1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 /* ethtool support for igb */
5
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
18
19 #include "igb.h"
20
21 struct igb_stats {
22 char stat_string[ETH_GSTRING_LEN];
23 int sizeof_stat;
24 int stat_offset;
25 };
26
27 #define IGB_STAT(_name, _stat) { \
28 .stat_string = _name, \
29 .sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
30 .stat_offset = offsetof(struct igb_adapter, _stat) \
31 }
32 static const struct igb_stats igb_gstrings_stats[] = {
33 IGB_STAT("rx_packets", stats.gprc),
34 IGB_STAT("tx_packets", stats.gptc),
35 IGB_STAT("rx_bytes", stats.gorc),
36 IGB_STAT("tx_bytes", stats.gotc),
37 IGB_STAT("rx_broadcast", stats.bprc),
38 IGB_STAT("tx_broadcast", stats.bptc),
39 IGB_STAT("rx_multicast", stats.mprc),
40 IGB_STAT("tx_multicast", stats.mptc),
41 IGB_STAT("multicast", stats.mprc),
42 IGB_STAT("collisions", stats.colc),
43 IGB_STAT("rx_crc_errors", stats.crcerrs),
44 IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 IGB_STAT("rx_missed_errors", stats.mpc),
46 IGB_STAT("tx_aborted_errors", stats.ecol),
47 IGB_STAT("tx_carrier_errors", stats.tncrs),
48 IGB_STAT("tx_window_errors", stats.latecol),
49 IGB_STAT("tx_abort_late_coll", stats.latecol),
50 IGB_STAT("tx_deferred_ok", stats.dc),
51 IGB_STAT("tx_single_coll_ok", stats.scc),
52 IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 IGB_STAT("tx_timeout_count", tx_timeout_count),
54 IGB_STAT("rx_long_length_errors", stats.roc),
55 IGB_STAT("rx_short_length_errors", stats.ruc),
56 IGB_STAT("rx_align_errors", stats.algnerrc),
57 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 IGB_STAT("rx_long_byte_count", stats.gorc),
64 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 IGB_STAT("tx_smbus", stats.mgptc),
66 IGB_STAT("rx_smbus", stats.mgprc),
67 IGB_STAT("dropped_smbus", stats.mgpdc),
68 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
75 };
76
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 .stat_string = __stringify(_net_stat), \
79 .sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
80 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
81 }
82 static const struct igb_stats igb_gstrings_net_stats[] = {
83 IGB_NETDEV_STAT(rx_errors),
84 IGB_NETDEV_STAT(tx_errors),
85 IGB_NETDEV_STAT(tx_dropped),
86 IGB_NETDEV_STAT(rx_length_errors),
87 IGB_NETDEV_STAT(rx_over_errors),
88 IGB_NETDEV_STAT(rx_frame_errors),
89 IGB_NETDEV_STAT(rx_fifo_errors),
90 IGB_NETDEV_STAT(tx_fifo_errors),
91 IGB_NETDEV_STAT(tx_heartbeat_errors)
92 };
93
94 #define IGB_GLOBAL_STATS_LEN \
95 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN \
97 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
100
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
102
103 #define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 IGB_RX_QUEUE_STATS_LEN) + \
106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
110
111 enum igb_diagnostics_results {
112 TEST_REG = 0,
113 TEST_EEP,
114 TEST_IRQ,
115 TEST_LOOP,
116 TEST_LINK
117 };
118
119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 [TEST_REG] = "Register test (offline)",
121 [TEST_EEP] = "Eeprom test (offline)",
122 [TEST_IRQ] = "Interrupt test (offline)",
123 [TEST_LOOP] = "Loopback test (offline)",
124 [TEST_LINK] = "Link test (on/offline)"
125 };
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
127
128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
130 "legacy-rx",
131 };
132
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
134
igb_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)135 static int igb_get_link_ksettings(struct net_device *netdev,
136 struct ethtool_link_ksettings *cmd)
137 {
138 struct igb_adapter *adapter = netdev_priv(netdev);
139 struct e1000_hw *hw = &adapter->hw;
140 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142 u32 status;
143 u32 speed;
144 u32 supported, advertising;
145
146 status = pm_runtime_suspended(&adapter->pdev->dev) ?
147 0 : rd32(E1000_STATUS);
148 if (hw->phy.media_type == e1000_media_type_copper) {
149
150 supported = (SUPPORTED_10baseT_Half |
151 SUPPORTED_10baseT_Full |
152 SUPPORTED_100baseT_Half |
153 SUPPORTED_100baseT_Full |
154 SUPPORTED_1000baseT_Full|
155 SUPPORTED_Autoneg |
156 SUPPORTED_TP |
157 SUPPORTED_Pause);
158 advertising = ADVERTISED_TP;
159
160 if (hw->mac.autoneg == 1) {
161 advertising |= ADVERTISED_Autoneg;
162 /* the e1000 autoneg seems to match ethtool nicely */
163 advertising |= hw->phy.autoneg_advertised;
164 }
165
166 cmd->base.port = PORT_TP;
167 cmd->base.phy_address = hw->phy.addr;
168 } else {
169 supported = (SUPPORTED_FIBRE |
170 SUPPORTED_1000baseKX_Full |
171 SUPPORTED_Autoneg |
172 SUPPORTED_Pause);
173 advertising = (ADVERTISED_FIBRE |
174 ADVERTISED_1000baseKX_Full);
175 if (hw->mac.type == e1000_i354) {
176 if ((hw->device_id ==
177 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178 !(status & E1000_STATUS_2P5_SKU_OVER)) {
179 supported |= SUPPORTED_2500baseX_Full;
180 supported &= ~SUPPORTED_1000baseKX_Full;
181 advertising |= ADVERTISED_2500baseX_Full;
182 advertising &= ~ADVERTISED_1000baseKX_Full;
183 }
184 }
185 if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
186 supported |= SUPPORTED_100baseT_Full;
187 advertising |= ADVERTISED_100baseT_Full;
188 }
189 if (hw->mac.autoneg == 1)
190 advertising |= ADVERTISED_Autoneg;
191
192 cmd->base.port = PORT_FIBRE;
193 }
194 if (hw->mac.autoneg != 1)
195 advertising &= ~(ADVERTISED_Pause |
196 ADVERTISED_Asym_Pause);
197
198 switch (hw->fc.requested_mode) {
199 case e1000_fc_full:
200 advertising |= ADVERTISED_Pause;
201 break;
202 case e1000_fc_rx_pause:
203 advertising |= (ADVERTISED_Pause |
204 ADVERTISED_Asym_Pause);
205 break;
206 case e1000_fc_tx_pause:
207 advertising |= ADVERTISED_Asym_Pause;
208 break;
209 default:
210 advertising &= ~(ADVERTISED_Pause |
211 ADVERTISED_Asym_Pause);
212 }
213 if (status & E1000_STATUS_LU) {
214 if ((status & E1000_STATUS_2P5_SKU) &&
215 !(status & E1000_STATUS_2P5_SKU_OVER)) {
216 speed = SPEED_2500;
217 } else if (status & E1000_STATUS_SPEED_1000) {
218 speed = SPEED_1000;
219 } else if (status & E1000_STATUS_SPEED_100) {
220 speed = SPEED_100;
221 } else {
222 speed = SPEED_10;
223 }
224 if ((status & E1000_STATUS_FD) ||
225 hw->phy.media_type != e1000_media_type_copper)
226 cmd->base.duplex = DUPLEX_FULL;
227 else
228 cmd->base.duplex = DUPLEX_HALF;
229 } else {
230 speed = SPEED_UNKNOWN;
231 cmd->base.duplex = DUPLEX_UNKNOWN;
232 }
233 cmd->base.speed = speed;
234 if ((hw->phy.media_type == e1000_media_type_fiber) ||
235 hw->mac.autoneg)
236 cmd->base.autoneg = AUTONEG_ENABLE;
237 else
238 cmd->base.autoneg = AUTONEG_DISABLE;
239
240 /* MDI-X => 2; MDI =>1; Invalid =>0 */
241 if (hw->phy.media_type == e1000_media_type_copper)
242 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
243 ETH_TP_MDI;
244 else
245 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
246
247 if (hw->phy.mdix == AUTO_ALL_MODES)
248 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
249 else
250 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
251
252 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
253 supported);
254 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
255 advertising);
256
257 return 0;
258 }
259
igb_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)260 static int igb_set_link_ksettings(struct net_device *netdev,
261 const struct ethtool_link_ksettings *cmd)
262 {
263 struct igb_adapter *adapter = netdev_priv(netdev);
264 struct e1000_hw *hw = &adapter->hw;
265 u32 advertising;
266
267 /* When SoL/IDER sessions are active, autoneg/speed/duplex
268 * cannot be changed
269 */
270 if (igb_check_reset_block(hw)) {
271 dev_err(&adapter->pdev->dev,
272 "Cannot change link characteristics when SoL/IDER is active.\n");
273 return -EINVAL;
274 }
275
276 /* MDI setting is only allowed when autoneg enabled because
277 * some hardware doesn't allow MDI setting when speed or
278 * duplex is forced.
279 */
280 if (cmd->base.eth_tp_mdix_ctrl) {
281 if (hw->phy.media_type != e1000_media_type_copper)
282 return -EOPNOTSUPP;
283
284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 return -EINVAL;
288 }
289 }
290
291 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
292 usleep_range(1000, 2000);
293
294 ethtool_convert_link_mode_to_legacy_u32(&advertising,
295 cmd->link_modes.advertising);
296
297 if (cmd->base.autoneg == AUTONEG_ENABLE) {
298 hw->mac.autoneg = 1;
299 if (hw->phy.media_type == e1000_media_type_fiber) {
300 hw->phy.autoneg_advertised = advertising |
301 ADVERTISED_FIBRE |
302 ADVERTISED_Autoneg;
303 switch (adapter->link_speed) {
304 case SPEED_2500:
305 hw->phy.autoneg_advertised =
306 ADVERTISED_2500baseX_Full;
307 break;
308 case SPEED_1000:
309 hw->phy.autoneg_advertised =
310 ADVERTISED_1000baseT_Full;
311 break;
312 case SPEED_100:
313 hw->phy.autoneg_advertised =
314 ADVERTISED_100baseT_Full;
315 break;
316 default:
317 break;
318 }
319 } else {
320 hw->phy.autoneg_advertised = advertising |
321 ADVERTISED_TP |
322 ADVERTISED_Autoneg;
323 }
324 advertising = hw->phy.autoneg_advertised;
325 if (adapter->fc_autoneg)
326 hw->fc.requested_mode = e1000_fc_default;
327 } else {
328 u32 speed = cmd->base.speed;
329 /* calling this overrides forced MDI setting */
330 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
331 clear_bit(__IGB_RESETTING, &adapter->state);
332 return -EINVAL;
333 }
334 }
335
336 /* MDI-X => 2; MDI => 1; Auto => 3 */
337 if (cmd->base.eth_tp_mdix_ctrl) {
338 /* fix up the value for auto (3 => 0) as zero is mapped
339 * internally to auto
340 */
341 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
342 hw->phy.mdix = AUTO_ALL_MODES;
343 else
344 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
345 }
346
347 /* reset the link */
348 if (netif_running(adapter->netdev)) {
349 igb_down(adapter);
350 igb_up(adapter);
351 } else
352 igb_reset(adapter);
353
354 clear_bit(__IGB_RESETTING, &adapter->state);
355 return 0;
356 }
357
igb_get_link(struct net_device * netdev)358 static u32 igb_get_link(struct net_device *netdev)
359 {
360 struct igb_adapter *adapter = netdev_priv(netdev);
361 struct e1000_mac_info *mac = &adapter->hw.mac;
362
363 /* If the link is not reported up to netdev, interrupts are disabled,
364 * and so the physical link state may have changed since we last
365 * looked. Set get_link_status to make sure that the true link
366 * state is interrogated, rather than pulling a cached and possibly
367 * stale link state from the driver.
