1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/checksum.h>
18 #include <net/ip6_checksum.h>
19 #include <linux/mii.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/prefetch.h>
23 #include <linux/sctp.h>
24
25 #include "igbvf.h"
26
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
32
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42
43 static struct igbvf_info igbvf_vf_info = {
44 .mac = e1000_vfadapt,
45 .flags = 0,
46 .pba = 10,
47 .init_ops = e1000_init_function_pointers_vf,
48 };
49
50 static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
52 .flags = 0,
53 .pba = 10,
54 .init_ops = e1000_init_function_pointers_vf,
55 };
56
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
60 };
61
62 /**
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
65 **/
igbvf_desc_unused(struct igbvf_ring * ring)66 static int igbvf_desc_unused(struct igbvf_ring *ring)
67 {
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
70
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72 }
73
74 /**
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
igbvf_receive_skb(struct igbvf_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 status,__le16 vlan)83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, __le16 vlan)
87 {
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101 }
102
igbvf_rx_checksum_adv(struct igbvf_adapter * adapter,u32 status_err,struct sk_buff * skb)103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105 {
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126 }
127
128 /**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
igbvf_alloc_rx_buffers(struct igbvf_ring * rx_ring,int cleaned_count)133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135 {
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217 no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233 }
234
235 /**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
240 *
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
243 **/
igbvf_clean_rx_irq(struct igbvf_adapter * adapter,int * work_done,int work_to_do)244 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 int *work_done, int work_to_do)
246 {
247 struct igbvf_ring *rx_ring = adapter->rx_ring;
248 struct net_device *netdev = adapter->netdev;
249 struct pci_dev *pdev = adapter->pdev;
250 union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 struct igbvf_buffer *buffer_info, *next_buffer;
252 struct sk_buff *skb;
253 bool cleaned = false;
254 int cleaned_count = 0;
255 unsigned int total_bytes = 0, total_packets = 0;
256 unsigned int i;
257 u32 length, hlen, staterr;
258
259 i = rx_ring->next_to_clean;
260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262
263 while (staterr & E1000_RXD_STAT_DD) {
264 if (*work_done >= work_to_do)
265 break;
266 (*work_done)++;
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
268
269 buffer_info = &rx_ring->buffer_info[i];
270
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
274 * into the page.
275 */
276 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
277 & E1000_RXDADV_HDRBUFLEN_MASK) >>
278 E1000_RXDADV_HDRBUFLEN_SHIFT;
279 if (hlen > adapter->rx_ps_hdr_size)
280 hlen = adapter->rx_ps_hdr_size;
281
282 length = le16_to_cpu(rx_desc->wb.upper.length);
283 cleaned = true;
284 cleaned_count++;
285
286 skb = buffer_info->skb;
287 prefetch(skb->data - NET_IP_ALIGN);
288 buffer_info->skb = NULL;
289 if (!adapter->rx_ps_hdr_size) {
290 dma_unmap_single(&pdev->dev, buffer_info->dma,
291 adapter->rx_buffer_len,
292 DMA_FROM_DEVICE);
293 buffer_info->dma = 0;
294 skb_put(skb, length);
295 goto send_up;
296 }
297
298 if (!skb_shinfo(skb)->nr_frags) {
299 dma_unmap_single(&pdev->dev, buffer_info->dma,
300 adapter->rx_ps_hdr_size,
301 DMA_FROM_DEVICE);
302 buffer_info->dma = 0;
303 skb_put(skb, hlen);
304 }
305
306 if (length) {
307 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
308 PAGE_SIZE / 2,
309 DMA_FROM_DEVICE);
310 buffer_info->page_dma = 0;
311
312 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
313 buffer_info->page,
314 buffer_info->page_offset,
315 length);
316
317 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
318 (page_count(buffer_info->page) != 1))
319 buffer_info->page = NULL;
320 else
321 get_page(buffer_info->page);
322
323 skb->len += length;
324 skb->data_len += length;
325 skb->truesize += PAGE_SIZE / 2;
326 }
327 send_up:
328 i++;
329 if (i == rx_ring->count)
330 i = 0;
331 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
332 prefetch(next_rxd);
333 next_buffer = &rx_ring->buffer_info[i];
334
335 if (!(staterr & E1000_RXD_STAT_EOP)) {
336 buffer_info->skb = next_buffer->skb;
337 buffer_info->dma = next_buffer->dma;
338 next_buffer->skb = skb;
339 next_buffer->dma = 0;
340 goto next_desc;
341 }
342
343 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
344 dev_kfree_skb_irq(skb);
345 goto next_desc;
346 }
347
348 total_bytes += skb->len;
349 total_packets++;
350
351 igbvf_rx_checksum_adv(adapter, staterr, skb);
352
353 skb->protocol = eth_type_trans(skb, netdev);
354
355 igbvf_receive_skb(adapter, netdev, skb, staterr,
356 rx_desc->wb.upper.vlan);
357
358 next_desc:
359 rx_desc->wb.upper.status_error = 0;
360
361 /* return some buffers to hardware, one at a time is too slow */
362 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
363 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
364 cleaned_count = 0;
365 }
366
367 /* use prefetched values */
368 rx_desc = next_rxd;
369 buffer_info = next_buffer;
370
371 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
372 }
373
374 rx_ring->next_to_clean = i;
375 cleaned_count = igbvf_desc_unused(rx_ring);
376
377 if (cleaned_count)
378 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
379
380 adapter->total_rx_packets += total_packets;
381 adapter->total_rx_bytes += total_bytes;
382 netdev->stats.rx_bytes += total_bytes;
383 netdev->stats.rx_packets += total_packets;
384 return cleaned;
385 }
386
igbvf_put_txbuf(struct igbvf_adapter * adapter,struct igbvf_buffer * buffer_info)387 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
388 struct igbvf_buffer *buffer_info)
389 {
390 if (buffer_info->dma) {
391 if (buffer_info->mapped_as_page)
392 dma_unmap_page(&adapter->pdev->dev,
393 buffer_info->dma,
394 buffer_info->length,
395 DMA_TO_DEVICE);
396 else
397 dma_unmap_single(&adapter->pdev->dev,
398 buffer_info->dma,
399 buffer_info->length,
400 DMA_TO_DEVICE);
401 buffer_info->dma = 0;
402 }
403 if (buffer_info->skb) {
404 dev_kfree_skb_any(buffer_info->skb);
405 buffer_info->skb = NULL;
406 }
407 buffer_info->time_stamp = 0;
408 }
409
410 /**
411 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
412 * @adapter: board private structure
413 * @tx_ring: ring being initialized
414 *
415 * Return 0 on success, negative on failure
416 **/
igbvf_setup_tx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring)417 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
418 struct igbvf_ring *tx_ring)
419 {
420 struct pci_dev *pdev = adapter->pdev;
421 int size;
422
423 size = sizeof(struct igbvf_buffer) * tx_ring->count;
424 tx_ring->buffer_info = vzalloc(size);
425 if (!tx_ring->buffer_info)
426 goto err;
427
428 /* round up to nearest 4K */
429 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
430 tx_ring->size = ALIGN(tx_ring->size, 4096);
431
432 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
433 &tx_ring->dma, GFP_KERNEL);
434 if (!tx_ring->desc)
435 goto err;
436
437 tx_ring->adapter = adapter;
438 tx_ring->next_to_use = 0;
439 tx_ring->next_to_clean = 0;
440
441 return 0;
442 err:
443 vfree(tx_ring->buffer_info);
444 dev_err(&adapter->pdev->dev,
445 "Unable to allocate memory for the transmit descriptor ring\n");
446 return -ENOMEM;
447 }
448
449 /**
450 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
451 * @adapter: board private structure
452 * @rx_ring: ring being initialized
453 *
454 * Returns 0 on success, negative on failure
455 **/
igbvf_setup_rx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * rx_ring)456 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
457 struct igbvf_ring *rx_ring)
458 {
459 struct pci_dev *pdev = adapter->pdev;
460 int size, desc_len;
461
462 size = sizeof(struct igbvf_buffer) * rx_ring->count;
463 rx_ring->buffer_info = vzalloc(size);
464 if (!rx_ring->buffer_info)
465 goto err;
466
467 desc_len = sizeof(union e1000_adv_rx_desc);
468
469 /* Round up to nearest 4K */
470 rx_ring->size = rx_ring->count * desc_len;
471 rx_ring->size = ALIGN(rx_ring->size, 4096);
472
473 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
474 &rx_ring->dma, GFP_KERNEL);
475 if (!rx_ring->desc)
476 goto err;
477
478 rx_ring->next_to_clean = 0;
479 rx_ring->next_to_use = 0;
480
481 rx_ring->adapter = adapter;
482
483 return 0;
484
485 err:
486 vfree(rx_ring->buffer_info);
487 rx_ring->buffer_info = NULL;
488 dev_err(&adapter->pdev->dev,
489 "Unable to allocate memory for the receive descriptor ring\n");
490 return -ENOMEM;
491 }
492
493 /**
494 * igbvf_clean_tx_ring - Free Tx Buffers
495 * @tx_ring: ring to be cleaned
496 **/
igbvf_clean_tx_ring(struct igbvf_ring * tx_ring)497 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
498 {
499 struct igbvf_adapter *adapter = tx_ring->adapter;
500 struct igbvf_buffer *buffer_info;
501 unsigned long size;
502 unsigned int i;
503
504 if (!tx_ring->buffer_info)
505 return;
506
507 /* Free all the Tx ring sk_buffs */
508 for (i = 0; i < tx_ring->count; i++) {
509 buffer_info = &tx_ring->buffer_info[i];
510 igbvf_put_txbuf(adapter, buffer_info);
511 }
512
513 size = sizeof(struct igbvf_buffer) * tx_ring->count;
514 memset(tx_ring->buffer_info, 0, size);
515
516 /* Zero out the descriptor ring */
517 memset(tx_ring->desc, 0, tx_ring->size);
518
519 tx_ring->next_to_use = 0;
520 tx_ring->next_to_clean = 0;
521
522 writel(0, adapter->hw.hw_addr + tx_ring->head);
523 writel(0, adapter->hw.hw_addr + tx_ring->tail);
524 }
525
526 /**
527 * igbvf_free_tx_resources - Free Tx Resources per Queue
528 * @tx_ring: ring to free resources from
529 *
530 * Free all transmit software resources
531 **/
igbvf_free_tx_resources(struct igbvf_ring * tx_ring)532 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
533 {
534 struct pci_dev *pdev = tx_ring->adapter->pdev;
535
536 igbvf_clean_tx_ring(tx_ring);
537
538 vfree(tx_ring->buffer_info);
539 tx_ring->buffer_info = NULL;
540
541 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
542 tx_ring->dma);
543
544 tx_ring->desc = NULL;
545 }
546
547 /**
548 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
549 * @rx_ring: ring structure pointer to free buffers from
550 **/
igbvf_clean_rx_ring(struct igbvf_ring * rx_ring)551 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
552 {
553 struct igbvf_adapter *adapter = rx_ring->adapter;
554 struct igbvf_buffer *buffer_info;
555 struct pci_dev *pdev = adapter->pdev;
556 unsigned long size;
557 unsigned int i;
558
559 if (!rx_ring->buffer_info)
560 return;
561
562 /* Free all the Rx ring sk_buffs */
563 for (i = 0; i < rx_ring->count; i++) {
564 buffer_info = &rx_ring->buffer_info[i];
565 if (buffer_info->dma) {
566 if (adapter->rx_ps_hdr_size) {
567 dma_unmap_single(&pdev->dev, buffer_info->dma,
568 adapter->rx_ps_hdr_size,
569 DMA_FROM_DEVICE);
570 } else {
571 dma_unmap_single(&pdev->dev, buffer_info->dma,
572 adapter->rx_buffer_len,
573 DMA_FROM_DEVICE);
574 }
575 buffer_info->dma = 0;
576 }
577
578 if (buffer_info->skb) {
579 dev_kfree_skb(buffer_info->skb);
580 buffer_info->skb = NULL;
581 }
582
583 if (buffer_info->page) {
584 if (buffer_info->page_dma)
585 dma_unmap_page(&pdev->dev,
586 buffer_info->page_dma,
587 PAGE_SIZE / 2,
588 DMA_FROM_DEVICE);
589 put_page(buffer_info->page);
590 buffer_info->page = NULL;
591 buffer_info->page_dma = 0;
592 buffer_info->page_offset = 0;
593 }
594 }
595
596 size = sizeof(struct igbvf_buffer) * rx_ring->count;
597 memset(rx_ring->buffer_info, 0, size);
598
599 /* Zero out the descriptor ring */
600 memset(rx_ring->desc, 0, rx_ring->size);
601
602 rx_ring->next_to_clean = 0;
603 rx_ring->next_to_use = 0;
604
605 writel(0, adapter->hw.hw_addr + rx_ring->head);
606 writel(0, adapter->hw.hw_addr + rx_ring->tail);
607 }
608
609 /**
610 * igbvf_free_rx_resources - Free Rx Resources
611 * @rx_ring: ring to clean the resources from
612 *
613 * Free all receive software resources
614 **/
615
igbvf_free_rx_resources(struct igbvf_ring * rx_ring)616 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
617 {
618 struct pci_dev *pdev = rx_ring->adapter->pdev;
619
620 igbvf_clean_rx_ring(rx_ring);
621
622 vfree(rx_ring->buffer_info);
623 rx_ring->buffer_info = NULL;
624
625 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
626 rx_ring->dma);
627 rx_ring->desc = NULL;
628 }
629
630 /**
631 * igbvf_update_itr - update the dynamic ITR value based on statistics
632 * @adapter: pointer to adapter
633 * @itr_setting: current adapter->itr
634 * @packets: the number of packets during this measurement interval
635 * @bytes: the number of bytes during this measurement interval
636 *
637 * Stores a new ITR value based on packets and byte counts during the last
638 * interrupt. The advantage of per interrupt computation is faster updates
639 * and more accurate ITR for the current traffic pattern. Constants in this
640 * function were computed based on theoretical maximum wire speed and thresholds
641 * were set based on testing data as well as attempting to minimize response
642 * time while increasing bulk throughput.
