Commit EEPROM to the flash
363  * @hw: pointer to the HW structure
364  */
igc_update_flash_i225(struct igc_hw * hw)365 static s32 igc_update_flash_i225(struct igc_hw *hw)
366 {
367 	s32 ret_val = 0;
368 	u32 flup;
369 
370 	ret_val = igc_pool_flash_update_done_i225(hw);
371 	if (ret_val == -IGC_ERR_NVM) {
372 		hw_dbg("Flash update time out\n");
373 		goto out;
374 	}
375 
376 	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
377 	wr32(IGC_EECD, flup);
378 
379 	ret_val = igc_pool_flash_update_done_i225(hw);
380 	if (ret_val)
381 		hw_dbg("Flash update time out\n");
382 	else
383 		hw_dbg("Flash update complete\n");
384 
385 out:
386 	return ret_val;
387 }
388 
389 /**
390  * igc_update_nvm_checksum_i225 - Update EEPROM checksum
391  * @hw: pointer to the HW structure
392  *
393  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
394  * up to the checksum.  Then calculates the EEPROM checksum and writes the
395  * value to the EEPROM. Next commit EEPROM data onto the Flash.
396  */
igc_update_nvm_checksum_i225(struct igc_hw * hw)397 static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
398 {
399 	u16 checksum = 0;
400 	s32 ret_val = 0;
401 	u16 i, nvm_data;
402 
403 	/* Read the first word from the EEPROM. If this times out or fails, do
404 	 * not continue or we could be in for a very long wait while every
405 	 * EEPROM read fails
406 	 */
407 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
408 	if (ret_val) {
409 		hw_dbg("EEPROM read failed\n");
410 		goto out;
411 	}
412 
413 	ret_val = hw->nvm.ops.acquire(hw);
414 	if (ret_val)
415 		goto out;
416 
417 	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
418 	 * because we do not want to take the synchronization
419 	 * semaphores twice here.
420 	 */
421 
422 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
423 		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
424 		if (ret_val) {
425 			hw->nvm.ops.release(hw);
426 			hw_dbg("NVM Read Error while updating checksum.\n");
427 			goto out;
428 		}
429 		checksum += nvm_data;
430 	}
431 	checksum = (u16)NVM_SUM - checksum;
432 	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
433 				     &checksum);
434 	if (ret_val) {
435 		hw->nvm.ops.release(hw);
436 		hw_dbg("NVM Write Error while updating checksum.\n");
437 		goto out;
438 	}
439 
440 	hw->nvm.ops.release(hw);
441 
442 	ret_val = igc_update_flash_i225(hw);
443 
444 out:
445 	return ret_val;
446 }
447 
448 /**
449  * igc_get_flash_presence_i225 - Check if flash device is detected
450  * @hw: pointer to the HW structure
451  */
igc_get_flash_presence_i225(struct igc_hw * hw)452 bool igc_get_flash_presence_i225(struct igc_hw *hw)
453 {
454 	bool ret_val = false;
455 	u32 eec = 0;
456 
457 	eec = rd32(IGC_EECD);
458 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
459 		ret_val = true;
460 
461 	return ret_val;
462 }
463 
464 /**
465  * igc_init_nvm_params_i225 - Init NVM func ptrs.
466  * @hw: pointer to the HW structure
467  */
igc_init_nvm_params_i225(struct igc_hw * hw)468 s32 igc_init_nvm_params_i225(struct igc_hw *hw)
469 {
470 	struct igc_nvm_info *nvm = &hw->nvm;
471 
472 	nvm->ops.acquire = igc_acquire_nvm_i225;
473 	nvm->ops.release = igc_release_nvm_i225;
474 
475 	/* NVM Function Pointers */
476 	if (igc_get_flash_presence_i225(hw)) {
477 		hw->nvm.type = igc_nvm_flash_hw;
478 		nvm->ops.read = igc_read_nvm_srrd_i225;
479 		nvm->ops.write = igc_write_nvm_srwr_i225;
480 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
481 		nvm->ops.update = igc_update_nvm_checksum_i225;
482 	} else {
483 		hw->nvm.type = igc_nvm_invm;
484 		nvm->ops.read = igc_read_nvm_eerd;
485 		nvm->ops.write = NULL;
486 		nvm->ops.validate = NULL;
487 		nvm->ops.update = NULL;
488 	}
489 	return 0;
490 }
491 
492 /**
493  *  igc_set_eee_i225 - Enable/disable EEE support
494  *  @hw: pointer to the HW structure
495  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
496  *  @adv1G: boolean flag enabling 1G EEE advertisement
497  *  @adv100M: boolean flag enabling 100M EEE advertisement
498  *
499  *  Enable/disable EEE based on setting in dev_spec structure.
