1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40
41 #define MAJ 5
42 #define MIN 4
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46
47 enum queue_mode {
48 QUEUE_MODE_STRICT_PRIORITY,
49 QUEUE_MODE_STREAM_RESERVATION,
50 };
51
52 enum tx_queue_prio {
53 TX_QUEUE_PRIO_HIGH,
54 TX_QUEUE_PRIO_LOW,
55 };
56
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 "Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 "Copyright (c) 2007-2014 Intel Corporation.";
63
64 static const struct e1000_info *igb_info_tbl[] = {
65 [board_82575] = &e1000_82575_info,
66 };
67
68 static const struct pci_device_id igb_pci_tbl[] = {
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 /* required last entry */
105 {0, }
106 };
107
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172 bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196 igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 .notifier_call = igb_notify_dca,
204 .next = NULL,
205 .priority = 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218
219 static const struct pci_error_handlers igb_err_handler = {
220 .error_detected = igb_io_error_detected,
221 .slot_reset = igb_io_slot_reset,
222 .resume = igb_io_resume,
223 };
224
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227 static struct pci_driver igb_driver = {
228 .name = igb_driver_name,
229 .id_table = igb_pci_tbl,
230 .probe = igb_probe,
231 .remove = igb_remove,
232 #ifdef CONFIG_PM
233 .driver.pm = &igb_pm_ops,
234 #endif
235 .shutdown = igb_shutdown,
236 .sriov_configure = igb_pci_sriov_configure,
237 .err_handler = &igb_err_handler
238 };
239
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL");
243 MODULE_VERSION(DRV_VERSION);
244
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 struct igb_reg_info {
251 u32 ofs;
252 char *name;
253 };
254
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256
257 /* General Registers */
258 {E1000_CTRL, "CTRL"},
259 {E1000_STATUS, "STATUS"},
260 {E1000_CTRL_EXT, "CTRL_EXT"},
261
262 /* Interrupt Registers */
263 {E1000_ICR, "ICR"},
264
265 /* RX Registers */
266 {E1000_RCTL, "RCTL"},
267 {E1000_RDLEN(0), "RDLEN"},
268 {E1000_RDH(0), "RDH"},
269 {E1000_RDT(0), "RDT"},
270 {E1000_RXDCTL(0), "RXDCTL"},
271 {E1000_RDBAL(0), "RDBAL"},
272 {E1000_RDBAH(0), "RDBAH"},
273
274 /* TX Registers */
275 {E1000_TCTL, "TCTL"},
276 {E1000_TDBAL(0), "TDBAL"},
277 {E1000_TDBAH(0), "TDBAH"},
278 {E1000_TDLEN(0), "TDLEN"},
279 {E1000_TDH(0), "TDH"},
280 {E1000_TDT(0), "TDT"},
281 {E1000_TXDCTL(0), "TXDCTL"},
282 {E1000_TDFH, "TDFH"},
283 {E1000_TDFT, "TDFT"},
284 {E1000_TDFHS, "TDFHS"},
285 {E1000_TDFPC, "TDFPC"},
286
287 /* List Terminator */
288 {}
289 };
290
291 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294 int n = 0;
295 char rname[16];
296 u32 regs[8];
297
298 switch (reginfo->ofs) {
299 case E1000_RDLEN(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_RDLEN(n));
302 break;
303 case E1000_RDH(0):
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_RDH(n));
306 break;
307 case E1000_RDT(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDT(n));
310 break;
311 case E1000_RXDCTL(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RXDCTL(n));
314 break;
315 case E1000_RDBAL(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RDBAL(n));
318 break;
319 case E1000_RDBAH(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RDBAH(n));
322 break;
323 case E1000_TDBAL(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAL(n));
326 break;
327 case E1000_TDBAH(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_TDBAH(n));
330 break;
331 case E1000_TDLEN(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_TDLEN(n));
334 break;
335 case E1000_TDH(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDH(n));
338 break;
339 case E1000_TDT(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDT(n));
342 break;
343 case E1000_TXDCTL(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TXDCTL(n));
346 break;
347 default:
348 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349 return;
350 }
351
352 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354 regs[2], regs[3]);
355 }
356
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)358 static void igb_dump(struct igb_adapter *adapter)
359 {
360 struct net_device *netdev = adapter->netdev;
361 struct e1000_hw *hw = &adapter->hw;
362 struct igb_reg_info *reginfo;
363 struct igb_ring *tx_ring;
364 union e1000_adv_tx_desc *tx_desc;
365 struct my_u0 { u64 a; u64 b; } *u0;
366 struct igb_ring *rx_ring;
367 union e1000_adv_rx_desc *rx_desc;
368 u32 staterr;
369 u16 i, n;
370
371 if (!netif_msg_hw(adapter))
372 return;
373
374 /* Print netdevice Info */
375 if (netdev) {
376 dev_info(&adapter->pdev->dev, "Net device Info\n");
377 pr_info("Device Name state trans_start\n");
378 pr_info("%-15s %016lX %016lX\n", netdev->name,
379 netdev->state, dev_trans_start(netdev));
380 }
381
382 /* Print Registers */
383 dev_info(&adapter->pdev->dev, "Register Dump\n");
384 pr_info(" Register Name Value\n");
385 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 reginfo->name; reginfo++) {
387 igb_regdump(hw, reginfo);
388 }
389
390 /* Print TX Ring Summary */
391 if (!netdev || !netif_running(netdev))
392 goto exit;
393
394 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
396 for (n = 0; n < adapter->num_tx_queues; n++) {
397 struct igb_tx_buffer *buffer_info;
398 tx_ring = adapter->tx_ring[n];
399 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 (u64)dma_unmap_addr(buffer_info, dma),
403 dma_unmap_len(buffer_info, len),
404 buffer_info->next_to_watch,
405 (u64)buffer_info->time_stamp);
406 }
407
408 /* Print TX Rings */
409 if (!netif_msg_tx_done(adapter))
410 goto rx_ring_summary;
411
412 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413
414 /* Transmit Descriptor Formats
415 *
416 * Advanced Transmit Descriptor
417 * +--------------------------------------------------------------+
418 * 0 | Buffer Address [63:0] |
419 * +--------------------------------------------------------------+
420 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
421 * +--------------------------------------------------------------+
422 * 63 46 45 40 39 38 36 35 32 31 24 15 0
423 */
424
425 for (n = 0; n < adapter->num_tx_queues; n++) {
426 tx_ring = adapter->tx_ring[n];
427 pr_info("------------------------------------\n");
428 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 pr_info("------------------------------------\n");
430 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
431
432 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 const char *next_desc;
434 struct igb_tx_buffer *buffer_info;
435 tx_desc = IGB_TX_DESC(tx_ring, i);
436 buffer_info = &tx_ring->tx_buffer_info[i];
437 u0 = (struct my_u0 *)tx_desc;
438 if (i == tx_ring->next_to_use &&
439 i == tx_ring->next_to_clean)
440 next_desc = " NTC/U";
441 else if (i == tx_ring->next_to_use)
442 next_desc = " NTU";
443 else if (i == tx_ring->next_to_clean)
444 next_desc = " NTC";
445 else
446 next_desc = "";
447
448 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
449 i, le64_to_cpu(u0->a),
450 le64_to_cpu(u0->b),
451 (u64)dma_unmap_addr(buffer_info, dma),
452 dma_unmap_len(buffer_info, len),
453 buffer_info->next_to_watch,
454 (u64)buffer_info->time_stamp,
455 buffer_info->skb, next_desc);
456
457 if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 print_hex_dump(KERN_INFO, "",
459 DUMP_PREFIX_ADDRESS,
460 16, 1, buffer_info->skb->data,
461 dma_unmap_len(buffer_info, len),
462 true);
463 }
464 }
465
466 /* Print RX Rings Summary */
467 rx_ring_summary:
468 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 pr_info("Queue [NTU] [NTC]\n");
470 for (n = 0; n < adapter->num_rx_queues; n++) {
471 rx_ring = adapter->rx_ring[n];
472 pr_info(" %5d %5X %5X\n",
473 n, rx_ring->next_to_use, rx_ring->next_to_clean);
474 }
475
476 /* Print RX Rings */
477 if (!netif_msg_rx_status(adapter))
478 goto exit;
479
480 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481
482 /* Advanced Receive Descriptor (Read) Format
483 * 63 1 0
484 * +-----------------------------------------------------+
485 * 0 | Packet Buffer Address [63:1] |A0/NSE|
486 * +----------------------------------------------+------+
487 * 8 | Header Buffer Address [63:1] | DD |
488 * +-----------------------------------------------------+
489 *
490 *
491 * Advanced Receive Descriptor (Write-Back) Format
492 *
493 * 63 48 47 32 31 30 21 20 17 16 4 3 0
494 * +------------------------------------------------------+
495 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
496 * | Checksum Ident | | | | Type | Type |
497 * +------------------------------------------------------+
498 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 * +------------------------------------------------------+
500 * 63 48 47 32 31 20 19 0
501 */
502
503 for (n = 0; n < adapter->num_rx_queues; n++) {
504 rx_ring = adapter->rx_ring[n];
505 pr_info("------------------------------------\n");
506 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 pr_info("------------------------------------\n");
508 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
509 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510
511 for (i = 0; i < rx_ring->count; i++) {
512 const char *next_desc;
513 struct igb_rx_buffer *buffer_info;
514 buffer_info = &rx_ring->rx_buffer_info[i];
515 rx_desc = IGB_RX_DESC(rx_ring, i);
516 u0 = (struct my_u0 *)rx_desc;
517 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518
519 if (i == rx_ring->next_to_use)
520 next_desc = " NTU";
521 else if (i == rx_ring->next_to_clean)
522 next_desc = " NTC";
523 else
524 next_desc = "";
525
526 if (staterr & E1000_RXD_STAT_DD) {
527 /* Descriptor Done */
528 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
529 "RWB", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 next_desc);
533 } else {
534 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
535 "R ", i,
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 (u64)buffer_info->dma,
539 next_desc);
540
541 if (netif_msg_pktdata(adapter) &&
542 buffer_info->dma && buffer_info->page) {
543 print_hex_dump(KERN_INFO, "",
544 DUMP_PREFIX_ADDRESS,
545 16, 1,
546 page_address(buffer_info->page) +
547 buffer_info->page_offset,
548 igb_rx_bufsz(rx_ring), true);
549 }
550 }
551 }
552 }
553
554 exit:
555 return;
556 }
557
558 /**
559 * igb_get_i2c_data - Reads the I2C SDA data bit
560 * @hw: pointer to hardware structure
561 * @i2cctl: Current value of I2CCTL register
562 *
563 * Returns the I2C data bit value
564 **/
igb_get_i2c_data(void * data)565 static int igb_get_i2c_data(void *data)
566 {
567 struct igb_adapter *adapter = (struct igb_adapter *)data;
568 struct e1000_hw *hw = &adapter->hw;
569 s32 i2cctl = rd32(E1000_I2CPARAMS);
570
571 return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573
574 /**
575 * igb_set_i2c_data - Sets the I2C data bit
576 * @data: pointer to hardware structure
577 * @state: I2C data value (0 or 1) to set
578 *
579 * Sets the I2C data bit
580 **/
igb_set_i2c_data(void * data,int state)581 static void igb_set_i2c_data(void *data, int state)
582 {
583 struct igb_adapter *adapter = (struct igb_adapter *)data;
584 struct e1000_hw *hw = &adapter->hw;
585 s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587 if (state)
588 i2cctl |= E1000_I2C_DATA_OUT;
589 else
590 i2cctl &= ~E1000_I2C_DATA_OUT;
591
592 i2cctl &= ~E1000_I2C_DATA_OE_N;
593 i2cctl |= E1000_I2C_CLK_OE_N;
594 wr32(E1000_I2CPARAMS, i2cctl);
595 wrfl();
596
597 }
598
599 /**
600 * igb_set_i2c_clk - Sets the I2C SCL clock
601 * @data: pointer to hardware structure
602 * @state: state to set clock
603 *
604 * Sets the I2C clock line to state
605 **/
igb_set_i2c_clk(void * data,int state)606 static void igb_set_i2c_clk(void *data, int state)
607 {
608 struct igb_adapter *adapter = (struct igb_adapter *)data;
609 struct e1000_hw *hw = &adapter->hw;
610 s32 i2cctl = rd32(E1000_I2CPARAMS);
611
612 if (state) {
613 i2cctl |= E1000_I2C_CLK_OUT;
614 i2cctl &= ~E1000_I2C_CLK_OE_N;
615 } else {
616 i2cctl &= ~E1000_I2C_CLK_OUT;
617 i2cctl &= ~E1000_I2C_CLK_OE_N;
618 }
619 wr32(E1000_I2CPARAMS, i2cctl);
620 wrfl();
621 }
622
623 /**
624 * igb_get_i2c_clk - Gets the I2C SCL clock state
625 * @data: pointer to hardware structure
626 *
627 * Gets the I2C clock state
628 **/
igb_get_i2c_clk(void * data)629 static int igb_get_i2c_clk(void *data)
630 {
631 struct igb_adapter *adapter = (struct igb_adapter *)data;
632 struct e1000_hw *hw = &adapter->hw;
633 s32 i2cctl = rd32(E1000_I2CPARAMS);
634
635 return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 .setsda = igb_set_i2c_data,
640 .setscl = igb_set_i2c_clk,
641 .getsda = igb_get_i2c_data,
642 .getscl = igb_get_i2c_clk,
643 .udelay = 5,
644 .timeout = 20,
645 };
646
647 /**
648 * igb_get_hw_dev - return device
649 * @hw: pointer to hardware structure
650 *
651 * used by hardware layer to print debugging information
652 **/
igb_get_hw_dev(struct e1000_hw * hw)653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655 struct igb_adapter *adapter = hw->back;
656 return adapter->netdev;
657 }
658
659 /**
660 * igb_init_module - Driver Registration Routine
661 *
662 * igb_init_module is the first routine called when the driver is
663 * loaded. All it does is register with the PCI subsystem.
664 **/
igb_init_module(void)665 static int __init igb_init_module(void)
666 {
667 int ret;
668
669 pr_info("%s - version %s\n",
670 igb_driver_string, igb_driver_version);
671 pr_info("%s\n", igb_copyright);
672
673 #ifdef CONFIG_IGB_DCA
674 dca_register_notify(&dca_notifier);
675 #endif
676 ret = pci_register_driver(&igb_driver);
677 return ret;
678 }
679
680 module_init(igb_init_module);
681
682 /**
683 * igb_exit_module - Driver Exit Cleanup Routine
684 *
685 * igb_exit_module is called just before the driver is removed
686 * from memory.
687 **/
igb_exit_module(void)688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691 dca_unregister_notify(&dca_notifier);
692 #endif
693 pci_unregister_driver(&igb_driver);
694 }
695
696 module_exit(igb_exit_module);
697
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700 * igb_cache_ring_register - Descriptor ring to register mapping
701 * @adapter: board private structure to initialize
702 *
703 * Once we know the feature-set enabled for the device, we'll cache
704 * the register offset the descriptor ring is assigned to.
705 **/
igb_cache_ring_register(struct igb_adapter * adapter)706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708 int i = 0, j = 0;
709 u32 rbase_offset = adapter->vfs_allocated_count;
710
711 switch (adapter->hw.mac.type) {
712 case e1000_82576:
713 /* The queues are allocated for virtualization such that VF 0
714 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 * In order to avoid collision we start at the first free queue
716 * and continue consuming queues in the same sequence
717 */
718 if (adapter->vfs_allocated_count) {
719 for (; i < adapter->rss_queues; i++)
720 adapter->rx_ring[i]->reg_idx = rbase_offset +
721 Q_IDX_82576(i);
722 }
723 /* Fall through */
724 case e1000_82575:
725 case e1000_82580:
726 case e1000_i350:
727 case e1000_i354:
728 case e1000_i210:
729 case e1000_i211:
730 /* Fall through */
731 default:
732 for (; i < adapter->num_rx_queues; i++)
733 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 for (; j < adapter->num_tx_queues; j++)
735 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736 break;
737 }
738 }
739
igb_rd32(struct e1000_hw * hw,u32 reg)740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744 u32 value = 0;
745
746 if (E1000_REMOVED(hw_addr))
747 return ~value;
748
749 value = readl(&hw_addr[reg]);
750
751 /* reads should not return all F's */
752 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 struct net_device *netdev = igb->netdev;
754 hw->hw_addr = NULL;
755 netdev_err(netdev, "PCIe link lost\n");
756 }
757
758 return value;
759 }
760
761 /**
762 * igb_write_ivar - configure ivar for given MSI-X vector
763 * @hw: pointer to the HW structure
764 * @msix_vector: vector number we are allocating to a given ring
765 * @index: row index of IVAR register to write within IVAR table
766 * @offset: column offset of in IVAR, should be multiple of 8
767 *
768 * This function is intended to handle the writing of the IVAR register
769 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
770 * each containing an cause allocation for an Rx and Tx ring, and a
771 * variable number of rows depending on the number of queues supported.
772 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)773 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
774 int index, int offset)
775 {
776 u32 ivar = array_rd32(E1000_IVAR0, index);
777
778 /* clear any bits that are currently set */
779 ivar &= ~((u32)0xFF << offset);
780
781 /* write vector and valid bit */
782 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
783
784 array_wr32(E1000_IVAR0, index, ivar);
785 }
786
787 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)788 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
789 {
790 struct igb_adapter *adapter = q_vector->adapter;
791 struct e1000_hw *hw = &adapter->hw;
792 int rx_queue = IGB_N0_QUEUE;
793 int tx_queue = IGB_N0_QUEUE;
794 u32 msixbm = 0;
795
796 if (q_vector->rx.ring)
797 rx_queue = q_vector->rx.ring->reg_idx;
798 if (q_vector->tx.ring)
799 tx_queue = q_vector->tx.ring->reg_idx;
800
801 switch (hw->mac.type) {
802 case e1000_82575:
803 /* The 82575 assigns vectors using a bitmask, which matches the
804 * bitmask for the EICR/EIMS/EIMC registers. To assign one
805 * or more queues to a vector, we write the appropriate bits
806 * into the MSIXBM register for that vector.
807 */
808 if (rx_queue > IGB_N0_QUEUE)
809 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
810 if (tx_queue > IGB_N0_QUEUE)
811 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
812 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
813 msixbm |= E1000_EIMS_OTHER;
814 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
815 q_vector->eims_value = msixbm;
816 break;
817 case e1000_82576:
818 /* 82576 uses a table that essentially consists of 2 columns
819 * with 8 rows. The ordering is column-major so we use the
820 * lower 3 bits as the row index, and the 4th bit as the
821 * column offset.
822 */
823 if (rx_queue > IGB_N0_QUEUE)
824 igb_write_ivar(hw, msix_vector,
825 rx_queue & 0x7,
826 (rx_queue & 0x8) << 1);
827 if (tx_queue > IGB_N0_QUEUE)
828 igb_write_ivar(hw, msix_vector,
829 tx_queue & 0x7,
830 ((tx_queue & 0x8) << 1) + 8);
831 q_vector->eims_value = BIT(msix_vector);
832 break;
833 case e1000_82580:
834 case e1000_i350:
835 case e1000_i354:
836 case e1000_i210:
837 case e1000_i211:
838 /* On 82580 and newer adapters the scheme is similar to 82576
839 * however instead of ordering column-major we have things
840 * ordered row-major. So we traverse the table by using
841 * bit 0 as the column offset, and the remaining bits as the
842 * row index.
843 */
844 if (rx_queue > IGB_N0_QUEUE)
845 igb_write_ivar(hw, msix_vector,
846 rx_queue >> 1,
847 (rx_queue & 0x1) << 4);
848 if (tx_queue > IGB_N0_QUEUE)
849 igb_write_ivar(hw, msix_vector,
850 tx_queue >> 1,
851 ((tx_queue & 0x1) << 4) + 8);
852 q_vector->eims_value = BIT(msix_vector);
853 break;
854 default:
855 BUG();
856 break;
857 }
858
859 /* add q_vector eims value to global eims_enable_mask */
860 adapter->eims_enable_mask |= q_vector->eims_value;
861
862 /* configure q_vector to set itr on first interrupt */
863 q_vector->set_itr = 1;
864 }
865
866 /**
867 * igb_configure_msix - Configure MSI-X hardware
868 * @adapter: board private structure to initialize
869 *
870 * igb_configure_msix sets up the hardware to properly
871 * generate MSI-X interrupts.
872 **/
igb_configure_msix(struct igb_adapter * adapter)873 static void igb_configure_msix(struct igb_adapter *adapter)
874 {
875 u32 tmp;
876 int i, vector = 0;
877 struct e1000_hw *hw = &adapter->hw;
878
879 adapter->eims_enable_mask = 0;
880
881 /* set vector for other causes, i.e. link changes */
882 switch (hw->mac.type) {
883 case e1000_82575:
884 tmp = rd32(E1000_CTRL_EXT);
885 /* enable MSI-X PBA support*/
886 tmp |= E1000_CTRL_EXT_PBA_CLR;
887
888 /* Auto-Mask interrupts upon ICR read. */
889 tmp |= E1000_CTRL_EXT_EIAME;
890 tmp |= E1000_CTRL_EXT_IRCA;
891
892 wr32(E1000_CTRL_EXT, tmp);
893
894 /* enable msix_other interrupt */
895 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
896 adapter->eims_other = E1000_EIMS_OTHER;
897
898 break;
899
900 case e1000_82576:
901 case e1000_82580:
902 case e1000_i350:
903 case e1000_i354:
904 case e1000_i210:
905 case e1000_i211:
906 /* Turn on MSI-X capability first, or our settings
907 * won't stick. And it will take days to debug.
908 */
909 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
910 E1000_GPIE_PBA | E1000_GPIE_EIAME |
911 E1000_GPIE_NSICR);
912
913 /* enable msix_other interrupt */
914 adapter->eims_other = BIT(vector);
915 tmp = (vector++ | E1000_IVAR_VALID) << 8;
916
917 wr32(E1000_IVAR_MISC, tmp);
918 break;
919 default:
920 /* do nothing, since nothing else supports MSI-X */
921 break;
922 } /* switch (hw->mac.type) */
923
924 adapter->eims_enable_mask |= adapter->eims_other;
925
926 for (i = 0; i < adapter->num_q_vectors; i++)
927 igb_assign_vector(adapter->q_vector[i], vector++);
928
929 wrfl();
930 }
931
932 /**
933 * igb_request_msix - Initialize MSI-X interrupts
934 * @adapter: board private structure to initialize
935 *
936 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
937 * kernel.
938 **/
igb_request_msix(struct igb_adapter * adapter)939 static int igb_request_msix(struct igb_adapter *adapter)
940 {
941 struct net_device *netdev = adapter->netdev;
942 int i, err = 0, vector = 0, free_vector = 0;
943
944 err = request_irq(adapter->msix_entries[vector].vector,
945 igb_msix_other, 0, netdev->name, adapter);
946 if (err)
947 goto err_out;
948
949 for (i = 0; i < adapter->num_q_vectors; i++) {
950 struct igb_q_vector *q_vector = adapter->q_vector[i];
951
952 vector++;
953
954 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955
956 if (q_vector->rx.ring && q_vector->tx.ring)
957 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 q_vector->rx.ring->queue_index);
959 else if (q_vector->tx.ring)
960 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 q_vector->tx.ring->queue_index);
962 else if (q_vector->rx.ring)
963 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 q_vector->rx.ring->queue_index);
965 else
966 sprintf(q_vector->name, "%s-unused", netdev->name);
967
968 err = request_irq(adapter->msix_entries[vector].vector,
969 igb_msix_ring, 0, q_vector->name,
970 q_vector);
971 if (err)
972 goto err_free;
973 }
974
975 igb_configure_msix(adapter);
976 return 0;
977
978 err_free:
979 /* free already assigned IRQs */
980 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981
982 vector--;
983 for (i = 0; i < vector; i++) {
984 free_irq(adapter->msix_entries[free_vector++].vector,
985 adapter->q_vector[i]);
986 }
987 err_out:
988 return err;
989 }
990
991 /**
992 * igb_free_q_vector - Free memory allocated for specific interrupt vector
993 * @adapter: board private structure to initialize
994 * @v_idx: Index of vector to be freed
995 *
996 * This function frees the memory allocated to the q_vector.
997 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001
1002 adapter->q_vector[v_idx] = NULL;
1003
1004 /* igb_get_stats64() might access the rings on this vector,
1005 * we must wait a grace period before freeing it.
1006 */
1007 if (q_vector)
1008 kfree_rcu(q_vector, rcu);
1009 }
1010
1011 /**
1012 * igb_reset_q_vector - Reset config for interrupt vector
1013 * @adapter: board private structure to initialize
1014 * @v_idx: Index of vector to be reset
1015 *
1016 * If NAPI is enabled it will delete any references to the
1017 * NAPI struct. This is preparation for igb_free_q_vector.
1018 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022
1023 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 * allocated. So, q_vector is NULL so we should stop here.
1025 */
1026 if (!q_vector)
1027 return;
1028
1029 if (q_vector->tx.ring)
1030 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031
1032 if (q_vector->rx.ring)
1033 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034
1035 netif_napi_del(&q_vector->napi);
1036
1037 }
1038
igb_reset_interrupt_capability(struct igb_adapter * adapter)1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 int v_idx = adapter->num_q_vectors;
1042
1043 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 pci_disable_msix(adapter->pdev);
1045 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 pci_disable_msi(adapter->pdev);
1047
1048 while (v_idx--)
1049 igb_reset_q_vector(adapter, v_idx);
1050 }
1051
1052 /**
1053 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1054 * @adapter: board private structure to initialize
1055 *
1056 * This function frees the memory allocated to the q_vectors. In addition if
1057 * NAPI is enabled it will delete any references to the NAPI struct prior
1058 * to freeing the q_vector.
1059 **/
igb_free_q_vectors(struct igb_adapter * adapter)1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 int v_idx = adapter->num_q_vectors;
1063
1064 adapter->num_tx_queues = 0;
1065 adapter->num_rx_queues = 0;
1066 adapter->num_q_vectors = 0;
1067
1068 while (v_idx--) {
1069 igb_reset_q_vector(adapter, v_idx);
1070 igb_free_q_vector(adapter, v_idx);
1071 }
1072 }
1073
1074 /**
1075 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076 * @adapter: board private structure to initialize
1077 *
1078 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1079 * MSI-X interrupts allocated.
1080 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 igb_free_q_vectors(adapter);
1084 igb_reset_interrupt_capability(adapter);
1085 }
1086
1087 /**
1088 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1089 * @adapter: board private structure to initialize
1090 * @msix: boolean value of MSIX capability
1091 *
1092 * Attempt to configure interrupts using the best available
1093 * capabilities of the hardware and kernel.
1094 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 int err;
1098 int numvecs, i;
1099
1100 if (!msix)
1101 goto msi_only;
1102 adapter->flags |= IGB_FLAG_HAS_MSIX;
1103
1104 /* Number of supported queues. */
1105 adapter->num_rx_queues = adapter->rss_queues;
1106 if (adapter->vfs_allocated_count)
1107 adapter->num_tx_queues = 1;
1108 else
1109 adapter->num_tx_queues = adapter->rss_queues;
1110
1111 /* start with one vector for every Rx queue */
1112 numvecs = adapter->num_rx_queues;
1113
1114 /* if Tx handler is separate add 1 for every Tx queue */
1115 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 numvecs += adapter->num_tx_queues;
1117
1118 /* store the number of vectors reserved for queues */
1119 adapter->num_q_vectors = numvecs;
1120
1121 /* add 1 vector for link status interrupts */
1122 numvecs++;
1123 for (i = 0; i < numvecs; i++)
1124 adapter->msix_entries[i].entry = i;
1125
1126 err = pci_enable_msix_range(adapter->pdev,
1127 adapter->msix_entries,
1128 numvecs,
1129 numvecs);
1130 if (err > 0)
1131 return;
1132
1133 igb_reset_interrupt_capability(adapter);
1134
1135 /* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 /* disable SR-IOV for non MSI-X configurations */
1140 if (adapter->vf_data) {
1141 struct e1000_hw *hw = &adapter->hw;
1142 /* disable iov and allow time for transactions to clear */
1143 pci_disable_sriov(adapter->pdev);
1144 msleep(500);
1145
1146 kfree(adapter->vf_mac_list);
1147 adapter->vf_mac_list = NULL;
1148 kfree(adapter->vf_data);
1149 adapter->vf_data = NULL;
1150 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 wrfl();
1152 msleep(100);
1153 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 }
1155 #endif
1156 adapter->vfs_allocated_count = 0;
1157 adapter->rss_queues = 1;
1158 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 adapter->num_rx_queues = 1;
1160 adapter->num_tx_queues = 1;
1161 adapter->num_q_vectors = 1;
1162 if (!pci_enable_msi(adapter->pdev))
1163 adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1166 static void igb_add_ring(struct igb_ring *ring,
1167 struct igb_ring_container *head)
1168 {
1169 head->ring = ring;
1170 head->count++;
1171 }
1172
1173 /**
1174 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175 * @adapter: board private structure to initialize
1176 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1177 * @v_idx: index of vector in adapter struct
1178 * @txr_count: total number of Tx rings to allocate
1179 * @txr_idx: index of first Tx ring to allocate
1180 * @rxr_count: total number of Rx rings to allocate
1181 * @rxr_idx: index of first Rx ring to allocate
1182 *
1183 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1184 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 int v_count, int v_idx,
1187 int txr_count, int txr_idx,
1188 int rxr_count, int rxr_idx)
1189 {
1190 struct igb_q_vector *q_vector;
1191 struct igb_ring *ring;
1192 int ring_count, size;
1193
1194 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1195 if (txr_count > 1 || rxr_count > 1)
1196 return -ENOMEM;
1197
1198 ring_count = txr_count + rxr_count;
1199 size = sizeof(struct igb_q_vector) +
1200 (sizeof(struct igb_ring) * ring_count);
1201
1202 /* allocate q_vector and rings */
1203 q_vector = adapter->q_vector[v_idx];
1204 if (!q_vector) {
1205 q_vector = kzalloc(size, GFP_KERNEL);
1206 } else if (size > ksize(q_vector)) {
1207 kfree_rcu(q_vector, rcu);
1208 q_vector = kzalloc(size, GFP_KERNEL);
1209 } else {
1210 memset(q_vector, 0, size);
1211 }
1212 if (!q_vector)
1213 return -ENOMEM;
1214
1215 /* initialize NAPI */
1216 netif_napi_add(adapter->netdev, &q_vector->napi,
1217 igb_poll, 64);
1218
1219 /* tie q_vector and adapter together */
1220 adapter->q_vector[v_idx] = q_vector;
1221 q_vector->adapter = adapter;
1222
1223 /* initialize work limits */
1224 q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226 /* initialize ITR configuration */
1227 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228 q_vector->itr_val = IGB_START_ITR;
1229
1230 /* initialize pointer to rings */
1231 ring = q_vector->ring;
1232
1233 /* intialize ITR */
1234 if (rxr_count) {
1235 /* rx or rx/tx vector */
1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 q_vector->itr_val = adapter->rx_itr_setting;
1238 } else {
1239 /* tx only vector */
1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 q_vector->itr_val = adapter->tx_itr_setting;
1242 }
1243
1244 if (txr_count) {
1245 /* assign generic ring traits */
1246 ring->dev = &adapter->pdev->dev;
1247 ring->netdev = adapter->netdev;
1248
1249 /* configure backlink on ring */
1250 ring->q_vector = q_vector;
1251
1252 /* update q_vector Tx values */
1253 igb_add_ring(ring, &q_vector->tx);
1254
1255 /* For 82575, context index must be unique per ring. */
1256 if (adapter->hw.mac.type == e1000_82575)
1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259 /* apply Tx specific ring traits */
1260 ring->count = adapter->tx_ring_count;
1261 ring->queue_index = txr_idx;
1262
1263 ring->cbs_enable = false;
1264 ring->idleslope = 0;
1265 ring->sendslope = 0;
1266 ring->hicredit = 0;
1267 ring->locredit = 0;
1268
1269 u64_stats_init(&ring->tx_syncp);
1270 u64_stats_init(&ring->tx_syncp2);
1271
1272 /* assign ring to adapter */
1273 adapter->tx_ring[txr_idx] = ring;
1274
1275 /* push pointer to next ring */
1276 ring++;
1277 }
1278
1279 if (rxr_count) {
1280 /* assign generic ring traits */
1281 ring->dev = &adapter->pdev->dev;
1282 ring->netdev = adapter->netdev;
1283
1284 /* configure backlink on ring */
1285 ring->q_vector = q_vector;
1286
1287 /* update q_vector Rx values */
1288 igb_add_ring(ring, &q_vector->rx);
1289
1290 /* set flag indicating ring supports SCTP checksum offload */
1291 if (adapter->hw.mac.type >= e1000_82576)
1292 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294 /* On i350, i354, i210, and i211, loopback VLAN packets
1295 * have the tag byte-swapped.
1296 */
1297 if (adapter->hw.mac.type >= e1000_i350)
1298 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300 /* apply Rx specific ring traits */
1301 ring->count = adapter->rx_ring_count;
1302 ring->queue_index = rxr_idx;
1303
1304 u64_stats_init(&ring->rx_syncp);
1305
1306 /* assign ring to adapter */
1307 adapter->rx_ring[rxr_idx] = ring;
1308 }
1309
1310 return 0;
1311 }
1312
1313
1314 /**
1315 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 * @adapter: board private structure to initialize
1317 *
1318 * We allocate one q_vector per queue interrupt. If allocation fails we
1319 * return -ENOMEM.
1320 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 int q_vectors = adapter->num_q_vectors;
1324 int rxr_remaining = adapter->num_rx_queues;
1325 int txr_remaining = adapter->num_tx_queues;
1326 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 int err;
1328
1329 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 for (; rxr_remaining; v_idx++) {
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 0, 0, 1, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining--;
1339 rxr_idx++;
1340 }
1341 }
1342
1343 for (; v_idx < q_vectors; v_idx++) {
1344 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 tqpv, txr_idx, rqpv, rxr_idx);
1349
1350 if (err)
1351 goto err_out;
1352
1353 /* update counts and index */
1354 rxr_remaining -= rqpv;
1355 txr_remaining -= tqpv;
1356 rxr_idx++;
1357 txr_idx++;
1358 }
1359
1360 return 0;
1361
1362 err_out:
1363 adapter->num_tx_queues = 0;
1364 adapter->num_rx_queues = 0;
1365 adapter->num_q_vectors = 0;
1366
1367 while (v_idx--)
1368 igb_free_q_vector(adapter, v_idx);
1369
1370 return -ENOMEM;
1371 }
1372
1373 /**
1374 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 * @adapter: board private structure to initialize
1376 * @msix: boolean value of MSIX capability
1377 *
1378 * This function initializes the interrupts and allocates all of the queues.
1379 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 struct pci_dev *pdev = adapter->pdev;
1383 int err;
1384
1385 igb_set_interrupt_capability(adapter, msix);
1386
1387 err = igb_alloc_q_vectors(adapter);
1388 if (err) {
1389 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 goto err_alloc_q_vectors;
1391 }
1392
1393 igb_cache_ring_register(adapter);
1394
1395 return 0;
1396
1397 err_alloc_q_vectors:
1398 igb_reset_interrupt_capability(adapter);
1399 return err;
1400 }
1401
1402 /**
1403 * igb_request_irq - initialize interrupts
1404 * @adapter: board private structure to initialize
1405 *
1406 * Attempts to configure interrupts using the best available
1407 * capabilities of the hardware and kernel.