643 **/
igbvf_update_itr(struct igbvf_adapter * adapter,enum latency_range itr_setting,int packets,int bytes)644 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
645 enum latency_range itr_setting,
646 int packets, int bytes)
647 {
648 enum latency_range retval = itr_setting;
649
650 if (packets == 0)
651 goto update_itr_done;
652
653 switch (itr_setting) {
654 case lowest_latency:
655 /* handle TSO and jumbo frames */
656 if (bytes/packets > 8000)
657 retval = bulk_latency;
658 else if ((packets < 5) && (bytes > 512))
659 retval = low_latency;
660 break;
661 case low_latency: /* 50 usec aka 20000 ints/s */
662 if (bytes > 10000) {
663 /* this if handles the TSO accounting */
664 if (bytes/packets > 8000)
665 retval = bulk_latency;
666 else if ((packets < 10) || ((bytes/packets) > 1200))
667 retval = bulk_latency;
668 else if ((packets > 35))
669 retval = lowest_latency;
670 } else if (bytes/packets > 2000) {
671 retval = bulk_latency;
672 } else if (packets <= 2 && bytes < 512) {
673 retval = lowest_latency;
674 }
675 break;
676 case bulk_latency: /* 250 usec aka 4000 ints/s */
677 if (bytes > 25000) {
678 if (packets > 35)
679 retval = low_latency;
680 } else if (bytes < 6000) {
681 retval = low_latency;
682 }
683 break;
684 default:
685 break;
686 }
687
688 update_itr_done:
689 return retval;
690 }
691
igbvf_range_to_itr(enum latency_range current_range)692 static int igbvf_range_to_itr(enum latency_range current_range)
693 {
694 int new_itr;
695
696 switch (current_range) {
697 /* counts and packets in update_itr are dependent on these numbers */
698 case lowest_latency:
699 new_itr = IGBVF_70K_ITR;
700 break;
701 case low_latency:
702 new_itr = IGBVF_20K_ITR;
703 break;
704 case bulk_latency:
705 new_itr = IGBVF_4K_ITR;
706 break;
707 default:
708 new_itr = IGBVF_START_ITR;
709 break;
710 }
711 return new_itr;
712 }
713
igbvf_set_itr(struct igbvf_adapter * adapter)714 static void igbvf_set_itr(struct igbvf_adapter *adapter)
715 {
716 u32 new_itr;
717
718 adapter->tx_ring->itr_range =
719 igbvf_update_itr(adapter,
720 adapter->tx_ring->itr_val,
721 adapter->total_tx_packets,
722 adapter->total_tx_bytes);
723
724 /* conservative mode (itr 3) eliminates the lowest_latency setting */
725 if (adapter->requested_itr == 3 &&
726 adapter->tx_ring->itr_range == lowest_latency)
727 adapter->tx_ring->itr_range = low_latency;
728
729 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
730
731 if (new_itr != adapter->tx_ring->itr_val) {
732 u32 current_itr = adapter->tx_ring->itr_val;
733 /* this attempts to bias the interrupt rate towards Bulk
734 * by adding intermediate steps when interrupt rate is
735 * increasing
736 */
737 new_itr = new_itr > current_itr ?
738 min(current_itr + (new_itr >> 2), new_itr) :
739 new_itr;
740 adapter->tx_ring->itr_val = new_itr;
741
742 adapter->tx_ring->set_itr = 1;
743 }
744
745 adapter->rx_ring->itr_range =
746 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747 adapter->total_rx_packets,
748 adapter->total_rx_bytes);
749 if (adapter->requested_itr == 3 &&
750 adapter->rx_ring->itr_range == lowest_latency)
751 adapter->rx_ring->itr_range = low_latency;
752
753 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754
755 if (new_itr != adapter->rx_ring->itr_val) {
756 u32 current_itr = adapter->rx_ring->itr_val;
757
758 new_itr = new_itr > current_itr ?
759 min(current_itr + (new_itr >> 2), new_itr) :
760 new_itr;
761 adapter->rx_ring->itr_val = new_itr;
762
763 adapter->rx_ring->set_itr = 1;
764 }
765 }
766
767 /**
768 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
769 * @tx_ring: ring structure to clean descriptors from
770 *
771 * returns true if ring is completely cleaned
772 **/
igbvf_clean_tx_irq(struct igbvf_ring * tx_ring)773 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
774 {
775 struct igbvf_adapter *adapter = tx_ring->adapter;
776 struct net_device *netdev = adapter->netdev;
777 struct igbvf_buffer *buffer_info;
778 struct sk_buff *skb;
779 union e1000_adv_tx_desc *tx_desc, *eop_desc;
780 unsigned int total_bytes = 0, total_packets = 0;
781 unsigned int i, count = 0;
782 bool cleaned = false;
783
784 i = tx_ring->next_to_clean;
785 buffer_info = &tx_ring->buffer_info[i];
786 eop_desc = buffer_info->next_to_watch;
787
788 do {
789 /* if next_to_watch is not set then there is no work pending */
790 if (!eop_desc)
791 break;
792
793 /* prevent any other reads prior to eop_desc */
794 smp_rmb();
795
796 /* if DD is not set pending work has not been completed */
797 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
798 break;
799
800 /* clear next_to_watch to prevent false hangs */
801 buffer_info->next_to_watch = NULL;
802
803 for (cleaned = false; !cleaned; count++) {
804 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
805 cleaned = (tx_desc == eop_desc);
806 skb = buffer_info->skb;
807
808 if (skb) {
809 unsigned int segs, bytecount;
810
811 /* gso_segs is currently only valid for tcp */
812 segs = skb_shinfo(skb)->gso_segs ?: 1;
813 /* multiply data chunks by size of headers */
814 bytecount = ((segs - 1) * skb_headlen(skb)) +
815 skb->len;
816 total_packets += segs;
817 total_bytes += bytecount;
818 }
819
820 igbvf_put_txbuf(adapter, buffer_info);
821 tx_desc->wb.status = 0;
822
823 i++;
824 if (i == tx_ring->count)
825 i = 0;
826
827 buffer_info = &tx_ring->buffer_info[i];
828 }
829
830 eop_desc = buffer_info->next_to_watch;
831 } while (count < tx_ring->count);
832
833 tx_ring->next_to_clean = i;
834
835 if (unlikely(count && netif_carrier_ok(netdev) &&
836 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
837 /* Make sure that anybody stopping the queue after this
838 * sees the new next_to_clean.
839 */
840 smp_mb();
841 if (netif_queue_stopped(netdev) &&
842 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
843 netif_wake_queue(netdev);
844 ++adapter->restart_queue;
845 }
846 }
847
848 netdev->stats.tx_bytes += total_bytes;
849 netdev->stats.tx_packets += total_packets;
850 return count < tx_ring->count;
851 }
852
igbvf_msix_other(int irq,void * data)853 static irqreturn_t igbvf_msix_other(int irq, void *data)
854 {
855 struct net_device *netdev = data;
856 struct igbvf_adapter *adapter = netdev_priv(netdev);
857 struct e1000_hw *hw = &adapter->hw;
858
859 adapter->int_counter1++;
860
861 hw->mac.get_link_status = 1;
862 if (!test_bit(__IGBVF_DOWN, &adapter->state))
863 mod_timer(&adapter->watchdog_timer, jiffies + 1);
864
865 ew32(EIMS, adapter->eims_other);
866
867 return IRQ_HANDLED;
868 }
869
igbvf_intr_msix_tx(int irq,void * data)870 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
871 {
872 struct net_device *netdev = data;
873 struct igbvf_adapter *adapter = netdev_priv(netdev);
874 struct e1000_hw *hw = &adapter->hw;
875 struct igbvf_ring *tx_ring = adapter->tx_ring;
876
877 if (tx_ring->set_itr) {
878 writel(tx_ring->itr_val,
879 adapter->hw.hw_addr + tx_ring->itr_register);
880 adapter->tx_ring->set_itr = 0;
881 }
882
883 adapter->total_tx_bytes = 0;
884 adapter->total_tx_packets = 0;
885
886 /* auto mask will automatically re-enable the interrupt when we write
887 * EICS
888 */
889 if (!igbvf_clean_tx_irq(tx_ring))
890 /* Ring was not completely cleaned, so fire another interrupt */
891 ew32(EICS, tx_ring->eims_value);
892 else
893 ew32(EIMS, tx_ring->eims_value);
894
895 return IRQ_HANDLED;
896 }
897
igbvf_intr_msix_rx(int irq,void * data)898 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
899 {
900 struct net_device *netdev = data;
901 struct igbvf_adapter *adapter = netdev_priv(netdev);
902
903 adapter->int_counter0++;
904
905 /* Write the ITR value calculated at the end of the
906 * previous interrupt.