368 */
369 if (!netif_carrier_ok(netdev))
370 mac->get_link_status = 1;
371
372 return igb_has_link(adapter);
373 }
374
igb_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)375 static void igb_get_pauseparam(struct net_device *netdev,
376 struct ethtool_pauseparam *pause)
377 {
378 struct igb_adapter *adapter = netdev_priv(netdev);
379 struct e1000_hw *hw = &adapter->hw;
380
381 pause->autoneg =
382 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
383
384 if (hw->fc.current_mode == e1000_fc_rx_pause)
385 pause->rx_pause = 1;
386 else if (hw->fc.current_mode == e1000_fc_tx_pause)
387 pause->tx_pause = 1;
388 else if (hw->fc.current_mode == e1000_fc_full) {
389 pause->rx_pause = 1;
390 pause->tx_pause = 1;
391 }
392 }
393
igb_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)394 static int igb_set_pauseparam(struct net_device *netdev,
395 struct ethtool_pauseparam *pause)
396 {
397 struct igb_adapter *adapter = netdev_priv(netdev);
398 struct e1000_hw *hw = &adapter->hw;
399 int retval = 0;
400 int i;
401
402 /* 100basefx does not support setting link flow control */
403 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
404 return -EINVAL;
405
406 adapter->fc_autoneg = pause->autoneg;
407
408 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
409 usleep_range(1000, 2000);
410
411 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
412 hw->fc.requested_mode = e1000_fc_default;
413 if (netif_running(adapter->netdev)) {
414 igb_down(adapter);
415 igb_up(adapter);
416 } else {
417 igb_reset(adapter);
418 }
419 } else {
420 if (pause->rx_pause && pause->tx_pause)
421 hw->fc.requested_mode = e1000_fc_full;
422 else if (pause->rx_pause && !pause->tx_pause)
423 hw->fc.requested_mode = e1000_fc_rx_pause;
424 else if (!pause->rx_pause && pause->tx_pause)
425 hw->fc.requested_mode = e1000_fc_tx_pause;
426 else if (!pause->rx_pause && !pause->tx_pause)
427 hw->fc.requested_mode = e1000_fc_none;
428
429 hw->fc.current_mode = hw->fc.requested_mode;
430
431 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
432 igb_force_mac_fc(hw) : igb_setup_link(hw));
433
434 /* Make sure SRRCTL considers new fc settings for each ring */
435 for (i = 0; i < adapter->num_rx_queues; i++) {
436 struct igb_ring *ring = adapter->rx_ring[i];
437
438 igb_setup_srrctl(adapter, ring);
439 }
440 }
441
442 clear_bit(__IGB_RESETTING, &adapter->state);
443 return retval;
444 }
445
igb_get_msglevel(struct net_device * netdev)446 static u32 igb_get_msglevel(struct net_device *netdev)
447 {
448 struct igb_adapter *adapter = netdev_priv(netdev);
449 return adapter->msg_enable;
450 }
451
igb_set_msglevel(struct net_device * netdev,u32 data)452 static void igb_set_msglevel(struct net_device *netdev, u32 data)
453 {
454 struct igb_adapter *adapter = netdev_priv(netdev);
455 adapter->msg_enable = data;
456 }
457
igb_get_regs_len(struct net_device * netdev)458 static int igb_get_regs_len(struct net_device *netdev)
459 {
460 #define IGB_REGS_LEN 740
461 return IGB_REGS_LEN * sizeof(u32);
462 }
463
igb_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)464 static void igb_get_regs(struct net_device *netdev,
465 struct ethtool_regs *regs, void *p)
466 {
467 struct igb_adapter *adapter = netdev_priv(netdev);
468 struct e1000_hw *hw = &adapter->hw;
469 u32 *regs_buff = p;
470 u8 i;
471
472 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
473
474 regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
475
476 /* General Registers */
477 regs_buff[0] = rd32(E1000_CTRL);
478 regs_buff[1] = rd32(E1000_STATUS);
479 regs_buff[2] = rd32(E1000_CTRL_EXT);
480 regs_buff[3] = rd32(E1000_MDIC);
481 regs_buff[4] = rd32(E1000_SCTL);
482 regs_buff[5] = rd32(E1000_CONNSW);
483 regs_buff[6] = rd32(E1000_VET);
484 regs_buff[7] = rd32(E1000_LEDCTL);
485 regs_buff[8] = rd32(E1000_PBA);
486 regs_buff[9] = rd32(E1000_PBS);
487 regs_buff[10] = rd32(E1000_FRTIMER);
488 regs_buff[11] = rd32(E1000_TCPTIMER);
489
490 /* NVM Register */
491 regs_buff[12] = rd32(E1000_EECD);
492
493 /* Interrupt */
494 /* Reading EICS for EICR because they read the
495 * same but EICS does not clear on read
496 */
497 regs_buff[13] = rd32(E1000_EICS);
498 regs_buff[14] = rd32(E1000_EICS);
499 regs_buff[15] = rd32(E1000_EIMS);
500 regs_buff[16] = rd32(E1000_EIMC);
501 regs_buff[17] = rd32(E1000_EIAC);
502 regs_buff[18] = rd32(E1000_EIAM);
503 /* Reading ICS for ICR because they read the
504 * same but ICS does not clear on read
505 */
506 regs_buff[19] = rd32(E1000_ICS);
507 regs_buff[20] = rd32(E1000_ICS);
508 regs_buff[21] = rd32(E1000_IMS);
509 regs_buff[22] = rd32(E1000_IMC);
510 regs_buff[23] = rd32(E1000_IAC);
511 regs_buff[24] = rd32(E1000_IAM);
512 regs_buff[25] = rd32(E1000_IMIRVP);
513
514 /* Flow Control */
515 regs_buff[26] = rd32(E1000_FCAL);
516 regs_buff[27] = rd32(E1000_FCAH);
517 regs_buff[28] = rd32(E1000_FCTTV);
518 regs_buff[29] = rd32(E1000_FCRTL);
519 regs_buff[30] = rd32(E1000_FCRTH);
520 regs_buff[31] = rd32(E1000_FCRTV);
521
522 /* Receive */
523 regs_buff[32] = rd32(E1000_RCTL);
524 regs_buff[33] = rd32(E1000_RXCSUM);
525 regs_buff[34] = rd32(E1000_RLPML);
526 regs_buff[35] = rd32(E1000_RFCTL);
527 regs_buff[36] = rd32(E1000_MRQC);
528 regs_buff[37] = rd32(E1000_VT_CTL);
529
530 /* Transmit */
531 regs_buff[38] = rd32(E1000_TCTL);
532 regs_buff[39] = rd32(E1000_TCTL_EXT);
533 regs_buff[40] = rd32(E1000_TIPG);
534 regs_buff[41] = rd32(E1000_DTXCTL);
535
536 /* Wake Up */
537 regs_buff[42] = rd32(E1000_WUC);
538 regs_buff[43] = rd32(E1000_WUFC);
539 regs_buff[44] = rd32(E1000_WUS);
540 regs_buff[45] = rd32(E1000_IPAV);
541 regs_buff[46] = rd32(E1000_WUPL);
542
543 /* MAC */
544 regs_buff[47] = rd32(E1000_PCS_CFG0);
545 regs_buff[48] = rd32(E1000_PCS_LCTL);
546 regs_buff[49] = rd32(E1000_PCS_LSTAT);
547 regs_buff[50] = rd32(E1000_PCS_ANADV);
548 regs_buff[51] = rd32(E1000_PCS_LPAB);
549 regs_buff[52] = rd32(E1000_PCS_NPTX);
550 regs_buff[53] = rd32(E1000_PCS_LPABNP);
551
552 /* Statistics */
553 regs_buff[54] = adapter->stats.crcerrs;
554 regs_buff[55] = adapter->stats.algnerrc;
555 regs_buff[56] = adapter->stats.symerrs;
556 regs_buff[57] = adapter->stats.rxerrc;
557 regs_buff[58] = adapter->stats.mpc;
558 regs_buff[59] = adapter->stats.scc;
559 regs_buff[60] = adapter->stats.ecol;
560 regs_buff[61] = adapter->stats.mcc;
561 regs_buff[62] = adapter->stats.latecol;
562 regs_buff[63] = adapter->stats.colc;
563 regs_buff[64] = adapter->stats.dc;
564 regs_buff[65] = adapter->stats.tncrs;
565 regs_buff[66] = adapter->stats.sec;
566 regs_buff[67] = adapter->stats.htdpmc;
567 regs_buff[68] = adapter->stats.rlec;
568 regs_buff[69] = adapter->stats.xonrxc;
569 regs_buff[70] = adapter->stats.xontxc;
570 regs_buff[71] = adapter->stats.xoffrxc;
571 regs_buff[72] = adapter->stats.xofftxc;
572 regs_buff[73] = adapter->stats.fcruc;
573 regs_buff[74] = adapter->stats.prc64;
574 regs_buff[75] = adapter->stats.prc127;
575 regs_buff[76] = adapter->stats.prc255;
576 regs_buff[77] = adapter->stats.prc511;
577 regs_buff[78] = adapter->stats.prc1023;
578 regs_buff[79] = adapter->stats.prc1522;
579 regs_buff[80] = adapter->stats.gprc;
580 regs_buff[81] = adapter->stats.bprc;
581 regs_buff[82] = adapter->stats.mprc;
582 regs_buff[83] = adapter->stats.gptc;
583 regs_buff[84] = adapter->stats.gorc;
584 regs_buff[86] = adapter->stats.gotc;
585 regs_buff[88] = adapter->stats.rnbc;
586 regs_buff[89] = adapter->stats.ruc;
587 regs_buff[90] = adapter->stats.rfc;
588 regs_buff[91] = adapter->stats.roc;
589 regs_buff[92] = adapter->stats.rjc;
590 regs_buff[93] = adapter->stats.mgprc;
591 regs_buff[94] = adapter->stats.mgpdc;
592 regs_buff[95] = adapter->stats.mgptc;
593 regs_buff[96] = adapter->stats.tor;
594 regs_buff[98] = adapter->stats.tot;
595 regs_buff[100] = adapter->stats.tpr;
596 regs_buff[101] = adapter->stats.tpt;
597 regs_buff[102] = adapter->stats.ptc64;
598 regs_buff[103] = adapter->stats.ptc127;
599 regs_buff[104] = adapter->stats.ptc255;
600 regs_buff[105] = adapter->stats.ptc511;
601 regs_buff[106] = adapter->stats.ptc1023;
602 regs_buff[107] = adapter->stats.ptc1522;
603 regs_buff[108] = adapter->stats.mptc;
604 regs_buff[109] = adapter->stats.bptc;
605 regs_buff[110] = adapter->stats.tsctc;
606 regs_buff[111] = adapter->stats.iac;
607 regs_buff[112] = adapter->stats.rpthc;
608 regs_buff[113] = adapter->stats.hgptc;
609 regs_buff[114] = adapter->stats.hgorc;
610 regs_buff[116] = adapter->stats.hgotc;
611 regs_buff[118] = adapter->stats.lenerrs;
612 regs_buff[119] = adapter->stats.scvpc;
613 regs_buff[120] = adapter->stats.hrmpc;
614
615 for (i = 0; i < 4; i++)
616 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
617 for (i = 0; i < 4; i++)
618 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
619 for (i = 0; i < 4; i++)
620 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
621 for (i = 0; i < 4; i++)
622 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
623 for (i = 0; i < 4; i++)
624 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
625 for (i = 0; i < 4; i++)
626 regs_buff[141 + i] = rd32(E1000_RDH(i));
627 for (i = 0; i < 4; i++)
628 regs_buff[145 + i] = rd32(E1000_RDT(i));
629 for (i = 0; i < 4; i++)
630 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
631
632 for (i = 0; i < 10; i++)
633 regs_buff[153 + i] = rd32(E1000_EITR(i));
634 for (i = 0; i < 8; i++)
635 regs_buff[163 + i] = rd32(E1000_IMIR(i));
636 for (i = 0; i < 8; i++)
637 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
638 for (i = 0; i < 16; i++)
639 regs_buff[179 + i] = rd32(E1000_RAL(i));
640 for (i = 0; i < 16; i++)
641 regs_buff[195 + i] = rd32(E1000_RAH(i));
642
643 for (i = 0; i < 4; i++)
644 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
645 for (i = 0; i < 4; i++)
646 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
647 for (i = 0; i < 4; i++)
648 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
649 for (i = 0; i < 4; i++)
650 regs_buff[223 + i] = rd32(E1000_TDH(i));
651 for (i = 0; i < 4; i++)
652 regs_buff[227 + i] = rd32(E1000_TDT(i));
653 for (i = 0; i < 4; i++)
654 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
655 for (i = 0; i < 4; i++)
656 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
657 for (i = 0; i < 4; i++)
658 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
659 for (i = 0; i < 4; i++)
660 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
661
662 for (i = 0; i < 4; i++)
663 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
664 for (i = 0; i < 4; i++)
665 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
666 for (i = 0; i < 32; i++)
667 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
668 for (i = 0; i < 128; i++)
669 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
670 for (i = 0; i < 128; i++)
671 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
672 for (i = 0; i < 4; i++)
673 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
674
675 regs_buff[547] = rd32(E1000_TDFH);
676 regs_buff[548] = rd32(E1000_TDFT);
677 regs_buff[549] = rd32(E1000_TDFHS);
678 regs_buff[550] = rd32(E1000_TDFPC);
679
680 if (hw->mac.type > e1000_82580) {
681 regs_buff[551] = adapter->stats.o2bgptc;
682 regs_buff[552] = adapter->stats.b2ospc;
683 regs_buff[553] = adapter->stats.o2bspc;
684 regs_buff[554] = adapter->stats.b2ogprc;
685 }
686
687 if (hw->mac.type == e1000_82576) {
688 for (i = 0; i < 12; i++)
689 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
690 for (i = 0; i < 4; i++)
691 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
692 for (i = 0; i < 12; i++)
693 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
694 for (i = 0; i < 12; i++)
695 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
696 for (i = 0; i < 12; i++)
697 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
698 for (i = 0; i < 12; i++)
699 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
700 for (i = 0; i < 12; i++)
701 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
702 for (i = 0; i < 12; i++)
703 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
704
705 for (i = 0; i < 12; i++)
706 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
707 for (i = 0; i < 12; i++)
708 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
709 for (i = 0; i < 12; i++)
710 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
711 for (i = 0; i < 12; i++)
712 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
713 for (i = 0; i < 12; i++)
714 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
715 for (i = 0; i < 12; i++)
716 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
717 for (i = 0; i < 12; i++)
718 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
719 for (i = 0; i < 12; i++)
720 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
721 }
722
723 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
724 regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
725 }
726
igb_get_eeprom_len(struct net_device * netdev)727 static int igb_get_eeprom_len(struct net_device *netdev)
728 {
729 struct igb_adapter *adapter = netdev_priv(netdev);
730 return adapter->hw.nvm.word_size * 2;
731 }
732
igb_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)733 static int igb_get_eeprom(struct net_device *netdev,
734 struct ethtool_eeprom *eeprom, u8 *bytes)
735 {
736 struct igb_adapter *adapter = netdev_priv(netdev);
737 struct e1000_hw *hw = &adapter->hw;
738 u16 *eeprom_buff;
739 int first_word, last_word;
740 int ret_val = 0;
741 u16 i;
742
743 if (eeprom->len == 0)
744 return -EINVAL;
745
746 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
747
748 first_word = eeprom->offset >> 1;
749 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
750
751 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
752 GFP_KERNEL);
753 if (!eeprom_buff)
754 return -ENOMEM;
755
756 if (hw->nvm.type == e1000_nvm_eeprom_spi)
757 ret_val = hw->nvm.ops.read(hw, first_word,
758 last_word - first_word + 1,
759 eeprom_buff);
760 else {
761 for (i = 0; i < last_word - first_word + 1; i++) {
762 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
763 &eeprom_buff[i]);
764 if (ret_val)
765 break;
766 }
767 }
768
769 /* Device's eeprom is always little-endian, word addressable */
770 for (i = 0; i < last_word - first_word + 1; i++)
771 le16_to_cpus(&eeprom_buff[i]);
772
773 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
774 eeprom->len);
775 kfree(eeprom_buff);
776
777 return ret_val;
778 }
779
igb_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)780 static int igb_set_eeprom(struct net_device *netdev,
781 struct ethtool_eeprom *eeprom, u8 *bytes)
782 {
783 struct igb_adapter *adapter = netdev_priv(netdev);
784 struct e1000_hw *hw = &adapter->hw;
785 u16 *eeprom_buff;
786 void *ptr;
787 int max_len, first_word, last_word, ret_val = 0;
788 u16 i;
789
790 if (eeprom->len == 0)
791 return -EOPNOTSUPP;
792
793 if ((hw->mac.type >= e1000_i210) &&
794 !igb_get_flash_presence_i210(hw)) {
795 return -EOPNOTSUPP;
796 }
797
798 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
799 return -EFAULT;
800
801 max_len = hw->nvm.word_size * 2;
802
803 first_word = eeprom->offset >> 1;
804 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
805 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
806 if (!eeprom_buff)
807 return -ENOMEM;
808
809 ptr = (void *)eeprom_buff;
810
811 if (eeprom->offset & 1) {
812 /* need read/modify/write of first changed EEPROM word
813 * only the second byte of the word is being modified
814 */
815 ret_val = hw->nvm.ops.read(hw, first_word, 1,
816 &eeprom_buff[0]);
817 ptr++;
818 }
819 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
820 /* need read/modify/write of last changed EEPROM word
821 * only the first byte of the word is being modified
822 */
823 ret_val = hw->nvm.ops.read(hw, last_word, 1,
824 &eeprom_buff[last_word - first_word]);
825 }
826
827 /* Device's eeprom is always little-endian, word addressable */
828 for (i = 0; i < last_word - first_word + 1; i++)
829 le16_to_cpus(&eeprom_buff[i]);
830
831 memcpy(ptr, bytes, eeprom->len);
832
833 for (i = 0; i < last_word - first_word + 1; i++)
834 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
835
836 ret_val = hw->nvm.ops.write(hw, first_word,