1408 **/
igb_request_irq(struct igb_adapter * adapter)1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 struct net_device *netdev = adapter->netdev;
1412 struct pci_dev *pdev = adapter->pdev;
1413 int err = 0;
1414
1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 err = igb_request_msix(adapter);
1417 if (!err)
1418 goto request_done;
1419 /* fall back to MSI */
1420 igb_free_all_tx_resources(adapter);
1421 igb_free_all_rx_resources(adapter);
1422
1423 igb_clear_interrupt_scheme(adapter);
1424 err = igb_init_interrupt_scheme(adapter, false);
1425 if (err)
1426 goto request_done;
1427
1428 igb_setup_all_tx_resources(adapter);
1429 igb_setup_all_rx_resources(adapter);
1430 igb_configure(adapter);
1431 }
1432
1433 igb_assign_vector(adapter->q_vector[0], 0);
1434
1435 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 netdev->name, adapter);
1438 if (!err)
1439 goto request_done;
1440
1441 /* fall back to legacy interrupts */
1442 igb_reset_interrupt_capability(adapter);
1443 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 }
1445
1446 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 netdev->name, adapter);
1448
1449 if (err)
1450 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 err);
1452
1453 request_done:
1454 return err;
1455 }
1456
igb_free_irq(struct igb_adapter * adapter)1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 int vector = 0, i;
1461
1462 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464 for (i = 0; i < adapter->num_q_vectors; i++)
1465 free_irq(adapter->msix_entries[vector++].vector,
1466 adapter->q_vector[i]);
1467 } else {
1468 free_irq(adapter->pdev->irq, adapter);
1469 }
1470 }
1471
1472 /**
1473 * igb_irq_disable - Mask off interrupt generation on the NIC
1474 * @adapter: board private structure
1475 **/
igb_irq_disable(struct igb_adapter * adapter)1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* we need to be careful when disabling interrupts. The VFs are also
1481 * mapped into these registers and so clearing the bits can cause
1482 * issues on the VF drivers so we only need to clear what we set
1483 */
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 u32 regval = rd32(E1000_EIAM);
1486
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 }
1492
1493 wr32(E1000_IAM, 0);
1494 wr32(E1000_IMC, ~0);
1495 wrfl();
1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 int i;
1498
1499 for (i = 0; i < adapter->num_q_vectors; i++)
1500 synchronize_irq(adapter->msix_entries[i].vector);
1501 } else {
1502 synchronize_irq(adapter->pdev->irq);
1503 }
1504 }
1505
1506 /**
1507 * igb_irq_enable - Enable default interrupt generation settings
1508 * @adapter: board private structure
1509 **/
igb_irq_enable(struct igb_adapter * adapter)1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 struct e1000_hw *hw = &adapter->hw;
1513
1514 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 u32 regval = rd32(E1000_EIAC);
1517
1518 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 regval = rd32(E1000_EIAM);
1520 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 if (adapter->vfs_allocated_count) {
1523 wr32(E1000_MBVFIMR, 0xFF);
1524 ims |= E1000_IMS_VMMB;
1525 }
1526 wr32(E1000_IMS, ims);
1527 } else {
1528 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 }
1533 }
1534
igb_update_mng_vlan(struct igb_adapter * adapter)1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 struct e1000_hw *hw = &adapter->hw;
1538 u16 pf_id = adapter->vfs_allocated_count;
1539 u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 u16 old_vid = adapter->mng_vlan_id;
1541
1542 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 /* add VID to filter table */
1544 igb_vfta_set(hw, vid, pf_id, true, true);
1545 adapter->mng_vlan_id = vid;
1546 } else {
1547 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 }
1549
1550 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 (vid != old_vid) &&
1552 !test_bit(old_vid, adapter->active_vlans)) {
1553 /* remove VID from filter table */
1554 igb_vfta_set(hw, vid, pf_id, false, true);
1555 }
1556 }
1557
1558 /**
1559 * igb_release_hw_control - release control of the h/w to f/w
1560 * @adapter: address of board private structure
1561 *
1562 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 * For ASF and Pass Through versions of f/w this means that the
1564 * driver is no longer loaded.
1565 **/
igb_release_hw_control(struct igb_adapter * adapter)1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 ctrl_ext;
1570
1571 /* Let firmware take over control of h/w */
1572 ctrl_ext = rd32(E1000_CTRL_EXT);
1573 wr32(E1000_CTRL_EXT,
1574 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578 * igb_get_hw_control - get control of the h/w from f/w
1579 * @adapter: address of board private structure
1580 *
1581 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 * For ASF and Pass Through versions of f/w this means that
1583 * the driver is loaded.
1584 **/
igb_get_hw_control(struct igb_adapter * adapter)1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 struct e1000_hw *hw = &adapter->hw;
1588 u32 ctrl_ext;
1589
1590 /* Let firmware know the driver has taken over */
1591 ctrl_ext = rd32(E1000_CTRL_EXT);
1592 wr32(E1000_CTRL_EXT,
1593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
enable_fqtss(struct igb_adapter * adapter,bool enable)1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597 {
1598 struct net_device *netdev = adapter->netdev;
1599 struct e1000_hw *hw = &adapter->hw;
1600
1601 WARN_ON(hw->mac.type != e1000_i210);
1602
1603 if (enable)
1604 adapter->flags |= IGB_FLAG_FQTSS;
1605 else
1606 adapter->flags &= ~IGB_FLAG_FQTSS;
1607
1608 if (netif_running(netdev))
1609 schedule_work(&adapter->reset_task);
1610 }
1611
is_fqtss_enabled(struct igb_adapter * adapter)1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613 {
1614 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615 }
1616
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618 enum tx_queue_prio prio)
1619 {
1620 u32 val;
1621
1622 WARN_ON(hw->mac.type != e1000_i210);
1623 WARN_ON(queue < 0 || queue > 4);
1624
1625 val = rd32(E1000_I210_TXDCTL(queue));
1626
1627 if (prio == TX_QUEUE_PRIO_HIGH)
1628 val |= E1000_TXDCTL_PRIORITY;
1629 else
1630 val &= ~E1000_TXDCTL_PRIORITY;
1631
1632 wr32(E1000_I210_TXDCTL(queue), val);
1633 }
1634
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636 {
1637 u32 val;
1638
1639 WARN_ON(hw->mac.type != e1000_i210);
1640 WARN_ON(queue < 0 || queue > 1);
1641
1642 val = rd32(E1000_I210_TQAVCC(queue));
1643
1644 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645 val |= E1000_TQAVCC_QUEUEMODE;
1646 else
1647 val &= ~E1000_TQAVCC_QUEUEMODE;
1648
1649 wr32(E1000_I210_TQAVCC(queue), val);
1650 }
1651
is_any_cbs_enabled(struct igb_adapter * adapter)1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653 {
1654 int i;
1655
1656 for (i = 0; i < adapter->num_tx_queues; i++) {
1657 if (adapter->tx_ring[i]->cbs_enable)
1658 return true;
1659 }
1660
1661 return false;
1662 }
1663
is_any_txtime_enabled(struct igb_adapter * adapter)1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665 {
1666 int i;
1667
1668 for (i = 0; i < adapter->num_tx_queues; i++) {
1669 if (adapter->tx_ring[i]->launchtime_enable)
1670 return true;
1671 }
1672
1673 return false;
1674 }
1675
1676 /**
1677 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678 * @adapter: pointer to adapter struct
1679 * @queue: queue number
1680 *
1681 * Configure CBS and Launchtime for a given hardware queue.
1682 * Parameters are retrieved from the correct Tx ring, so
1683 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1684 * for setting those correctly prior to this function being called.
1685 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687 {
1688 struct igb_ring *ring = adapter->tx_ring[queue];
1689 struct net_device *netdev = adapter->netdev;
1690 struct e1000_hw *hw = &adapter->hw;
1691 u32 tqavcc, tqavctrl;
1692 u16 value;
1693
1694 WARN_ON(hw->mac.type != e1000_i210);
1695 WARN_ON(queue < 0 || queue > 1);
1696
1697 /* If any of the Qav features is enabled, configure queues as SR and
1698 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1699 * as SP.
1700 */
1701 if (ring->cbs_enable || ring->launchtime_enable) {
1702 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704 } else {
1705 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1707 }
1708
1709 /* If CBS is enabled, set DataTranARB and config its parameters. */
1710 if (ring->cbs_enable || queue == 0) {
1711 /* i210 does not allow the queue 0 to be in the Strict
1712 * Priority mode while the Qav mode is enabled, so,
1713 * instead of disabling strict priority mode, we give
1714 * queue 0 the maximum of credits possible.
1715 *
1716 * See section 8.12.19 of the i210 datasheet, "Note:
1717 * Queue0 QueueMode must be set to 1b when
1718 * TransmitMode is set to Qav."
1719 */
1720 if (queue == 0 && !ring->cbs_enable) {
1721 /* max "linkspeed" idleslope in kbps */
1722 ring->idleslope = 1000000;
1723 ring->hicredit = ETH_FRAME_LEN;
1724 }
1725
1726 /* Always set data transfer arbitration to credit-based
1727 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1728 * the queues.
1729 */
1730 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1733
1734 /* According to i210 datasheet section 7.2.7.7, we should set
1735 * the 'idleSlope' field from TQAVCC register following the
1736 * equation:
1737 *
1738 * For 100 Mbps link speed:
1739 *
1740 * value = BW * 0x7735 * 0.2 (E1)
1741 *
1742 * For 1000Mbps link speed:
1743 *
1744 * value = BW * 0x7735 * 2 (E2)
1745 *
1746 * E1 and E2 can be merged into one equation as shown below.
1747 * Note that 'link-speed' is in Mbps.
1748 *
1749 * value = BW * 0x7735 * 2 * link-speed
1750 * -------------- (E3)
1751 * 1000
1752 *
1753 * 'BW' is the percentage bandwidth out of full link speed
1754 * which can be found with the following equation. Note that
1755 * idleSlope here is the parameter from this function which
1756 * is in kbps.
1757 *
1758 * BW = idleSlope
1759 * ----------------- (E4)
1760 * link-speed * 1000
1761 *
1762 * That said, we can come up with a generic equation to
1763 * calculate the value we should set it TQAVCC register by
1764 * replacing 'BW' in E3 by E4. The resulting equation is:
1765 *
1766 * value = idleSlope * 0x7735 * 2 * link-speed
1767 * ----------------- -------------- (E5)
1768 * link-speed * 1000 1000
1769 *
1770 * 'link-speed' is present in both sides of the fraction so
1771 * it is canceled out. The final equation is the following:
1772 *
1773 * value = idleSlope * 61034
1774 * ----------------- (E6)
1775 * 1000000
1776 *
1777 * NOTE: For i210, given the above, we can see that idleslope
1778 * is represented in 16.38431 kbps units by the value at
1779 * the TQAVCC register (1Gbps / 61034), which reduces
1780 * the granularity for idleslope increments.
1781 * For instance, if you want to configure a 2576kbps
1782 * idleslope, the value to be written on the register
1783 * would have to be 157.23. If rounded down, you end
1784 * up with less bandwidth available than originally
1785 * required (~2572 kbps). If rounded up, you end up
1786 * with a higher bandwidth (~2589 kbps). Below the
1787 * approach we take is to always round up the
1788 * calculated value, so the resulting bandwidth might
1789 * be slightly higher for some configurations.
1790 */
1791 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1792
1793 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1795 tqavcc |= value;
1796 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1797
1798 wr32(E1000_I210_TQAVHC(queue),
1799 0x80000000 + ring->hicredit * 0x7735);
1800 } else {
1801
1802 /* Set idleSlope to zero. */
1803 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1806
1807 /* Set hiCredit to zero. */
1808 wr32(E1000_I210_TQAVHC(queue), 0);
1809
1810 /* If CBS is not enabled for any queues anymore, then return to
1811 * the default state of Data Transmission Arbitration on
1812 * TQAVCTRL.
1813 */
1814 if (!is_any_cbs_enabled(adapter)) {
1815 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1818 }
1819 }
1820
1821 /* If LaunchTime is enabled, set DataTranTIM. */
1822 if (ring->launchtime_enable) {
1823 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824 * for any of the SR queues, and configure fetchtime delta.
1825 * XXX NOTE:
1826 * - LaunchTime will be enabled for all SR queues.
1827 * - A fixed offset can be added relative to the launch
1828 * time of all packets if configured at reg LAUNCH_OS0.
1829 * We are keeping it as 0 for now (default value).
1830 */
1831 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833 E1000_TQAVCTRL_FETCHTIME_DELTA;
1834 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1835 } else {
1836 /* If Launchtime is not enabled for any SR queues anymore,
1837 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838 * effectively disabling Launchtime.
1839 */
1840 if (!is_any_txtime_enabled(adapter)) {
1841 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1845 }
1846 }
1847
1848 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1849 * CBS are not configurable by software so we don't do any 'controller
1850 * configuration' in respect to these parameters.
1851 */
1852
1853 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d \
1854 idleslope %d sendslope %d hiCredit %d \
1855 locredit %d\n",
1856 (ring->cbs_enable) ? "enabled" : "disabled",
1857 (ring->launchtime_enable) ? "enabled" : "disabled", queue,
1858 ring->idleslope, ring->sendslope, ring->hicredit,
1859 ring->locredit);
1860 }
1861
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1862 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1863 bool enable)
1864 {
1865 struct igb_ring *ring;
1866
1867 if (queue < 0 || queue > adapter->num_tx_queues)
1868 return -EINVAL;
1869
1870 ring = adapter->tx_ring[queue];
1871 ring->launchtime_enable = enable;
1872
1873 return 0;
1874 }
1875
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1876 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1877 bool enable, int idleslope, int sendslope,
1878 int hicredit, int locredit)
1879 {
1880 struct igb_ring *ring;
1881
1882 if (queue < 0 || queue > adapter->num_tx_queues)
1883 return -EINVAL;
1884
1885 ring = adapter->tx_ring[queue];
1886
1887 ring->cbs_enable = enable;
1888 ring->idleslope = idleslope;
1889 ring->sendslope = sendslope;
1890 ring->hicredit = hicredit;
1891 ring->locredit = locredit;
1892
1893 return 0;
1894 }
1895
1896 /**
1897 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1898 * @adapter: pointer to adapter struct
1899 *
1900 * Configure TQAVCTRL register switching the controller's Tx mode
1901 * if FQTSS mode is enabled or disabled. Additionally, will issue
1902 * a call to igb_config_tx_modes() per queue so any previously saved
1903 * Tx parameters are applied.
1904 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1905 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1906 {
1907 struct net_device *netdev = adapter->netdev;
1908 struct e1000_hw *hw = &adapter->hw;
1909 u32 val;
1910
1911 /* Only i210 controller supports changing the transmission mode. */
1912 if (hw->mac.type != e1000_i210)
1913 return;
1914
1915 if (is_fqtss_enabled(adapter)) {
1916 int i, max_queue;
1917
1918 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1919 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1920 * so SP queues wait for SR ones.
1921 */
1922 val = rd32(E1000_I210_TQAVCTRL);
1923 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1924 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1925 wr32(E1000_I210_TQAVCTRL, val);
1926
1927 /* Configure Tx and Rx packet buffers sizes as described in
1928 * i210 datasheet section 7.2.7.7.
1929 */
1930 val = rd32(E1000_TXPBS);
1931 val &= ~I210_TXPBSIZE_MASK;
1932 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1933 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1934 wr32(E1000_TXPBS, val);
1935
1936 val = rd32(E1000_RXPBS);
1937 val &= ~I210_RXPBSIZE_MASK;
1938 val |= I210_RXPBSIZE_PB_32KB;
1939 wr32(E1000_RXPBS, val);
1940
1941 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1942 * register should not exceed the buffer size programmed in
1943 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1944 * so according to the datasheet we should set MAX_TPKT_SIZE to
1945 * 4kB / 64.
1946 *
1947 * However, when we do so, no frame from queue 2 and 3 are
1948 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1949 * or _equal_ to the buffer size programmed in TXPBS. For this
1950 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1951 */
1952 val = (4096 - 1) / 64;
1953 wr32(E1000_I210_DTXMXPKTSZ, val);
1954
1955 /* Since FQTSS mode is enabled, apply any CBS configuration
1956 * previously set. If no previous CBS configuration has been
1957 * done, then the initial configuration is applied, which means
1958 * CBS is disabled.
1959 */
1960 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1961 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1962
1963 for (i = 0; i < max_queue; i++) {
1964 igb_config_tx_modes(adapter, i);
1965 }
1966 } else {
1967 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1968 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1969 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1970
1971 val = rd32(E1000_I210_TQAVCTRL);
1972 /* According to Section 8.12.21, the other flags we've set when
1973 * enabling FQTSS are not relevant when disabling FQTSS so we
1974 * don't set they here.
1975 */
1976 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1977 wr32(E1000_I210_TQAVCTRL, val);
1978 }
1979
1980 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1981 "enabled" : "disabled");
1982 }
1983
1984 /**
1985 * igb_configure - configure the hardware for RX and TX
1986 * @adapter: private board structure
1987 **/
igb_configure(struct igb_adapter * adapter)1988 static void igb_configure(struct igb_adapter *adapter)
1989 {
1990 struct net_device *netdev = adapter->netdev;
1991 int i;
1992
1993 igb_get_hw_control(adapter);
1994 igb_set_rx_mode(netdev);
1995 igb_setup_tx_mode(adapter);
1996
1997 igb_restore_vlan(adapter);
1998
1999 igb_setup_tctl(adapter);
2000 igb_setup_mrqc(adapter);
2001 igb_setup_rctl(adapter);
2002
2003 igb_nfc_filter_restore(adapter);
2004 igb_configure_tx(adapter);
2005 igb_configure_rx(adapter);
2006
2007 igb_rx_fifo_flush_82575(&adapter->hw);
2008
2009 /* call igb_desc_unused which always leaves
2010 * at least 1 descriptor unused to make sure
2011 * next_to_use != next_to_clean
2012 */
2013 for (i = 0; i < adapter->num_rx_queues; i++) {
2014 struct igb_ring *ring = adapter->rx_ring[i];
2015 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2016 }
2017 }
2018
2019 /**
2020 * igb_power_up_link - Power up the phy/serdes link
2021 * @adapter: address of board private structure
2022 **/
igb_power_up_link(struct igb_adapter * adapter)2023 void igb_power_up_link(struct igb_adapter *adapter)
2024 {
2025 igb_reset_phy(&adapter->hw);
2026
2027 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2028 igb_power_up_phy_copper(&adapter->hw);
2029 else
2030 igb_power_up_serdes_link_82575(&adapter->hw);
2031
2032 igb_setup_link(&adapter->hw);
2033 }
2034
2035 /**
2036 * igb_power_down_link - Power down the phy/serdes link
2037 * @adapter: address of board private structure
2038 */
igb_power_down_link(struct igb_adapter * adapter)2039 static void igb_power_down_link(struct igb_adapter *adapter)
2040 {
2041 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2042 igb_power_down_phy_copper_82575(&adapter->hw);
2043 else
2044 igb_shutdown_serdes_link_82575(&adapter->hw);
2045 }
2046
2047 /**
2048 * Detect and switch function for Media Auto Sense
2049 * @adapter: address of the board private structure
2050 **/
igb_check_swap_media(struct igb_adapter * adapter)2051 static void igb_check_swap_media(struct igb_adapter *adapter)
2052 {
2053 struct e1000_hw *hw = &adapter->hw;
2054 u32 ctrl_ext, connsw;
2055 bool swap_now = false;
2056
2057 ctrl_ext = rd32(E1000_CTRL_EXT);
2058 connsw = rd32(E1000_CONNSW);
2059
2060 /* need to live swap if current media is copper and we have fiber/serdes
2061 * to go to.
2062 */
2063
2064 if ((hw->phy.media_type == e1000_media_type_copper) &&
2065 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2066 swap_now = true;
2067 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
2068 /* copper signal takes time to appear */
2069 if (adapter->copper_tries < 4) {
2070 adapter->copper_tries++;
2071 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2072 wr32(E1000_CONNSW, connsw);
2073 return;
2074 } else {
2075 adapter->copper_tries = 0;
2076 if ((connsw & E1000_CONNSW_PHYSD) &&
2077 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2078 swap_now = true;
2079 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2080 wr32(E1000_CONNSW, connsw);
2081 }
2082 }
2083 }
2084
2085 if (!swap_now)
2086 return;
2087
2088 switch (hw->phy.media_type) {
2089 case e1000_media_type_copper:
2090 netdev_info(adapter->netdev,
2091 "MAS: changing media to fiber/serdes\n");
2092 ctrl_ext |=
2093 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2094 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2095 adapter->copper_tries = 0;
2096 break;
2097 case e1000_media_type_internal_serdes:
2098 case e1000_media_type_fiber:
2099 netdev_info(adapter->netdev,
2100 "MAS: changing media to copper\n");
2101 ctrl_ext &=
2102 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2103 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2104 break;
2105 default:
2106 /* shouldn't get here during regular operation */
2107 netdev_err(adapter->netdev,
2108 "AMS: Invalid media type found, returning\n");
2109 break;
2110 }
2111 wr32(E1000_CTRL_EXT, ctrl_ext);
2112 }
2113
2114 /**
2115 * igb_up - Open the interface and prepare it to handle traffic
2116 * @adapter: board private structure
2117 **/
igb_up(struct igb_adapter * adapter)2118 int igb_up(struct igb_adapter *adapter)
2119 {
2120 struct e1000_hw *hw = &adapter->hw;
2121 int i;
2122
2123 /* hardware has been reset, we need to reload some things */
2124 igb_configure(adapter);
2125
2126 clear_bit(__IGB_DOWN, &adapter->state);
2127
2128 for (i = 0; i < adapter->num_q_vectors; i++)
2129 napi_enable(&(adapter->q_vector[i]->napi));
2130
2131 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2132 igb_configure_msix(adapter);
2133 else
2134 igb_assign_vector(adapter->q_vector[0], 0);
2135
2136 /* Clear any pending interrupts. */
2137 rd32(E1000_TSICR);
2138 rd32(E1000_ICR);
2139 igb_irq_enable(adapter);
2140
2141 /* notify VFs that reset has been completed */
2142 if (adapter->vfs_allocated_count) {
2143 u32 reg_data = rd32(E1000_CTRL_EXT);
2144
2145 reg_data |= E1000_CTRL_EXT_PFRSTD;
2146 wr32(E1000_CTRL_EXT, reg_data);
2147 }
2148
2149 netif_tx_start_all_queues(adapter->netdev);
2150
2151 /* start the watchdog. */
2152 hw->mac.get_link_status = 1;
2153 schedule_work(&adapter->watchdog_task);
2154
2155 if ((adapter->flags & IGB_FLAG_EEE) &&
2156 (!hw->dev_spec._82575.eee_disable))
2157 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2158
2159 return 0;
2160 }
2161
igb_down(struct igb_adapter * adapter)2162 void igb_down(struct igb_adapter *adapter)
2163 {
2164 struct net_device *netdev = adapter->netdev;
2165 struct e1000_hw *hw = &adapter->hw;
2166 u32 tctl, rctl;
2167 int i;
2168
2169 /* signal that we're down so the interrupt handler does not
2170 * reschedule our watchdog timer
2171 */
2172 set_bit(__IGB_DOWN, &adapter->state);
2173
2174 /* disable receives in the hardware */
2175 rctl = rd32(E1000_RCTL);
2176 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2177 /* flush and sleep below */
2178
2179 igb_nfc_filter_exit(adapter);
2180
2181 netif_carrier_off(netdev);
2182 netif_tx_stop_all_queues(netdev);
2183
2184 /* disable transmits in the hardware */
2185 tctl = rd32(E1000_TCTL);
2186 tctl &= ~E1000_TCTL_EN;
2187 wr32(E1000_TCTL, tctl);
2188 /* flush both disables and wait for them to finish */
2189 wrfl();
2190 usleep_range(10000, 11000);
2191
2192 igb_irq_disable(adapter);
2193
2194 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2195
2196 for (i = 0; i < adapter->num_q_vectors; i++) {
2197 if (adapter->q_vector[i]) {
2198 napi_synchronize(&adapter->q_vector[i]->napi);
2199 napi_disable(&adapter->q_vector[i]->napi);
2200 }
2201 }
2202
2203 del_timer_sync(&adapter->watchdog_timer);
2204 del_timer_sync(&adapter->phy_info_timer);
2205
2206 /* record the stats before reset*/
2207 spin_lock(&adapter->stats64_lock);
2208 igb_update_stats(adapter);
2209 spin_unlock(&adapter->stats64_lock);
2210
2211 adapter->link_speed = 0;
2212 adapter->link_duplex = 0;
2213
2214 if (!pci_channel_offline(adapter->pdev))
2215 igb_reset(adapter);
2216
2217 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2218 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2219
2220 igb_clean_all_tx_rings(adapter);
2221 igb_clean_all_rx_rings(adapter);
2222 #ifdef CONFIG_IGB_DCA
2223
2224 /* since we reset the hardware DCA settings were cleared */
2225 igb_setup_dca(adapter);
2226 #endif
2227 }
2228
igb_reinit_locked(struct igb_adapter * adapter)2229 void igb_reinit_locked(struct igb_adapter *adapter)
2230 {
2231 WARN_ON(in_interrupt());
2232 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2233 usleep_range(1000, 2000);
2234 igb_down(adapter);
2235 igb_up(adapter);
2236 clear_bit(__IGB_RESETTING, &adapter->state);
2237 }
2238
2239 /** igb_enable_mas - Media Autosense re-enable after swap
2240 *
2241 * @adapter: adapter struct
2242 **/
igb_enable_mas(struct igb_adapter * adapter)2243 static void igb_enable_mas(struct igb_adapter *adapter)
2244 {
2245 struct e1000_hw *hw = &adapter->hw;
2246 u32 connsw = rd32(E1000_CONNSW);
2247
2248 /* configure for SerDes media detect */
2249 if ((hw->phy.media_type == e1000_media_type_copper) &&
2250 (!(connsw & E1000_CONNSW_SERDESD))) {
2251 connsw |= E1000_CONNSW_ENRGSRC;
2252 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2253 wr32(E1000_CONNSW, connsw);
2254 wrfl();
2255 }
2256 }
2257
igb_reset(struct igb_adapter * adapter)2258 void igb_reset(struct igb_adapter *adapter)
2259 {
2260 struct pci_dev *pdev = adapter->pdev;
2261 struct e1000_hw *hw = &adapter->hw;
2262 struct e1000_mac_info *mac = &hw->mac;
2263 struct e1000_fc_info *fc = &hw->fc;
2264 u32 pba, hwm;
2265
2266 /* Repartition Pba for greater than 9k mtu
2267 * To take effect CTRL.RST is required.
2268 */
2269 switch (mac->type) {
2270 case e1000_i350:
2271 case e1000_i354:
2272 case e1000_82580:
2273 pba = rd32(E1000_RXPBS);
2274 pba = igb_rxpbs_adjust_82580(pba);
2275 break;
2276 case e1000_82576:
2277 pba = rd32(E1000_RXPBS);
2278 pba &= E1000_RXPBS_SIZE_MASK_82576;
2279 break;
2280 case e1000_82575:
2281 case e1000_i210:
2282 case e1000_i211:
2283 default:
2284 pba = E1000_PBA_34K;
2285 break;
2286 }
2287
2288 if (mac->type == e1000_82575) {
2289 u32 min_rx_space, min_tx_space, needed_tx_space;
2290
2291 /* write Rx PBA so that hardware can report correct Tx PBA */
2292 wr32(E1000_PBA, pba);
2293
2294 /* To maintain wire speed transmits, the Tx FIFO should be
2295 * large enough to accommodate two full transmit packets,
2296 * rounded up to the next 1KB and expressed in KB. Likewise,
2297 * the Rx FIFO should be large enough to accommodate at least
2298 * one full receive packet and is similarly rounded up and
2299 * expressed in KB.
2300 */
2301 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2302
2303 /* The Tx FIFO also stores 16 bytes of information about the Tx
2304 * but don't include Ethernet FCS because hardware appends it.
2305 * We only need to round down to the nearest 512 byte block
2306 * count since the value we care about is 2 frames, not 1.
2307 */
2308 min_tx_space = adapter->max_frame_size;
2309 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2310 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2311
2312 /* upper 16 bits has Tx packet buffer allocation size in KB */
2313 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2314
2315 /* If current Tx allocation is less than the min Tx FIFO size,
2316 * and the min Tx FIFO size is less than the current Rx FIFO
2317 * allocation, take space away from current Rx allocation.
2318 */
2319 if (needed_tx_space < pba) {
2320 pba -= needed_tx_space;
2321
2322 /* if short on Rx space, Rx wins and must trump Tx
2323 * adjustment
2324 */
2325 if (pba < min_rx_space)
2326 pba = min_rx_space;
2327 }
2328
2329 /* adjust PBA for jumbo frames */
2330 wr32(E1000_PBA, pba);
2331 }
2332
2333 /* flow control settings
2334 * The high water mark must be low enough to fit one full frame
2335 * after transmitting the pause frame. As such we must have enough
2336 * space to allow for us to complete our current transmit and then
2337 * receive the frame that is in progress from the link partner.
2338 * Set it to:
2339 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2340 */
2341 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2342
2343 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2344 fc->low_water = fc->high_water - 16;
2345 fc->pause_time = 0xFFFF;
2346 fc->send_xon = 1;
2347 fc->current_mode = fc->requested_mode;
2348
2349 /* disable receive for all VFs and wait one second */
2350 if (adapter->vfs_allocated_count) {
2351 int i;
2352
2353 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2354 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2355
2356 /* ping all the active vfs to let them know we are going down */
2357 igb_ping_all_vfs(adapter);
2358
2359 /* disable transmits and receives */
2360 wr32(E1000_VFRE, 0);
2361 wr32(E1000_VFTE, 0);
2362 }
2363
2364 /* Allow time for pending master requests to run */
2365 hw->mac.ops.reset_hw(hw);
2366 wr32(E1000_WUC, 0);
2367
2368 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2369 /* need to resetup here after media swap */
2370 adapter->ei.get_invariants(hw);
2371 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2372 }
2373 if ((mac->type == e1000_82575) &&
2374 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2375 igb_enable_mas(adapter);
2376 }
2377 if (hw->mac.ops.init_hw(hw))
2378 dev_err(&pdev->dev, "Hardware Error\n");
2379
2380 /* RAR registers were cleared during init_hw, clear mac table */
2381 igb_flush_mac_table(adapter);
2382 __dev_uc_unsync(adapter->netdev, NULL);
2383
2384 /* Recover default RAR entry */
2385 igb_set_default_mac_filter(adapter);
2386
2387 /* Flow control settings reset on hardware reset, so guarantee flow
2388 * control is off when forcing speed.
2389 */
2390 if (!hw->mac.autoneg)
2391 igb_force_mac_fc(hw);
2392
2393 igb_init_dmac(adapter, pba);
2394 #ifdef CONFIG_IGB_HWMON
2395 /* Re-initialize the thermal sensor on i350 devices. */
2396 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2397 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2398 /* If present, re-initialize the external thermal sensor
2399 * interface.
2400 */
2401 if (adapter->ets)
2402 mac->ops.init_thermal_sensor_thresh(hw);
2403 }
2404 }
2405 #endif
2406 /* Re-establish EEE setting */
2407 if (hw->phy.media_type == e1000_media_type_copper) {
2408 switch (mac->type) {
2409 case e1000_i350:
2410 case e1000_i210:
2411 case e1000_i211:
2412 igb_set_eee_i350(hw, true, true);
2413 break;
2414 case e1000_i354:
2415 igb_set_eee_i354(hw, true, true);
2416 break;
2417 default:
2418 break;
2419 }
2420 }
2421 if (!netif_running(adapter->netdev))
2422 igb_power_down_link(adapter);
2423
2424 igb_update_mng_vlan(adapter);
2425
2426 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2427 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2428
2429 /* Re-enable PTP, where applicable. */
2430 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2431 igb_ptp_reset(adapter);
2432
2433 igb_get_phy_info(hw);
2434 }
2435
igb_fix_features(struct net_device * netdev,netdev_features_t features)2436 static netdev_features_t igb_fix_features(struct net_device *netdev,
2437 netdev_features_t features)
2438 {
2439 /* Since there is no support for separate Rx/Tx vlan accel
2440 * enable/disable make sure Tx flag is always in same state as Rx.