907 */
908 if (adapter->rx_ring->set_itr) {
909 writel(adapter->rx_ring->itr_val,
910 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
911 adapter->rx_ring->set_itr = 0;
912 }
913
914 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
915 adapter->total_rx_bytes = 0;
916 adapter->total_rx_packets = 0;
917 __napi_schedule(&adapter->rx_ring->napi);
918 }
919
920 return IRQ_HANDLED;
921 }
922
923 #define IGBVF_NO_QUEUE -1
924
igbvf_assign_vector(struct igbvf_adapter * adapter,int rx_queue,int tx_queue,int msix_vector)925 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
926 int tx_queue, int msix_vector)
927 {
928 struct e1000_hw *hw = &adapter->hw;
929 u32 ivar, index;
930
931 /* 82576 uses a table-based method for assigning vectors.
932 * Each queue has a single entry in the table to which we write
933 * a vector number along with a "valid" bit. Sadly, the layout
934 * of the table is somewhat counterintuitive.
935 */
936 if (rx_queue > IGBVF_NO_QUEUE) {
937 index = (rx_queue >> 1);
938 ivar = array_er32(IVAR0, index);
939 if (rx_queue & 0x1) {
940 /* vector goes into third byte of register */
941 ivar = ivar & 0xFF00FFFF;
942 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
943 } else {
944 /* vector goes into low byte of register */
945 ivar = ivar & 0xFFFFFF00;
946 ivar |= msix_vector | E1000_IVAR_VALID;
947 }
948 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
949 array_ew32(IVAR0, index, ivar);
950 }
951 if (tx_queue > IGBVF_NO_QUEUE) {
952 index = (tx_queue >> 1);
953 ivar = array_er32(IVAR0, index);
954 if (tx_queue & 0x1) {
955 /* vector goes into high byte of register */
956 ivar = ivar & 0x00FFFFFF;
957 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
958 } else {
959 /* vector goes into second byte of register */
960 ivar = ivar & 0xFFFF00FF;
961 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
962 }
963 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
964 array_ew32(IVAR0, index, ivar);
965 }
966 }
967
968 /**
969 * igbvf_configure_msix - Configure MSI-X hardware
970 * @adapter: board private structure
971 *
972 * igbvf_configure_msix sets up the hardware to properly
973 * generate MSI-X interrupts.
974 **/
igbvf_configure_msix(struct igbvf_adapter * adapter)975 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
976 {
977 u32 tmp;
978 struct e1000_hw *hw = &adapter->hw;
979 struct igbvf_ring *tx_ring = adapter->tx_ring;
980 struct igbvf_ring *rx_ring = adapter->rx_ring;
981 int vector = 0;
982
983 adapter->eims_enable_mask = 0;
984
985 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
986 adapter->eims_enable_mask |= tx_ring->eims_value;
987 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
988 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
989 adapter->eims_enable_mask |= rx_ring->eims_value;
990 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
991
992 /* set vector for other causes, i.e. link changes */
993
994 tmp = (vector++ | E1000_IVAR_VALID);
995
996 ew32(IVAR_MISC, tmp);
997
998 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
999 adapter->eims_other = BIT(vector - 1);
1000 e1e_flush();
1001 }
1002
igbvf_reset_interrupt_capability(struct igbvf_adapter * adapter)1003 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004 {
1005 if (adapter->msix_entries) {
1006 pci_disable_msix(adapter->pdev);
1007 kfree(adapter->msix_entries);
1008 adapter->msix_entries = NULL;
1009 }
1010 }
1011
1012 /**
1013 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1014 * @adapter: board private structure
1015 *
1016 * Attempt to configure interrupts using the best available
1017 * capabilities of the hardware and kernel.
1018 **/
igbvf_set_interrupt_capability(struct igbvf_adapter * adapter)1019 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1020 {
1021 int err = -ENOMEM;
1022 int i;
1023
1024 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1025 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1026 GFP_KERNEL);
1027 if (adapter->msix_entries) {
1028 for (i = 0; i < 3; i++)
1029 adapter->msix_entries[i].entry = i;
1030
1031 err = pci_enable_msix_range(adapter->pdev,
1032 adapter->msix_entries, 3, 3);
1033 }
1034
1035 if (err < 0) {
1036 /* MSI-X failed */
1037 dev_err(&adapter->pdev->dev,
1038 "Failed to initialize MSI-X interrupts.\n");
1039 igbvf_reset_interrupt_capability(adapter);
1040 }
1041 }
1042
1043 /**
1044 * igbvf_request_msix - Initialize MSI-X interrupts
1045 * @adapter: board private structure
1046 *
1047 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1048 * kernel.
1049 **/
igbvf_request_msix(struct igbvf_adapter * adapter)1050 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1051 {
1052 struct net_device *netdev = adapter->netdev;
1053 int err = 0, vector = 0;
1054
1055 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1056 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1057 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1058 } else {
1059 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1060 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1061 }
1062
1063 err = request_irq(adapter->msix_entries[vector].vector,
1064 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1065 netdev);
1066 if (err)
1067 goto out;
1068
1069 adapter->tx_ring->itr_register = E1000_EITR(vector);
1070 adapter->tx_ring->itr_val = adapter->current_itr;
1071 vector++;
1072
1073 err = request_irq(adapter->msix_entries[vector].vector,
1074 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1075 netdev);
1076 if (err)
1077 goto free_irq_tx;
1078
1079 adapter->rx_ring->itr_register = E1000_EITR(vector);
1080 adapter->rx_ring->itr_val = adapter->current_itr;
1081 vector++;
1082
1083 err = request_irq(adapter->msix_entries[vector].vector,
1084 igbvf_msix_other, 0, netdev->name, netdev);
1085 if (err)
1086 goto free_irq_rx;
1087
1088 igbvf_configure_msix(adapter);
1089 return 0;
1090 free_irq_rx:
1091 free_irq(adapter->msix_entries[--vector].vector, netdev);
1092 free_irq_tx:
1093 free_irq(adapter->msix_entries[--vector].vector, netdev);
1094 out:
1095 return err;
1096 }
1097
1098 /**
1099 * igbvf_alloc_queues - Allocate memory for all rings
1100 * @adapter: board private structure to initialize
1101 **/
igbvf_alloc_queues(struct igbvf_adapter * adapter)1102 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1103 {
1104 struct net_device *netdev = adapter->netdev;
1105
1106 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1107 if (!adapter->tx_ring)
1108 return -ENOMEM;
1109
1110 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1111 if (!adapter->rx_ring) {
1112 kfree(adapter->tx_ring);
1113 return -ENOMEM;
1114 }
1115
1116 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll);
1117
1118 return 0;
1119 }
1120
1121 /**
1122 * igbvf_request_irq - initialize interrupts
1123 * @adapter: board private structure
1124 *
1125 * Attempts to configure interrupts using the best available
1126 * capabilities of the hardware and kernel.
1127 **/
igbvf_request_irq(struct igbvf_adapter * adapter)1128 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1129 {
1130 int err = -1;
1131
1132 /* igbvf supports msi-x only */
1133 if (adapter->msix_entries)
1134 err = igbvf_request_msix(adapter);
1135
1136 if (!err)
1137 return err;
1138
1139 dev_err(&adapter->pdev->dev,
1140 "Unable to allocate interrupt, Error: %d\n", err);
1141
1142 return err;
1143 }
1144
igbvf_free_irq(struct igbvf_adapter * adapter)1145 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1146 {
1147 struct net_device *netdev = adapter->netdev;
1148 int vector;
1149
1150 if (adapter->msix_entries) {
1151 for (vector = 0; vector < 3; vector++)
1152 free_irq(adapter->msix_entries[vector].vector, netdev);
1153 }
1154 }
1155
1156 /**
1157 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1158 * @adapter: board private structure
1159 **/
igbvf_irq_disable(struct igbvf_adapter * adapter)1160 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1161 {
1162 struct e1000_hw *hw = &adapter->hw;
1163
1164 ew32(EIMC, ~0);
1165
1166 if (adapter->msix_entries)
1167 ew32(EIAC, 0);
1168 }
1169
1170 /**
1171 * igbvf_irq_enable - Enable default interrupt generation settings
1172 * @adapter: board private structure
1173 **/
igbvf_irq_enable(struct igbvf_adapter * adapter)1174 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1175 {
1176 struct e1000_hw *hw = &adapter->hw;
1177
1178 ew32(EIAC, adapter->eims_enable_mask);
1179 ew32(EIAM, adapter->eims_enable_mask);
1180 ew32(EIMS, adapter->eims_enable_mask);
1181 }
1182
1183 /**
1184 * igbvf_poll - NAPI Rx polling callback
1185 * @napi: struct associated with this polling callback
1186 * @budget: amount of packets driver is allowed to process this poll
1187 **/
igbvf_poll(struct napi_struct * napi,int budget)1188 static int igbvf_poll(struct napi_struct *napi, int budget)
1189 {
1190 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1191 struct igbvf_adapter *adapter = rx_ring->adapter;
1192 struct e1000_hw *hw = &adapter->hw;
1193 int work_done = 0;
1194
1195 igbvf_clean_rx_irq(adapter, &work_done, budget);
1196
1197 if (work_done == budget)
1198 return budget;
1199
1200 /* Exit the polling mode, but don't re-enable interrupts if stack might
1201 * poll us due to busy-polling
1202 */
1203 if (likely(napi_complete_done(napi, work_done))) {
1204 if (adapter->requested_itr & 3)
1205 igbvf_set_itr(adapter);
1206
1207 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1208 ew32(EIMS, adapter->rx_ring->eims_value);
1209 }
1210
1211 return work_done;
1212 }
1213
1214 /**
1215 * igbvf_set_rlpml - set receive large packet maximum length
1216 * @adapter: board private structure
1217 *
1218 * Configure the maximum size of packets that will be received
1219 */
igbvf_set_rlpml(struct igbvf_adapter * adapter)1220 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1221 {
1222 int max_frame_size;
1223 struct e1000_hw *hw = &adapter->hw;
1224
1225 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1226
1227 spin_lock_bh(&hw->mbx_lock);
1228
1229 e1000_rlpml_set_vf(hw, max_frame_size);
1230
1231 spin_unlock_bh(&hw->mbx_lock);
1232 }
1233
igbvf_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)1234 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1235 __be16 proto, u16 vid)
1236 {
1237 struct igbvf_adapter *adapter = netdev_priv(netdev);
1238 struct e1000_hw *hw = &adapter->hw;
1239
1240 spin_lock_bh(&hw->mbx_lock);
1241
1242 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1243 dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1244 spin_unlock_bh(&hw->mbx_lock);
1245 return -EINVAL;
1246 }
1247
1248 spin_unlock_bh(&hw->mbx_lock);
1249
1250 set_bit(vid, adapter->active_vlans);
1251 return 0;
1252 }
1253
igbvf_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)1254 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1255 __be16 proto, u16 vid)
1256 {
1257 struct igbvf_adapter *adapter = netdev_priv(netdev);
1258 struct e1000_hw *hw = &adapter->hw;
1259
1260 spin_lock_bh(&hw->mbx_lock);
1261
1262 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1263 dev_err(&adapter->pdev->dev,
1264 "Failed to remove vlan id %d\n", vid);
1265 spin_unlock_bh(&hw->mbx_lock);
1266 return -EINVAL;
1267 }
1268
1269 spin_unlock_bh(&hw->mbx_lock);
1270
1271 clear_bit(vid, adapter->active_vlans);
1272 return 0;
1273 }
1274
igbvf_restore_vlan(struct igbvf_adapter * adapter)1275 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1276 {
1277 u16 vid;
1278
1279 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1280 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1281 }
1282
1283 /**
1284 * igbvf_configure_tx - Configure Transmit Unit after Reset
1285 * @adapter: board private structure
1286 *
1287 * Configure the Tx unit of the MAC after a reset.