837 last_word - first_word + 1, eeprom_buff);
838
839 /* Update the checksum if nvm write succeeded */
840 if (ret_val == 0)
841 hw->nvm.ops.update(hw);
842
843 igb_set_fw_version(adapter);
844 kfree(eeprom_buff);
845 return ret_val;
846 }
847
igb_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)848 static void igb_get_drvinfo(struct net_device *netdev,
849 struct ethtool_drvinfo *drvinfo)
850 {
851 struct igb_adapter *adapter = netdev_priv(netdev);
852
853 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
854
855 /* EEPROM image version # is reported as firmware version # for
856 * 82575 controllers
857 */
858 strlcpy(drvinfo->fw_version, adapter->fw_version,
859 sizeof(drvinfo->fw_version));
860 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
861 sizeof(drvinfo->bus_info));
862
863 drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
864 }
865
igb_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)866 static void igb_get_ringparam(struct net_device *netdev,
867 struct ethtool_ringparam *ring)
868 {
869 struct igb_adapter *adapter = netdev_priv(netdev);
870
871 ring->rx_max_pending = IGB_MAX_RXD;
872 ring->tx_max_pending = IGB_MAX_TXD;
873 ring->rx_pending = adapter->rx_ring_count;
874 ring->tx_pending = adapter->tx_ring_count;
875 }
876
igb_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)877 static int igb_set_ringparam(struct net_device *netdev,
878 struct ethtool_ringparam *ring)
879 {
880 struct igb_adapter *adapter = netdev_priv(netdev);
881 struct igb_ring *temp_ring;
882 int i, err = 0;
883 u16 new_rx_count, new_tx_count;
884
885 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
886 return -EINVAL;
887
888 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
889 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
890 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
891
892 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
893 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
894 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
895
896 if ((new_tx_count == adapter->tx_ring_count) &&
897 (new_rx_count == adapter->rx_ring_count)) {
898 /* nothing to do */
899 return 0;
900 }
901
902 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
903 usleep_range(1000, 2000);
904
905 if (!netif_running(adapter->netdev)) {
906 for (i = 0; i < adapter->num_tx_queues; i++)
907 adapter->tx_ring[i]->count = new_tx_count;
908 for (i = 0; i < adapter->num_rx_queues; i++)
909 adapter->rx_ring[i]->count = new_rx_count;
910 adapter->tx_ring_count = new_tx_count;
911 adapter->rx_ring_count = new_rx_count;
912 goto clear_reset;
913 }
914
915 if (adapter->num_tx_queues > adapter->num_rx_queues)
916 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
917 adapter->num_tx_queues));
918 else
919 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
920 adapter->num_rx_queues));
921
922 if (!temp_ring) {
923 err = -ENOMEM;
924 goto clear_reset;
925 }
926
927 igb_down(adapter);
928
929 /* We can't just free everything and then setup again,
930 * because the ISRs in MSI-X mode get passed pointers
931 * to the Tx and Rx ring structs.
932 */
933 if (new_tx_count != adapter->tx_ring_count) {
934 for (i = 0; i < adapter->num_tx_queues; i++) {
935 memcpy(&temp_ring[i], adapter->tx_ring[i],
936 sizeof(struct igb_ring));
937
938 temp_ring[i].count = new_tx_count;
939 err = igb_setup_tx_resources(&temp_ring[i]);
940 if (err) {
941 while (i) {
942 i--;
943 igb_free_tx_resources(&temp_ring[i]);
944 }
945 goto err_setup;
946 }
947 }
948
949 for (i = 0; i < adapter->num_tx_queues; i++) {
950 igb_free_tx_resources(adapter->tx_ring[i]);
951
952 memcpy(adapter->tx_ring[i], &temp_ring[i],
953 sizeof(struct igb_ring));
954 }
955
956 adapter->tx_ring_count = new_tx_count;
957 }
958
959 if (new_rx_count != adapter->rx_ring_count) {
960 for (i = 0; i < adapter->num_rx_queues; i++) {
961 memcpy(&temp_ring[i], adapter->rx_ring[i],
962 sizeof(struct igb_ring));
963
964 /* Clear copied XDP RX-queue info */
965 memset(&temp_ring[i].xdp_rxq, 0,
966 sizeof(temp_ring[i].xdp_rxq));
967
968 temp_ring[i].count = new_rx_count;
969 err = igb_setup_rx_resources(&temp_ring[i]);
970 if (err) {
971 while (i) {
972 i--;
973 igb_free_rx_resources(&temp_ring[i]);
974 }
975 goto err_setup;
976 }
977
978 }
979
980 for (i = 0; i < adapter->num_rx_queues; i++) {
981 igb_free_rx_resources(adapter->rx_ring[i]);
982
983 memcpy(adapter->rx_ring[i], &temp_ring[i],
984 sizeof(struct igb_ring));
985 }
986
987 adapter->rx_ring_count = new_rx_count;
988 }
989 err_setup:
990 igb_up(adapter);
991 vfree(temp_ring);
992 clear_reset:
993 clear_bit(__IGB_RESETTING, &adapter->state);
994 return err;
995 }
996
997 /* ethtool register test data */
998 struct igb_reg_test {
999 u16 reg;
1000 u16 reg_offset;
1001 u16 array_len;
1002 u16 test_type;
1003 u32 mask;
1004 u32 write;
1005 };
1006
1007 /* In the hardware, registers are laid out either singly, in arrays
1008 * spaced 0x100 bytes apart, or in contiguous tables. We assume
1009 * most tests take place on arrays or single registers (handled
1010 * as a single-element array) and special-case the tables.
1011 * Table tests are always pattern tests.
1012 *
1013 * We also make provision for some required setup steps by specifying
1014 * registers to be written without any read-back testing.
1015 */
1016
1017 #define PATTERN_TEST 1
1018 #define SET_READ_TEST 2
1019 #define WRITE_NO_TEST 3
1020 #define TABLE32_TEST 4
1021 #define TABLE64_TEST_LO 5
1022 #define TABLE64_TEST_HI 6
1023
1024 /* i210 reg test */
1025 static struct igb_reg_test reg_test_i210[] = {
1026 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1028 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1029 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1030 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1032 /* RDH is read-only for i210, only test RDT. */
1033 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1035 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1036 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1037 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1038 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1040 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1041 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1043 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1044 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1046 0xFFFFFFFF, 0xFFFFFFFF },
1047 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1048 0x900FFFFF, 0xFFFFFFFF },
1049 { E1000_MTA, 0, 128, TABLE32_TEST,
1050 0xFFFFFFFF, 0xFFFFFFFF },
1051 { 0, 0, 0, 0, 0 }
1052 };
1053
1054 /* i350 reg test */
1055 static struct igb_reg_test reg_test_i350[] = {
1056 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1057 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1058 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1059 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1060 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066 /* RDH is read-only for i350, only test RDT. */
1067 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1068 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1070 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1071 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1072 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1073 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1075 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1078 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1079 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1080 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1081 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1082 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1083 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1084 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1085 0xFFFFFFFF, 0xFFFFFFFF },
1086 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1087 0xC3FFFFFF, 0xFFFFFFFF },
1088 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1089 0xFFFFFFFF, 0xFFFFFFFF },
1090 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1091 0xC3FFFFFF, 0xFFFFFFFF },
1092 { E1000_MTA, 0, 128, TABLE32_TEST,
1093 0xFFFFFFFF, 0xFFFFFFFF },
1094 { 0, 0, 0, 0 }
1095 };
1096
1097 /* 82580 reg test */
1098 static struct igb_reg_test reg_test_82580[] = {
1099 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1100 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1101 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1102 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1104 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1106 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109 /* RDH is read-only for 82580, only test RDT. */
1110 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1111 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1112 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1113 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1114 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1115 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1116 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1117 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1118 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1119 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1121 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1122 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1123 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1124 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1125 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1126 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1127 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1128 0xFFFFFFFF, 0xFFFFFFFF },
1129 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1130 0x83FFFFFF, 0xFFFFFFFF },
1131 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1132 0xFFFFFFFF, 0xFFFFFFFF },
1133 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1134 0x83FFFFFF, 0xFFFFFFFF },
1135 { E1000_MTA, 0, 128, TABLE32_TEST,
1136 0xFFFFFFFF, 0xFFFFFFFF },
1137 { 0, 0, 0, 0 }
1138 };
1139
1140 /* 82576 reg test */
1141 static struct igb_reg_test reg_test_82576[] = {
1142 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1143 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1144 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1145 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1147 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1149 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152 /* Enable all RX queues before testing. */
1153 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1154 E1000_RXDCTL_QUEUE_ENABLE },
1155 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1156 E1000_RXDCTL_QUEUE_ENABLE },
1157 /* RDH is read-only for 82576, only test RDT. */
1158 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1159 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1160 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1161 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1162 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1163 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1164 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1165 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1166 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1168 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1169 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1171 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1172 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1173 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1174 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1175 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1176 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1177 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1178 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1179 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1180 { 0, 0, 0, 0 }
1181 };
1182
1183 /* 82575 register test */
1184 static struct igb_reg_test reg_test_82575[] = {
1185 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1186 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1187 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1188 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1190 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1192 /* Enable all four RX queues before testing. */
1193 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1194 E1000_RXDCTL_QUEUE_ENABLE },
1195 /* RDH is read-only for 82575, only test RDT. */
1196 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1197 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1198 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1199 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1200 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1201 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1202 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1203 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1204 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1205 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1206 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1207 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1208 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1209 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1210 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1211 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1212 { 0, 0, 0, 0 }
1213 };
1214
reg_pattern_test(struct igb_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)1215 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1216 int reg, u32 mask, u32 write)
1217 {
1218 struct e1000_hw *hw = &adapter->hw;
1219 u32 pat, val;
1220 static const u32 _test[] = {
1221 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1222 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1223 wr32(reg, (_test[pat] & write));
1224 val = rd32(reg) & mask;
1225 if (val != (_test[pat] & write & mask)) {
1226 dev_err(&adapter->pdev->dev,
1227 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1228 reg, val, (_test[pat] & write & mask));
1229 *data = reg;
1230 return true;
1231 }
1232 }
1233
1234 return false;
1235 }
1236
reg_set_and_check(struct igb_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)1237 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1238 int reg, u32 mask, u32 write)
1239 {
1240 struct e1000_hw *hw = &adapter->hw;
1241 u32 val;
1242
1243 wr32(reg, write & mask);
1244 val = rd32(reg);
1245 if ((write & mask) != (val & mask)) {
1246 dev_err(&adapter->pdev->dev,
1247 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1248 reg, (val & mask), (write & mask));
1249 *data = reg;
1250 return true;
1251 }
1252
1253 return false;
1254 }
1255
1256 #define REG_PATTERN_TEST(reg, mask, write) \
1257 do { \
1258 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1259 return 1; \
1260 } while (0)
1261
1262 #define REG_SET_AND_CHECK(reg, mask, write) \
1263 do { \
1264 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1265 return 1; \
1266 } while (0)
1267
igb_reg_test(struct igb_adapter * adapter,u64 * data)1268 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1269 {
1270 struct e1000_hw *hw = &adapter->hw;
1271 struct igb_reg_test *test;
1272 u32 value, before, after;
1273 u32 i, toggle;
1274
1275 switch (adapter->hw.mac.type) {
1276 case e1000_i350:
1277 case e1000_i354:
1278 test = reg_test_i350;
1279 toggle = 0x7FEFF3FF;
1280 break;
1281 case e1000_i210:
1282 case e1000_i211:
1283 test = reg_test_i210;
1284 toggle = 0x7FEFF3FF;
1285 break;
1286 case e1000_82580:
1287 test = reg_test_82580;
1288 toggle = 0x7FEFF3FF;
1289 break;
1290 case e1000_82576:
1291 test = reg_test_82576;
1292 toggle = 0x7FFFF3FF;
1293 break;
1294 default:
1295 test = reg_test_82575;
1296 toggle = 0x7FFFF3FF;
1297 break;
1298 }
1299
1300 /* Because the status register is such a special case,
1301 * we handle it separately from the rest of the register
1302 * tests. Some bits are read-only, some toggle, and some
1303 * are writable on newer MACs.