2441 */
2442 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2443 features |= NETIF_F_HW_VLAN_CTAG_TX;
2444 else
2445 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2446
2447 return features;
2448 }
2449
igb_set_features(struct net_device * netdev,netdev_features_t features)2450 static int igb_set_features(struct net_device *netdev,
2451 netdev_features_t features)
2452 {
2453 netdev_features_t changed = netdev->features ^ features;
2454 struct igb_adapter *adapter = netdev_priv(netdev);
2455
2456 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2457 igb_vlan_mode(netdev, features);
2458
2459 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2460 return 0;
2461
2462 if (!(features & NETIF_F_NTUPLE)) {
2463 struct hlist_node *node2;
2464 struct igb_nfc_filter *rule;
2465
2466 spin_lock(&adapter->nfc_lock);
2467 hlist_for_each_entry_safe(rule, node2,
2468 &adapter->nfc_filter_list, nfc_node) {
2469 igb_erase_filter(adapter, rule);
2470 hlist_del(&rule->nfc_node);
2471 kfree(rule);
2472 }
2473 spin_unlock(&adapter->nfc_lock);
2474 adapter->nfc_filter_count = 0;
2475 }
2476
2477 netdev->features = features;
2478
2479 if (netif_running(netdev))
2480 igb_reinit_locked(adapter);
2481 else
2482 igb_reset(adapter);
2483
2484 return 0;
2485 }
2486
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags)2487 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2488 struct net_device *dev,
2489 const unsigned char *addr, u16 vid,
2490 u16 flags)
2491 {
2492 /* guarantee we can provide a unique filter for the unicast address */
2493 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2494 struct igb_adapter *adapter = netdev_priv(dev);
2495 int vfn = adapter->vfs_allocated_count;
2496
2497 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2498 return -ENOMEM;
2499 }
2500
2501 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2502 }
2503
2504 #define IGB_MAX_MAC_HDR_LEN 127
2505 #define IGB_MAX_NETWORK_HDR_LEN 511
2506
2507 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2508 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2509 netdev_features_t features)
2510 {
2511 unsigned int network_hdr_len, mac_hdr_len;
2512
2513 /* Make certain the headers can be described by a context descriptor */
2514 mac_hdr_len = skb_network_header(skb) - skb->data;
2515 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2516 return features & ~(NETIF_F_HW_CSUM |
2517 NETIF_F_SCTP_CRC |
2518 NETIF_F_HW_VLAN_CTAG_TX |
2519 NETIF_F_TSO |
2520 NETIF_F_TSO6);
2521
2522 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2523 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2524 return features & ~(NETIF_F_HW_CSUM |
2525 NETIF_F_SCTP_CRC |
2526 NETIF_F_TSO |
2527 NETIF_F_TSO6);
2528
2529 /* We can only support IPV4 TSO in tunnels if we can mangle the
2530 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2531 */
2532 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2533 features &= ~NETIF_F_TSO;
2534
2535 return features;
2536 }
2537
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2538 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2539 {
2540 if (!is_fqtss_enabled(adapter)) {
2541 enable_fqtss(adapter, true);
2542 return;
2543 }
2544
2545 igb_config_tx_modes(adapter, queue);
2546
2547 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2548 enable_fqtss(adapter, false);
2549 }
2550
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2551 static int igb_offload_cbs(struct igb_adapter *adapter,
2552 struct tc_cbs_qopt_offload *qopt)
2553 {
2554 struct e1000_hw *hw = &adapter->hw;
2555 int err;
2556
2557 /* CBS offloading is only supported by i210 controller. */
2558 if (hw->mac.type != e1000_i210)
2559 return -EOPNOTSUPP;
2560
2561 /* CBS offloading is only supported by queue 0 and queue 1. */
2562 if (qopt->queue < 0 || qopt->queue > 1)
2563 return -EINVAL;
2564
2565 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2566 qopt->idleslope, qopt->sendslope,
2567 qopt->hicredit, qopt->locredit);
2568 if (err)
2569 return err;
2570
2571 igb_offload_apply(adapter, qopt->queue);
2572
2573 return 0;
2574 }
2575
2576 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2577 #define VLAN_PRIO_FULL_MASK (0x07)
2578
igb_parse_cls_flower(struct igb_adapter * adapter,struct tc_cls_flower_offload * f,int traffic_class,struct igb_nfc_filter * input)2579 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2580 struct tc_cls_flower_offload *f,
2581 int traffic_class,
2582 struct igb_nfc_filter *input)
2583 {
2584 struct netlink_ext_ack *extack = f->common.extack;
2585
2586 if (f->dissector->used_keys &
2587 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2588 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2589 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2590 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2591 NL_SET_ERR_MSG_MOD(extack,
2592 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2593 return -EOPNOTSUPP;
2594 }
2595
2596 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2597 struct flow_dissector_key_eth_addrs *key, *mask;
2598
2599 key = skb_flow_dissector_target(f->dissector,
2600 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2601 f->key);
2602 mask = skb_flow_dissector_target(f->dissector,
2603 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2604 f->mask);
2605
2606 if (!is_zero_ether_addr(mask->dst)) {
2607 if (!is_broadcast_ether_addr(mask->dst)) {
2608 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2609 return -EINVAL;
2610 }
2611
2612 input->filter.match_flags |=
2613 IGB_FILTER_FLAG_DST_MAC_ADDR;
2614 ether_addr_copy(input->filter.dst_addr, key->dst);
2615 }
2616
2617 if (!is_zero_ether_addr(mask->src)) {
2618 if (!is_broadcast_ether_addr(mask->src)) {
2619 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2620 return -EINVAL;
2621 }
2622
2623 input->filter.match_flags |=
2624 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2625 ether_addr_copy(input->filter.src_addr, key->src);
2626 }
2627 }
2628
2629 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
2630 struct flow_dissector_key_basic *key, *mask;
2631
2632 key = skb_flow_dissector_target(f->dissector,
2633 FLOW_DISSECTOR_KEY_BASIC,
2634 f->key);
2635 mask = skb_flow_dissector_target(f->dissector,
2636 FLOW_DISSECTOR_KEY_BASIC,
2637 f->mask);
2638
2639 if (mask->n_proto) {
2640 if (mask->n_proto != ETHER_TYPE_FULL_MASK) {
2641 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2642 return -EINVAL;
2643 }
2644
2645 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2646 input->filter.etype = key->n_proto;
2647 }
2648 }
2649
2650 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
2651 struct flow_dissector_key_vlan *key, *mask;
2652
2653 key = skb_flow_dissector_target(f->dissector,
2654 FLOW_DISSECTOR_KEY_VLAN,
2655 f->key);
2656 mask = skb_flow_dissector_target(f->dissector,
2657 FLOW_DISSECTOR_KEY_VLAN,
2658 f->mask);
2659
2660 if (mask->vlan_priority) {
2661 if (mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2662 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2663 return -EINVAL;
2664 }
2665
2666 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2667 input->filter.vlan_tci = key->vlan_priority;
2668 }
2669 }
2670
2671 input->action = traffic_class;
2672 input->cookie = f->cookie;
2673
2674 return 0;
2675 }
2676
igb_configure_clsflower(struct igb_adapter * adapter,struct tc_cls_flower_offload * cls_flower)2677 static int igb_configure_clsflower(struct igb_adapter *adapter,
2678 struct tc_cls_flower_offload *cls_flower)
2679 {
2680 struct netlink_ext_ack *extack = cls_flower->common.extack;
2681 struct igb_nfc_filter *filter, *f;
2682 int err, tc;
2683
2684 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2685 if (tc < 0) {
2686 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2687 return -EINVAL;
2688 }
2689
2690 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2691 if (!filter)
2692 return -ENOMEM;
2693
2694 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2695 if (err < 0)
2696 goto err_parse;
2697
2698 spin_lock(&adapter->nfc_lock);
2699
2700 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2701 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2702 err = -EEXIST;
2703 NL_SET_ERR_MSG_MOD(extack,
2704 "This filter is already set in ethtool");
2705 goto err_locked;
2706 }
2707 }
2708
2709 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2710 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2711 err = -EEXIST;
2712 NL_SET_ERR_MSG_MOD(extack,
2713 "This filter is already set in cls_flower");
2714 goto err_locked;
2715 }
2716 }
2717
2718 err = igb_add_filter(adapter, filter);
2719 if (err < 0) {
2720 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2721 goto err_locked;
2722 }
2723
2724 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2725
2726 spin_unlock(&adapter->nfc_lock);
2727
2728 return 0;
2729
2730 err_locked:
2731 spin_unlock(&adapter->nfc_lock);
2732
2733 err_parse:
2734 kfree(filter);
2735
2736 return err;
2737 }
2738
igb_delete_clsflower(struct igb_adapter * adapter,struct tc_cls_flower_offload * cls_flower)2739 static int igb_delete_clsflower(struct igb_adapter *adapter,
2740 struct tc_cls_flower_offload *cls_flower)
2741 {
2742 struct igb_nfc_filter *filter;
2743 int err;
2744
2745 spin_lock(&adapter->nfc_lock);
2746
2747 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2748 if (filter->cookie == cls_flower->cookie)
2749 break;
2750
2751 if (!filter) {
2752 err = -ENOENT;
2753 goto out;
2754 }
2755
2756 err = igb_erase_filter(adapter, filter);
2757 if (err < 0)
2758 goto out;
2759
2760 hlist_del(&filter->nfc_node);
2761 kfree(filter);
2762
2763 out:
2764 spin_unlock(&adapter->nfc_lock);
2765
2766 return err;
2767 }
2768
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct tc_cls_flower_offload * cls_flower)2769 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2770 struct tc_cls_flower_offload *cls_flower)
2771 {
2772 switch (cls_flower->command) {
2773 case TC_CLSFLOWER_REPLACE:
2774 return igb_configure_clsflower(adapter, cls_flower);
2775 case TC_CLSFLOWER_DESTROY:
2776 return igb_delete_clsflower(adapter, cls_flower);
2777 case TC_CLSFLOWER_STATS:
2778 return -EOPNOTSUPP;
2779 default:
2780 return -EOPNOTSUPP;
2781 }
2782 }
2783
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2784 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2785 void *cb_priv)
2786 {
2787 struct igb_adapter *adapter = cb_priv;
2788
2789 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2790 return -EOPNOTSUPP;
2791
2792 switch (type) {
2793 case TC_SETUP_CLSFLOWER:
2794 return igb_setup_tc_cls_flower(adapter, type_data);
2795
2796 default:
2797 return -EOPNOTSUPP;
2798 }
2799 }
2800
igb_setup_tc_block(struct igb_adapter * adapter,struct tc_block_offload * f)2801 static int igb_setup_tc_block(struct igb_adapter *adapter,
2802 struct tc_block_offload *f)
2803 {
2804 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2805 return -EOPNOTSUPP;
2806
2807 switch (f->command) {
2808 case TC_BLOCK_BIND:
2809 return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
2810 adapter, adapter, f->extack);
2811 case TC_BLOCK_UNBIND:
2812 tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
2813 adapter);
2814 return 0;
2815 default:
2816 return -EOPNOTSUPP;
2817 }
2818 }
2819
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2820 static int igb_offload_txtime(struct igb_adapter *adapter,
2821 struct tc_etf_qopt_offload *qopt)
2822 {
2823 struct e1000_hw *hw = &adapter->hw;
2824 int err;
2825
2826 /* Launchtime offloading is only supported by i210 controller. */
2827 if (hw->mac.type != e1000_i210)
2828 return -EOPNOTSUPP;
2829
2830 /* Launchtime offloading is only supported by queues 0 and 1. */
2831 if (qopt->queue < 0 || qopt->queue > 1)
2832 return -EINVAL;
2833
2834 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2835 if (err)
2836 return err;
2837
2838 igb_offload_apply(adapter, qopt->queue);
2839
2840 return 0;
2841 }
2842
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2843 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2844 void *type_data)
2845 {
2846 struct igb_adapter *adapter = netdev_priv(dev);
2847
2848 switch (type) {
2849 case TC_SETUP_QDISC_CBS:
2850 return igb_offload_cbs(adapter, type_data);
2851 case TC_SETUP_BLOCK:
2852 return igb_setup_tc_block(adapter, type_data);
2853 case TC_SETUP_QDISC_ETF:
2854 return igb_offload_txtime(adapter, type_data);
2855
2856 default:
2857 return -EOPNOTSUPP;
2858 }
2859 }
2860
2861 static const struct net_device_ops igb_netdev_ops = {
2862 .ndo_open = igb_open,
2863 .ndo_stop = igb_close,
2864 .ndo_start_xmit = igb_xmit_frame,
2865 .ndo_get_stats64 = igb_get_stats64,
2866 .ndo_set_rx_mode = igb_set_rx_mode,
2867 .ndo_set_mac_address = igb_set_mac,
2868 .ndo_change_mtu = igb_change_mtu,
2869 .ndo_do_ioctl = igb_ioctl,
2870 .ndo_tx_timeout = igb_tx_timeout,
2871 .ndo_validate_addr = eth_validate_addr,
2872 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2873 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2874 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2875 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2876 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2877 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2878 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
2879 .ndo_get_vf_config = igb_ndo_get_vf_config,
2880 .ndo_fix_features = igb_fix_features,
2881 .ndo_set_features = igb_set_features,
2882 .ndo_fdb_add = igb_ndo_fdb_add,
2883 .ndo_features_check = igb_features_check,
2884 .ndo_setup_tc = igb_setup_tc,
2885 };
2886
2887 /**
2888 * igb_set_fw_version - Configure version string for ethtool
2889 * @adapter: adapter struct
2890 **/
igb_set_fw_version(struct igb_adapter * adapter)2891 void igb_set_fw_version(struct igb_adapter *adapter)
2892 {
2893 struct e1000_hw *hw = &adapter->hw;
2894 struct e1000_fw_version fw;
2895
2896 igb_get_fw_version(hw, &fw);
2897
2898 switch (hw->mac.type) {
2899 case e1000_i210:
2900 case e1000_i211:
2901 if (!(igb_get_flash_presence_i210(hw))) {
2902 snprintf(adapter->fw_version,
2903 sizeof(adapter->fw_version),
2904 "%2d.%2d-%d",
2905 fw.invm_major, fw.invm_minor,
2906 fw.invm_img_type);
2907 break;
2908 }
2909 /* fall through */
2910 default:
2911 /* if option is rom valid, display its version too */
2912 if (fw.or_valid) {
2913 snprintf(adapter->fw_version,
2914 sizeof(adapter->fw_version),
2915 "%d.%d, 0x%08x, %d.%d.%d",
2916 fw.eep_major, fw.eep_minor, fw.etrack_id,
2917 fw.or_major, fw.or_build, fw.or_patch);
2918 /* no option rom */
2919 } else if (fw.etrack_id != 0X0000) {
2920 snprintf(adapter->fw_version,
2921 sizeof(adapter->fw_version),
2922 "%d.%d, 0x%08x",
2923 fw.eep_major, fw.eep_minor, fw.etrack_id);
2924 } else {
2925 snprintf(adapter->fw_version,
2926 sizeof(adapter->fw_version),
2927 "%d.%d.%d",
2928 fw.eep_major, fw.eep_minor, fw.eep_build);
2929 }
2930 break;
2931 }
2932 }
2933
2934 /**
2935 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2936 *
2937 * @adapter: adapter struct
2938 **/
igb_init_mas(struct igb_adapter * adapter)2939 static void igb_init_mas(struct igb_adapter *adapter)
2940 {
2941 struct e1000_hw *hw = &adapter->hw;
2942 u16 eeprom_data;
2943
2944 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2945 switch (hw->bus.func) {
2946 case E1000_FUNC_0:
2947 if (eeprom_data & IGB_MAS_ENABLE_0) {
2948 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2949 netdev_info(adapter->netdev,
2950 "MAS: Enabling Media Autosense for port %d\n",
2951 hw->bus.func);
2952 }
2953 break;
2954 case E1000_FUNC_1:
2955 if (eeprom_data & IGB_MAS_ENABLE_1) {
2956 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2957 netdev_info(adapter->netdev,
2958 "MAS: Enabling Media Autosense for port %d\n",
2959 hw->bus.func);
2960 }
2961 break;
2962 case E1000_FUNC_2:
2963 if (eeprom_data & IGB_MAS_ENABLE_2) {
2964 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2965 netdev_info(adapter->netdev,
2966 "MAS: Enabling Media Autosense for port %d\n",
2967 hw->bus.func);
2968 }
2969 break;
2970 case E1000_FUNC_3:
2971 if (eeprom_data & IGB_MAS_ENABLE_3) {
2972 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2973 netdev_info(adapter->netdev,
2974 "MAS: Enabling Media Autosense for port %d\n",
2975 hw->bus.func);
2976 }
2977 break;
2978 default:
2979 /* Shouldn't get here */
2980 netdev_err(adapter->netdev,
2981 "MAS: Invalid port configuration, returning\n");
2982 break;
2983 }
2984 }
2985
2986 /**
2987 * igb_init_i2c - Init I2C interface
2988 * @adapter: pointer to adapter structure
2989 **/
igb_init_i2c(struct igb_adapter * adapter)2990 static s32 igb_init_i2c(struct igb_adapter *adapter)
2991 {
2992 s32 status = 0;
2993
2994 /* I2C interface supported on i350 devices */
2995 if (adapter->hw.mac.type != e1000_i350)
2996 return 0;
2997
2998 /* Initialize the i2c bus which is controlled by the registers.
2999 * This bus will use the i2c_algo_bit structue that implements
3000 * the protocol through toggling of the 4 bits in the register.
3001 */
3002 adapter->i2c_adap.owner = THIS_MODULE;
3003 adapter->i2c_algo = igb_i2c_algo;
3004 adapter->i2c_algo.data = adapter;
3005 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3006 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3007 strlcpy(adapter->i2c_adap.name, "igb BB",
3008 sizeof(adapter->i2c_adap.name));
3009 status = i2c_bit_add_bus(&adapter->i2c_adap);
3010 return status;
3011 }
3012
3013 /**
3014 * igb_probe - Device Initialization Routine
3015 * @pdev: PCI device information struct
3016 * @ent: entry in igb_pci_tbl
3017 *
3018 * Returns 0 on success, negative on failure
3019 *
3020 * igb_probe initializes an adapter identified by a pci_dev structure.
3021 * The OS initialization, configuring of the adapter private structure,
3022 * and a hardware reset occur.
3023 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3024 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3025 {
3026 struct net_device *netdev;
3027 struct igb_adapter *adapter;
3028 struct e1000_hw *hw;
3029 u16 eeprom_data = 0;
3030 s32 ret_val;
3031 static int global_quad_port_a; /* global quad port a indication */
3032 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3033 int err, pci_using_dac;
3034 u8 part_str[E1000_PBANUM_LENGTH];
3035
3036 /* Catch broken hardware that put the wrong VF device ID in
3037 * the PCIe SR-IOV capability.
3038 */
3039 if (pdev->is_virtfn) {
3040 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3041 pci_name(pdev), pdev->vendor, pdev->device);
3042 return -EINVAL;
3043 }
3044
3045 err = pci_enable_device_mem(pdev);
3046 if (err)
3047 return err;
3048
3049 pci_using_dac = 0;
3050 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3051 if (!err) {
3052 pci_using_dac = 1;
3053 } else {
3054 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3055 if (err) {
3056 dev_err(&pdev->dev,
3057 "No usable DMA configuration, aborting\n");
3058 goto err_dma;
3059 }
3060 }
3061
3062 err = pci_request_mem_regions(pdev, igb_driver_name);
3063 if (err)
3064 goto err_pci_reg;
3065
3066 pci_enable_pcie_error_reporting(pdev);
3067
3068 pci_set_master(pdev);
3069 pci_save_state(pdev);
3070
3071 err = -ENOMEM;
3072 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3073 IGB_MAX_TX_QUEUES);
3074 if (!netdev)
3075 goto err_alloc_etherdev;
3076
3077 SET_NETDEV_DEV(netdev, &pdev->dev);
3078
3079 pci_set_drvdata(pdev, netdev);
3080 adapter = netdev_priv(netdev);
3081 adapter->netdev = netdev;
3082 adapter->pdev = pdev;
3083 hw = &adapter->hw;
3084 hw->back = adapter;
3085 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3086
3087 err = -EIO;
3088 adapter->io_addr = pci_iomap(pdev, 0, 0);
3089 if (!adapter->io_addr)
3090 goto err_ioremap;
3091 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3092 hw->hw_addr = adapter->io_addr;
3093
3094 netdev->netdev_ops = &igb_netdev_ops;
3095 igb_set_ethtool_ops(netdev);
3096 netdev->watchdog_timeo = 5 * HZ;
3097
3098 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3099
3100 netdev->mem_start = pci_resource_start(pdev, 0);
3101 netdev->mem_end = pci_resource_end(pdev, 0);
3102
3103 /* PCI config space info */
3104 hw->vendor_id = pdev->vendor;
3105 hw->device_id = pdev->device;
3106 hw->revision_id = pdev->revision;
3107 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3108 hw->subsystem_device_id = pdev->subsystem_device;
3109
3110 /* Copy the default MAC, PHY and NVM function pointers */
3111 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3112 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3113 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3114 /* Initialize skew-specific constants */
3115 err = ei->get_invariants(hw);
3116 if (err)
3117 goto err_sw_init;
3118
3119 /* setup the private structure */
3120 err = igb_sw_init(adapter);
3121 if (err)
3122 goto err_sw_init;
3123
3124 igb_get_bus_info_pcie(hw);
3125
3126 hw->phy.autoneg_wait_to_complete = false;
3127
3128 /* Copper options */
3129 if (hw->phy.media_type == e1000_media_type_copper) {
3130 hw->phy.mdix = AUTO_ALL_MODES;
3131 hw->phy.disable_polarity_correction = false;
3132 hw->phy.ms_type = e1000_ms_hw_default;
3133 }
3134
3135 if (igb_check_reset_block(hw))
3136 dev_info(&pdev->dev,
3137 "PHY reset is blocked due to SOL/IDER session.\n");
3138
3139 /* features is initialized to 0 in allocation, it might have bits
3140 * set by igb_sw_init so we should use an or instead of an
3141 * assignment.
3142 */
3143 netdev->features |= NETIF_F_SG |
3144 NETIF_F_TSO |
3145 NETIF_F_TSO6 |
3146 NETIF_F_RXHASH |
3147 NETIF_F_RXCSUM |
3148 NETIF_F_HW_CSUM;
3149
3150 if (hw->mac.type >= e1000_82576)
3151 netdev->features |= NETIF_F_SCTP_CRC;
3152
3153 if (hw->mac.type >= e1000_i350)
3154 netdev->features |= NETIF_F_HW_TC;
3155
3156 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3157 NETIF_F_GSO_GRE_CSUM | \
3158 NETIF_F_GSO_IPXIP4 | \
3159 NETIF_F_GSO_IPXIP6 | \
3160 NETIF_F_GSO_UDP_TUNNEL | \
3161 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3162
3163 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3164 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3165
3166 /* copy netdev features into list of user selectable features */
3167 netdev->hw_features |= netdev->features |
3168 NETIF_F_HW_VLAN_CTAG_RX |
3169 NETIF_F_HW_VLAN_CTAG_TX |
3170 NETIF_F_RXALL;
3171
3172 if (hw->mac.type >= e1000_i350)
3173 netdev->hw_features |= NETIF_F_NTUPLE;
3174
3175 if (pci_using_dac)
3176 netdev->features |= NETIF_F_HIGHDMA;
3177
3178 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3179 netdev->mpls_features |= NETIF_F_HW_CSUM;
3180 netdev->hw_enc_features |= netdev->vlan_features;
3181
3182 /* set this bit last since it cannot be part of vlan_features */
3183 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3184 NETIF_F_HW_VLAN_CTAG_RX |
3185 NETIF_F_HW_VLAN_CTAG_TX;
3186
3187 netdev->priv_flags |= IFF_SUPP_NOFCS;
3188
3189 netdev->priv_flags |= IFF_UNICAST_FLT;
3190
3191 /* MTU range: 68 - 9216 */
3192 netdev->min_mtu = ETH_MIN_MTU;
3193 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3194
3195 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3196
3197 /* before reading the NVM, reset the controller to put the device in a
3198 * known good starting state
3199 */
3200 hw->mac.ops.reset_hw(hw);
3201
3202 /* make sure the NVM is good , i211/i210 parts can have special NVM
3203 * that doesn't contain a checksum
3204 */
3205 switch (hw->mac.type) {
3206 case e1000_i210:
3207 case e1000_i211:
3208 if (igb_get_flash_presence_i210(hw)) {
3209 if (hw->nvm.ops.validate(hw) < 0) {
3210 dev_err(&pdev->dev,
3211 "The NVM Checksum Is Not Valid\n");
3212 err = -EIO;
3213 goto err_eeprom;
3214 }
3215 }
3216 break;
3217 default:
3218 if (hw->nvm.ops.validate(hw) < 0) {
3219 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3220 err = -EIO;
3221 goto err_eeprom;
3222 }
3223 break;
3224 }
3225
3226 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3227 /* copy the MAC address out of the NVM */
3228 if (hw->mac.ops.read_mac_addr(hw))
3229 dev_err(&pdev->dev, "NVM Read Error\n");
3230 }
3231
3232 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3233
3234 if (!is_valid_ether_addr(netdev->dev_addr)) {
3235 dev_err(&pdev->dev, "Invalid MAC Address\n");
3236 err = -EIO;
3237 goto err_eeprom;
3238 }
3239
3240 igb_set_default_mac_filter(adapter);
3241
3242 /* get firmware version for ethtool -i */
3243 igb_set_fw_version(adapter);
3244
3245 /* configure RXPBSIZE and TXPBSIZE */
3246 if (hw->mac.type == e1000_i210) {
3247 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3248 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3249 }
3250
3251 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3252 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3253
3254 INIT_WORK(&adapter->reset_task, igb_reset_task);
3255 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3256
3257 /* Initialize link properties that are user-changeable */
3258 adapter->fc_autoneg = true;
3259 hw->mac.autoneg = true;
3260 hw->phy.autoneg_advertised = 0x2f;
3261
3262 hw->fc.requested_mode = e1000_fc_default;
3263 hw->fc.current_mode = e1000_fc_default;
3264
3265 igb_validate_mdi_setting(hw);
3266
3267 /* By default, support wake on port A */
3268 if (hw->bus.func == 0)
3269 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3270
3271 /* Check the NVM for wake support on non-port A ports */
3272 if (hw->mac.type >= e1000_82580)
3273 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3274 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3275 &eeprom_data);
3276 else if (hw->bus.func == 1)
3277 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3278
3279 if (eeprom_data & IGB_EEPROM_APME)
3280 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3281
3282 /* now that we have the eeprom settings, apply the special cases where
3283 * the eeprom may be wrong or the board simply won't support wake on
3284 * lan on a particular port
3285 */
3286 switch (pdev->device) {
3287 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3288 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3289 break;
3290 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3291 case E1000_DEV_ID_82576_FIBER:
3292 case E1000_DEV_ID_82576_SERDES:
3293 /* Wake events only supported on port A for dual fiber
3294 * regardless of eeprom setting
3295 */
3296 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3297 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3298 break;
3299 case E1000_DEV_ID_82576_QUAD_COPPER:
3300 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3301 /* if quad port adapter, disable WoL on all but port A */
3302 if (global_quad_port_a != 0)
3303 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3304 else
3305 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3306 /* Reset for multiple quad port adapters */
3307 if (++global_quad_port_a == 4)
3308 global_quad_port_a = 0;
3309 break;
3310 default:
3311 /* If the device can't wake, don't set software support */
3312 if (!device_can_wakeup(&adapter->pdev->dev))
3313 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3314 }
3315
3316 /* initialize the wol settings based on the eeprom settings */
3317 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3318 adapter->wol |= E1000_WUFC_MAG;
3319
3320 /* Some vendors want WoL disabled by default, but still supported */
3321 if ((hw->mac.type == e1000_i350) &&
3322 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3323 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3324 adapter->wol = 0;
3325 }
3326
3327 /* Some vendors want the ability to Use the EEPROM setting as
3328 * enable/disable only, and not for capability
3329 */
3330 if (((hw->mac.type == e1000_i350) ||
3331 (hw->mac.type == e1000_i354)) &&
3332 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3333 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3334 adapter->wol = 0;
3335 }
3336 if (hw->mac.type == e1000_i350) {
3337 if (((pdev->subsystem_device == 0x5001) ||
3338 (pdev->subsystem_device == 0x5002)) &&
3339 (hw->bus.func == 0)) {
3340 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3341 adapter->wol = 0;
3342 }
3343 if (pdev->subsystem_device == 0x1F52)
3344 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3345 }
3346
3347 device_set_wakeup_enable(&adapter->pdev->dev,
3348 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3349
3350 /* reset the hardware with the new settings */
3351 igb_reset(adapter);
3352
3353 /* Init the I2C interface */
3354 err = igb_init_i2c(adapter);
3355 if (err) {
3356 dev_err(&pdev->dev, "failed to init i2c interface\n");
3357 goto err_eeprom;
3358 }
3359
3360 /* let the f/w know that the h/w is now under the control of the
3361 * driver.
3362 */
3363 igb_get_hw_control(adapter);
3364
3365 strcpy(netdev->name, "eth%d");
3366 err = register_netdev(netdev);
3367 if (err)
3368 goto err_register;
3369
3370 /* carrier off reporting is important to ethtool even BEFORE open */
3371 netif_carrier_off(netdev);
3372
3373 #ifdef CONFIG_IGB_DCA
3374 if (dca_add_requester(&pdev->dev) == 0) {
3375 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3376 dev_info(&pdev->dev, "DCA enabled\n");
3377 igb_setup_dca(adapter);
3378 }
3379
3380 #endif
3381 #ifdef CONFIG_IGB_HWMON
3382 /* Initialize the thermal sensor on i350 devices. */
3383 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3384 u16 ets_word;
3385
3386 /* Read the NVM to determine if this i350 device supports an
3387 * external thermal sensor.
3388 */
3389 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3390 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3391 adapter->ets = true;
3392 else
3393 adapter->ets = false;
3394 if (igb_sysfs_init(adapter))
3395 dev_err(&pdev->dev,
3396 "failed to allocate sysfs resources\n");
3397 } else {
3398 adapter->ets = false;
3399 }
3400 #endif
3401 /* Check if Media Autosense is enabled */
3402 adapter->ei = *ei;
3403 if (hw->dev_spec._82575.mas_capable)
3404 igb_init_mas(adapter);
3405
3406 /* do hw tstamp init after resetting */
3407 igb_ptp_init(adapter);
3408
3409 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3410 /* print bus type/speed/width info, not applicable to i354 */
3411 if (hw->mac.type != e1000_i354) {
3412 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3413 netdev->name,
3414 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3415 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3416 "unknown"),
3417 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3418 "Width x4" :
3419 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3420 "Width x2" :
3421 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3422 "Width x1" : "unknown"), netdev->dev_addr);
3423 }
3424
3425 if ((hw->mac.type >= e1000_i210 ||
3426 igb_get_flash_presence_i210(hw))) {
3427 ret_val = igb_read_part_string(hw, part_str,
3428 E1000_PBANUM_LENGTH);
3429 } else {
3430 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3431 }
3432
3433 if (ret_val)
3434 strcpy(part_str, "Unknown");
3435 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3436 dev_info(&pdev->dev,
3437 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3438 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3439 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3440 adapter->num_rx_queues, adapter->num_tx_queues);
3441 if (hw->phy.media_type == e1000_media_type_copper) {
3442 switch (hw->mac.type) {
3443 case e1000_i350:
3444 case e1000_i210:
3445 case e1000_i211:
3446 /* Enable EEE for internal copper PHY devices */
3447 err = igb_set_eee_i350(hw, true, true);
3448 if ((!err) &&
3449 (!hw->dev_spec._82575.eee_disable)) {
3450 adapter->eee_advert =
3451 MDIO_EEE_100TX | MDIO_EEE_1000T;
3452 adapter->flags |= IGB_FLAG_EEE;
3453 }
3454 break;
3455 case e1000_i354:
3456 if ((rd32(E1000_CTRL_EXT) &
3457 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3458 err = igb_set_eee_i354(hw, true, true);
3459 if ((!err) &&
3460 (!hw->dev_spec._82575.eee_disable)) {
3461 adapter->eee_advert =
3462 MDIO_EEE_100TX | MDIO_EEE_1000T;
3463 adapter->flags |= IGB_FLAG_EEE;
3464 }
3465 }
3466 break;
3467 default:
3468 break;
3469 }
3470 }
3471 pm_runtime_put_noidle(&pdev->dev);
3472 return 0;
3473
3474 err_register:
3475 igb_release_hw_control(adapter);
3476 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3477 err_eeprom:
3478 if (!igb_check_reset_block(hw))
3479 igb_reset_phy(hw);
3480
3481 if (hw->flash_address)
3482 iounmap(hw->flash_address);
3483 err_sw_init:
3484 kfree(adapter->mac_table);
3485 kfree(adapter->shadow_vfta);
3486 igb_clear_interrupt_scheme(adapter);
3487 #ifdef CONFIG_PCI_IOV
3488 igb_disable_sriov(pdev);
3489 #endif
3490 pci_iounmap(pdev, adapter->io_addr);
3491 err_ioremap:
3492 free_netdev(netdev);
3493 err_alloc_etherdev:
3494 pci_release_mem_regions(pdev);
3495 err_pci_reg:
3496 err_dma:
3497 pci_disable_device(pdev);
3498 return err;
3499 }
3500
3501 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3502 static int igb_disable_sriov(struct pci_dev *pdev)
3503 {
3504 struct net_device *netdev = pci_get_drvdata(pdev);
3505 struct igb_adapter *adapter = netdev_priv(netdev);
3506 struct e1000_hw *hw = &adapter->hw;
3507
3508 /* reclaim resources allocated to VFs */
3509 if (adapter->vf_data) {
3510 /* disable iov and allow time for transactions to clear */
3511 if (pci_vfs_assigned(pdev)) {
3512 dev_warn(&pdev->dev,
3513 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3514 return -EPERM;
3515 } else {
3516 pci_disable_sriov(pdev);
3517 msleep(500);
3518 }
3519
3520 kfree(adapter->vf_mac_list);
3521 adapter->vf_mac_list = NULL;
3522 kfree(adapter->vf_data);
3523 adapter->vf_data = NULL;
3524 adapter->vfs_allocated_count = 0;
3525 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3526 wrfl();
3527 msleep(100);
3528 dev_info(&pdev->dev, "IOV Disabled\n");
3529
3530 /* Re-enable DMA Coalescing flag since IOV is turned off */
3531 adapter->flags |= IGB_FLAG_DMAC;
3532 }
3533
3534 return 0;
3535 }
3536
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3537 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3538 {
3539 struct net_device *netdev = pci_get_drvdata(pdev);
3540 struct igb_adapter *adapter = netdev_priv(netdev);
3541 int old_vfs = pci_num_vf(pdev);
3542 struct vf_mac_filter *mac_list;
3543 int err = 0;
3544 int num_vf_mac_filters, i;
3545
3546 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3547 err = -EPERM;
3548 goto out;
3549 }
3550 if (!num_vfs)
3551 goto out;
3552
3553 if (old_vfs) {
3554 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3555 old_vfs, max_vfs);
3556 adapter->vfs_allocated_count = old_vfs;
3557 } else
3558 adapter->vfs_allocated_count = num_vfs;
3559
3560 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3561 sizeof(struct vf_data_storage), GFP_KERNEL);
3562
3563 /* if allocation failed then we do not support SR-IOV */
3564 if (!adapter->vf_data) {
3565 adapter->vfs_allocated_count = 0;
3566 err = -ENOMEM;
3567 goto out;
3568 }
3569
3570 /* Due to the limited number of RAR entries calculate potential
3571 * number of MAC filters available for the VFs. Reserve entries
3572 * for PF default MAC, PF MAC filters and at least one RAR entry
3573 * for each VF for VF MAC.
3574 */
3575 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3576 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3577 adapter->vfs_allocated_count);
3578
3579 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3580 sizeof(struct vf_mac_filter),
3581 GFP_KERNEL);
3582
3583 mac_list = adapter->vf_mac_list;
3584 INIT_LIST_HEAD(&adapter->vf_macs.l);
3585
3586 if (adapter->vf_mac_list) {
3587 /* Initialize list of VF MAC filters */
3588 for (i = 0; i < num_vf_mac_filters; i++) {
3589 mac_list->vf = -1;
3590 mac_list->free = true;
3591 list_add(&mac_list->l, &adapter->vf_macs.l);
3592 mac_list++;
3593 }
3594 } else {
3595 /* If we could not allocate memory for the VF MAC filters
3596 * we can continue without this feature but warn user.
3597 */
3598 dev_err(&pdev->dev,
3599 "Unable to allocate memory for VF MAC filter list\n");
3600 }
3601
3602 /* only call pci_enable_sriov() if no VFs are allocated already */
3603 if (!old_vfs) {
3604 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3605 if (err)
3606 goto err_out;
3607 }
3608 dev_info(&pdev->dev, "%d VFs allocated\n",
3609 adapter->vfs_allocated_count);
3610 for (i = 0; i < adapter->vfs_allocated_count; i++)
3611 igb_vf_configure(adapter, i);
3612
3613 /* DMA Coalescing is not supported in IOV mode. */
3614 adapter->flags &= ~IGB_FLAG_DMAC;
3615 goto out;
3616
3617 err_out:
3618 kfree(adapter->vf_mac_list);
3619 adapter->vf_mac_list = NULL;
3620 kfree(adapter->vf_data);
3621 adapter->vf_data = NULL;
3622 adapter->vfs_allocated_count = 0;
3623 out:
3624 return err;
3625 }
3626
3627 #endif
3628 /**
3629 * igb_remove_i2c - Cleanup I2C interface
3630 * @adapter: pointer to adapter structure
3631 **/
igb_remove_i2c(struct igb_adapter * adapter)3632 static void igb_remove_i2c(struct igb_adapter *adapter)
3633 {
3634 /* free the adapter bus structure */
3635 i2c_del_adapter(&adapter->i2c_adap);
3636 }
3637
3638 /**
3639 * igb_remove - Device Removal Routine
3640 * @pdev: PCI device information struct
3641 *
3642 * igb_remove is called by the PCI subsystem to alert the driver
3643 * that it should release a PCI device. The could be caused by a
3644 * Hot-Plug event, or because the driver is going to be removed from
3645 * memory.
3646 **/
igb_remove(struct pci_dev * pdev)3647 static void igb_remove(struct pci_dev *pdev)
3648 {
3649 struct net_device *netdev = pci_get_drvdata(pdev);
3650 struct igb_adapter *adapter = netdev_priv(netdev);
3651 struct e1000_hw *hw = &adapter->hw;
3652
3653 pm_runtime_get_noresume(&pdev->dev);
3654 #ifdef CONFIG_IGB_HWMON
3655 igb_sysfs_exit(adapter);
3656 #endif
3657 igb_remove_i2c(adapter);
3658 igb_ptp_stop(adapter);
3659 /* The watchdog timer may be rescheduled, so explicitly
3660 * disable watchdog from being rescheduled.
3661 */
3662 set_bit(__IGB_DOWN, &adapter->state);
3663 del_timer_sync(&adapter->watchdog_timer);
3664 del_timer_sync(&adapter->phy_info_timer);
3665
3666 cancel_work_sync(&adapter->reset_task);
3667 cancel_work_sync(&adapter->watchdog_task);
3668
3669 #ifdef CONFIG_IGB_DCA
3670 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3671 dev_info(&pdev->dev, "DCA disabled\n");
3672 dca_remove_requester(&pdev->dev);
3673 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3674 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3675 }
3676 #endif
3677
3678 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3679 * would have already happened in close and is redundant.
3680 */
3681 igb_release_hw_control(adapter);
3682
3683 #ifdef CONFIG_PCI_IOV
3684 igb_disable_sriov(pdev);
3685 #endif
3686
3687 unregister_netdev(netdev);
3688
3689 igb_clear_interrupt_scheme(adapter);
3690
3691 pci_iounmap(pdev, adapter->io_addr);
3692 if (hw->flash_address)
3693 iounmap(hw->flash_address);
3694 pci_release_mem_regions(pdev);
3695
3696 kfree(adapter->mac_table);
3697 kfree(adapter->shadow_vfta);
3698 free_netdev(netdev);
3699
3700 pci_disable_pcie_error_reporting(pdev);
3701
3702 pci_disable_device(pdev);
3703 }
3704
3705 /**
3706 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3707 * @adapter: board private structure to initialize
3708 *
3709 * This function initializes the vf specific data storage and then attempts to
3710 * allocate the VFs. The reason for ordering it this way is because it is much
3711 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3712 * the memory for the VFs.
3713 **/
igb_probe_vfs(struct igb_adapter * adapter)3714 static void igb_probe_vfs(struct igb_adapter *adapter)
3715 {
3716 #ifdef CONFIG_PCI_IOV
3717 struct pci_dev *pdev = adapter->pdev;
3718 struct e1000_hw *hw = &adapter->hw;
3719
3720 /* Virtualization features not supported on i210 family. */
3721 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3722 return;
3723
3724 /* Of the below we really only want the effect of getting
3725 * IGB_FLAG_HAS_MSIX set (if available), without which
3726 * igb_enable_sriov() has no effect.