1288 **/
igbvf_configure_tx(struct igbvf_adapter * adapter)1289 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1290 {
1291 struct e1000_hw *hw = &adapter->hw;
1292 struct igbvf_ring *tx_ring = adapter->tx_ring;
1293 u64 tdba;
1294 u32 txdctl, dca_txctrl;
1295
1296 /* disable transmits */
1297 txdctl = er32(TXDCTL(0));
1298 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1299 e1e_flush();
1300 msleep(10);
1301
1302 /* Setup the HW Tx Head and Tail descriptor pointers */
1303 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1304 tdba = tx_ring->dma;
1305 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1306 ew32(TDBAH(0), (tdba >> 32));
1307 ew32(TDH(0), 0);
1308 ew32(TDT(0), 0);
1309 tx_ring->head = E1000_TDH(0);
1310 tx_ring->tail = E1000_TDT(0);
1311
1312 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1313 * MUST be delivered in order or it will completely screw up
1314 * our bookkeeping.
1315 */
1316 dca_txctrl = er32(DCA_TXCTRL(0));
1317 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1318 ew32(DCA_TXCTRL(0), dca_txctrl);
1319
1320 /* enable transmits */
1321 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1322 ew32(TXDCTL(0), txdctl);
1323
1324 /* Setup Transmit Descriptor Settings for eop descriptor */
1325 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1326
1327 /* enable Report Status bit */
1328 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1329 }
1330
1331 /**
1332 * igbvf_setup_srrctl - configure the receive control registers
1333 * @adapter: Board private structure
1334 **/
igbvf_setup_srrctl(struct igbvf_adapter * adapter)1335 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1336 {
1337 struct e1000_hw *hw = &adapter->hw;
1338 u32 srrctl = 0;
1339
1340 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1341 E1000_SRRCTL_BSIZEHDR_MASK |
1342 E1000_SRRCTL_BSIZEPKT_MASK);
1343
1344 /* Enable queue drop to avoid head of line blocking */
1345 srrctl |= E1000_SRRCTL_DROP_EN;
1346
1347 /* Setup buffer sizes */
1348 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1349 E1000_SRRCTL_BSIZEPKT_SHIFT;
1350
1351 if (adapter->rx_buffer_len < 2048) {
1352 adapter->rx_ps_hdr_size = 0;
1353 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1354 } else {
1355 adapter->rx_ps_hdr_size = 128;
1356 srrctl |= adapter->rx_ps_hdr_size <<
1357 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1358 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1359 }
1360
1361 ew32(SRRCTL(0), srrctl);
1362 }
1363
1364 /**
1365 * igbvf_configure_rx - Configure Receive Unit after Reset
1366 * @adapter: board private structure
1367 *
1368 * Configure the Rx unit of the MAC after a reset.
1369 **/
igbvf_configure_rx(struct igbvf_adapter * adapter)1370 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1371 {
1372 struct e1000_hw *hw = &adapter->hw;
1373 struct igbvf_ring *rx_ring = adapter->rx_ring;
1374 u64 rdba;
1375 u32 rxdctl;
1376
1377 /* disable receives */
1378 rxdctl = er32(RXDCTL(0));
1379 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1380 e1e_flush();
1381 msleep(10);
1382
1383 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1384 * the Base and Length of the Rx Descriptor Ring
1385 */
1386 rdba = rx_ring->dma;
1387 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1388 ew32(RDBAH(0), (rdba >> 32));
1389 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1390 rx_ring->head = E1000_RDH(0);
1391 rx_ring->tail = E1000_RDT(0);
1392 ew32(RDH(0), 0);
1393 ew32(RDT(0), 0);
1394
1395 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1396 rxdctl &= 0xFFF00000;
1397 rxdctl |= IGBVF_RX_PTHRESH;
1398 rxdctl |= IGBVF_RX_HTHRESH << 8;
1399 rxdctl |= IGBVF_RX_WTHRESH << 16;
1400
1401 igbvf_set_rlpml(adapter);
1402
1403 /* enable receives */
1404 ew32(RXDCTL(0), rxdctl);
1405 }
1406
1407 /**
1408 * igbvf_set_multi - Multicast and Promiscuous mode set
1409 * @netdev: network interface device structure
1410 *
1411 * The set_multi entry point is called whenever the multicast address
1412 * list or the network interface flags are updated. This routine is
1413 * responsible for configuring the hardware for proper multicast,
1414 * promiscuous mode, and all-multi behavior.
1415 **/
igbvf_set_multi(struct net_device * netdev)1416 static void igbvf_set_multi(struct net_device *netdev)
1417 {
1418 struct igbvf_adapter *adapter = netdev_priv(netdev);
1419 struct e1000_hw *hw = &adapter->hw;
1420 struct netdev_hw_addr *ha;
1421 u8 *mta_list = NULL;
1422 int i;
1423
1424 if (!netdev_mc_empty(netdev)) {
1425 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1426 GFP_ATOMIC);
1427 if (!mta_list)
1428 return;
1429 }
1430
1431 /* prepare a packed array of only addresses. */
1432 i = 0;
1433 netdev_for_each_mc_addr(ha, netdev)
1434 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1435
1436 spin_lock_bh(&hw->mbx_lock);
1437
1438 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1439
1440 spin_unlock_bh(&hw->mbx_lock);
1441 kfree(mta_list);
1442 }
1443
1444 /**
1445 * igbvf_set_uni - Configure unicast MAC filters
1446 * @netdev: network interface device structure
1447 *
1448 * This routine is responsible for configuring the hardware for proper
1449 * unicast filters.
1450 **/
igbvf_set_uni(struct net_device * netdev)1451 static int igbvf_set_uni(struct net_device *netdev)
1452 {
1453 struct igbvf_adapter *adapter = netdev_priv(netdev);
1454 struct e1000_hw *hw = &adapter->hw;
1455
1456 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1457 pr_err("Too many unicast filters - No Space\n");
1458 return -ENOSPC;
1459 }
1460
1461 spin_lock_bh(&hw->mbx_lock);
1462
1463 /* Clear all unicast MAC filters */
1464 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1465
1466 spin_unlock_bh(&hw->mbx_lock);
1467
1468 if (!netdev_uc_empty(netdev)) {
1469 struct netdev_hw_addr *ha;
1470
1471 /* Add MAC filters one by one */
1472 netdev_for_each_uc_addr(ha, netdev) {
1473 spin_lock_bh(&hw->mbx_lock);
1474
1475 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1476 ha->addr);
1477
1478 spin_unlock_bh(&hw->mbx_lock);
1479 udelay(200);
1480 }
1481 }
1482
1483 return 0;
1484 }
1485
igbvf_set_rx_mode(struct net_device * netdev)1486 static void igbvf_set_rx_mode(struct net_device *netdev)
1487 {
1488 igbvf_set_multi(netdev);
1489 igbvf_set_uni(netdev);
1490 }
1491
1492 /**
1493 * igbvf_configure - configure the hardware for Rx and Tx
1494 * @adapter: private board structure
1495 **/
igbvf_configure(struct igbvf_adapter * adapter)1496 static void igbvf_configure(struct igbvf_adapter *adapter)
1497 {
1498 igbvf_set_rx_mode(adapter->netdev);
1499
1500 igbvf_restore_vlan(adapter);
1501
1502 igbvf_configure_tx(adapter);
1503 igbvf_setup_srrctl(adapter);
1504 igbvf_configure_rx(adapter);
1505 igbvf_alloc_rx_buffers(adapter->rx_ring,
1506 igbvf_desc_unused(adapter->rx_ring));
1507 }
1508
1509 /* igbvf_reset - bring the hardware into a known good state
1510 * @adapter: private board structure
1511 *
1512 * This function boots the hardware and enables some settings that
1513 * require a configuration cycle of the hardware - those cannot be
1514 * set/changed during runtime. After reset the device needs to be
1515 * properly configured for Rx, Tx etc.
1516 */
igbvf_reset(struct igbvf_adapter * adapter)1517 static void igbvf_reset(struct igbvf_adapter *adapter)
1518 {
1519 struct e1000_mac_info *mac = &adapter->hw.mac;
1520 struct net_device *netdev = adapter->netdev;
1521 struct e1000_hw *hw = &adapter->hw;
1522
1523 spin_lock_bh(&hw->mbx_lock);
1524
1525 /* Allow time for pending master requests to run */
1526 if (mac->ops.reset_hw(hw))
1527 dev_info(&adapter->pdev->dev, "PF still resetting\n");
1528
1529 mac->ops.init_hw(hw);
1530
1531 spin_unlock_bh(&hw->mbx_lock);
1532
1533 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1534 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1535 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1536 netdev->addr_len);
1537 }
1538
1539 adapter->last_reset = jiffies;
1540 }
1541
igbvf_up(struct igbvf_adapter * adapter)1542 int igbvf_up(struct igbvf_adapter *adapter)
1543 {
1544 struct e1000_hw *hw = &adapter->hw;
1545
1546 /* hardware has been reset, we need to reload some things */
1547 igbvf_configure(adapter);
1548
1549 clear_bit(__IGBVF_DOWN, &adapter->state);
1550
1551 napi_enable(&adapter->rx_ring->napi);
1552 if (adapter->msix_entries)
1553 igbvf_configure_msix(adapter);
1554
1555 /* Clear any pending interrupts. */
1556 er32(EICR);
1557 igbvf_irq_enable(adapter);
1558
1559 /* start the watchdog */
1560 hw->mac.get_link_status = 1;
1561 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1562
1563 return 0;
1564 }
1565
igbvf_down(struct igbvf_adapter * adapter)1566 void igbvf_down(struct igbvf_adapter *adapter)
1567 {
1568 struct net_device *netdev = adapter->netdev;
1569 struct e1000_hw *hw = &adapter->hw;
1570 u32 rxdctl, txdctl;
1571
1572 /* signal that we're down so the interrupt handler does not
1573 * reschedule our watchdog timer
1574 */
1575 set_bit(__IGBVF_DOWN, &adapter->state);
1576
1577 /* disable receives in the hardware */
1578 rxdctl = er32(RXDCTL(0));
1579 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1580
1581 netif_carrier_off(netdev);
1582 netif_stop_queue(netdev);
1583
1584 /* disable transmits in the hardware */
1585 txdctl = er32(TXDCTL(0));
1586 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1587
1588 /* flush both disables and wait for them to finish */
1589 e1e_flush();
1590 msleep(10);
1591
1592 napi_disable(&adapter->rx_ring->napi);
1593
1594 igbvf_irq_disable(adapter);
1595
1596 del_timer_sync(&adapter->watchdog_timer);
1597
1598 /* record the stats before reset*/
1599 igbvf_update_stats(adapter);
1600
1601 adapter->link_speed = 0;
1602 adapter->link_duplex = 0;
1603
1604 igbvf_reset(adapter);
1605 igbvf_clean_tx_ring(adapter->tx_ring);
1606 igbvf_clean_rx_ring(adapter->rx_ring);
1607 }
1608
igbvf_reinit_locked(struct igbvf_adapter * adapter)1609 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1610 {
1611 might_sleep();
1612 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1613 usleep_range(1000, 2000);
1614 igbvf_down(adapter);
1615 igbvf_up(adapter);
1616 clear_bit(__IGBVF_RESETTING, &adapter->state);
1617 }
1618
1619 /**
1620 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1621 * @adapter: board private structure to initialize
1622 *
1623 * igbvf_sw_init initializes the Adapter private data structure.