1304 */
1305 before = rd32(E1000_STATUS);
1306 value = (rd32(E1000_STATUS) & toggle);
1307 wr32(E1000_STATUS, toggle);
1308 after = rd32(E1000_STATUS) & toggle;
1309 if (value != after) {
1310 dev_err(&adapter->pdev->dev,
1311 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1312 after, value);
1313 *data = 1;
1314 return 1;
1315 }
1316 /* restore previous status */
1317 wr32(E1000_STATUS, before);
1318
1319 /* Perform the remainder of the register test, looping through
1320 * the test table until we either fail or reach the null entry.
1321 */
1322 while (test->reg) {
1323 for (i = 0; i < test->array_len; i++) {
1324 switch (test->test_type) {
1325 case PATTERN_TEST:
1326 REG_PATTERN_TEST(test->reg +
1327 (i * test->reg_offset),
1328 test->mask,
1329 test->write);
1330 break;
1331 case SET_READ_TEST:
1332 REG_SET_AND_CHECK(test->reg +
1333 (i * test->reg_offset),
1334 test->mask,
1335 test->write);
1336 break;
1337 case WRITE_NO_TEST:
1338 writel(test->write,
1339 (adapter->hw.hw_addr + test->reg)
1340 + (i * test->reg_offset));
1341 break;
1342 case TABLE32_TEST:
1343 REG_PATTERN_TEST(test->reg + (i * 4),
1344 test->mask,
1345 test->write);
1346 break;
1347 case TABLE64_TEST_LO:
1348 REG_PATTERN_TEST(test->reg + (i * 8),
1349 test->mask,
1350 test->write);
1351 break;
1352 case TABLE64_TEST_HI:
1353 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1354 test->mask,
1355 test->write);
1356 break;
1357 }
1358 }
1359 test++;
1360 }
1361
1362 *data = 0;
1363 return 0;
1364 }
1365
igb_eeprom_test(struct igb_adapter * adapter,u64 * data)1366 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1367 {
1368 struct e1000_hw *hw = &adapter->hw;
1369
1370 *data = 0;
1371
1372 /* Validate eeprom on all parts but flashless */
1373 switch (hw->mac.type) {
1374 case e1000_i210:
1375 case e1000_i211:
1376 if (igb_get_flash_presence_i210(hw)) {
1377 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1378 *data = 2;
1379 }
1380 break;
1381 default:
1382 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1383 *data = 2;
1384 break;
1385 }
1386
1387 return *data;
1388 }
1389
igb_test_intr(int irq,void * data)1390 static irqreturn_t igb_test_intr(int irq, void *data)
1391 {
1392 struct igb_adapter *adapter = (struct igb_adapter *) data;
1393 struct e1000_hw *hw = &adapter->hw;
1394
1395 adapter->test_icr |= rd32(E1000_ICR);
1396
1397 return IRQ_HANDLED;
1398 }
1399
igb_intr_test(struct igb_adapter * adapter,u64 * data)1400 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1401 {
1402 struct e1000_hw *hw = &adapter->hw;
1403 struct net_device *netdev = adapter->netdev;
1404 u32 mask, ics_mask, i = 0, shared_int = true;
1405 u32 irq = adapter->pdev->irq;
1406
1407 *data = 0;
1408
1409 /* Hook up test interrupt handler just for this test */
1410 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1411 if (request_irq(adapter->msix_entries[0].vector,
1412 igb_test_intr, 0, netdev->name, adapter)) {
1413 *data = 1;
1414 return -1;
1415 }
1416 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1417 shared_int = false;
1418 if (request_irq(irq,
1419 igb_test_intr, 0, netdev->name, adapter)) {
1420 *data = 1;
1421 return -1;
1422 }
1423 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1424 netdev->name, adapter)) {
1425 shared_int = false;
1426 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1427 netdev->name, adapter)) {
1428 *data = 1;
1429 return -1;
1430 }
1431 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1432 (shared_int ? "shared" : "unshared"));
1433
1434 /* Disable all the interrupts */
1435 wr32(E1000_IMC, ~0);
1436 wrfl();
1437 usleep_range(10000, 11000);
1438
1439 /* Define all writable bits for ICS */
1440 switch (hw->mac.type) {
1441 case e1000_82575:
1442 ics_mask = 0x37F47EDD;
1443 break;
1444 case e1000_82576:
1445 ics_mask = 0x77D4FBFD;
1446 break;
1447 case e1000_82580:
1448 ics_mask = 0x77DCFED5;
1449 break;
1450 case e1000_i350:
1451 case e1000_i354:
1452 case e1000_i210:
1453 case e1000_i211:
1454 ics_mask = 0x77DCFED5;
1455 break;
1456 default:
1457 ics_mask = 0x7FFFFFFF;
1458 break;
1459 }
1460
1461 /* Test each interrupt */
1462 for (; i < 31; i++) {
1463 /* Interrupt to test */
1464 mask = BIT(i);
1465
1466 if (!(mask & ics_mask))
1467 continue;
1468
1469 if (!shared_int) {
1470 /* Disable the interrupt to be reported in
1471 * the cause register and then force the same
1472 * interrupt and see if one gets posted. If
1473 * an interrupt was posted to the bus, the
1474 * test failed.
1475 */
1476 adapter->test_icr = 0;
1477
1478 /* Flush any pending interrupts */
1479 wr32(E1000_ICR, ~0);
1480
1481 wr32(E1000_IMC, mask);
1482 wr32(E1000_ICS, mask);
1483 wrfl();
1484 usleep_range(10000, 11000);
1485
1486 if (adapter->test_icr & mask) {
1487 *data = 3;
1488 break;
1489 }
1490 }
1491
1492 /* Enable the interrupt to be reported in
1493 * the cause register and then force the same
1494 * interrupt and see if one gets posted. If
1495 * an interrupt was not posted to the bus, the
1496 * test failed.
1497 */
1498 adapter->test_icr = 0;
1499
1500 /* Flush any pending interrupts */
1501 wr32(E1000_ICR, ~0);
1502
1503 wr32(E1000_IMS, mask);
1504 wr32(E1000_ICS, mask);
1505 wrfl();
1506 usleep_range(10000, 11000);
1507
1508 if (!(adapter->test_icr & mask)) {
1509 *data = 4;
1510 break;
1511 }
1512
1513 if (!shared_int) {
1514 /* Disable the other interrupts to be reported in
1515 * the cause register and then force the other
1516 * interrupts and see if any get posted. If
1517 * an interrupt was posted to the bus, the
1518 * test failed.
1519 */
1520 adapter->test_icr = 0;
1521
1522 /* Flush any pending interrupts */
1523 wr32(E1000_ICR, ~0);
1524
1525 wr32(E1000_IMC, ~mask);
1526 wr32(E1000_ICS, ~mask);
1527 wrfl();
1528 usleep_range(10000, 11000);
1529
1530 if (adapter->test_icr & mask) {
1531 *data = 5;
1532 break;
1533 }
1534 }
1535 }
1536
1537 /* Disable all the interrupts */
1538 wr32(E1000_IMC, ~0);
1539 wrfl();
1540 usleep_range(10000, 11000);
1541
1542 /* Unhook test interrupt handler */
1543 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1544 free_irq(adapter->msix_entries[0].vector, adapter);
1545 else
1546 free_irq(irq, adapter);
1547
1548 return *data;
1549 }
1550
igb_free_desc_rings(struct igb_adapter * adapter)1551 static void igb_free_desc_rings(struct igb_adapter *adapter)
1552 {
1553 igb_free_tx_resources(&adapter->test_tx_ring);
1554 igb_free_rx_resources(&adapter->test_rx_ring);
1555 }
1556
igb_setup_desc_rings(struct igb_adapter * adapter)1557 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1558 {
1559 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1560 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1561 struct e1000_hw *hw = &adapter->hw;
1562 int ret_val;
1563
1564 /* Setup Tx descriptor ring and Tx buffers */
1565 tx_ring->count = IGB_DEFAULT_TXD;
1566 tx_ring->dev = &adapter->pdev->dev;
1567 tx_ring->netdev = adapter->netdev;
1568 tx_ring->reg_idx = adapter->vfs_allocated_count;
1569
1570 if (igb_setup_tx_resources(tx_ring)) {
1571 ret_val = 1;
1572 goto err_nomem;
1573 }
1574
1575 igb_setup_tctl(adapter);
1576 igb_configure_tx_ring(adapter, tx_ring);
1577
1578 /* Setup Rx descriptor ring and Rx buffers */
1579 rx_ring->count = IGB_DEFAULT_RXD;
1580 rx_ring->dev = &adapter->pdev->dev;
1581 rx_ring->netdev = adapter->netdev;
1582 rx_ring->reg_idx = adapter->vfs_allocated_count;
1583
1584 if (igb_setup_rx_resources(rx_ring)) {
1585 ret_val = 3;
1586 goto err_nomem;
1587 }
1588
1589 /* set the default queue to queue 0 of PF */
1590 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1591
1592 /* enable receive ring */
1593 igb_setup_rctl(adapter);
1594 igb_configure_rx_ring(adapter, rx_ring);
1595
1596 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1597
1598 return 0;
1599
1600 err_nomem:
1601 igb_free_desc_rings(adapter);
1602 return ret_val;
1603 }
1604
igb_phy_disable_receiver(struct igb_adapter * adapter)1605 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1606 {
1607 struct e1000_hw *hw = &adapter->hw;
1608
1609 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1610 igb_write_phy_reg(hw, 29, 0x001F);
1611 igb_write_phy_reg(hw, 30, 0x8FFC);
1612 igb_write_phy_reg(hw, 29, 0x001A);
1613 igb_write_phy_reg(hw, 30, 0x8FF0);
1614 }
1615
igb_integrated_phy_loopback(struct igb_adapter * adapter)1616 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1617 {
1618 struct e1000_hw *hw = &adapter->hw;
1619 u32 ctrl_reg = 0;
1620
1621 hw->mac.autoneg = false;
1622
1623 if (hw->phy.type == e1000_phy_m88) {
1624 if (hw->phy.id != I210_I_PHY_ID) {
1625 /* Auto-MDI/MDIX Off */
1626 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1627 /* reset to update Auto-MDI/MDIX */
1628 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1629 /* autoneg off */
1630 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1631 } else {
1632 /* force 1000, set loopback */
1633 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1634 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1635 }
1636 } else if (hw->phy.type == e1000_phy_82580) {
1637 /* enable MII loopback */
1638 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1639 }
1640
1641 /* add small delay to avoid loopback test failure */
1642 msleep(50);
1643
1644 /* force 1000, set loopback */
1645 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1646
1647 /* Now set up the MAC to the same speed/duplex as the PHY. */
1648 ctrl_reg = rd32(E1000_CTRL);
1649 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1650 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1651 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1652 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1653 E1000_CTRL_FD | /* Force Duplex to FULL */
1654 E1000_CTRL_SLU); /* Set link up enable bit */
1655
1656 if (hw->phy.type == e1000_phy_m88)
1657 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1658
1659 wr32(E1000_CTRL, ctrl_reg);
1660
1661 /* Disable the receiver on the PHY so when a cable is plugged in, the
1662 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1663 */
1664 if (hw->phy.type == e1000_phy_m88)
1665 igb_phy_disable_receiver(adapter);
1666
1667 msleep(500);
1668 return 0;
1669 }
1670
igb_set_phy_loopback(struct igb_adapter * adapter)1671 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1672 {
1673 return igb_integrated_phy_loopback(adapter);
1674 }
1675
igb_setup_loopback_test(struct igb_adapter * adapter)1676 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1677 {
1678 struct e1000_hw *hw = &adapter->hw;
1679 u32 reg;
1680
1681 reg = rd32(E1000_CTRL_EXT);
1682
1683 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1684 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1685 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1686 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1687 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1688 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1689 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1690 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1691 /* Enable DH89xxCC MPHY for near end loopback */
1692 reg = rd32(E1000_MPHY_ADDR_CTL);
1693 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1694 E1000_MPHY_PCS_CLK_REG_OFFSET;
1695 wr32(E1000_MPHY_ADDR_CTL, reg);
1696
1697 reg = rd32(E1000_MPHY_DATA);
1698 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1699 wr32(E1000_MPHY_DATA, reg);
1700 }
1701
1702 reg = rd32(E1000_RCTL);
1703 reg |= E1000_RCTL_LBM_TCVR;
1704 wr32(E1000_RCTL, reg);
1705
1706 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1707
1708 reg = rd32(E1000_CTRL);
1709 reg &= ~(E1000_CTRL_RFCE |
1710 E1000_CTRL_TFCE |
1711 E1000_CTRL_LRST);
1712 reg |= E1000_CTRL_SLU |
1713 E1000_CTRL_FD;
1714 wr32(E1000_CTRL, reg);
1715
1716 /* Unset switch control to serdes energy detect */
1717 reg = rd32(E1000_CONNSW);
1718 reg &= ~E1000_CONNSW_ENRGSRC;
1719 wr32(E1000_CONNSW, reg);
1720
1721 /* Unset sigdetect for SERDES loopback on
1722 * 82580 and newer devices.