3727 */
3728 igb_set_interrupt_capability(adapter, true);
3729 igb_reset_interrupt_capability(adapter);
3730
3731 pci_sriov_set_totalvfs(pdev, 7);
3732 igb_enable_sriov(pdev, max_vfs);
3733
3734 #endif /* CONFIG_PCI_IOV */
3735 }
3736
igb_get_max_rss_queues(struct igb_adapter * adapter)3737 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3738 {
3739 struct e1000_hw *hw = &adapter->hw;
3740 unsigned int max_rss_queues;
3741
3742 /* Determine the maximum number of RSS queues supported. */
3743 switch (hw->mac.type) {
3744 case e1000_i211:
3745 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3746 break;
3747 case e1000_82575:
3748 case e1000_i210:
3749 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3750 break;
3751 case e1000_i350:
3752 /* I350 cannot do RSS and SR-IOV at the same time */
3753 if (!!adapter->vfs_allocated_count) {
3754 max_rss_queues = 1;
3755 break;
3756 }
3757 /* fall through */
3758 case e1000_82576:
3759 if (!!adapter->vfs_allocated_count) {
3760 max_rss_queues = 2;
3761 break;
3762 }
3763 /* fall through */
3764 case e1000_82580:
3765 case e1000_i354:
3766 default:
3767 max_rss_queues = IGB_MAX_RX_QUEUES;
3768 break;
3769 }
3770
3771 return max_rss_queues;
3772 }
3773
igb_init_queue_configuration(struct igb_adapter * adapter)3774 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3775 {
3776 u32 max_rss_queues;
3777
3778 max_rss_queues = igb_get_max_rss_queues(adapter);
3779 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3780
3781 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3782 }
3783
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3784 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3785 const u32 max_rss_queues)
3786 {
3787 struct e1000_hw *hw = &adapter->hw;
3788
3789 /* Determine if we need to pair queues. */
3790 switch (hw->mac.type) {
3791 case e1000_82575:
3792 case e1000_i211:
3793 /* Device supports enough interrupts without queue pairing. */
3794 break;
3795 case e1000_82576:
3796 case e1000_82580:
3797 case e1000_i350:
3798 case e1000_i354:
3799 case e1000_i210:
3800 default:
3801 /* If rss_queues > half of max_rss_queues, pair the queues in
3802 * order to conserve interrupts due to limited supply.
3803 */
3804 if (adapter->rss_queues > (max_rss_queues / 2))
3805 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3806 else
3807 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3808 break;
3809 }
3810 }
3811
3812 /**
3813 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3814 * @adapter: board private structure to initialize
3815 *
3816 * igb_sw_init initializes the Adapter private data structure.
3817 * Fields are initialized based on PCI device information and
3818 * OS network device settings (MTU size).
3819 **/
igb_sw_init(struct igb_adapter * adapter)3820 static int igb_sw_init(struct igb_adapter *adapter)
3821 {
3822 struct e1000_hw *hw = &adapter->hw;
3823 struct net_device *netdev = adapter->netdev;
3824 struct pci_dev *pdev = adapter->pdev;
3825
3826 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3827
3828 /* set default ring sizes */
3829 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3830 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3831
3832 /* set default ITR values */
3833 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3834 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3835
3836 /* set default work limits */
3837 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3838
3839 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3840 VLAN_HLEN;
3841 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3842
3843 spin_lock_init(&adapter->nfc_lock);
3844 spin_lock_init(&adapter->stats64_lock);
3845 #ifdef CONFIG_PCI_IOV
3846 switch (hw->mac.type) {
3847 case e1000_82576:
3848 case e1000_i350:
3849 if (max_vfs > 7) {
3850 dev_warn(&pdev->dev,
3851 "Maximum of 7 VFs per PF, using max\n");
3852 max_vfs = adapter->vfs_allocated_count = 7;
3853 } else
3854 adapter->vfs_allocated_count = max_vfs;
3855 if (adapter->vfs_allocated_count)
3856 dev_warn(&pdev->dev,
3857 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3858 break;
3859 default:
3860 break;
3861 }
3862 #endif /* CONFIG_PCI_IOV */
3863
3864 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3865 adapter->flags |= IGB_FLAG_HAS_MSIX;
3866
3867 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3868 sizeof(struct igb_mac_addr),
3869 GFP_KERNEL);
3870 if (!adapter->mac_table)
3871 return -ENOMEM;
3872
3873 igb_probe_vfs(adapter);
3874
3875 igb_init_queue_configuration(adapter);
3876
3877 /* Setup and initialize a copy of the hw vlan table array */
3878 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3879 GFP_KERNEL);
3880 if (!adapter->shadow_vfta)
3881 return -ENOMEM;
3882
3883 /* This call may decrease the number of queues */
3884 if (igb_init_interrupt_scheme(adapter, true)) {
3885 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3886 return -ENOMEM;
3887 }
3888
3889 /* Explicitly disable IRQ since the NIC can be in any state. */
3890 igb_irq_disable(adapter);
3891
3892 if (hw->mac.type >= e1000_i350)
3893 adapter->flags &= ~IGB_FLAG_DMAC;
3894
3895 set_bit(__IGB_DOWN, &adapter->state);
3896 return 0;
3897 }
3898
3899 /**
3900 * igb_open - Called when a network interface is made active
3901 * @netdev: network interface device structure
3902 *
3903 * Returns 0 on success, negative value on failure
3904 *
3905 * The open entry point is called when a network interface is made
3906 * active by the system (IFF_UP). At this point all resources needed
3907 * for transmit and receive operations are allocated, the interrupt
3908 * handler is registered with the OS, the watchdog timer is started,
3909 * and the stack is notified that the interface is ready.
3910 **/
__igb_open(struct net_device * netdev,bool resuming)3911 static int __igb_open(struct net_device *netdev, bool resuming)
3912 {
3913 struct igb_adapter *adapter = netdev_priv(netdev);
3914 struct e1000_hw *hw = &adapter->hw;
3915 struct pci_dev *pdev = adapter->pdev;
3916 int err;
3917 int i;
3918
3919 /* disallow open during test */
3920 if (test_bit(__IGB_TESTING, &adapter->state)) {
3921 WARN_ON(resuming);
3922 return -EBUSY;
3923 }
3924
3925 if (!resuming)
3926 pm_runtime_get_sync(&pdev->dev);
3927
3928 netif_carrier_off(netdev);
3929
3930 /* allocate transmit descriptors */
3931 err = igb_setup_all_tx_resources(adapter);
3932 if (err)
3933 goto err_setup_tx;
3934
3935 /* allocate receive descriptors */
3936 err = igb_setup_all_rx_resources(adapter);
3937 if (err)
3938 goto err_setup_rx;
3939
3940 igb_power_up_link(adapter);
3941
3942 /* before we allocate an interrupt, we must be ready to handle it.
3943 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3944 * as soon as we call pci_request_irq, so we have to setup our
3945 * clean_rx handler before we do so.
3946 */
3947 igb_configure(adapter);
3948
3949 err = igb_request_irq(adapter);
3950 if (err)
3951 goto err_req_irq;
3952
3953 /* Notify the stack of the actual queue counts. */
3954 err = netif_set_real_num_tx_queues(adapter->netdev,
3955 adapter->num_tx_queues);
3956 if (err)
3957 goto err_set_queues;
3958
3959 err = netif_set_real_num_rx_queues(adapter->netdev,
3960 adapter->num_rx_queues);
3961 if (err)
3962 goto err_set_queues;
3963
3964 /* From here on the code is the same as igb_up() */
3965 clear_bit(__IGB_DOWN, &adapter->state);
3966
3967 for (i = 0; i < adapter->num_q_vectors; i++)
3968 napi_enable(&(adapter->q_vector[i]->napi));
3969
3970 /* Clear any pending interrupts. */
3971 rd32(E1000_TSICR);
3972 rd32(E1000_ICR);
3973
3974 igb_irq_enable(adapter);
3975
3976 /* notify VFs that reset has been completed */
3977 if (adapter->vfs_allocated_count) {
3978 u32 reg_data = rd32(E1000_CTRL_EXT);
3979
3980 reg_data |= E1000_CTRL_EXT_PFRSTD;
3981 wr32(E1000_CTRL_EXT, reg_data);
3982 }
3983
3984 netif_tx_start_all_queues(netdev);
3985
3986 if (!resuming)
3987 pm_runtime_put(&pdev->dev);
3988
3989 /* start the watchdog. */
3990 hw->mac.get_link_status = 1;
3991 schedule_work(&adapter->watchdog_task);
3992
3993 return 0;
3994
3995 err_set_queues:
3996 igb_free_irq(adapter);
3997 err_req_irq:
3998 igb_release_hw_control(adapter);
3999 igb_power_down_link(adapter);
4000 igb_free_all_rx_resources(adapter);
4001 err_setup_rx:
4002 igb_free_all_tx_resources(adapter);
4003 err_setup_tx:
4004 igb_reset(adapter);
4005 if (!resuming)
4006 pm_runtime_put(&pdev->dev);
4007
4008 return err;
4009 }
4010
igb_open(struct net_device * netdev)4011 int igb_open(struct net_device *netdev)
4012 {
4013 return __igb_open(netdev, false);
4014 }
4015
4016 /**
4017 * igb_close - Disables a network interface
4018 * @netdev: network interface device structure
4019 *
4020 * Returns 0, this is not allowed to fail
4021 *
4022 * The close entry point is called when an interface is de-activated
4023 * by the OS. The hardware is still under the driver's control, but
4024 * needs to be disabled. A global MAC reset is issued to stop the
4025 * hardware, and all transmit and receive resources are freed.
4026 **/
__igb_close(struct net_device * netdev,bool suspending)4027 static int __igb_close(struct net_device *netdev, bool suspending)
4028 {
4029 struct igb_adapter *adapter = netdev_priv(netdev);
4030 struct pci_dev *pdev = adapter->pdev;
4031
4032 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4033
4034 if (!suspending)
4035 pm_runtime_get_sync(&pdev->dev);
4036
4037 igb_down(adapter);
4038 igb_free_irq(adapter);
4039
4040 igb_free_all_tx_resources(adapter);
4041 igb_free_all_rx_resources(adapter);
4042
4043 if (!suspending)
4044 pm_runtime_put_sync(&pdev->dev);
4045 return 0;
4046 }
4047
igb_close(struct net_device * netdev)4048 int igb_close(struct net_device *netdev)
4049 {
4050 if (netif_device_present(netdev) || netdev->dismantle)
4051 return __igb_close(netdev, false);
4052 return 0;
4053 }
4054
4055 /**
4056 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4057 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4058 *
4059 * Return 0 on success, negative on failure
4060 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4061 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4062 {
4063 struct device *dev = tx_ring->dev;
4064 int size;
4065
4066 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4067
4068 tx_ring->tx_buffer_info = vmalloc(size);
4069 if (!tx_ring->tx_buffer_info)
4070 goto err;
4071
4072 /* round up to nearest 4K */
4073 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4074 tx_ring->size = ALIGN(tx_ring->size, 4096);
4075
4076 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4077 &tx_ring->dma, GFP_KERNEL);
4078 if (!tx_ring->desc)
4079 goto err;
4080
4081 tx_ring->next_to_use = 0;
4082 tx_ring->next_to_clean = 0;
4083
4084 return 0;
4085
4086 err:
4087 vfree(tx_ring->tx_buffer_info);
4088 tx_ring->tx_buffer_info = NULL;
4089 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4090 return -ENOMEM;
4091 }
4092
4093 /**
4094 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4095 * (Descriptors) for all queues
4096 * @adapter: board private structure
4097 *
4098 * Return 0 on success, negative on failure
4099 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4100 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4101 {
4102 struct pci_dev *pdev = adapter->pdev;
4103 int i, err = 0;
4104
4105 for (i = 0; i < adapter->num_tx_queues; i++) {
4106 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4107 if (err) {
4108 dev_err(&pdev->dev,
4109 "Allocation for Tx Queue %u failed\n", i);
4110 for (i--; i >= 0; i--)
4111 igb_free_tx_resources(adapter->tx_ring[i]);
4112 break;
4113 }
4114 }
4115
4116 return err;
4117 }
4118
4119 /**
4120 * igb_setup_tctl - configure the transmit control registers
4121 * @adapter: Board private structure
4122 **/
igb_setup_tctl(struct igb_adapter * adapter)4123 void igb_setup_tctl(struct igb_adapter *adapter)
4124 {
4125 struct e1000_hw *hw = &adapter->hw;
4126 u32 tctl;
4127
4128 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4129 wr32(E1000_TXDCTL(0), 0);
4130
4131 /* Program the Transmit Control Register */
4132 tctl = rd32(E1000_TCTL);
4133 tctl &= ~E1000_TCTL_CT;
4134 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4135 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4136
4137 igb_config_collision_dist(hw);
4138
4139 /* Enable transmits */
4140 tctl |= E1000_TCTL_EN;
4141
4142 wr32(E1000_TCTL, tctl);
4143 }
4144
4145 /**
4146 * igb_configure_tx_ring - Configure transmit ring after Reset
4147 * @adapter: board private structure
4148 * @ring: tx ring to configure
4149 *
4150 * Configure a transmit ring after a reset.
4151 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4152 void igb_configure_tx_ring(struct igb_adapter *adapter,
4153 struct igb_ring *ring)
4154 {
4155 struct e1000_hw *hw = &adapter->hw;
4156 u32 txdctl = 0;
4157 u64 tdba = ring->dma;
4158 int reg_idx = ring->reg_idx;
4159
4160 wr32(E1000_TDLEN(reg_idx),
4161 ring->count * sizeof(union e1000_adv_tx_desc));
4162 wr32(E1000_TDBAL(reg_idx),
4163 tdba & 0x00000000ffffffffULL);
4164 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4165
4166 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4167 wr32(E1000_TDH(reg_idx), 0);
4168 writel(0, ring->tail);
4169
4170 txdctl |= IGB_TX_PTHRESH;
4171 txdctl |= IGB_TX_HTHRESH << 8;
4172 txdctl |= IGB_TX_WTHRESH << 16;
4173
4174 /* reinitialize tx_buffer_info */
4175 memset(ring->tx_buffer_info, 0,
4176 sizeof(struct igb_tx_buffer) * ring->count);
4177
4178 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4179 wr32(E1000_TXDCTL(reg_idx), txdctl);
4180 }
4181
4182 /**
4183 * igb_configure_tx - Configure transmit Unit after Reset
4184 * @adapter: board private structure
4185 *
4186 * Configure the Tx unit of the MAC after a reset.
4187 **/
igb_configure_tx(struct igb_adapter * adapter)4188 static void igb_configure_tx(struct igb_adapter *adapter)
4189 {
4190 struct e1000_hw *hw = &adapter->hw;
4191 int i;
4192
4193 /* disable the queues */
4194 for (i = 0; i < adapter->num_tx_queues; i++)
4195 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4196
4197 wrfl();
4198 usleep_range(10000, 20000);
4199
4200 for (i = 0; i < adapter->num_tx_queues; i++)
4201 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4202 }
4203
4204 /**
4205 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4206 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4207 *
4208 * Returns 0 on success, negative on failure
4209 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4210 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4211 {
4212 struct device *dev = rx_ring->dev;
4213 int size;
4214
4215 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4216
4217 rx_ring->rx_buffer_info = vmalloc(size);
4218 if (!rx_ring->rx_buffer_info)
4219 goto err;
4220
4221 /* Round up to nearest 4K */
4222 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4223 rx_ring->size = ALIGN(rx_ring->size, 4096);
4224
4225 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4226 &rx_ring->dma, GFP_KERNEL);
4227 if (!rx_ring->desc)
4228 goto err;
4229
4230 rx_ring->next_to_alloc = 0;
4231 rx_ring->next_to_clean = 0;
4232 rx_ring->next_to_use = 0;
4233
4234 return 0;
4235
4236 err:
4237 vfree(rx_ring->rx_buffer_info);
4238 rx_ring->rx_buffer_info = NULL;
4239 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4240 return -ENOMEM;
4241 }
4242
4243 /**
4244 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4245 * (Descriptors) for all queues
4246 * @adapter: board private structure
4247 *
4248 * Return 0 on success, negative on failure
4249 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4250 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4251 {
4252 struct pci_dev *pdev = adapter->pdev;
4253 int i, err = 0;
4254
4255 for (i = 0; i < adapter->num_rx_queues; i++) {
4256 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4257 if (err) {
4258 dev_err(&pdev->dev,
4259 "Allocation for Rx Queue %u failed\n", i);
4260 for (i--; i >= 0; i--)
4261 igb_free_rx_resources(adapter->rx_ring[i]);
4262 break;
4263 }
4264 }
4265
4266 return err;
4267 }
4268
4269 /**
4270 * igb_setup_mrqc - configure the multiple receive queue control registers
4271 * @adapter: Board private structure
4272 **/
igb_setup_mrqc(struct igb_adapter * adapter)4273 static void igb_setup_mrqc(struct igb_adapter *adapter)
4274 {
4275 struct e1000_hw *hw = &adapter->hw;
4276 u32 mrqc, rxcsum;
4277 u32 j, num_rx_queues;
4278 u32 rss_key[10];
4279
4280 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4281 for (j = 0; j < 10; j++)
4282 wr32(E1000_RSSRK(j), rss_key[j]);
4283
4284 num_rx_queues = adapter->rss_queues;
4285
4286 switch (hw->mac.type) {
4287 case e1000_82576:
4288 /* 82576 supports 2 RSS queues for SR-IOV */
4289 if (adapter->vfs_allocated_count)
4290 num_rx_queues = 2;
4291 break;
4292 default:
4293 break;
4294 }
4295
4296 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4297 for (j = 0; j < IGB_RETA_SIZE; j++)
4298 adapter->rss_indir_tbl[j] =
4299 (j * num_rx_queues) / IGB_RETA_SIZE;
4300 adapter->rss_indir_tbl_init = num_rx_queues;
4301 }
4302 igb_write_rss_indir_tbl(adapter);
4303
4304 /* Disable raw packet checksumming so that RSS hash is placed in
4305 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4306 * offloads as they are enabled by default
4307 */
4308 rxcsum = rd32(E1000_RXCSUM);
4309 rxcsum |= E1000_RXCSUM_PCSD;
4310
4311 if (adapter->hw.mac.type >= e1000_82576)
4312 /* Enable Receive Checksum Offload for SCTP */
4313 rxcsum |= E1000_RXCSUM_CRCOFL;
4314
4315 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4316 wr32(E1000_RXCSUM, rxcsum);
4317
4318 /* Generate RSS hash based on packet types, TCP/UDP
4319 * port numbers and/or IPv4/v6 src and dst addresses
4320 */
4321 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4322 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4323 E1000_MRQC_RSS_FIELD_IPV6 |
4324 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4325 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4326
4327 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4328 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4329 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4330 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4331
4332 /* If VMDq is enabled then we set the appropriate mode for that, else
4333 * we default to RSS so that an RSS hash is calculated per packet even
4334 * if we are only using one queue
4335 */
4336 if (adapter->vfs_allocated_count) {
4337 if (hw->mac.type > e1000_82575) {
4338 /* Set the default pool for the PF's first queue */
4339 u32 vtctl = rd32(E1000_VT_CTL);
4340
4341 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4342 E1000_VT_CTL_DISABLE_DEF_POOL);
4343 vtctl |= adapter->vfs_allocated_count <<
4344 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4345 wr32(E1000_VT_CTL, vtctl);
4346 }
4347 if (adapter->rss_queues > 1)
4348 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4349 else
4350 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4351 } else {
4352 if (hw->mac.type != e1000_i211)
4353 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4354 }
4355 igb_vmm_control(adapter);
4356
4357 wr32(E1000_MRQC, mrqc);
4358 }
4359
4360 /**
4361 * igb_setup_rctl - configure the receive control registers
4362 * @adapter: Board private structure
4363 **/
igb_setup_rctl(struct igb_adapter * adapter)4364 void igb_setup_rctl(struct igb_adapter *adapter)
4365 {
4366 struct e1000_hw *hw = &adapter->hw;
4367 u32 rctl;
4368
4369 rctl = rd32(E1000_RCTL);
4370
4371 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4372 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4373
4374 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4375 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4376
4377 /* enable stripping of CRC. It's unlikely this will break BMC
4378 * redirection as it did with e1000. Newer features require
4379 * that the HW strips the CRC.
4380 */
4381 rctl |= E1000_RCTL_SECRC;
4382
4383 /* disable store bad packets and clear size bits. */
4384 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4385
4386 /* enable LPE to allow for reception of jumbo frames */
4387 rctl |= E1000_RCTL_LPE;
4388
4389 /* disable queue 0 to prevent tail write w/o re-config */
4390 wr32(E1000_RXDCTL(0), 0);
4391
4392 /* Attention!!! For SR-IOV PF driver operations you must enable
4393 * queue drop for all VF and PF queues to prevent head of line blocking
4394 * if an un-trusted VF does not provide descriptors to hardware.
4395 */
4396 if (adapter->vfs_allocated_count) {
4397 /* set all queue drop enable bits */
4398 wr32(E1000_QDE, ALL_QUEUES);
4399 }
4400
4401 /* This is useful for sniffing bad packets. */
4402 if (adapter->netdev->features & NETIF_F_RXALL) {
4403 /* UPE and MPE will be handled by normal PROMISC logic
4404 * in e1000e_set_rx_mode
4405 */
4406 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4407 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4408 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4409
4410 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4411 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4412 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4413 * and that breaks VLANs.
4414 */
4415 }
4416
4417 wr32(E1000_RCTL, rctl);
4418 }
4419
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4420 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4421 int vfn)
4422 {
4423 struct e1000_hw *hw = &adapter->hw;
4424 u32 vmolr;
4425
4426 if (size > MAX_JUMBO_FRAME_SIZE)
4427 size = MAX_JUMBO_FRAME_SIZE;
4428
4429 vmolr = rd32(E1000_VMOLR(vfn));
4430 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4431 vmolr |= size | E1000_VMOLR_LPE;
4432 wr32(E1000_VMOLR(vfn), vmolr);
4433
4434 return 0;
4435 }
4436
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4437 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4438 int vfn, bool enable)
4439 {
4440 struct e1000_hw *hw = &adapter->hw;
4441 u32 val, reg;
4442
4443 if (hw->mac.type < e1000_82576)
4444 return;
4445
4446 if (hw->mac.type == e1000_i350)
4447 reg = E1000_DVMOLR(vfn);
4448 else
4449 reg = E1000_VMOLR(vfn);
4450
4451 val = rd32(reg);
4452 if (enable)
4453 val |= E1000_VMOLR_STRVLAN;
4454 else
4455 val &= ~(E1000_VMOLR_STRVLAN);
4456 wr32(reg, val);
4457 }
4458
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4459 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4460 int vfn, bool aupe)
4461 {
4462 struct e1000_hw *hw = &adapter->hw;
4463 u32 vmolr;
4464
4465 /* This register exists only on 82576 and newer so if we are older then
4466 * we should exit and do nothing
4467 */
4468 if (hw->mac.type < e1000_82576)
4469 return;
4470
4471 vmolr = rd32(E1000_VMOLR(vfn));
4472 if (aupe)
4473 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4474 else
4475 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4476
4477 /* clear all bits that might not be set */
4478 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4479
4480 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4481 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4482 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4483 * multicast packets
4484 */
4485 if (vfn <= adapter->vfs_allocated_count)
4486 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4487
4488 wr32(E1000_VMOLR(vfn), vmolr);
4489 }
4490
4491 /**
4492 * igb_configure_rx_ring - Configure a receive ring after Reset
4493 * @adapter: board private structure
4494 * @ring: receive ring to be configured
4495 *
4496 * Configure the Rx unit of the MAC after a reset.
4497 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4498 void igb_configure_rx_ring(struct igb_adapter *adapter,
4499 struct igb_ring *ring)
4500 {
4501 struct e1000_hw *hw = &adapter->hw;
4502 union e1000_adv_rx_desc *rx_desc;
4503 u64 rdba = ring->dma;
4504 int reg_idx = ring->reg_idx;
4505 u32 srrctl = 0, rxdctl = 0;
4506
4507 /* disable the queue */
4508 wr32(E1000_RXDCTL(reg_idx), 0);
4509
4510 /* Set DMA base address registers */
4511 wr32(E1000_RDBAL(reg_idx),
4512 rdba & 0x00000000ffffffffULL);
4513 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4514 wr32(E1000_RDLEN(reg_idx),
4515 ring->count * sizeof(union e1000_adv_rx_desc));
4516
4517 /* initialize head and tail */
4518 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4519 wr32(E1000_RDH(reg_idx), 0);
4520 writel(0, ring->tail);
4521
4522 /* set descriptor configuration */
4523 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4524 if (ring_uses_large_buffer(ring))
4525 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4526 else
4527 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4528 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4529 if (hw->mac.type >= e1000_82580)
4530 srrctl |= E1000_SRRCTL_TIMESTAMP;
4531 /* Only set Drop Enable if we are supporting multiple queues */
4532 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4533 srrctl |= E1000_SRRCTL_DROP_EN;
4534
4535 wr32(E1000_SRRCTL(reg_idx), srrctl);
4536
4537 /* set filtering for VMDQ pools */
4538 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4539
4540 rxdctl |= IGB_RX_PTHRESH;
4541 rxdctl |= IGB_RX_HTHRESH << 8;
4542 rxdctl |= IGB_RX_WTHRESH << 16;
4543
4544 /* initialize rx_buffer_info */
4545 memset(ring->rx_buffer_info, 0,
4546 sizeof(struct igb_rx_buffer) * ring->count);
4547
4548 /* initialize Rx descriptor 0 */
4549 rx_desc = IGB_RX_DESC(ring, 0);
4550 rx_desc->wb.upper.length = 0;
4551
4552 /* enable receive descriptor fetching */
4553 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4554 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4555 }
4556
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4557 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4558 struct igb_ring *rx_ring)
4559 {
4560 /* set build_skb and buffer size flags */
4561 clear_ring_build_skb_enabled(rx_ring);
4562 clear_ring_uses_large_buffer(rx_ring);
4563
4564 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4565 return;
4566
4567 set_ring_build_skb_enabled(rx_ring);
4568
4569 #if (PAGE_SIZE < 8192)
4570 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4571 return;
4572
4573 set_ring_uses_large_buffer(rx_ring);
4574 #endif
4575 }
4576
4577 /**
4578 * igb_configure_rx - Configure receive Unit after Reset
4579 * @adapter: board private structure
4580 *
4581 * Configure the Rx unit of the MAC after a reset.
4582 **/
igb_configure_rx(struct igb_adapter * adapter)4583 static void igb_configure_rx(struct igb_adapter *adapter)
4584 {
4585 int i;
4586
4587 /* set the correct pool for the PF default MAC address in entry 0 */
4588 igb_set_default_mac_filter(adapter);
4589
4590 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4591 * the Base and Length of the Rx Descriptor Ring
4592 */
4593 for (i = 0; i < adapter->num_rx_queues; i++) {
4594 struct igb_ring *rx_ring = adapter->rx_ring[i];
4595
4596 igb_set_rx_buffer_len(adapter, rx_ring);
4597 igb_configure_rx_ring(adapter, rx_ring);
4598 }
4599 }
4600
4601 /**
4602 * igb_free_tx_resources - Free Tx Resources per Queue
4603 * @tx_ring: Tx descriptor ring for a specific queue
4604 *
4605 * Free all transmit software resources
4606 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4607 void igb_free_tx_resources(struct igb_ring *tx_ring)
4608 {
4609 igb_clean_tx_ring(tx_ring);
4610
4611 vfree(tx_ring->tx_buffer_info);
4612 tx_ring->tx_buffer_info = NULL;
4613
4614 /* if not set, then don't free */
4615 if (!tx_ring->desc)
4616 return;
4617
4618 dma_free_coherent(tx_ring->dev, tx_ring->size,
4619 tx_ring->desc, tx_ring->dma);
4620
4621 tx_ring->desc = NULL;
4622 }
4623
4624 /**
4625 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4626 * @adapter: board private structure
4627 *
4628 * Free all transmit software resources
4629 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4630 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4631 {
4632 int i;
4633
4634 for (i = 0; i < adapter->num_tx_queues; i++)
4635 if (adapter->tx_ring[i])
4636 igb_free_tx_resources(adapter->tx_ring[i]);
4637 }
4638
4639 /**
4640 * igb_clean_tx_ring - Free Tx Buffers
4641 * @tx_ring: ring to be cleaned
4642 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4643 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4644 {
4645 u16 i = tx_ring->next_to_clean;
4646 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4647
4648 while (i != tx_ring->next_to_use) {
4649 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4650
4651 /* Free all the Tx ring sk_buffs */
4652 dev_kfree_skb_any(tx_buffer->skb);
4653
4654 /* unmap skb header data */
4655 dma_unmap_single(tx_ring->dev,
4656 dma_unmap_addr(tx_buffer, dma),
4657 dma_unmap_len(tx_buffer, len),
4658 DMA_TO_DEVICE);
4659
4660 /* check for eop_desc to determine the end of the packet */
4661 eop_desc = tx_buffer->next_to_watch;
4662 tx_desc = IGB_TX_DESC(tx_ring, i);
4663
4664 /* unmap remaining buffers */
4665 while (tx_desc != eop_desc) {
4666 tx_buffer++;
4667 tx_desc++;
4668 i++;
4669 if (unlikely(i == tx_ring->count)) {
4670 i = 0;
4671 tx_buffer = tx_ring->tx_buffer_info;
4672 tx_desc = IGB_TX_DESC(tx_ring, 0);
4673 }
4674
4675 /* unmap any remaining paged data */
4676 if (dma_unmap_len(tx_buffer, len))
4677 dma_unmap_page(tx_ring->dev,
4678 dma_unmap_addr(tx_buffer, dma),
4679 dma_unmap_len(tx_buffer, len),
4680 DMA_TO_DEVICE);
4681 }
4682
4683 /* move us one more past the eop_desc for start of next pkt */
4684 tx_buffer++;
4685 i++;
4686 if (unlikely(i == tx_ring->count)) {
4687 i = 0;
4688 tx_buffer = tx_ring->tx_buffer_info;
4689 }
4690 }
4691
4692 /* reset BQL for queue */
4693 netdev_tx_reset_queue(txring_txq(tx_ring));
4694
4695 /* reset next_to_use and next_to_clean */
4696 tx_ring->next_to_use = 0;
4697 tx_ring->next_to_clean = 0;
4698 }
4699
4700 /**
4701 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4702 * @adapter: board private structure
4703 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4704 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4705 {
4706 int i;
4707
4708 for (i = 0; i < adapter->num_tx_queues; i++)
4709 if (adapter->tx_ring[i])
4710 igb_clean_tx_ring(adapter->tx_ring[i]);
4711 }
4712
4713 /**
4714 * igb_free_rx_resources - Free Rx Resources
4715 * @rx_ring: ring to clean the resources from
4716 *
4717 * Free all receive software resources
4718 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4719 void igb_free_rx_resources(struct igb_ring *rx_ring)
4720 {
4721 igb_clean_rx_ring(rx_ring);
4722
4723 vfree(rx_ring->rx_buffer_info);
4724 rx_ring->rx_buffer_info = NULL;
4725
4726 /* if not set, then don't free */
4727 if (!rx_ring->desc)
4728 return;
4729
4730 dma_free_coherent(rx_ring->dev, rx_ring->size,
4731 rx_ring->desc, rx_ring->dma);
4732
4733 rx_ring->desc = NULL;
4734 }
4735
4736 /**
4737 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4738 * @adapter: board private structure
4739 *
4740 * Free all receive software resources
4741 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4742 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4743 {
4744 int i;
4745
4746 for (i = 0; i < adapter->num_rx_queues; i++)
4747 if (adapter->rx_ring[i])
4748 igb_free_rx_resources(adapter->rx_ring[i]);
4749 }
4750
4751 /**
4752 * igb_clean_rx_ring - Free Rx Buffers per Queue
4753 * @rx_ring: ring to free buffers from
4754 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4755 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4756 {
4757 u16 i = rx_ring->next_to_clean;
4758
4759 if (rx_ring->skb)
4760 dev_kfree_skb(rx_ring->skb);
4761 rx_ring->skb = NULL;
4762
4763 /* Free all the Rx ring sk_buffs */
4764 while (i != rx_ring->next_to_alloc) {
4765 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4766
4767 /* Invalidate cache lines that may have been written to by
4768 * device so that we avoid corrupting memory.
4769 */
4770 dma_sync_single_range_for_cpu(rx_ring->dev,
4771 buffer_info->dma,
4772 buffer_info->page_offset,
4773 igb_rx_bufsz(rx_ring),
4774 DMA_FROM_DEVICE);
4775
4776 /* free resources associated with mapping */
4777 dma_unmap_page_attrs(rx_ring->dev,
4778 buffer_info->dma,
4779 igb_rx_pg_size(rx_ring),
4780 DMA_FROM_DEVICE,
4781 IGB_RX_DMA_ATTR);
4782 __page_frag_cache_drain(buffer_info->page,
4783 buffer_info->pagecnt_bias);
4784
4785 i++;
4786 if (i == rx_ring->count)
4787 i = 0;
4788 }
4789
4790 rx_ring->next_to_alloc = 0;
4791 rx_ring->next_to_clean = 0;
4792 rx_ring->next_to_use = 0;
4793 }
4794
4795 /**
4796 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4797 * @adapter: board private structure
4798 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4799 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4800 {
4801 int i;
4802
4803 for (i = 0; i < adapter->num_rx_queues; i++)
4804 if (adapter->rx_ring[i])
4805 igb_clean_rx_ring(adapter->rx_ring[i]);
4806 }
4807
4808 /**
4809 * igb_set_mac - Change the Ethernet Address of the NIC
4810 * @netdev: network interface device structure
4811 * @p: pointer to an address structure
4812 *
4813 * Returns 0 on success, negative on failure
4814 **/
igb_set_mac(struct net_device * netdev,void * p)4815 static int igb_set_mac(struct net_device *netdev, void *p)
4816 {
4817 struct igb_adapter *adapter = netdev_priv(netdev);
4818 struct e1000_hw *hw = &adapter->hw;
4819 struct sockaddr *addr = p;
4820
4821 if (!is_valid_ether_addr(addr->sa_data))
4822 return -EADDRNOTAVAIL;
4823
4824 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4825 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4826
4827 /* set the correct pool for the new PF MAC address in entry 0 */
4828 igb_set_default_mac_filter(adapter);
4829
4830 return 0;
4831 }
4832
4833 /**
4834 * igb_write_mc_addr_list - write multicast addresses to MTA
4835 * @netdev: network interface device structure
4836 *
4837 * Writes multicast address list to the MTA hash table.
4838 * Returns: -ENOMEM on failure
4839 * 0 on no addresses written
4840 * X on writing X addresses to MTA
4841 **/
igb_write_mc_addr_list(struct net_device * netdev)4842 static int igb_write_mc_addr_list(struct net_device *netdev)
4843 {
4844 struct igb_adapter *adapter = netdev_priv(netdev);
4845 struct e1000_hw *hw = &adapter->hw;
4846 struct netdev_hw_addr *ha;
4847 u8 *mta_list;
4848 int i;
4849
4850 if (netdev_mc_empty(netdev)) {
4851 /* nothing to program, so clear mc list */
4852 igb_update_mc_addr_list(hw, NULL, 0);
4853 igb_restore_vf_multicasts(adapter);
4854 return 0;
4855 }
4856
4857 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4858 if (!mta_list)
4859 return -ENOMEM;
4860
4861 /* The shared function expects a packed array of only addresses. */
4862 i = 0;
4863 netdev_for_each_mc_addr(ha, netdev)
4864 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4865
4866 igb_update_mc_addr_list(hw, mta_list, i);
4867 kfree(mta_list);
4868
4869 return netdev_mc_count(netdev);
4870 }
4871
igb_vlan_promisc_enable(struct igb_adapter * adapter)4872 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4873 {
4874 struct e1000_hw *hw = &adapter->hw;
4875 u32 i, pf_id;
4876
4877 switch (hw->mac.type) {
4878 case e1000_i210:
4879 case e1000_i211:
4880 case e1000_i350:
4881 /* VLAN filtering needed for VLAN prio filter */
4882 if (adapter->netdev->features & NETIF_F_NTUPLE)
4883 break;
4884 /* fall through */
4885 case e1000_82576:
4886 case e1000_82580:
4887 case e1000_i354:
4888 /* VLAN filtering needed for pool filtering */
4889 if (adapter->vfs_allocated_count)
4890 break;
4891 /* fall through */
4892 default:
4893 return 1;
4894 }
4895
4896 /* We are already in VLAN promisc, nothing to do */
4897 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4898 return 0;
4899
4900 if (!adapter->vfs_allocated_count)
4901 goto set_vfta;
4902
4903 /* Add PF to all active pools */
4904 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4905
4906 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4907 u32 vlvf = rd32(E1000_VLVF(i));
4908
4909 vlvf |= BIT(pf_id);
4910 wr32(E1000_VLVF(i), vlvf);
4911 }
4912
4913 set_vfta:
4914 /* Set all bits in the VLAN filter table array */
4915 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4916 hw->mac.ops.write_vfta(hw, i, ~0U);
4917
4918 /* Set flag so we don't redo unnecessary work */
4919 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4920
4921 return 0;
4922 }
4923
4924 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)4925 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4926 {
4927 struct e1000_hw *hw = &adapter->hw;
4928 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4929 u32 vid_start = vfta_offset * 32;
4930 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4931 u32 i, vid, word, bits, pf_id;
4932
4933 /* guarantee that we don't scrub out management VLAN */
4934 vid = adapter->mng_vlan_id;
4935 if (vid >= vid_start && vid < vid_end)
4936 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4937
4938 if (!adapter->vfs_allocated_count)
4939 goto set_vfta;
4940
4941 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4942
4943 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4944 u32 vlvf = rd32(E1000_VLVF(i));
4945
4946 /* pull VLAN ID from VLVF */
4947 vid = vlvf & VLAN_VID_MASK;
4948
4949 /* only concern ourselves with a certain range */
4950 if (vid < vid_start || vid >= vid_end)
4951 continue;
4952
4953 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4954 /* record VLAN ID in VFTA */
4955 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4956
4957 /* if PF is part of this then continue */
4958 if (test_bit(vid, adapter->active_vlans))
4959 continue;
4960 }
4961
4962 /* remove PF from the pool */
4963 bits = ~BIT(pf_id);
4964 bits &= rd32(E1000_VLVF(i));
4965 wr32(E1000_VLVF(i), bits);
4966 }
4967
4968 set_vfta:
4969 /* extract values from active_vlans and write back to VFTA */
4970 for (i = VFTA_BLOCK_SIZE; i--;) {
4971 vid = (vfta_offset + i) * 32;
4972 word = vid / BITS_PER_LONG;
4973 bits = vid % BITS_PER_LONG;
4974
4975 vfta[i] |= adapter->active_vlans[word] >> bits;
4976
4977 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4978 }
4979 }
4980
igb_vlan_promisc_disable(struct igb_adapter * adapter)4981 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4982 {
4983 u32 i;
4984
4985 /* We are not in VLAN promisc, nothing to do */
4986 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4987 return;
4988
4989 /* Set flag so we don't redo unnecessary work */
4990 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4991
4992 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4993 igb_scrub_vfta(adapter, i);
4994 }
4995
4996 /**
4997 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4998 * @netdev: network interface device structure
4999 *
5000 * The set_rx_mode entry point is called whenever the unicast or multicast
5001 * address lists or the network interface flags are updated. This routine is
5002 * responsible for configuring the hardware for proper unicast, multicast,
5003 * promiscuous mode, and all-multi behavior.
