1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44 QUEUE_MODE_STRICT_PRIORITY,
45 QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49 TX_QUEUE_PRIO_HIGH,
50 TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 /* required last entry */
100 {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 .notifier_call = igb_notify_dca,
199 .next = NULL,
200 .priority = 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static const struct pci_error_handlers igb_err_handler = {
215 .error_detected = igb_io_error_detected,
216 .slot_reset = igb_io_slot_reset,
217 .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223 .name = igb_driver_name,
224 .id_table = igb_pci_tbl,
225 .probe = igb_probe,
226 .remove = igb_remove,
227 #ifdef CONFIG_PM
228 .driver.pm = &igb_pm_ops,
229 #endif
230 .shutdown = igb_shutdown,
231 .sriov_configure = igb_pci_sriov_configure,
232 .err_handler = &igb_err_handler
233 };
234
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244 struct igb_reg_info {
245 u32 ofs;
246 char *name;
247 };
248
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251 /* General Registers */
252 {E1000_CTRL, "CTRL"},
253 {E1000_STATUS, "STATUS"},
254 {E1000_CTRL_EXT, "CTRL_EXT"},
255
256 /* Interrupt Registers */
257 {E1000_ICR, "ICR"},
258
259 /* RX Registers */
260 {E1000_RCTL, "RCTL"},
261 {E1000_RDLEN(0), "RDLEN"},
262 {E1000_RDH(0), "RDH"},
263 {E1000_RDT(0), "RDT"},
264 {E1000_RXDCTL(0), "RXDCTL"},
265 {E1000_RDBAL(0), "RDBAL"},
266 {E1000_RDBAH(0), "RDBAH"},
267
268 /* TX Registers */
269 {E1000_TCTL, "TCTL"},
270 {E1000_TDBAL(0), "TDBAL"},
271 {E1000_TDBAH(0), "TDBAH"},
272 {E1000_TDLEN(0), "TDLEN"},
273 {E1000_TDH(0), "TDH"},
274 {E1000_TDT(0), "TDT"},
275 {E1000_TXDCTL(0), "TXDCTL"},
276 {E1000_TDFH, "TDFH"},
277 {E1000_TDFT, "TDFT"},
278 {E1000_TDFHS, "TDFHS"},
279 {E1000_TDFPC, "TDFPC"},
280
281 /* List Terminator */
282 {}
283 };
284
285 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 int n = 0;
289 char rname[16];
290 u32 regs[8];
291
292 switch (reginfo->ofs) {
293 case E1000_RDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDLEN(n));
296 break;
297 case E1000_RDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_RDH(n));
300 break;
301 case E1000_RDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDT(n));
304 break;
305 case E1000_RXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RXDCTL(n));
308 break;
309 case E1000_RDBAL(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDBAL(n));
312 break;
313 case E1000_RDBAH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDBAH(n));
316 break;
317 case E1000_TDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDBAL(n));
320 break;
321 case E1000_TDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_TDBAH(n));
324 break;
325 case E1000_TDLEN(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_TDLEN(n));
328 break;
329 case E1000_TDH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDH(n));
332 break;
333 case E1000_TDT(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDT(n));
336 break;
337 case E1000_TXDCTL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TXDCTL(n));
340 break;
341 default:
342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 return;
344 }
345
346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 regs[2], regs[3]);
349 }
350
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 struct net_device *netdev = adapter->netdev;
355 struct e1000_hw *hw = &adapter->hw;
356 struct igb_reg_info *reginfo;
357 struct igb_ring *tx_ring;
358 union e1000_adv_tx_desc *tx_desc;
359 struct my_u0 { u64 a; u64 b; } *u0;
360 struct igb_ring *rx_ring;
361 union e1000_adv_rx_desc *rx_desc;
362 u32 staterr;
363 u16 i, n;
364
365 if (!netif_msg_hw(adapter))
366 return;
367
368 /* Print netdevice Info */
369 if (netdev) {
370 dev_info(&adapter->pdev->dev, "Net device Info\n");
371 pr_info("Device Name state trans_start\n");
372 pr_info("%-15s %016lX %016lX\n", netdev->name,
373 netdev->state, dev_trans_start(netdev));
374 }
375
376 /* Print Registers */
377 dev_info(&adapter->pdev->dev, "Register Dump\n");
378 pr_info(" Register Name Value\n");
379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 reginfo->name; reginfo++) {
381 igb_regdump(hw, reginfo);
382 }
383
384 /* Print TX Ring Summary */
385 if (!netdev || !netif_running(netdev))
386 goto exit;
387
388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
390 for (n = 0; n < adapter->num_tx_queues; n++) {
391 struct igb_tx_buffer *buffer_info;
392 tx_ring = adapter->tx_ring[n];
393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 (u64)dma_unmap_addr(buffer_info, dma),
397 dma_unmap_len(buffer_info, len),
398 buffer_info->next_to_watch,
399 (u64)buffer_info->time_stamp);
400 }
401
402 /* Print TX Rings */
403 if (!netif_msg_tx_done(adapter))
404 goto rx_ring_summary;
405
406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408 /* Transmit Descriptor Formats
409 *
410 * Advanced Transmit Descriptor
411 * +--------------------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +--------------------------------------------------------------+
414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
415 * +--------------------------------------------------------------+
416 * 63 46 45 40 39 38 36 35 32 31 24 15 0
417 */
418
419 for (n = 0; n < adapter->num_tx_queues; n++) {
420 tx_ring = adapter->tx_ring[n];
421 pr_info("------------------------------------\n");
422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 pr_info("------------------------------------\n");
424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
425
426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 const char *next_desc;
428 struct igb_tx_buffer *buffer_info;
429 tx_desc = IGB_TX_DESC(tx_ring, i);
430 buffer_info = &tx_ring->tx_buffer_info[i];
431 u0 = (struct my_u0 *)tx_desc;
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 next_desc = " NTC/U";
435 else if (i == tx_ring->next_to_use)
436 next_desc = " NTU";
437 else if (i == tx_ring->next_to_clean)
438 next_desc = " NTC";
439 else
440 next_desc = "";
441
442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
443 i, le64_to_cpu(u0->a),
444 le64_to_cpu(u0->b),
445 (u64)dma_unmap_addr(buffer_info, dma),
446 dma_unmap_len(buffer_info, len),
447 buffer_info->next_to_watch,
448 (u64)buffer_info->time_stamp,
449 buffer_info->skb, next_desc);
450
451 if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 print_hex_dump(KERN_INFO, "",
453 DUMP_PREFIX_ADDRESS,
454 16, 1, buffer_info->skb->data,
455 dma_unmap_len(buffer_info, len),
456 true);
457 }
458 }
459
460 /* Print RX Rings Summary */
461 rx_ring_summary:
462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 pr_info("Queue [NTU] [NTC]\n");
464 for (n = 0; n < adapter->num_rx_queues; n++) {
465 rx_ring = adapter->rx_ring[n];
466 pr_info(" %5d %5X %5X\n",
467 n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 }
469
470 /* Print RX Rings */
471 if (!netif_msg_rx_status(adapter))
472 goto exit;
473
474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476 /* Advanced Receive Descriptor (Read) Format
477 * 63 1 0
478 * +-----------------------------------------------------+
479 * 0 | Packet Buffer Address [63:1] |A0/NSE|
480 * +----------------------------------------------+------+
481 * 8 | Header Buffer Address [63:1] | DD |
482 * +-----------------------------------------------------+
483 *
484 *
485 * Advanced Receive Descriptor (Write-Back) Format
486 *
487 * 63 48 47 32 31 30 21 20 17 16 4 3 0
488 * +------------------------------------------------------+
489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
490 * | Checksum Ident | | | | Type | Type |
491 * +------------------------------------------------------+
492 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 * +------------------------------------------------------+
494 * 63 48 47 32 31 20 19 0
495 */
496
497 for (n = 0; n < adapter->num_rx_queues; n++) {
498 rx_ring = adapter->rx_ring[n];
499 pr_info("------------------------------------\n");
500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 pr_info("------------------------------------\n");
502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505 for (i = 0; i < rx_ring->count; i++) {
506 const char *next_desc;
507 struct igb_rx_buffer *buffer_info;
508 buffer_info = &rx_ring->rx_buffer_info[i];
509 rx_desc = IGB_RX_DESC(rx_ring, i);
510 u0 = (struct my_u0 *)rx_desc;
511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513 if (i == rx_ring->next_to_use)
514 next_desc = " NTU";
515 else if (i == rx_ring->next_to_clean)
516 next_desc = " NTC";
517 else
518 next_desc = "";
519
520 if (staterr & E1000_RXD_STAT_DD) {
521 /* Descriptor Done */
522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
523 "RWB", i,
524 le64_to_cpu(u0->a),
525 le64_to_cpu(u0->b),
526 next_desc);
527 } else {
528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
529 "R ", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 (u64)buffer_info->dma,
533 next_desc);
534
535 if (netif_msg_pktdata(adapter) &&
536 buffer_info->dma && buffer_info->page) {
537 print_hex_dump(KERN_INFO, "",
538 DUMP_PREFIX_ADDRESS,
539 16, 1,
540 page_address(buffer_info->page) +
541 buffer_info->page_offset,
542 igb_rx_bufsz(rx_ring), true);
543 }
544 }
545 }
546 }
547
548 exit:
549 return;
550 }
551
552 /**
553 * igb_get_i2c_data - Reads the I2C SDA data bit
554 * @data: opaque pointer to adapter struct
555 *
556 * Returns the I2C data bit value
557 **/
igb_get_i2c_data(void * data)558 static int igb_get_i2c_data(void *data)
559 {
560 struct igb_adapter *adapter = (struct igb_adapter *)data;
561 struct e1000_hw *hw = &adapter->hw;
562 s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564 return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566
567 /**
568 * igb_set_i2c_data - Sets the I2C data bit
569 * @data: pointer to hardware structure
570 * @state: I2C data value (0 or 1) to set
571 *
572 * Sets the I2C data bit
573 **/
igb_set_i2c_data(void * data,int state)574 static void igb_set_i2c_data(void *data, int state)
575 {
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 if (state)
581 i2cctl |= E1000_I2C_DATA_OUT;
582 else
583 i2cctl &= ~E1000_I2C_DATA_OUT;
584
585 i2cctl &= ~E1000_I2C_DATA_OE_N;
586 i2cctl |= E1000_I2C_CLK_OE_N;
587 wr32(E1000_I2CPARAMS, i2cctl);
588 wrfl();
589
590 }
591
592 /**
593 * igb_set_i2c_clk - Sets the I2C SCL clock
594 * @data: pointer to hardware structure
595 * @state: state to set clock
596 *
597 * Sets the I2C clock line to state
598 **/
igb_set_i2c_clk(void * data,int state)599 static void igb_set_i2c_clk(void *data, int state)
600 {
601 struct igb_adapter *adapter = (struct igb_adapter *)data;
602 struct e1000_hw *hw = &adapter->hw;
603 s32 i2cctl = rd32(E1000_I2CPARAMS);
604
605 if (state) {
606 i2cctl |= E1000_I2C_CLK_OUT;
607 i2cctl &= ~E1000_I2C_CLK_OE_N;
608 } else {
609 i2cctl &= ~E1000_I2C_CLK_OUT;
610 i2cctl &= ~E1000_I2C_CLK_OE_N;
611 }
612 wr32(E1000_I2CPARAMS, i2cctl);
613 wrfl();
614 }
615
616 /**
617 * igb_get_i2c_clk - Gets the I2C SCL clock state
618 * @data: pointer to hardware structure
619 *
620 * Gets the I2C clock state
621 **/
igb_get_i2c_clk(void * data)622 static int igb_get_i2c_clk(void *data)
623 {
624 struct igb_adapter *adapter = (struct igb_adapter *)data;
625 struct e1000_hw *hw = &adapter->hw;
626 s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628 return !!(i2cctl & E1000_I2C_CLK_IN);
629 }
630
631 static const struct i2c_algo_bit_data igb_i2c_algo = {
632 .setsda = igb_set_i2c_data,
633 .setscl = igb_set_i2c_clk,
634 .getsda = igb_get_i2c_data,
635 .getscl = igb_get_i2c_clk,
636 .udelay = 5,
637 .timeout = 20,
638 };
639
640 /**
641 * igb_get_hw_dev - return device
642 * @hw: pointer to hardware structure
643 *
644 * used by hardware layer to print debugging information
645 **/
igb_get_hw_dev(struct e1000_hw * hw)646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647 {
648 struct igb_adapter *adapter = hw->back;
649 return adapter->netdev;
650 }
651
652 /**
653 * igb_init_module - Driver Registration Routine
654 *
655 * igb_init_module is the first routine called when the driver is
656 * loaded. All it does is register with the PCI subsystem.
657 **/
igb_init_module(void)658 static int __init igb_init_module(void)
659 {
660 int ret;
661
662 pr_info("%s\n", igb_driver_string);
663 pr_info("%s\n", igb_copyright);
664
665 #ifdef CONFIG_IGB_DCA
666 dca_register_notify(&dca_notifier);
667 #endif
668 ret = pci_register_driver(&igb_driver);
669 return ret;
670 }
671
672 module_init(igb_init_module);
673
674 /**
675 * igb_exit_module - Driver Exit Cleanup Routine
676 *
677 * igb_exit_module is called just before the driver is removed
678 * from memory.
679 **/
igb_exit_module(void)680 static void __exit igb_exit_module(void)
681 {
682 #ifdef CONFIG_IGB_DCA
683 dca_unregister_notify(&dca_notifier);
684 #endif
685 pci_unregister_driver(&igb_driver);
686 }
687
688 module_exit(igb_exit_module);
689
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691 /**
692 * igb_cache_ring_register - Descriptor ring to register mapping
693 * @adapter: board private structure to initialize
694 *
695 * Once we know the feature-set enabled for the device, we'll cache
696 * the register offset the descriptor ring is assigned to.
697 **/
igb_cache_ring_register(struct igb_adapter * adapter)698 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 {
700 int i = 0, j = 0;
701 u32 rbase_offset = adapter->vfs_allocated_count;
702
703 switch (adapter->hw.mac.type) {
704 case e1000_82576:
705 /* The queues are allocated for virtualization such that VF 0
706 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707 * In order to avoid collision we start at the first free queue
708 * and continue consuming queues in the same sequence
709 */
710 if (adapter->vfs_allocated_count) {
711 for (; i < adapter->rss_queues; i++)
712 adapter->rx_ring[i]->reg_idx = rbase_offset +
713 Q_IDX_82576(i);
714 }
715 fallthrough;
716 case e1000_82575:
717 case e1000_82580:
718 case e1000_i350:
719 case e1000_i354:
720 case e1000_i210:
721 case e1000_i211:
722 default:
723 for (; i < adapter->num_rx_queues; i++)
724 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725 for (; j < adapter->num_tx_queues; j++)
726 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727 break;
728 }
729 }
730
igb_rd32(struct e1000_hw * hw,u32 reg)731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735 u32 value = 0;
736
737 if (E1000_REMOVED(hw_addr))
738 return ~value;
739
740 value = readl(&hw_addr[reg]);
741
742 /* reads should not return all F's */
743 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744 struct net_device *netdev = igb->netdev;
745 hw->hw_addr = NULL;
746 netdev_err(netdev, "PCIe link lost\n");
747 WARN(pci_device_is_present(igb->pdev),
748 "igb: Failed to read reg 0x%x!\n", reg);
749 }
750
751 return value;
752 }
753
754 /**
755 * igb_write_ivar - configure ivar for given MSI-X vector
756 * @hw: pointer to the HW structure
757 * @msix_vector: vector number we are allocating to a given ring
758 * @index: row index of IVAR register to write within IVAR table
759 * @offset: column offset of in IVAR, should be multiple of 8
760 *
761 * This function is intended to handle the writing of the IVAR register
762 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
763 * each containing an cause allocation for an Rx and Tx ring, and a
764 * variable number of rows depending on the number of queues supported.
765 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 int index, int offset)
768 {
769 u32 ivar = array_rd32(E1000_IVAR0, index);
770
771 /* clear any bits that are currently set */
772 ivar &= ~((u32)0xFF << offset);
773
774 /* write vector and valid bit */
775 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777 array_wr32(E1000_IVAR0, index, ivar);
778 }
779
780 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 struct igb_adapter *adapter = q_vector->adapter;
784 struct e1000_hw *hw = &adapter->hw;
785 int rx_queue = IGB_N0_QUEUE;
786 int tx_queue = IGB_N0_QUEUE;
787 u32 msixbm = 0;
788
789 if (q_vector->rx.ring)
790 rx_queue = q_vector->rx.ring->reg_idx;
791 if (q_vector->tx.ring)
792 tx_queue = q_vector->tx.ring->reg_idx;
793
794 switch (hw->mac.type) {
795 case e1000_82575:
796 /* The 82575 assigns vectors using a bitmask, which matches the
797 * bitmask for the EICR/EIMS/EIMC registers. To assign one
798 * or more queues to a vector, we write the appropriate bits
799 * into the MSIXBM register for that vector.
800 */
801 if (rx_queue > IGB_N0_QUEUE)
802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 if (tx_queue > IGB_N0_QUEUE)
804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806 msixbm |= E1000_EIMS_OTHER;
807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 q_vector->eims_value = msixbm;
809 break;
810 case e1000_82576:
811 /* 82576 uses a table that essentially consists of 2 columns
812 * with 8 rows. The ordering is column-major so we use the
813 * lower 3 bits as the row index, and the 4th bit as the
814 * column offset.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 igb_write_ivar(hw, msix_vector,
818 rx_queue & 0x7,
819 (rx_queue & 0x8) << 1);
820 if (tx_queue > IGB_N0_QUEUE)
821 igb_write_ivar(hw, msix_vector,
822 tx_queue & 0x7,
823 ((tx_queue & 0x8) << 1) + 8);
824 q_vector->eims_value = BIT(msix_vector);
825 break;
826 case e1000_82580:
827 case e1000_i350:
828 case e1000_i354:
829 case e1000_i210:
830 case e1000_i211:
831 /* On 82580 and newer adapters the scheme is similar to 82576
832 * however instead of ordering column-major we have things
833 * ordered row-major. So we traverse the table by using
834 * bit 0 as the column offset, and the remaining bits as the
835 * row index.
836 */
837 if (rx_queue > IGB_N0_QUEUE)
838 igb_write_ivar(hw, msix_vector,
839 rx_queue >> 1,
840 (rx_queue & 0x1) << 4);
841 if (tx_queue > IGB_N0_QUEUE)
842 igb_write_ivar(hw, msix_vector,
843 tx_queue >> 1,
844 ((tx_queue & 0x1) << 4) + 8);
845 q_vector->eims_value = BIT(msix_vector);
846 break;
847 default:
848 BUG();
849 break;
850 }
851
852 /* add q_vector eims value to global eims_enable_mask */
853 adapter->eims_enable_mask |= q_vector->eims_value;
854
855 /* configure q_vector to set itr on first interrupt */
856 q_vector->set_itr = 1;
857 }
858
859 /**
860 * igb_configure_msix - Configure MSI-X hardware
861 * @adapter: board private structure to initialize
862 *
863 * igb_configure_msix sets up the hardware to properly
864 * generate MSI-X interrupts.
865 **/
igb_configure_msix(struct igb_adapter * adapter)866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 u32 tmp;
869 int i, vector = 0;
870 struct e1000_hw *hw = &adapter->hw;
871
872 adapter->eims_enable_mask = 0;
873
874 /* set vector for other causes, i.e. link changes */
875 switch (hw->mac.type) {
876 case e1000_82575:
877 tmp = rd32(E1000_CTRL_EXT);
878 /* enable MSI-X PBA support*/
879 tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881 /* Auto-Mask interrupts upon ICR read. */
882 tmp |= E1000_CTRL_EXT_EIAME;
883 tmp |= E1000_CTRL_EXT_IRCA;
884
885 wr32(E1000_CTRL_EXT, tmp);
886
887 /* enable msix_other interrupt */
888 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 adapter->eims_other = E1000_EIMS_OTHER;
890
891 break;
892
893 case e1000_82576:
894 case e1000_82580:
895 case e1000_i350:
896 case e1000_i354:
897 case e1000_i210:
898 case e1000_i211:
899 /* Turn on MSI-X capability first, or our settings
900 * won't stick. And it will take days to debug.
901 */
902 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 E1000_GPIE_NSICR);
905
906 /* enable msix_other interrupt */
907 adapter->eims_other = BIT(vector);
908 tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910 wr32(E1000_IVAR_MISC, tmp);
911 break;
912 default:
913 /* do nothing, since nothing else supports MSI-X */
914 break;
915 } /* switch (hw->mac.type) */
916
917 adapter->eims_enable_mask |= adapter->eims_other;
918
919 for (i = 0; i < adapter->num_q_vectors; i++)
920 igb_assign_vector(adapter->q_vector[i], vector++);
921
922 wrfl();
923 }
924
925 /**
926 * igb_request_msix - Initialize MSI-X interrupts
927 * @adapter: board private structure to initialize
928 *
929 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 * kernel.
931 **/
igb_request_msix(struct igb_adapter * adapter)932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 struct net_device *netdev = adapter->netdev;
935 int i, err = 0, vector = 0, free_vector = 0;
936
937 err = request_irq(adapter->msix_entries[vector].vector,
938 igb_msix_other, 0, netdev->name, adapter);
939 if (err)
940 goto err_out;
941
942 for (i = 0; i < adapter->num_q_vectors; i++) {
943 struct igb_q_vector *q_vector = adapter->q_vector[i];
944
945 vector++;
946
947 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
948
949 if (q_vector->rx.ring && q_vector->tx.ring)
950 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
951 q_vector->rx.ring->queue_index);
952 else if (q_vector->tx.ring)
953 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
954 q_vector->tx.ring->queue_index);
955 else if (q_vector->rx.ring)
956 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
957 q_vector->rx.ring->queue_index);
958 else
959 sprintf(q_vector->name, "%s-unused", netdev->name);
960
961 err = request_irq(adapter->msix_entries[vector].vector,
962 igb_msix_ring, 0, q_vector->name,
963 q_vector);
964 if (err)
965 goto err_free;
966 }
967
968 igb_configure_msix(adapter);
969 return 0;
970
971 err_free:
972 /* free already assigned IRQs */
973 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
974
975 vector--;
976 for (i = 0; i < vector; i++) {
977 free_irq(adapter->msix_entries[free_vector++].vector,
978 adapter->q_vector[i]);
979 }
980 err_out:
981 return err;
982 }
983
984 /**
985 * igb_free_q_vector - Free memory allocated for specific interrupt vector
986 * @adapter: board private structure to initialize
987 * @v_idx: Index of vector to be freed
988 *
989 * This function frees the memory allocated to the q_vector.
990 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)991 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
992 {
993 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
994
995 adapter->q_vector[v_idx] = NULL;
996
997 /* igb_get_stats64() might access the rings on this vector,
998 * we must wait a grace period before freeing it.