1624 * Fields are initialized based on PCI device information and
1625 * OS network device settings (MTU size).
1626 **/
igbvf_sw_init(struct igbvf_adapter * adapter)1627 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1628 {
1629 struct net_device *netdev = adapter->netdev;
1630 s32 rc;
1631
1632 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1633 adapter->rx_ps_hdr_size = 0;
1634 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1635 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1636
1637 adapter->tx_int_delay = 8;
1638 adapter->tx_abs_int_delay = 32;
1639 adapter->rx_int_delay = 0;
1640 adapter->rx_abs_int_delay = 8;
1641 adapter->requested_itr = 3;
1642 adapter->current_itr = IGBVF_START_ITR;
1643
1644 /* Set various function pointers */
1645 adapter->ei->init_ops(&adapter->hw);
1646
1647 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1648 if (rc)
1649 return rc;
1650
1651 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1652 if (rc)
1653 return rc;
1654
1655 igbvf_set_interrupt_capability(adapter);
1656
1657 if (igbvf_alloc_queues(adapter))
1658 return -ENOMEM;
1659
1660 spin_lock_init(&adapter->tx_queue_lock);
1661
1662 /* Explicitly disable IRQ since the NIC can be in any state. */
1663 igbvf_irq_disable(adapter);
1664
1665 spin_lock_init(&adapter->stats_lock);
1666 spin_lock_init(&adapter->hw.mbx_lock);
1667
1668 set_bit(__IGBVF_DOWN, &adapter->state);
1669 return 0;
1670 }
1671
igbvf_initialize_last_counter_stats(struct igbvf_adapter * adapter)1672 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1673 {
1674 struct e1000_hw *hw = &adapter->hw;
1675
1676 adapter->stats.last_gprc = er32(VFGPRC);
1677 adapter->stats.last_gorc = er32(VFGORC);
1678 adapter->stats.last_gptc = er32(VFGPTC);
1679 adapter->stats.last_gotc = er32(VFGOTC);
1680 adapter->stats.last_mprc = er32(VFMPRC);
1681 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1682 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1683 adapter->stats.last_gorlbc = er32(VFGORLBC);
1684 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1685
1686 adapter->stats.base_gprc = er32(VFGPRC);
1687 adapter->stats.base_gorc = er32(VFGORC);
1688 adapter->stats.base_gptc = er32(VFGPTC);
1689 adapter->stats.base_gotc = er32(VFGOTC);
1690 adapter->stats.base_mprc = er32(VFMPRC);
1691 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1692 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1693 adapter->stats.base_gorlbc = er32(VFGORLBC);
1694 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1695 }
1696
1697 /**
1698 * igbvf_open - Called when a network interface is made active
1699 * @netdev: network interface device structure
1700 *
1701 * Returns 0 on success, negative value on failure
1702 *
1703 * The open entry point is called when a network interface is made
1704 * active by the system (IFF_UP). At this point all resources needed
1705 * for transmit and receive operations are allocated, the interrupt
1706 * handler is registered with the OS, the watchdog timer is started,
1707 * and the stack is notified that the interface is ready.
1708 **/
igbvf_open(struct net_device * netdev)1709 static int igbvf_open(struct net_device *netdev)
1710 {
1711 struct igbvf_adapter *adapter = netdev_priv(netdev);
1712 struct e1000_hw *hw = &adapter->hw;
1713 int err;
1714
1715 /* disallow open during test */
1716 if (test_bit(__IGBVF_TESTING, &adapter->state))
1717 return -EBUSY;
1718
1719 /* allocate transmit descriptors */
1720 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1721 if (err)
1722 goto err_setup_tx;
1723
1724 /* allocate receive descriptors */
1725 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1726 if (err)
1727 goto err_setup_rx;
1728
1729 /* before we allocate an interrupt, we must be ready to handle it.
1730 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1731 * as soon as we call pci_request_irq, so we have to setup our
1732 * clean_rx handler before we do so.
1733 */
1734 igbvf_configure(adapter);
1735
1736 err = igbvf_request_irq(adapter);
1737 if (err)
1738 goto err_req_irq;
1739
1740 /* From here on the code is the same as igbvf_up() */
1741 clear_bit(__IGBVF_DOWN, &adapter->state);
1742
1743 napi_enable(&adapter->rx_ring->napi);
1744
1745 /* clear any pending interrupts */
1746 er32(EICR);
1747
1748 igbvf_irq_enable(adapter);
1749
1750 /* start the watchdog */
1751 hw->mac.get_link_status = 1;
1752 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1753
1754 return 0;
1755
1756 err_req_irq:
1757 igbvf_free_rx_resources(adapter->rx_ring);
1758 err_setup_rx:
1759 igbvf_free_tx_resources(adapter->tx_ring);
1760 err_setup_tx:
1761 igbvf_reset(adapter);
1762
1763 return err;
1764 }
1765
1766 /**
1767 * igbvf_close - Disables a network interface
1768 * @netdev: network interface device structure
1769 *
1770 * Returns 0, this is not allowed to fail
1771 *
1772 * The close entry point is called when an interface is de-activated
1773 * by the OS. The hardware is still under the drivers control, but
1774 * needs to be disabled. A global MAC reset is issued to stop the
1775 * hardware, and all transmit and receive resources are freed.
1776 **/
igbvf_close(struct net_device * netdev)1777 static int igbvf_close(struct net_device *netdev)
1778 {
1779 struct igbvf_adapter *adapter = netdev_priv(netdev);
1780
1781 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1782 igbvf_down(adapter);
1783
1784 igbvf_free_irq(adapter);
1785
1786 igbvf_free_tx_resources(adapter->tx_ring);
1787 igbvf_free_rx_resources(adapter->rx_ring);
1788
1789 return 0;
1790 }
1791
1792 /**
1793 * igbvf_set_mac - Change the Ethernet Address of the NIC
1794 * @netdev: network interface device structure
1795 * @p: pointer to an address structure
1796 *
1797 * Returns 0 on success, negative on failure
1798 **/
igbvf_set_mac(struct net_device * netdev,void * p)1799 static int igbvf_set_mac(struct net_device *netdev, void *p)
1800 {
1801 struct igbvf_adapter *adapter = netdev_priv(netdev);
1802 struct e1000_hw *hw = &adapter->hw;
1803 struct sockaddr *addr = p;
1804
1805 if (!is_valid_ether_addr(addr->sa_data))
1806 return -EADDRNOTAVAIL;
1807
1808 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1809
1810 spin_lock_bh(&hw->mbx_lock);
1811
1812 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1813
1814 spin_unlock_bh(&hw->mbx_lock);
1815
1816 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1817 return -EADDRNOTAVAIL;
1818
1819 eth_hw_addr_set(netdev, addr->sa_data);
1820
1821 return 0;
1822 }
1823
1824 #define UPDATE_VF_COUNTER(reg, name) \
1825 { \
1826 u32 current_counter = er32(reg); \
1827 if (current_counter < adapter->stats.last_##name) \
1828 adapter->stats.name += 0x100000000LL; \
1829 adapter->stats.last_##name = current_counter; \
1830 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1831 adapter->stats.name |= current_counter; \
1832 }
1833
1834 /**
1835 * igbvf_update_stats - Update the board statistics counters
1836 * @adapter: board private structure
1837 **/
igbvf_update_stats(struct igbvf_adapter * adapter)1838 void igbvf_update_stats(struct igbvf_adapter *adapter)
1839 {
1840 struct e1000_hw *hw = &adapter->hw;
1841 struct pci_dev *pdev = adapter->pdev;
1842
1843 /* Prevent stats update while adapter is being reset, link is down
1844 * or if the pci connection is down.
1845 */
1846 if (adapter->link_speed == 0)
1847 return;
1848
1849 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1850 return;
1851
1852 if (pci_channel_offline(pdev))
1853 return;
1854
1855 UPDATE_VF_COUNTER(VFGPRC, gprc);
1856 UPDATE_VF_COUNTER(VFGORC, gorc);
1857 UPDATE_VF_COUNTER(VFGPTC, gptc);
1858 UPDATE_VF_COUNTER(VFGOTC, gotc);
1859 UPDATE_VF_COUNTER(VFMPRC, mprc);
1860 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1861 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1862 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1863 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1864
1865 /* Fill out the OS statistics structure */
1866 adapter->netdev->stats.multicast = adapter->stats.mprc;
1867 }
1868
igbvf_print_link_info(struct igbvf_adapter * adapter)1869 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1870 {
1871 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1872 adapter->link_speed,
1873 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1874 }
1875
igbvf_has_link(struct igbvf_adapter * adapter)1876 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1877 {
1878 struct e1000_hw *hw = &adapter->hw;
1879 s32 ret_val = E1000_SUCCESS;
1880 bool link_active;
1881
1882 /* If interface is down, stay link down */
1883 if (test_bit(__IGBVF_DOWN, &adapter->state))
1884 return false;
1885
1886 spin_lock_bh(&hw->mbx_lock);
1887
1888 ret_val = hw->mac.ops.check_for_link(hw);
1889
1890 spin_unlock_bh(&hw->mbx_lock);
1891
1892 link_active = !hw->mac.get_link_status;
1893
1894 /* if check for link returns error we will need to reset */
1895 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1896 schedule_work(&adapter->reset_task);
1897
1898 return link_active;
1899 }
1900
1901 /**
1902 * igbvf_watchdog - Timer Call-back
1903 * @t: timer list pointer containing private struct
1904 **/
igbvf_watchdog(struct timer_list * t)1905 static void igbvf_watchdog(struct timer_list *t)
1906 {
1907 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1908
1909 /* Do the rest outside of interrupt context */
1910 schedule_work(&adapter->watchdog_task);
1911 }
1912
igbvf_watchdog_task(struct work_struct * work)1913 static void igbvf_watchdog_task(struct work_struct *work)
1914 {
1915 struct igbvf_adapter *adapter = container_of(work,
1916 struct igbvf_adapter,
1917 watchdog_task);
1918 struct net_device *netdev = adapter->netdev;
1919 struct e1000_mac_info *mac = &adapter->hw.mac;
1920 struct igbvf_ring *tx_ring = adapter->tx_ring;
1921 struct e1000_hw *hw = &adapter->hw;
1922 u32 link;
1923 int tx_pending = 0;
1924
1925 link = igbvf_has_link(adapter);
1926
1927 if (link) {
1928 if (!netif_carrier_ok(netdev)) {
1929 mac->ops.get_link_up_info(&adapter->hw,
1930 &adapter->link_speed,
1931 &adapter->link_duplex);
1932 igbvf_print_link_info(adapter);
1933
1934 netif_carrier_on(netdev);
1935 netif_wake_queue(netdev);
1936 }
1937 } else {
1938 if (netif_carrier_ok(netdev)) {
1939 adapter->link_speed = 0;
1940 adapter->link_duplex = 0;
1941 dev_info(&adapter->pdev->dev, "Link is Down\n");
1942 netif_carrier_off(netdev);
1943 netif_stop_queue(netdev);
1944 }
1945 }
1946
1947 if (netif_carrier_ok(netdev)) {
1948 igbvf_update_stats(adapter);
1949 } else {
1950 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1951 tx_ring->count);
1952 if (tx_pending) {
1953 /* We've lost link, so the controller stops DMA,
1954 * but we've got queued Tx work that's never going
1955 * to get done, so reset controller to flush Tx.