1723 */
1724 if (hw->mac.type >= e1000_82580) {
1725 reg = rd32(E1000_PCS_CFG0);
1726 reg |= E1000_PCS_CFG_IGN_SD;
1727 wr32(E1000_PCS_CFG0, reg);
1728 }
1729
1730 /* Set PCS register for forced speed */
1731 reg = rd32(E1000_PCS_LCTL);
1732 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1733 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1734 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1735 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1736 E1000_PCS_LCTL_FSD | /* Force Speed */
1737 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1738 wr32(E1000_PCS_LCTL, reg);
1739
1740 return 0;
1741 }
1742
1743 return igb_set_phy_loopback(adapter);
1744 }
1745
igb_loopback_cleanup(struct igb_adapter * adapter)1746 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1747 {
1748 struct e1000_hw *hw = &adapter->hw;
1749 u32 rctl;
1750 u16 phy_reg;
1751
1752 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1753 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1754 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1755 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1756 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1757 u32 reg;
1758
1759 /* Disable near end loopback on DH89xxCC */
1760 reg = rd32(E1000_MPHY_ADDR_CTL);
1761 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1762 E1000_MPHY_PCS_CLK_REG_OFFSET;
1763 wr32(E1000_MPHY_ADDR_CTL, reg);
1764
1765 reg = rd32(E1000_MPHY_DATA);
1766 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1767 wr32(E1000_MPHY_DATA, reg);
1768 }
1769
1770 rctl = rd32(E1000_RCTL);
1771 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1772 wr32(E1000_RCTL, rctl);
1773
1774 hw->mac.autoneg = true;
1775 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1776 if (phy_reg & MII_CR_LOOPBACK) {
1777 phy_reg &= ~MII_CR_LOOPBACK;
1778 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1779 igb_phy_sw_reset(hw);
1780 }
1781 }
1782
igb_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1783 static void igb_create_lbtest_frame(struct sk_buff *skb,
1784 unsigned int frame_size)
1785 {
1786 memset(skb->data, 0xFF, frame_size);
1787 frame_size /= 2;
1788 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1789 skb->data[frame_size + 10] = 0xBE;
1790 skb->data[frame_size + 12] = 0xAF;
1791 }
1792
igb_check_lbtest_frame(struct igb_rx_buffer * rx_buffer,unsigned int frame_size)1793 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1794 unsigned int frame_size)
1795 {
1796 unsigned char *data;
1797 bool match = true;
1798
1799 frame_size >>= 1;
1800
1801 data = kmap(rx_buffer->page);
1802
1803 if (data[3] != 0xFF ||
1804 data[frame_size + 10] != 0xBE ||
1805 data[frame_size + 12] != 0xAF)
1806 match = false;
1807
1808 kunmap(rx_buffer->page);
1809
1810 return match;
1811 }
1812
igb_clean_test_rings(struct igb_ring * rx_ring,struct igb_ring * tx_ring,unsigned int size)1813 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1814 struct igb_ring *tx_ring,
1815 unsigned int size)
1816 {
1817 union e1000_adv_rx_desc *rx_desc;
1818 struct igb_rx_buffer *rx_buffer_info;
1819 struct igb_tx_buffer *tx_buffer_info;
1820 u16 rx_ntc, tx_ntc, count = 0;
1821
1822 /* initialize next to clean and descriptor values */
1823 rx_ntc = rx_ring->next_to_clean;
1824 tx_ntc = tx_ring->next_to_clean;
1825 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1826
1827 while (rx_desc->wb.upper.length) {
1828 /* check Rx buffer */
1829 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1830
1831 /* sync Rx buffer for CPU read */
1832 dma_sync_single_for_cpu(rx_ring->dev,
1833 rx_buffer_info->dma,
1834 size,
1835 DMA_FROM_DEVICE);
1836
1837 /* verify contents of skb */
1838 if (igb_check_lbtest_frame(rx_buffer_info, size))
1839 count++;
1840
1841 /* sync Rx buffer for device write */
1842 dma_sync_single_for_device(rx_ring->dev,
1843 rx_buffer_info->dma,
1844 size,
1845 DMA_FROM_DEVICE);
1846
1847 /* unmap buffer on Tx side */
1848 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1849
1850 /* Free all the Tx ring sk_buffs */
1851 dev_kfree_skb_any(tx_buffer_info->skb);
1852
1853 /* unmap skb header data */
1854 dma_unmap_single(tx_ring->dev,
1855 dma_unmap_addr(tx_buffer_info, dma),
1856 dma_unmap_len(tx_buffer_info, len),
1857 DMA_TO_DEVICE);
1858 dma_unmap_len_set(tx_buffer_info, len, 0);
1859
1860 /* increment Rx/Tx next to clean counters */
1861 rx_ntc++;
1862 if (rx_ntc == rx_ring->count)
1863 rx_ntc = 0;
1864 tx_ntc++;
1865 if (tx_ntc == tx_ring->count)
1866 tx_ntc = 0;
1867
1868 /* fetch next descriptor */
1869 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1870 }
1871
1872 netdev_tx_reset_queue(txring_txq(tx_ring));
1873
1874 /* re-map buffers to ring, store next to clean values */
1875 igb_alloc_rx_buffers(rx_ring, count);
1876 rx_ring->next_to_clean = rx_ntc;
1877 tx_ring->next_to_clean = tx_ntc;
1878
1879 return count;
1880 }
1881
igb_run_loopback_test(struct igb_adapter * adapter)1882 static int igb_run_loopback_test(struct igb_adapter *adapter)
1883 {
1884 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1885 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1886 u16 i, j, lc, good_cnt;
1887 int ret_val = 0;
1888 unsigned int size = IGB_RX_HDR_LEN;
1889 netdev_tx_t tx_ret_val;
1890 struct sk_buff *skb;
1891
1892 /* allocate test skb */
1893 skb = alloc_skb(size, GFP_KERNEL);
1894 if (!skb)
1895 return 11;
1896
1897 /* place data into test skb */
1898 igb_create_lbtest_frame(skb, size);
1899 skb_put(skb, size);
1900
1901 /* Calculate the loop count based on the largest descriptor ring
1902 * The idea is to wrap the largest ring a number of times using 64
1903 * send/receive pairs during each loop
1904 */
1905
1906 if (rx_ring->count <= tx_ring->count)
1907 lc = ((tx_ring->count / 64) * 2) + 1;
1908 else
1909 lc = ((rx_ring->count / 64) * 2) + 1;
1910
1911 for (j = 0; j <= lc; j++) { /* loop count loop */
1912 /* reset count of good packets */
1913 good_cnt = 0;
1914
1915 /* place 64 packets on the transmit queue*/
1916 for (i = 0; i < 64; i++) {
1917 skb_get(skb);
1918 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1919 if (tx_ret_val == NETDEV_TX_OK)
1920 good_cnt++;
1921 }
1922
1923 if (good_cnt != 64) {
1924 ret_val = 12;
1925 break;
1926 }
1927
1928 /* allow 200 milliseconds for packets to go from Tx to Rx */
1929 msleep(200);
1930
1931 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1932 if (good_cnt != 64) {
1933 ret_val = 13;
1934 break;
1935 }
1936 } /* end loop count loop */
1937
1938 /* free the original skb */
1939 kfree_skb(skb);
1940
1941 return ret_val;
1942 }
1943
igb_loopback_test(struct igb_adapter * adapter,u64 * data)1944 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1945 {
1946 /* PHY loopback cannot be performed if SoL/IDER
1947 * sessions are active
1948 */
1949 if (igb_check_reset_block(&adapter->hw)) {
1950 dev_err(&adapter->pdev->dev,
1951 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1952 *data = 0;
1953 goto out;
1954 }
1955
1956 if (adapter->hw.mac.type == e1000_i354) {
1957 dev_info(&adapter->pdev->dev,
1958 "Loopback test not supported on i354.\n");
1959 *data = 0;
1960 goto out;
1961 }
1962 *data = igb_setup_desc_rings(adapter);
1963 if (*data)
1964 goto out;
1965 *data = igb_setup_loopback_test(adapter);
1966 if (*data)
1967 goto err_loopback;
1968 *data = igb_run_loopback_test(adapter);
1969 igb_loopback_cleanup(adapter);
1970
1971 err_loopback:
1972 igb_free_desc_rings(adapter);
1973 out:
1974 return *data;
1975 }
1976
igb_link_test(struct igb_adapter * adapter,u64 * data)1977 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1978 {
1979 struct e1000_hw *hw = &adapter->hw;
1980 *data = 0;
1981 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1982 int i = 0;
1983
1984 hw->mac.serdes_has_link = false;
1985
1986 /* On some blade server designs, link establishment
1987 * could take as long as 2-3 minutes
1988 */
1989 do {
1990 hw->mac.ops.check_for_link(&adapter->hw);
1991 if (hw->mac.serdes_has_link)
1992 return *data;
1993 msleep(20);
1994 } while (i++ < 3750);
1995
1996 *data = 1;
1997 } else {
1998 hw->mac.ops.check_for_link(&adapter->hw);
1999 if (hw->mac.autoneg)
2000 msleep(5000);
2001
2002 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2003 *data = 1;
2004 }
2005 return *data;
2006 }
2007
igb_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)2008 static void igb_diag_test(struct net_device *netdev,
2009 struct ethtool_test *eth_test, u64 *data)
2010 {
2011 struct igb_adapter *adapter = netdev_priv(netdev);
2012 u16 autoneg_advertised;
2013 u8 forced_speed_duplex, autoneg;
2014 bool if_running = netif_running(netdev);
2015
2016 set_bit(__IGB_TESTING, &adapter->state);
2017
2018 /* can't do offline tests on media switching devices */
2019 if (adapter->hw.dev_spec._82575.mas_capable)
2020 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2021 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2022 /* Offline tests */
2023
2024 /* save speed, duplex, autoneg settings */
2025 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2026 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2027 autoneg = adapter->hw.mac.autoneg;
2028
2029 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2030
2031 /* power up link for link test */
2032 igb_power_up_link(adapter);
2033
2034 /* Link test performed before hardware reset so autoneg doesn't
2035 * interfere with test result
2036 */
2037 if (igb_link_test(adapter, &data[TEST_LINK]))
2038 eth_test->flags |= ETH_TEST_FL_FAILED;
2039
2040 if (if_running)
2041 /* indicate we're in test mode */
2042 igb_close(netdev);
2043 else
2044 igb_reset(adapter);
2045
2046 if (igb_reg_test(adapter, &data[TEST_REG]))
2047 eth_test->flags |= ETH_TEST_FL_FAILED;
2048
2049 igb_reset(adapter);
2050 if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2051 eth_test->flags |= ETH_TEST_FL_FAILED;
2052
2053 igb_reset(adapter);
2054 if (igb_intr_test(adapter, &data[TEST_IRQ]))
2055 eth_test->flags |= ETH_TEST_FL_FAILED;
2056
2057 igb_reset(adapter);
2058 /* power up link for loopback test */
2059 igb_power_up_link(adapter);
2060 if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2061 eth_test->flags |= ETH_TEST_FL_FAILED;
2062
2063 /* restore speed, duplex, autoneg settings */
2064 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2065 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2066 adapter->hw.mac.autoneg = autoneg;
2067
2068 /* force this routine to wait until autoneg complete/timeout */
2069 adapter->hw.phy.autoneg_wait_to_complete = true;
2070 igb_reset(adapter);
2071 adapter->hw.phy.autoneg_wait_to_complete = false;
2072
2073 clear_bit(__IGB_TESTING, &adapter->state);
2074 if (if_running)
2075 igb_open(netdev);
2076 } else {
2077 dev_info(&adapter->pdev->dev, "online testing starting\n");
2078
2079 /* PHY is powered down when interface is down */
2080 if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2081 eth_test->flags |= ETH_TEST_FL_FAILED;
2082 else
2083 data[TEST_LINK] = 0;
2084
2085 /* Online tests aren't run; pass by default */
2086 data[TEST_REG] = 0;
2087 data[TEST_EEP] = 0;
2088 data[TEST_IRQ] = 0;
2089 data[TEST_LOOP] = 0;
2090
2091 clear_bit(__IGB_TESTING, &adapter->state);
2092 }
2093 msleep_interruptible(4 * 1000);
2094 }
2095
igb_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2096 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2097 {
2098 struct igb_adapter *adapter = netdev_priv(netdev);
2099
2100 wol->wolopts = 0;
2101
2102 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2103 return;
2104
2105 wol->supported = WAKE_UCAST | WAKE_MCAST |
2106 WAKE_BCAST | WAKE_MAGIC |
2107 WAKE_PHY;
2108
2109 /* apply any specific unsupported masks here */
2110 switch (adapter->hw.device_id) {
2111 default:
2112 break;
2113 }
2114
2115 if (adapter->wol & E1000_WUFC_EX)
2116 wol->wolopts |= WAKE_UCAST;
2117 if (adapter->wol & E1000_WUFC_MC)
2118 wol->wolopts |= WAKE_MCAST;
2119 if (adapter->wol & E1000_WUFC_BC)
2120 wol->wolopts |= WAKE_BCAST;
2121 if (adapter->wol & E1000_WUFC_MAG)
2122 wol->wolopts |= WAKE_MAGIC;
2123 if (adapter->wol & E1000_WUFC_LNKC)
2124 wol->wolopts |= WAKE_PHY;
2125 }
2126
igb_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2127 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2128 {
2129 struct igb_adapter *adapter = netdev_priv(netdev);
2130
2131 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2132 return -EOPNOTSUPP;
2133
2134 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2135 return wol->wolopts ? -EOPNOTSUPP : 0;
2136
2137 /* these settings will always override what we currently have */
2138 adapter->wol = 0;
2139
2140 if (wol->wolopts & WAKE_UCAST)
2141 adapter->wol |= E1000_WUFC_EX;
2142 if (wol->wolopts & WAKE_MCAST)
2143 adapter->wol |= E1000_WUFC_MC;
2144 if (wol->wolopts & WAKE_BCAST)
2145 adapter->wol |= E1000_WUFC_BC;
2146 if (wol->wolopts & WAKE_MAGIC)
2147 adapter->wol |= E1000_WUFC_MAG;
2148 if (wol->wolopts & WAKE_PHY)
2149 adapter->wol |= E1000_WUFC_LNKC;
2150 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2151
2152 return 0;
2153 }
2154
2155 /* bit defines for adapter->led_status */
2156 #define IGB_LED_ON 0
2157
igb_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)2158 static int igb_set_phys_id(struct net_device *netdev,
2159 enum ethtool_phys_id_state state)
2160 {
2161 struct igb_adapter *adapter = netdev_priv(netdev);
2162 struct e1000_hw *hw = &adapter->hw;
2163
2164 switch (state) {
2165 case ETHTOOL_ID_ACTIVE:
2166 igb_blink_led(hw);
2167 return 2;
2168 case ETHTOOL_ID_ON:
2169 igb_blink_led(hw);
2170 break;
2171 case ETHTOOL_ID_OFF:
2172 igb_led_off(hw);
2173 break;
2174 case ETHTOOL_ID_INACTIVE:
2175 igb_led_off(hw);