999 */
1000 if (q_vector)
1001 kfree_rcu(q_vector, rcu);
1002 }
1003
1004 /**
1005 * igb_reset_q_vector - Reset config for interrupt vector
1006 * @adapter: board private structure to initialize
1007 * @v_idx: Index of vector to be reset
1008 *
1009 * If NAPI is enabled it will delete any references to the
1010 * NAPI struct. This is preparation for igb_free_q_vector.
1011 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1012 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1013 {
1014 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1015
1016 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1017 * allocated. So, q_vector is NULL so we should stop here.
1018 */
1019 if (!q_vector)
1020 return;
1021
1022 if (q_vector->tx.ring)
1023 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1024
1025 if (q_vector->rx.ring)
1026 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1027
1028 netif_napi_del(&q_vector->napi);
1029
1030 }
1031
igb_reset_interrupt_capability(struct igb_adapter * adapter)1032 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1033 {
1034 int v_idx = adapter->num_q_vectors;
1035
1036 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1037 pci_disable_msix(adapter->pdev);
1038 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1039 pci_disable_msi(adapter->pdev);
1040
1041 while (v_idx--)
1042 igb_reset_q_vector(adapter, v_idx);
1043 }
1044
1045 /**
1046 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1047 * @adapter: board private structure to initialize
1048 *
1049 * This function frees the memory allocated to the q_vectors. In addition if
1050 * NAPI is enabled it will delete any references to the NAPI struct prior
1051 * to freeing the q_vector.
1052 **/
igb_free_q_vectors(struct igb_adapter * adapter)1053 static void igb_free_q_vectors(struct igb_adapter *adapter)
1054 {
1055 int v_idx = adapter->num_q_vectors;
1056
1057 adapter->num_tx_queues = 0;
1058 adapter->num_rx_queues = 0;
1059 adapter->num_q_vectors = 0;
1060
1061 while (v_idx--) {
1062 igb_reset_q_vector(adapter, v_idx);
1063 igb_free_q_vector(adapter, v_idx);
1064 }
1065 }
1066
1067 /**
1068 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1069 * @adapter: board private structure to initialize
1070 *
1071 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1072 * MSI-X interrupts allocated.
1073 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1074 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1075 {
1076 igb_free_q_vectors(adapter);
1077 igb_reset_interrupt_capability(adapter);
1078 }
1079
1080 /**
1081 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1082 * @adapter: board private structure to initialize
1083 * @msix: boolean value of MSIX capability
1084 *
1085 * Attempt to configure interrupts using the best available
1086 * capabilities of the hardware and kernel.
1087 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1088 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1089 {
1090 int err;
1091 int numvecs, i;
1092
1093 if (!msix)
1094 goto msi_only;
1095 adapter->flags |= IGB_FLAG_HAS_MSIX;
1096
1097 /* Number of supported queues. */
1098 adapter->num_rx_queues = adapter->rss_queues;
1099 if (adapter->vfs_allocated_count)
1100 adapter->num_tx_queues = 1;
1101 else
1102 adapter->num_tx_queues = adapter->rss_queues;
1103
1104 /* start with one vector for every Rx queue */
1105 numvecs = adapter->num_rx_queues;
1106
1107 /* if Tx handler is separate add 1 for every Tx queue */
1108 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1109 numvecs += adapter->num_tx_queues;
1110
1111 /* store the number of vectors reserved for queues */
1112 adapter->num_q_vectors = numvecs;
1113
1114 /* add 1 vector for link status interrupts */
1115 numvecs++;
1116 for (i = 0; i < numvecs; i++)
1117 adapter->msix_entries[i].entry = i;
1118
1119 err = pci_enable_msix_range(adapter->pdev,
1120 adapter->msix_entries,
1121 numvecs,
1122 numvecs);
1123 if (err > 0)
1124 return;
1125
1126 igb_reset_interrupt_capability(adapter);
1127
1128 /* If we can't do MSI-X, try MSI */
1129 msi_only:
1130 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1131 #ifdef CONFIG_PCI_IOV
1132 /* disable SR-IOV for non MSI-X configurations */
1133 if (adapter->vf_data) {
1134 struct e1000_hw *hw = &adapter->hw;
1135 /* disable iov and allow time for transactions to clear */
1136 pci_disable_sriov(adapter->pdev);
1137 msleep(500);
1138
1139 kfree(adapter->vf_mac_list);
1140 adapter->vf_mac_list = NULL;
1141 kfree(adapter->vf_data);
1142 adapter->vf_data = NULL;
1143 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1144 wrfl();
1145 msleep(100);
1146 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1147 }
1148 #endif
1149 adapter->vfs_allocated_count = 0;
1150 adapter->rss_queues = 1;
1151 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1152 adapter->num_rx_queues = 1;
1153 adapter->num_tx_queues = 1;
1154 adapter->num_q_vectors = 1;
1155 if (!pci_enable_msi(adapter->pdev))
1156 adapter->flags |= IGB_FLAG_HAS_MSI;
1157 }
1158
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1159 static void igb_add_ring(struct igb_ring *ring,
1160 struct igb_ring_container *head)
1161 {
1162 head->ring = ring;
1163 head->count++;
1164 }
1165
1166 /**
1167 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1168 * @adapter: board private structure to initialize
1169 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1170 * @v_idx: index of vector in adapter struct
1171 * @txr_count: total number of Tx rings to allocate
1172 * @txr_idx: index of first Tx ring to allocate
1173 * @rxr_count: total number of Rx rings to allocate
1174 * @rxr_idx: index of first Rx ring to allocate
1175 *
1176 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1177 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1178 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1179 int v_count, int v_idx,
1180 int txr_count, int txr_idx,
1181 int rxr_count, int rxr_idx)
1182 {
1183 struct igb_q_vector *q_vector;
1184 struct igb_ring *ring;
1185 int ring_count;
1186 size_t size;
1187
1188 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1189 if (txr_count > 1 || rxr_count > 1)
1190 return -ENOMEM;
1191
1192 ring_count = txr_count + rxr_count;
1193 size = struct_size(q_vector, ring, ring_count);
1194
1195 /* allocate q_vector and rings */
1196 q_vector = adapter->q_vector[v_idx];
1197 if (!q_vector) {
1198 q_vector = kzalloc(size, GFP_KERNEL);
1199 } else if (size > ksize(q_vector)) {
1200 kfree_rcu(q_vector, rcu);
1201 q_vector = kzalloc(size, GFP_KERNEL);
1202 } else {
1203 memset(q_vector, 0, size);
1204 }
1205 if (!q_vector)
1206 return -ENOMEM;
1207
1208 /* initialize NAPI */
1209 netif_napi_add(adapter->netdev, &q_vector->napi,
1210 igb_poll, 64);
1211
1212 /* tie q_vector and adapter together */
1213 adapter->q_vector[v_idx] = q_vector;
1214 q_vector->adapter = adapter;
1215
1216 /* initialize work limits */
1217 q_vector->tx.work_limit = adapter->tx_work_limit;
1218
1219 /* initialize ITR configuration */
1220 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1221 q_vector->itr_val = IGB_START_ITR;
1222
1223 /* initialize pointer to rings */
1224 ring = q_vector->ring;
1225
1226 /* intialize ITR */
1227 if (rxr_count) {
1228 /* rx or rx/tx vector */
1229 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1230 q_vector->itr_val = adapter->rx_itr_setting;
1231 } else {
1232 /* tx only vector */
1233 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1234 q_vector->itr_val = adapter->tx_itr_setting;
1235 }
1236
1237 if (txr_count) {
1238 /* assign generic ring traits */
1239 ring->dev = &adapter->pdev->dev;
1240 ring->netdev = adapter->netdev;
1241
1242 /* configure backlink on ring */
1243 ring->q_vector = q_vector;
1244
1245 /* update q_vector Tx values */
1246 igb_add_ring(ring, &q_vector->tx);
1247
1248 /* For 82575, context index must be unique per ring. */
1249 if (adapter->hw.mac.type == e1000_82575)
1250 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1251
1252 /* apply Tx specific ring traits */
1253 ring->count = adapter->tx_ring_count;
1254 ring->queue_index = txr_idx;
1255
1256 ring->cbs_enable = false;
1257 ring->idleslope = 0;
1258 ring->sendslope = 0;
1259 ring->hicredit = 0;
1260 ring->locredit = 0;
1261
1262 u64_stats_init(&ring->tx_syncp);
1263 u64_stats_init(&ring->tx_syncp2);
1264
1265 /* assign ring to adapter */
1266 adapter->tx_ring[txr_idx] = ring;
1267
1268 /* push pointer to next ring */
1269 ring++;
1270 }
1271
1272 if (rxr_count) {
1273 /* assign generic ring traits */
1274 ring->dev = &adapter->pdev->dev;
1275 ring->netdev = adapter->netdev;
1276
1277 /* configure backlink on ring */
1278 ring->q_vector = q_vector;
1279
1280 /* update q_vector Rx values */
1281 igb_add_ring(ring, &q_vector->rx);
1282
1283 /* set flag indicating ring supports SCTP checksum offload */
1284 if (adapter->hw.mac.type >= e1000_82576)
1285 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286
1287 /* On i350, i354, i210, and i211, loopback VLAN packets
1288 * have the tag byte-swapped.
1289 */
1290 if (adapter->hw.mac.type >= e1000_i350)
1291 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292
1293 /* apply Rx specific ring traits */
1294 ring->count = adapter->rx_ring_count;
1295 ring->queue_index = rxr_idx;
1296
1297 u64_stats_init(&ring->rx_syncp);
1298
1299 /* assign ring to adapter */
1300 adapter->rx_ring[rxr_idx] = ring;
1301 }
1302
1303 return 0;
1304 }
1305
1306
1307 /**
1308 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309 * @adapter: board private structure to initialize
1310 *
1311 * We allocate one q_vector per queue interrupt. If allocation fails we
1312 * return -ENOMEM.
1313 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1314 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315 {
1316 int q_vectors = adapter->num_q_vectors;
1317 int rxr_remaining = adapter->num_rx_queues;
1318 int txr_remaining = adapter->num_tx_queues;
1319 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320 int err;
1321
1322 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323 for (; rxr_remaining; v_idx++) {
1324 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325 0, 0, 1, rxr_idx);
1326
1327 if (err)
1328 goto err_out;
1329
1330 /* update counts and index */
1331 rxr_remaining--;
1332 rxr_idx++;
1333 }
1334 }
1335
1336 for (; v_idx < q_vectors; v_idx++) {
1337 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339
1340 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341 tqpv, txr_idx, rqpv, rxr_idx);
1342
1343 if (err)
1344 goto err_out;
1345
1346 /* update counts and index */
1347 rxr_remaining -= rqpv;
1348 txr_remaining -= tqpv;
1349 rxr_idx++;
1350 txr_idx++;
1351 }
1352
1353 return 0;
1354
1355 err_out:
1356 adapter->num_tx_queues = 0;
1357 adapter->num_rx_queues = 0;
1358 adapter->num_q_vectors = 0;
1359
1360 while (v_idx--)
1361 igb_free_q_vector(adapter, v_idx);
1362
1363 return -ENOMEM;
1364 }
1365
1366 /**
1367 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368 * @adapter: board private structure to initialize
1369 * @msix: boolean value of MSIX capability
1370 *
1371 * This function initializes the interrupts and allocates all of the queues.
1372 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1373 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374 {
1375 struct pci_dev *pdev = adapter->pdev;
1376 int err;
1377
1378 igb_set_interrupt_capability(adapter, msix);
1379
1380 err = igb_alloc_q_vectors(adapter);
1381 if (err) {
1382 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383 goto err_alloc_q_vectors;
1384 }
1385
1386 igb_cache_ring_register(adapter);
1387
1388 return 0;
1389
1390 err_alloc_q_vectors:
1391 igb_reset_interrupt_capability(adapter);
1392 return err;
1393 }
1394
1395 /**
1396 * igb_request_irq - initialize interrupts
1397 * @adapter: board private structure to initialize
1398 *
1399 * Attempts to configure interrupts using the best available
1400 * capabilities of the hardware and kernel.
1401 **/
igb_request_irq(struct igb_adapter * adapter)1402 static int igb_request_irq(struct igb_adapter *adapter)
1403 {
1404 struct net_device *netdev = adapter->netdev;
1405 struct pci_dev *pdev = adapter->pdev;
1406 int err = 0;
1407
1408 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409 err = igb_request_msix(adapter);
1410 if (!err)
1411 goto request_done;
1412 /* fall back to MSI */
1413 igb_free_all_tx_resources(adapter);
1414 igb_free_all_rx_resources(adapter);
1415
1416 igb_clear_interrupt_scheme(adapter);
1417 err = igb_init_interrupt_scheme(adapter, false);
1418 if (err)
1419 goto request_done;
1420
1421 igb_setup_all_tx_resources(adapter);
1422 igb_setup_all_rx_resources(adapter);
1423 igb_configure(adapter);
1424 }
1425
1426 igb_assign_vector(adapter->q_vector[0], 0);
1427
1428 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429 err = request_irq(pdev->irq, igb_intr_msi, 0,
1430 netdev->name, adapter);
1431 if (!err)
1432 goto request_done;
1433
1434 /* fall back to legacy interrupts */
1435 igb_reset_interrupt_capability(adapter);
1436 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437 }
1438
1439 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440 netdev->name, adapter);
1441
1442 if (err)
1443 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444 err);
1445
1446 request_done:
1447 return err;
1448 }
1449
igb_free_irq(struct igb_adapter * adapter)1450 static void igb_free_irq(struct igb_adapter *adapter)
1451 {
1452 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453 int vector = 0, i;
1454
1455 free_irq(adapter->msix_entries[vector++].vector, adapter);
1456
1457 for (i = 0; i < adapter->num_q_vectors; i++)
1458 free_irq(adapter->msix_entries[vector++].vector,
1459 adapter->q_vector[i]);
1460 } else {
1461 free_irq(adapter->pdev->irq, adapter);
1462 }
1463 }
1464
1465 /**
1466 * igb_irq_disable - Mask off interrupt generation on the NIC
1467 * @adapter: board private structure
1468 **/
igb_irq_disable(struct igb_adapter * adapter)1469 static void igb_irq_disable(struct igb_adapter *adapter)
1470 {
1471 struct e1000_hw *hw = &adapter->hw;
1472
1473 /* we need to be careful when disabling interrupts. The VFs are also
1474 * mapped into these registers and so clearing the bits can cause
1475 * issues on the VF drivers so we only need to clear what we set
1476 */
1477 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478 u32 regval = rd32(E1000_EIAM);
1479
1480 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481 wr32(E1000_EIMC, adapter->eims_enable_mask);
1482 regval = rd32(E1000_EIAC);
1483 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484 }
1485
1486 wr32(E1000_IAM, 0);
1487 wr32(E1000_IMC, ~0);
1488 wrfl();
1489 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490 int i;
1491
1492 for (i = 0; i < adapter->num_q_vectors; i++)
1493 synchronize_irq(adapter->msix_entries[i].vector);
1494 } else {
1495 synchronize_irq(adapter->pdev->irq);
1496 }
1497 }
1498
1499 /**
1500 * igb_irq_enable - Enable default interrupt generation settings
1501 * @adapter: board private structure
1502 **/
igb_irq_enable(struct igb_adapter * adapter)1503 static void igb_irq_enable(struct igb_adapter *adapter)
1504 {
1505 struct e1000_hw *hw = &adapter->hw;
1506
1507 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509 u32 regval = rd32(E1000_EIAC);
1510
1511 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512 regval = rd32(E1000_EIAM);
1513 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514 wr32(E1000_EIMS, adapter->eims_enable_mask);
1515 if (adapter->vfs_allocated_count) {
1516 wr32(E1000_MBVFIMR, 0xFF);
1517 ims |= E1000_IMS_VMMB;
1518 }
1519 wr32(E1000_IMS, ims);
1520 } else {
1521 wr32(E1000_IMS, IMS_ENABLE_MASK |
1522 E1000_IMS_DRSTA);
1523 wr32(E1000_IAM, IMS_ENABLE_MASK |
1524 E1000_IMS_DRSTA);
1525 }
1526 }
1527
igb_update_mng_vlan(struct igb_adapter * adapter)1528 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529 {
1530 struct e1000_hw *hw = &adapter->hw;
1531 u16 pf_id = adapter->vfs_allocated_count;
1532 u16 vid = adapter->hw.mng_cookie.vlan_id;
1533 u16 old_vid = adapter->mng_vlan_id;
1534
1535 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536 /* add VID to filter table */
1537 igb_vfta_set(hw, vid, pf_id, true, true);
1538 adapter->mng_vlan_id = vid;
1539 } else {
1540 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541 }
1542
1543 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544 (vid != old_vid) &&
1545 !test_bit(old_vid, adapter->active_vlans)) {
1546 /* remove VID from filter table */
1547 igb_vfta_set(hw, vid, pf_id, false, true);
1548 }
1549 }
1550
1551 /**
1552 * igb_release_hw_control - release control of the h/w to f/w
1553 * @adapter: address of board private structure
1554 *
1555 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556 * For ASF and Pass Through versions of f/w this means that the
1557 * driver is no longer loaded.
1558 **/
igb_release_hw_control(struct igb_adapter * adapter)1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1560 {
1561 struct e1000_hw *hw = &adapter->hw;
1562 u32 ctrl_ext;
1563
1564 /* Let firmware take over control of h/w */
1565 ctrl_ext = rd32(E1000_CTRL_EXT);
1566 wr32(E1000_CTRL_EXT,
1567 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569
1570 /**
1571 * igb_get_hw_control - get control of the h/w from f/w
1572 * @adapter: address of board private structure
1573 *
1574 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575 * For ASF and Pass Through versions of f/w this means that
1576 * the driver is loaded.
1577 **/
igb_get_hw_control(struct igb_adapter * adapter)1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1579 {
1580 struct e1000_hw *hw = &adapter->hw;
1581 u32 ctrl_ext;
1582
1583 /* Let firmware know the driver has taken over */
1584 ctrl_ext = rd32(E1000_CTRL_EXT);
1585 wr32(E1000_CTRL_EXT,
1586 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587 }
1588
enable_fqtss(struct igb_adapter * adapter,bool enable)1589 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1590 {
1591 struct net_device *netdev = adapter->netdev;
1592 struct e1000_hw *hw = &adapter->hw;
1593
1594 WARN_ON(hw->mac.type != e1000_i210);
1595
1596 if (enable)
1597 adapter->flags |= IGB_FLAG_FQTSS;
1598 else
1599 adapter->flags &= ~IGB_FLAG_FQTSS;
1600
1601 if (netif_running(netdev))
1602 schedule_work(&adapter->reset_task);
1603 }
1604
is_fqtss_enabled(struct igb_adapter * adapter)1605 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1606 {
1607 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1608 }
1609
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1610 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1611 enum tx_queue_prio prio)
1612 {
1613 u32 val;
1614
1615 WARN_ON(hw->mac.type != e1000_i210);
1616 WARN_ON(queue < 0 || queue > 4);
1617
1618 val = rd32(E1000_I210_TXDCTL(queue));
1619
1620 if (prio == TX_QUEUE_PRIO_HIGH)
1621 val |= E1000_TXDCTL_PRIORITY;
1622 else
1623 val &= ~E1000_TXDCTL_PRIORITY;
1624
1625 wr32(E1000_I210_TXDCTL(queue), val);
1626 }
1627
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1628 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1629 {
1630 u32 val;
1631
1632 WARN_ON(hw->mac.type != e1000_i210);
1633 WARN_ON(queue < 0 || queue > 1);
1634
1635 val = rd32(E1000_I210_TQAVCC(queue));
1636
1637 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1638 val |= E1000_TQAVCC_QUEUEMODE;
1639 else
1640 val &= ~E1000_TQAVCC_QUEUEMODE;
1641
1642 wr32(E1000_I210_TQAVCC(queue), val);
1643 }
1644
is_any_cbs_enabled(struct igb_adapter * adapter)1645 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1646 {
1647 int i;
1648
1649 for (i = 0; i < adapter->num_tx_queues; i++) {
1650 if (adapter->tx_ring[i]->cbs_enable)
1651 return true;
1652 }
1653
1654 return false;
1655 }
1656
is_any_txtime_enabled(struct igb_adapter * adapter)1657 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1658 {
1659 int i;
1660
1661 for (i = 0; i < adapter->num_tx_queues; i++) {
1662 if (adapter->tx_ring[i]->launchtime_enable)
1663 return true;
1664 }
1665
1666 return false;
1667 }
1668
1669 /**
1670 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1671 * @adapter: pointer to adapter struct
1672 * @queue: queue number
1673 *
1674 * Configure CBS and Launchtime for a given hardware queue.
1675 * Parameters are retrieved from the correct Tx ring, so
1676 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1677 * for setting those correctly prior to this function being called.
1678 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1679 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1680 {
1681 struct igb_ring *ring = adapter->tx_ring[queue];
1682 struct net_device *netdev = adapter->netdev;
1683 struct e1000_hw *hw = &adapter->hw;
1684 u32 tqavcc, tqavctrl;
1685 u16 value;
1686
1687 WARN_ON(hw->mac.type != e1000_i210);
1688 WARN_ON(queue < 0 || queue > 1);
1689
1690 /* If any of the Qav features is enabled, configure queues as SR and
1691 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1692 * as SP.
1693 */
1694 if (ring->cbs_enable || ring->launchtime_enable) {
1695 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1696 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1697 } else {
1698 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1699 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1700 }
1701
1702 /* If CBS is enabled, set DataTranARB and config its parameters. */
1703 if (ring->cbs_enable || queue == 0) {
1704 /* i210 does not allow the queue 0 to be in the Strict
1705 * Priority mode while the Qav mode is enabled, so,
1706 * instead of disabling strict priority mode, we give
1707 * queue 0 the maximum of credits possible.
1708 *
1709 * See section 8.12.19 of the i210 datasheet, "Note:
1710 * Queue0 QueueMode must be set to 1b when
1711 * TransmitMode is set to Qav."
1712 */
1713 if (queue == 0 && !ring->cbs_enable) {
1714 /* max "linkspeed" idleslope in kbps */
1715 ring->idleslope = 1000000;
1716 ring->hicredit = ETH_FRAME_LEN;
1717 }
1718
1719 /* Always set data transfer arbitration to credit-based
1720 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1721 * the queues.
1722 */
1723 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1724 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1725 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1726
1727 /* According to i210 datasheet section 7.2.7.7, we should set
1728 * the 'idleSlope' field from TQAVCC register following the
1729 * equation:
1730 *
1731 * For 100 Mbps link speed:
1732 *
1733 * value = BW * 0x7735 * 0.2 (E1)
1734 *
1735 * For 1000Mbps link speed:
1736 *
1737 * value = BW * 0x7735 * 2 (E2)
1738 *
1739 * E1 and E2 can be merged into one equation as shown below.
1740 * Note that 'link-speed' is in Mbps.