1956 * (Do the reset outside of interrupt context).
1957 */
1958 adapter->tx_timeout_count++;
1959 schedule_work(&adapter->reset_task);
1960 }
1961 }
1962
1963 /* Cause software interrupt to ensure Rx ring is cleaned */
1964 ew32(EICS, adapter->rx_ring->eims_value);
1965
1966 /* Reset the timer */
1967 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1968 mod_timer(&adapter->watchdog_timer,
1969 round_jiffies(jiffies + (2 * HZ)));
1970 }
1971
1972 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1973 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1974 #define IGBVF_TX_FLAGS_TSO 0x00000004
1975 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1976 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1977 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1978
igbvf_tx_ctxtdesc(struct igbvf_ring * tx_ring,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1979 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1980 u32 type_tucmd, u32 mss_l4len_idx)
1981 {
1982 struct e1000_adv_tx_context_desc *context_desc;
1983 struct igbvf_buffer *buffer_info;
1984 u16 i = tx_ring->next_to_use;
1985
1986 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1987 buffer_info = &tx_ring->buffer_info[i];
1988
1989 i++;
1990 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1991
1992 /* set bits to identify this as an advanced context descriptor */
1993 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1994
1995 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1996 context_desc->seqnum_seed = 0;
1997 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1998 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1999
2000 buffer_info->time_stamp = jiffies;
2001 buffer_info->dma = 0;
2002 }
2003
igbvf_tso(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u8 * hdr_len)2004 static int igbvf_tso(struct igbvf_ring *tx_ring,
2005 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2006 {
2007 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2008 union {
2009 struct iphdr *v4;
2010 struct ipv6hdr *v6;
2011 unsigned char *hdr;
2012 } ip;
2013 union {
2014 struct tcphdr *tcp;
2015 unsigned char *hdr;
2016 } l4;
2017 u32 paylen, l4_offset;
2018 int err;
2019
2020 if (skb->ip_summed != CHECKSUM_PARTIAL)
2021 return 0;
2022
2023 if (!skb_is_gso(skb))
2024 return 0;
2025
2026 err = skb_cow_head(skb, 0);
2027 if (err < 0)
2028 return err;
2029
2030 ip.hdr = skb_network_header(skb);
2031 l4.hdr = skb_checksum_start(skb);
2032
2033 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2034 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2035
2036 /* initialize outer IP header fields */
2037 if (ip.v4->version == 4) {
2038 unsigned char *csum_start = skb_checksum_start(skb);
2039 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2040
2041 /* IP header will have to cancel out any data that
2042 * is not a part of the outer IP header
2043 */
2044 ip.v4->check = csum_fold(csum_partial(trans_start,
2045 csum_start - trans_start,
2046 0));
2047 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2048
2049 ip.v4->tot_len = 0;
2050 } else {
2051 ip.v6->payload_len = 0;
2052 }
2053
2054 /* determine offset of inner transport header */
2055 l4_offset = l4.hdr - skb->data;
2056
2057 /* compute length of segmentation header */
2058 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2059
2060 /* remove payload length from inner checksum */
2061 paylen = skb->len - l4_offset;
2062 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2063
2064 /* MSS L4LEN IDX */
2065 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2066 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2067
2068 /* VLAN MACLEN IPLEN */
2069 vlan_macip_lens = l4.hdr - ip.hdr;
2070 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2071 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2072
2073 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2074
2075 return 1;
2076 }
2077
igbvf_tx_csum(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,__be16 protocol)2078 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2079 u32 tx_flags, __be16 protocol)
2080 {
2081 u32 vlan_macip_lens = 0;
2082 u32 type_tucmd = 0;
2083
2084 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2085 csum_failed:
2086 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2087 return false;
2088 goto no_csum;
2089 }
2090
2091 switch (skb->csum_offset) {
2092 case offsetof(struct tcphdr, check):
2093 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2094 fallthrough;
2095 case offsetof(struct udphdr, check):
2096 break;
2097 case offsetof(struct sctphdr, checksum):
2098 /* validate that this is actually an SCTP request */
2099 if (skb_csum_is_sctp(skb)) {
2100 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2101 break;
2102 }
2103 fallthrough;
2104 default:
2105 skb_checksum_help(skb);
2106 goto csum_failed;
2107 }
2108
2109 vlan_macip_lens = skb_checksum_start_offset(skb) -
2110 skb_network_offset(skb);
2111 no_csum:
2112 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2113 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2114
2115 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2116 return true;
2117 }
2118
igbvf_maybe_stop_tx(struct net_device * netdev,int size)2119 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2120 {
2121 struct igbvf_adapter *adapter = netdev_priv(netdev);
2122
2123 /* there is enough descriptors then we don't need to worry */
2124 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2125 return 0;
2126
2127 netif_stop_queue(netdev);
2128
2129 /* Herbert's original patch had:
2130 * smp_mb__after_netif_stop_queue();
2131 * but since that doesn't exist yet, just open code it.
2132 */
2133 smp_mb();
2134
2135 /* We need to check again just in case room has been made available */
2136 if (igbvf_desc_unused(adapter->tx_ring) < size)
2137 return -EBUSY;
2138
2139 netif_wake_queue(netdev);
2140
2141 ++adapter->restart_queue;
2142 return 0;
2143 }
2144
2145 #define IGBVF_MAX_TXD_PWR 16
2146 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2147
igbvf_tx_map_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb)2148 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2149 struct igbvf_ring *tx_ring,
2150 struct sk_buff *skb)
2151 {
2152 struct igbvf_buffer *buffer_info;
2153 struct pci_dev *pdev = adapter->pdev;
2154 unsigned int len = skb_headlen(skb);
2155 unsigned int count = 0, i;
2156 unsigned int f;
2157
2158 i = tx_ring->next_to_use;
2159
2160 buffer_info = &tx_ring->buffer_info[i];
2161 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2162 buffer_info->length = len;
2163 /* set time_stamp *before* dma to help avoid a possible race */
2164 buffer_info->time_stamp = jiffies;
2165 buffer_info->mapped_as_page = false;
2166 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2167 DMA_TO_DEVICE);
2168 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2169 goto dma_error;
2170
2171 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2172 const skb_frag_t *frag;
2173
2174 count++;
2175 i++;
2176 if (i == tx_ring->count)
2177 i = 0;
2178
2179 frag = &skb_shinfo(skb)->frags[f];
2180 len = skb_frag_size(frag);
2181
2182 buffer_info = &tx_ring->buffer_info[i];
2183 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2184 buffer_info->length = len;
2185 buffer_info->time_stamp = jiffies;
2186 buffer_info->mapped_as_page = true;
2187 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2188 DMA_TO_DEVICE);
2189 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2190 goto dma_error;
2191 }
2192
2193 tx_ring->buffer_info[i].skb = skb;
2194
2195 return ++count;
2196
2197 dma_error:
2198 dev_err(&pdev->dev, "TX DMA map failed\n");
2199
2200 /* clear timestamp and dma mappings for failed buffer_info mapping */
2201 buffer_info->dma = 0;
2202 buffer_info->time_stamp = 0;
2203 buffer_info->length = 0;
2204 buffer_info->mapped_as_page = false;
2205 if (count)
2206 count--;
2207
2208 /* clear timestamp and dma mappings for remaining portion of packet */
2209 while (count--) {
2210 if (i == 0)
2211 i += tx_ring->count;
2212 i--;
2213 buffer_info = &tx_ring->buffer_info[i];
2214 igbvf_put_txbuf(adapter, buffer_info);
2215 }
2216
2217 return 0;
2218 }
2219
igbvf_tx_queue_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,int tx_flags,int count,unsigned int first,u32 paylen,u8 hdr_len)2220 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2221 struct igbvf_ring *tx_ring,
2222 int tx_flags, int count,
2223 unsigned int first, u32 paylen,
2224 u8 hdr_len)
2225 {
2226 union e1000_adv_tx_desc *tx_desc = NULL;
2227 struct igbvf_buffer *buffer_info;
2228 u32 olinfo_status = 0, cmd_type_len;
2229 unsigned int i;
2230
2231 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2232 E1000_ADVTXD_DCMD_DEXT);
2233
2234 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2235 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2236
2237 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2238 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2239
2240 /* insert tcp checksum */
2241 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2242
2243 /* insert ip checksum */
2244 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2245 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2246
2247 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2248 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2249 }
2250
2251 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2252
2253 i = tx_ring->next_to_use;
2254 while (count--) {
2255 buffer_info = &tx_ring->buffer_info[i];
2256 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2257 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2258 tx_desc->read.cmd_type_len =
2259 cpu_to_le32(cmd_type_len | buffer_info->length);
2260 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2261 i++;
2262 if (i == tx_ring->count)
2263 i = 0;
2264 }
2265
2266 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2267 /* Force memory writes to complete before letting h/w
2268 * know there are new descriptors to fetch. (Only
2269 * applicable for weak-ordered memory model archs,
2270 * such as IA-64).