2176 clear_bit(IGB_LED_ON, &adapter->led_status);
2177 igb_cleanup_led(hw);
2178 break;
2179 }
2180
2181 return 0;
2182 }
2183
igb_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)2184 static int igb_set_coalesce(struct net_device *netdev,
2185 struct ethtool_coalesce *ec)
2186 {
2187 struct igb_adapter *adapter = netdev_priv(netdev);
2188 int i;
2189
2190 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2191 ((ec->rx_coalesce_usecs > 3) &&
2192 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2193 (ec->rx_coalesce_usecs == 2))
2194 return -EINVAL;
2195
2196 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2197 ((ec->tx_coalesce_usecs > 3) &&
2198 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2199 (ec->tx_coalesce_usecs == 2))
2200 return -EINVAL;
2201
2202 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2203 return -EINVAL;
2204
2205 /* If ITR is disabled, disable DMAC */
2206 if (ec->rx_coalesce_usecs == 0) {
2207 if (adapter->flags & IGB_FLAG_DMAC)
2208 adapter->flags &= ~IGB_FLAG_DMAC;
2209 }
2210
2211 /* convert to rate of irq's per second */
2212 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2213 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2214 else
2215 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2216
2217 /* convert to rate of irq's per second */
2218 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2219 adapter->tx_itr_setting = adapter->rx_itr_setting;
2220 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2221 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2222 else
2223 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2224
2225 for (i = 0; i < adapter->num_q_vectors; i++) {
2226 struct igb_q_vector *q_vector = adapter->q_vector[i];
2227 q_vector->tx.work_limit = adapter->tx_work_limit;
2228 if (q_vector->rx.ring)
2229 q_vector->itr_val = adapter->rx_itr_setting;
2230 else
2231 q_vector->itr_val = adapter->tx_itr_setting;
2232 if (q_vector->itr_val && q_vector->itr_val <= 3)
2233 q_vector->itr_val = IGB_START_ITR;
2234 q_vector->set_itr = 1;
2235 }
2236
2237 return 0;
2238 }
2239
igb_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)2240 static int igb_get_coalesce(struct net_device *netdev,
2241 struct ethtool_coalesce *ec)
2242 {
2243 struct igb_adapter *adapter = netdev_priv(netdev);
2244
2245 if (adapter->rx_itr_setting <= 3)
2246 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2247 else
2248 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2249
2250 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2251 if (adapter->tx_itr_setting <= 3)
2252 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2253 else
2254 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2255 }
2256
2257 return 0;
2258 }
2259
igb_nway_reset(struct net_device * netdev)2260 static int igb_nway_reset(struct net_device *netdev)
2261 {
2262 struct igb_adapter *adapter = netdev_priv(netdev);
2263 if (netif_running(netdev))
2264 igb_reinit_locked(adapter);
2265 return 0;
2266 }
2267
igb_get_sset_count(struct net_device * netdev,int sset)2268 static int igb_get_sset_count(struct net_device *netdev, int sset)
2269 {
2270 switch (sset) {
2271 case ETH_SS_STATS:
2272 return IGB_STATS_LEN;
2273 case ETH_SS_TEST:
2274 return IGB_TEST_LEN;
2275 case ETH_SS_PRIV_FLAGS:
2276 return IGB_PRIV_FLAGS_STR_LEN;
2277 default:
2278 return -ENOTSUPP;
2279 }
2280 }
2281
igb_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2282 static void igb_get_ethtool_stats(struct net_device *netdev,
2283 struct ethtool_stats *stats, u64 *data)
2284 {
2285 struct igb_adapter *adapter = netdev_priv(netdev);
2286 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2287 unsigned int start;
2288 struct igb_ring *ring;
2289 int i, j;
2290 char *p;
2291
2292 spin_lock(&adapter->stats64_lock);
2293 igb_update_stats(adapter);
2294
2295 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2296 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2297 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2298 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2299 }
2300 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2301 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2302 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2303 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2304 }
2305 for (j = 0; j < adapter->num_tx_queues; j++) {
2306 u64 restart2;
2307
2308 ring = adapter->tx_ring[j];
2309 do {
2310 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2311 data[i] = ring->tx_stats.packets;
2312 data[i+1] = ring->tx_stats.bytes;
2313 data[i+2] = ring->tx_stats.restart_queue;
2314 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2315 do {
2316 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2317 restart2 = ring->tx_stats.restart_queue2;
2318 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2319 data[i+2] += restart2;
2320
2321 i += IGB_TX_QUEUE_STATS_LEN;
2322 }
2323 for (j = 0; j < adapter->num_rx_queues; j++) {
2324 ring = adapter->rx_ring[j];
2325 do {
2326 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2327 data[i] = ring->rx_stats.packets;
2328 data[i+1] = ring->rx_stats.bytes;
2329 data[i+2] = ring->rx_stats.drops;
2330 data[i+3] = ring->rx_stats.csum_err;
2331 data[i+4] = ring->rx_stats.alloc_failed;
2332 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2333 i += IGB_RX_QUEUE_STATS_LEN;
2334 }
2335 spin_unlock(&adapter->stats64_lock);
2336 }
2337
igb_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2338 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2339 {
2340 struct igb_adapter *adapter = netdev_priv(netdev);
2341 u8 *p = data;
2342 int i;
2343
2344 switch (stringset) {
2345 case ETH_SS_TEST:
2346 memcpy(data, *igb_gstrings_test,
2347 IGB_TEST_LEN*ETH_GSTRING_LEN);
2348 break;
2349 case ETH_SS_STATS:
2350 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2351 memcpy(p, igb_gstrings_stats[i].stat_string,
2352 ETH_GSTRING_LEN);
2353 p += ETH_GSTRING_LEN;
2354 }
2355 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2356 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2357 ETH_GSTRING_LEN);
2358 p += ETH_GSTRING_LEN;
2359 }
2360 for (i = 0; i < adapter->num_tx_queues; i++) {
2361 sprintf(p, "tx_queue_%u_packets", i);
2362 p += ETH_GSTRING_LEN;
2363 sprintf(p, "tx_queue_%u_bytes", i);
2364 p += ETH_GSTRING_LEN;
2365 sprintf(p, "tx_queue_%u_restart", i);
2366 p += ETH_GSTRING_LEN;
2367 }
2368 for (i = 0; i < adapter->num_rx_queues; i++) {
2369 sprintf(p, "rx_queue_%u_packets", i);
2370 p += ETH_GSTRING_LEN;
2371 sprintf(p, "rx_queue_%u_bytes", i);
2372 p += ETH_GSTRING_LEN;
2373 sprintf(p, "rx_queue_%u_drops", i);
2374 p += ETH_GSTRING_LEN;
2375 sprintf(p, "rx_queue_%u_csum_err", i);
2376 p += ETH_GSTRING_LEN;
2377 sprintf(p, "rx_queue_%u_alloc_failed", i);
2378 p += ETH_GSTRING_LEN;
2379 }
2380 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2381 break;
2382 case ETH_SS_PRIV_FLAGS:
2383 memcpy(data, igb_priv_flags_strings,
2384 IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2385 break;
2386 }
2387 }
2388
igb_get_ts_info(struct net_device * dev,struct ethtool_ts_info * info)2389 static int igb_get_ts_info(struct net_device *dev,
2390 struct ethtool_ts_info *info)
2391 {
2392 struct igb_adapter *adapter = netdev_priv(dev);
2393
2394 if (adapter->ptp_clock)
2395 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2396 else
2397 info->phc_index = -1;
2398
2399 switch (adapter->hw.mac.type) {
2400 case e1000_82575:
2401 info->so_timestamping =
2402 SOF_TIMESTAMPING_TX_SOFTWARE |
2403 SOF_TIMESTAMPING_RX_SOFTWARE |
2404 SOF_TIMESTAMPING_SOFTWARE;
2405 return 0;
2406 case e1000_82576:
2407 case e1000_82580:
2408 case e1000_i350:
2409 case e1000_i354:
2410 case e1000_i210:
2411 case e1000_i211:
2412 info->so_timestamping =
2413 SOF_TIMESTAMPING_TX_SOFTWARE |
2414 SOF_TIMESTAMPING_RX_SOFTWARE |
2415 SOF_TIMESTAMPING_SOFTWARE |
2416 SOF_TIMESTAMPING_TX_HARDWARE |
2417 SOF_TIMESTAMPING_RX_HARDWARE |
2418 SOF_TIMESTAMPING_RAW_HARDWARE;
2419
2420 info->tx_types =
2421 BIT(HWTSTAMP_TX_OFF) |
2422 BIT(HWTSTAMP_TX_ON);
2423
2424 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2425
2426 /* 82576 does not support timestamping all packets. */
2427 if (adapter->hw.mac.type >= e1000_82580)
2428 info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2429 else
2430 info->rx_filters |=
2431 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2432 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2433 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2434
2435 return 0;
2436 default:
2437 return -EOPNOTSUPP;
2438 }
2439 }
2440
2441 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
igb_get_ethtool_nfc_entry(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)2442 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2443 struct ethtool_rxnfc *cmd)
2444 {
2445 struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2446 struct igb_nfc_filter *rule = NULL;
2447
2448 /* report total rule count */
2449 cmd->data = IGB_MAX_RXNFC_FILTERS;
2450
2451 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2452 if (fsp->location <= rule->sw_idx)
2453 break;
2454 }
2455
2456 if (!rule || fsp->location != rule->sw_idx)
2457 return -EINVAL;
2458
2459 if (rule->filter.match_flags) {
2460 fsp->flow_type = ETHER_FLOW;
2461 fsp->ring_cookie = rule->action;
2462 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2463 fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2464 fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2465 }
2466 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2467 fsp->flow_type |= FLOW_EXT;
2468 fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2469 fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2470 }
2471 if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2472 ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2473 rule->filter.dst_addr);
2474 /* As we only support matching by the full
2475 * mask, return the mask to userspace
2476 */
2477 eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2478 }
2479 if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2480 ether_addr_copy(fsp->h_u.ether_spec.h_source,
2481 rule->filter.src_addr);
2482 /* As we only support matching by the full
2483 * mask, return the mask to userspace
2484 */
2485 eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2486 }
2487
2488 return 0;
2489 }
2490 return -EINVAL;
2491 }
2492
igb_get_ethtool_nfc_all(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd,u32 * rule_locs)2493 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2494 struct ethtool_rxnfc *cmd,
2495 u32 *rule_locs)
2496 {
2497 struct igb_nfc_filter *rule;
2498 int cnt = 0;
2499
2500 /* report total rule count */
2501 cmd->data = IGB_MAX_RXNFC_FILTERS;
2502
2503 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2504 if (cnt == cmd->rule_cnt)
2505 return -EMSGSIZE;
2506 rule_locs[cnt] = rule->sw_idx;
2507 cnt++;
2508 }
2509
2510 cmd->rule_cnt = cnt;
2511
2512 return 0;
2513 }
2514
igb_get_rss_hash_opts(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)2515 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2516 struct ethtool_rxnfc *cmd)
2517 {
2518 cmd->data = 0;
2519
2520 /* Report default options for RSS on igb */
2521 switch (cmd->flow_type) {
2522 case TCP_V4_FLOW:
2523 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2524 fallthrough;
2525 case UDP_V4_FLOW:
2526 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2527 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2528 fallthrough;
2529 case SCTP_V4_FLOW:
2530 case AH_ESP_V4_FLOW:
2531 case AH_V4_FLOW:
2532 case ESP_V4_FLOW:
2533 case IPV4_FLOW:
2534 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2535 break;
2536 case TCP_V6_FLOW:
2537 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2538 fallthrough;
2539 case UDP_V6_FLOW:
2540 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2541 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2542 fallthrough;
2543 case SCTP_V6_FLOW:
2544 case AH_ESP_V6_FLOW:
2545 case AH_V6_FLOW:
2546 case ESP_V6_FLOW:
2547 case IPV6_FLOW:
2548 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2549 break;
2550 default:
2551 return -EINVAL;
2552 }
2553
2554 return 0;
2555 }
2556
igb_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd,u32 * rule_locs)2557 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2558 u32 *rule_locs)
2559 {
2560 struct igb_adapter *adapter = netdev_priv(dev);
2561 int ret = -EOPNOTSUPP;
2562
2563 switch (cmd->cmd) {
2564 case ETHTOOL_GRXRINGS:
2565 cmd->data = adapter->num_rx_queues;
2566 ret = 0;
2567 break;
2568 case ETHTOOL_GRXCLSRLCNT:
2569 cmd->rule_cnt = adapter->nfc_filter_count;
2570 ret = 0;
2571 break;
2572 case ETHTOOL_GRXCLSRULE:
2573 ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2574 break;
2575 case ETHTOOL_GRXCLSRLALL:
2576 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2577 break;
2578 case ETHTOOL_GRXFH:
2579 ret = igb_get_rss_hash_opts(adapter, cmd);
2580 break;
2581 default:
2582 break;
2583 }
2584
2585 return ret;
2586 }
2587
2588 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2589 IGB_FLAG_RSS_FIELD_IPV6_UDP)
igb_set_rss_hash_opt(struct igb_adapter * adapter,struct ethtool_rxnfc * nfc)2590 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2591 struct ethtool_rxnfc *nfc)
2592 {
2593 u32 flags = adapter->flags;
2594
2595 /* RSS does not support anything other than hashing
2596 * to queues on src and dst IPs and ports
2597 */
2598 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2599 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2600 return -EINVAL;
2601
2602 switch (nfc->flow_type) {
2603 case TCP_V4_FLOW:
2604 case TCP_V6_FLOW:
2605 if (!(nfc->data & RXH_IP_SRC) ||
2606 !(nfc->data & RXH_IP_DST) ||
2607 !(nfc->data & RXH_L4_B_0_1) ||
2608 !(nfc->data & RXH_L4_B_2_3))
2609 return -EINVAL;
2610 break;
2611 case UDP_V4_FLOW:
2612 if (!(nfc->data & RXH_IP_SRC) ||
2613 !(nfc->data & RXH_IP_DST))
2614 return -EINVAL;
2615 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2616 case 0:
2617 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2618 break;
2619 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2620 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2621 break;
2622 default:
2623 return -EINVAL;
2624 }
2625 break;
2626 case UDP_V6_FLOW:
2627 if (!(nfc->data & RXH_IP_SRC) ||
2628 !(nfc->data & RXH_IP_DST))
2629 return -EINVAL;
2630 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2631 case 0:
2632 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2633 break;
2634 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2635 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2636 break;
2637 default:
2638 return -EINVAL;
2639 }
2640 break;
2641 case AH_ESP_V4_FLOW:
2642 case AH_V4_FLOW:
2643 case ESP_V4_FLOW:
2644 case SCTP_V4_FLOW:
2645 case AH_ESP_V6_FLOW:
2646 case AH_V6_FLOW:
2647 case ESP_V6_FLOW:
2648 case SCTP_V6_FLOW:
2649 if (!(nfc->data & RXH_IP_SRC) ||
2650 !(nfc->data & RXH_IP_DST) ||
2651 (nfc->data & RXH_L4_B_0_1) ||
2652 (nfc->data & RXH_L4_B_2_3))
2653 return -EINVAL;
2654 break;
2655 default:
2656 return -EINVAL;
2657 }
2658
2659 /* if we changed something we need to update flags */
2660 if (flags != adapter->flags) {
2661 struct e1000_hw *hw = &adapter->hw;
2662 u32 mrqc = rd32(E1000_MRQC);
2663
2664 if ((flags & UDP_RSS_FLAGS) &&
2665 !(adapter->flags & UDP_RSS_FLAGS))
2666 dev_err(&adapter->pdev->dev,
2667 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2668
2669 adapter->flags = flags;
2670
2671 /* Perform hash on these packet types */
2672 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2673 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2674 E1000_MRQC_RSS_FIELD_IPV6 |
2675 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2676
2677 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2678 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2679
2680 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2681 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2682
2683 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2684 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2685
2686 wr32(E1000_MRQC, mrqc);
2687 }
2688
2689 return 0;
2690 }
2691
igb_rxnfc_write_etype_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2692 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2693 struct igb_nfc_filter *input)
2694 {
2695 struct e1000_hw *hw = &adapter->hw;
2696 u8 i;
2697 u32 etqf;
2698 u16 etype;
2699
2700 /* find an empty etype filter register */
2701 for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2702 if (!adapter->etype_bitmap[i])
2703 break;
2704 }
2705 if (i == MAX_ETYPE_FILTER) {
2706 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2707 return -EINVAL;
2708 }
2709
2710 adapter->etype_bitmap[i] = true;
2711
2712 etqf = rd32(E1000_ETQF(i));
2713 etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2714
2715 etqf |= E1000_ETQF_FILTER_ENABLE;
2716 etqf &= ~E1000_ETQF_ETYPE_MASK;
2717 etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2718
2719 etqf &= ~E1000_ETQF_QUEUE_MASK;
2720 etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2721 & E1000_ETQF_QUEUE_MASK);
2722 etqf |= E1000_ETQF_QUEUE_ENABLE;
2723
2724 wr32(E1000_ETQF(i), etqf);
2725
2726 input->etype_reg_index = i;
2727
2728 return 0;
2729 }
2730
igb_rxnfc_write_vlan_prio_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2731 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2732 struct igb_nfc_filter *input)
2733 {
2734 struct e1000_hw *hw = &adapter->hw;
2735 u8 vlan_priority;
2736 u16 queue_index;
2737 u32 vlapqf;
2738
2739 vlapqf = rd32(E1000_VLAPQF);
2740 vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2741 >> VLAN_PRIO_SHIFT;
2742 queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2743
2744 /* check whether this vlan prio is already set */
2745 if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2746 (queue_index != input->action)) {
2747 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2748 return -EEXIST;
2749 }
2750
2751 vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2752 vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2753
2754 wr32(E1000_VLAPQF, vlapqf);
2755
2756 return 0;
2757 }
2758
igb_add_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2759 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2760 {
2761 struct e1000_hw *hw = &adapter->hw;
2762 int err = -EINVAL;
2763
2764 if (hw->mac.type == e1000_i210 &&
2765 !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2766 dev_err(&adapter->pdev->dev,
2767 "i210 doesn't support flow classification rules specifying only source addresses.\n");
2768 return -EOPNOTSUPP;
2769 }
2770
2771 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2772 err = igb_rxnfc_write_etype_filter(adapter, input);
2773 if (err)
2774 return err;
2775 }
2776
2777 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2778 err = igb_add_mac_steering_filter(adapter,
2779 input->filter.dst_addr,
2780 input->action, 0);
2781 err = min_t(int, err, 0);
2782 if (err)
2783 return err;
2784 }
2785
2786 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2787 err = igb_add_mac_steering_filter(adapter,
2788 input->filter.src_addr,
2789 input->action,
2790 IGB_MAC_STATE_SRC_ADDR);
2791 err = min_t(int, err, 0);
2792 if (err)
2793 return err;
2794 }
2795
2796 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2797 err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2798
2799 return err;
2800 }
2801
igb_clear_etype_filter_regs(struct igb_adapter * adapter,u16 reg_index)2802 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2803 u16 reg_index)
2804 {
2805 struct e1000_hw *hw = &adapter->hw;
2806 u32 etqf = rd32(E1000_ETQF(reg_index));
2807
2808 etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2809 etqf &= ~E1000_ETQF_QUEUE_MASK;
2810 etqf &= ~E1000_ETQF_FILTER_ENABLE;
2811
2812 wr32(E1000_ETQF(reg_index), etqf);
2813
2814 adapter->etype_bitmap[reg_index] = false;
2815 }
2816
igb_clear_vlan_prio_filter(struct igb_adapter * adapter,u16 vlan_tci)2817 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2818 u16 vlan_tci)
2819 {
2820 struct e1000_hw *hw = &adapter->hw;
2821 u8 vlan_priority;
2822 u32 vlapqf;
2823
2824 vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2825
2826 vlapqf = rd32(E1000_VLAPQF);
2827 vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2828 vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2829 E1000_VLAPQF_QUEUE_MASK);
2830
2831 wr32(E1000_VLAPQF, vlapqf);
2832 }
2833
igb_erase_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2834 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2835 {
2836 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2837 igb_clear_etype_filter_regs(adapter,
2838 input->etype_reg_index);
2839
2840 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2841 igb_clear_vlan_prio_filter(adapter,
2842 ntohs(input->filter.vlan_tci));
2843
2844 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2845 igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2846 input->action,
2847 IGB_MAC_STATE_SRC_ADDR);
2848
2849 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2850 igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2851 input->action, 0);
2852
2853 return 0;
2854 }
2855
igb_update_ethtool_nfc_entry(struct igb_adapter * adapter,struct igb_nfc_filter * input,u16 sw_idx)2856 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2857 struct igb_nfc_filter *input,
2858 u16 sw_idx)
2859 {
2860 struct igb_nfc_filter *rule, *parent;
2861 int err = -EINVAL;
2862
2863 parent = NULL;
2864 rule = NULL;
2865
2866 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2867 /* hash found, or no matching entry */
2868 if (rule->sw_idx >= sw_idx)
2869 break;
2870 parent = rule;
2871 }
2872
2873 /* if there is an old rule occupying our place remove it */
2874 if (rule && (rule->sw_idx == sw_idx)) {
2875 if (!input)
2876 err = igb_erase_filter(adapter, rule);
2877
2878 hlist_del(&rule->nfc_node);
2879 kfree(rule);
2880 adapter->nfc_filter_count--;
2881 }
2882
2883 /* If no input this was a delete, err should be 0 if a rule was
2884 * successfully found and removed from the list else -EINVAL
2885 */
2886 if (!input)
2887 return err;
2888
2889 /* initialize node */
2890 INIT_HLIST_NODE(&input->nfc_node);
2891
2892 /* add filter to the list */
2893 if (parent)
2894 hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2895 else
2896 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2897
2898 /* update counts */
2899 adapter->nfc_filter_count++;
2900
2901 return 0;
2902 }
2903
igb_add_ethtool_nfc_entry(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)2904 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2905 struct ethtool_rxnfc *cmd)
2906 {
2907 struct net_device *netdev = adapter->netdev;
2908 struct ethtool_rx_flow_spec *fsp =
2909 (struct ethtool_rx_flow_spec *)&cmd->fs;
2910 struct igb_nfc_filter *input, *rule;
2911 int err = 0;
2912
2913 if (!(netdev->hw_features & NETIF_F_NTUPLE))
2914 return -EOPNOTSUPP;
2915
2916 /* Don't allow programming if the action is a queue greater than
2917 * the number of online Rx queues.
2918 */
2919 if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2920 (fsp->ring_cookie >= adapter->num_rx_queues)) {
2921 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2922 return -EINVAL;
2923 }
2924
2925 /* Don't allow indexes to exist outside of available space */
2926 if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2927 dev_err(&adapter->pdev->dev, "Location out of range\n");
2928 return -EINVAL;
2929 }
2930
2931 if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2932 return -EINVAL;
2933
2934 input = kzalloc(sizeof(*input), GFP_KERNEL);
2935 if (!input)
2936 return -ENOMEM;
2937
2938 if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2939 input->filter.etype = fsp->h_u.ether_spec.h_proto;
2940 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2941 }
2942
2943 /* Only support matching addresses by the full mask */
2944 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2945 input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2946 ether_addr_copy(input->filter.src_addr,
2947 fsp->h_u.ether_spec.h_source);
2948 }
2949
2950 /* Only support matching addresses by the full mask */
2951 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2952 input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2953 ether_addr_copy(input->filter.dst_addr,
2954 fsp->h_u.ether_spec.h_dest);
2955 }
2956
2957 if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2958 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2959 err = -EINVAL;
2960 goto err_out;
2961 }
2962 input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2963 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2964 }
2965
2966 input->action = fsp->ring_cookie;
2967 input->sw_idx = fsp->location;
2968
2969 spin_lock(&adapter->nfc_lock);
2970
2971 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2972 if (!memcmp(&input->filter, &rule->filter,
2973 sizeof(input->filter))) {
2974 err = -EEXIST;
2975 dev_err(&adapter->pdev->dev,
2976 "ethtool: this filter is already set\n");
2977 goto err_out_w_lock;
2978 }
2979 }
2980
2981 err = igb_add_filter(adapter, input);
2982 if (err)
2983 goto err_out_w_lock;
2984
2985 igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2986
2987 spin_unlock(&adapter->nfc_lock);
2988 return 0;
2989
2990 err_out_w_lock:
2991 spin_unlock(&adapter->nfc_lock);
2992 err_out:
2993 kfree(input);
2994 return err;
2995 }
2996
igb_del_ethtool_nfc_entry(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)2997 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2998 struct ethtool_rxnfc *cmd)
2999 {
3000 struct ethtool_rx_flow_spec *fsp =
3001 (struct ethtool_rx_flow_spec *)&cmd->fs;
3002 int err;
3003
3004 spin_lock(&adapter->nfc_lock);
3005 err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3006 spin_unlock(&adapter->nfc_lock);
3007
3008 return err;
3009 }
3010
igb_set_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd)3011 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3012 {
3013 struct igb_adapter *adapter = netdev_priv(dev);
3014 int ret = -EOPNOTSUPP;
3015
3016 switch (cmd->cmd) {
3017 case ETHTOOL_SRXFH:
3018 ret = igb_set_rss_hash_opt(adapter, cmd);
3019 break;
3020 case ETHTOOL_SRXCLSRLINS:
3021 ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3022 break;
3023 case ETHTOOL_SRXCLSRLDEL:
3024 ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3025 default:
3026 break;
3027 }
3028
3029 return ret;
3030 }
3031
igb_get_eee(struct net_device * netdev,struct ethtool_eee * edata)3032 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3033 {
3034 struct igb_adapter *adapter = netdev_priv(netdev);
3035 struct e1000_hw *hw = &adapter->hw;
3036 u32 ret_val;
3037 u16 phy_data;
3038
3039 if ((hw->mac.type < e1000_i350) ||
3040 (hw->phy.media_type != e1000_media_type_copper))
3041 return -EOPNOTSUPP;
3042
3043 edata->supported = (SUPPORTED_1000baseT_Full |
3044 SUPPORTED_100baseT_Full);
3045 if (!hw->dev_spec._82575.eee_disable)
3046 edata->advertised =
3047 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3048
3049 /* The IPCNFG and EEER registers are not supported on I354. */
3050 if (hw->mac.type == e1000_i354) {
3051 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3052 } else {