1741 *
1742 * value = BW * 0x7735 * 2 * link-speed
1743 * -------------- (E3)
1744 * 1000
1745 *
1746 * 'BW' is the percentage bandwidth out of full link speed
1747 * which can be found with the following equation. Note that
1748 * idleSlope here is the parameter from this function which
1749 * is in kbps.
1750 *
1751 * BW = idleSlope
1752 * ----------------- (E4)
1753 * link-speed * 1000
1754 *
1755 * That said, we can come up with a generic equation to
1756 * calculate the value we should set it TQAVCC register by
1757 * replacing 'BW' in E3 by E4. The resulting equation is:
1758 *
1759 * value = idleSlope * 0x7735 * 2 * link-speed
1760 * ----------------- -------------- (E5)
1761 * link-speed * 1000 1000
1762 *
1763 * 'link-speed' is present in both sides of the fraction so
1764 * it is canceled out. The final equation is the following:
1765 *
1766 * value = idleSlope * 61034
1767 * ----------------- (E6)
1768 * 1000000
1769 *
1770 * NOTE: For i210, given the above, we can see that idleslope
1771 * is represented in 16.38431 kbps units by the value at
1772 * the TQAVCC register (1Gbps / 61034), which reduces
1773 * the granularity for idleslope increments.
1774 * For instance, if you want to configure a 2576kbps
1775 * idleslope, the value to be written on the register
1776 * would have to be 157.23. If rounded down, you end
1777 * up with less bandwidth available than originally
1778 * required (~2572 kbps). If rounded up, you end up
1779 * with a higher bandwidth (~2589 kbps). Below the
1780 * approach we take is to always round up the
1781 * calculated value, so the resulting bandwidth might
1782 * be slightly higher for some configurations.
1783 */
1784 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1785
1786 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1787 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1788 tqavcc |= value;
1789 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1790
1791 wr32(E1000_I210_TQAVHC(queue),
1792 0x80000000 + ring->hicredit * 0x7735);
1793 } else {
1794
1795 /* Set idleSlope to zero. */
1796 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1797 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1798 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799
1800 /* Set hiCredit to zero. */
1801 wr32(E1000_I210_TQAVHC(queue), 0);
1802
1803 /* If CBS is not enabled for any queues anymore, then return to
1804 * the default state of Data Transmission Arbitration on
1805 * TQAVCTRL.
1806 */
1807 if (!is_any_cbs_enabled(adapter)) {
1808 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1809 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1810 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1811 }
1812 }
1813
1814 /* If LaunchTime is enabled, set DataTranTIM. */
1815 if (ring->launchtime_enable) {
1816 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1817 * for any of the SR queues, and configure fetchtime delta.
1818 * XXX NOTE:
1819 * - LaunchTime will be enabled for all SR queues.
1820 * - A fixed offset can be added relative to the launch
1821 * time of all packets if configured at reg LAUNCH_OS0.
1822 * We are keeping it as 0 for now (default value).
1823 */
1824 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1825 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1826 E1000_TQAVCTRL_FETCHTIME_DELTA;
1827 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1828 } else {
1829 /* If Launchtime is not enabled for any SR queues anymore,
1830 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1831 * effectively disabling Launchtime.
1832 */
1833 if (!is_any_txtime_enabled(adapter)) {
1834 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1835 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1836 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1837 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1838 }
1839 }
1840
1841 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1842 * CBS are not configurable by software so we don't do any 'controller
1843 * configuration' in respect to these parameters.
1844 */
1845
1846 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1847 ring->cbs_enable ? "enabled" : "disabled",
1848 ring->launchtime_enable ? "enabled" : "disabled",
1849 queue,
1850 ring->idleslope, ring->sendslope,
1851 ring->hicredit, ring->locredit);
1852 }
1853
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1854 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1855 bool enable)
1856 {
1857 struct igb_ring *ring;
1858
1859 if (queue < 0 || queue > adapter->num_tx_queues)
1860 return -EINVAL;
1861
1862 ring = adapter->tx_ring[queue];
1863 ring->launchtime_enable = enable;
1864
1865 return 0;
1866 }
1867
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1868 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1869 bool enable, int idleslope, int sendslope,
1870 int hicredit, int locredit)
1871 {
1872 struct igb_ring *ring;
1873
1874 if (queue < 0 || queue > adapter->num_tx_queues)
1875 return -EINVAL;
1876
1877 ring = adapter->tx_ring[queue];
1878
1879 ring->cbs_enable = enable;
1880 ring->idleslope = idleslope;
1881 ring->sendslope = sendslope;
1882 ring->hicredit = hicredit;
1883 ring->locredit = locredit;
1884
1885 return 0;
1886 }
1887
1888 /**
1889 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1890 * @adapter: pointer to adapter struct
1891 *
1892 * Configure TQAVCTRL register switching the controller's Tx mode
1893 * if FQTSS mode is enabled or disabled. Additionally, will issue
1894 * a call to igb_config_tx_modes() per queue so any previously saved
1895 * Tx parameters are applied.
1896 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1897 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1898 {
1899 struct net_device *netdev = adapter->netdev;
1900 struct e1000_hw *hw = &adapter->hw;
1901 u32 val;
1902
1903 /* Only i210 controller supports changing the transmission mode. */
1904 if (hw->mac.type != e1000_i210)
1905 return;
1906
1907 if (is_fqtss_enabled(adapter)) {
1908 int i, max_queue;
1909
1910 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1911 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1912 * so SP queues wait for SR ones.
1913 */
1914 val = rd32(E1000_I210_TQAVCTRL);
1915 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1916 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1917 wr32(E1000_I210_TQAVCTRL, val);
1918
1919 /* Configure Tx and Rx packet buffers sizes as described in
1920 * i210 datasheet section 7.2.7.7.
1921 */
1922 val = rd32(E1000_TXPBS);
1923 val &= ~I210_TXPBSIZE_MASK;
1924 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1925 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1926 wr32(E1000_TXPBS, val);
1927
1928 val = rd32(E1000_RXPBS);
1929 val &= ~I210_RXPBSIZE_MASK;
1930 val |= I210_RXPBSIZE_PB_30KB;
1931 wr32(E1000_RXPBS, val);
1932
1933 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1934 * register should not exceed the buffer size programmed in
1935 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1936 * so according to the datasheet we should set MAX_TPKT_SIZE to
1937 * 4kB / 64.
1938 *
1939 * However, when we do so, no frame from queue 2 and 3 are
1940 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1941 * or _equal_ to the buffer size programmed in TXPBS. For this
1942 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1943 */
1944 val = (4096 - 1) / 64;
1945 wr32(E1000_I210_DTXMXPKTSZ, val);
1946
1947 /* Since FQTSS mode is enabled, apply any CBS configuration
1948 * previously set. If no previous CBS configuration has been
1949 * done, then the initial configuration is applied, which means
1950 * CBS is disabled.
1951 */
1952 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1953 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1954
1955 for (i = 0; i < max_queue; i++) {
1956 igb_config_tx_modes(adapter, i);
1957 }
1958 } else {
1959 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1960 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1961 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1962
1963 val = rd32(E1000_I210_TQAVCTRL);
1964 /* According to Section 8.12.21, the other flags we've set when
1965 * enabling FQTSS are not relevant when disabling FQTSS so we
1966 * don't set they here.
1967 */
1968 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1969 wr32(E1000_I210_TQAVCTRL, val);
1970 }
1971
1972 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1973 "enabled" : "disabled");
1974 }
1975
1976 /**
1977 * igb_configure - configure the hardware for RX and TX
1978 * @adapter: private board structure
1979 **/
igb_configure(struct igb_adapter * adapter)1980 static void igb_configure(struct igb_adapter *adapter)
1981 {
1982 struct net_device *netdev = adapter->netdev;
1983 int i;
1984
1985 igb_get_hw_control(adapter);
1986 igb_set_rx_mode(netdev);
1987 igb_setup_tx_mode(adapter);
1988
1989 igb_restore_vlan(adapter);
1990
1991 igb_setup_tctl(adapter);
1992 igb_setup_mrqc(adapter);
1993 igb_setup_rctl(adapter);
1994
1995 igb_nfc_filter_restore(adapter);
1996 igb_configure_tx(adapter);
1997 igb_configure_rx(adapter);
1998
1999 igb_rx_fifo_flush_82575(&adapter->hw);
2000
2001 /* call igb_desc_unused which always leaves
2002 * at least 1 descriptor unused to make sure
2003 * next_to_use != next_to_clean
2004 */
2005 for (i = 0; i < adapter->num_rx_queues; i++) {
2006 struct igb_ring *ring = adapter->rx_ring[i];
2007 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2008 }
2009 }
2010
2011 /**
2012 * igb_power_up_link - Power up the phy/serdes link
2013 * @adapter: address of board private structure
2014 **/
igb_power_up_link(struct igb_adapter * adapter)2015 void igb_power_up_link(struct igb_adapter *adapter)
2016 {
2017 igb_reset_phy(&adapter->hw);
2018
2019 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2020 igb_power_up_phy_copper(&adapter->hw);
2021 else
2022 igb_power_up_serdes_link_82575(&adapter->hw);
2023
2024 igb_setup_link(&adapter->hw);
2025 }
2026
2027 /**
2028 * igb_power_down_link - Power down the phy/serdes link
2029 * @adapter: address of board private structure
2030 */
igb_power_down_link(struct igb_adapter * adapter)2031 static void igb_power_down_link(struct igb_adapter *adapter)
2032 {
2033 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2034 igb_power_down_phy_copper_82575(&adapter->hw);
2035 else
2036 igb_shutdown_serdes_link_82575(&adapter->hw);
2037 }
2038
2039 /**
2040 * Detect and switch function for Media Auto Sense
2041 * @adapter: address of the board private structure
2042 **/
igb_check_swap_media(struct igb_adapter * adapter)2043 static void igb_check_swap_media(struct igb_adapter *adapter)
2044 {
2045 struct e1000_hw *hw = &adapter->hw;
2046 u32 ctrl_ext, connsw;
2047 bool swap_now = false;
2048
2049 ctrl_ext = rd32(E1000_CTRL_EXT);
2050 connsw = rd32(E1000_CONNSW);
2051
2052 /* need to live swap if current media is copper and we have fiber/serdes
2053 * to go to.
2054 */
2055
2056 if ((hw->phy.media_type == e1000_media_type_copper) &&
2057 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2058 swap_now = true;
2059 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2060 !(connsw & E1000_CONNSW_SERDESD)) {
2061 /* copper signal takes time to appear */
2062 if (adapter->copper_tries < 4) {
2063 adapter->copper_tries++;
2064 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2065 wr32(E1000_CONNSW, connsw);
2066 return;
2067 } else {
2068 adapter->copper_tries = 0;
2069 if ((connsw & E1000_CONNSW_PHYSD) &&
2070 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2071 swap_now = true;
2072 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2073 wr32(E1000_CONNSW, connsw);
2074 }
2075 }
2076 }
2077
2078 if (!swap_now)
2079 return;
2080
2081 switch (hw->phy.media_type) {
2082 case e1000_media_type_copper:
2083 netdev_info(adapter->netdev,
2084 "MAS: changing media to fiber/serdes\n");
2085 ctrl_ext |=
2086 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2087 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2088 adapter->copper_tries = 0;
2089 break;
2090 case e1000_media_type_internal_serdes:
2091 case e1000_media_type_fiber:
2092 netdev_info(adapter->netdev,
2093 "MAS: changing media to copper\n");
2094 ctrl_ext &=
2095 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 break;
2098 default:
2099 /* shouldn't get here during regular operation */
2100 netdev_err(adapter->netdev,
2101 "AMS: Invalid media type found, returning\n");
2102 break;
2103 }
2104 wr32(E1000_CTRL_EXT, ctrl_ext);
2105 }
2106
2107 /**
2108 * igb_up - Open the interface and prepare it to handle traffic
2109 * @adapter: board private structure
2110 **/
igb_up(struct igb_adapter * adapter)2111 int igb_up(struct igb_adapter *adapter)
2112 {
2113 struct e1000_hw *hw = &adapter->hw;
2114 int i;
2115
2116 /* hardware has been reset, we need to reload some things */
2117 igb_configure(adapter);
2118
2119 clear_bit(__IGB_DOWN, &adapter->state);
2120
2121 for (i = 0; i < adapter->num_q_vectors; i++)
2122 napi_enable(&(adapter->q_vector[i]->napi));
2123
2124 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2125 igb_configure_msix(adapter);
2126 else
2127 igb_assign_vector(adapter->q_vector[0], 0);
2128
2129 /* Clear any pending interrupts. */
2130 rd32(E1000_TSICR);
2131 rd32(E1000_ICR);
2132 igb_irq_enable(adapter);
2133
2134 /* notify VFs that reset has been completed */
2135 if (adapter->vfs_allocated_count) {
2136 u32 reg_data = rd32(E1000_CTRL_EXT);
2137
2138 reg_data |= E1000_CTRL_EXT_PFRSTD;
2139 wr32(E1000_CTRL_EXT, reg_data);
2140 }
2141
2142 netif_tx_start_all_queues(adapter->netdev);
2143
2144 /* start the watchdog. */
2145 hw->mac.get_link_status = 1;
2146 schedule_work(&adapter->watchdog_task);
2147
2148 if ((adapter->flags & IGB_FLAG_EEE) &&
2149 (!hw->dev_spec._82575.eee_disable))
2150 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2151
2152 return 0;
2153 }
2154
igb_down(struct igb_adapter * adapter)2155 void igb_down(struct igb_adapter *adapter)
2156 {
2157 struct net_device *netdev = adapter->netdev;
2158 struct e1000_hw *hw = &adapter->hw;
2159 u32 tctl, rctl;
2160 int i;
2161
2162 /* signal that we're down so the interrupt handler does not
2163 * reschedule our watchdog timer
2164 */
2165 set_bit(__IGB_DOWN, &adapter->state);
2166
2167 /* disable receives in the hardware */
2168 rctl = rd32(E1000_RCTL);
2169 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2170 /* flush and sleep below */
2171
2172 igb_nfc_filter_exit(adapter);
2173
2174 netif_carrier_off(netdev);
2175 netif_tx_stop_all_queues(netdev);
2176
2177 /* disable transmits in the hardware */
2178 tctl = rd32(E1000_TCTL);
2179 tctl &= ~E1000_TCTL_EN;
2180 wr32(E1000_TCTL, tctl);
2181 /* flush both disables and wait for them to finish */
2182 wrfl();
2183 usleep_range(10000, 11000);
2184
2185 igb_irq_disable(adapter);
2186
2187 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2188
2189 for (i = 0; i < adapter->num_q_vectors; i++) {
2190 if (adapter->q_vector[i]) {
2191 napi_synchronize(&adapter->q_vector[i]->napi);
2192 napi_disable(&adapter->q_vector[i]->napi);
2193 }
2194 }
2195
2196 del_timer_sync(&adapter->watchdog_timer);
2197 del_timer_sync(&adapter->phy_info_timer);
2198
2199 /* record the stats before reset*/
2200 spin_lock(&adapter->stats64_lock);
2201 igb_update_stats(adapter);
2202 spin_unlock(&adapter->stats64_lock);
2203
2204 adapter->link_speed = 0;
2205 adapter->link_duplex = 0;
2206
2207 if (!pci_channel_offline(adapter->pdev))
2208 igb_reset(adapter);
2209
2210 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2211 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2212
2213 igb_clean_all_tx_rings(adapter);
2214 igb_clean_all_rx_rings(adapter);
2215 #ifdef CONFIG_IGB_DCA
2216
2217 /* since we reset the hardware DCA settings were cleared */
2218 igb_setup_dca(adapter);
2219 #endif
2220 }
2221
igb_reinit_locked(struct igb_adapter * adapter)2222 void igb_reinit_locked(struct igb_adapter *adapter)
2223 {
2224 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2225 usleep_range(1000, 2000);
2226 igb_down(adapter);
2227 igb_up(adapter);
2228 clear_bit(__IGB_RESETTING, &adapter->state);
2229 }
2230
2231 /** igb_enable_mas - Media Autosense re-enable after swap
2232 *
2233 * @adapter: adapter struct
2234 **/
igb_enable_mas(struct igb_adapter * adapter)2235 static void igb_enable_mas(struct igb_adapter *adapter)
2236 {
2237 struct e1000_hw *hw = &adapter->hw;
2238 u32 connsw = rd32(E1000_CONNSW);
2239
2240 /* configure for SerDes media detect */
2241 if ((hw->phy.media_type == e1000_media_type_copper) &&
2242 (!(connsw & E1000_CONNSW_SERDESD))) {
2243 connsw |= E1000_CONNSW_ENRGSRC;
2244 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2245 wr32(E1000_CONNSW, connsw);
2246 wrfl();
2247 }
2248 }
2249
igb_reset(struct igb_adapter * adapter)2250 void igb_reset(struct igb_adapter *adapter)
2251 {
2252 struct pci_dev *pdev = adapter->pdev;
2253 struct e1000_hw *hw = &adapter->hw;
2254 struct e1000_mac_info *mac = &hw->mac;
2255 struct e1000_fc_info *fc = &hw->fc;
2256 u32 pba, hwm;
2257
2258 /* Repartition Pba for greater than 9k mtu
2259 * To take effect CTRL.RST is required.
2260 */
2261 switch (mac->type) {
2262 case e1000_i350:
2263 case e1000_i354:
2264 case e1000_82580:
2265 pba = rd32(E1000_RXPBS);
2266 pba = igb_rxpbs_adjust_82580(pba);
2267 break;
2268 case e1000_82576:
2269 pba = rd32(E1000_RXPBS);
2270 pba &= E1000_RXPBS_SIZE_MASK_82576;
2271 break;
2272 case e1000_82575:
2273 case e1000_i210:
2274 case e1000_i211:
2275 default:
2276 pba = E1000_PBA_34K;
2277 break;
2278 }
2279
2280 if (mac->type == e1000_82575) {
2281 u32 min_rx_space, min_tx_space, needed_tx_space;
2282
2283 /* write Rx PBA so that hardware can report correct Tx PBA */
2284 wr32(E1000_PBA, pba);
2285
2286 /* To maintain wire speed transmits, the Tx FIFO should be
2287 * large enough to accommodate two full transmit packets,
2288 * rounded up to the next 1KB and expressed in KB. Likewise,
2289 * the Rx FIFO should be large enough to accommodate at least
2290 * one full receive packet and is similarly rounded up and
2291 * expressed in KB.
2292 */
2293 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2294
2295 /* The Tx FIFO also stores 16 bytes of information about the Tx
2296 * but don't include Ethernet FCS because hardware appends it.
2297 * We only need to round down to the nearest 512 byte block
2298 * count since the value we care about is 2 frames, not 1.
2299 */
2300 min_tx_space = adapter->max_frame_size;
2301 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2302 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2303
2304 /* upper 16 bits has Tx packet buffer allocation size in KB */
2305 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2306
2307 /* If current Tx allocation is less than the min Tx FIFO size,
2308 * and the min Tx FIFO size is less than the current Rx FIFO
2309 * allocation, take space away from current Rx allocation.
2310 */
2311 if (needed_tx_space < pba) {
2312 pba -= needed_tx_space;
2313
2314 /* if short on Rx space, Rx wins and must trump Tx
2315 * adjustment
2316 */
2317 if (pba < min_rx_space)
2318 pba = min_rx_space;
2319 }
2320
2321 /* adjust PBA for jumbo frames */
2322 wr32(E1000_PBA, pba);
2323 }
2324
2325 /* flow control settings
2326 * The high water mark must be low enough to fit one full frame
2327 * after transmitting the pause frame. As such we must have enough
2328 * space to allow for us to complete our current transmit and then
2329 * receive the frame that is in progress from the link partner.
2330 * Set it to:
2331 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2332 */
2333 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2334
2335 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2336 fc->low_water = fc->high_water - 16;
2337 fc->pause_time = 0xFFFF;
2338 fc->send_xon = 1;
2339 fc->current_mode = fc->requested_mode;
2340
2341 /* disable receive for all VFs and wait one second */
2342 if (adapter->vfs_allocated_count) {
2343 int i;
2344
2345 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2346 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2347
2348 /* ping all the active vfs to let them know we are going down */
2349 igb_ping_all_vfs(adapter);
2350
2351 /* disable transmits and receives */
2352 wr32(E1000_VFRE, 0);
2353 wr32(E1000_VFTE, 0);
2354 }
2355
2356 /* Allow time for pending master requests to run */
2357 hw->mac.ops.reset_hw(hw);
2358 wr32(E1000_WUC, 0);
2359
2360 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2361 /* need to resetup here after media swap */
2362 adapter->ei.get_invariants(hw);
2363 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2364 }
2365 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2366 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2367 igb_enable_mas(adapter);
2368 }
2369 if (hw->mac.ops.init_hw(hw))
2370 dev_err(&pdev->dev, "Hardware Error\n");
2371
2372 /* RAR registers were cleared during init_hw, clear mac table */
2373 igb_flush_mac_table(adapter);
2374 __dev_uc_unsync(adapter->netdev, NULL);
2375
2376 /* Recover default RAR entry */
2377 igb_set_default_mac_filter(adapter);
2378
2379 /* Flow control settings reset on hardware reset, so guarantee flow
2380 * control is off when forcing speed.
2381 */
2382 if (!hw->mac.autoneg)
2383 igb_force_mac_fc(hw);
2384
2385 igb_init_dmac(adapter, pba);
2386 #ifdef CONFIG_IGB_HWMON
2387 /* Re-initialize the thermal sensor on i350 devices. */
2388 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2389 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2390 /* If present, re-initialize the external thermal sensor
2391 * interface.
2392 */
2393 if (adapter->ets)
2394 mac->ops.init_thermal_sensor_thresh(hw);
2395 }
2396 }
2397 #endif
2398 /* Re-establish EEE setting */
2399 if (hw->phy.media_type == e1000_media_type_copper) {
2400 switch (mac->type) {
2401 case e1000_i350:
2402 case e1000_i210:
2403 case e1000_i211:
2404 igb_set_eee_i350(hw, true, true);
2405 break;
2406 case e1000_i354:
2407 igb_set_eee_i354(hw, true, true);
2408 break;
2409 default:
2410 break;
2411 }
2412 }
2413 if (!netif_running(adapter->netdev))
2414 igb_power_down_link(adapter);
2415
2416 igb_update_mng_vlan(adapter);
2417
2418 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2419 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2420
2421 /* Re-enable PTP, where applicable. */
2422 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2423 igb_ptp_reset(adapter);
2424
2425 igb_get_phy_info(hw);
2426 }
2427
igb_fix_features(struct net_device * netdev,netdev_features_t features)2428 static netdev_features_t igb_fix_features(struct net_device *netdev,
2429 netdev_features_t features)
2430 {
2431 /* Since there is no support for separate Rx/Tx vlan accel
2432 * enable/disable make sure Tx flag is always in same state as Rx.