5004 **/
igb_set_rx_mode(struct net_device * netdev)5005 static void igb_set_rx_mode(struct net_device *netdev)
5006 {
5007 struct igb_adapter *adapter = netdev_priv(netdev);
5008 struct e1000_hw *hw = &adapter->hw;
5009 unsigned int vfn = adapter->vfs_allocated_count;
5010 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5011 int count;
5012
5013 /* Check for Promiscuous and All Multicast modes */
5014 if (netdev->flags & IFF_PROMISC) {
5015 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5016 vmolr |= E1000_VMOLR_MPME;
5017
5018 /* enable use of UTA filter to force packets to default pool */
5019 if (hw->mac.type == e1000_82576)
5020 vmolr |= E1000_VMOLR_ROPE;
5021 } else {
5022 if (netdev->flags & IFF_ALLMULTI) {
5023 rctl |= E1000_RCTL_MPE;
5024 vmolr |= E1000_VMOLR_MPME;
5025 } else {
5026 /* Write addresses to the MTA, if the attempt fails
5027 * then we should just turn on promiscuous mode so
5028 * that we can at least receive multicast traffic
5029 */
5030 count = igb_write_mc_addr_list(netdev);
5031 if (count < 0) {
5032 rctl |= E1000_RCTL_MPE;
5033 vmolr |= E1000_VMOLR_MPME;
5034 } else if (count) {
5035 vmolr |= E1000_VMOLR_ROMPE;
5036 }
5037 }
5038 }
5039
5040 /* Write addresses to available RAR registers, if there is not
5041 * sufficient space to store all the addresses then enable
5042 * unicast promiscuous mode
5043 */
5044 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5045 rctl |= E1000_RCTL_UPE;
5046 vmolr |= E1000_VMOLR_ROPE;
5047 }
5048
5049 /* enable VLAN filtering by default */
5050 rctl |= E1000_RCTL_VFE;
5051
5052 /* disable VLAN filtering for modes that require it */
5053 if ((netdev->flags & IFF_PROMISC) ||
5054 (netdev->features & NETIF_F_RXALL)) {
5055 /* if we fail to set all rules then just clear VFE */
5056 if (igb_vlan_promisc_enable(adapter))
5057 rctl &= ~E1000_RCTL_VFE;
5058 } else {
5059 igb_vlan_promisc_disable(adapter);
5060 }
5061
5062 /* update state of unicast, multicast, and VLAN filtering modes */
5063 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5064 E1000_RCTL_VFE);
5065 wr32(E1000_RCTL, rctl);
5066
5067 #if (PAGE_SIZE < 8192)
5068 if (!adapter->vfs_allocated_count) {
5069 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5070 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5071 }
5072 #endif
5073 wr32(E1000_RLPML, rlpml);
5074
5075 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5076 * the VMOLR to enable the appropriate modes. Without this workaround
5077 * we will have issues with VLAN tag stripping not being done for frames
5078 * that are only arriving because we are the default pool
5079 */
5080 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5081 return;
5082
5083 /* set UTA to appropriate mode */
5084 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5085
5086 vmolr |= rd32(E1000_VMOLR(vfn)) &
5087 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5088
5089 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5090 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5091 #if (PAGE_SIZE < 8192)
5092 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5093 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5094 else
5095 #endif
5096 vmolr |= MAX_JUMBO_FRAME_SIZE;
5097 vmolr |= E1000_VMOLR_LPE;
5098
5099 wr32(E1000_VMOLR(vfn), vmolr);
5100
5101 igb_restore_vf_multicasts(adapter);
5102 }
5103
igb_check_wvbr(struct igb_adapter * adapter)5104 static void igb_check_wvbr(struct igb_adapter *adapter)
5105 {
5106 struct e1000_hw *hw = &adapter->hw;
5107 u32 wvbr = 0;
5108
5109 switch (hw->mac.type) {
5110 case e1000_82576:
5111 case e1000_i350:
5112 wvbr = rd32(E1000_WVBR);
5113 if (!wvbr)
5114 return;
5115 break;
5116 default:
5117 break;
5118 }
5119
5120 adapter->wvbr |= wvbr;
5121 }
5122
5123 #define IGB_STAGGERED_QUEUE_OFFSET 8
5124
igb_spoof_check(struct igb_adapter * adapter)5125 static void igb_spoof_check(struct igb_adapter *adapter)
5126 {
5127 int j;
5128
5129 if (!adapter->wvbr)
5130 return;
5131
5132 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5133 if (adapter->wvbr & BIT(j) ||
5134 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5135 dev_warn(&adapter->pdev->dev,
5136 "Spoof event(s) detected on VF %d\n", j);
5137 adapter->wvbr &=
5138 ~(BIT(j) |
5139 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5140 }
5141 }
5142 }
5143
5144 /* Need to wait a few seconds after link up to get diagnostic information from
5145 * the phy
5146 */
igb_update_phy_info(struct timer_list * t)5147 static void igb_update_phy_info(struct timer_list *t)
5148 {
5149 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5150 igb_get_phy_info(&adapter->hw);
5151 }
5152
5153 /**
5154 * igb_has_link - check shared code for link and determine up/down
5155 * @adapter: pointer to driver private info
5156 **/
igb_has_link(struct igb_adapter * adapter)5157 bool igb_has_link(struct igb_adapter *adapter)
5158 {
5159 struct e1000_hw *hw = &adapter->hw;
5160 bool link_active = false;
5161
5162 /* get_link_status is set on LSC (link status) interrupt or
5163 * rx sequence error interrupt. get_link_status will stay
5164 * false until the e1000_check_for_link establishes link
5165 * for copper adapters ONLY
5166 */
5167 switch (hw->phy.media_type) {
5168 case e1000_media_type_copper:
5169 if (!hw->mac.get_link_status)
5170 return true;
5171 /* fall through */
5172 case e1000_media_type_internal_serdes:
5173 hw->mac.ops.check_for_link(hw);
5174 link_active = !hw->mac.get_link_status;
5175 break;
5176 default:
5177 case e1000_media_type_unknown:
5178 break;
5179 }
5180
5181 if (((hw->mac.type == e1000_i210) ||
5182 (hw->mac.type == e1000_i211)) &&
5183 (hw->phy.id == I210_I_PHY_ID)) {
5184 if (!netif_carrier_ok(adapter->netdev)) {
5185 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5186 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5187 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5188 adapter->link_check_timeout = jiffies;
5189 }
5190 }
5191
5192 return link_active;
5193 }
5194
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5195 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5196 {
5197 bool ret = false;
5198 u32 ctrl_ext, thstat;
5199
5200 /* check for thermal sensor event on i350 copper only */
5201 if (hw->mac.type == e1000_i350) {
5202 thstat = rd32(E1000_THSTAT);
5203 ctrl_ext = rd32(E1000_CTRL_EXT);
5204
5205 if ((hw->phy.media_type == e1000_media_type_copper) &&
5206 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5207 ret = !!(thstat & event);
5208 }
5209
5210 return ret;
5211 }
5212
5213 /**
5214 * igb_check_lvmmc - check for malformed packets received
5215 * and indicated in LVMMC register
5216 * @adapter: pointer to adapter
5217 **/
igb_check_lvmmc(struct igb_adapter * adapter)5218 static void igb_check_lvmmc(struct igb_adapter *adapter)
5219 {
5220 struct e1000_hw *hw = &adapter->hw;
5221 u32 lvmmc;
5222
5223 lvmmc = rd32(E1000_LVMMC);
5224 if (lvmmc) {
5225 if (unlikely(net_ratelimit())) {
5226 netdev_warn(adapter->netdev,
5227 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5228 lvmmc);
5229 }
5230 }
5231 }
5232
5233 /**
5234 * igb_watchdog - Timer Call-back
5235 * @data: pointer to adapter cast into an unsigned long
5236 **/
igb_watchdog(struct timer_list * t)5237 static void igb_watchdog(struct timer_list *t)
5238 {
5239 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5240 /* Do the rest outside of interrupt context */
5241 schedule_work(&adapter->watchdog_task);
5242 }
5243
igb_watchdog_task(struct work_struct * work)5244 static void igb_watchdog_task(struct work_struct *work)
5245 {
5246 struct igb_adapter *adapter = container_of(work,
5247 struct igb_adapter,
5248 watchdog_task);
5249 struct e1000_hw *hw = &adapter->hw;
5250 struct e1000_phy_info *phy = &hw->phy;
5251 struct net_device *netdev = adapter->netdev;
5252 u32 link;
5253 int i;
5254 u32 connsw;
5255 u16 phy_data, retry_count = 20;
5256
5257 link = igb_has_link(adapter);
5258
5259 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5260 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5261 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5262 else
5263 link = false;
5264 }
5265
5266 /* Force link down if we have fiber to swap to */
5267 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5268 if (hw->phy.media_type == e1000_media_type_copper) {
5269 connsw = rd32(E1000_CONNSW);
5270 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5271 link = 0;
5272 }
5273 }
5274 if (link) {
5275 /* Perform a reset if the media type changed. */
5276 if (hw->dev_spec._82575.media_changed) {
5277 hw->dev_spec._82575.media_changed = false;
5278 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5279 igb_reset(adapter);
5280 }
5281 /* Cancel scheduled suspend requests. */
5282 pm_runtime_resume(netdev->dev.parent);
5283
5284 if (!netif_carrier_ok(netdev)) {
5285 u32 ctrl;
5286
5287 hw->mac.ops.get_speed_and_duplex(hw,
5288 &adapter->link_speed,
5289 &adapter->link_duplex);
5290
5291 ctrl = rd32(E1000_CTRL);
5292 /* Links status message must follow this format */
5293 netdev_info(netdev,
5294 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5295 netdev->name,
5296 adapter->link_speed,
5297 adapter->link_duplex == FULL_DUPLEX ?
5298 "Full" : "Half",
5299 (ctrl & E1000_CTRL_TFCE) &&
5300 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5301 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5302 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5303
5304 /* disable EEE if enabled */
5305 if ((adapter->flags & IGB_FLAG_EEE) &&
5306 (adapter->link_duplex == HALF_DUPLEX)) {
5307 dev_info(&adapter->pdev->dev,
5308 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5309 adapter->hw.dev_spec._82575.eee_disable = true;
5310 adapter->flags &= ~IGB_FLAG_EEE;
5311 }
5312
5313 /* check if SmartSpeed worked */
5314 igb_check_downshift(hw);
5315 if (phy->speed_downgraded)
5316 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5317
5318 /* check for thermal sensor event */
5319 if (igb_thermal_sensor_event(hw,
5320 E1000_THSTAT_LINK_THROTTLE))
5321 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5322
5323 /* adjust timeout factor according to speed/duplex */
5324 adapter->tx_timeout_factor = 1;
5325 switch (adapter->link_speed) {
5326 case SPEED_10:
5327 adapter->tx_timeout_factor = 14;
5328 break;
5329 case SPEED_100:
5330 /* maybe add some timeout factor ? */
5331 break;
5332 }
5333
5334 if (adapter->link_speed != SPEED_1000)
5335 goto no_wait;
5336
5337 /* wait for Remote receiver status OK */
5338 retry_read_status:
5339 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5340 &phy_data)) {
5341 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5342 retry_count) {
5343 msleep(100);
5344 retry_count--;
5345 goto retry_read_status;
5346 } else if (!retry_count) {
5347 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5348 }
5349 } else {
5350 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5351 }
5352 no_wait:
5353 netif_carrier_on(netdev);
5354
5355 igb_ping_all_vfs(adapter);
5356 igb_check_vf_rate_limit(adapter);
5357
5358 /* link state has changed, schedule phy info update */
5359 if (!test_bit(__IGB_DOWN, &adapter->state))
5360 mod_timer(&adapter->phy_info_timer,
5361 round_jiffies(jiffies + 2 * HZ));
5362 }
5363 } else {
5364 if (netif_carrier_ok(netdev)) {
5365 adapter->link_speed = 0;
5366 adapter->link_duplex = 0;
5367
5368 /* check for thermal sensor event */
5369 if (igb_thermal_sensor_event(hw,
5370 E1000_THSTAT_PWR_DOWN)) {
5371 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5372 }
5373
5374 /* Links status message must follow this format */
5375 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5376 netdev->name);
5377 netif_carrier_off(netdev);
5378
5379 igb_ping_all_vfs(adapter);
5380
5381 /* link state has changed, schedule phy info update */
5382 if (!test_bit(__IGB_DOWN, &adapter->state))
5383 mod_timer(&adapter->phy_info_timer,
5384 round_jiffies(jiffies + 2 * HZ));
5385
5386 /* link is down, time to check for alternate media */
5387 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5388 igb_check_swap_media(adapter);
5389 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5390 schedule_work(&adapter->reset_task);
5391 /* return immediately */
5392 return;
5393 }
5394 }
5395 pm_schedule_suspend(netdev->dev.parent,
5396 MSEC_PER_SEC * 5);
5397
5398 /* also check for alternate media here */
5399 } else if (!netif_carrier_ok(netdev) &&
5400 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5401 igb_check_swap_media(adapter);
5402 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5403 schedule_work(&adapter->reset_task);
5404 /* return immediately */
5405 return;
5406 }
5407 }
5408 }
5409
5410 spin_lock(&adapter->stats64_lock);
5411 igb_update_stats(adapter);
5412 spin_unlock(&adapter->stats64_lock);
5413
5414 for (i = 0; i < adapter->num_tx_queues; i++) {
5415 struct igb_ring *tx_ring = adapter->tx_ring[i];
5416 if (!netif_carrier_ok(netdev)) {
5417 /* We've lost link, so the controller stops DMA,
5418 * but we've got queued Tx work that's never going
5419 * to get done, so reset controller to flush Tx.
5420 * (Do the reset outside of interrupt context).
5421 */
5422 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5423 adapter->tx_timeout_count++;
5424 schedule_work(&adapter->reset_task);
5425 /* return immediately since reset is imminent */
5426 return;
5427 }
5428 }
5429
5430 /* Force detection of hung controller every watchdog period */
5431 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5432 }
5433
5434 /* Cause software interrupt to ensure Rx ring is cleaned */
5435 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5436 u32 eics = 0;
5437
5438 for (i = 0; i < adapter->num_q_vectors; i++)
5439 eics |= adapter->q_vector[i]->eims_value;
5440 wr32(E1000_EICS, eics);
5441 } else {
5442 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5443 }
5444
5445 igb_spoof_check(adapter);
5446 igb_ptp_rx_hang(adapter);
5447 igb_ptp_tx_hang(adapter);
5448
5449 /* Check LVMMC register on i350/i354 only */
5450 if ((adapter->hw.mac.type == e1000_i350) ||
5451 (adapter->hw.mac.type == e1000_i354))
5452 igb_check_lvmmc(adapter);
5453
5454 /* Reset the timer */
5455 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5456 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5457 mod_timer(&adapter->watchdog_timer,
5458 round_jiffies(jiffies + HZ));
5459 else
5460 mod_timer(&adapter->watchdog_timer,
5461 round_jiffies(jiffies + 2 * HZ));
5462 }
5463 }
5464
5465 enum latency_range {
5466 lowest_latency = 0,
5467 low_latency = 1,
5468 bulk_latency = 2,
5469 latency_invalid = 255
5470 };
5471
5472 /**
5473 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5474 * @q_vector: pointer to q_vector
5475 *
5476 * Stores a new ITR value based on strictly on packet size. This
5477 * algorithm is less sophisticated than that used in igb_update_itr,
5478 * due to the difficulty of synchronizing statistics across multiple
5479 * receive rings. The divisors and thresholds used by this function
5480 * were determined based on theoretical maximum wire speed and testing
5481 * data, in order to minimize response time while increasing bulk
5482 * throughput.
5483 * This functionality is controlled by ethtool's coalescing settings.
5484 * NOTE: This function is called only when operating in a multiqueue
5485 * receive environment.
5486 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5487 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5488 {
5489 int new_val = q_vector->itr_val;
5490 int avg_wire_size = 0;
5491 struct igb_adapter *adapter = q_vector->adapter;
5492 unsigned int packets;
5493
5494 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5495 * ints/sec - ITR timer value of 120 ticks.
5496 */
5497 if (adapter->link_speed != SPEED_1000) {
5498 new_val = IGB_4K_ITR;
5499 goto set_itr_val;
5500 }
5501
5502 packets = q_vector->rx.total_packets;
5503 if (packets)
5504 avg_wire_size = q_vector->rx.total_bytes / packets;
5505
5506 packets = q_vector->tx.total_packets;
5507 if (packets)
5508 avg_wire_size = max_t(u32, avg_wire_size,
5509 q_vector->tx.total_bytes / packets);
5510
5511 /* if avg_wire_size isn't set no work was done */
5512 if (!avg_wire_size)
5513 goto clear_counts;
5514
5515 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5516 avg_wire_size += 24;
5517
5518 /* Don't starve jumbo frames */
5519 avg_wire_size = min(avg_wire_size, 3000);
5520
5521 /* Give a little boost to mid-size frames */
5522 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5523 new_val = avg_wire_size / 3;
5524 else
5525 new_val = avg_wire_size / 2;
5526
5527 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5528 if (new_val < IGB_20K_ITR &&
5529 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5530 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5531 new_val = IGB_20K_ITR;
5532
5533 set_itr_val:
5534 if (new_val != q_vector->itr_val) {
5535 q_vector->itr_val = new_val;
5536 q_vector->set_itr = 1;
5537 }
5538 clear_counts:
5539 q_vector->rx.total_bytes = 0;
5540 q_vector->rx.total_packets = 0;
5541 q_vector->tx.total_bytes = 0;
5542 q_vector->tx.total_packets = 0;
5543 }
5544
5545 /**
5546 * igb_update_itr - update the dynamic ITR value based on statistics
5547 * @q_vector: pointer to q_vector
5548 * @ring_container: ring info to update the itr for
5549 *
5550 * Stores a new ITR value based on packets and byte
5551 * counts during the last interrupt. The advantage of per interrupt
5552 * computation is faster updates and more accurate ITR for the current
5553 * traffic pattern. Constants in this function were computed
5554 * based on theoretical maximum wire speed and thresholds were set based
5555 * on testing data as well as attempting to minimize response time
5556 * while increasing bulk throughput.
5557 * This functionality is controlled by ethtool's coalescing settings.
5558 * NOTE: These calculations are only valid when operating in a single-
5559 * queue environment.
5560 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5561 static void igb_update_itr(struct igb_q_vector *q_vector,
5562 struct igb_ring_container *ring_container)
5563 {
5564 unsigned int packets = ring_container->total_packets;
5565 unsigned int bytes = ring_container->total_bytes;
5566 u8 itrval = ring_container->itr;
5567
5568 /* no packets, exit with status unchanged */
5569 if (packets == 0)
5570 return;
5571
5572 switch (itrval) {
5573 case lowest_latency:
5574 /* handle TSO and jumbo frames */
5575 if (bytes/packets > 8000)
5576 itrval = bulk_latency;
5577 else if ((packets < 5) && (bytes > 512))
5578 itrval = low_latency;
5579 break;
5580 case low_latency: /* 50 usec aka 20000 ints/s */
5581 if (bytes > 10000) {
5582 /* this if handles the TSO accounting */
5583 if (bytes/packets > 8000)
5584 itrval = bulk_latency;
5585 else if ((packets < 10) || ((bytes/packets) > 1200))
5586 itrval = bulk_latency;
5587 else if ((packets > 35))
5588 itrval = lowest_latency;
5589 } else if (bytes/packets > 2000) {
5590 itrval = bulk_latency;
5591 } else if (packets <= 2 && bytes < 512) {
5592 itrval = lowest_latency;
5593 }
5594 break;
5595 case bulk_latency: /* 250 usec aka 4000 ints/s */
5596 if (bytes > 25000) {
5597 if (packets > 35)
5598 itrval = low_latency;
5599 } else if (bytes < 1500) {
5600 itrval = low_latency;
5601 }
5602 break;
5603 }
5604
5605 /* clear work counters since we have the values we need */
5606 ring_container->total_bytes = 0;
5607 ring_container->total_packets = 0;
5608
5609 /* write updated itr to ring container */
5610 ring_container->itr = itrval;
5611 }
5612
igb_set_itr(struct igb_q_vector * q_vector)5613 static void igb_set_itr(struct igb_q_vector *q_vector)
5614 {
5615 struct igb_adapter *adapter = q_vector->adapter;
5616 u32 new_itr = q_vector->itr_val;
5617 u8 current_itr = 0;
5618
5619 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5620 if (adapter->link_speed != SPEED_1000) {
5621 current_itr = 0;
5622 new_itr = IGB_4K_ITR;
5623 goto set_itr_now;
5624 }
5625
5626 igb_update_itr(q_vector, &q_vector->tx);
5627 igb_update_itr(q_vector, &q_vector->rx);
5628
5629 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5630
5631 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5632 if (current_itr == lowest_latency &&
5633 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5634 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5635 current_itr = low_latency;
5636
5637 switch (current_itr) {
5638 /* counts and packets in update_itr are dependent on these numbers */
5639 case lowest_latency:
5640 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5641 break;
5642 case low_latency:
5643 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5644 break;
5645 case bulk_latency:
5646 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5647 break;
5648 default:
5649 break;
5650 }
5651
5652 set_itr_now:
5653 if (new_itr != q_vector->itr_val) {
5654 /* this attempts to bias the interrupt rate towards Bulk
5655 * by adding intermediate steps when interrupt rate is
5656 * increasing
5657 */
5658 new_itr = new_itr > q_vector->itr_val ?
5659 max((new_itr * q_vector->itr_val) /
5660 (new_itr + (q_vector->itr_val >> 2)),
5661 new_itr) : new_itr;
5662 /* Don't write the value here; it resets the adapter's
5663 * internal timer, and causes us to delay far longer than
5664 * we should between interrupts. Instead, we write the ITR
5665 * value at the beginning of the next interrupt so the timing
5666 * ends up being correct.
5667 */
5668 q_vector->itr_val = new_itr;
5669 q_vector->set_itr = 1;
5670 }
5671 }
5672
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5673 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5674 struct igb_tx_buffer *first,
5675 u32 vlan_macip_lens, u32 type_tucmd,
5676 u32 mss_l4len_idx)
5677 {
5678 struct e1000_adv_tx_context_desc *context_desc;
5679 u16 i = tx_ring->next_to_use;
5680 struct timespec64 ts;
5681
5682 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5683
5684 i++;
5685 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5686
5687 /* set bits to identify this as an advanced context descriptor */
5688 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5689
5690 /* For 82575, context index must be unique per ring. */
5691 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5692 mss_l4len_idx |= tx_ring->reg_idx << 4;
5693
5694 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5695 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5696 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5697
5698 /* We assume there is always a valid tx time available. Invalid times
5699 * should have been handled by the upper layers.
5700 */
5701 if (tx_ring->launchtime_enable) {
5702 ts = ns_to_timespec64(first->skb->tstamp);
5703 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5704 } else {
5705 context_desc->seqnum_seed = 0;
5706 }
5707 }
5708
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5709 static int igb_tso(struct igb_ring *tx_ring,
5710 struct igb_tx_buffer *first,
5711 u8 *hdr_len)
5712 {
5713 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5714 struct sk_buff *skb = first->skb;
5715 union {
5716 struct iphdr *v4;
5717 struct ipv6hdr *v6;
5718 unsigned char *hdr;
5719 } ip;
5720 union {
5721 struct tcphdr *tcp;
5722 unsigned char *hdr;
5723 } l4;
5724 u32 paylen, l4_offset;
5725 int err;
5726
5727 if (skb->ip_summed != CHECKSUM_PARTIAL)
5728 return 0;
5729
5730 if (!skb_is_gso(skb))
5731 return 0;
5732
5733 err = skb_cow_head(skb, 0);
5734 if (err < 0)
5735 return err;
5736
5737 ip.hdr = skb_network_header(skb);
5738 l4.hdr = skb_checksum_start(skb);
5739
5740 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5741 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5742
5743 /* initialize outer IP header fields */
5744 if (ip.v4->version == 4) {
5745 unsigned char *csum_start = skb_checksum_start(skb);
5746 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5747
5748 /* IP header will have to cancel out any data that
5749 * is not a part of the outer IP header
5750 */
5751 ip.v4->check = csum_fold(csum_partial(trans_start,
5752 csum_start - trans_start,
5753 0));
5754 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5755
5756 ip.v4->tot_len = 0;
5757 first->tx_flags |= IGB_TX_FLAGS_TSO |
5758 IGB_TX_FLAGS_CSUM |
5759 IGB_TX_FLAGS_IPV4;
5760 } else {
5761 ip.v6->payload_len = 0;
5762 first->tx_flags |= IGB_TX_FLAGS_TSO |
5763 IGB_TX_FLAGS_CSUM;
5764 }
5765
5766 /* determine offset of inner transport header */
5767 l4_offset = l4.hdr - skb->data;
5768
5769 /* compute length of segmentation header */
5770 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5771
5772 /* remove payload length from inner checksum */
5773 paylen = skb->len - l4_offset;
5774 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5775
5776 /* update gso size and bytecount with header size */
5777 first->gso_segs = skb_shinfo(skb)->gso_segs;
5778 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5779
5780 /* MSS L4LEN IDX */
5781 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5782 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5783
5784 /* VLAN MACLEN IPLEN */
5785 vlan_macip_lens = l4.hdr - ip.hdr;
5786 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5787 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5788
5789 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5790 type_tucmd, mss_l4len_idx);
5791
5792 return 1;
5793 }
5794
igb_ipv6_csum_is_sctp(struct sk_buff * skb)5795 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5796 {
5797 unsigned int offset = 0;
5798
5799 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5800
5801 return offset == skb_checksum_start_offset(skb);
5802 }
5803
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5804 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5805 {
5806 struct sk_buff *skb = first->skb;
5807 u32 vlan_macip_lens = 0;
5808 u32 type_tucmd = 0;
5809
5810 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5811 csum_failed:
5812 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5813 !tx_ring->launchtime_enable)
5814 return;
5815 goto no_csum;
5816 }
5817
5818 switch (skb->csum_offset) {
5819 case offsetof(struct tcphdr, check):
5820 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5821 /* fall through */
5822 case offsetof(struct udphdr, check):
5823 break;
5824 case offsetof(struct sctphdr, checksum):
5825 /* validate that this is actually an SCTP request */
5826 if (((first->protocol == htons(ETH_P_IP)) &&
5827 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5828 ((first->protocol == htons(ETH_P_IPV6)) &&
5829 igb_ipv6_csum_is_sctp(skb))) {
5830 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5831 break;
5832 }
5833 /* fall through */
5834 default:
5835 skb_checksum_help(skb);
5836 goto csum_failed;
5837 }
5838
5839 /* update TX checksum flag */
5840 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5841 vlan_macip_lens = skb_checksum_start_offset(skb) -
5842 skb_network_offset(skb);
5843 no_csum:
5844 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5845 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5846
5847 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5848 }
5849
5850 #define IGB_SET_FLAG(_input, _flag, _result) \
5851 ((_flag <= _result) ? \
5852 ((u32)(_input & _flag) * (_result / _flag)) : \
5853 ((u32)(_input & _flag) / (_flag / _result)))
5854
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)5855 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5856 {
5857 /* set type for advanced descriptor with frame checksum insertion */
5858 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5859 E1000_ADVTXD_DCMD_DEXT |
5860 E1000_ADVTXD_DCMD_IFCS;
5861
5862 /* set HW vlan bit if vlan is present */
5863 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5864 (E1000_ADVTXD_DCMD_VLE));
5865
5866 /* set segmentation bits for TSO */
5867 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5868 (E1000_ADVTXD_DCMD_TSE));
5869
5870 /* set timestamp bit if present */
5871 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5872 (E1000_ADVTXD_MAC_TSTAMP));
5873
5874 /* insert frame checksum */
5875 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5876
5877 return cmd_type;
5878 }
5879
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)5880 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5881 union e1000_adv_tx_desc *tx_desc,
5882 u32 tx_flags, unsigned int paylen)
5883 {
5884 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5885
5886 /* 82575 requires a unique index per ring */
5887 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5888 olinfo_status |= tx_ring->reg_idx << 4;
5889
5890 /* insert L4 checksum */
5891 olinfo_status |= IGB_SET_FLAG(tx_flags,
5892 IGB_TX_FLAGS_CSUM,
5893 (E1000_TXD_POPTS_TXSM << 8));
5894
5895 /* insert IPv4 checksum */
5896 olinfo_status |= IGB_SET_FLAG(tx_flags,
5897 IGB_TX_FLAGS_IPV4,
5898 (E1000_TXD_POPTS_IXSM << 8));
5899
5900 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5901 }
5902
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)5903 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5904 {
5905 struct net_device *netdev = tx_ring->netdev;
5906
5907 netif_stop_subqueue(netdev, tx_ring->queue_index);
5908
5909 /* Herbert's original patch had:
5910 * smp_mb__after_netif_stop_queue();
5911 * but since that doesn't exist yet, just open code it.
5912 */
5913 smp_mb();
5914
5915 /* We need to check again in a case another CPU has just
5916 * made room available.
5917 */
5918 if (igb_desc_unused(tx_ring) < size)
5919 return -EBUSY;
5920
5921 /* A reprieve! */
5922 netif_wake_subqueue(netdev, tx_ring->queue_index);
5923
5924 u64_stats_update_begin(&tx_ring->tx_syncp2);
5925 tx_ring->tx_stats.restart_queue2++;
5926 u64_stats_update_end(&tx_ring->tx_syncp2);
5927
5928 return 0;
5929 }
5930
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)5931 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5932 {
5933 if (igb_desc_unused(tx_ring) >= size)
5934 return 0;
5935 return __igb_maybe_stop_tx(tx_ring, size);
5936 }
5937
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)5938 static int igb_tx_map(struct igb_ring *tx_ring,
5939 struct igb_tx_buffer *first,
5940 const u8 hdr_len)
5941 {
5942 struct sk_buff *skb = first->skb;
5943 struct igb_tx_buffer *tx_buffer;
5944 union e1000_adv_tx_desc *tx_desc;
5945 struct skb_frag_struct *frag;
5946 dma_addr_t dma;
5947 unsigned int data_len, size;
5948 u32 tx_flags = first->tx_flags;
5949 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5950 u16 i = tx_ring->next_to_use;
5951
5952 tx_desc = IGB_TX_DESC(tx_ring, i);
5953
5954 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5955
5956 size = skb_headlen(skb);
5957 data_len = skb->data_len;
5958
5959 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5960
5961 tx_buffer = first;
5962
5963 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5964 if (dma_mapping_error(tx_ring->dev, dma))
5965 goto dma_error;
5966
5967 /* record length, and DMA address */
5968 dma_unmap_len_set(tx_buffer, len, size);
5969 dma_unmap_addr_set(tx_buffer, dma, dma);
5970
5971 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5972
5973 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5974 tx_desc->read.cmd_type_len =
5975 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5976
5977 i++;
5978 tx_desc++;
5979 if (i == tx_ring->count) {
5980 tx_desc = IGB_TX_DESC(tx_ring, 0);
5981 i = 0;
5982 }
5983 tx_desc->read.olinfo_status = 0;
5984
5985 dma += IGB_MAX_DATA_PER_TXD;
5986 size -= IGB_MAX_DATA_PER_TXD;
5987
5988 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5989 }
5990
5991 if (likely(!data_len))
5992 break;
5993
5994 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5995
5996 i++;
5997 tx_desc++;
5998 if (i == tx_ring->count) {
5999 tx_desc = IGB_TX_DESC(tx_ring, 0);
6000 i = 0;
6001 }
6002 tx_desc->read.olinfo_status = 0;
6003
6004 size = skb_frag_size(frag);
6005 data_len -= size;
6006
6007 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6008 size, DMA_TO_DEVICE);
6009
6010 tx_buffer = &tx_ring->tx_buffer_info[i];
6011 }
6012
6013 /* write last descriptor with RS and EOP bits */
6014 cmd_type |= size | IGB_TXD_DCMD;
6015 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6016
6017 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6018
6019 /* set the timestamp */
6020 first->time_stamp = jiffies;
6021
6022 /* Force memory writes to complete before letting h/w know there
6023 * are new descriptors to fetch. (Only applicable for weak-ordered
6024 * memory model archs, such as IA-64).
6025 *
6026 * We also need this memory barrier to make certain all of the
6027 * status bits have been updated before next_to_watch is written.