2271 */
2272 wmb();
2273
2274 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2275 tx_ring->next_to_use = i;
2276 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2277 }
2278
igbvf_xmit_frame_ring_adv(struct sk_buff * skb,struct net_device * netdev,struct igbvf_ring * tx_ring)2279 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2280 struct net_device *netdev,
2281 struct igbvf_ring *tx_ring)
2282 {
2283 struct igbvf_adapter *adapter = netdev_priv(netdev);
2284 unsigned int first, tx_flags = 0;
2285 u8 hdr_len = 0;
2286 int count = 0;
2287 int tso = 0;
2288 __be16 protocol = vlan_get_protocol(skb);
2289
2290 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2291 dev_kfree_skb_any(skb);
2292 return NETDEV_TX_OK;
2293 }
2294
2295 if (skb->len <= 0) {
2296 dev_kfree_skb_any(skb);
2297 return NETDEV_TX_OK;
2298 }
2299
2300 /* need: count + 4 desc gap to keep tail from touching
2301 * + 2 desc gap to keep tail from touching head,
2302 * + 1 desc for skb->data,
2303 * + 1 desc for context descriptor,
2304 * head, otherwise try next time
2305 */
2306 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2307 /* this is a hard error */
2308 return NETDEV_TX_BUSY;
2309 }
2310
2311 if (skb_vlan_tag_present(skb)) {
2312 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2313 tx_flags |= (skb_vlan_tag_get(skb) <<
2314 IGBVF_TX_FLAGS_VLAN_SHIFT);
2315 }
2316
2317 if (protocol == htons(ETH_P_IP))
2318 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2319
2320 first = tx_ring->next_to_use;
2321
2322 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2323 if (unlikely(tso < 0)) {
2324 dev_kfree_skb_any(skb);
2325 return NETDEV_TX_OK;
2326 }
2327
2328 if (tso)
2329 tx_flags |= IGBVF_TX_FLAGS_TSO;
2330 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2331 (skb->ip_summed == CHECKSUM_PARTIAL))
2332 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2333
2334 /* count reflects descriptors mapped, if 0 then mapping error
2335 * has occurred and we need to rewind the descriptor queue
2336 */
2337 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2338
2339 if (count) {
2340 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2341 first, skb->len, hdr_len);
2342 /* Make sure there is space in the ring for the next send. */
2343 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2344 } else {
2345 dev_kfree_skb_any(skb);
2346 tx_ring->buffer_info[first].time_stamp = 0;
2347 tx_ring->next_to_use = first;
2348 }
2349
2350 return NETDEV_TX_OK;
2351 }
2352
igbvf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2353 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2354 struct net_device *netdev)
2355 {
2356 struct igbvf_adapter *adapter = netdev_priv(netdev);
2357 struct igbvf_ring *tx_ring;
2358
2359 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2360 dev_kfree_skb_any(skb);
2361 return NETDEV_TX_OK;
2362 }
2363
2364 tx_ring = &adapter->tx_ring[0];
2365
2366 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2367 }
2368
2369 /**
2370 * igbvf_tx_timeout - Respond to a Tx Hang
2371 * @netdev: network interface device structure
2372 * @txqueue: queue timing out (unused)
2373 **/
igbvf_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)2374 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2375 {
2376 struct igbvf_adapter *adapter = netdev_priv(netdev);
2377
2378 /* Do the reset outside of interrupt context */
2379 adapter->tx_timeout_count++;
2380 schedule_work(&adapter->reset_task);
2381 }
2382
igbvf_reset_task(struct work_struct * work)2383 static void igbvf_reset_task(struct work_struct *work)
2384 {
2385 struct igbvf_adapter *adapter;
2386
2387 adapter = container_of(work, struct igbvf_adapter, reset_task);
2388
2389 igbvf_reinit_locked(adapter);
2390 }
2391
2392 /**
2393 * igbvf_change_mtu - Change the Maximum Transfer Unit
2394 * @netdev: network interface device structure
2395 * @new_mtu: new value for maximum frame size
2396 *
2397 * Returns 0 on success, negative on failure
2398 **/
igbvf_change_mtu(struct net_device * netdev,int new_mtu)2399 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2400 {
2401 struct igbvf_adapter *adapter = netdev_priv(netdev);
2402 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2403
2404 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2405 usleep_range(1000, 2000);
2406 /* igbvf_down has a dependency on max_frame_size */
2407 adapter->max_frame_size = max_frame;
2408 if (netif_running(netdev))
2409 igbvf_down(adapter);
2410
2411 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2412 * means we reserve 2 more, this pushes us to allocate from the next
2413 * larger slab size.
2414 * i.e. RXBUFFER_2048 --> size-4096 slab
2415 * However with the new *_jumbo_rx* routines, jumbo receives will use
2416 * fragmented skbs
2417 */
2418
2419 if (max_frame <= 1024)
2420 adapter->rx_buffer_len = 1024;
2421 else if (max_frame <= 2048)
2422 adapter->rx_buffer_len = 2048;
2423 else
2424 #if (PAGE_SIZE / 2) > 16384
2425 adapter->rx_buffer_len = 16384;
2426 #else
2427 adapter->rx_buffer_len = PAGE_SIZE / 2;
2428 #endif
2429
2430 /* adjust allocation if LPE protects us, and we aren't using SBP */
2431 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2432 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2433 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2434 ETH_FCS_LEN;
2435
2436 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2437 netdev->mtu, new_mtu);
2438 netdev->mtu = new_mtu;
2439
2440 if (netif_running(netdev))
2441 igbvf_up(adapter);
2442 else
2443 igbvf_reset(adapter);
2444
2445 clear_bit(__IGBVF_RESETTING, &adapter->state);
2446
2447 return 0;
2448 }
2449
igbvf_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2450 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2451 {
2452 switch (cmd) {
2453 default:
2454 return -EOPNOTSUPP;
2455 }
2456 }
2457
igbvf_suspend(struct device * dev_d)2458 static int igbvf_suspend(struct device *dev_d)
2459 {
2460 struct net_device *netdev = dev_get_drvdata(dev_d);
2461 struct igbvf_adapter *adapter = netdev_priv(netdev);
2462
2463 netif_device_detach(netdev);
2464
2465 if (netif_running(netdev)) {
2466 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2467 igbvf_down(adapter);
2468 igbvf_free_irq(adapter);
2469 }
2470
2471 return 0;
2472 }
2473
igbvf_resume(struct device * dev_d)2474 static int __maybe_unused igbvf_resume(struct device *dev_d)
2475 {
2476 struct pci_dev *pdev = to_pci_dev(dev_d);
2477 struct net_device *netdev = pci_get_drvdata(pdev);
2478 struct igbvf_adapter *adapter = netdev_priv(netdev);
2479 u32 err;
2480
2481 pci_set_master(pdev);
2482
2483 if (netif_running(netdev)) {
2484 err = igbvf_request_irq(adapter);
2485 if (err)
2486 return err;
2487 }
2488
2489 igbvf_reset(adapter);
2490
2491 if (netif_running(netdev))
2492 igbvf_up(adapter);
2493
2494 netif_device_attach(netdev);
2495
2496 return 0;
2497 }
2498
igbvf_shutdown(struct pci_dev * pdev)2499 static void igbvf_shutdown(struct pci_dev *pdev)
2500 {
2501 igbvf_suspend(&pdev->dev);
2502 }
2503
2504 #ifdef CONFIG_NET_POLL_CONTROLLER
2505 /* Polling 'interrupt' - used by things like netconsole to send skbs
2506 * without having to re-enable interrupts. It's not called while
2507 * the interrupt routine is executing.
2508 */
igbvf_netpoll(struct net_device * netdev)2509 static void igbvf_netpoll(struct net_device *netdev)
2510 {
2511 struct igbvf_adapter *adapter = netdev_priv(netdev);
2512
2513 disable_irq(adapter->pdev->irq);
2514
2515 igbvf_clean_tx_irq(adapter->tx_ring);
2516
2517 enable_irq(adapter->pdev->irq);
2518 }
2519 #endif
2520
2521 /**
2522 * igbvf_io_error_detected - called when PCI error is detected
2523 * @pdev: Pointer to PCI device
2524 * @state: The current pci connection state
2525 *
2526 * This function is called after a PCI bus error affecting
2527 * this device has been detected.
2528 */
igbvf_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2529 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2530 pci_channel_state_t state)
2531 {
2532 struct net_device *netdev = pci_get_drvdata(pdev);
2533 struct igbvf_adapter *adapter = netdev_priv(netdev);
2534
2535 netif_device_detach(netdev);
2536
2537 if (state == pci_channel_io_perm_failure)
2538 return PCI_ERS_RESULT_DISCONNECT;
2539
2540 if (netif_running(netdev))
2541 igbvf_down(adapter);
2542 pci_disable_device(pdev);
2543
2544 /* Request a slot reset. */
2545 return PCI_ERS_RESULT_NEED_RESET;
2546 }
2547
2548 /**
2549 * igbvf_io_slot_reset - called after the pci bus has been reset.
2550 * @pdev: Pointer to PCI device
2551 *
2552 * Restart the card from scratch, as if from a cold-boot. Implementation
2553 * resembles the first-half of the igbvf_resume routine.
2554 */
igbvf_io_slot_reset(struct pci_dev * pdev)2555 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2556 {
2557 struct net_device *netdev = pci_get_drvdata(pdev);
2558 struct igbvf_adapter *adapter = netdev_priv(netdev);
2559
2560 if (pci_enable_device_mem(pdev)) {
2561 dev_err(&pdev->dev,
2562 "Cannot re-enable PCI device after reset.\n");
2563 return PCI_ERS_RESULT_DISCONNECT;
2564 }
2565 pci_set_master(pdev);
2566
2567 igbvf_reset(adapter);
2568
2569 return PCI_ERS_RESULT_RECOVERED;
2570 }
2571
2572 /**
2573 * igbvf_io_resume - called when traffic can start flowing again.
2574 * @pdev: Pointer to PCI device
2575 *
2576 * This callback is called when the error recovery driver tells us that
2577 * its OK to resume normal operation. Implementation resembles the
2578 * second-half of the igbvf_resume routine.
2579 */
igbvf_io_resume(struct pci_dev * pdev)2580 static void igbvf_io_resume(struct pci_dev *pdev)
2581 {
2582 struct net_device *netdev = pci_get_drvdata(pdev);
2583 struct igbvf_adapter *adapter = netdev_priv(netdev);
2584
2585 if (netif_running(netdev)) {
2586 if (igbvf_up(adapter)) {
2587 dev_err(&pdev->dev,
2588 "can't bring device back up after reset\n");
2589 return;
2590 }
2591 }
2592
2593 netif_device_attach(netdev);
2594 }
2595
2596 /**
2597 * igbvf_io_prepare - prepare device driver for PCI reset
2598 * @pdev: PCI device information struct
2599 */
igbvf_io_prepare(struct pci_dev * pdev)2600 static void igbvf_io_prepare(struct pci_dev *pdev)
2601 {
2602 struct net_device *netdev = pci_get_drvdata(pdev);
2603 struct igbvf_adapter *adapter = netdev_priv(netdev);
2604
2605 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2606 usleep_range(1000, 2000);
2607 igbvf_down(adapter);
2608 }
2609
2610 /**
2611 * igbvf_io_reset_done - PCI reset done, device driver reset can begin
2612 * @pdev: PCI device information struct
2613 */
igbvf_io_reset_done(struct pci_dev * pdev)2614 static void igbvf_io_reset_done(struct pci_dev *pdev)
2615 {
2616 struct net_device *netdev = pci_get_drvdata(pdev);
2617 struct igbvf_adapter *adapter = netdev_priv(netdev);
2618
2619 igbvf_up(adapter);
2620 clear_bit(__IGBVF_RESETTING, &adapter->state);
2621 }
2622
igbvf_print_device_info(struct igbvf_adapter * adapter)2623 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2624 {
2625 struct e1000_hw *hw = &adapter->hw;
2626 struct net_device *netdev = adapter->netdev;
2627 struct pci_dev *pdev = adapter->pdev;
2628
2629 if (hw->mac.type == e1000_vfadapt_i350)
2630 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2631 else
2632 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2633 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2634 }
2635
igbvf_set_features(struct net_device * netdev,netdev_features_t features)2636 static int igbvf_set_features(struct net_device *netdev,
2637 netdev_features_t features)
2638 {
2639 struct igbvf_adapter *adapter = netdev_priv(netdev);
2640
2641 if (features & NETIF_F_RXCSUM)
2642 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2643 else
2644 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2645
2646 return 0;
2647 }
2648
2649 #define IGBVF_MAX_MAC_HDR_LEN 127
2650 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2651
2652 static netdev_features_t
igbvf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2653 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2654 netdev_features_t features)
2655 {
2656 unsigned int network_hdr_len, mac_hdr_len;
2657
2658 /* Make certain the headers can be described by a context descriptor */
2659 mac_hdr_len = skb_network_header(skb) - skb->data;
2660 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2661 return features & ~(NETIF_F_HW_CSUM |
2662 NETIF_F_SCTP_CRC |
2663 NETIF_F_HW_VLAN_CTAG_TX |
2664 NETIF_F_TSO |
2665 NETIF_F_TSO6);
2666
2667 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2668 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2669 return features & ~(NETIF_F_HW_CSUM |
2670 NETIF_F_SCTP_CRC |
2671 NETIF_F_TSO |
2672 NETIF_F_TSO6);
2673
2674 /* We can only support IPV4 TSO in tunnels if we can mangle the
2675 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2676 */
2677 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2678 features &= ~NETIF_F_TSO;
2679
2680 return features;
2681 }
2682
2683 static const struct net_device_ops igbvf_netdev_ops = {
2684 .ndo_open = igbvf_open,
2685 .ndo_stop = igbvf_close,
2686 .ndo_start_xmit = igbvf_xmit_frame,
2687 .ndo_set_rx_mode = igbvf_set_rx_mode,
2688 .ndo_set_mac_address = igbvf_set_mac,
2689 .ndo_change_mtu = igbvf_change_mtu,
2690 .ndo_eth_ioctl = igbvf_ioctl,
2691 .ndo_tx_timeout = igbvf_tx_timeout,
2692 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2693 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2694 #ifdef CONFIG_NET_POLL_CONTROLLER
2695 .ndo_poll_controller = igbvf_netpoll,
2696 #endif
2697 .ndo_set_features = igbvf_set_features,
2698 .ndo_features_check = igbvf_features_check,
2699 };
2700
2701 /**
2702 * igbvf_probe - Device Initialization Routine
2703 * @pdev: PCI device information struct
2704 * @ent: entry in igbvf_pci_tbl
2705 *
2706 * Returns 0 on success, negative on failure
2707 *
2708 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2709 * The OS initialization, configuring of the adapter private structure,
2710 * and a hardware reset occur.