2433 */
2434 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2435 features |= NETIF_F_HW_VLAN_CTAG_TX;
2436 else
2437 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2438
2439 return features;
2440 }
2441
igb_set_features(struct net_device * netdev,netdev_features_t features)2442 static int igb_set_features(struct net_device *netdev,
2443 netdev_features_t features)
2444 {
2445 netdev_features_t changed = netdev->features ^ features;
2446 struct igb_adapter *adapter = netdev_priv(netdev);
2447
2448 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2449 igb_vlan_mode(netdev, features);
2450
2451 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2452 return 0;
2453
2454 if (!(features & NETIF_F_NTUPLE)) {
2455 struct hlist_node *node2;
2456 struct igb_nfc_filter *rule;
2457
2458 spin_lock(&adapter->nfc_lock);
2459 hlist_for_each_entry_safe(rule, node2,
2460 &adapter->nfc_filter_list, nfc_node) {
2461 igb_erase_filter(adapter, rule);
2462 hlist_del(&rule->nfc_node);
2463 kfree(rule);
2464 }
2465 spin_unlock(&adapter->nfc_lock);
2466 adapter->nfc_filter_count = 0;
2467 }
2468
2469 netdev->features = features;
2470
2471 if (netif_running(netdev))
2472 igb_reinit_locked(adapter);
2473 else
2474 igb_reset(adapter);
2475
2476 return 1;
2477 }
2478
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2479 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2480 struct net_device *dev,
2481 const unsigned char *addr, u16 vid,
2482 u16 flags,
2483 struct netlink_ext_ack *extack)
2484 {
2485 /* guarantee we can provide a unique filter for the unicast address */
2486 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2487 struct igb_adapter *adapter = netdev_priv(dev);
2488 int vfn = adapter->vfs_allocated_count;
2489
2490 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2491 return -ENOMEM;
2492 }
2493
2494 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2495 }
2496
2497 #define IGB_MAX_MAC_HDR_LEN 127
2498 #define IGB_MAX_NETWORK_HDR_LEN 511
2499
2500 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2501 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2502 netdev_features_t features)
2503 {
2504 unsigned int network_hdr_len, mac_hdr_len;
2505
2506 /* Make certain the headers can be described by a context descriptor */
2507 mac_hdr_len = skb_network_header(skb) - skb->data;
2508 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2509 return features & ~(NETIF_F_HW_CSUM |
2510 NETIF_F_SCTP_CRC |
2511 NETIF_F_GSO_UDP_L4 |
2512 NETIF_F_HW_VLAN_CTAG_TX |
2513 NETIF_F_TSO |
2514 NETIF_F_TSO6);
2515
2516 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2517 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2518 return features & ~(NETIF_F_HW_CSUM |
2519 NETIF_F_SCTP_CRC |
2520 NETIF_F_GSO_UDP_L4 |
2521 NETIF_F_TSO |
2522 NETIF_F_TSO6);
2523
2524 /* We can only support IPV4 TSO in tunnels if we can mangle the
2525 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2526 */
2527 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2528 features &= ~NETIF_F_TSO;
2529
2530 return features;
2531 }
2532
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2533 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2534 {
2535 if (!is_fqtss_enabled(adapter)) {
2536 enable_fqtss(adapter, true);
2537 return;
2538 }
2539
2540 igb_config_tx_modes(adapter, queue);
2541
2542 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2543 enable_fqtss(adapter, false);
2544 }
2545
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2546 static int igb_offload_cbs(struct igb_adapter *adapter,
2547 struct tc_cbs_qopt_offload *qopt)
2548 {
2549 struct e1000_hw *hw = &adapter->hw;
2550 int err;
2551
2552 /* CBS offloading is only supported by i210 controller. */
2553 if (hw->mac.type != e1000_i210)
2554 return -EOPNOTSUPP;
2555
2556 /* CBS offloading is only supported by queue 0 and queue 1. */
2557 if (qopt->queue < 0 || qopt->queue > 1)
2558 return -EINVAL;
2559
2560 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2561 qopt->idleslope, qopt->sendslope,
2562 qopt->hicredit, qopt->locredit);
2563 if (err)
2564 return err;
2565
2566 igb_offload_apply(adapter, qopt->queue);
2567
2568 return 0;
2569 }
2570
2571 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2572 #define VLAN_PRIO_FULL_MASK (0x07)
2573
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2574 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2575 struct flow_cls_offload *f,
2576 int traffic_class,
2577 struct igb_nfc_filter *input)
2578 {
2579 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2580 struct flow_dissector *dissector = rule->match.dissector;
2581 struct netlink_ext_ack *extack = f->common.extack;
2582
2583 if (dissector->used_keys &
2584 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2585 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2586 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2587 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2588 NL_SET_ERR_MSG_MOD(extack,
2589 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2590 return -EOPNOTSUPP;
2591 }
2592
2593 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2594 struct flow_match_eth_addrs match;
2595
2596 flow_rule_match_eth_addrs(rule, &match);
2597 if (!is_zero_ether_addr(match.mask->dst)) {
2598 if (!is_broadcast_ether_addr(match.mask->dst)) {
2599 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2600 return -EINVAL;
2601 }
2602
2603 input->filter.match_flags |=
2604 IGB_FILTER_FLAG_DST_MAC_ADDR;
2605 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2606 }
2607
2608 if (!is_zero_ether_addr(match.mask->src)) {
2609 if (!is_broadcast_ether_addr(match.mask->src)) {
2610 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2611 return -EINVAL;
2612 }
2613
2614 input->filter.match_flags |=
2615 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2616 ether_addr_copy(input->filter.src_addr, match.key->src);
2617 }
2618 }
2619
2620 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2621 struct flow_match_basic match;
2622
2623 flow_rule_match_basic(rule, &match);
2624 if (match.mask->n_proto) {
2625 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2626 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2627 return -EINVAL;
2628 }
2629
2630 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2631 input->filter.etype = match.key->n_proto;
2632 }
2633 }
2634
2635 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2636 struct flow_match_vlan match;
2637
2638 flow_rule_match_vlan(rule, &match);
2639 if (match.mask->vlan_priority) {
2640 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2641 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2642 return -EINVAL;
2643 }
2644
2645 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2646 input->filter.vlan_tci = match.key->vlan_priority;
2647 }
2648 }
2649
2650 input->action = traffic_class;
2651 input->cookie = f->cookie;
2652
2653 return 0;
2654 }
2655
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2656 static int igb_configure_clsflower(struct igb_adapter *adapter,
2657 struct flow_cls_offload *cls_flower)
2658 {
2659 struct netlink_ext_ack *extack = cls_flower->common.extack;
2660 struct igb_nfc_filter *filter, *f;
2661 int err, tc;
2662
2663 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2664 if (tc < 0) {
2665 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2666 return -EINVAL;
2667 }
2668
2669 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2670 if (!filter)
2671 return -ENOMEM;
2672
2673 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2674 if (err < 0)
2675 goto err_parse;
2676
2677 spin_lock(&adapter->nfc_lock);
2678
2679 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2680 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2681 err = -EEXIST;
2682 NL_SET_ERR_MSG_MOD(extack,
2683 "This filter is already set in ethtool");
2684 goto err_locked;
2685 }
2686 }
2687
2688 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2689 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690 err = -EEXIST;
2691 NL_SET_ERR_MSG_MOD(extack,
2692 "This filter is already set in cls_flower");
2693 goto err_locked;
2694 }
2695 }
2696
2697 err = igb_add_filter(adapter, filter);
2698 if (err < 0) {
2699 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2700 goto err_locked;
2701 }
2702
2703 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2704
2705 spin_unlock(&adapter->nfc_lock);
2706
2707 return 0;
2708
2709 err_locked:
2710 spin_unlock(&adapter->nfc_lock);
2711
2712 err_parse:
2713 kfree(filter);
2714
2715 return err;
2716 }
2717
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2718 static int igb_delete_clsflower(struct igb_adapter *adapter,
2719 struct flow_cls_offload *cls_flower)
2720 {
2721 struct igb_nfc_filter *filter;
2722 int err;
2723
2724 spin_lock(&adapter->nfc_lock);
2725
2726 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2727 if (filter->cookie == cls_flower->cookie)
2728 break;
2729
2730 if (!filter) {
2731 err = -ENOENT;
2732 goto out;
2733 }
2734
2735 err = igb_erase_filter(adapter, filter);
2736 if (err < 0)
2737 goto out;
2738
2739 hlist_del(&filter->nfc_node);
2740 kfree(filter);
2741
2742 out:
2743 spin_unlock(&adapter->nfc_lock);
2744
2745 return err;
2746 }
2747
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2748 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2749 struct flow_cls_offload *cls_flower)
2750 {
2751 switch (cls_flower->command) {
2752 case FLOW_CLS_REPLACE:
2753 return igb_configure_clsflower(adapter, cls_flower);
2754 case FLOW_CLS_DESTROY:
2755 return igb_delete_clsflower(adapter, cls_flower);
2756 case FLOW_CLS_STATS:
2757 return -EOPNOTSUPP;
2758 default:
2759 return -EOPNOTSUPP;
2760 }
2761 }
2762
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2763 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2764 void *cb_priv)
2765 {
2766 struct igb_adapter *adapter = cb_priv;
2767
2768 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2769 return -EOPNOTSUPP;
2770
2771 switch (type) {
2772 case TC_SETUP_CLSFLOWER:
2773 return igb_setup_tc_cls_flower(adapter, type_data);
2774
2775 default:
2776 return -EOPNOTSUPP;
2777 }
2778 }
2779
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2780 static int igb_offload_txtime(struct igb_adapter *adapter,
2781 struct tc_etf_qopt_offload *qopt)
2782 {
2783 struct e1000_hw *hw = &adapter->hw;
2784 int err;
2785
2786 /* Launchtime offloading is only supported by i210 controller. */
2787 if (hw->mac.type != e1000_i210)
2788 return -EOPNOTSUPP;
2789
2790 /* Launchtime offloading is only supported by queues 0 and 1. */
2791 if (qopt->queue < 0 || qopt->queue > 1)
2792 return -EINVAL;
2793
2794 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2795 if (err)
2796 return err;
2797
2798 igb_offload_apply(adapter, qopt->queue);
2799
2800 return 0;
2801 }
2802
2803 static LIST_HEAD(igb_block_cb_list);
2804
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2805 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2806 void *type_data)
2807 {
2808 struct igb_adapter *adapter = netdev_priv(dev);
2809
2810 switch (type) {
2811 case TC_SETUP_QDISC_CBS:
2812 return igb_offload_cbs(adapter, type_data);
2813 case TC_SETUP_BLOCK:
2814 return flow_block_cb_setup_simple(type_data,
2815 &igb_block_cb_list,
2816 igb_setup_tc_block_cb,
2817 adapter, adapter, true);
2818
2819 case TC_SETUP_QDISC_ETF:
2820 return igb_offload_txtime(adapter, type_data);
2821
2822 default:
2823 return -EOPNOTSUPP;
2824 }
2825 }
2826
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2827 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2828 {
2829 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2830 struct igb_adapter *adapter = netdev_priv(dev);
2831 struct bpf_prog *prog = bpf->prog, *old_prog;
2832 bool running = netif_running(dev);
2833 bool need_reset;
2834
2835 /* verify igb ring attributes are sufficient for XDP */
2836 for (i = 0; i < adapter->num_rx_queues; i++) {
2837 struct igb_ring *ring = adapter->rx_ring[i];
2838
2839 if (frame_size > igb_rx_bufsz(ring)) {
2840 NL_SET_ERR_MSG_MOD(bpf->extack,
2841 "The RX buffer size is too small for the frame size");
2842 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2843 igb_rx_bufsz(ring), frame_size);
2844 return -EINVAL;
2845 }
2846 }
2847
2848 old_prog = xchg(&adapter->xdp_prog, prog);
2849 need_reset = (!!prog != !!old_prog);
2850
2851 /* device is up and bpf is added/removed, must setup the RX queues */
2852 if (need_reset && running) {
2853 igb_close(dev);
2854 } else {
2855 for (i = 0; i < adapter->num_rx_queues; i++)
2856 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2857 adapter->xdp_prog);
2858 }
2859
2860 if (old_prog)
2861 bpf_prog_put(old_prog);
2862
2863 /* bpf is just replaced, RXQ and MTU are already setup */
2864 if (!need_reset)
2865 return 0;
2866
2867 if (running)
2868 igb_open(dev);
2869
2870 return 0;
2871 }
2872
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2873 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2874 {
2875 switch (xdp->command) {
2876 case XDP_SETUP_PROG:
2877 return igb_xdp_setup(dev, xdp);
2878 default:
2879 return -EINVAL;
2880 }
2881 }
2882
igb_xdp_ring_update_tail(struct igb_ring * ring)2883 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2884 {
2885 /* Force memory writes to complete before letting h/w know there
2886 * are new descriptors to fetch.
2887 */
2888 wmb();
2889 writel(ring->next_to_use, ring->tail);
2890 }
2891
igb_xdp_tx_queue_mapping(struct igb_adapter * adapter)2892 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2893 {
2894 unsigned int r_idx = smp_processor_id();
2895
2896 if (r_idx >= adapter->num_tx_queues)
2897 r_idx = r_idx % adapter->num_tx_queues;
2898
2899 return adapter->tx_ring[r_idx];
2900 }
2901
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2902 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2903 {
2904 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2905 int cpu = smp_processor_id();
2906 struct igb_ring *tx_ring;
2907 struct netdev_queue *nq;
2908 u32 ret;
2909
2910 if (unlikely(!xdpf))
2911 return IGB_XDP_CONSUMED;
2912
2913 /* During program transitions its possible adapter->xdp_prog is assigned
2914 * but ring has not been configured yet. In this case simply abort xmit.
2915 */
2916 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2917 if (unlikely(!tx_ring))
2918 return IGB_XDP_CONSUMED;
2919
2920 nq = txring_txq(tx_ring);
2921 __netif_tx_lock(nq, cpu);
2922 /* Avoid transmit queue timeout since we share it with the slow path */
2923 nq->trans_start = jiffies;
2924 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2925 __netif_tx_unlock(nq);
2926
2927 return ret;
2928 }
2929
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2930 static int igb_xdp_xmit(struct net_device *dev, int n,
2931 struct xdp_frame **frames, u32 flags)
2932 {
2933 struct igb_adapter *adapter = netdev_priv(dev);
2934 int cpu = smp_processor_id();
2935 struct igb_ring *tx_ring;
2936 struct netdev_queue *nq;
2937 int drops = 0;
2938 int i;
2939
2940 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2941 return -ENETDOWN;
2942
2943 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2944 return -EINVAL;
2945
2946 /* During program transitions its possible adapter->xdp_prog is assigned
2947 * but ring has not been configured yet. In this case simply abort xmit.
2948 */
2949 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2950 if (unlikely(!tx_ring))
2951 return -ENXIO;
2952
2953 nq = txring_txq(tx_ring);
2954 __netif_tx_lock(nq, cpu);
2955
2956 /* Avoid transmit queue timeout since we share it with the slow path */
2957 nq->trans_start = jiffies;
2958
2959 for (i = 0; i < n; i++) {
2960 struct xdp_frame *xdpf = frames[i];
2961 int err;
2962
2963 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2964 if (err != IGB_XDP_TX) {
2965 xdp_return_frame_rx_napi(xdpf);
2966 drops++;
2967 }
2968 }
2969
2970 __netif_tx_unlock(nq);
2971
2972 if (unlikely(flags & XDP_XMIT_FLUSH))
2973 igb_xdp_ring_update_tail(tx_ring);
2974
2975 return n - drops;
2976 }
2977
2978 static const struct net_device_ops igb_netdev_ops = {
2979 .ndo_open = igb_open,
2980 .ndo_stop = igb_close,
2981 .ndo_start_xmit = igb_xmit_frame,
2982 .ndo_get_stats64 = igb_get_stats64,
2983 .ndo_set_rx_mode = igb_set_rx_mode,
2984 .ndo_set_mac_address = igb_set_mac,
2985 .ndo_change_mtu = igb_change_mtu,
2986 .ndo_do_ioctl = igb_ioctl,
2987 .ndo_tx_timeout = igb_tx_timeout,
2988 .ndo_validate_addr = eth_validate_addr,
2989 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2990 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2991 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2992 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2993 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2994 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2995 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
2996 .ndo_get_vf_config = igb_ndo_get_vf_config,
2997 .ndo_fix_features = igb_fix_features,
2998 .ndo_set_features = igb_set_features,
2999 .ndo_fdb_add = igb_ndo_fdb_add,
3000 .ndo_features_check = igb_features_check,
3001 .ndo_setup_tc = igb_setup_tc,
3002 .ndo_bpf = igb_xdp,
3003 .ndo_xdp_xmit = igb_xdp_xmit,
3004 };
3005
3006 /**
3007 * igb_set_fw_version - Configure version string for ethtool
3008 * @adapter: adapter struct
3009 **/
igb_set_fw_version(struct igb_adapter * adapter)3010 void igb_set_fw_version(struct igb_adapter *adapter)
3011 {
3012 struct e1000_hw *hw = &adapter->hw;
3013 struct e1000_fw_version fw;
3014
3015 igb_get_fw_version(hw, &fw);
3016
3017 switch (hw->mac.type) {
3018 case e1000_i210:
3019 case e1000_i211:
3020 if (!(igb_get_flash_presence_i210(hw))) {
3021 snprintf(adapter->fw_version,
3022 sizeof(adapter->fw_version),
3023 "%2d.%2d-%d",
3024 fw.invm_major, fw.invm_minor,
3025 fw.invm_img_type);
3026 break;
3027 }
3028 fallthrough;
3029 default:
3030 /* if option is rom valid, display its version too */
3031 if (fw.or_valid) {
3032 snprintf(adapter->fw_version,
3033 sizeof(adapter->fw_version),
3034 "%d.%d, 0x%08x, %d.%d.%d",
3035 fw.eep_major, fw.eep_minor, fw.etrack_id,
3036 fw.or_major, fw.or_build, fw.or_patch);
3037 /* no option rom */
3038 } else if (fw.etrack_id != 0X0000) {
3039 snprintf(adapter->fw_version,
3040 sizeof(adapter->fw_version),
3041 "%d.%d, 0x%08x",
3042 fw.eep_major, fw.eep_minor, fw.etrack_id);
3043 } else {
3044 snprintf(adapter->fw_version,
3045 sizeof(adapter->fw_version),
3046 "%d.%d.%d",
3047 fw.eep_major, fw.eep_minor, fw.eep_build);
3048 }
3049 break;
3050 }
3051 }
3052
3053 /**
3054 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3055 *
3056 * @adapter: adapter struct
3057 **/
igb_init_mas(struct igb_adapter * adapter)3058 static void igb_init_mas(struct igb_adapter *adapter)
3059 {
3060 struct e1000_hw *hw = &adapter->hw;
3061 u16 eeprom_data;
3062
3063 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3064 switch (hw->bus.func) {
3065 case E1000_FUNC_0:
3066 if (eeprom_data & IGB_MAS_ENABLE_0) {
3067 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3068 netdev_info(adapter->netdev,
3069 "MAS: Enabling Media Autosense for port %d\n",
3070 hw->bus.func);
3071 }
3072 break;
3073 case E1000_FUNC_1:
3074 if (eeprom_data & IGB_MAS_ENABLE_1) {
3075 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3076 netdev_info(adapter->netdev,
3077 "MAS: Enabling Media Autosense for port %d\n",
3078 hw->bus.func);
3079 }
3080 break;
3081 case E1000_FUNC_2:
3082 if (eeprom_data & IGB_MAS_ENABLE_2) {
3083 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3084 netdev_info(adapter->netdev,
3085 "MAS: Enabling Media Autosense for port %d\n",
3086 hw->bus.func);
3087 }
3088 break;
3089 case E1000_FUNC_3:
3090 if (eeprom_data & IGB_MAS_ENABLE_3) {
3091 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3092 netdev_info(adapter->netdev,
3093 "MAS: Enabling Media Autosense for port %d\n",
3094 hw->bus.func);
3095 }
3096 break;
3097 default:
3098 /* Shouldn't get here */
3099 netdev_err(adapter->netdev,
3100 "MAS: Invalid port configuration, returning\n");
3101 break;
3102 }
3103 }
3104
3105 /**
3106 * igb_init_i2c - Init I2C interface
3107 * @adapter: pointer to adapter structure
3108 **/
igb_init_i2c(struct igb_adapter * adapter)3109 static s32 igb_init_i2c(struct igb_adapter *adapter)
3110 {
3111 s32 status = 0;
3112
3113 /* I2C interface supported on i350 devices */
3114 if (adapter->hw.mac.type != e1000_i350)
3115 return 0;
3116
3117 /* Initialize the i2c bus which is controlled by the registers.
3118 * This bus will use the i2c_algo_bit structue that implements
3119 * the protocol through toggling of the 4 bits in the register.
3120 */
3121 adapter->i2c_adap.owner = THIS_MODULE;
3122 adapter->i2c_algo = igb_i2c_algo;
3123 adapter->i2c_algo.data = adapter;
3124 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3125 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3126 strlcpy(adapter->i2c_adap.name, "igb BB",
3127 sizeof(adapter->i2c_adap.name));
3128 status = i2c_bit_add_bus(&adapter->i2c_adap);
3129 return status;
3130 }
3131
3132 /**
3133 * igb_probe - Device Initialization Routine
3134 * @pdev: PCI device information struct
3135 * @ent: entry in igb_pci_tbl
3136 *
3137 * Returns 0 on success, negative on failure
3138 *
3139 * igb_probe initializes an adapter identified by a pci_dev structure.
3140 * The OS initialization, configuring of the adapter private structure,
3141 * and a hardware reset occur.
3142 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3143 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3144 {
3145 struct net_device *netdev;
3146 struct igb_adapter *adapter;
3147 struct e1000_hw *hw;
3148 u16 eeprom_data = 0;
3149 s32 ret_val;
3150 static int global_quad_port_a; /* global quad port a indication */
3151 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3152 int err, pci_using_dac;
3153 u8 part_str[E1000_PBANUM_LENGTH];
3154
3155 /* Catch broken hardware that put the wrong VF device ID in
3156 * the PCIe SR-IOV capability.