6028 */
6029 dma_wmb();
6030
6031 /* set next_to_watch value indicating a packet is present */
6032 first->next_to_watch = tx_desc;
6033
6034 i++;
6035 if (i == tx_ring->count)
6036 i = 0;
6037
6038 tx_ring->next_to_use = i;
6039
6040 /* Make sure there is space in the ring for the next send. */
6041 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6042
6043 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6044 writel(i, tx_ring->tail);
6045
6046 /* we need this if more than one processor can write to our tail
6047 * at a time, it synchronizes IO on IA64/Altix systems
6048 */
6049 mmiowb();
6050 }
6051 return 0;
6052
6053 dma_error:
6054 dev_err(tx_ring->dev, "TX DMA map failed\n");
6055 tx_buffer = &tx_ring->tx_buffer_info[i];
6056
6057 /* clear dma mappings for failed tx_buffer_info map */
6058 while (tx_buffer != first) {
6059 if (dma_unmap_len(tx_buffer, len))
6060 dma_unmap_page(tx_ring->dev,
6061 dma_unmap_addr(tx_buffer, dma),
6062 dma_unmap_len(tx_buffer, len),
6063 DMA_TO_DEVICE);
6064 dma_unmap_len_set(tx_buffer, len, 0);
6065
6066 if (i-- == 0)
6067 i += tx_ring->count;
6068 tx_buffer = &tx_ring->tx_buffer_info[i];
6069 }
6070
6071 if (dma_unmap_len(tx_buffer, len))
6072 dma_unmap_single(tx_ring->dev,
6073 dma_unmap_addr(tx_buffer, dma),
6074 dma_unmap_len(tx_buffer, len),
6075 DMA_TO_DEVICE);
6076 dma_unmap_len_set(tx_buffer, len, 0);
6077
6078 dev_kfree_skb_any(tx_buffer->skb);
6079 tx_buffer->skb = NULL;
6080
6081 tx_ring->next_to_use = i;
6082
6083 return -1;
6084 }
6085
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6086 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6087 struct igb_ring *tx_ring)
6088 {
6089 struct igb_tx_buffer *first;
6090 int tso;
6091 u32 tx_flags = 0;
6092 unsigned short f;
6093 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6094 __be16 protocol = vlan_get_protocol(skb);
6095 u8 hdr_len = 0;
6096
6097 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6098 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6099 * + 2 desc gap to keep tail from touching head,
6100 * + 1 desc for context descriptor,
6101 * otherwise try next time
6102 */
6103 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6104 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6105
6106 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6107 /* this is a hard error */
6108 return NETDEV_TX_BUSY;
6109 }
6110
6111 /* record the location of the first descriptor for this packet */
6112 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6113 first->skb = skb;
6114 first->bytecount = skb->len;
6115 first->gso_segs = 1;
6116
6117 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6118 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6119
6120 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6121 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6122 &adapter->state)) {
6123 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6124 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6125
6126 adapter->ptp_tx_skb = skb_get(skb);
6127 adapter->ptp_tx_start = jiffies;
6128 if (adapter->hw.mac.type == e1000_82576)
6129 schedule_work(&adapter->ptp_tx_work);
6130 } else {
6131 adapter->tx_hwtstamp_skipped++;
6132 }
6133 }
6134
6135 if (skb_vlan_tag_present(skb)) {
6136 tx_flags |= IGB_TX_FLAGS_VLAN;
6137 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6138 }
6139
6140 /* record initial flags and protocol */
6141 first->tx_flags = tx_flags;
6142 first->protocol = protocol;
6143
6144 tso = igb_tso(tx_ring, first, &hdr_len);
6145 if (tso < 0)
6146 goto out_drop;
6147 else if (!tso)
6148 igb_tx_csum(tx_ring, first);
6149
6150 skb_tx_timestamp(skb);
6151
6152 if (igb_tx_map(tx_ring, first, hdr_len))
6153 goto cleanup_tx_tstamp;
6154
6155 return NETDEV_TX_OK;
6156
6157 out_drop:
6158 dev_kfree_skb_any(first->skb);
6159 first->skb = NULL;
6160 cleanup_tx_tstamp:
6161 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6162 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6163
6164 dev_kfree_skb_any(adapter->ptp_tx_skb);
6165 adapter->ptp_tx_skb = NULL;
6166 if (adapter->hw.mac.type == e1000_82576)
6167 cancel_work_sync(&adapter->ptp_tx_work);
6168 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6169 }
6170
6171 return NETDEV_TX_OK;
6172 }
6173
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6174 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6175 struct sk_buff *skb)
6176 {
6177 unsigned int r_idx = skb->queue_mapping;
6178
6179 if (r_idx >= adapter->num_tx_queues)
6180 r_idx = r_idx % adapter->num_tx_queues;
6181
6182 return adapter->tx_ring[r_idx];
6183 }
6184
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6185 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6186 struct net_device *netdev)
6187 {
6188 struct igb_adapter *adapter = netdev_priv(netdev);
6189
6190 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6191 * in order to meet this minimum size requirement.
6192 */
6193 if (skb_put_padto(skb, 17))
6194 return NETDEV_TX_OK;
6195
6196 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6197 }
6198
6199 /**
6200 * igb_tx_timeout - Respond to a Tx Hang
6201 * @netdev: network interface device structure
6202 **/
igb_tx_timeout(struct net_device * netdev)6203 static void igb_tx_timeout(struct net_device *netdev)
6204 {
6205 struct igb_adapter *adapter = netdev_priv(netdev);
6206 struct e1000_hw *hw = &adapter->hw;
6207
6208 /* Do the reset outside of interrupt context */
6209 adapter->tx_timeout_count++;
6210
6211 if (hw->mac.type >= e1000_82580)
6212 hw->dev_spec._82575.global_device_reset = true;
6213
6214 schedule_work(&adapter->reset_task);
6215 wr32(E1000_EICS,
6216 (adapter->eims_enable_mask & ~adapter->eims_other));
6217 }
6218
igb_reset_task(struct work_struct * work)6219 static void igb_reset_task(struct work_struct *work)
6220 {
6221 struct igb_adapter *adapter;
6222 adapter = container_of(work, struct igb_adapter, reset_task);
6223
6224 igb_dump(adapter);
6225 netdev_err(adapter->netdev, "Reset adapter\n");
6226 igb_reinit_locked(adapter);
6227 }
6228
6229 /**
6230 * igb_get_stats64 - Get System Network Statistics
6231 * @netdev: network interface device structure
6232 * @stats: rtnl_link_stats64 pointer
6233 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6234 static void igb_get_stats64(struct net_device *netdev,
6235 struct rtnl_link_stats64 *stats)
6236 {
6237 struct igb_adapter *adapter = netdev_priv(netdev);
6238
6239 spin_lock(&adapter->stats64_lock);
6240 igb_update_stats(adapter);
6241 memcpy(stats, &adapter->stats64, sizeof(*stats));
6242 spin_unlock(&adapter->stats64_lock);
6243 }
6244
6245 /**
6246 * igb_change_mtu - Change the Maximum Transfer Unit
6247 * @netdev: network interface device structure
6248 * @new_mtu: new value for maximum frame size
6249 *
6250 * Returns 0 on success, negative on failure
6251 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6252 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6253 {
6254 struct igb_adapter *adapter = netdev_priv(netdev);
6255 struct pci_dev *pdev = adapter->pdev;
6256 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6257
6258 /* adjust max frame to be at least the size of a standard frame */
6259 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6260 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6261
6262 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6263 usleep_range(1000, 2000);
6264
6265 /* igb_down has a dependency on max_frame_size */
6266 adapter->max_frame_size = max_frame;
6267
6268 if (netif_running(netdev))
6269 igb_down(adapter);
6270
6271 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6272 netdev->mtu, new_mtu);
6273 netdev->mtu = new_mtu;
6274
6275 if (netif_running(netdev))
6276 igb_up(adapter);
6277 else
6278 igb_reset(adapter);
6279
6280 clear_bit(__IGB_RESETTING, &adapter->state);
6281
6282 return 0;
6283 }
6284
6285 /**
6286 * igb_update_stats - Update the board statistics counters
6287 * @adapter: board private structure
6288 **/
igb_update_stats(struct igb_adapter * adapter)6289 void igb_update_stats(struct igb_adapter *adapter)
6290 {
6291 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6292 struct e1000_hw *hw = &adapter->hw;
6293 struct pci_dev *pdev = adapter->pdev;
6294 u32 reg, mpc;
6295 int i;
6296 u64 bytes, packets;
6297 unsigned int start;
6298 u64 _bytes, _packets;
6299
6300 /* Prevent stats update while adapter is being reset, or if the pci
6301 * connection is down.
6302 */
6303 if (adapter->link_speed == 0)
6304 return;
6305 if (pci_channel_offline(pdev))
6306 return;
6307
6308 bytes = 0;
6309 packets = 0;
6310
6311 rcu_read_lock();
6312 for (i = 0; i < adapter->num_rx_queues; i++) {
6313 struct igb_ring *ring = adapter->rx_ring[i];
6314 u32 rqdpc = rd32(E1000_RQDPC(i));
6315 if (hw->mac.type >= e1000_i210)
6316 wr32(E1000_RQDPC(i), 0);
6317
6318 if (rqdpc) {
6319 ring->rx_stats.drops += rqdpc;
6320 net_stats->rx_fifo_errors += rqdpc;
6321 }
6322
6323 do {
6324 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6325 _bytes = ring->rx_stats.bytes;
6326 _packets = ring->rx_stats.packets;
6327 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6328 bytes += _bytes;
6329 packets += _packets;
6330 }
6331
6332 net_stats->rx_bytes = bytes;
6333 net_stats->rx_packets = packets;
6334
6335 bytes = 0;
6336 packets = 0;
6337 for (i = 0; i < adapter->num_tx_queues; i++) {
6338 struct igb_ring *ring = adapter->tx_ring[i];
6339 do {
6340 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6341 _bytes = ring->tx_stats.bytes;
6342 _packets = ring->tx_stats.packets;
6343 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6344 bytes += _bytes;
6345 packets += _packets;
6346 }
6347 net_stats->tx_bytes = bytes;
6348 net_stats->tx_packets = packets;
6349 rcu_read_unlock();
6350
6351 /* read stats registers */
6352 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6353 adapter->stats.gprc += rd32(E1000_GPRC);
6354 adapter->stats.gorc += rd32(E1000_GORCL);
6355 rd32(E1000_GORCH); /* clear GORCL */
6356 adapter->stats.bprc += rd32(E1000_BPRC);
6357 adapter->stats.mprc += rd32(E1000_MPRC);
6358 adapter->stats.roc += rd32(E1000_ROC);
6359
6360 adapter->stats.prc64 += rd32(E1000_PRC64);
6361 adapter->stats.prc127 += rd32(E1000_PRC127);
6362 adapter->stats.prc255 += rd32(E1000_PRC255);
6363 adapter->stats.prc511 += rd32(E1000_PRC511);
6364 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6365 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6366 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6367 adapter->stats.sec += rd32(E1000_SEC);
6368
6369 mpc = rd32(E1000_MPC);
6370 adapter->stats.mpc += mpc;
6371 net_stats->rx_fifo_errors += mpc;
6372 adapter->stats.scc += rd32(E1000_SCC);
6373 adapter->stats.ecol += rd32(E1000_ECOL);
6374 adapter->stats.mcc += rd32(E1000_MCC);
6375 adapter->stats.latecol += rd32(E1000_LATECOL);
6376 adapter->stats.dc += rd32(E1000_DC);
6377 adapter->stats.rlec += rd32(E1000_RLEC);
6378 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6379 adapter->stats.xontxc += rd32(E1000_XONTXC);
6380 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6381 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6382 adapter->stats.fcruc += rd32(E1000_FCRUC);
6383 adapter->stats.gptc += rd32(E1000_GPTC);
6384 adapter->stats.gotc += rd32(E1000_GOTCL);
6385 rd32(E1000_GOTCH); /* clear GOTCL */
6386 adapter->stats.rnbc += rd32(E1000_RNBC);
6387 adapter->stats.ruc += rd32(E1000_RUC);
6388 adapter->stats.rfc += rd32(E1000_RFC);
6389 adapter->stats.rjc += rd32(E1000_RJC);
6390 adapter->stats.tor += rd32(E1000_TORH);
6391 adapter->stats.tot += rd32(E1000_TOTH);
6392 adapter->stats.tpr += rd32(E1000_TPR);
6393
6394 adapter->stats.ptc64 += rd32(E1000_PTC64);
6395 adapter->stats.ptc127 += rd32(E1000_PTC127);
6396 adapter->stats.ptc255 += rd32(E1000_PTC255);
6397 adapter->stats.ptc511 += rd32(E1000_PTC511);
6398 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6399 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6400
6401 adapter->stats.mptc += rd32(E1000_MPTC);
6402 adapter->stats.bptc += rd32(E1000_BPTC);
6403
6404 adapter->stats.tpt += rd32(E1000_TPT);
6405 adapter->stats.colc += rd32(E1000_COLC);
6406
6407 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6408 /* read internal phy specific stats */
6409 reg = rd32(E1000_CTRL_EXT);
6410 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6411 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6412
6413 /* this stat has invalid values on i210/i211 */
6414 if ((hw->mac.type != e1000_i210) &&
6415 (hw->mac.type != e1000_i211))
6416 adapter->stats.tncrs += rd32(E1000_TNCRS);
6417 }
6418
6419 adapter->stats.tsctc += rd32(E1000_TSCTC);
6420 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6421
6422 adapter->stats.iac += rd32(E1000_IAC);
6423 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6424 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6425 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6426 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6427 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6428 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6429 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6430 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6431
6432 /* Fill out the OS statistics structure */
6433 net_stats->multicast = adapter->stats.mprc;
6434 net_stats->collisions = adapter->stats.colc;
6435
6436 /* Rx Errors */
6437
6438 /* RLEC on some newer hardware can be incorrect so build
6439 * our own version based on RUC and ROC
6440 */
6441 net_stats->rx_errors = adapter->stats.rxerrc +
6442 adapter->stats.crcerrs + adapter->stats.algnerrc +
6443 adapter->stats.ruc + adapter->stats.roc +
6444 adapter->stats.cexterr;
6445 net_stats->rx_length_errors = adapter->stats.ruc +
6446 adapter->stats.roc;
6447 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6448 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6449 net_stats->rx_missed_errors = adapter->stats.mpc;
6450
6451 /* Tx Errors */
6452 net_stats->tx_errors = adapter->stats.ecol +
6453 adapter->stats.latecol;
6454 net_stats->tx_aborted_errors = adapter->stats.ecol;
6455 net_stats->tx_window_errors = adapter->stats.latecol;
6456 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6457
6458 /* Tx Dropped needs to be maintained elsewhere */
6459
6460 /* Management Stats */
6461 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6462 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6463 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6464
6465 /* OS2BMC Stats */
6466 reg = rd32(E1000_MANC);
6467 if (reg & E1000_MANC_EN_BMC2OS) {
6468 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6469 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6470 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6471 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6472 }
6473 }
6474
igb_tsync_interrupt(struct igb_adapter * adapter)6475 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6476 {
6477 struct e1000_hw *hw = &adapter->hw;
6478 struct ptp_clock_event event;
6479 struct timespec64 ts;
6480 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6481
6482 if (tsicr & TSINTR_SYS_WRAP) {
6483 event.type = PTP_CLOCK_PPS;
6484 if (adapter->ptp_caps.pps)
6485 ptp_clock_event(adapter->ptp_clock, &event);
6486 ack |= TSINTR_SYS_WRAP;
6487 }
6488
6489 if (tsicr & E1000_TSICR_TXTS) {
6490 /* retrieve hardware timestamp */
6491 schedule_work(&adapter->ptp_tx_work);
6492 ack |= E1000_TSICR_TXTS;
6493 }
6494
6495 if (tsicr & TSINTR_TT0) {
6496 spin_lock(&adapter->tmreg_lock);
6497 ts = timespec64_add(adapter->perout[0].start,
6498 adapter->perout[0].period);
6499 /* u32 conversion of tv_sec is safe until y2106 */
6500 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6501 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6502 tsauxc = rd32(E1000_TSAUXC);
6503 tsauxc |= TSAUXC_EN_TT0;
6504 wr32(E1000_TSAUXC, tsauxc);
6505 adapter->perout[0].start = ts;
6506 spin_unlock(&adapter->tmreg_lock);
6507 ack |= TSINTR_TT0;
6508 }
6509
6510 if (tsicr & TSINTR_TT1) {
6511 spin_lock(&adapter->tmreg_lock);
6512 ts = timespec64_add(adapter->perout[1].start,
6513 adapter->perout[1].period);
6514 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6515 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6516 tsauxc = rd32(E1000_TSAUXC);
6517 tsauxc |= TSAUXC_EN_TT1;
6518 wr32(E1000_TSAUXC, tsauxc);
6519 adapter->perout[1].start = ts;
6520 spin_unlock(&adapter->tmreg_lock);
6521 ack |= TSINTR_TT1;
6522 }
6523
6524 if (tsicr & TSINTR_AUTT0) {
6525 nsec = rd32(E1000_AUXSTMPL0);
6526 sec = rd32(E1000_AUXSTMPH0);
6527 event.type = PTP_CLOCK_EXTTS;
6528 event.index = 0;
6529 event.timestamp = sec * 1000000000ULL + nsec;
6530 ptp_clock_event(adapter->ptp_clock, &event);
6531 ack |= TSINTR_AUTT0;
6532 }
6533
6534 if (tsicr & TSINTR_AUTT1) {
6535 nsec = rd32(E1000_AUXSTMPL1);
6536 sec = rd32(E1000_AUXSTMPH1);
6537 event.type = PTP_CLOCK_EXTTS;
6538 event.index = 1;
6539 event.timestamp = sec * 1000000000ULL + nsec;
6540 ptp_clock_event(adapter->ptp_clock, &event);
6541 ack |= TSINTR_AUTT1;
6542 }
6543
6544 /* acknowledge the interrupts */
6545 wr32(E1000_TSICR, ack);
6546 }
6547
igb_msix_other(int irq,void * data)6548 static irqreturn_t igb_msix_other(int irq, void *data)
6549 {
6550 struct igb_adapter *adapter = data;
6551 struct e1000_hw *hw = &adapter->hw;
6552 u32 icr = rd32(E1000_ICR);
6553 /* reading ICR causes bit 31 of EICR to be cleared */
6554
6555 if (icr & E1000_ICR_DRSTA)
6556 schedule_work(&adapter->reset_task);
6557
6558 if (icr & E1000_ICR_DOUTSYNC) {
6559 /* HW is reporting DMA is out of sync */
6560 adapter->stats.doosync++;
6561 /* The DMA Out of Sync is also indication of a spoof event
6562 * in IOV mode. Check the Wrong VM Behavior register to
6563 * see if it is really a spoof event.
6564 */
6565 igb_check_wvbr(adapter);
6566 }
6567
6568 /* Check for a mailbox event */
6569 if (icr & E1000_ICR_VMMB)
6570 igb_msg_task(adapter);
6571
6572 if (icr & E1000_ICR_LSC) {
6573 hw->mac.get_link_status = 1;
6574 /* guard against interrupt when we're going down */
6575 if (!test_bit(__IGB_DOWN, &adapter->state))
6576 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6577 }
6578
6579 if (icr & E1000_ICR_TS)
6580 igb_tsync_interrupt(adapter);
6581
6582 wr32(E1000_EIMS, adapter->eims_other);
6583
6584 return IRQ_HANDLED;
6585 }
6586
igb_write_itr(struct igb_q_vector * q_vector)6587 static void igb_write_itr(struct igb_q_vector *q_vector)
6588 {
6589 struct igb_adapter *adapter = q_vector->adapter;
6590 u32 itr_val = q_vector->itr_val & 0x7FFC;
6591
6592 if (!q_vector->set_itr)
6593 return;
6594
6595 if (!itr_val)
6596 itr_val = 0x4;
6597
6598 if (adapter->hw.mac.type == e1000_82575)
6599 itr_val |= itr_val << 16;
6600 else
6601 itr_val |= E1000_EITR_CNT_IGNR;
6602
6603 writel(itr_val, q_vector->itr_register);
6604 q_vector->set_itr = 0;
6605 }
6606
igb_msix_ring(int irq,void * data)6607 static irqreturn_t igb_msix_ring(int irq, void *data)
6608 {
6609 struct igb_q_vector *q_vector = data;
6610
6611 /* Write the ITR value calculated from the previous interrupt. */
6612 igb_write_itr(q_vector);
6613
6614 napi_schedule(&q_vector->napi);
6615
6616 return IRQ_HANDLED;
6617 }
6618
6619 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)6620 static void igb_update_tx_dca(struct igb_adapter *adapter,
6621 struct igb_ring *tx_ring,
6622 int cpu)
6623 {
6624 struct e1000_hw *hw = &adapter->hw;
6625 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6626
6627 if (hw->mac.type != e1000_82575)
6628 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6629
6630 /* We can enable relaxed ordering for reads, but not writes when
6631 * DCA is enabled. This is due to a known issue in some chipsets
6632 * which will cause the DCA tag to be cleared.
6633 */
6634 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6635 E1000_DCA_TXCTRL_DATA_RRO_EN |
6636 E1000_DCA_TXCTRL_DESC_DCA_EN;
6637
6638 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6639 }
6640
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)6641 static void igb_update_rx_dca(struct igb_adapter *adapter,
6642 struct igb_ring *rx_ring,
6643 int cpu)
6644 {
6645 struct e1000_hw *hw = &adapter->hw;
6646 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6647
6648 if (hw->mac.type != e1000_82575)
6649 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6650
6651 /* We can enable relaxed ordering for reads, but not writes when
6652 * DCA is enabled. This is due to a known issue in some chipsets
6653 * which will cause the DCA tag to be cleared.
6654 */
6655 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6656 E1000_DCA_RXCTRL_DESC_DCA_EN;
6657
6658 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6659 }
6660
igb_update_dca(struct igb_q_vector * q_vector)6661 static void igb_update_dca(struct igb_q_vector *q_vector)
6662 {
6663 struct igb_adapter *adapter = q_vector->adapter;
6664 int cpu = get_cpu();
6665
6666 if (q_vector->cpu == cpu)
6667 goto out_no_update;
6668
6669 if (q_vector->tx.ring)
6670 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6671
6672 if (q_vector->rx.ring)
6673 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6674
6675 q_vector->cpu = cpu;
6676 out_no_update:
6677 put_cpu();
6678 }
6679
igb_setup_dca(struct igb_adapter * adapter)6680 static void igb_setup_dca(struct igb_adapter *adapter)
6681 {
6682 struct e1000_hw *hw = &adapter->hw;
6683 int i;
6684
6685 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6686 return;
6687
6688 /* Always use CB2 mode, difference is masked in the CB driver. */
6689 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6690
6691 for (i = 0; i < adapter->num_q_vectors; i++) {
6692 adapter->q_vector[i]->cpu = -1;
6693 igb_update_dca(adapter->q_vector[i]);
6694 }
6695 }
6696
__igb_notify_dca(struct device * dev,void * data)6697 static int __igb_notify_dca(struct device *dev, void *data)
6698 {
6699 struct net_device *netdev = dev_get_drvdata(dev);
6700 struct igb_adapter *adapter = netdev_priv(netdev);
6701 struct pci_dev *pdev = adapter->pdev;
6702 struct e1000_hw *hw = &adapter->hw;
6703 unsigned long event = *(unsigned long *)data;
6704
6705 switch (event) {
6706 case DCA_PROVIDER_ADD:
6707 /* if already enabled, don't do it again */
6708 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6709 break;
6710 if (dca_add_requester(dev) == 0) {
6711 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6712 dev_info(&pdev->dev, "DCA enabled\n");
6713 igb_setup_dca(adapter);
6714 break;
6715 }
6716 /* Fall Through since DCA is disabled. */
6717 case DCA_PROVIDER_REMOVE:
6718 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6719 /* without this a class_device is left
6720 * hanging around in the sysfs model
6721 */
6722 dca_remove_requester(dev);
6723 dev_info(&pdev->dev, "DCA disabled\n");
6724 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6725 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6726 }
6727 break;
6728 }
6729
6730 return 0;
6731 }
6732
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)6733 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6734 void *p)
6735 {
6736 int ret_val;
6737
6738 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6739 __igb_notify_dca);
6740
6741 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6742 }
6743 #endif /* CONFIG_IGB_DCA */
6744
6745 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)6746 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6747 {
6748 unsigned char mac_addr[ETH_ALEN];
6749
6750 eth_zero_addr(mac_addr);
6751 igb_set_vf_mac(adapter, vf, mac_addr);
6752
6753 /* By default spoof check is enabled for all VFs */
6754 adapter->vf_data[vf].spoofchk_enabled = true;
6755
6756 /* By default VFs are not trusted */
6757 adapter->vf_data[vf].trusted = false;
6758
6759 return 0;
6760 }
6761
6762 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)6763 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6764 {
6765 struct e1000_hw *hw = &adapter->hw;
6766 u32 ping;
6767 int i;
6768
6769 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6770 ping = E1000_PF_CONTROL_MSG;
6771 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6772 ping |= E1000_VT_MSGTYPE_CTS;
6773 igb_write_mbx(hw, &ping, 1, i);
6774 }
6775 }
6776
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)6777 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6778 {
6779 struct e1000_hw *hw = &adapter->hw;
6780 u32 vmolr = rd32(E1000_VMOLR(vf));
6781 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6782
6783 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6784 IGB_VF_FLAG_MULTI_PROMISC);
6785 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6786
6787 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6788 vmolr |= E1000_VMOLR_MPME;
6789 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6790 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6791 } else {
6792 /* if we have hashes and we are clearing a multicast promisc
6793 * flag we need to write the hashes to the MTA as this step
6794 * was previously skipped
6795 */
6796 if (vf_data->num_vf_mc_hashes > 30) {
6797 vmolr |= E1000_VMOLR_MPME;
6798 } else if (vf_data->num_vf_mc_hashes) {
6799 int j;
6800
6801 vmolr |= E1000_VMOLR_ROMPE;
6802 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6803 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6804 }
6805 }
6806
6807 wr32(E1000_VMOLR(vf), vmolr);
6808
6809 /* there are flags left unprocessed, likely not supported */
6810 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6811 return -EINVAL;
6812
6813 return 0;
6814 }
6815
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)6816 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6817 u32 *msgbuf, u32 vf)
6818 {
6819 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6820 u16 *hash_list = (u16 *)&msgbuf[1];
6821 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6822 int i;
6823
6824 /* salt away the number of multicast addresses assigned
6825 * to this VF for later use to restore when the PF multi cast
6826 * list changes
6827 */
6828 vf_data->num_vf_mc_hashes = n;
6829
6830 /* only up to 30 hash values supported */
6831 if (n > 30)
6832 n = 30;
6833
6834 /* store the hashes for later use */
6835 for (i = 0; i < n; i++)
6836 vf_data->vf_mc_hashes[i] = hash_list[i];
6837
6838 /* Flush and reset the mta with the new values */
6839 igb_set_rx_mode(adapter->netdev);
6840
6841 return 0;
6842 }
6843
igb_restore_vf_multicasts(struct igb_adapter * adapter)6844 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6845 {
6846 struct e1000_hw *hw = &adapter->hw;
6847 struct vf_data_storage *vf_data;
6848 int i, j;
6849
6850 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6851 u32 vmolr = rd32(E1000_VMOLR(i));
6852
6853 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6854
6855 vf_data = &adapter->vf_data[i];
6856
6857 if ((vf_data->num_vf_mc_hashes > 30) ||
6858 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6859 vmolr |= E1000_VMOLR_MPME;
6860 } else if (vf_data->num_vf_mc_hashes) {
6861 vmolr |= E1000_VMOLR_ROMPE;
6862 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6863 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6864 }
6865 wr32(E1000_VMOLR(i), vmolr);
6866 }
6867 }
6868
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)6869 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6870 {
6871 struct e1000_hw *hw = &adapter->hw;
6872 u32 pool_mask, vlvf_mask, i;
6873
6874 /* create mask for VF and other pools */
6875 pool_mask = E1000_VLVF_POOLSEL_MASK;
6876 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6877
6878 /* drop PF from pool bits */
6879 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6880 adapter->vfs_allocated_count);
6881
6882 /* Find the vlan filter for this id */
6883 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6884 u32 vlvf = rd32(E1000_VLVF(i));
6885 u32 vfta_mask, vid, vfta;
6886
6887 /* remove the vf from the pool */
6888 if (!(vlvf & vlvf_mask))
6889 continue;
6890
6891 /* clear out bit from VLVF */
6892 vlvf ^= vlvf_mask;
6893
6894 /* if other pools are present, just remove ourselves */
6895 if (vlvf & pool_mask)
6896 goto update_vlvfb;
6897
6898 /* if PF is present, leave VFTA */
6899 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6900 goto update_vlvf;
6901
6902 vid = vlvf & E1000_VLVF_VLANID_MASK;
6903 vfta_mask = BIT(vid % 32);
6904
6905 /* clear bit from VFTA */
6906 vfta = adapter->shadow_vfta[vid / 32];
6907 if (vfta & vfta_mask)
6908 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6909 update_vlvf:
6910 /* clear pool selection enable */
6911 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6912 vlvf &= E1000_VLVF_POOLSEL_MASK;
6913 else
6914 vlvf = 0;
6915 update_vlvfb:
6916 /* clear pool bits */
6917 wr32(E1000_VLVF(i), vlvf);
6918 }
6919 }
6920
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)6921 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6922 {
6923 u32 vlvf;
6924 int idx;
6925
6926 /* short cut the special case */
6927 if (vlan == 0)
6928 return 0;
6929
6930 /* Search for the VLAN id in the VLVF entries */
6931 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6932 vlvf = rd32(E1000_VLVF(idx));
6933 if ((vlvf & VLAN_VID_MASK) == vlan)
6934 break;
6935 }
6936
6937 return idx;
6938 }
6939
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)6940 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6941 {
6942 struct e1000_hw *hw = &adapter->hw;
6943 u32 bits, pf_id;
6944 int idx;
6945
6946 idx = igb_find_vlvf_entry(hw, vid);
6947 if (!idx)
6948 return;
6949
6950 /* See if any other pools are set for this VLAN filter
6951 * entry other than the PF.
6952 */
6953 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6954 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6955 bits &= rd32(E1000_VLVF(idx));
6956
6957 /* Disable the filter so this falls into the default pool. */
6958 if (!bits) {
6959 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6960 wr32(E1000_VLVF(idx), BIT(pf_id));
6961 else
6962 wr32(E1000_VLVF(idx), 0);
6963 }
6964 }
6965
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)6966 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6967 bool add, u32 vf)
6968 {
6969 int pf_id = adapter->vfs_allocated_count;
6970 struct e1000_hw *hw = &adapter->hw;
6971 int err;
6972
6973 /* If VLAN overlaps with one the PF is currently monitoring make
6974 * sure that we are able to allocate a VLVF entry. This may be
6975 * redundant but it guarantees PF will maintain visibility to
6976 * the VLAN.
6977 */
6978 if (add && test_bit(vid, adapter->active_vlans)) {
6979 err = igb_vfta_set(hw, vid, pf_id, true, false);
6980 if (err)
6981 return err;
6982 }
6983
6984 err = igb_vfta_set(hw, vid, vf, add, false);
6985
6986 if (add && !err)
6987 return err;
6988
6989 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6990 * we may need to drop the PF pool bit in order to allow us to free
6991 * up the VLVF resources.
6992 */
6993 if (test_bit(vid, adapter->active_vlans) ||
6994 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6995 igb_update_pf_vlvf(adapter, vid);
6996
6997 return err;
6998 }
6999
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7000 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7001 {
7002 struct e1000_hw *hw = &adapter->hw;
7003
7004 if (vid)
7005 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7006 else
7007 wr32(E1000_VMVIR(vf), 0);
7008 }
7009
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7010 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7011 u16 vlan, u8 qos)
7012 {
7013 int err;
7014
7015 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7016 if (err)
7017 return err;
7018
7019 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7020 igb_set_vmolr(adapter, vf, !vlan);
7021
7022 /* revoke access to previous VLAN */
7023 if (vlan != adapter->vf_data[vf].pf_vlan)
7024 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7025 false, vf);
7026
7027 adapter->vf_data[vf].pf_vlan = vlan;
7028 adapter->vf_data[vf].pf_qos = qos;
7029 igb_set_vf_vlan_strip(adapter, vf, true);
7030 dev_info(&adapter->pdev->dev,
7031 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7032 if (test_bit(__IGB_DOWN, &adapter->state)) {
7033 dev_warn(&adapter->pdev->dev,
7034 "The VF VLAN has been set, but the PF device is not up.\n");
7035 dev_warn(&adapter->pdev->dev,
7036 "Bring the PF device up before attempting to use the VF device.\n");
7037 }
7038
7039 return err;
7040 }
7041
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7042 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7043 {
7044 /* Restore tagless access via VLAN 0 */
7045 igb_set_vf_vlan(adapter, 0, true, vf);
7046
7047 igb_set_vmvir(adapter, 0, vf);
7048 igb_set_vmolr(adapter, vf, true);
7049
7050 /* Remove any PF assigned VLAN */
7051 if (adapter->vf_data[vf].pf_vlan)
7052 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7053 false, vf);
7054
7055 adapter->vf_data[vf].pf_vlan = 0;
7056 adapter->vf_data[vf].pf_qos = 0;
7057 igb_set_vf_vlan_strip(adapter, vf, false);
7058
7059 return 0;
7060 }
7061
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7062 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7063 u16 vlan, u8 qos, __be16 vlan_proto)
7064 {
7065 struct igb_adapter *adapter = netdev_priv(netdev);
7066
7067 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7068 return -EINVAL;
7069
7070 if (vlan_proto != htons(ETH_P_8021Q))
7071 return -EPROTONOSUPPORT;
7072
7073 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7074 igb_disable_port_vlan(adapter, vf);
7075 }
7076
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7077 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7078 {
7079 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7080 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7081 int ret;
7082
7083 if (adapter->vf_data[vf].pf_vlan)
7084 return -1;
7085
7086 /* VLAN 0 is a special case, don't allow it to be removed */
7087 if (!vid && !add)
7088 return 0;
7089
7090 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7091 if (!ret)
7092 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7093 return ret;
7094 }
7095
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7096 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7097 {
7098 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7099
7100 /* clear flags - except flag that indicates PF has set the MAC */
7101 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7102 vf_data->last_nack = jiffies;
7103
7104 /* reset vlans for device */
7105 igb_clear_vf_vfta(adapter, vf);
7106 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7107 igb_set_vmvir(adapter, vf_data->pf_vlan |
7108 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7109 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7110 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7111
7112 /* reset multicast table array for vf */
7113 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7114
7115 /* Flush and reset the mta with the new values */
7116 igb_set_rx_mode(adapter->netdev);
7117 }
7118
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7119 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7120 {
7121 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7122
7123 /* clear mac address as we were hotplug removed/added */
7124 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7125 eth_zero_addr(vf_mac);
7126
7127 /* process remaining reset events */
7128 igb_vf_reset(adapter, vf);
7129 }
7130
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7131 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7132 {
7133 struct e1000_hw *hw = &adapter->hw;
7134 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7135 u32 reg, msgbuf[3];
7136 u8 *addr = (u8 *)(&msgbuf[1]);
7137
7138 /* process all the same items cleared in a function level reset */
7139 igb_vf_reset(adapter, vf);
7140
7141 /* set vf mac address */
7142 igb_set_vf_mac(adapter, vf, vf_mac);
7143
7144 /* enable transmit and receive for vf */
7145 reg = rd32(E1000_VFTE);
7146 wr32(E1000_VFTE, reg | BIT(vf));
7147 reg = rd32(E1000_VFRE);
7148 wr32(E1000_VFRE, reg | BIT(vf));
7149
7150 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7151
7152 /* reply to reset with ack and vf mac address */
7153 if (!is_zero_ether_addr(vf_mac)) {
7154 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7155 memcpy(addr, vf_mac, ETH_ALEN);
7156 } else {
7157 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7158 }
7159 igb_write_mbx(hw, msgbuf, 3, vf);
7160 }
7161
igb_flush_mac_table(struct igb_adapter * adapter)7162 static void igb_flush_mac_table(struct igb_adapter *adapter)
7163 {
7164 struct e1000_hw *hw = &adapter->hw;
7165 int i;
7166
7167 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7168 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7169 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7170 adapter->mac_table[i].queue = 0;
7171 igb_rar_set_index(adapter, i);
7172 }
7173 }
7174
igb_available_rars(struct igb_adapter * adapter,u8 queue)7175 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7176 {
7177 struct e1000_hw *hw = &adapter->hw;
7178 /* do not count rar entries reserved for VFs MAC addresses */
7179 int rar_entries = hw->mac.rar_entry_count -
7180 adapter->vfs_allocated_count;
7181 int i, count = 0;
7182
7183 for (i = 0; i < rar_entries; i++) {
7184 /* do not count default entries */
7185 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7186 continue;
7187
7188 /* do not count "in use" entries for different queues */
7189 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7190 (adapter->mac_table[i].queue != queue))
7191 continue;
7192
7193 count++;
7194 }
7195
7196 return count;
7197 }
7198
7199 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7200 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7201 {
7202 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7203
7204 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7205 mac_table->queue = adapter->vfs_allocated_count;
7206 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7207
7208 igb_rar_set_index(adapter, 0);
7209 }
7210
7211 /* If the filter to be added and an already existing filter express
7212 * the same address and address type, it should be possible to only
7213 * override the other configurations, for example the queue to steer
7214 * traffic.
7215 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7216 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7217 const u8 *addr, const u8 flags)
7218 {
7219 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7220 return true;
7221
7222 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7223 (flags & IGB_MAC_STATE_SRC_ADDR))
7224 return false;
7225
7226 if (!ether_addr_equal(addr, entry->addr))
7227 return false;
7228
7229 return true;
7230 }
7231
7232 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7233 * 'flags' is used to indicate what kind of match is made, match is by
7234 * default for the destination address, if matching by source address
7235 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7236 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7237 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7238 const u8 *addr, const u8 queue,
7239 const u8 flags)
7240 {
7241 struct e1000_hw *hw = &adapter->hw;
7242 int rar_entries = hw->mac.rar_entry_count -
7243 adapter->vfs_allocated_count;
7244 int i;
7245
7246 if (is_zero_ether_addr(addr))
7247 return -EINVAL;
7248
7249 /* Search for the first empty entry in the MAC table.
7250 * Do not touch entries at the end of the table reserved for the VF MAC
7251 * addresses.