2711 **/
igbvf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2712 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2713 {
2714 struct net_device *netdev;
2715 struct igbvf_adapter *adapter;
2716 struct e1000_hw *hw;
2717 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2718 static int cards_found;
2719 int err;
2720
2721 err = pci_enable_device_mem(pdev);
2722 if (err)
2723 return err;
2724
2725 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2726 if (err) {
2727 dev_err(&pdev->dev,
2728 "No usable DMA configuration, aborting\n");
2729 goto err_dma;
2730 }
2731
2732 err = pci_request_regions(pdev, igbvf_driver_name);
2733 if (err)
2734 goto err_pci_reg;
2735
2736 pci_set_master(pdev);
2737
2738 err = -ENOMEM;
2739 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2740 if (!netdev)
2741 goto err_alloc_etherdev;
2742
2743 SET_NETDEV_DEV(netdev, &pdev->dev);
2744
2745 pci_set_drvdata(pdev, netdev);
2746 adapter = netdev_priv(netdev);
2747 hw = &adapter->hw;
2748 adapter->netdev = netdev;
2749 adapter->pdev = pdev;
2750 adapter->ei = ei;
2751 adapter->pba = ei->pba;
2752 adapter->flags = ei->flags;
2753 adapter->hw.back = adapter;
2754 adapter->hw.mac.type = ei->mac;
2755 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2756
2757 /* PCI config space info */
2758
2759 hw->vendor_id = pdev->vendor;
2760 hw->device_id = pdev->device;
2761 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2762 hw->subsystem_device_id = pdev->subsystem_device;
2763 hw->revision_id = pdev->revision;
2764
2765 err = -EIO;
2766 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2767 pci_resource_len(pdev, 0));
2768
2769 if (!adapter->hw.hw_addr)
2770 goto err_ioremap;
2771
2772 if (ei->get_variants) {
2773 err = ei->get_variants(adapter);
2774 if (err)
2775 goto err_get_variants;
2776 }
2777
2778 /* setup adapter struct */
2779 err = igbvf_sw_init(adapter);
2780 if (err)
2781 goto err_sw_init;
2782
2783 /* construct the net_device struct */
2784 netdev->netdev_ops = &igbvf_netdev_ops;
2785
2786 igbvf_set_ethtool_ops(netdev);
2787 netdev->watchdog_timeo = 5 * HZ;
2788 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2789
2790 adapter->bd_number = cards_found++;
2791
2792 netdev->hw_features = NETIF_F_SG |
2793 NETIF_F_TSO |
2794 NETIF_F_TSO6 |
2795 NETIF_F_RXCSUM |
2796 NETIF_F_HW_CSUM |
2797 NETIF_F_SCTP_CRC;
2798
2799 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2800 NETIF_F_GSO_GRE_CSUM | \
2801 NETIF_F_GSO_IPXIP4 | \
2802 NETIF_F_GSO_IPXIP6 | \
2803 NETIF_F_GSO_UDP_TUNNEL | \
2804 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2805
2806 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2807 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2808 IGBVF_GSO_PARTIAL_FEATURES;
2809
2810 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
2811
2812 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2813 netdev->mpls_features |= NETIF_F_HW_CSUM;
2814 netdev->hw_enc_features |= netdev->vlan_features;
2815
2816 /* set this bit last since it cannot be part of vlan_features */
2817 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2818 NETIF_F_HW_VLAN_CTAG_RX |
2819 NETIF_F_HW_VLAN_CTAG_TX;
2820
2821 /* MTU range: 68 - 9216 */
2822 netdev->min_mtu = ETH_MIN_MTU;
2823 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2824
2825 spin_lock_bh(&hw->mbx_lock);
2826
2827 /*reset the controller to put the device in a known good state */
2828 err = hw->mac.ops.reset_hw(hw);
2829 if (err) {
2830 dev_info(&pdev->dev,
2831 "PF still in reset state. Is the PF interface up?\n");
2832 } else {
2833 err = hw->mac.ops.read_mac_addr(hw);
2834 if (err)
2835 dev_info(&pdev->dev, "Error reading MAC address.\n");
2836 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2837 dev_info(&pdev->dev,
2838 "MAC address not assigned by administrator.\n");
2839 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2840 }
2841
2842 spin_unlock_bh(&hw->mbx_lock);
2843
2844 if (!is_valid_ether_addr(netdev->dev_addr)) {
2845 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2846 eth_hw_addr_random(netdev);
2847 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2848 netdev->addr_len);
2849 }
2850
2851 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2852
2853 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2854 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2855
2856 /* ring size defaults */
2857 adapter->rx_ring->count = 1024;
2858 adapter->tx_ring->count = 1024;
2859
2860 /* reset the hardware with the new settings */
2861 igbvf_reset(adapter);
2862
2863 /* set hardware-specific flags */
2864 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2865 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2866
2867 strcpy(netdev->name, "eth%d");
2868 err = register_netdev(netdev);
2869 if (err)
2870 goto err_hw_init;
2871
2872 /* tell the stack to leave us alone until igbvf_open() is called */
2873 netif_carrier_off(netdev);
2874 netif_stop_queue(netdev);
2875
2876 igbvf_print_device_info(adapter);
2877
2878 igbvf_initialize_last_counter_stats(adapter);
2879
2880 return 0;
2881
2882 err_hw_init:
2883 netif_napi_del(&adapter->rx_ring->napi);
2884 kfree(adapter->tx_ring);
2885 kfree(adapter->rx_ring);
2886 err_sw_init:
2887 igbvf_reset_interrupt_capability(adapter);
2888 err_get_variants:
2889 iounmap(adapter->hw.hw_addr);
2890 err_ioremap:
2891 free_netdev(netdev);
2892 err_alloc_etherdev:
2893 pci_release_regions(pdev);
2894 err_pci_reg:
2895 err_dma:
2896 pci_disable_device(pdev);
2897 return err;
2898 }
2899
2900 /**
2901 * igbvf_remove - Device Removal Routine
2902 * @pdev: PCI device information struct
2903 *
2904 * igbvf_remove is called by the PCI subsystem to alert the driver
2905 * that it should release a PCI device. The could be caused by a
2906 * Hot-Plug event, or because the driver is going to be removed from
2907 * memory.
2908 **/
igbvf_remove(struct pci_dev * pdev)2909 static void igbvf_remove(struct pci_dev *pdev)
2910 {
2911 struct net_device *netdev = pci_get_drvdata(pdev);
2912 struct igbvf_adapter *adapter = netdev_priv(netdev);
2913 struct e1000_hw *hw = &adapter->hw;
2914
2915 /* The watchdog timer may be rescheduled, so explicitly
2916 * disable it from being rescheduled.
2917 */
2918 set_bit(__IGBVF_DOWN, &adapter->state);
2919 del_timer_sync(&adapter->watchdog_timer);
2920
2921 cancel_work_sync(&adapter->reset_task);
2922 cancel_work_sync(&adapter->watchdog_task);
2923
2924 unregister_netdev(netdev);
2925
2926 igbvf_reset_interrupt_capability(adapter);
2927
2928 /* it is important to delete the NAPI struct prior to freeing the
2929 * Rx ring so that you do not end up with null pointer refs
2930 */
2931 netif_napi_del(&adapter->rx_ring->napi);
2932 kfree(adapter->tx_ring);
2933 kfree(adapter->rx_ring);
2934
2935 iounmap(hw->hw_addr);
2936 if (hw->flash_address)
2937 iounmap(hw->flash_address);
2938 pci_release_regions(pdev);
2939
2940 free_netdev(netdev);
2941
2942 pci_disable_device(pdev);
2943 }
2944
2945 /* PCI Error Recovery (ERS) */
2946 static const struct pci_error_handlers igbvf_err_handler = {
2947 .error_detected = igbvf_io_error_detected,
2948 .slot_reset = igbvf_io_slot_reset,
2949 .resume = igbvf_io_resume,
2950 .reset_prepare = igbvf_io_prepare,
2951 .reset_done = igbvf_io_reset_done,
2952 };
2953
2954 static const struct pci_device_id igbvf_pci_tbl[] = {
2955 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2956 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2957 { } /* terminate list */
2958 };
2959 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2960
2961 static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2962
2963 /* PCI Device API Driver */
2964 static struct pci_driver igbvf_driver = {
2965 .name = igbvf_driver_name,
2966 .id_table = igbvf_pci_tbl,
2967 .probe = igbvf_probe,
2968 .remove = igbvf_remove,
2969 .driver.pm = &igbvf_pm_ops,
2970 .shutdown = igbvf_shutdown,
2971 .err_handler = &igbvf_err_handler
2972 };
2973
2974 /**
2975 * igbvf_init_module - Driver Registration Routine
2976 *
2977 * igbvf_init_module is the first routine called when the driver is
2978 * loaded. All it does is register with the PCI subsystem.
2979 **/
igbvf_init_module(void)2980 static int __init igbvf_init_module(void)
2981 {
2982 int ret;
2983
2984 pr_info("%s\n", igbvf_driver_string);
2985 pr_info("%s\n", igbvf_copyright);
2986
2987 ret = pci_register_driver(&igbvf_driver);
2988
2989 return ret;
2990 }
2991 module_init(igbvf_init_module);
2992
2993 /**
2994 * igbvf_exit_module - Driver Exit Cleanup Routine
2995 *
2996 * igbvf_exit_module is called just before the driver is removed
2997 * from memory.
2998 **/
igbvf_exit_module(void)2999 static void __exit igbvf_exit_module(void)
3000 {
3001 pci_unregister_driver(&igbvf_driver);
3002 }
3003 module_exit(igbvf_exit_module);
3004
3005 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3006 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3007 MODULE_LICENSE("GPL v2");
3008
3009 /* netdev.c */
3010