3157 */
3158 if (pdev->is_virtfn) {
3159 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3160 pci_name(pdev), pdev->vendor, pdev->device);
3161 return -EINVAL;
3162 }
3163
3164 err = pci_enable_device_mem(pdev);
3165 if (err)
3166 return err;
3167
3168 pci_using_dac = 0;
3169 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3170 if (!err) {
3171 pci_using_dac = 1;
3172 } else {
3173 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3174 if (err) {
3175 dev_err(&pdev->dev,
3176 "No usable DMA configuration, aborting\n");
3177 goto err_dma;
3178 }
3179 }
3180
3181 err = pci_request_mem_regions(pdev, igb_driver_name);
3182 if (err)
3183 goto err_pci_reg;
3184
3185 pci_enable_pcie_error_reporting(pdev);
3186
3187 pci_set_master(pdev);
3188 pci_save_state(pdev);
3189
3190 err = -ENOMEM;
3191 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3192 IGB_MAX_TX_QUEUES);
3193 if (!netdev)
3194 goto err_alloc_etherdev;
3195
3196 SET_NETDEV_DEV(netdev, &pdev->dev);
3197
3198 pci_set_drvdata(pdev, netdev);
3199 adapter = netdev_priv(netdev);
3200 adapter->netdev = netdev;
3201 adapter->pdev = pdev;
3202 hw = &adapter->hw;
3203 hw->back = adapter;
3204 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3205
3206 err = -EIO;
3207 adapter->io_addr = pci_iomap(pdev, 0, 0);
3208 if (!adapter->io_addr)
3209 goto err_ioremap;
3210 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3211 hw->hw_addr = adapter->io_addr;
3212
3213 netdev->netdev_ops = &igb_netdev_ops;
3214 igb_set_ethtool_ops(netdev);
3215 netdev->watchdog_timeo = 5 * HZ;
3216
3217 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3218
3219 netdev->mem_start = pci_resource_start(pdev, 0);
3220 netdev->mem_end = pci_resource_end(pdev, 0);
3221
3222 /* PCI config space info */
3223 hw->vendor_id = pdev->vendor;
3224 hw->device_id = pdev->device;
3225 hw->revision_id = pdev->revision;
3226 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3227 hw->subsystem_device_id = pdev->subsystem_device;
3228
3229 /* Copy the default MAC, PHY and NVM function pointers */
3230 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3231 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3232 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3233 /* Initialize skew-specific constants */
3234 err = ei->get_invariants(hw);
3235 if (err)
3236 goto err_sw_init;
3237
3238 /* setup the private structure */
3239 err = igb_sw_init(adapter);
3240 if (err)
3241 goto err_sw_init;
3242
3243 igb_get_bus_info_pcie(hw);
3244
3245 hw->phy.autoneg_wait_to_complete = false;
3246
3247 /* Copper options */
3248 if (hw->phy.media_type == e1000_media_type_copper) {
3249 hw->phy.mdix = AUTO_ALL_MODES;
3250 hw->phy.disable_polarity_correction = false;
3251 hw->phy.ms_type = e1000_ms_hw_default;
3252 }
3253
3254 if (igb_check_reset_block(hw))
3255 dev_info(&pdev->dev,
3256 "PHY reset is blocked due to SOL/IDER session.\n");
3257
3258 /* features is initialized to 0 in allocation, it might have bits
3259 * set by igb_sw_init so we should use an or instead of an
3260 * assignment.
3261 */
3262 netdev->features |= NETIF_F_SG |
3263 NETIF_F_TSO |
3264 NETIF_F_TSO6 |
3265 NETIF_F_RXHASH |
3266 NETIF_F_RXCSUM |
3267 NETIF_F_HW_CSUM;
3268
3269 if (hw->mac.type >= e1000_82576)
3270 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3271
3272 if (hw->mac.type >= e1000_i350)
3273 netdev->features |= NETIF_F_HW_TC;
3274
3275 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3276 NETIF_F_GSO_GRE_CSUM | \
3277 NETIF_F_GSO_IPXIP4 | \
3278 NETIF_F_GSO_IPXIP6 | \
3279 NETIF_F_GSO_UDP_TUNNEL | \
3280 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3281
3282 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3283 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3284
3285 /* copy netdev features into list of user selectable features */
3286 netdev->hw_features |= netdev->features |
3287 NETIF_F_HW_VLAN_CTAG_RX |
3288 NETIF_F_HW_VLAN_CTAG_TX |
3289 NETIF_F_RXALL;
3290
3291 if (hw->mac.type >= e1000_i350)
3292 netdev->hw_features |= NETIF_F_NTUPLE;
3293
3294 if (pci_using_dac)
3295 netdev->features |= NETIF_F_HIGHDMA;
3296
3297 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3298 netdev->mpls_features |= NETIF_F_HW_CSUM;
3299 netdev->hw_enc_features |= netdev->vlan_features;
3300
3301 /* set this bit last since it cannot be part of vlan_features */
3302 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3303 NETIF_F_HW_VLAN_CTAG_RX |
3304 NETIF_F_HW_VLAN_CTAG_TX;
3305
3306 netdev->priv_flags |= IFF_SUPP_NOFCS;
3307
3308 netdev->priv_flags |= IFF_UNICAST_FLT;
3309
3310 /* MTU range: 68 - 9216 */
3311 netdev->min_mtu = ETH_MIN_MTU;
3312 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3313
3314 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3315
3316 /* before reading the NVM, reset the controller to put the device in a
3317 * known good starting state
3318 */
3319 hw->mac.ops.reset_hw(hw);
3320
3321 /* make sure the NVM is good , i211/i210 parts can have special NVM
3322 * that doesn't contain a checksum
3323 */
3324 switch (hw->mac.type) {
3325 case e1000_i210:
3326 case e1000_i211:
3327 if (igb_get_flash_presence_i210(hw)) {
3328 if (hw->nvm.ops.validate(hw) < 0) {
3329 dev_err(&pdev->dev,
3330 "The NVM Checksum Is Not Valid\n");
3331 err = -EIO;
3332 goto err_eeprom;
3333 }
3334 }
3335 break;
3336 default:
3337 if (hw->nvm.ops.validate(hw) < 0) {
3338 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3339 err = -EIO;
3340 goto err_eeprom;
3341 }
3342 break;
3343 }
3344
3345 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3346 /* copy the MAC address out of the NVM */
3347 if (hw->mac.ops.read_mac_addr(hw))
3348 dev_err(&pdev->dev, "NVM Read Error\n");
3349 }
3350
3351 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3352
3353 if (!is_valid_ether_addr(netdev->dev_addr)) {
3354 dev_err(&pdev->dev, "Invalid MAC Address\n");
3355 err = -EIO;
3356 goto err_eeprom;
3357 }
3358
3359 igb_set_default_mac_filter(adapter);
3360
3361 /* get firmware version for ethtool -i */
3362 igb_set_fw_version(adapter);
3363
3364 /* configure RXPBSIZE and TXPBSIZE */
3365 if (hw->mac.type == e1000_i210) {
3366 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3367 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3368 }
3369
3370 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3371 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3372
3373 INIT_WORK(&adapter->reset_task, igb_reset_task);
3374 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3375
3376 /* Initialize link properties that are user-changeable */
3377 adapter->fc_autoneg = true;
3378 hw->mac.autoneg = true;
3379 hw->phy.autoneg_advertised = 0x2f;
3380
3381 hw->fc.requested_mode = e1000_fc_default;
3382 hw->fc.current_mode = e1000_fc_default;
3383
3384 igb_validate_mdi_setting(hw);
3385
3386 /* By default, support wake on port A */
3387 if (hw->bus.func == 0)
3388 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3389
3390 /* Check the NVM for wake support on non-port A ports */
3391 if (hw->mac.type >= e1000_82580)
3392 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3393 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3394 &eeprom_data);
3395 else if (hw->bus.func == 1)
3396 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3397
3398 if (eeprom_data & IGB_EEPROM_APME)
3399 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3400
3401 /* now that we have the eeprom settings, apply the special cases where
3402 * the eeprom may be wrong or the board simply won't support wake on
3403 * lan on a particular port
3404 */
3405 switch (pdev->device) {
3406 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3407 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3408 break;
3409 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3410 case E1000_DEV_ID_82576_FIBER:
3411 case E1000_DEV_ID_82576_SERDES:
3412 /* Wake events only supported on port A for dual fiber
3413 * regardless of eeprom setting
3414 */
3415 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3416 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3417 break;
3418 case E1000_DEV_ID_82576_QUAD_COPPER:
3419 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3420 /* if quad port adapter, disable WoL on all but port A */
3421 if (global_quad_port_a != 0)
3422 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3423 else
3424 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3425 /* Reset for multiple quad port adapters */
3426 if (++global_quad_port_a == 4)
3427 global_quad_port_a = 0;
3428 break;
3429 default:
3430 /* If the device can't wake, don't set software support */
3431 if (!device_can_wakeup(&adapter->pdev->dev))
3432 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3433 }
3434
3435 /* initialize the wol settings based on the eeprom settings */
3436 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3437 adapter->wol |= E1000_WUFC_MAG;
3438
3439 /* Some vendors want WoL disabled by default, but still supported */
3440 if ((hw->mac.type == e1000_i350) &&
3441 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3442 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3443 adapter->wol = 0;
3444 }
3445
3446 /* Some vendors want the ability to Use the EEPROM setting as
3447 * enable/disable only, and not for capability
3448 */
3449 if (((hw->mac.type == e1000_i350) ||
3450 (hw->mac.type == e1000_i354)) &&
3451 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3452 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3453 adapter->wol = 0;
3454 }
3455 if (hw->mac.type == e1000_i350) {
3456 if (((pdev->subsystem_device == 0x5001) ||
3457 (pdev->subsystem_device == 0x5002)) &&
3458 (hw->bus.func == 0)) {
3459 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3460 adapter->wol = 0;
3461 }
3462 if (pdev->subsystem_device == 0x1F52)
3463 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3464 }
3465
3466 device_set_wakeup_enable(&adapter->pdev->dev,
3467 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3468
3469 /* reset the hardware with the new settings */
3470 igb_reset(adapter);
3471
3472 /* Init the I2C interface */
3473 err = igb_init_i2c(adapter);
3474 if (err) {
3475 dev_err(&pdev->dev, "failed to init i2c interface\n");
3476 goto err_eeprom;
3477 }
3478
3479 /* let the f/w know that the h/w is now under the control of the
3480 * driver.
3481 */
3482 igb_get_hw_control(adapter);
3483
3484 strcpy(netdev->name, "eth%d");
3485 err = register_netdev(netdev);
3486 if (err)
3487 goto err_register;
3488
3489 /* carrier off reporting is important to ethtool even BEFORE open */
3490 netif_carrier_off(netdev);
3491
3492 #ifdef CONFIG_IGB_DCA
3493 if (dca_add_requester(&pdev->dev) == 0) {
3494 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3495 dev_info(&pdev->dev, "DCA enabled\n");
3496 igb_setup_dca(adapter);
3497 }
3498
3499 #endif
3500 #ifdef CONFIG_IGB_HWMON
3501 /* Initialize the thermal sensor on i350 devices. */
3502 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3503 u16 ets_word;
3504
3505 /* Read the NVM to determine if this i350 device supports an
3506 * external thermal sensor.
3507 */
3508 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3509 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3510 adapter->ets = true;
3511 else
3512 adapter->ets = false;
3513 if (igb_sysfs_init(adapter))
3514 dev_err(&pdev->dev,
3515 "failed to allocate sysfs resources\n");
3516 } else {
3517 adapter->ets = false;
3518 }
3519 #endif
3520 /* Check if Media Autosense is enabled */
3521 adapter->ei = *ei;
3522 if (hw->dev_spec._82575.mas_capable)
3523 igb_init_mas(adapter);
3524
3525 /* do hw tstamp init after resetting */
3526 igb_ptp_init(adapter);
3527
3528 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3529 /* print bus type/speed/width info, not applicable to i354 */
3530 if (hw->mac.type != e1000_i354) {
3531 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3532 netdev->name,
3533 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3534 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3535 "unknown"),
3536 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3537 "Width x4" :
3538 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3539 "Width x2" :
3540 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3541 "Width x1" : "unknown"), netdev->dev_addr);
3542 }
3543
3544 if ((hw->mac.type == e1000_82576 &&
3545 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3546 (hw->mac.type >= e1000_i210 ||
3547 igb_get_flash_presence_i210(hw))) {
3548 ret_val = igb_read_part_string(hw, part_str,
3549 E1000_PBANUM_LENGTH);
3550 } else {
3551 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3552 }
3553
3554 if (ret_val)
3555 strcpy(part_str, "Unknown");
3556 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3557 dev_info(&pdev->dev,
3558 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3559 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3560 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3561 adapter->num_rx_queues, adapter->num_tx_queues);
3562 if (hw->phy.media_type == e1000_media_type_copper) {
3563 switch (hw->mac.type) {
3564 case e1000_i350:
3565 case e1000_i210:
3566 case e1000_i211:
3567 /* Enable EEE for internal copper PHY devices */
3568 err = igb_set_eee_i350(hw, true, true);
3569 if ((!err) &&
3570 (!hw->dev_spec._82575.eee_disable)) {
3571 adapter->eee_advert =
3572 MDIO_EEE_100TX | MDIO_EEE_1000T;
3573 adapter->flags |= IGB_FLAG_EEE;
3574 }
3575 break;
3576 case e1000_i354:
3577 if ((rd32(E1000_CTRL_EXT) &
3578 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3579 err = igb_set_eee_i354(hw, true, true);
3580 if ((!err) &&
3581 (!hw->dev_spec._82575.eee_disable)) {
3582 adapter->eee_advert =
3583 MDIO_EEE_100TX | MDIO_EEE_1000T;
3584 adapter->flags |= IGB_FLAG_EEE;
3585 }
3586 }
3587 break;
3588 default:
3589 break;
3590 }
3591 }
3592
3593 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3594
3595 pm_runtime_put_noidle(&pdev->dev);
3596 return 0;
3597
3598 err_register:
3599 igb_release_hw_control(adapter);
3600 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3601 err_eeprom:
3602 if (!igb_check_reset_block(hw))
3603 igb_reset_phy(hw);
3604
3605 if (hw->flash_address)
3606 iounmap(hw->flash_address);
3607 err_sw_init:
3608 kfree(adapter->mac_table);
3609 kfree(adapter->shadow_vfta);
3610 igb_clear_interrupt_scheme(adapter);
3611 #ifdef CONFIG_PCI_IOV
3612 igb_disable_sriov(pdev);
3613 #endif
3614 pci_iounmap(pdev, adapter->io_addr);
3615 err_ioremap:
3616 free_netdev(netdev);
3617 err_alloc_etherdev:
3618 pci_release_mem_regions(pdev);
3619 err_pci_reg:
3620 err_dma:
3621 pci_disable_device(pdev);
3622 return err;
3623 }
3624
3625 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3626 static int igb_disable_sriov(struct pci_dev *pdev)
3627 {
3628 struct net_device *netdev = pci_get_drvdata(pdev);
3629 struct igb_adapter *adapter = netdev_priv(netdev);
3630 struct e1000_hw *hw = &adapter->hw;
3631
3632 /* reclaim resources allocated to VFs */
3633 if (adapter->vf_data) {
3634 /* disable iov and allow time for transactions to clear */
3635 if (pci_vfs_assigned(pdev)) {
3636 dev_warn(&pdev->dev,
3637 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3638 return -EPERM;
3639 } else {
3640 pci_disable_sriov(pdev);
3641 msleep(500);
3642 }
3643
3644 kfree(adapter->vf_mac_list);
3645 adapter->vf_mac_list = NULL;
3646 kfree(adapter->vf_data);
3647 adapter->vf_data = NULL;
3648 adapter->vfs_allocated_count = 0;
3649 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3650 wrfl();
3651 msleep(100);
3652 dev_info(&pdev->dev, "IOV Disabled\n");
3653
3654 /* Re-enable DMA Coalescing flag since IOV is turned off */
3655 adapter->flags |= IGB_FLAG_DMAC;
3656 }
3657
3658 return 0;
3659 }
3660
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3661 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3662 {
3663 struct net_device *netdev = pci_get_drvdata(pdev);
3664 struct igb_adapter *adapter = netdev_priv(netdev);
3665 int old_vfs = pci_num_vf(pdev);
3666 struct vf_mac_filter *mac_list;
3667 int err = 0;
3668 int num_vf_mac_filters, i;
3669
3670 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3671 err = -EPERM;
3672 goto out;
3673 }
3674 if (!num_vfs)
3675 goto out;
3676
3677 if (old_vfs) {
3678 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3679 old_vfs, max_vfs);
3680 adapter->vfs_allocated_count = old_vfs;
3681 } else
3682 adapter->vfs_allocated_count = num_vfs;
3683
3684 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3685 sizeof(struct vf_data_storage), GFP_KERNEL);
3686
3687 /* if allocation failed then we do not support SR-IOV */
3688 if (!adapter->vf_data) {
3689 adapter->vfs_allocated_count = 0;
3690 err = -ENOMEM;
3691 goto out;
3692 }
3693
3694 /* Due to the limited number of RAR entries calculate potential
3695 * number of MAC filters available for the VFs. Reserve entries
3696 * for PF default MAC, PF MAC filters and at least one RAR entry
3697 * for each VF for VF MAC.
3698 */
3699 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3700 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3701 adapter->vfs_allocated_count);
3702
3703 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3704 sizeof(struct vf_mac_filter),
3705 GFP_KERNEL);
3706
3707 mac_list = adapter->vf_mac_list;
3708 INIT_LIST_HEAD(&adapter->vf_macs.l);
3709
3710 if (adapter->vf_mac_list) {
3711 /* Initialize list of VF MAC filters */
3712 for (i = 0; i < num_vf_mac_filters; i++) {
3713 mac_list->vf = -1;
3714 mac_list->free = true;
3715 list_add(&mac_list->l, &adapter->vf_macs.l);
3716 mac_list++;
3717 }
3718 } else {
3719 /* If we could not allocate memory for the VF MAC filters
3720 * we can continue without this feature but warn user.
3721 */
3722 dev_err(&pdev->dev,
3723 "Unable to allocate memory for VF MAC filter list\n");
3724 }
3725
3726 /* only call pci_enable_sriov() if no VFs are allocated already */
3727 if (!old_vfs) {
3728 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3729 if (err)
3730 goto err_out;
3731 }
3732 dev_info(&pdev->dev, "%d VFs allocated\n",
3733 adapter->vfs_allocated_count);
3734 for (i = 0; i < adapter->vfs_allocated_count; i++)
3735 igb_vf_configure(adapter, i);
3736
3737 /* DMA Coalescing is not supported in IOV mode. */
3738 adapter->flags &= ~IGB_FLAG_DMAC;
3739 goto out;
3740
3741 err_out:
3742 kfree(adapter->vf_mac_list);
3743 adapter->vf_mac_list = NULL;
3744 kfree(adapter->vf_data);
3745 adapter->vf_data = NULL;
3746 adapter->vfs_allocated_count = 0;
3747 out:
3748 return err;
3749 }
3750
3751 #endif
3752 /**
3753 * igb_remove_i2c - Cleanup I2C interface
3754 * @adapter: pointer to adapter structure
3755 **/
igb_remove_i2c(struct igb_adapter * adapter)3756 static void igb_remove_i2c(struct igb_adapter *adapter)
3757 {
3758 /* free the adapter bus structure */
3759 i2c_del_adapter(&adapter->i2c_adap);
3760 }
3761
3762 /**
3763 * igb_remove - Device Removal Routine
3764 * @pdev: PCI device information struct
3765 *
3766 * igb_remove is called by the PCI subsystem to alert the driver
3767 * that it should release a PCI device. The could be caused by a
3768 * Hot-Plug event, or because the driver is going to be removed from
3769 * memory.
3770 **/
igb_remove(struct pci_dev * pdev)3771 static void igb_remove(struct pci_dev *pdev)
3772 {
3773 struct net_device *netdev = pci_get_drvdata(pdev);
3774 struct igb_adapter *adapter = netdev_priv(netdev);
3775 struct e1000_hw *hw = &adapter->hw;
3776
3777 pm_runtime_get_noresume(&pdev->dev);
3778 #ifdef CONFIG_IGB_HWMON
3779 igb_sysfs_exit(adapter);
3780 #endif
3781 igb_remove_i2c(adapter);
3782 igb_ptp_stop(adapter);
3783 /* The watchdog timer may be rescheduled, so explicitly
3784 * disable watchdog from being rescheduled.
3785 */
3786 set_bit(__IGB_DOWN, &adapter->state);
3787 del_timer_sync(&adapter->watchdog_timer);
3788 del_timer_sync(&adapter->phy_info_timer);
3789
3790 cancel_work_sync(&adapter->reset_task);
3791 cancel_work_sync(&adapter->watchdog_task);
3792
3793 #ifdef CONFIG_IGB_DCA
3794 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3795 dev_info(&pdev->dev, "DCA disabled\n");
3796 dca_remove_requester(&pdev->dev);
3797 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3798 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3799 }
3800 #endif
3801
3802 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3803 * would have already happened in close and is redundant.
3804 */
3805 igb_release_hw_control(adapter);
3806
3807 #ifdef CONFIG_PCI_IOV
3808 igb_disable_sriov(pdev);
3809 #endif
3810
3811 unregister_netdev(netdev);
3812
3813 igb_clear_interrupt_scheme(adapter);
3814
3815 pci_iounmap(pdev, adapter->io_addr);
3816 if (hw->flash_address)
3817 iounmap(hw->flash_address);
3818 pci_release_mem_regions(pdev);
3819
3820 kfree(adapter->mac_table);
3821 kfree(adapter->shadow_vfta);
3822 free_netdev(netdev);
3823
3824 pci_disable_pcie_error_reporting(pdev);
3825
3826 pci_disable_device(pdev);
3827 }
3828
3829 /**
3830 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3831 * @adapter: board private structure to initialize
3832 *
3833 * This function initializes the vf specific data storage and then attempts to
3834 * allocate the VFs. The reason for ordering it this way is because it is much
3835 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3836 * the memory for the VFs.
3837 **/
igb_probe_vfs(struct igb_adapter * adapter)3838 static void igb_probe_vfs(struct igb_adapter *adapter)
3839 {
3840 #ifdef CONFIG_PCI_IOV
3841 struct pci_dev *pdev = adapter->pdev;
3842 struct e1000_hw *hw = &adapter->hw;
3843
3844 /* Virtualization features not supported on i210 family. */
3845 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3846 return;
3847
3848 /* Of the below we really only want the effect of getting
3849 * IGB_FLAG_HAS_MSIX set (if available), without which
3850 * igb_enable_sriov() has no effect.
3851 */
3852 igb_set_interrupt_capability(adapter, true);
3853 igb_reset_interrupt_capability(adapter);
3854
3855 pci_sriov_set_totalvfs(pdev, 7);
3856 igb_enable_sriov(pdev, max_vfs);
3857
3858 #endif /* CONFIG_PCI_IOV */
3859 }
3860
igb_get_max_rss_queues(struct igb_adapter * adapter)3861 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3862 {
3863 struct e1000_hw *hw = &adapter->hw;
3864 unsigned int max_rss_queues;
3865
3866 /* Determine the maximum number of RSS queues supported. */
3867 switch (hw->mac.type) {
3868 case e1000_i211:
3869 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3870 break;
3871 case e1000_82575:
3872 case e1000_i210:
3873 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3874 break;
3875 case e1000_i350:
3876 /* I350 cannot do RSS and SR-IOV at the same time */
3877 if (!!adapter->vfs_allocated_count) {
3878 max_rss_queues = 1;
3879 break;
3880 }
3881 fallthrough;
3882 case e1000_82576:
3883 if (!!adapter->vfs_allocated_count) {
3884 max_rss_queues = 2;
3885 break;
3886 }
3887 fallthrough;
3888 case e1000_82580:
3889 case e1000_i354:
3890 default:
3891 max_rss_queues = IGB_MAX_RX_QUEUES;
3892 break;
3893 }
3894
3895 return max_rss_queues;
3896 }
3897
igb_init_queue_configuration(struct igb_adapter * adapter)3898 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3899 {
3900 u32 max_rss_queues;
3901
3902 max_rss_queues = igb_get_max_rss_queues(adapter);
3903 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3904
3905 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3906 }
3907
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3908 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3909 const u32 max_rss_queues)
3910 {
3911 struct e1000_hw *hw = &adapter->hw;
3912
3913 /* Determine if we need to pair queues. */
3914 switch (hw->mac.type) {
3915 case e1000_82575:
3916 case e1000_i211:
3917 /* Device supports enough interrupts without queue pairing. */
3918 break;
3919 case e1000_82576:
3920 case e1000_82580:
3921 case e1000_i350:
3922 case e1000_i354:
3923 case e1000_i210:
3924 default:
3925 /* If rss_queues > half of max_rss_queues, pair the queues in
3926 * order to conserve interrupts due to limited supply.