7252 */
7253 for (i = 0; i < rar_entries; i++) {
7254 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7255 addr, flags))
7256 continue;
7257
7258 ether_addr_copy(adapter->mac_table[i].addr, addr);
7259 adapter->mac_table[i].queue = queue;
7260 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7261
7262 igb_rar_set_index(adapter, i);
7263 return i;
7264 }
7265
7266 return -ENOSPC;
7267 }
7268
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7269 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7270 const u8 queue)
7271 {
7272 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7273 }
7274
7275 /* Remove a MAC filter for 'addr' directing matching traffic to
7276 * 'queue', 'flags' is used to indicate what kind of match need to be
7277 * removed, match is by default for the destination address, if
7278 * matching by source address is to be removed the flag
7279 * IGB_MAC_STATE_SRC_ADDR can be used.
7280 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7281 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7282 const u8 *addr, const u8 queue,
7283 const u8 flags)
7284 {
7285 struct e1000_hw *hw = &adapter->hw;
7286 int rar_entries = hw->mac.rar_entry_count -
7287 adapter->vfs_allocated_count;
7288 int i;
7289
7290 if (is_zero_ether_addr(addr))
7291 return -EINVAL;
7292
7293 /* Search for matching entry in the MAC table based on given address
7294 * and queue. Do not touch entries at the end of the table reserved
7295 * for the VF MAC addresses.
7296 */
7297 for (i = 0; i < rar_entries; i++) {
7298 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7299 continue;
7300 if ((adapter->mac_table[i].state & flags) != flags)
7301 continue;
7302 if (adapter->mac_table[i].queue != queue)
7303 continue;
7304 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7305 continue;
7306
7307 /* When a filter for the default address is "deleted",
7308 * we return it to its initial configuration
7309 */
7310 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7311 adapter->mac_table[i].state =
7312 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7313 adapter->mac_table[i].queue =
7314 adapter->vfs_allocated_count;
7315 } else {
7316 adapter->mac_table[i].state = 0;
7317 adapter->mac_table[i].queue = 0;
7318 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7319 }
7320
7321 igb_rar_set_index(adapter, i);
7322 return 0;
7323 }
7324
7325 return -ENOENT;
7326 }
7327
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7328 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7329 const u8 queue)
7330 {
7331 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7332 }
7333
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7334 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7335 const u8 *addr, u8 queue, u8 flags)
7336 {
7337 struct e1000_hw *hw = &adapter->hw;
7338
7339 /* In theory, this should be supported on 82575 as well, but
7340 * that part wasn't easily accessible during development.
7341 */
7342 if (hw->mac.type != e1000_i210)
7343 return -EOPNOTSUPP;
7344
7345 return igb_add_mac_filter_flags(adapter, addr, queue,
7346 IGB_MAC_STATE_QUEUE_STEERING | flags);
7347 }
7348
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7349 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7350 const u8 *addr, u8 queue, u8 flags)
7351 {
7352 return igb_del_mac_filter_flags(adapter, addr, queue,
7353 IGB_MAC_STATE_QUEUE_STEERING | flags);
7354 }
7355
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7356 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7357 {
7358 struct igb_adapter *adapter = netdev_priv(netdev);
7359 int ret;
7360
7361 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7362
7363 return min_t(int, ret, 0);
7364 }
7365
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7366 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7367 {
7368 struct igb_adapter *adapter = netdev_priv(netdev);
7369
7370 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7371
7372 return 0;
7373 }
7374
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7375 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7376 const u32 info, const u8 *addr)
7377 {
7378 struct pci_dev *pdev = adapter->pdev;
7379 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7380 struct list_head *pos;
7381 struct vf_mac_filter *entry = NULL;
7382 int ret = 0;
7383
7384 switch (info) {
7385 case E1000_VF_MAC_FILTER_CLR:
7386 /* remove all unicast MAC filters related to the current VF */
7387 list_for_each(pos, &adapter->vf_macs.l) {
7388 entry = list_entry(pos, struct vf_mac_filter, l);
7389 if (entry->vf == vf) {
7390 entry->vf = -1;
7391 entry->free = true;
7392 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7393 }
7394 }
7395 break;
7396 case E1000_VF_MAC_FILTER_ADD:
7397 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7398 !vf_data->trusted) {
7399 dev_warn(&pdev->dev,
7400 "VF %d requested MAC filter but is administratively denied\n",
7401 vf);
7402 return -EINVAL;
7403 }
7404 if (!is_valid_ether_addr(addr)) {
7405 dev_warn(&pdev->dev,
7406 "VF %d attempted to set invalid MAC filter\n",
7407 vf);
7408 return -EINVAL;
7409 }
7410
7411 /* try to find empty slot in the list */
7412 list_for_each(pos, &adapter->vf_macs.l) {
7413 entry = list_entry(pos, struct vf_mac_filter, l);
7414 if (entry->free)
7415 break;
7416 }
7417
7418 if (entry && entry->free) {
7419 entry->free = false;
7420 entry->vf = vf;
7421 ether_addr_copy(entry->vf_mac, addr);
7422
7423 ret = igb_add_mac_filter(adapter, addr, vf);
7424 ret = min_t(int, ret, 0);
7425 } else {
7426 ret = -ENOSPC;
7427 }
7428
7429 if (ret == -ENOSPC)
7430 dev_warn(&pdev->dev,
7431 "VF %d has requested MAC filter but there is no space for it\n",
7432 vf);
7433 break;
7434 default:
7435 ret = -EINVAL;
7436 break;
7437 }
7438
7439 return ret;
7440 }
7441
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7442 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7443 {
7444 struct pci_dev *pdev = adapter->pdev;
7445 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7446 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7447
7448 /* The VF MAC Address is stored in a packed array of bytes
7449 * starting at the second 32 bit word of the msg array
7450 */
7451 unsigned char *addr = (unsigned char *)&msg[1];
7452 int ret = 0;
7453
7454 if (!info) {
7455 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7456 !vf_data->trusted) {
7457 dev_warn(&pdev->dev,
7458 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7459 vf);
7460 return -EINVAL;
7461 }
7462
7463 if (!is_valid_ether_addr(addr)) {
7464 dev_warn(&pdev->dev,
7465 "VF %d attempted to set invalid MAC\n",
7466 vf);
7467 return -EINVAL;
7468 }
7469
7470 ret = igb_set_vf_mac(adapter, vf, addr);
7471 } else {
7472 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7473 }
7474
7475 return ret;
7476 }
7477
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7478 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7479 {
7480 struct e1000_hw *hw = &adapter->hw;
7481 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7482 u32 msg = E1000_VT_MSGTYPE_NACK;
7483
7484 /* if device isn't clear to send it shouldn't be reading either */
7485 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7486 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7487 igb_write_mbx(hw, &msg, 1, vf);
7488 vf_data->last_nack = jiffies;
7489 }
7490 }
7491
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7492 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7493 {
7494 struct pci_dev *pdev = adapter->pdev;
7495 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7496 struct e1000_hw *hw = &adapter->hw;
7497 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7498 s32 retval;
7499
7500 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7501
7502 if (retval) {
7503 /* if receive failed revoke VF CTS stats and restart init */
7504 dev_err(&pdev->dev, "Error receiving message from VF\n");
7505 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7506 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7507 goto unlock;
7508 goto out;
7509 }
7510
7511 /* this is a message we already processed, do nothing */
7512 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7513 goto unlock;
7514
7515 /* until the vf completes a reset it should not be
7516 * allowed to start any configuration.
7517 */
7518 if (msgbuf[0] == E1000_VF_RESET) {
7519 /* unlocks mailbox */
7520 igb_vf_reset_msg(adapter, vf);
7521 return;
7522 }
7523
7524 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7525 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7526 goto unlock;
7527 retval = -1;
7528 goto out;
7529 }
7530
7531 switch ((msgbuf[0] & 0xFFFF)) {
7532 case E1000_VF_SET_MAC_ADDR:
7533 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7534 break;
7535 case E1000_VF_SET_PROMISC:
7536 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7537 break;
7538 case E1000_VF_SET_MULTICAST:
7539 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7540 break;
7541 case E1000_VF_SET_LPE:
7542 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7543 break;
7544 case E1000_VF_SET_VLAN:
7545 retval = -1;
7546 if (vf_data->pf_vlan)
7547 dev_warn(&pdev->dev,
7548 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7549 vf);
7550 else
7551 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7552 break;
7553 default:
7554 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7555 retval = -1;
7556 break;
7557 }
7558
7559 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7560 out:
7561 /* notify the VF of the results of what it sent us */
7562 if (retval)
7563 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7564 else
7565 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7566
7567 /* unlocks mailbox */
7568 igb_write_mbx(hw, msgbuf, 1, vf);
7569 return;
7570
7571 unlock:
7572 igb_unlock_mbx(hw, vf);
7573 }
7574
igb_msg_task(struct igb_adapter * adapter)7575 static void igb_msg_task(struct igb_adapter *adapter)
7576 {
7577 struct e1000_hw *hw = &adapter->hw;
7578 u32 vf;
7579
7580 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7581 /* process any reset requests */
7582 if (!igb_check_for_rst(hw, vf))
7583 igb_vf_reset_event(adapter, vf);
7584
7585 /* process any messages pending */
7586 if (!igb_check_for_msg(hw, vf))
7587 igb_rcv_msg_from_vf(adapter, vf);
7588
7589 /* process any acks */
7590 if (!igb_check_for_ack(hw, vf))
7591 igb_rcv_ack_from_vf(adapter, vf);
7592 }
7593 }
7594
7595 /**
7596 * igb_set_uta - Set unicast filter table address
7597 * @adapter: board private structure
7598 * @set: boolean indicating if we are setting or clearing bits
7599 *
7600 * The unicast table address is a register array of 32-bit registers.
7601 * The table is meant to be used in a way similar to how the MTA is used
7602 * however due to certain limitations in the hardware it is necessary to
7603 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7604 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7605 **/
igb_set_uta(struct igb_adapter * adapter,bool set)7606 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7607 {
7608 struct e1000_hw *hw = &adapter->hw;
7609 u32 uta = set ? ~0 : 0;
7610 int i;
7611
7612 /* we only need to do this if VMDq is enabled */
7613 if (!adapter->vfs_allocated_count)
7614 return;
7615
7616 for (i = hw->mac.uta_reg_count; i--;)
7617 array_wr32(E1000_UTA, i, uta);
7618 }
7619
7620 /**
7621 * igb_intr_msi - Interrupt Handler
7622 * @irq: interrupt number
7623 * @data: pointer to a network interface device structure
7624 **/
igb_intr_msi(int irq,void * data)7625 static irqreturn_t igb_intr_msi(int irq, void *data)
7626 {
7627 struct igb_adapter *adapter = data;
7628 struct igb_q_vector *q_vector = adapter->q_vector[0];
7629 struct e1000_hw *hw = &adapter->hw;
7630 /* read ICR disables interrupts using IAM */
7631 u32 icr = rd32(E1000_ICR);
7632
7633 igb_write_itr(q_vector);
7634
7635 if (icr & E1000_ICR_DRSTA)
7636 schedule_work(&adapter->reset_task);
7637
7638 if (icr & E1000_ICR_DOUTSYNC) {
7639 /* HW is reporting DMA is out of sync */
7640 adapter->stats.doosync++;
7641 }
7642
7643 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7644 hw->mac.get_link_status = 1;
7645 if (!test_bit(__IGB_DOWN, &adapter->state))
7646 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7647 }
7648
7649 if (icr & E1000_ICR_TS)
7650 igb_tsync_interrupt(adapter);
7651
7652 napi_schedule(&q_vector->napi);
7653
7654 return IRQ_HANDLED;
7655 }
7656
7657 /**
7658 * igb_intr - Legacy Interrupt Handler
7659 * @irq: interrupt number
7660 * @data: pointer to a network interface device structure
7661 **/
igb_intr(int irq,void * data)7662 static irqreturn_t igb_intr(int irq, void *data)
7663 {
7664 struct igb_adapter *adapter = data;
7665 struct igb_q_vector *q_vector = adapter->q_vector[0];
7666 struct e1000_hw *hw = &adapter->hw;
7667 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7668 * need for the IMC write
7669 */
7670 u32 icr = rd32(E1000_ICR);
7671
7672 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7673 * not set, then the adapter didn't send an interrupt
7674 */
7675 if (!(icr & E1000_ICR_INT_ASSERTED))
7676 return IRQ_NONE;
7677
7678 igb_write_itr(q_vector);
7679
7680 if (icr & E1000_ICR_DRSTA)
7681 schedule_work(&adapter->reset_task);
7682
7683 if (icr & E1000_ICR_DOUTSYNC) {
7684 /* HW is reporting DMA is out of sync */
7685 adapter->stats.doosync++;
7686 }
7687
7688 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7689 hw->mac.get_link_status = 1;
7690 /* guard against interrupt when we're going down */
7691 if (!test_bit(__IGB_DOWN, &adapter->state))
7692 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7693 }
7694
7695 if (icr & E1000_ICR_TS)
7696 igb_tsync_interrupt(adapter);
7697
7698 napi_schedule(&q_vector->napi);
7699
7700 return IRQ_HANDLED;
7701 }
7702
igb_ring_irq_enable(struct igb_q_vector * q_vector)7703 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7704 {
7705 struct igb_adapter *adapter = q_vector->adapter;
7706 struct e1000_hw *hw = &adapter->hw;
7707
7708 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7709 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7710 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7711 igb_set_itr(q_vector);
7712 else
7713 igb_update_ring_itr(q_vector);
7714 }
7715
7716 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7717 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7718 wr32(E1000_EIMS, q_vector->eims_value);
7719 else
7720 igb_irq_enable(adapter);
7721 }
7722 }
7723
7724 /**
7725 * igb_poll - NAPI Rx polling callback
7726 * @napi: napi polling structure
7727 * @budget: count of how many packets we should handle
7728 **/
igb_poll(struct napi_struct * napi,int budget)7729 static int igb_poll(struct napi_struct *napi, int budget)
7730 {
7731 struct igb_q_vector *q_vector = container_of(napi,
7732 struct igb_q_vector,
7733 napi);
7734 bool clean_complete = true;
7735 int work_done = 0;
7736
7737 #ifdef CONFIG_IGB_DCA
7738 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7739 igb_update_dca(q_vector);
7740 #endif
7741 if (q_vector->tx.ring)
7742 clean_complete = igb_clean_tx_irq(q_vector, budget);
7743
7744 if (q_vector->rx.ring) {
7745 int cleaned = igb_clean_rx_irq(q_vector, budget);
7746
7747 work_done += cleaned;
7748 if (cleaned >= budget)
7749 clean_complete = false;
7750 }
7751
7752 /* If all work not completed, return budget and keep polling */
7753 if (!clean_complete)
7754 return budget;
7755
7756 /* If not enough Rx work done, exit the polling mode */
7757 napi_complete_done(napi, work_done);
7758 igb_ring_irq_enable(q_vector);
7759
7760 return 0;
7761 }
7762
7763 /**
7764 * igb_clean_tx_irq - Reclaim resources after transmit completes
7765 * @q_vector: pointer to q_vector containing needed info
7766 * @napi_budget: Used to determine if we are in netpoll
7767 *
7768 * returns true if ring is completely cleaned
7769 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)7770 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7771 {
7772 struct igb_adapter *adapter = q_vector->adapter;
7773 struct igb_ring *tx_ring = q_vector->tx.ring;
7774 struct igb_tx_buffer *tx_buffer;
7775 union e1000_adv_tx_desc *tx_desc;
7776 unsigned int total_bytes = 0, total_packets = 0;
7777 unsigned int budget = q_vector->tx.work_limit;
7778 unsigned int i = tx_ring->next_to_clean;
7779
7780 if (test_bit(__IGB_DOWN, &adapter->state))
7781 return true;
7782
7783 tx_buffer = &tx_ring->tx_buffer_info[i];
7784 tx_desc = IGB_TX_DESC(tx_ring, i);
7785 i -= tx_ring->count;
7786
7787 do {
7788 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7789
7790 /* if next_to_watch is not set then there is no work pending */
7791 if (!eop_desc)
7792 break;
7793
7794 /* prevent any other reads prior to eop_desc */
7795 smp_rmb();
7796
7797 /* if DD is not set pending work has not been completed */
7798 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7799 break;
7800
7801 /* clear next_to_watch to prevent false hangs */
7802 tx_buffer->next_to_watch = NULL;
7803
7804 /* update the statistics for this packet */
7805 total_bytes += tx_buffer->bytecount;
7806 total_packets += tx_buffer->gso_segs;
7807
7808 /* free the skb */
7809 napi_consume_skb(tx_buffer->skb, napi_budget);
7810
7811 /* unmap skb header data */
7812 dma_unmap_single(tx_ring->dev,
7813 dma_unmap_addr(tx_buffer, dma),
7814 dma_unmap_len(tx_buffer, len),
7815 DMA_TO_DEVICE);
7816
7817 /* clear tx_buffer data */
7818 dma_unmap_len_set(tx_buffer, len, 0);
7819
7820 /* clear last DMA location and unmap remaining buffers */
7821 while (tx_desc != eop_desc) {
7822 tx_buffer++;
7823 tx_desc++;
7824 i++;
7825 if (unlikely(!i)) {
7826 i -= tx_ring->count;
7827 tx_buffer = tx_ring->tx_buffer_info;
7828 tx_desc = IGB_TX_DESC(tx_ring, 0);
7829 }
7830
7831 /* unmap any remaining paged data */
7832 if (dma_unmap_len(tx_buffer, len)) {
7833 dma_unmap_page(tx_ring->dev,
7834 dma_unmap_addr(tx_buffer, dma),
7835 dma_unmap_len(tx_buffer, len),
7836 DMA_TO_DEVICE);
7837 dma_unmap_len_set(tx_buffer, len, 0);
7838 }
7839 }
7840
7841 /* move us one more past the eop_desc for start of next pkt */
7842 tx_buffer++;
7843 tx_desc++;
7844 i++;
7845 if (unlikely(!i)) {
7846 i -= tx_ring->count;
7847 tx_buffer = tx_ring->tx_buffer_info;
7848 tx_desc = IGB_TX_DESC(tx_ring, 0);
7849 }
7850
7851 /* issue prefetch for next Tx descriptor */
7852 prefetch(tx_desc);
7853
7854 /* update budget accounting */
7855 budget--;
7856 } while (likely(budget));
7857
7858 netdev_tx_completed_queue(txring_txq(tx_ring),
7859 total_packets, total_bytes);
7860 i += tx_ring->count;
7861 tx_ring->next_to_clean = i;
7862 u64_stats_update_begin(&tx_ring->tx_syncp);
7863 tx_ring->tx_stats.bytes += total_bytes;
7864 tx_ring->tx_stats.packets += total_packets;
7865 u64_stats_update_end(&tx_ring->tx_syncp);
7866 q_vector->tx.total_bytes += total_bytes;
7867 q_vector->tx.total_packets += total_packets;
7868
7869 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7870 struct e1000_hw *hw = &adapter->hw;
7871
7872 /* Detect a transmit hang in hardware, this serializes the
7873 * check with the clearing of time_stamp and movement of i
7874 */
7875 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7876 if (tx_buffer->next_to_watch &&
7877 time_after(jiffies, tx_buffer->time_stamp +
7878 (adapter->tx_timeout_factor * HZ)) &&
7879 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7880
7881 /* detected Tx unit hang */
7882 dev_err(tx_ring->dev,
7883 "Detected Tx Unit Hang\n"
7884 " Tx Queue <%d>\n"
7885 " TDH <%x>\n"
7886 " TDT <%x>\n"
7887 " next_to_use <%x>\n"
7888 " next_to_clean <%x>\n"
7889 "buffer_info[next_to_clean]\n"
7890 " time_stamp <%lx>\n"
7891 " next_to_watch <%p>\n"
7892 " jiffies <%lx>\n"
7893 " desc.status <%x>\n",
7894 tx_ring->queue_index,
7895 rd32(E1000_TDH(tx_ring->reg_idx)),
7896 readl(tx_ring->tail),
7897 tx_ring->next_to_use,
7898 tx_ring->next_to_clean,
7899 tx_buffer->time_stamp,
7900 tx_buffer->next_to_watch,
7901 jiffies,
7902 tx_buffer->next_to_watch->wb.status);
7903 netif_stop_subqueue(tx_ring->netdev,
7904 tx_ring->queue_index);
7905
7906 /* we are about to reset, no point in enabling stuff */
7907 return true;
7908 }
7909 }
7910
7911 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7912 if (unlikely(total_packets &&
7913 netif_carrier_ok(tx_ring->netdev) &&
7914 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7915 /* Make sure that anybody stopping the queue after this
7916 * sees the new next_to_clean.
7917 */
7918 smp_mb();
7919 if (__netif_subqueue_stopped(tx_ring->netdev,
7920 tx_ring->queue_index) &&
7921 !(test_bit(__IGB_DOWN, &adapter->state))) {
7922 netif_wake_subqueue(tx_ring->netdev,
7923 tx_ring->queue_index);
7924
7925 u64_stats_update_begin(&tx_ring->tx_syncp);
7926 tx_ring->tx_stats.restart_queue++;
7927 u64_stats_update_end(&tx_ring->tx_syncp);
7928 }
7929 }
7930
7931 return !!budget;
7932 }
7933
7934 /**
7935 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7936 * @rx_ring: rx descriptor ring to store buffers on
7937 * @old_buff: donor buffer to have page reused
7938 *
7939 * Synchronizes page for reuse by the adapter
7940 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)7941 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7942 struct igb_rx_buffer *old_buff)
7943 {
7944 struct igb_rx_buffer *new_buff;
7945 u16 nta = rx_ring->next_to_alloc;
7946
7947 new_buff = &rx_ring->rx_buffer_info[nta];
7948
7949 /* update, and store next to alloc */
7950 nta++;
7951 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7952
7953 /* Transfer page from old buffer to new buffer.
7954 * Move each member individually to avoid possible store
7955 * forwarding stalls.
7956 */
7957 new_buff->dma = old_buff->dma;
7958 new_buff->page = old_buff->page;
7959 new_buff->page_offset = old_buff->page_offset;
7960 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7961 }
7962
igb_page_is_reserved(struct page * page)7963 static inline bool igb_page_is_reserved(struct page *page)
7964 {
7965 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7966 }
7967
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer)7968 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7969 {
7970 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7971 struct page *page = rx_buffer->page;
7972
7973 /* avoid re-using remote pages */
7974 if (unlikely(igb_page_is_reserved(page)))
7975 return false;
7976
7977 #if (PAGE_SIZE < 8192)
7978 /* if we are only owner of page we can reuse it */
7979 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7980 return false;
7981 #else
7982 #define IGB_LAST_OFFSET \
7983 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7984
7985 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7986 return false;
7987 #endif
7988
7989 /* If we have drained the page fragment pool we need to update
7990 * the pagecnt_bias and page count so that we fully restock the
7991 * number of references the driver holds.
7992 */
7993 if (unlikely(!pagecnt_bias)) {
7994 page_ref_add(page, USHRT_MAX);
7995 rx_buffer->pagecnt_bias = USHRT_MAX;
7996 }
7997
7998 return true;
7999 }
8000
8001 /**
8002 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8003 * @rx_ring: rx descriptor ring to transact packets on
8004 * @rx_buffer: buffer containing page to add
8005 * @skb: sk_buff to place the data into
8006 * @size: size of buffer to be added
8007 *
8008 * This function will add the data contained in rx_buffer->page to the skb.
8009 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8010 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8011 struct igb_rx_buffer *rx_buffer,
8012 struct sk_buff *skb,
8013 unsigned int size)
8014 {
8015 #if (PAGE_SIZE < 8192)
8016 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8017 #else
8018 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8019 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8020 SKB_DATA_ALIGN(size);
8021 #endif
8022 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8023 rx_buffer->page_offset, size, truesize);
8024 #if (PAGE_SIZE < 8192)
8025 rx_buffer->page_offset ^= truesize;
8026 #else
8027 rx_buffer->page_offset += truesize;
8028 #endif
8029 }
8030
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,union e1000_adv_rx_desc * rx_desc,unsigned int size)8031 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8032 struct igb_rx_buffer *rx_buffer,
8033 union e1000_adv_rx_desc *rx_desc,
8034 unsigned int size)
8035 {
8036 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8037 #if (PAGE_SIZE < 8192)
8038 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8039 #else
8040 unsigned int truesize = SKB_DATA_ALIGN(size);
8041 #endif
8042 unsigned int headlen;
8043 struct sk_buff *skb;
8044
8045 /* prefetch first cache line of first page */
8046 prefetch(va);
8047 #if L1_CACHE_BYTES < 128
8048 prefetch(va + L1_CACHE_BYTES);
8049 #endif
8050
8051 /* allocate a skb to store the frags */
8052 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8053 if (unlikely(!skb))
8054 return NULL;
8055
8056 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8057 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8058 va += IGB_TS_HDR_LEN;
8059 size -= IGB_TS_HDR_LEN;
8060 }
8061
8062 /* Determine available headroom for copy */
8063 headlen = size;
8064 if (headlen > IGB_RX_HDR_LEN)
8065 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
8066
8067 /* align pull length to size of long to optimize memcpy performance */
8068 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8069
8070 /* update all of the pointers */
8071 size -= headlen;
8072 if (size) {
8073 skb_add_rx_frag(skb, 0, rx_buffer->page,
8074 (va + headlen) - page_address(rx_buffer->page),
8075 size, truesize);
8076 #if (PAGE_SIZE < 8192)
8077 rx_buffer->page_offset ^= truesize;
8078 #else
8079 rx_buffer->page_offset += truesize;
8080 #endif
8081 } else {
8082 rx_buffer->pagecnt_bias++;
8083 }
8084
8085 return skb;
8086 }
8087
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,union e1000_adv_rx_desc * rx_desc,unsigned int size)8088 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8089 struct igb_rx_buffer *rx_buffer,
8090 union e1000_adv_rx_desc *rx_desc,
8091 unsigned int size)
8092 {
8093 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8094 #if (PAGE_SIZE < 8192)
8095 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8096 #else
8097 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8098 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8099 #endif
8100 struct sk_buff *skb;
8101
8102 /* prefetch first cache line of first page */
8103 prefetch(va);
8104 #if L1_CACHE_BYTES < 128
8105 prefetch(va + L1_CACHE_BYTES);
8106 #endif
8107
8108 /* build an skb around the page buffer */
8109 skb = build_skb(va - IGB_SKB_PAD, truesize);
8110 if (unlikely(!skb))
8111 return NULL;
8112
8113 /* update pointers within the skb to store the data */
8114 skb_reserve(skb, IGB_SKB_PAD);
8115 __skb_put(skb, size);
8116
8117 /* pull timestamp out of packet data */
8118 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8119 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8120 __skb_pull(skb, IGB_TS_HDR_LEN);
8121 }
8122
8123 /* update buffer offset */
8124 #if (PAGE_SIZE < 8192)
8125 rx_buffer->page_offset ^= truesize;
8126 #else
8127 rx_buffer->page_offset += truesize;
8128 #endif
8129
8130 return skb;
8131 }
8132
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8133 static inline void igb_rx_checksum(struct igb_ring *ring,
8134 union e1000_adv_rx_desc *rx_desc,
8135 struct sk_buff *skb)
8136 {
8137 skb_checksum_none_assert(skb);
8138
8139 /* Ignore Checksum bit is set */
8140 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8141 return;
8142
8143 /* Rx checksum disabled via ethtool */
8144 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8145 return;
8146
8147 /* TCP/UDP checksum error bit is set */
8148 if (igb_test_staterr(rx_desc,
8149 E1000_RXDEXT_STATERR_TCPE |
8150 E1000_RXDEXT_STATERR_IPE)) {
8151 /* work around errata with sctp packets where the TCPE aka
8152 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8153 * packets, (aka let the stack check the crc32c)
8154 */
8155 if (!((skb->len == 60) &&
8156 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8157 u64_stats_update_begin(&ring->rx_syncp);
8158 ring->rx_stats.csum_err++;
8159 u64_stats_update_end(&ring->rx_syncp);
8160 }
8161 /* let the stack verify checksum errors */
8162 return;
8163 }
8164 /* It must be a TCP or UDP packet with a valid checksum */
8165 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8166 E1000_RXD_STAT_UDPCS))
8167 skb->ip_summed = CHECKSUM_UNNECESSARY;
8168
8169 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8170 le32_to_cpu(rx_desc->wb.upper.status_error));
8171 }
8172
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8173 static inline void igb_rx_hash(struct igb_ring *ring,
8174 union e1000_adv_rx_desc *rx_desc,
8175 struct sk_buff *skb)
8176 {
8177 if (ring->netdev->features & NETIF_F_RXHASH)
8178 skb_set_hash(skb,
8179 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8180 PKT_HASH_TYPE_L3);
8181 }
8182
8183 /**
8184 * igb_is_non_eop - process handling of non-EOP buffers
8185 * @rx_ring: Rx ring being processed
8186 * @rx_desc: Rx descriptor for current buffer
8187 * @skb: current socket buffer containing buffer in progress
8188 *
8189 * This function updates next to clean. If the buffer is an EOP buffer
8190 * this function exits returning false, otherwise it will place the
8191 * sk_buff in the next buffer to be chained and return true indicating
8192 * that this is in fact a non-EOP buffer.
8193 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8194 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8195 union e1000_adv_rx_desc *rx_desc)
8196 {
8197 u32 ntc = rx_ring->next_to_clean + 1;
8198
8199 /* fetch, update, and store next to clean */
8200 ntc = (ntc < rx_ring->count) ? ntc : 0;
8201 rx_ring->next_to_clean = ntc;
8202
8203 prefetch(IGB_RX_DESC(rx_ring, ntc));
8204
8205 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8206 return false;
8207
8208 return true;
8209 }
8210
8211 /**
8212 * igb_cleanup_headers - Correct corrupted or empty headers
8213 * @rx_ring: rx descriptor ring packet is being transacted on
8214 * @rx_desc: pointer to the EOP Rx descriptor
8215 * @skb: pointer to current skb being fixed
8216 *
8217 * Address the case where we are pulling data in on pages only
8218 * and as such no data is present in the skb header.
8219 *
8220 * In addition if skb is not at least 60 bytes we need to pad it so that
8221 * it is large enough to qualify as a valid Ethernet frame.
8222 *
8223 * Returns true if an error was encountered and skb was freed.
8224 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8225 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8226 union e1000_adv_rx_desc *rx_desc,
8227 struct sk_buff *skb)
8228 {
8229 if (unlikely((igb_test_staterr(rx_desc,
8230 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8231 struct net_device *netdev = rx_ring->netdev;
8232 if (!(netdev->features & NETIF_F_RXALL)) {
8233 dev_kfree_skb_any(skb);
8234 return true;
8235 }
8236 }
8237
8238 /* if eth_skb_pad returns an error the skb was freed */
8239 if (eth_skb_pad(skb))
8240 return true;
8241
8242 return false;
8243 }
8244
8245 /**
8246 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8247 * @rx_ring: rx descriptor ring packet is being transacted on
8248 * @rx_desc: pointer to the EOP Rx descriptor
8249 * @skb: pointer to current skb being populated
8250 *
8251 * This function checks the ring, descriptor, and packet information in
8252 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8253 * other fields within the skb.
8254 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8255 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8256 union e1000_adv_rx_desc *rx_desc,
8257 struct sk_buff *skb)
8258 {
8259 struct net_device *dev = rx_ring->netdev;
8260
8261 igb_rx_hash(rx_ring, rx_desc, skb);
8262
8263 igb_rx_checksum(rx_ring, rx_desc, skb);
8264
8265 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8266 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8267 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8268
8269 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8270 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8271 u16 vid;
8272
8273 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8274 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8275 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8276 else
8277 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8278
8279 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8280 }
8281
8282 skb_record_rx_queue(skb, rx_ring->queue_index);
8283
8284 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8285 }
8286
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size)8287 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8288 const unsigned int size)
8289 {
8290 struct igb_rx_buffer *rx_buffer;
8291
8292 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8293 prefetchw(rx_buffer->page);
8294
8295 /* we are reusing so sync this buffer for CPU use */
8296 dma_sync_single_range_for_cpu(rx_ring->dev,
8297 rx_buffer->dma,
8298 rx_buffer->page_offset,
8299 size,
8300 DMA_FROM_DEVICE);
8301
8302 rx_buffer->pagecnt_bias--;
8303
8304 return rx_buffer;
8305 }
8306
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer)8307 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8308 struct igb_rx_buffer *rx_buffer)
8309 {
8310 if (igb_can_reuse_rx_page(rx_buffer)) {
8311 /* hand second half of page back to the ring */
8312 igb_reuse_rx_page(rx_ring, rx_buffer);
8313 } else {
8314 /* We are not reusing the buffer so unmap it and free
8315 * any references we are holding to it
8316 */
8317 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8318 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8319 IGB_RX_DMA_ATTR);
8320 __page_frag_cache_drain(rx_buffer->page,
8321 rx_buffer->pagecnt_bias);
8322 }
8323
8324 /* clear contents of rx_buffer */
8325 rx_buffer->page = NULL;
8326 }
8327
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8328 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8329 {
8330 struct igb_ring *rx_ring = q_vector->rx.ring;
8331 struct sk_buff *skb = rx_ring->skb;
8332 unsigned int total_bytes = 0, total_packets = 0;
8333 u16 cleaned_count = igb_desc_unused(rx_ring);
8334
8335 while (likely(total_packets < budget)) {
8336 union e1000_adv_rx_desc *rx_desc;
8337 struct igb_rx_buffer *rx_buffer;
8338 unsigned int size;
8339
8340 /* return some buffers to hardware, one at a time is too slow */
8341 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8342 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8343 cleaned_count = 0;
8344 }
8345
8346 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8347 size = le16_to_cpu(rx_desc->wb.upper.length);
8348 if (!size)
8349 break;
8350
8351 /* This memory barrier is needed to keep us from reading
8352 * any other fields out of the rx_desc until we know the
8353 * descriptor has been written back
8354 */
8355 dma_rmb();
8356
8357 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8358
8359 /* retrieve a buffer from the ring */
8360 if (skb)
8361 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8362 else if (ring_uses_build_skb(rx_ring))
8363 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8364 else
8365 skb = igb_construct_skb(rx_ring, rx_buffer,
8366 rx_desc, size);
8367
8368 /* exit if we failed to retrieve a buffer */
8369 if (!skb) {
8370 rx_ring->rx_stats.alloc_failed++;
8371 rx_buffer->pagecnt_bias++;
8372 break;
8373 }
8374
8375 igb_put_rx_buffer(rx_ring, rx_buffer);
8376 cleaned_count++;
8377
8378 /* fetch next buffer in frame if non-eop */
8379 if (igb_is_non_eop(rx_ring, rx_desc))
8380 continue;
8381
8382 /* verify the packet layout is correct */
8383 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8384 skb = NULL;
8385 continue;
8386 }
8387
8388 /* probably a little skewed due to removing CRC */
8389 total_bytes += skb->len;
8390
8391 /* populate checksum, timestamp, VLAN, and protocol */
8392 igb_process_skb_fields(rx_ring, rx_desc, skb);
8393
8394 napi_gro_receive(&q_vector->napi, skb);
8395
8396 /* reset skb pointer */
8397 skb = NULL;
8398
8399 /* update budget accounting */
8400 total_packets++;
8401 }
8402
8403 /* place incomplete frames back on ring for completion */
8404 rx_ring->skb = skb;
8405
8406 u64_stats_update_begin(&rx_ring->rx_syncp);
8407 rx_ring->rx_stats.packets += total_packets;
8408 rx_ring->rx_stats.bytes += total_bytes;
8409 u64_stats_update_end(&rx_ring->rx_syncp);
8410 q_vector->rx.total_packets += total_packets;
8411 q_vector->rx.total_bytes += total_bytes;
8412
8413 if (cleaned_count)
8414 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8415
8416 return total_packets;
8417 }
8418
igb_rx_offset(struct igb_ring * rx_ring)8419 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8420 {
8421 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8422 }
8423
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8424 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8425 struct igb_rx_buffer *bi)
8426 {
8427 struct page *page = bi->page;
8428 dma_addr_t dma;
8429
8430 /* since we are recycling buffers we should seldom need to alloc */
8431 if (likely(page))
8432 return true;
8433
8434 /* alloc new page for storage */
8435 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8436 if (unlikely(!page)) {
8437 rx_ring->rx_stats.alloc_failed++;
8438 return false;
8439 }
8440
8441 /* map page for use */
8442 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8443 igb_rx_pg_size(rx_ring),
8444 DMA_FROM_DEVICE,
8445 IGB_RX_DMA_ATTR);
8446
8447 /* if mapping failed free memory back to system since
8448 * there isn't much point in holding memory we can't use
8449 */
8450 if (dma_mapping_error(rx_ring->dev, dma)) {
8451 __free_pages(page, igb_rx_pg_order(rx_ring));
8452
8453 rx_ring->rx_stats.alloc_failed++;
8454 return false;
8455 }
8456
8457 bi->dma = dma;
8458 bi->page = page;
8459 bi->page_offset = igb_rx_offset(rx_ring);
8460 bi->pagecnt_bias = 1;
8461
8462 return true;
8463 }
8464
8465 /**
8466 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8467 * @adapter: address of board private structure
8468 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8469 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8470 {
8471 union e1000_adv_rx_desc *rx_desc;
8472 struct igb_rx_buffer *bi;
8473 u16 i = rx_ring->next_to_use;
8474 u16 bufsz;
8475
8476 /* nothing to do */
8477 if (!cleaned_count)
8478 return;
8479
8480 rx_desc = IGB_RX_DESC(rx_ring, i);
8481 bi = &rx_ring->rx_buffer_info[i];
8482 i -= rx_ring->count;
8483
8484 bufsz = igb_rx_bufsz(rx_ring);
8485
8486 do {
8487 if (!igb_alloc_mapped_page(rx_ring, bi))
8488 break;
8489
8490 /* sync the buffer for use by the device */
8491 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8492 bi->page_offset, bufsz,
8493 DMA_FROM_DEVICE);
8494
8495 /* Refresh the desc even if buffer_addrs didn't change
8496 * because each write-back erases this info.