500  **/
igc_set_eee_i225(struct igc_hw * hw,bool adv2p5G,bool adv1G,bool adv100M)501 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
502 		     bool adv100M)
503 {
504 	u32 ipcnfg, eeer;
505 
506 	ipcnfg = rd32(IGC_IPCNFG);
507 	eeer = rd32(IGC_EEER);
508 
509 	/* enable or disable per user setting */
510 	if (hw->dev_spec._base.eee_enable) {
511 		u32 eee_su = rd32(IGC_EEE_SU);
512 
513 		if (adv100M)
514 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
515 		else
516 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
517 
518 		if (adv1G)
519 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
520 		else
521 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
522 
523 		if (adv2p5G)
524 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
525 		else
526 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
527 
528 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
529 			 IGC_EEER_LPI_FC);
530 
531 		/* This bit should not be set in normal operation. */
532 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
533 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
534 	} else {
535 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
536 			    IGC_IPCNFG_EEE_100M_AN);
537 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
538 			  IGC_EEER_LPI_FC);
539 	}
540 	wr32(IGC_IPCNFG, ipcnfg);
541 	wr32(IGC_EEER, eeer);
542 	rd32(IGC_IPCNFG);
543 	rd32(IGC_EEER);
544 
545 	return IGC_SUCCESS;
546 }
547 
548 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
549  * @hw: pointer to the HW structure
550  * @link: bool indicating link status
551  *
552  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
553  * settings, otherwise specify that there is no LTR requirement.
554  */
igc_set_ltr_i225(struct igc_hw * hw,bool link)555 s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
556 {
557 	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
558 	u16 speed, duplex;
559 	s32 size;
560 
561 	/* If we do not have link, LTR thresholds are zero. */
562 	if (link) {
563 		hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
564 
565 		/* Check if using copper interface with EEE enabled or if the
566 		 * link speed is 10 Mbps.
567 		 */
568 		if (hw->dev_spec._base.eee_enable &&
569 		    speed != SPEED_10) {
570 			/* EEE enabled, so send LTRMAX threshold. */
571 			ltrc = rd32(IGC_LTRC) |
572 			       IGC_LTRC_EEEMS_EN;
573 			wr32(IGC_LTRC, ltrc);
574 
575 			/* Calculate tw_system (nsec). */
576 			if (speed == SPEED_100) {
577 				tw_system = ((rd32(IGC_EEE_SU) &
578 					     IGC_TW_SYSTEM_100_MASK) >>
579 					     IGC_TW_SYSTEM_100_SHIFT) * 500;
580 			} else {
581 				tw_system = (rd32(IGC_EEE_SU) &
582 					     IGC_TW_SYSTEM_1000_MASK) * 500;
583 			}
584 		} else {
585 			tw_system = 0;
586 		}
587 
588 		/* Get the Rx packet buffer size. */
589 		size = rd32(IGC_RXPBS) &
590 		       IGC_RXPBS_SIZE_I225_MASK;
591 
592 		/* Calculations vary based on DMAC settings. */
593 		if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) {
594 			size -= (rd32(IGC_DMACR) &
595 				 IGC_DMACR_DMACTHR_MASK) >>
596 				 IGC_DMACR_DMACTHR_SHIFT;
597 			/* Convert size to bits. */
598 			size *= 1024 * 8;
599 		} else {
600 			/* Convert size to bytes, subtract the MTU, and then
601 			 * convert the size to bits.
602 			 */
603 			size *= 1024;
604 			size *= 8;
605 		}
606 
607 		if (size < 0) {
608 			hw_dbg("Invalid effective Rx buffer size %d\n",
609 			       size);
610 			return -IGC_ERR_CONFIG;
611 		}
612 
613 		/* Calculate the thresholds. Since speed is in Mbps, simplify
614 		 * the calculation by multiplying size/speed by 1000 for result
615 		 * to be in nsec before dividing by the scale in nsec. Set the
616 		 * scale such that the LTR threshold fits in the register.
617 		 */
618 		ltr_min = (1000 * size) / speed;
619 		ltr_max = ltr_min + tw_system;
620 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
621 			    IGC_LTRMINV_SCALE_32768;
622 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
623 			    IGC_LTRMAXV_SCALE_32768;
624 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
625 		ltr_min -= 1;
626 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
627 		ltr_max -= 1;
628 
629 		/* Only write the LTR thresholds if they differ from before. */
630 		ltrv = rd32(IGC_LTRMINV);
631 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
632 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
633 			       (scale_min << IGC_LTRMINV_SCALE_SHIFT);
634 			wr32(IGC_LTRMINV, ltrv);
635 		}
636 
637 		ltrv = rd32(IGC_LTRMAXV);
638 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
639 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
640 			       (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
641 			wr32(IGC_LTRMAXV, ltrv);
642 		}
643 	}
644 
645 	return IGC_SUCCESS;
646 }
647