3927 */
3928 if (adapter->rss_queues > (max_rss_queues / 2))
3929 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3930 else
3931 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3932 break;
3933 }
3934 }
3935
3936 /**
3937 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3938 * @adapter: board private structure to initialize
3939 *
3940 * igb_sw_init initializes the Adapter private data structure.
3941 * Fields are initialized based on PCI device information and
3942 * OS network device settings (MTU size).
3943 **/
igb_sw_init(struct igb_adapter * adapter)3944 static int igb_sw_init(struct igb_adapter *adapter)
3945 {
3946 struct e1000_hw *hw = &adapter->hw;
3947 struct net_device *netdev = adapter->netdev;
3948 struct pci_dev *pdev = adapter->pdev;
3949
3950 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3951
3952 /* set default ring sizes */
3953 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3954 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3955
3956 /* set default ITR values */
3957 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3958 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3959
3960 /* set default work limits */
3961 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3962
3963 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3964 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3965
3966 spin_lock_init(&adapter->nfc_lock);
3967 spin_lock_init(&adapter->stats64_lock);
3968 #ifdef CONFIG_PCI_IOV
3969 switch (hw->mac.type) {
3970 case e1000_82576:
3971 case e1000_i350:
3972 if (max_vfs > 7) {
3973 dev_warn(&pdev->dev,
3974 "Maximum of 7 VFs per PF, using max\n");
3975 max_vfs = adapter->vfs_allocated_count = 7;
3976 } else
3977 adapter->vfs_allocated_count = max_vfs;
3978 if (adapter->vfs_allocated_count)
3979 dev_warn(&pdev->dev,
3980 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3981 break;
3982 default:
3983 break;
3984 }
3985 #endif /* CONFIG_PCI_IOV */
3986
3987 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3988 adapter->flags |= IGB_FLAG_HAS_MSIX;
3989
3990 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3991 sizeof(struct igb_mac_addr),
3992 GFP_KERNEL);
3993 if (!adapter->mac_table)
3994 return -ENOMEM;
3995
3996 igb_probe_vfs(adapter);
3997
3998 igb_init_queue_configuration(adapter);
3999
4000 /* Setup and initialize a copy of the hw vlan table array */
4001 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4002 GFP_KERNEL);
4003 if (!adapter->shadow_vfta)
4004 return -ENOMEM;
4005
4006 /* This call may decrease the number of queues */
4007 if (igb_init_interrupt_scheme(adapter, true)) {
4008 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4009 return -ENOMEM;
4010 }
4011
4012 /* Explicitly disable IRQ since the NIC can be in any state. */
4013 igb_irq_disable(adapter);
4014
4015 if (hw->mac.type >= e1000_i350)
4016 adapter->flags &= ~IGB_FLAG_DMAC;
4017
4018 set_bit(__IGB_DOWN, &adapter->state);
4019 return 0;
4020 }
4021
4022 /**
4023 * igb_open - Called when a network interface is made active
4024 * @netdev: network interface device structure
4025 * @resuming: indicates whether we are in a resume call
4026 *
4027 * Returns 0 on success, negative value on failure
4028 *
4029 * The open entry point is called when a network interface is made
4030 * active by the system (IFF_UP). At this point all resources needed
4031 * for transmit and receive operations are allocated, the interrupt
4032 * handler is registered with the OS, the watchdog timer is started,
4033 * and the stack is notified that the interface is ready.
4034 **/
__igb_open(struct net_device * netdev,bool resuming)4035 static int __igb_open(struct net_device *netdev, bool resuming)
4036 {
4037 struct igb_adapter *adapter = netdev_priv(netdev);
4038 struct e1000_hw *hw = &adapter->hw;
4039 struct pci_dev *pdev = adapter->pdev;
4040 int err;
4041 int i;
4042
4043 /* disallow open during test */
4044 if (test_bit(__IGB_TESTING, &adapter->state)) {
4045 WARN_ON(resuming);
4046 return -EBUSY;
4047 }
4048
4049 if (!resuming)
4050 pm_runtime_get_sync(&pdev->dev);
4051
4052 netif_carrier_off(netdev);
4053
4054 /* allocate transmit descriptors */
4055 err = igb_setup_all_tx_resources(adapter);
4056 if (err)
4057 goto err_setup_tx;
4058
4059 /* allocate receive descriptors */
4060 err = igb_setup_all_rx_resources(adapter);
4061 if (err)
4062 goto err_setup_rx;
4063
4064 igb_power_up_link(adapter);
4065
4066 /* before we allocate an interrupt, we must be ready to handle it.
4067 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4068 * as soon as we call pci_request_irq, so we have to setup our
4069 * clean_rx handler before we do so.
4070 */
4071 igb_configure(adapter);
4072
4073 err = igb_request_irq(adapter);
4074 if (err)
4075 goto err_req_irq;
4076
4077 /* Notify the stack of the actual queue counts. */
4078 err = netif_set_real_num_tx_queues(adapter->netdev,
4079 adapter->num_tx_queues);
4080 if (err)
4081 goto err_set_queues;
4082
4083 err = netif_set_real_num_rx_queues(adapter->netdev,
4084 adapter->num_rx_queues);
4085 if (err)
4086 goto err_set_queues;
4087
4088 /* From here on the code is the same as igb_up() */
4089 clear_bit(__IGB_DOWN, &adapter->state);
4090
4091 for (i = 0; i < adapter->num_q_vectors; i++)
4092 napi_enable(&(adapter->q_vector[i]->napi));
4093
4094 /* Clear any pending interrupts. */
4095 rd32(E1000_TSICR);
4096 rd32(E1000_ICR);
4097
4098 igb_irq_enable(adapter);
4099
4100 /* notify VFs that reset has been completed */
4101 if (adapter->vfs_allocated_count) {
4102 u32 reg_data = rd32(E1000_CTRL_EXT);
4103
4104 reg_data |= E1000_CTRL_EXT_PFRSTD;
4105 wr32(E1000_CTRL_EXT, reg_data);
4106 }
4107
4108 netif_tx_start_all_queues(netdev);
4109
4110 if (!resuming)
4111 pm_runtime_put(&pdev->dev);
4112
4113 /* start the watchdog. */
4114 hw->mac.get_link_status = 1;
4115 schedule_work(&adapter->watchdog_task);
4116
4117 return 0;
4118
4119 err_set_queues:
4120 igb_free_irq(adapter);
4121 err_req_irq:
4122 igb_release_hw_control(adapter);
4123 igb_power_down_link(adapter);
4124 igb_free_all_rx_resources(adapter);
4125 err_setup_rx:
4126 igb_free_all_tx_resources(adapter);
4127 err_setup_tx:
4128 igb_reset(adapter);
4129 if (!resuming)
4130 pm_runtime_put(&pdev->dev);
4131
4132 return err;
4133 }
4134
igb_open(struct net_device * netdev)4135 int igb_open(struct net_device *netdev)
4136 {
4137 return __igb_open(netdev, false);
4138 }
4139
4140 /**
4141 * igb_close - Disables a network interface
4142 * @netdev: network interface device structure
4143 * @suspending: indicates we are in a suspend call
4144 *
4145 * Returns 0, this is not allowed to fail
4146 *
4147 * The close entry point is called when an interface is de-activated
4148 * by the OS. The hardware is still under the driver's control, but
4149 * needs to be disabled. A global MAC reset is issued to stop the
4150 * hardware, and all transmit and receive resources are freed.
4151 **/
__igb_close(struct net_device * netdev,bool suspending)4152 static int __igb_close(struct net_device *netdev, bool suspending)
4153 {
4154 struct igb_adapter *adapter = netdev_priv(netdev);
4155 struct pci_dev *pdev = adapter->pdev;
4156
4157 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4158
4159 if (!suspending)
4160 pm_runtime_get_sync(&pdev->dev);
4161
4162 igb_down(adapter);
4163 igb_free_irq(adapter);
4164
4165 igb_free_all_tx_resources(adapter);
4166 igb_free_all_rx_resources(adapter);
4167
4168 if (!suspending)
4169 pm_runtime_put_sync(&pdev->dev);
4170 return 0;
4171 }
4172
igb_close(struct net_device * netdev)4173 int igb_close(struct net_device *netdev)
4174 {
4175 if (netif_device_present(netdev) || netdev->dismantle)
4176 return __igb_close(netdev, false);
4177 return 0;
4178 }
4179
4180 /**
4181 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4182 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4183 *
4184 * Return 0 on success, negative on failure
4185 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4186 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4187 {
4188 struct device *dev = tx_ring->dev;
4189 int size;
4190
4191 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4192
4193 tx_ring->tx_buffer_info = vmalloc(size);
4194 if (!tx_ring->tx_buffer_info)
4195 goto err;
4196
4197 /* round up to nearest 4K */
4198 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4199 tx_ring->size = ALIGN(tx_ring->size, 4096);
4200
4201 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4202 &tx_ring->dma, GFP_KERNEL);
4203 if (!tx_ring->desc)
4204 goto err;
4205
4206 tx_ring->next_to_use = 0;
4207 tx_ring->next_to_clean = 0;
4208
4209 return 0;
4210
4211 err:
4212 vfree(tx_ring->tx_buffer_info);
4213 tx_ring->tx_buffer_info = NULL;
4214 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4215 return -ENOMEM;
4216 }
4217
4218 /**
4219 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4220 * (Descriptors) for all queues
4221 * @adapter: board private structure
4222 *
4223 * Return 0 on success, negative on failure
4224 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4225 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4226 {
4227 struct pci_dev *pdev = adapter->pdev;
4228 int i, err = 0;
4229
4230 for (i = 0; i < adapter->num_tx_queues; i++) {
4231 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4232 if (err) {
4233 dev_err(&pdev->dev,
4234 "Allocation for Tx Queue %u failed\n", i);
4235 for (i--; i >= 0; i--)
4236 igb_free_tx_resources(adapter->tx_ring[i]);
4237 break;
4238 }
4239 }
4240
4241 return err;
4242 }
4243
4244 /**
4245 * igb_setup_tctl - configure the transmit control registers
4246 * @adapter: Board private structure
4247 **/
igb_setup_tctl(struct igb_adapter * adapter)4248 void igb_setup_tctl(struct igb_adapter *adapter)
4249 {
4250 struct e1000_hw *hw = &adapter->hw;
4251 u32 tctl;
4252
4253 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4254 wr32(E1000_TXDCTL(0), 0);
4255
4256 /* Program the Transmit Control Register */
4257 tctl = rd32(E1000_TCTL);
4258 tctl &= ~E1000_TCTL_CT;
4259 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4260 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4261
4262 igb_config_collision_dist(hw);
4263
4264 /* Enable transmits */
4265 tctl |= E1000_TCTL_EN;
4266
4267 wr32(E1000_TCTL, tctl);
4268 }
4269
4270 /**
4271 * igb_configure_tx_ring - Configure transmit ring after Reset
4272 * @adapter: board private structure
4273 * @ring: tx ring to configure
4274 *
4275 * Configure a transmit ring after a reset.
4276 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4277 void igb_configure_tx_ring(struct igb_adapter *adapter,
4278 struct igb_ring *ring)
4279 {
4280 struct e1000_hw *hw = &adapter->hw;
4281 u32 txdctl = 0;
4282 u64 tdba = ring->dma;
4283 int reg_idx = ring->reg_idx;
4284
4285 wr32(E1000_TDLEN(reg_idx),
4286 ring->count * sizeof(union e1000_adv_tx_desc));
4287 wr32(E1000_TDBAL(reg_idx),
4288 tdba & 0x00000000ffffffffULL);
4289 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4290
4291 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4292 wr32(E1000_TDH(reg_idx), 0);
4293 writel(0, ring->tail);
4294
4295 txdctl |= IGB_TX_PTHRESH;
4296 txdctl |= IGB_TX_HTHRESH << 8;
4297 txdctl |= IGB_TX_WTHRESH << 16;
4298
4299 /* reinitialize tx_buffer_info */
4300 memset(ring->tx_buffer_info, 0,
4301 sizeof(struct igb_tx_buffer) * ring->count);
4302
4303 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4304 wr32(E1000_TXDCTL(reg_idx), txdctl);
4305 }
4306
4307 /**
4308 * igb_configure_tx - Configure transmit Unit after Reset
4309 * @adapter: board private structure
4310 *
4311 * Configure the Tx unit of the MAC after a reset.
4312 **/
igb_configure_tx(struct igb_adapter * adapter)4313 static void igb_configure_tx(struct igb_adapter *adapter)
4314 {
4315 struct e1000_hw *hw = &adapter->hw;
4316 int i;
4317
4318 /* disable the queues */
4319 for (i = 0; i < adapter->num_tx_queues; i++)
4320 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4321
4322 wrfl();
4323 usleep_range(10000, 20000);
4324
4325 for (i = 0; i < adapter->num_tx_queues; i++)
4326 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4327 }
4328
4329 /**
4330 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4331 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4332 *
4333 * Returns 0 on success, negative on failure
4334 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4335 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4336 {
4337 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4338 struct device *dev = rx_ring->dev;
4339 int size;
4340
4341 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4342
4343 rx_ring->rx_buffer_info = vmalloc(size);
4344 if (!rx_ring->rx_buffer_info)
4345 goto err;
4346
4347 /* Round up to nearest 4K */
4348 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4349 rx_ring->size = ALIGN(rx_ring->size, 4096);
4350
4351 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4352 &rx_ring->dma, GFP_KERNEL);
4353 if (!rx_ring->desc)
4354 goto err;
4355
4356 rx_ring->next_to_alloc = 0;
4357 rx_ring->next_to_clean = 0;
4358 rx_ring->next_to_use = 0;
4359
4360 rx_ring->xdp_prog = adapter->xdp_prog;
4361
4362 /* XDP RX-queue info */
4363 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4364 rx_ring->queue_index) < 0)
4365 goto err;
4366
4367 return 0;
4368
4369 err:
4370 vfree(rx_ring->rx_buffer_info);
4371 rx_ring->rx_buffer_info = NULL;
4372 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4373 return -ENOMEM;
4374 }
4375
4376 /**
4377 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4378 * (Descriptors) for all queues
4379 * @adapter: board private structure
4380 *
4381 * Return 0 on success, negative on failure
4382 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4383 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4384 {
4385 struct pci_dev *pdev = adapter->pdev;
4386 int i, err = 0;
4387
4388 for (i = 0; i < adapter->num_rx_queues; i++) {
4389 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4390 if (err) {
4391 dev_err(&pdev->dev,
4392 "Allocation for Rx Queue %u failed\n", i);
4393 for (i--; i >= 0; i--)
4394 igb_free_rx_resources(adapter->rx_ring[i]);
4395 break;
4396 }
4397 }
4398
4399 return err;
4400 }
4401
4402 /**
4403 * igb_setup_mrqc - configure the multiple receive queue control registers
4404 * @adapter: Board private structure
4405 **/
igb_setup_mrqc(struct igb_adapter * adapter)4406 static void igb_setup_mrqc(struct igb_adapter *adapter)
4407 {
4408 struct e1000_hw *hw = &adapter->hw;
4409 u32 mrqc, rxcsum;
4410 u32 j, num_rx_queues;
4411 u32 rss_key[10];
4412
4413 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4414 for (j = 0; j < 10; j++)
4415 wr32(E1000_RSSRK(j), rss_key[j]);
4416
4417 num_rx_queues = adapter->rss_queues;
4418
4419 switch (hw->mac.type) {
4420 case e1000_82576:
4421 /* 82576 supports 2 RSS queues for SR-IOV */
4422 if (adapter->vfs_allocated_count)
4423 num_rx_queues = 2;
4424 break;
4425 default:
4426 break;
4427 }
4428
4429 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4430 for (j = 0; j < IGB_RETA_SIZE; j++)
4431 adapter->rss_indir_tbl[j] =
4432 (j * num_rx_queues) / IGB_RETA_SIZE;
4433 adapter->rss_indir_tbl_init = num_rx_queues;
4434 }
4435 igb_write_rss_indir_tbl(adapter);
4436
4437 /* Disable raw packet checksumming so that RSS hash is placed in
4438 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4439 * offloads as they are enabled by default
4440 */
4441 rxcsum = rd32(E1000_RXCSUM);
4442 rxcsum |= E1000_RXCSUM_PCSD;
4443
4444 if (adapter->hw.mac.type >= e1000_82576)
4445 /* Enable Receive Checksum Offload for SCTP */
4446 rxcsum |= E1000_RXCSUM_CRCOFL;
4447
4448 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4449 wr32(E1000_RXCSUM, rxcsum);
4450
4451 /* Generate RSS hash based on packet types, TCP/UDP
4452 * port numbers and/or IPv4/v6 src and dst addresses
4453 */
4454 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4455 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4456 E1000_MRQC_RSS_FIELD_IPV6 |
4457 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4458 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4459
4460 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4461 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4462 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4463 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4464
4465 /* If VMDq is enabled then we set the appropriate mode for that, else
4466 * we default to RSS so that an RSS hash is calculated per packet even
4467 * if we are only using one queue
4468 */
4469 if (adapter->vfs_allocated_count) {
4470 if (hw->mac.type > e1000_82575) {
4471 /* Set the default pool for the PF's first queue */
4472 u32 vtctl = rd32(E1000_VT_CTL);
4473
4474 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4475 E1000_VT_CTL_DISABLE_DEF_POOL);
4476 vtctl |= adapter->vfs_allocated_count <<
4477 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4478 wr32(E1000_VT_CTL, vtctl);
4479 }
4480 if (adapter->rss_queues > 1)
4481 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4482 else
4483 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4484 } else {
4485 if (hw->mac.type != e1000_i211)
4486 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4487 }
4488 igb_vmm_control(adapter);
4489
4490 wr32(E1000_MRQC, mrqc);
4491 }
4492
4493 /**
4494 * igb_setup_rctl - configure the receive control registers
4495 * @adapter: Board private structure
4496 **/
igb_setup_rctl(struct igb_adapter * adapter)4497 void igb_setup_rctl(struct igb_adapter *adapter)
4498 {
4499 struct e1000_hw *hw = &adapter->hw;
4500 u32 rctl;
4501
4502 rctl = rd32(E1000_RCTL);
4503
4504 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4505 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4506
4507 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4508 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4509
4510 /* enable stripping of CRC. It's unlikely this will break BMC
4511 * redirection as it did with e1000. Newer features require
4512 * that the HW strips the CRC.
4513 */
4514 rctl |= E1000_RCTL_SECRC;
4515
4516 /* disable store bad packets and clear size bits. */
4517 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4518
4519 /* enable LPE to allow for reception of jumbo frames */
4520 rctl |= E1000_RCTL_LPE;
4521
4522 /* disable queue 0 to prevent tail write w/o re-config */
4523 wr32(E1000_RXDCTL(0), 0);
4524
4525 /* Attention!!! For SR-IOV PF driver operations you must enable
4526 * queue drop for all VF and PF queues to prevent head of line blocking
4527 * if an un-trusted VF does not provide descriptors to hardware.
4528 */
4529 if (adapter->vfs_allocated_count) {
4530 /* set all queue drop enable bits */
4531 wr32(E1000_QDE, ALL_QUEUES);
4532 }
4533
4534 /* This is useful for sniffing bad packets. */
4535 if (adapter->netdev->features & NETIF_F_RXALL) {
4536 /* UPE and MPE will be handled by normal PROMISC logic
4537 * in e1000e_set_rx_mode
4538 */
4539 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4540 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4541 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4542
4543 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4544 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4545 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4546 * and that breaks VLANs.
4547 */
4548 }
4549
4550 wr32(E1000_RCTL, rctl);
4551 }
4552
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4553 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4554 int vfn)
4555 {
4556 struct e1000_hw *hw = &adapter->hw;
4557 u32 vmolr;
4558
4559 if (size > MAX_JUMBO_FRAME_SIZE)
4560 size = MAX_JUMBO_FRAME_SIZE;
4561
4562 vmolr = rd32(E1000_VMOLR(vfn));
4563 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4564 vmolr |= size | E1000_VMOLR_LPE;
4565 wr32(E1000_VMOLR(vfn), vmolr);
4566
4567 return 0;
4568 }
4569
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4570 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4571 int vfn, bool enable)
4572 {
4573 struct e1000_hw *hw = &adapter->hw;
4574 u32 val, reg;
4575
4576 if (hw->mac.type < e1000_82576)
4577 return;
4578
4579 if (hw->mac.type == e1000_i350)
4580 reg = E1000_DVMOLR(vfn);
4581 else
4582 reg = E1000_VMOLR(vfn);
4583
4584 val = rd32(reg);
4585 if (enable)
4586 val |= E1000_VMOLR_STRVLAN;
4587 else
4588 val &= ~(E1000_VMOLR_STRVLAN);
4589 wr32(reg, val);
4590 }
4591
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4592 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4593 int vfn, bool aupe)
4594 {
4595 struct e1000_hw *hw = &adapter->hw;
4596 u32 vmolr;
4597
4598 /* This register exists only on 82576 and newer so if we are older then
4599 * we should exit and do nothing
4600 */
4601 if (hw->mac.type < e1000_82576)
4602 return;
4603
4604 vmolr = rd32(E1000_VMOLR(vfn));
4605 if (aupe)
4606 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4607 else
4608 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4609
4610 /* clear all bits that might not be set */
4611 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4612
4613 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4614 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4615 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4616 * multicast packets
4617 */
4618 if (vfn <= adapter->vfs_allocated_count)
4619 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4620
4621 wr32(E1000_VMOLR(vfn), vmolr);
4622 }
4623
4624 /**
4625 * igb_setup_srrctl - configure the split and replication receive control
4626 * registers
4627 * @adapter: Board private structure
4628 * @ring: receive ring to be configured
4629 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4630 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4631 {
4632 struct e1000_hw *hw = &adapter->hw;
4633 int reg_idx = ring->reg_idx;
4634 u32 srrctl = 0;
4635
4636 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4637 if (ring_uses_large_buffer(ring))
4638 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4639 else
4640 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4641 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4642 if (hw->mac.type >= e1000_82580)
4643 srrctl |= E1000_SRRCTL_TIMESTAMP;
4644 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4645 * queues and rx flow control is disabled
4646 */
4647 if (adapter->vfs_allocated_count ||
4648 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4649 adapter->num_rx_queues > 1))
4650 srrctl |= E1000_SRRCTL_DROP_EN;
4651
4652 wr32(E1000_SRRCTL(reg_idx), srrctl);
4653 }
4654
4655 /**
4656 * igb_configure_rx_ring - Configure a receive ring after Reset
4657 * @adapter: board private structure
4658 * @ring: receive ring to be configured
4659 *
4660 * Configure the Rx unit of the MAC after a reset.