8497 */
8498 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8499
8500 rx_desc++;
8501 bi++;
8502 i++;
8503 if (unlikely(!i)) {
8504 rx_desc = IGB_RX_DESC(rx_ring, 0);
8505 bi = rx_ring->rx_buffer_info;
8506 i -= rx_ring->count;
8507 }
8508
8509 /* clear the length for the next_to_use descriptor */
8510 rx_desc->wb.upper.length = 0;
8511
8512 cleaned_count--;
8513 } while (cleaned_count);
8514
8515 i += rx_ring->count;
8516
8517 if (rx_ring->next_to_use != i) {
8518 /* record the next descriptor to use */
8519 rx_ring->next_to_use = i;
8520
8521 /* update next to alloc since we have filled the ring */
8522 rx_ring->next_to_alloc = i;
8523
8524 /* Force memory writes to complete before letting h/w
8525 * know there are new descriptors to fetch. (Only
8526 * applicable for weak-ordered memory model archs,
8527 * such as IA-64).
8528 */
8529 dma_wmb();
8530 writel(i, rx_ring->tail);
8531 }
8532 }
8533
8534 /**
8535 * igb_mii_ioctl -
8536 * @netdev:
8537 * @ifreq:
8538 * @cmd:
8539 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8540 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8541 {
8542 struct igb_adapter *adapter = netdev_priv(netdev);
8543 struct mii_ioctl_data *data = if_mii(ifr);
8544
8545 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8546 return -EOPNOTSUPP;
8547
8548 switch (cmd) {
8549 case SIOCGMIIPHY:
8550 data->phy_id = adapter->hw.phy.addr;
8551 break;
8552 case SIOCGMIIREG:
8553 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8554 &data->val_out))
8555 return -EIO;
8556 break;
8557 case SIOCSMIIREG:
8558 default:
8559 return -EOPNOTSUPP;
8560 }
8561 return 0;
8562 }
8563
8564 /**
8565 * igb_ioctl -
8566 * @netdev:
8567 * @ifreq:
8568 * @cmd:
8569 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8570 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8571 {
8572 switch (cmd) {
8573 case SIOCGMIIPHY:
8574 case SIOCGMIIREG:
8575 case SIOCSMIIREG:
8576 return igb_mii_ioctl(netdev, ifr, cmd);
8577 case SIOCGHWTSTAMP:
8578 return igb_ptp_get_ts_config(netdev, ifr);
8579 case SIOCSHWTSTAMP:
8580 return igb_ptp_set_ts_config(netdev, ifr);
8581 default:
8582 return -EOPNOTSUPP;
8583 }
8584 }
8585
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8586 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8587 {
8588 struct igb_adapter *adapter = hw->back;
8589
8590 pci_read_config_word(adapter->pdev, reg, value);
8591 }
8592
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8593 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8594 {
8595 struct igb_adapter *adapter = hw->back;
8596
8597 pci_write_config_word(adapter->pdev, reg, *value);
8598 }
8599
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8600 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8601 {
8602 struct igb_adapter *adapter = hw->back;
8603
8604 if (pcie_capability_read_word(adapter->pdev, reg, value))
8605 return -E1000_ERR_CONFIG;
8606
8607 return 0;
8608 }
8609
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8610 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8611 {
8612 struct igb_adapter *adapter = hw->back;
8613
8614 if (pcie_capability_write_word(adapter->pdev, reg, *value))
8615 return -E1000_ERR_CONFIG;
8616
8617 return 0;
8618 }
8619
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)8620 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8621 {
8622 struct igb_adapter *adapter = netdev_priv(netdev);
8623 struct e1000_hw *hw = &adapter->hw;
8624 u32 ctrl, rctl;
8625 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8626
8627 if (enable) {
8628 /* enable VLAN tag insert/strip */
8629 ctrl = rd32(E1000_CTRL);
8630 ctrl |= E1000_CTRL_VME;
8631 wr32(E1000_CTRL, ctrl);
8632
8633 /* Disable CFI check */
8634 rctl = rd32(E1000_RCTL);
8635 rctl &= ~E1000_RCTL_CFIEN;
8636 wr32(E1000_RCTL, rctl);
8637 } else {
8638 /* disable VLAN tag insert/strip */
8639 ctrl = rd32(E1000_CTRL);
8640 ctrl &= ~E1000_CTRL_VME;
8641 wr32(E1000_CTRL, ctrl);
8642 }
8643
8644 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8645 }
8646
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)8647 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8648 __be16 proto, u16 vid)
8649 {
8650 struct igb_adapter *adapter = netdev_priv(netdev);
8651 struct e1000_hw *hw = &adapter->hw;
8652 int pf_id = adapter->vfs_allocated_count;
8653
8654 /* add the filter since PF can receive vlans w/o entry in vlvf */
8655 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8656 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8657
8658 set_bit(vid, adapter->active_vlans);
8659
8660 return 0;
8661 }
8662
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)8663 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8664 __be16 proto, u16 vid)
8665 {
8666 struct igb_adapter *adapter = netdev_priv(netdev);
8667 int pf_id = adapter->vfs_allocated_count;
8668 struct e1000_hw *hw = &adapter->hw;
8669
8670 /* remove VID from filter table */
8671 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8672 igb_vfta_set(hw, vid, pf_id, false, true);
8673
8674 clear_bit(vid, adapter->active_vlans);
8675
8676 return 0;
8677 }
8678
igb_restore_vlan(struct igb_adapter * adapter)8679 static void igb_restore_vlan(struct igb_adapter *adapter)
8680 {
8681 u16 vid = 1;
8682
8683 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8684 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8685
8686 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8687 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8688 }
8689
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)8690 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8691 {
8692 struct pci_dev *pdev = adapter->pdev;
8693 struct e1000_mac_info *mac = &adapter->hw.mac;
8694
8695 mac->autoneg = 0;
8696
8697 /* Make sure dplx is at most 1 bit and lsb of speed is not set
8698 * for the switch() below to work
8699 */
8700 if ((spd & 1) || (dplx & ~1))
8701 goto err_inval;
8702
8703 /* Fiber NIC's only allow 1000 gbps Full duplex
8704 * and 100Mbps Full duplex for 100baseFx sfp
8705 */
8706 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8707 switch (spd + dplx) {
8708 case SPEED_10 + DUPLEX_HALF:
8709 case SPEED_10 + DUPLEX_FULL:
8710 case SPEED_100 + DUPLEX_HALF:
8711 goto err_inval;
8712 default:
8713 break;
8714 }
8715 }
8716
8717 switch (spd + dplx) {
8718 case SPEED_10 + DUPLEX_HALF:
8719 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8720 break;
8721 case SPEED_10 + DUPLEX_FULL:
8722 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8723 break;
8724 case SPEED_100 + DUPLEX_HALF:
8725 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8726 break;
8727 case SPEED_100 + DUPLEX_FULL:
8728 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8729 break;
8730 case SPEED_1000 + DUPLEX_FULL:
8731 mac->autoneg = 1;
8732 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8733 break;
8734 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8735 default:
8736 goto err_inval;
8737 }
8738
8739 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8740 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8741
8742 return 0;
8743
8744 err_inval:
8745 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8746 return -EINVAL;
8747 }
8748
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)8749 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8750 bool runtime)
8751 {
8752 struct net_device *netdev = pci_get_drvdata(pdev);
8753 struct igb_adapter *adapter = netdev_priv(netdev);
8754 struct e1000_hw *hw = &adapter->hw;
8755 u32 ctrl, rctl, status;
8756 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8757 #ifdef CONFIG_PM
8758 int retval = 0;
8759 #endif
8760
8761 rtnl_lock();
8762 netif_device_detach(netdev);
8763
8764 if (netif_running(netdev))
8765 __igb_close(netdev, true);
8766
8767 igb_ptp_suspend(adapter);
8768
8769 igb_clear_interrupt_scheme(adapter);
8770 rtnl_unlock();
8771
8772 #ifdef CONFIG_PM
8773 retval = pci_save_state(pdev);
8774 if (retval)
8775 return retval;
8776 #endif
8777
8778 status = rd32(E1000_STATUS);
8779 if (status & E1000_STATUS_LU)
8780 wufc &= ~E1000_WUFC_LNKC;
8781
8782 if (wufc) {
8783 igb_setup_rctl(adapter);
8784 igb_set_rx_mode(netdev);
8785
8786 /* turn on all-multi mode if wake on multicast is enabled */
8787 if (wufc & E1000_WUFC_MC) {
8788 rctl = rd32(E1000_RCTL);
8789 rctl |= E1000_RCTL_MPE;
8790 wr32(E1000_RCTL, rctl);
8791 }
8792
8793 ctrl = rd32(E1000_CTRL);
8794 /* advertise wake from D3Cold */
8795 #define E1000_CTRL_ADVD3WUC 0x00100000
8796 /* phy power management enable */
8797 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8798 ctrl |= E1000_CTRL_ADVD3WUC;
8799 wr32(E1000_CTRL, ctrl);
8800
8801 /* Allow time for pending master requests to run */
8802 igb_disable_pcie_master(hw);
8803
8804 wr32(E1000_WUC, E1000_WUC_PME_EN);
8805 wr32(E1000_WUFC, wufc);
8806 } else {
8807 wr32(E1000_WUC, 0);
8808 wr32(E1000_WUFC, 0);
8809 }
8810
8811 *enable_wake = wufc || adapter->en_mng_pt;
8812 if (!*enable_wake)
8813 igb_power_down_link(adapter);
8814 else
8815 igb_power_up_link(adapter);
8816
8817 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8818 * would have already happened in close and is redundant.
8819 */
8820 igb_release_hw_control(adapter);
8821
8822 pci_disable_device(pdev);
8823
8824 return 0;
8825 }
8826
igb_deliver_wake_packet(struct net_device * netdev)8827 static void igb_deliver_wake_packet(struct net_device *netdev)
8828 {
8829 struct igb_adapter *adapter = netdev_priv(netdev);
8830 struct e1000_hw *hw = &adapter->hw;
8831 struct sk_buff *skb;
8832 u32 wupl;
8833
8834 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8835
8836 /* WUPM stores only the first 128 bytes of the wake packet.
8837 * Read the packet only if we have the whole thing.
8838 */
8839 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8840 return;
8841
8842 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8843 if (!skb)
8844 return;
8845
8846 skb_put(skb, wupl);
8847
8848 /* Ensure reads are 32-bit aligned */
8849 wupl = roundup(wupl, 4);
8850
8851 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8852
8853 skb->protocol = eth_type_trans(skb, netdev);
8854 netif_rx(skb);
8855 }
8856
igb_suspend(struct device * dev)8857 static int __maybe_unused igb_suspend(struct device *dev)
8858 {
8859 int retval;
8860 bool wake;
8861 struct pci_dev *pdev = to_pci_dev(dev);
8862
8863 retval = __igb_shutdown(pdev, &wake, 0);
8864 if (retval)
8865 return retval;
8866
8867 if (wake) {
8868 pci_prepare_to_sleep(pdev);
8869 } else {
8870 pci_wake_from_d3(pdev, false);
8871 pci_set_power_state(pdev, PCI_D3hot);
8872 }
8873
8874 return 0;
8875 }
8876
igb_resume(struct device * dev)8877 static int __maybe_unused igb_resume(struct device *dev)
8878 {
8879 struct pci_dev *pdev = to_pci_dev(dev);
8880 struct net_device *netdev = pci_get_drvdata(pdev);
8881 struct igb_adapter *adapter = netdev_priv(netdev);
8882 struct e1000_hw *hw = &adapter->hw;
8883 u32 err, val;
8884
8885 pci_set_power_state(pdev, PCI_D0);
8886 pci_restore_state(pdev);
8887 pci_save_state(pdev);
8888
8889 if (!pci_device_is_present(pdev))
8890 return -ENODEV;
8891 err = pci_enable_device_mem(pdev);
8892 if (err) {
8893 dev_err(&pdev->dev,
8894 "igb: Cannot enable PCI device from suspend\n");
8895 return err;
8896 }
8897 pci_set_master(pdev);
8898
8899 pci_enable_wake(pdev, PCI_D3hot, 0);
8900 pci_enable_wake(pdev, PCI_D3cold, 0);
8901
8902 if (igb_init_interrupt_scheme(adapter, true)) {
8903 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8904 return -ENOMEM;
8905 }
8906
8907 igb_reset(adapter);
8908
8909 /* let the f/w know that the h/w is now under the control of the
8910 * driver.
8911 */
8912 igb_get_hw_control(adapter);
8913
8914 val = rd32(E1000_WUS);
8915 if (val & WAKE_PKT_WUS)
8916 igb_deliver_wake_packet(netdev);
8917
8918 wr32(E1000_WUS, ~0);
8919
8920 rtnl_lock();
8921 if (!err && netif_running(netdev))
8922 err = __igb_open(netdev, true);
8923
8924 if (!err)
8925 netif_device_attach(netdev);
8926 rtnl_unlock();
8927
8928 return err;
8929 }
8930
igb_runtime_idle(struct device * dev)8931 static int __maybe_unused igb_runtime_idle(struct device *dev)
8932 {
8933 struct pci_dev *pdev = to_pci_dev(dev);
8934 struct net_device *netdev = pci_get_drvdata(pdev);
8935 struct igb_adapter *adapter = netdev_priv(netdev);
8936
8937 if (!igb_has_link(adapter))
8938 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8939
8940 return -EBUSY;
8941 }
8942
igb_runtime_suspend(struct device * dev)8943 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8944 {
8945 struct pci_dev *pdev = to_pci_dev(dev);
8946 int retval;
8947 bool wake;
8948
8949 retval = __igb_shutdown(pdev, &wake, 1);
8950 if (retval)
8951 return retval;
8952
8953 if (wake) {
8954 pci_prepare_to_sleep(pdev);
8955 } else {
8956 pci_wake_from_d3(pdev, false);
8957 pci_set_power_state(pdev, PCI_D3hot);
8958 }
8959
8960 return 0;
8961 }
8962
igb_runtime_resume(struct device * dev)8963 static int __maybe_unused igb_runtime_resume(struct device *dev)
8964 {
8965 return igb_resume(dev);
8966 }
8967
igb_shutdown(struct pci_dev * pdev)8968 static void igb_shutdown(struct pci_dev *pdev)
8969 {
8970 bool wake;
8971
8972 __igb_shutdown(pdev, &wake, 0);
8973
8974 if (system_state == SYSTEM_POWER_OFF) {
8975 pci_wake_from_d3(pdev, wake);
8976 pci_set_power_state(pdev, PCI_D3hot);
8977 }
8978 }
8979
8980 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)8981 static int igb_sriov_reinit(struct pci_dev *dev)
8982 {
8983 struct net_device *netdev = pci_get_drvdata(dev);
8984 struct igb_adapter *adapter = netdev_priv(netdev);
8985 struct pci_dev *pdev = adapter->pdev;
8986
8987 rtnl_lock();
8988
8989 if (netif_running(netdev))
8990 igb_close(netdev);
8991 else
8992 igb_reset(adapter);
8993
8994 igb_clear_interrupt_scheme(adapter);
8995
8996 igb_init_queue_configuration(adapter);
8997
8998 if (igb_init_interrupt_scheme(adapter, true)) {
8999 rtnl_unlock();
9000 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9001 return -ENOMEM;
9002 }
9003
9004 if (netif_running(netdev))
9005 igb_open(netdev);
9006
9007 rtnl_unlock();
9008
9009 return 0;
9010 }
9011
igb_pci_disable_sriov(struct pci_dev * dev)9012 static int igb_pci_disable_sriov(struct pci_dev *dev)
9013 {
9014 int err = igb_disable_sriov(dev);
9015
9016 if (!err)
9017 err = igb_sriov_reinit(dev);
9018
9019 return err;
9020 }
9021
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)9022 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9023 {
9024 int err = igb_enable_sriov(dev, num_vfs);
9025
9026 if (err)
9027 goto out;
9028
9029 err = igb_sriov_reinit(dev);
9030 if (!err)
9031 return num_vfs;
9032
9033 out:
9034 return err;
9035 }
9036
9037 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9038 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9039 {
9040 #ifdef CONFIG_PCI_IOV
9041 if (num_vfs == 0)
9042 return igb_pci_disable_sriov(dev);
9043 else
9044 return igb_pci_enable_sriov(dev, num_vfs);
9045 #endif
9046 return 0;
9047 }
9048
9049 /**
9050 * igb_io_error_detected - called when PCI error is detected
9051 * @pdev: Pointer to PCI device
9052 * @state: The current pci connection state
9053 *
9054 * This function is called after a PCI bus error affecting
9055 * this device has been detected.
9056 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9057 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9058 pci_channel_state_t state)
9059 {
9060 struct net_device *netdev = pci_get_drvdata(pdev);
9061 struct igb_adapter *adapter = netdev_priv(netdev);
9062
9063 netif_device_detach(netdev);
9064
9065 if (state == pci_channel_io_perm_failure)
9066 return PCI_ERS_RESULT_DISCONNECT;
9067
9068 if (netif_running(netdev))
9069 igb_down(adapter);
9070 pci_disable_device(pdev);
9071
9072 /* Request a slot slot reset. */
9073 return PCI_ERS_RESULT_NEED_RESET;
9074 }
9075
9076 /**
9077 * igb_io_slot_reset - called after the pci bus has been reset.
9078 * @pdev: Pointer to PCI device
9079 *
9080 * Restart the card from scratch, as if from a cold-boot. Implementation
9081 * resembles the first-half of the igb_resume routine.
9082 **/
igb_io_slot_reset(struct pci_dev * pdev)9083 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9084 {
9085 struct net_device *netdev = pci_get_drvdata(pdev);
9086 struct igb_adapter *adapter = netdev_priv(netdev);
9087 struct e1000_hw *hw = &adapter->hw;
9088 pci_ers_result_t result;
9089 int err;
9090
9091 if (pci_enable_device_mem(pdev)) {
9092 dev_err(&pdev->dev,
9093 "Cannot re-enable PCI device after reset.\n");
9094 result = PCI_ERS_RESULT_DISCONNECT;
9095 } else {
9096 pci_set_master(pdev);
9097 pci_restore_state(pdev);
9098 pci_save_state(pdev);
9099
9100 pci_enable_wake(pdev, PCI_D3hot, 0);
9101 pci_enable_wake(pdev, PCI_D3cold, 0);
9102
9103 /* In case of PCI error, adapter lose its HW address
9104 * so we should re-assign it here.
9105 */
9106 hw->hw_addr = adapter->io_addr;
9107
9108 igb_reset(adapter);
9109 wr32(E1000_WUS, ~0);
9110 result = PCI_ERS_RESULT_RECOVERED;
9111 }
9112
9113 err = pci_cleanup_aer_uncorrect_error_status(pdev);
9114 if (err) {
9115 dev_err(&pdev->dev,
9116 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
9117 err);
9118 /* non-fatal, continue */
9119 }
9120
9121 return result;
9122 }
9123
9124 /**
9125 * igb_io_resume - called when traffic can start flowing again.
9126 * @pdev: Pointer to PCI device
9127 *
9128 * This callback is called when the error recovery driver tells us that
9129 * its OK to resume normal operation. Implementation resembles the
9130 * second-half of the igb_resume routine.
9131 */
igb_io_resume(struct pci_dev * pdev)9132 static void igb_io_resume(struct pci_dev *pdev)
9133 {
9134 struct net_device *netdev = pci_get_drvdata(pdev);
9135 struct igb_adapter *adapter = netdev_priv(netdev);
9136
9137 if (netif_running(netdev)) {
9138 if (igb_up(adapter)) {
9139 dev_err(&pdev->dev, "igb_up failed after reset\n");
9140 return;
9141 }
9142 }
9143
9144 netif_device_attach(netdev);
9145
9146 /* let the f/w know that the h/w is now under the control of the
9147 * driver.
9148 */
9149 igb_get_hw_control(adapter);
9150 }
9151
9152 /**
9153 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9154 * @adapter: Pointer to adapter structure
9155 * @index: Index of the RAR entry which need to be synced with MAC table
9156 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9157 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9158 {
9159 struct e1000_hw *hw = &adapter->hw;
9160 u32 rar_low, rar_high;
9161 u8 *addr = adapter->mac_table[index].addr;
9162
9163 /* HW expects these to be in network order when they are plugged
9164 * into the registers which are little endian. In order to guarantee
9165 * that ordering we need to do an leXX_to_cpup here in order to be
9166 * ready for the byteswap that occurs with writel
9167 */
9168 rar_low = le32_to_cpup((__le32 *)(addr));
9169 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9170
9171 /* Indicate to hardware the Address is Valid. */
9172 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9173 if (is_valid_ether_addr(addr))
9174 rar_high |= E1000_RAH_AV;
9175
9176 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9177 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9178
9179 switch (hw->mac.type) {
9180 case e1000_82575:
9181 case e1000_i210:
9182 if (adapter->mac_table[index].state &
9183 IGB_MAC_STATE_QUEUE_STEERING)
9184 rar_high |= E1000_RAH_QSEL_ENABLE;
9185
9186 rar_high |= E1000_RAH_POOL_1 *
9187 adapter->mac_table[index].queue;
9188 break;
9189 default:
9190 rar_high |= E1000_RAH_POOL_1 <<
9191 adapter->mac_table[index].queue;
9192 break;
9193 }
9194 }
9195
9196 wr32(E1000_RAL(index), rar_low);
9197 wrfl();
9198 wr32(E1000_RAH(index), rar_high);
9199 wrfl();
9200 }
9201
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9202 static int igb_set_vf_mac(struct igb_adapter *adapter,
9203 int vf, unsigned char *mac_addr)
9204 {
9205 struct e1000_hw *hw = &adapter->hw;
9206 /* VF MAC addresses start at end of receive addresses and moves
9207 * towards the first, as a result a collision should not be possible
9208 */
9209 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9210 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9211
9212 ether_addr_copy(vf_mac_addr, mac_addr);
9213 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9214 adapter->mac_table[rar_entry].queue = vf;
9215 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9216 igb_rar_set_index(adapter, rar_entry);
9217
9218 return 0;
9219 }
9220
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9221 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9222 {
9223 struct igb_adapter *adapter = netdev_priv(netdev);
9224
9225 if (vf >= adapter->vfs_allocated_count)
9226 return -EINVAL;
9227
9228 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9229 * flag and allows to overwrite the MAC via VF netdev. This
9230 * is necessary to allow libvirt a way to restore the original
9231 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9232 * down a VM.
9233 */
9234 if (is_zero_ether_addr(mac)) {
9235 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9236 dev_info(&adapter->pdev->dev,
9237 "remove administratively set MAC on VF %d\n",
9238 vf);
9239 } else if (is_valid_ether_addr(mac)) {
9240 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9241 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9242 mac, vf);
9243 dev_info(&adapter->pdev->dev,
9244 "Reload the VF driver to make this change effective.");
9245 /* Generate additional warning if PF is down */
9246 if (test_bit(__IGB_DOWN, &adapter->state)) {
9247 dev_warn(&adapter->pdev->dev,
9248 "The VF MAC address has been set, but the PF device is not up.\n");
9249 dev_warn(&adapter->pdev->dev,
9250 "Bring the PF device up before attempting to use the VF device.\n");
9251 }
9252 } else {
9253 return -EINVAL;
9254 }
9255 return igb_set_vf_mac(adapter, vf, mac);
9256 }
9257
igb_link_mbps(int internal_link_speed)9258 static int igb_link_mbps(int internal_link_speed)
9259 {
9260 switch (internal_link_speed) {
9261 case SPEED_100:
9262 return 100;
9263 case SPEED_1000:
9264 return 1000;
9265 default:
9266 return 0;
9267 }
9268 }
9269
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9270 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9271 int link_speed)
9272 {
9273 int rf_dec, rf_int;
9274 u32 bcnrc_val;
9275
9276 if (tx_rate != 0) {
9277 /* Calculate the rate factor values to set */
9278 rf_int = link_speed / tx_rate;
9279 rf_dec = (link_speed - (rf_int * tx_rate));
9280 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9281 tx_rate;
9282
9283 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9284 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9285 E1000_RTTBCNRC_RF_INT_MASK);
9286 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9287 } else {
9288 bcnrc_val = 0;
9289 }
9290
9291 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9292 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9293 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9294 */
9295 wr32(E1000_RTTBCNRM, 0x14);
9296 wr32(E1000_RTTBCNRC, bcnrc_val);
9297 }
9298
igb_check_vf_rate_limit(struct igb_adapter * adapter)9299 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9300 {
9301 int actual_link_speed, i;
9302 bool reset_rate = false;
9303
9304 /* VF TX rate limit was not set or not supported */
9305 if ((adapter->vf_rate_link_speed == 0) ||
9306 (adapter->hw.mac.type != e1000_82576))
9307 return;
9308
9309 actual_link_speed = igb_link_mbps(adapter->link_speed);
9310 if (actual_link_speed != adapter->vf_rate_link_speed) {
9311 reset_rate = true;
9312 adapter->vf_rate_link_speed = 0;
9313 dev_info(&adapter->pdev->dev,
9314 "Link speed has been changed. VF Transmit rate is disabled\n");
9315 }
9316
9317 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9318 if (reset_rate)
9319 adapter->vf_data[i].tx_rate = 0;
9320
9321 igb_set_vf_rate_limit(&adapter->hw, i,
9322 adapter->vf_data[i].tx_rate,
9323 actual_link_speed);
9324 }
9325 }
9326
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9327 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9328 int min_tx_rate, int max_tx_rate)
9329 {
9330 struct igb_adapter *adapter = netdev_priv(netdev);
9331 struct e1000_hw *hw = &adapter->hw;
9332 int actual_link_speed;
9333
9334 if (hw->mac.type != e1000_82576)
9335 return -EOPNOTSUPP;
9336
9337 if (min_tx_rate)
9338 return -EINVAL;
9339
9340 actual_link_speed = igb_link_mbps(adapter->link_speed);
9341 if ((vf >= adapter->vfs_allocated_count) ||
9342 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9343 (max_tx_rate < 0) ||
9344 (max_tx_rate > actual_link_speed))
9345 return -EINVAL;
9346
9347 adapter->vf_rate_link_speed = actual_link_speed;
9348 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9349 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9350
9351 return 0;
9352 }
9353
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9354 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9355 bool setting)
9356 {
9357 struct igb_adapter *adapter = netdev_priv(netdev);
9358 struct e1000_hw *hw = &adapter->hw;
9359 u32 reg_val, reg_offset;
9360
9361 if (!adapter->vfs_allocated_count)
9362 return -EOPNOTSUPP;
9363
9364 if (vf >= adapter->vfs_allocated_count)
9365 return -EINVAL;
9366
9367 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9368 reg_val = rd32(reg_offset);
9369 if (setting)
9370 reg_val |= (BIT(vf) |
9371 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9372 else
9373 reg_val &= ~(BIT(vf) |
9374 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9375 wr32(reg_offset, reg_val);
9376
9377 adapter->vf_data[vf].spoofchk_enabled = setting;
9378 return 0;
9379 }
9380
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9381 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9382 {
9383 struct igb_adapter *adapter = netdev_priv(netdev);
9384
9385 if (vf >= adapter->vfs_allocated_count)
9386 return -EINVAL;
9387 if (adapter->vf_data[vf].trusted == setting)
9388 return 0;
9389
9390 adapter->vf_data[vf].trusted = setting;
9391
9392 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9393 vf, setting ? "" : "not ");
9394 return 0;
9395 }
9396
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9397 static int igb_ndo_get_vf_config(struct net_device *netdev,
9398 int vf, struct ifla_vf_info *ivi)
9399 {
9400 struct igb_adapter *adapter = netdev_priv(netdev);
9401 if (vf >= adapter->vfs_allocated_count)
9402 return -EINVAL;
9403 ivi->vf = vf;
9404 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9405 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9406 ivi->min_tx_rate = 0;
9407 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9408 ivi->qos = adapter->vf_data[vf].pf_qos;
9409 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9410 ivi->trusted = adapter->vf_data[vf].trusted;
9411 return 0;
9412 }
9413
igb_vmm_control(struct igb_adapter * adapter)9414 static void igb_vmm_control(struct igb_adapter *adapter)
9415 {
9416 struct e1000_hw *hw = &adapter->hw;
9417 u32 reg;
9418
9419 switch (hw->mac.type) {
9420 case e1000_82575:
9421 case e1000_i210:
9422 case e1000_i211:
9423 case e1000_i354:
9424 default:
9425 /* replication is not supported for 82575 */
9426 return;
9427 case e1000_82576:
9428 /* notify HW that the MAC is adding vlan tags */
9429 reg = rd32(E1000_DTXCTL);
9430 reg |= E1000_DTXCTL_VLAN_ADDED;
9431 wr32(E1000_DTXCTL, reg);
9432 /* Fall through */
9433 case e1000_82580:
9434 /* enable replication vlan tag stripping */
9435 reg = rd32(E1000_RPLOLR);
9436 reg |= E1000_RPLOLR_STRVLAN;
9437 wr32(E1000_RPLOLR, reg);
9438 /* Fall through */
9439 case e1000_i350:
9440 /* none of the above registers are supported by i350 */
9441 break;
9442 }
9443
9444 if (adapter->vfs_allocated_count) {
9445 igb_vmdq_set_loopback_pf(hw, true);
9446 igb_vmdq_set_replication_pf(hw, true);
9447 igb_vmdq_set_anti_spoofing_pf(hw, true,
9448 adapter->vfs_allocated_count);
9449 } else {
9450 igb_vmdq_set_loopback_pf(hw, false);
9451 igb_vmdq_set_replication_pf(hw, false);
9452 }
9453 }
9454
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9455 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9456 {
9457 struct e1000_hw *hw = &adapter->hw;
9458 u32 dmac_thr;
9459 u16 hwm;
9460
9461 if (hw->mac.type > e1000_82580) {
9462 if (adapter->flags & IGB_FLAG_DMAC) {
9463 u32 reg;
9464
9465 /* force threshold to 0. */
9466 wr32(E1000_DMCTXTH, 0);
9467
9468 /* DMA Coalescing high water mark needs to be greater
9469 * than the Rx threshold. Set hwm to PBA - max frame
9470 * size in 16B units, capping it at PBA - 6KB.
9471 */
9472 hwm = 64 * (pba - 6);
9473 reg = rd32(E1000_FCRTC);
9474 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9475 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9476 & E1000_FCRTC_RTH_COAL_MASK);
9477 wr32(E1000_FCRTC, reg);
9478
9479 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9480 * frame size, capping it at PBA - 10KB.
9481 */
9482 dmac_thr = pba - 10;
9483 reg = rd32(E1000_DMACR);
9484 reg &= ~E1000_DMACR_DMACTHR_MASK;
9485 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9486 & E1000_DMACR_DMACTHR_MASK);
9487
9488 /* transition to L0x or L1 if available..*/
9489 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9490
9491 /* watchdog timer= +-1000 usec in 32usec intervals */
9492 reg |= (1000 >> 5);
9493
9494 /* Disable BMC-to-OS Watchdog Enable */
9495 if (hw->mac.type != e1000_i354)
9496 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9497
9498 wr32(E1000_DMACR, reg);
9499
9500 /* no lower threshold to disable
9501 * coalescing(smart fifb)-UTRESH=0
9502 */
9503 wr32(E1000_DMCRTRH, 0);
9504
9505 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9506
9507 wr32(E1000_DMCTLX, reg);
9508
9509 /* free space in tx packet buffer to wake from
9510 * DMA coal
9511 */
9512 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9513 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9514
9515 /* make low power state decision controlled
9516 * by DMA coal
9517 */
9518 reg = rd32(E1000_PCIEMISC);
9519 reg &= ~E1000_PCIEMISC_LX_DECISION;
9520 wr32(E1000_PCIEMISC, reg);
9521 } /* endif adapter->dmac is not disabled */
9522 } else if (hw->mac.type == e1000_82580) {
9523 u32 reg = rd32(E1000_PCIEMISC);
9524
9525 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9526 wr32(E1000_DMACR, 0);
9527 }
9528 }
9529
9530 /**
9531 * igb_read_i2c_byte - Reads 8 bit word over I2C
9532 * @hw: pointer to hardware structure
9533 * @byte_offset: byte offset to read
9534 * @dev_addr: device address
9535 * @data: value read
9536 *
9537 * Performs byte read operation over I2C interface at
9538 * a specified device address.
9539 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)9540 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9541 u8 dev_addr, u8 *data)
9542 {
9543 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9544 struct i2c_client *this_client = adapter->i2c_client;
9545 s32 status;
9546 u16 swfw_mask = 0;
9547
9548 if (!this_client)
9549 return E1000_ERR_I2C;
9550
9551 swfw_mask = E1000_SWFW_PHY0_SM;
9552
9553 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9554 return E1000_ERR_SWFW_SYNC;
9555
9556 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9557 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9558
9559 if (status < 0)
9560 return E1000_ERR_I2C;
9561 else {
9562 *data = status;
9563 return 0;
9564 }
9565 }
9566
9567 /**
9568 * igb_write_i2c_byte - Writes 8 bit word over I2C
9569 * @hw: pointer to hardware structure
9570 * @byte_offset: byte offset to write
9571 * @dev_addr: device address
9572 * @data: value to write
9573 *
9574 * Performs byte write operation over I2C interface at
9575 * a specified device address.
9576 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)9577 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9578 u8 dev_addr, u8 data)
9579 {
9580 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9581 struct i2c_client *this_client = adapter->i2c_client;
9582 s32 status;
9583 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9584
9585 if (!this_client)
9586 return E1000_ERR_I2C;
9587
9588 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9589 return E1000_ERR_SWFW_SYNC;
9590 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9591 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9592
9593 if (status)
9594 return E1000_ERR_I2C;
9595 else
9596 return 0;
9597
9598 }
9599
igb_reinit_queues(struct igb_adapter * adapter)9600 int igb_reinit_queues(struct igb_adapter *adapter)
9601 {
9602 struct net_device *netdev = adapter->netdev;
9603 struct pci_dev *pdev = adapter->pdev;
9604 int err = 0;
9605
9606 if (netif_running(netdev))
9607 igb_close(netdev);
9608
9609 igb_reset_interrupt_capability(adapter);
9610
9611 if (igb_init_interrupt_scheme(adapter, true)) {
9612 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9613 return -ENOMEM;
9614 }
9615
9616 if (netif_running(netdev))
9617 err = igb_open(netdev);
9618
9619 return err;
9620 }
9621
igb_nfc_filter_exit(struct igb_adapter * adapter)9622 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9623 {
9624 struct igb_nfc_filter *rule;
9625
9626 spin_lock(&adapter->nfc_lock);
9627
9628 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9629 igb_erase_filter(adapter, rule);
9630
9631 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9632 igb_erase_filter(adapter, rule);
9633
9634 spin_unlock(&adapter->nfc_lock);
9635 }
9636
igb_nfc_filter_restore(struct igb_adapter * adapter)9637 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9638 {
9639 struct igb_nfc_filter *rule;
9640
9641 spin_lock(&adapter->nfc_lock);
9642
9643 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9644 igb_add_filter(adapter, rule);
9645
9646 spin_unlock(&adapter->nfc_lock);
9647 }
9648 /* igb_main.c */
9649