3053 u32 eeer;
3054
3055 eeer = rd32(E1000_EEER);
3056
3057 /* EEE status on negotiated link */
3058 if (eeer & E1000_EEER_EEE_NEG)
3059 edata->eee_active = true;
3060
3061 if (eeer & E1000_EEER_TX_LPI_EN)
3062 edata->tx_lpi_enabled = true;
3063 }
3064
3065 /* EEE Link Partner Advertised */
3066 switch (hw->mac.type) {
3067 case e1000_i350:
3068 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3069 &phy_data);
3070 if (ret_val)
3071 return -ENODATA;
3072
3073 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3074 break;
3075 case e1000_i354:
3076 case e1000_i210:
3077 case e1000_i211:
3078 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3079 E1000_EEE_LP_ADV_DEV_I210,
3080 &phy_data);
3081 if (ret_val)
3082 return -ENODATA;
3083
3084 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3085
3086 break;
3087 default:
3088 break;
3089 }
3090
3091 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3092
3093 if ((hw->mac.type == e1000_i354) &&
3094 (edata->eee_enabled))
3095 edata->tx_lpi_enabled = true;
3096
3097 /* Report correct negotiated EEE status for devices that
3098 * wrongly report EEE at half-duplex
3099 */
3100 if (adapter->link_duplex == HALF_DUPLEX) {
3101 edata->eee_enabled = false;
3102 edata->eee_active = false;
3103 edata->tx_lpi_enabled = false;
3104 edata->advertised &= ~edata->advertised;
3105 }
3106
3107 return 0;
3108 }
3109
igb_set_eee(struct net_device * netdev,struct ethtool_eee * edata)3110 static int igb_set_eee(struct net_device *netdev,
3111 struct ethtool_eee *edata)
3112 {
3113 struct igb_adapter *adapter = netdev_priv(netdev);
3114 struct e1000_hw *hw = &adapter->hw;
3115 struct ethtool_eee eee_curr;
3116 bool adv1g_eee = true, adv100m_eee = true;
3117 s32 ret_val;
3118
3119 if ((hw->mac.type < e1000_i350) ||
3120 (hw->phy.media_type != e1000_media_type_copper))
3121 return -EOPNOTSUPP;
3122
3123 memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3124
3125 ret_val = igb_get_eee(netdev, &eee_curr);
3126 if (ret_val)
3127 return ret_val;
3128
3129 if (eee_curr.eee_enabled) {
3130 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3131 dev_err(&adapter->pdev->dev,
3132 "Setting EEE tx-lpi is not supported\n");
3133 return -EINVAL;
3134 }
3135
3136 /* Tx LPI timer is not implemented currently */
3137 if (edata->tx_lpi_timer) {
3138 dev_err(&adapter->pdev->dev,
3139 "Setting EEE Tx LPI timer is not supported\n");
3140 return -EINVAL;
3141 }
3142
3143 if (!edata->advertised || (edata->advertised &
3144 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3145 dev_err(&adapter->pdev->dev,
3146 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3147 return -EINVAL;
3148 }
3149 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3150 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3151
3152 } else if (!edata->eee_enabled) {
3153 dev_err(&adapter->pdev->dev,
3154 "Setting EEE options are not supported with EEE disabled\n");
3155 return -EINVAL;
3156 }
3157
3158 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3159 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3160 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3161 adapter->flags |= IGB_FLAG_EEE;
3162
3163 /* reset link */
3164 if (netif_running(netdev))
3165 igb_reinit_locked(adapter);
3166 else
3167 igb_reset(adapter);
3168 }
3169
3170 if (hw->mac.type == e1000_i354)
3171 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3172 else
3173 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3174
3175 if (ret_val) {
3176 dev_err(&adapter->pdev->dev,
3177 "Problem setting EEE advertisement options\n");
3178 return -EINVAL;
3179 }
3180
3181 return 0;
3182 }
3183
igb_get_module_info(struct net_device * netdev,struct ethtool_modinfo * modinfo)3184 static int igb_get_module_info(struct net_device *netdev,
3185 struct ethtool_modinfo *modinfo)
3186 {
3187 struct igb_adapter *adapter = netdev_priv(netdev);
3188 struct e1000_hw *hw = &adapter->hw;
3189 u32 status = 0;
3190 u16 sff8472_rev, addr_mode;
3191 bool page_swap = false;
3192
3193 if ((hw->phy.media_type == e1000_media_type_copper) ||
3194 (hw->phy.media_type == e1000_media_type_unknown))
3195 return -EOPNOTSUPP;
3196
3197 /* Check whether we support SFF-8472 or not */
3198 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3199 if (status)
3200 return -EIO;
3201
3202 /* addressing mode is not supported */
3203 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3204 if (status)
3205 return -EIO;
3206
3207 /* addressing mode is not supported */
3208 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3209 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3210 page_swap = true;
3211 }
3212
3213 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3214 /* We have an SFP, but it does not support SFF-8472 */
3215 modinfo->type = ETH_MODULE_SFF_8079;
3216 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3217 } else {
3218 /* We have an SFP which supports a revision of SFF-8472 */
3219 modinfo->type = ETH_MODULE_SFF_8472;
3220 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3221 }
3222
3223 return 0;
3224 }
3225
igb_get_module_eeprom(struct net_device * netdev,struct ethtool_eeprom * ee,u8 * data)3226 static int igb_get_module_eeprom(struct net_device *netdev,
3227 struct ethtool_eeprom *ee, u8 *data)
3228 {
3229 struct igb_adapter *adapter = netdev_priv(netdev);
3230 struct e1000_hw *hw = &adapter->hw;
3231 u32 status = 0;
3232 u16 *dataword;
3233 u16 first_word, last_word;
3234 int i = 0;
3235
3236 if (ee->len == 0)
3237 return -EINVAL;
3238
3239 first_word = ee->offset >> 1;
3240 last_word = (ee->offset + ee->len - 1) >> 1;
3241
3242 dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3243 GFP_KERNEL);
3244 if (!dataword)
3245 return -ENOMEM;
3246
3247 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3248 for (i = 0; i < last_word - first_word + 1; i++) {
3249 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3250 &dataword[i]);
3251 if (status) {
3252 /* Error occurred while reading module */
3253 kfree(dataword);
3254 return -EIO;
3255 }
3256
3257 be16_to_cpus(&dataword[i]);
3258 }
3259
3260 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3261 kfree(dataword);
3262
3263 return 0;
3264 }
3265
igb_ethtool_begin(struct net_device * netdev)3266 static int igb_ethtool_begin(struct net_device *netdev)
3267 {
3268 struct igb_adapter *adapter = netdev_priv(netdev);
3269 pm_runtime_get_sync(&adapter->pdev->dev);
3270 return 0;
3271 }
3272
igb_ethtool_complete(struct net_device * netdev)3273 static void igb_ethtool_complete(struct net_device *netdev)
3274 {
3275 struct igb_adapter *adapter = netdev_priv(netdev);
3276 pm_runtime_put(&adapter->pdev->dev);
3277 }
3278
igb_get_rxfh_indir_size(struct net_device * netdev)3279 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3280 {
3281 return IGB_RETA_SIZE;
3282 }
3283
igb_get_rxfh(struct net_device * netdev,u32 * indir,u8 * key,u8 * hfunc)3284 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3285 u8 *hfunc)
3286 {
3287 struct igb_adapter *adapter = netdev_priv(netdev);
3288 int i;
3289
3290 if (hfunc)
3291 *hfunc = ETH_RSS_HASH_TOP;
3292 if (!indir)
3293 return 0;
3294 for (i = 0; i < IGB_RETA_SIZE; i++)
3295 indir[i] = adapter->rss_indir_tbl[i];
3296
3297 return 0;
3298 }
3299
igb_write_rss_indir_tbl(struct igb_adapter * adapter)3300 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3301 {
3302 struct e1000_hw *hw = &adapter->hw;
3303 u32 reg = E1000_RETA(0);
3304 u32 shift = 0;
3305 int i = 0;
3306
3307 switch (hw->mac.type) {
3308 case e1000_82575:
3309 shift = 6;
3310 break;
3311 case e1000_82576:
3312 /* 82576 supports 2 RSS queues for SR-IOV */
3313 if (adapter->vfs_allocated_count)
3314 shift = 3;
3315 break;
3316 default:
3317 break;
3318 }
3319
3320 while (i < IGB_RETA_SIZE) {
3321 u32 val = 0;
3322 int j;
3323
3324 for (j = 3; j >= 0; j--) {
3325 val <<= 8;
3326 val |= adapter->rss_indir_tbl[i + j];
3327 }
3328
3329 wr32(reg, val << shift);
3330 reg += 4;
3331 i += 4;
3332 }
3333 }
3334
igb_set_rxfh(struct net_device * netdev,const u32 * indir,const u8 * key,const u8 hfunc)3335 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3336 const u8 *key, const u8 hfunc)
3337 {
3338 struct igb_adapter *adapter = netdev_priv(netdev);
3339 struct e1000_hw *hw = &adapter->hw;
3340 int i;
3341 u32 num_queues;
3342
3343 /* We do not allow change in unsupported parameters */
3344 if (key ||
3345 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3346 return -EOPNOTSUPP;
3347 if (!indir)
3348 return 0;
3349
3350 num_queues = adapter->rss_queues;
3351
3352 switch (hw->mac.type) {
3353 case e1000_82576:
3354 /* 82576 supports 2 RSS queues for SR-IOV */
3355 if (adapter->vfs_allocated_count)
3356 num_queues = 2;
3357 break;
3358 default:
3359 break;
3360 }
3361
3362 /* Verify user input. */
3363 for (i = 0; i < IGB_RETA_SIZE; i++)
3364 if (indir[i] >= num_queues)
3365 return -EINVAL;
3366
3367
3368 for (i = 0; i < IGB_RETA_SIZE; i++)
3369 adapter->rss_indir_tbl[i] = indir[i];
3370
3371 igb_write_rss_indir_tbl(adapter);
3372
3373 return 0;
3374 }
3375
igb_max_channels(struct igb_adapter * adapter)3376 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3377 {
3378 return igb_get_max_rss_queues(adapter);
3379 }
3380
igb_get_channels(struct net_device * netdev,struct ethtool_channels * ch)3381 static void igb_get_channels(struct net_device *netdev,
3382 struct ethtool_channels *ch)
3383 {
3384 struct igb_adapter *adapter = netdev_priv(netdev);
3385
3386 /* Report maximum channels */
3387 ch->max_combined = igb_max_channels(adapter);
3388
3389 /* Report info for other vector */
3390 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3391 ch->max_other = NON_Q_VECTORS;
3392 ch->other_count = NON_Q_VECTORS;
3393 }
3394
3395 ch->combined_count = adapter->rss_queues;
3396 }
3397
igb_set_channels(struct net_device * netdev,struct ethtool_channels * ch)3398 static int igb_set_channels(struct net_device *netdev,
3399 struct ethtool_channels *ch)
3400 {
3401 struct igb_adapter *adapter = netdev_priv(netdev);
3402 unsigned int count = ch->combined_count;
3403 unsigned int max_combined = 0;
3404
3405 /* Verify they are not requesting separate vectors */
3406 if (!count || ch->rx_count || ch->tx_count)
3407 return -EINVAL;
3408
3409 /* Verify other_count is valid and has not been changed */
3410 if (ch->other_count != NON_Q_VECTORS)
3411 return -EINVAL;
3412
3413 /* Verify the number of channels doesn't exceed hw limits */
3414 max_combined = igb_max_channels(adapter);
3415 if (count > max_combined)
3416 return -EINVAL;
3417
3418 if (count != adapter->rss_queues) {
3419 adapter->rss_queues = count;
3420 igb_set_flag_queue_pairs(adapter, max_combined);
3421
3422 /* Hardware has to reinitialize queues and interrupts to
3423 * match the new configuration.
3424 */
3425 return igb_reinit_queues(adapter);
3426 }
3427
3428 return 0;
3429 }
3430
igb_get_priv_flags(struct net_device * netdev)3431 static u32 igb_get_priv_flags(struct net_device *netdev)
3432 {
3433 struct igb_adapter *adapter = netdev_priv(netdev);
3434 u32 priv_flags = 0;
3435
3436 if (adapter->flags & IGB_FLAG_RX_LEGACY)
3437 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3438
3439 return priv_flags;
3440 }
3441
igb_set_priv_flags(struct net_device * netdev,u32 priv_flags)3442 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3443 {
3444 struct igb_adapter *adapter = netdev_priv(netdev);
3445 unsigned int flags = adapter->flags;
3446
3447 flags &= ~IGB_FLAG_RX_LEGACY;
3448 if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3449 flags |= IGB_FLAG_RX_LEGACY;
3450
3451 if (flags != adapter->flags) {
3452 adapter->flags = flags;
3453
3454 /* reset interface to repopulate queues */
3455 if (netif_running(netdev))
3456 igb_reinit_locked(adapter);
3457 }
3458
3459 return 0;
3460 }
3461
3462 static const struct ethtool_ops igb_ethtool_ops = {
3463 .supported_coalesce_params = ETHTOOL_COALESCE_USECS,
3464 .get_drvinfo = igb_get_drvinfo,
3465 .get_regs_len = igb_get_regs_len,
3466 .get_regs = igb_get_regs,
3467 .get_wol = igb_get_wol,
3468 .set_wol = igb_set_wol,
3469 .get_msglevel = igb_get_msglevel,
3470 .set_msglevel = igb_set_msglevel,
3471 .nway_reset = igb_nway_reset,
3472 .get_link = igb_get_link,
3473 .get_eeprom_len = igb_get_eeprom_len,
3474 .get_eeprom = igb_get_eeprom,
3475 .set_eeprom = igb_set_eeprom,
3476 .get_ringparam = igb_get_ringparam,
3477 .set_ringparam = igb_set_ringparam,
3478 .get_pauseparam = igb_get_pauseparam,
3479 .set_pauseparam = igb_set_pauseparam,
3480 .self_test = igb_diag_test,
3481 .get_strings = igb_get_strings,
3482 .set_phys_id = igb_set_phys_id,
3483 .get_sset_count = igb_get_sset_count,
3484 .get_ethtool_stats = igb_get_ethtool_stats,
3485 .get_coalesce = igb_get_coalesce,
3486 .set_coalesce = igb_set_coalesce,
3487 .get_ts_info = igb_get_ts_info,
3488 .get_rxnfc = igb_get_rxnfc,
3489 .set_rxnfc = igb_set_rxnfc,
3490 .get_eee = igb_get_eee,
3491 .set_eee = igb_set_eee,
3492 .get_module_info = igb_get_module_info,
3493 .get_module_eeprom = igb_get_module_eeprom,
3494 .get_rxfh_indir_size = igb_get_rxfh_indir_size,
3495 .get_rxfh = igb_get_rxfh,
3496 .set_rxfh = igb_set_rxfh,
3497 .get_channels = igb_get_channels,
3498 .set_channels = igb_set_channels,
3499 .get_priv_flags = igb_get_priv_flags,
3500 .set_priv_flags = igb_set_priv_flags,
3501 .begin = igb_ethtool_begin,
3502 .complete = igb_ethtool_complete,
3503 .get_link_ksettings = igb_get_link_ksettings,
3504 .set_link_ksettings = igb_set_link_ksettings,
3505 };
3506
igb_set_ethtool_ops(struct net_device * netdev)3507 void igb_set_ethtool_ops(struct net_device *netdev)
3508 {
3509 netdev->ethtool_ops = &igb_ethtool_ops;
3510 }
3511