4661 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4662 void igb_configure_rx_ring(struct igb_adapter *adapter,
4663 struct igb_ring *ring)
4664 {
4665 struct e1000_hw *hw = &adapter->hw;
4666 union e1000_adv_rx_desc *rx_desc;
4667 u64 rdba = ring->dma;
4668 int reg_idx = ring->reg_idx;
4669 u32 rxdctl = 0;
4670
4671 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4672 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4673 MEM_TYPE_PAGE_SHARED, NULL));
4674
4675 /* disable the queue */
4676 wr32(E1000_RXDCTL(reg_idx), 0);
4677
4678 /* Set DMA base address registers */
4679 wr32(E1000_RDBAL(reg_idx),
4680 rdba & 0x00000000ffffffffULL);
4681 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4682 wr32(E1000_RDLEN(reg_idx),
4683 ring->count * sizeof(union e1000_adv_rx_desc));
4684
4685 /* initialize head and tail */
4686 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4687 wr32(E1000_RDH(reg_idx), 0);
4688 writel(0, ring->tail);
4689
4690 /* set descriptor configuration */
4691 igb_setup_srrctl(adapter, ring);
4692
4693 /* set filtering for VMDQ pools */
4694 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4695
4696 rxdctl |= IGB_RX_PTHRESH;
4697 rxdctl |= IGB_RX_HTHRESH << 8;
4698 rxdctl |= IGB_RX_WTHRESH << 16;
4699
4700 /* initialize rx_buffer_info */
4701 memset(ring->rx_buffer_info, 0,
4702 sizeof(struct igb_rx_buffer) * ring->count);
4703
4704 /* initialize Rx descriptor 0 */
4705 rx_desc = IGB_RX_DESC(ring, 0);
4706 rx_desc->wb.upper.length = 0;
4707
4708 /* enable receive descriptor fetching */
4709 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4710 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4711 }
4712
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4713 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4714 struct igb_ring *rx_ring)
4715 {
4716 /* set build_skb and buffer size flags */
4717 clear_ring_build_skb_enabled(rx_ring);
4718 clear_ring_uses_large_buffer(rx_ring);
4719
4720 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4721 return;
4722
4723 set_ring_build_skb_enabled(rx_ring);
4724
4725 #if (PAGE_SIZE < 8192)
4726 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4727 return;
4728
4729 set_ring_uses_large_buffer(rx_ring);
4730 #endif
4731 }
4732
4733 /**
4734 * igb_configure_rx - Configure receive Unit after Reset
4735 * @adapter: board private structure
4736 *
4737 * Configure the Rx unit of the MAC after a reset.
4738 **/
igb_configure_rx(struct igb_adapter * adapter)4739 static void igb_configure_rx(struct igb_adapter *adapter)
4740 {
4741 int i;
4742
4743 /* set the correct pool for the PF default MAC address in entry 0 */
4744 igb_set_default_mac_filter(adapter);
4745
4746 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4747 * the Base and Length of the Rx Descriptor Ring
4748 */
4749 for (i = 0; i < adapter->num_rx_queues; i++) {
4750 struct igb_ring *rx_ring = adapter->rx_ring[i];
4751
4752 igb_set_rx_buffer_len(adapter, rx_ring);
4753 igb_configure_rx_ring(adapter, rx_ring);
4754 }
4755 }
4756
4757 /**
4758 * igb_free_tx_resources - Free Tx Resources per Queue
4759 * @tx_ring: Tx descriptor ring for a specific queue
4760 *
4761 * Free all transmit software resources
4762 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4763 void igb_free_tx_resources(struct igb_ring *tx_ring)
4764 {
4765 igb_clean_tx_ring(tx_ring);
4766
4767 vfree(tx_ring->tx_buffer_info);
4768 tx_ring->tx_buffer_info = NULL;
4769
4770 /* if not set, then don't free */
4771 if (!tx_ring->desc)
4772 return;
4773
4774 dma_free_coherent(tx_ring->dev, tx_ring->size,
4775 tx_ring->desc, tx_ring->dma);
4776
4777 tx_ring->desc = NULL;
4778 }
4779
4780 /**
4781 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4782 * @adapter: board private structure
4783 *
4784 * Free all transmit software resources
4785 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4786 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4787 {
4788 int i;
4789
4790 for (i = 0; i < adapter->num_tx_queues; i++)
4791 if (adapter->tx_ring[i])
4792 igb_free_tx_resources(adapter->tx_ring[i]);
4793 }
4794
4795 /**
4796 * igb_clean_tx_ring - Free Tx Buffers
4797 * @tx_ring: ring to be cleaned
4798 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4799 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4800 {
4801 u16 i = tx_ring->next_to_clean;
4802 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4803
4804 while (i != tx_ring->next_to_use) {
4805 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4806
4807 /* Free all the Tx ring sk_buffs */
4808 dev_kfree_skb_any(tx_buffer->skb);
4809
4810 /* unmap skb header data */
4811 dma_unmap_single(tx_ring->dev,
4812 dma_unmap_addr(tx_buffer, dma),
4813 dma_unmap_len(tx_buffer, len),
4814 DMA_TO_DEVICE);
4815
4816 /* check for eop_desc to determine the end of the packet */
4817 eop_desc = tx_buffer->next_to_watch;
4818 tx_desc = IGB_TX_DESC(tx_ring, i);
4819
4820 /* unmap remaining buffers */
4821 while (tx_desc != eop_desc) {
4822 tx_buffer++;
4823 tx_desc++;
4824 i++;
4825 if (unlikely(i == tx_ring->count)) {
4826 i = 0;
4827 tx_buffer = tx_ring->tx_buffer_info;
4828 tx_desc = IGB_TX_DESC(tx_ring, 0);
4829 }
4830
4831 /* unmap any remaining paged data */
4832 if (dma_unmap_len(tx_buffer, len))
4833 dma_unmap_page(tx_ring->dev,
4834 dma_unmap_addr(tx_buffer, dma),
4835 dma_unmap_len(tx_buffer, len),
4836 DMA_TO_DEVICE);
4837 }
4838
4839 /* move us one more past the eop_desc for start of next pkt */
4840 tx_buffer++;
4841 i++;
4842 if (unlikely(i == tx_ring->count)) {
4843 i = 0;
4844 tx_buffer = tx_ring->tx_buffer_info;
4845 }
4846 }
4847
4848 /* reset BQL for queue */
4849 netdev_tx_reset_queue(txring_txq(tx_ring));
4850
4851 /* reset next_to_use and next_to_clean */
4852 tx_ring->next_to_use = 0;
4853 tx_ring->next_to_clean = 0;
4854 }
4855
4856 /**
4857 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4858 * @adapter: board private structure
4859 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4860 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4861 {
4862 int i;
4863
4864 for (i = 0; i < adapter->num_tx_queues; i++)
4865 if (adapter->tx_ring[i])
4866 igb_clean_tx_ring(adapter->tx_ring[i]);
4867 }
4868
4869 /**
4870 * igb_free_rx_resources - Free Rx Resources
4871 * @rx_ring: ring to clean the resources from
4872 *
4873 * Free all receive software resources
4874 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4875 void igb_free_rx_resources(struct igb_ring *rx_ring)
4876 {
4877 igb_clean_rx_ring(rx_ring);
4878
4879 rx_ring->xdp_prog = NULL;
4880 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4881 vfree(rx_ring->rx_buffer_info);
4882 rx_ring->rx_buffer_info = NULL;
4883
4884 /* if not set, then don't free */
4885 if (!rx_ring->desc)
4886 return;
4887
4888 dma_free_coherent(rx_ring->dev, rx_ring->size,
4889 rx_ring->desc, rx_ring->dma);
4890
4891 rx_ring->desc = NULL;
4892 }
4893
4894 /**
4895 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4896 * @adapter: board private structure
4897 *
4898 * Free all receive software resources
4899 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4900 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4901 {
4902 int i;
4903
4904 for (i = 0; i < adapter->num_rx_queues; i++)
4905 if (adapter->rx_ring[i])
4906 igb_free_rx_resources(adapter->rx_ring[i]);
4907 }
4908
4909 /**
4910 * igb_clean_rx_ring - Free Rx Buffers per Queue
4911 * @rx_ring: ring to free buffers from
4912 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4913 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4914 {
4915 u16 i = rx_ring->next_to_clean;
4916
4917 dev_kfree_skb(rx_ring->skb);
4918 rx_ring->skb = NULL;
4919
4920 /* Free all the Rx ring sk_buffs */
4921 while (i != rx_ring->next_to_alloc) {
4922 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4923
4924 /* Invalidate cache lines that may have been written to by
4925 * device so that we avoid corrupting memory.
4926 */
4927 dma_sync_single_range_for_cpu(rx_ring->dev,
4928 buffer_info->dma,
4929 buffer_info->page_offset,
4930 igb_rx_bufsz(rx_ring),
4931 DMA_FROM_DEVICE);
4932
4933 /* free resources associated with mapping */
4934 dma_unmap_page_attrs(rx_ring->dev,
4935 buffer_info->dma,
4936 igb_rx_pg_size(rx_ring),
4937 DMA_FROM_DEVICE,
4938 IGB_RX_DMA_ATTR);
4939 __page_frag_cache_drain(buffer_info->page,
4940 buffer_info->pagecnt_bias);
4941
4942 i++;
4943 if (i == rx_ring->count)
4944 i = 0;
4945 }
4946
4947 rx_ring->next_to_alloc = 0;
4948 rx_ring->next_to_clean = 0;
4949 rx_ring->next_to_use = 0;
4950 }
4951
4952 /**
4953 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4954 * @adapter: board private structure
4955 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4956 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4957 {
4958 int i;
4959
4960 for (i = 0; i < adapter->num_rx_queues; i++)
4961 if (adapter->rx_ring[i])
4962 igb_clean_rx_ring(adapter->rx_ring[i]);
4963 }
4964
4965 /**
4966 * igb_set_mac - Change the Ethernet Address of the NIC
4967 * @netdev: network interface device structure
4968 * @p: pointer to an address structure
4969 *
4970 * Returns 0 on success, negative on failure
4971 **/
igb_set_mac(struct net_device * netdev,void * p)4972 static int igb_set_mac(struct net_device *netdev, void *p)
4973 {
4974 struct igb_adapter *adapter = netdev_priv(netdev);
4975 struct e1000_hw *hw = &adapter->hw;
4976 struct sockaddr *addr = p;
4977
4978 if (!is_valid_ether_addr(addr->sa_data))
4979 return -EADDRNOTAVAIL;
4980
4981 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4982 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4983
4984 /* set the correct pool for the new PF MAC address in entry 0 */
4985 igb_set_default_mac_filter(adapter);
4986
4987 return 0;
4988 }
4989
4990 /**
4991 * igb_write_mc_addr_list - write multicast addresses to MTA
4992 * @netdev: network interface device structure
4993 *
4994 * Writes multicast address list to the MTA hash table.
4995 * Returns: -ENOMEM on failure
4996 * 0 on no addresses written
4997 * X on writing X addresses to MTA
4998 **/
igb_write_mc_addr_list(struct net_device * netdev)4999 static int igb_write_mc_addr_list(struct net_device *netdev)
5000 {
5001 struct igb_adapter *adapter = netdev_priv(netdev);
5002 struct e1000_hw *hw = &adapter->hw;
5003 struct netdev_hw_addr *ha;
5004 u8 *mta_list;
5005 int i;
5006
5007 if (netdev_mc_empty(netdev)) {
5008 /* nothing to program, so clear mc list */
5009 igb_update_mc_addr_list(hw, NULL, 0);
5010 igb_restore_vf_multicasts(adapter);
5011 return 0;
5012 }
5013
5014 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5015 if (!mta_list)
5016 return -ENOMEM;
5017
5018 /* The shared function expects a packed array of only addresses. */
5019 i = 0;
5020 netdev_for_each_mc_addr(ha, netdev)
5021 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5022
5023 igb_update_mc_addr_list(hw, mta_list, i);
5024 kfree(mta_list);
5025
5026 return netdev_mc_count(netdev);
5027 }
5028
igb_vlan_promisc_enable(struct igb_adapter * adapter)5029 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5030 {
5031 struct e1000_hw *hw = &adapter->hw;
5032 u32 i, pf_id;
5033
5034 switch (hw->mac.type) {
5035 case e1000_i210:
5036 case e1000_i211:
5037 case e1000_i350:
5038 /* VLAN filtering needed for VLAN prio filter */
5039 if (adapter->netdev->features & NETIF_F_NTUPLE)
5040 break;
5041 fallthrough;
5042 case e1000_82576:
5043 case e1000_82580:
5044 case e1000_i354:
5045 /* VLAN filtering needed for pool filtering */
5046 if (adapter->vfs_allocated_count)
5047 break;
5048 fallthrough;
5049 default:
5050 return 1;
5051 }
5052
5053 /* We are already in VLAN promisc, nothing to do */
5054 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5055 return 0;
5056
5057 if (!adapter->vfs_allocated_count)
5058 goto set_vfta;
5059
5060 /* Add PF to all active pools */
5061 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5062
5063 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5064 u32 vlvf = rd32(E1000_VLVF(i));
5065
5066 vlvf |= BIT(pf_id);
5067 wr32(E1000_VLVF(i), vlvf);
5068 }
5069
5070 set_vfta:
5071 /* Set all bits in the VLAN filter table array */
5072 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5073 hw->mac.ops.write_vfta(hw, i, ~0U);
5074
5075 /* Set flag so we don't redo unnecessary work */
5076 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5077
5078 return 0;
5079 }
5080
5081 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5082 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5083 {
5084 struct e1000_hw *hw = &adapter->hw;
5085 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5086 u32 vid_start = vfta_offset * 32;
5087 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5088 u32 i, vid, word, bits, pf_id;
5089
5090 /* guarantee that we don't scrub out management VLAN */
5091 vid = adapter->mng_vlan_id;
5092 if (vid >= vid_start && vid < vid_end)
5093 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5094
5095 if (!adapter->vfs_allocated_count)
5096 goto set_vfta;
5097
5098 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5099
5100 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5101 u32 vlvf = rd32(E1000_VLVF(i));
5102
5103 /* pull VLAN ID from VLVF */
5104 vid = vlvf & VLAN_VID_MASK;
5105
5106 /* only concern ourselves with a certain range */
5107 if (vid < vid_start || vid >= vid_end)
5108 continue;
5109
5110 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5111 /* record VLAN ID in VFTA */
5112 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5113
5114 /* if PF is part of this then continue */
5115 if (test_bit(vid, adapter->active_vlans))
5116 continue;
5117 }
5118
5119 /* remove PF from the pool */
5120 bits = ~BIT(pf_id);
5121 bits &= rd32(E1000_VLVF(i));
5122 wr32(E1000_VLVF(i), bits);
5123 }
5124
5125 set_vfta:
5126 /* extract values from active_vlans and write back to VFTA */
5127 for (i = VFTA_BLOCK_SIZE; i--;) {
5128 vid = (vfta_offset + i) * 32;
5129 word = vid / BITS_PER_LONG;
5130 bits = vid % BITS_PER_LONG;
5131
5132 vfta[i] |= adapter->active_vlans[word] >> bits;
5133
5134 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5135 }
5136 }
5137
igb_vlan_promisc_disable(struct igb_adapter * adapter)5138 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5139 {
5140 u32 i;
5141
5142 /* We are not in VLAN promisc, nothing to do */
5143 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5144 return;
5145
5146 /* Set flag so we don't redo unnecessary work */
5147 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5148
5149 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5150 igb_scrub_vfta(adapter, i);
5151 }
5152
5153 /**
5154 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5155 * @netdev: network interface device structure
5156 *
5157 * The set_rx_mode entry point is called whenever the unicast or multicast
5158 * address lists or the network interface flags are updated. This routine is
5159 * responsible for configuring the hardware for proper unicast, multicast,
5160 * promiscuous mode, and all-multi behavior.
5161 **/
igb_set_rx_mode(struct net_device * netdev)5162 static void igb_set_rx_mode(struct net_device *netdev)
5163 {
5164 struct igb_adapter *adapter = netdev_priv(netdev);
5165 struct e1000_hw *hw = &adapter->hw;
5166 unsigned int vfn = adapter->vfs_allocated_count;
5167 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5168 int count;
5169
5170 /* Check for Promiscuous and All Multicast modes */
5171 if (netdev->flags & IFF_PROMISC) {
5172 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5173 vmolr |= E1000_VMOLR_MPME;
5174
5175 /* enable use of UTA filter to force packets to default pool */
5176 if (hw->mac.type == e1000_82576)
5177 vmolr |= E1000_VMOLR_ROPE;
5178 } else {
5179 if (netdev->flags & IFF_ALLMULTI) {
5180 rctl |= E1000_RCTL_MPE;
5181 vmolr |= E1000_VMOLR_MPME;
5182 } else {
5183 /* Write addresses to the MTA, if the attempt fails
5184 * then we should just turn on promiscuous mode so
5185 * that we can at least receive multicast traffic
5186 */
5187 count = igb_write_mc_addr_list(netdev);
5188 if (count < 0) {
5189 rctl |= E1000_RCTL_MPE;
5190 vmolr |= E1000_VMOLR_MPME;
5191 } else if (count) {
5192 vmolr |= E1000_VMOLR_ROMPE;
5193 }
5194 }
5195 }
5196
5197 /* Write addresses to available RAR registers, if there is not
5198 * sufficient space to store all the addresses then enable
5199 * unicast promiscuous mode
5200 */
5201 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5202 rctl |= E1000_RCTL_UPE;
5203 vmolr |= E1000_VMOLR_ROPE;
5204 }
5205
5206 /* enable VLAN filtering by default */
5207 rctl |= E1000_RCTL_VFE;
5208
5209 /* disable VLAN filtering for modes that require it */
5210 if ((netdev->flags & IFF_PROMISC) ||
5211 (netdev->features & NETIF_F_RXALL)) {
5212 /* if we fail to set all rules then just clear VFE */
5213 if (igb_vlan_promisc_enable(adapter))
5214 rctl &= ~E1000_RCTL_VFE;
5215 } else {
5216 igb_vlan_promisc_disable(adapter);
5217 }
5218
5219 /* update state of unicast, multicast, and VLAN filtering modes */
5220 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5221 E1000_RCTL_VFE);
5222 wr32(E1000_RCTL, rctl);
5223
5224 #if (PAGE_SIZE < 8192)
5225 if (!adapter->vfs_allocated_count) {
5226 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5227 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5228 }
5229 #endif
5230 wr32(E1000_RLPML, rlpml);
5231
5232 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5233 * the VMOLR to enable the appropriate modes. Without this workaround
5234 * we will have issues with VLAN tag stripping not being done for frames
5235 * that are only arriving because we are the default pool
5236 */
5237 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5238 return;
5239
5240 /* set UTA to appropriate mode */
5241 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5242
5243 vmolr |= rd32(E1000_VMOLR(vfn)) &
5244 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5245
5246 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5247 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5248 #if (PAGE_SIZE < 8192)
5249 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5250 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5251 else
5252 #endif
5253 vmolr |= MAX_JUMBO_FRAME_SIZE;
5254 vmolr |= E1000_VMOLR_LPE;
5255
5256 wr32(E1000_VMOLR(vfn), vmolr);
5257
5258 igb_restore_vf_multicasts(adapter);
5259 }
5260
igb_check_wvbr(struct igb_adapter * adapter)5261 static void igb_check_wvbr(struct igb_adapter *adapter)
5262 {
5263 struct e1000_hw *hw = &adapter->hw;
5264 u32 wvbr = 0;
5265
5266 switch (hw->mac.type) {
5267 case e1000_82576:
5268 case e1000_i350:
5269 wvbr = rd32(E1000_WVBR);
5270 if (!wvbr)
5271 return;
5272 break;
5273 default:
5274 break;
5275 }
5276
5277 adapter->wvbr |= wvbr;
5278 }
5279
5280 #define IGB_STAGGERED_QUEUE_OFFSET 8
5281
igb_spoof_check(struct igb_adapter * adapter)5282 static void igb_spoof_check(struct igb_adapter *adapter)
5283 {
5284 int j;
5285
5286 if (!adapter->wvbr)
5287 return;
5288
5289 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5290 if (adapter->wvbr & BIT(j) ||
5291 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5292 dev_warn(&adapter->pdev->dev,
5293 "Spoof event(s) detected on VF %d\n", j);
5294 adapter->wvbr &=
5295 ~(BIT(j) |
5296 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5297 }
5298 }
5299 }
5300
5301 /* Need to wait a few seconds after link up to get diagnostic information from
5302 * the phy
5303 */
igb_update_phy_info(struct timer_list * t)5304 static void igb_update_phy_info(struct timer_list *t)
5305 {
5306 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5307 igb_get_phy_info(&adapter->hw);
5308 }
5309
5310 /**
5311 * igb_has_link - check shared code for link and determine up/down
5312 * @adapter: pointer to driver private info
5313 **/
igb_has_link(struct igb_adapter * adapter)5314 bool igb_has_link(struct igb_adapter *adapter)
5315 {
5316 struct e1000_hw *hw = &adapter->hw;
5317 bool link_active = false;
5318
5319 /* get_link_status is set on LSC (link status) interrupt or
5320 * rx sequence error interrupt. get_link_status will stay
5321 * false until the e1000_check_for_link establishes link
5322 * for copper adapters ONLY
5323 */
5324 switch (hw->phy.media_type) {
5325 case e1000_media_type_copper:
5326 if (!hw->mac.get_link_status)
5327 return true;
5328 fallthrough;
5329 case e1000_media_type_internal_serdes:
5330 hw->mac.ops.check_for_link(hw);
5331 link_active = !hw->mac.get_link_status;
5332 break;
5333 default:
5334 case e1000_media_type_unknown:
5335 break;
5336 }
5337
5338 if (((hw->mac.type == e1000_i210) ||
5339 (hw->mac.type == e1000_i211)) &&
5340 (hw->phy.id == I210_I_PHY_ID)) {
5341 if (!netif_carrier_ok(adapter->netdev)) {
5342 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5343 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5344 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5345 adapter->link_check_timeout = jiffies;
5346 }
5347 }
5348
5349 return link_active;
5350 }
5351
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5352 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5353 {
5354 bool ret = false;
5355 u32 ctrl_ext, thstat;
5356
5357 /* check for thermal sensor event on i350 copper only */
5358 if (hw->mac.type == e1000_i350) {
5359 thstat = rd32(E1000_THSTAT);
5360 ctrl_ext = rd32(E1000_CTRL_EXT);
5361
5362 if ((hw->phy.media_type == e1000_media_type_copper) &&
5363 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5364 ret = !!(thstat & event);
5365 }
5366
5367 return ret;
5368 }
5369
5370 /**
5371 * igb_check_lvmmc - check for malformed packets received
5372 * and indicated in LVMMC register
5373 * @adapter: pointer to adapter
5374 **/
igb_check_lvmmc(struct igb_adapter * adapter)5375 static void igb_check_lvmmc(struct igb_adapter *adapter)
5376 {
5377 struct e1000_hw *hw = &adapter->hw;
5378 u32 lvmmc;
5379
5380 lvmmc = rd32(E1000_LVMMC);
5381 if (lvmmc) {
5382 if (unlikely(net_ratelimit())) {
5383 netdev_warn(adapter->netdev,
5384 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5385 lvmmc);
5386 }
5387 }
5388 }
5389
5390 /**
5391 * igb_watchdog - Timer Call-back
5392 * @t: pointer to timer_list containing our private info pointer
5393 **/
igb_watchdog(struct timer_list * t)5394 static void igb_watchdog(struct timer_list *t)
5395 {
5396 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5397 /* Do the rest outside of interrupt context */
5398 schedule_work(&adapter->watchdog_task);
5399 }
5400
igb_watchdog_task(struct work_struct * work)5401 static void igb_watchdog_task(struct work_struct *work)
5402 {
5403 struct igb_adapter *adapter = container_of(work,
5404 struct igb_adapter,
5405 watchdog_task);
5406 struct e1000_hw *hw = &adapter->hw;
5407 struct e1000_phy_info *phy = &hw->phy;
5408 struct net_device *netdev = adapter->netdev;
5409 u32 link;
5410 int i;
5411 u32 connsw;
5412 u16 phy_data, retry_count = 20;
5413
5414 link = igb_has_link(adapter);
5415
5416 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5417 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5418 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5419 else
5420 link = false;
5421 }
5422
5423 /* Force link down if we have fiber to swap to */
5424 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5425 if (hw->phy.media_type == e1000_media_type_copper) {
5426 connsw = rd32(E1000_CONNSW);
5427 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5428 link = 0;
5429 }
5430 }
5431 if (link) {
5432 /* Perform a reset if the media type changed. */
5433 if (hw->dev_spec._82575.media_changed) {
5434 hw->dev_spec._82575.media_changed = false;
5435 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5436 igb_reset(adapter);
5437 }
5438 /* Cancel scheduled suspend requests. */
5439 pm_runtime_resume(netdev->dev.parent);
5440
5441 if (!netif_carrier_ok(netdev)) {
5442 u32 ctrl;
5443
5444 hw->mac.ops.get_speed_and_duplex(hw,
5445 &adapter->link_speed,
5446 &adapter->link_duplex);
5447
5448 ctrl = rd32(E1000_CTRL);
5449 /* Links status message must follow this format */
5450 netdev_info(netdev,
5451 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5452 netdev->name,
5453 adapter->link_speed,
5454 adapter->link_duplex == FULL_DUPLEX ?
5455 "Full" : "Half",
5456 (ctrl & E1000_CTRL_TFCE) &&
5457 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5458 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5459 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5460
5461 /* disable EEE if enabled */
5462 if ((adapter->flags & IGB_FLAG_EEE) &&
5463 (adapter->link_duplex == HALF_DUPLEX)) {
5464 dev_info(&adapter->pdev->dev,
5465 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5466 adapter->hw.dev_spec._82575.eee_disable = true;
5467 adapter->flags &= ~IGB_FLAG_EEE;
5468 }
5469
5470 /* check if SmartSpeed worked */
5471 igb_check_downshift(hw);
5472 if (phy->speed_downgraded)
5473 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5474
5475 /* check for thermal sensor event */
5476 if (igb_thermal_sensor_event(hw,
5477 E1000_THSTAT_LINK_THROTTLE))
5478 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5479
5480 /* adjust timeout factor according to speed/duplex */
5481 adapter->tx_timeout_factor = 1;
5482 switch (adapter->link_speed) {
5483 case SPEED_10:
5484 adapter->tx_timeout_factor = 14;
5485 break;
5486 case SPEED_100:
5487 /* maybe add some timeout factor ? */
5488 break;
5489 }
5490
5491 if (adapter->link_speed != SPEED_1000)
5492 goto no_wait;
5493
5494 /* wait for Remote receiver status OK */
5495 retry_read_status:
5496 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5497 &phy_data)) {
5498 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5499 retry_count) {
5500 msleep(100);
5501 retry_count--;
5502 goto retry_read_status;
5503 } else if (!retry_count) {
5504 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5505 }
5506 } else {
5507 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5508 }
5509 no_wait:
5510 netif_carrier_on(netdev);
5511
5512 igb_ping_all_vfs(adapter);
5513 igb_check_vf_rate_limit(adapter);
5514
5515 /* link state has changed, schedule phy info update */
5516 if (!test_bit(__IGB_DOWN, &adapter->state))
5517 mod_timer(&adapter->phy_info_timer,
5518 round_jiffies(jiffies + 2 * HZ));
5519 }
5520 } else {
5521 if (netif_carrier_ok(netdev)) {
5522 adapter->link_speed = 0;
5523 adapter->link_duplex = 0;
5524
5525 /* check for thermal sensor event */
5526 if (igb_thermal_sensor_event(hw,
5527 E1000_THSTAT_PWR_DOWN)) {
5528 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5529 }
5530
5531 /* Links status message must follow this format */
5532 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5533 netdev->name);
5534 netif_carrier_off(netdev);
5535
5536 igb_ping_all_vfs(adapter);
5537
5538 /* link state has changed, schedule phy info update */
5539 if (!test_bit(__IGB_DOWN, &adapter->state))
5540 mod_timer(&adapter->phy_info_timer,
5541 round_jiffies(jiffies + 2 * HZ));
5542
5543 /* link is down, time to check for alternate media */
5544 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5545 igb_check_swap_media(adapter);
5546 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5547 schedule_work(&adapter->reset_task);
5548 /* return immediately */
5549 return;
5550 }
5551 }
5552 pm_schedule_suspend(netdev->dev.parent,
5553 MSEC_PER_SEC * 5);
5554
5555 /* also check for alternate media here */
5556 } else if (!netif_carrier_ok(netdev) &&
5557 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5558 igb_check_swap_media(adapter);
5559 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5560 schedule_work(&adapter->reset_task);
5561 /* return immediately */
5562 return;
5563 }
5564 }
5565 }
5566
5567 spin_lock(&adapter->stats64_lock);
5568 igb_update_stats(adapter);
5569 spin_unlock(&adapter->stats64_lock);
5570
5571 for (i = 0; i < adapter->num_tx_queues; i++) {
5572 struct igb_ring *tx_ring = adapter->tx_ring[i];
5573 if (!netif_carrier_ok(netdev)) {
5574 /* We've lost link, so the controller stops DMA,
5575 * but we've got queued Tx work that's never going
5576 * to get done, so reset controller to flush Tx.
5577 * (Do the reset outside of interrupt context).
5578 */
5579 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5580 adapter->tx_timeout_count++;
5581 schedule_work(&adapter->reset_task);
5582 /* return immediately since reset is imminent */
5583 return;
5584 }
5585 }
5586
5587 /* Force detection of hung controller every watchdog period */
5588 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5589 }
5590
5591 /* Cause software interrupt to ensure Rx ring is cleaned */
5592 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5593 u32 eics = 0;
5594
5595 for (i = 0; i < adapter->num_q_vectors; i++)
5596 eics |= adapter->q_vector[i]->eims_value;
5597 wr32(E1000_EICS, eics);
5598 } else {
5599 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5600 }
5601
5602 igb_spoof_check(adapter);
5603 igb_ptp_rx_hang(adapter);
5604 igb_ptp_tx_hang(adapter);
5605
5606 /* Check LVMMC register on i350/i354 only */
5607 if ((adapter->hw.mac.type == e1000_i350) ||
5608 (adapter->hw.mac.type == e1000_i354))
5609 igb_check_lvmmc(adapter);
5610
5611 /* Reset the timer */
5612 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5613 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5614 mod_timer(&adapter->watchdog_timer,
5615 round_jiffies(jiffies + HZ));
5616 else
5617 mod_timer(&adapter->watchdog_timer,
5618 round_jiffies(jiffies + 2 * HZ));
5619 }
5620 }
5621
5622 enum latency_range {
5623 lowest_latency = 0,
5624 low_latency = 1,
5625 bulk_latency = 2,
5626 latency_invalid = 255
5627 };
5628
5629 /**
5630 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5631 * @q_vector: pointer to q_vector
5632 *
5633 * Stores a new ITR value based on strictly on packet size. This
5634 * algorithm is less sophisticated than that used in igb_update_itr,
5635 * due to the difficulty of synchronizing statistics across multiple
5636 * receive rings. The divisors and thresholds used by this function
5637 * were determined based on theoretical maximum wire speed and testing
5638 * data, in order to minimize response time while increasing bulk
5639 * throughput.
5640 * This functionality is controlled by ethtool's coalescing settings.
5641 * NOTE: This function is called only when operating in a multiqueue
5642 * receive environment.
5643 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5644 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5645 {
5646 int new_val = q_vector->itr_val;
5647 int avg_wire_size = 0;
5648 struct igb_adapter *adapter = q_vector->adapter;
5649 unsigned int packets;
5650
5651 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5652 * ints/sec - ITR timer value of 120 ticks.
5653 */
5654 if (adapter->link_speed != SPEED_1000) {
5655 new_val = IGB_4K_ITR;
5656 goto set_itr_val;
5657 }
5658
5659 packets = q_vector->rx.total_packets;
5660 if (packets)
5661 avg_wire_size = q_vector->rx.total_bytes / packets;
5662
5663 packets = q_vector->tx.total_packets;
5664 if (packets)
5665 avg_wire_size = max_t(u32, avg_wire_size,
5666 q_vector->tx.total_bytes / packets);
5667
5668 /* if avg_wire_size isn't set no work was done */
5669 if (!avg_wire_size)
5670 goto clear_counts;
5671
5672 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5673 avg_wire_size += 24;
5674
5675 /* Don't starve jumbo frames */
5676 avg_wire_size = min(avg_wire_size, 3000);
5677
5678 /* Give a little boost to mid-size frames */
5679 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5680 new_val = avg_wire_size / 3;
5681 else
5682 new_val = avg_wire_size / 2;
5683
5684 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5685 if (new_val < IGB_20K_ITR &&
5686 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5687 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5688 new_val = IGB_20K_ITR;
5689
5690 set_itr_val:
5691 if (new_val != q_vector->itr_val) {
5692 q_vector->itr_val = new_val;
5693 q_vector->set_itr = 1;
5694 }
5695 clear_counts:
5696 q_vector->rx.total_bytes = 0;
5697 q_vector->rx.total_packets = 0;
5698 q_vector->tx.total_bytes = 0;
5699 q_vector->tx.total_packets = 0;
5700 }
5701
5702 /**
5703 * igb_update_itr - update the dynamic ITR value based on statistics
5704 * @q_vector: pointer to q_vector
5705 * @ring_container: ring info to update the itr for
5706 *
5707 * Stores a new ITR value based on packets and byte
5708 * counts during the last interrupt. The advantage of per interrupt
5709 * computation is faster updates and more accurate ITR for the current
5710 * traffic pattern. Constants in this function were computed
5711 * based on theoretical maximum wire speed and thresholds were set based
5712 * on testing data as well as attempting to minimize response time
5713 * while increasing bulk throughput.
5714 * This functionality is controlled by ethtool's coalescing settings.
5715 * NOTE: These calculations are only valid when operating in a single-
5716 * queue environment.
5717 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5718 static void igb_update_itr(struct igb_q_vector *q_vector,
5719 struct igb_ring_container *ring_container)
5720 {
5721 unsigned int packets = ring_container->total_packets;
5722 unsigned int bytes = ring_container->total_bytes;
5723 u8 itrval = ring_container->itr;
5724
5725 /* no packets, exit with status unchanged */
5726 if (packets == 0)
5727 return;
5728
5729 switch (itrval) {
5730 case lowest_latency:
5731 /* handle TSO and jumbo frames */
5732 if (bytes/packets > 8000)
5733 itrval = bulk_latency;
5734 else if ((packets < 5) && (bytes > 512))
5735 itrval = low_latency;
5736 break;
5737 case low_latency: /* 50 usec aka 20000 ints/s */
5738 if (bytes > 10000) {
5739 /* this if handles the TSO accounting */
5740 if (bytes/packets > 8000)
5741 itrval = bulk_latency;
5742 else if ((packets < 10) || ((bytes/packets) > 1200))
5743 itrval = bulk_latency;
5744 else if ((packets > 35))
5745 itrval = lowest_latency;
5746 } else if (bytes/packets > 2000) {
5747 itrval = bulk_latency;
5748 } else if (packets <= 2 && bytes < 512) {
5749 itrval = lowest_latency;
5750 }
5751 break;
5752 case bulk_latency: /* 250 usec aka 4000 ints/s */
5753 if (bytes > 25000) {
5754 if (packets > 35)
5755 itrval = low_latency;
5756 } else if (bytes < 1500) {
5757 itrval = low_latency;
5758 }
5759 break;
5760 }
5761
5762 /* clear work counters since we have the values we need */
5763 ring_container->total_bytes = 0;
5764 ring_container->total_packets = 0;
5765
5766 /* write updated itr to ring container */
5767 ring_container->itr = itrval;
5768 }
5769
igb_set_itr(struct igb_q_vector * q_vector)5770 static void igb_set_itr(struct igb_q_vector *q_vector)
5771 {
5772 struct igb_adapter *adapter = q_vector->adapter;
5773 u32 new_itr = q_vector->itr_val;
5774 u8 current_itr = 0;
5775
5776 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5777 if (adapter->link_speed != SPEED_1000) {
5778 current_itr = 0;
5779 new_itr = IGB_4K_ITR;
5780 goto set_itr_now;
5781 }
5782
5783 igb_update_itr(q_vector, &q_vector->tx);
5784 igb_update_itr(q_vector, &q_vector->rx);
5785
5786 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5787
5788 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5789 if (current_itr == lowest_latency &&
5790 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5791 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5792 current_itr = low_latency;
5793
5794 switch (current_itr) {
5795 /* counts and packets in update_itr are dependent on these numbers */
5796 case lowest_latency:
5797 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5798 break;
5799 case low_latency:
5800 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5801 break;
5802 case bulk_latency:
5803 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5804 break;
5805 default:
5806 break;
5807 }
5808
5809 set_itr_now:
5810 if (new_itr != q_vector->itr_val) {
5811 /* this attempts to bias the interrupt rate towards Bulk
5812 * by adding intermediate steps when interrupt rate is
5813 * increasing
5814 */
5815 new_itr = new_itr > q_vector->itr_val ?
5816 max((new_itr * q_vector->itr_val) /
5817 (new_itr + (q_vector->itr_val >> 2)),
5818 new_itr) : new_itr;
5819 /* Don't write the value here; it resets the adapter's
5820 * internal timer, and causes us to delay far longer than
5821 * we should between interrupts. Instead, we write the ITR
5822 * value at the beginning of the next interrupt so the timing
5823 * ends up being correct.
5824 */
5825 q_vector->itr_val = new_itr;
5826 q_vector->set_itr = 1;
5827 }
5828 }
5829
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5830 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5831 struct igb_tx_buffer *first,
5832 u32 vlan_macip_lens, u32 type_tucmd,
5833 u32 mss_l4len_idx)
5834 {
5835 struct e1000_adv_tx_context_desc *context_desc;
5836 u16 i = tx_ring->next_to_use;
5837 struct timespec64 ts;
5838
5839 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5840
5841 i++;
5842 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5843
5844 /* set bits to identify this as an advanced context descriptor */
5845 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5846
5847 /* For 82575, context index must be unique per ring. */
5848 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5849 mss_l4len_idx |= tx_ring->reg_idx << 4;
5850
5851 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5852 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5853 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5854
5855 /* We assume there is always a valid tx time available. Invalid times
5856 * should have been handled by the upper layers.
5857 */
5858 if (tx_ring->launchtime_enable) {
5859 ts = ktime_to_timespec64(first->skb->tstamp);
5860 first->skb->tstamp = ktime_set(0, 0);
5861 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5862 } else {
5863 context_desc->seqnum_seed = 0;
5864 }
5865 }
5866
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5867 static int igb_tso(struct igb_ring *tx_ring,
5868 struct igb_tx_buffer *first,
5869 u8 *hdr_len)
5870 {
5871 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5872 struct sk_buff *skb = first->skb;
5873 union {
5874 struct iphdr *v4;
5875 struct ipv6hdr *v6;
5876 unsigned char *hdr;
5877 } ip;
5878 union {
5879 struct tcphdr *tcp;
5880 struct udphdr *udp;
5881 unsigned char *hdr;
5882 } l4;
5883 u32 paylen, l4_offset;
5884 int err;
5885
5886 if (skb->ip_summed != CHECKSUM_PARTIAL)
5887 return 0;
5888
5889 if (!skb_is_gso(skb))
5890 return 0;
5891
5892 err = skb_cow_head(skb, 0);
5893 if (err < 0)
5894 return err;
5895
5896 ip.hdr = skb_network_header(skb);
5897 l4.hdr = skb_checksum_start(skb);
5898
5899 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5900 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5901 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5902
5903 /* initialize outer IP header fields */
5904 if (ip.v4->version == 4) {
5905 unsigned char *csum_start = skb_checksum_start(skb);
5906 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5907
5908 /* IP header will have to cancel out any data that
5909 * is not a part of the outer IP header
5910 */
5911 ip.v4->check = csum_fold(csum_partial(trans_start,
5912 csum_start - trans_start,
5913 0));
5914 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5915
5916 ip.v4->tot_len = 0;
5917 first->tx_flags |= IGB_TX_FLAGS_TSO |
5918 IGB_TX_FLAGS_CSUM |
5919 IGB_TX_FLAGS_IPV4;
5920 } else {
5921 ip.v6->payload_len = 0;
5922 first->tx_flags |= IGB_TX_FLAGS_TSO |
5923 IGB_TX_FLAGS_CSUM;
5924 }
5925
5926 /* determine offset of inner transport header */
5927 l4_offset = l4.hdr - skb->data;
5928
5929 /* remove payload length from inner checksum */
5930 paylen = skb->len - l4_offset;
5931 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5932 /* compute length of segmentation header */
5933 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5934 csum_replace_by_diff(&l4.tcp->check,
5935 (__force __wsum)htonl(paylen));
5936 } else {
5937 /* compute length of segmentation header */
5938 *hdr_len = sizeof(*l4.udp) + l4_offset;
5939 csum_replace_by_diff(&l4.udp->check,
5940 (__force __wsum)htonl(paylen));
5941 }
5942
5943 /* update gso size and bytecount with header size */
5944 first->gso_segs = skb_shinfo(skb)->gso_segs;
5945 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5946
5947 /* MSS L4LEN IDX */
5948 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5949 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5950
5951 /* VLAN MACLEN IPLEN */
5952 vlan_macip_lens = l4.hdr - ip.hdr;
5953 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5954 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5955
5956 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5957 type_tucmd, mss_l4len_idx);
5958
5959 return 1;
5960 }
5961
igb_ipv6_csum_is_sctp(struct sk_buff * skb)5962 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5963 {
5964 unsigned int offset = 0;
5965
5966 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5967
5968 return offset == skb_checksum_start_offset(skb);
5969 }
5970
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5971 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5972 {
5973 struct sk_buff *skb = first->skb;
5974 u32 vlan_macip_lens = 0;
5975 u32 type_tucmd = 0;
5976
5977 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5978 csum_failed:
5979 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5980 !tx_ring->launchtime_enable)
5981 return;
5982 goto no_csum;
5983 }
5984
5985 switch (skb->csum_offset) {
5986 case offsetof(struct tcphdr, check):
5987 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5988 fallthrough;
5989 case offsetof(struct udphdr, check):
5990 break;
5991 case offsetof(struct sctphdr, checksum):
5992 /* validate that this is actually an SCTP request */
5993 if (((first->protocol == htons(ETH_P_IP)) &&
5994 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5995 ((first->protocol == htons(ETH_P_IPV6)) &&
5996 igb_ipv6_csum_is_sctp(skb))) {
5997 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5998 break;
5999 }
6000 fallthrough;
6001 default:
6002 skb_checksum_help(skb);
6003 goto csum_failed;
6004 }
6005
6006 /* update TX checksum flag */
6007 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6008 vlan_macip_lens = skb_checksum_start_offset(skb) -
6009 skb_network_offset(skb);
6010 no_csum:
6011 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6012 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6013
6014 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6015 }
6016
6017 #define IGB_SET_FLAG(_input, _flag, _result) \
6018 ((_flag <= _result) ? \
6019 ((u32)(_input & _flag) * (_result / _flag)) : \
6020 ((u32)(_input & _flag) / (_flag / _result)))
6021
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6022 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6023 {
6024 /* set type for advanced descriptor with frame checksum insertion */
6025 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6026 E1000_ADVTXD_DCMD_DEXT |
6027 E1000_ADVTXD_DCMD_IFCS;
6028
6029 /* set HW vlan bit if vlan is present */
6030 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6031 (E1000_ADVTXD_DCMD_VLE));
6032
6033 /* set segmentation bits for TSO */
6034 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6035 (E1000_ADVTXD_DCMD_TSE));
6036
6037 /* set timestamp bit if present */
6038 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6039 (E1000_ADVTXD_MAC_TSTAMP));
6040
6041 /* insert frame checksum */
6042 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6043
6044 return cmd_type;
6045 }
6046
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6047 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6048 union e1000_adv_tx_desc *tx_desc,
6049 u32 tx_flags, unsigned int paylen)
6050 {
6051 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6052
6053 /* 82575 requires a unique index per ring */
6054 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6055 olinfo_status |= tx_ring->reg_idx << 4;
6056
6057 /* insert L4 checksum */
6058 olinfo_status |= IGB_SET_FLAG(tx_flags,
6059 IGB_TX_FLAGS_CSUM,
6060 (E1000_TXD_POPTS_TXSM << 8));
6061
6062 /* insert IPv4 checksum */
6063 olinfo_status |= IGB_SET_FLAG(tx_flags,
6064 IGB_TX_FLAGS_IPV4,
6065 (E1000_TXD_POPTS_IXSM << 8));
6066
6067 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6068 }
6069
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6070 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6071 {
6072 struct net_device *netdev = tx_ring->netdev;
6073
6074 netif_stop_subqueue(netdev, tx_ring->queue_index);
6075
6076 /* Herbert's original patch had:
6077 * smp_mb__after_netif_stop_queue();
6078 * but since that doesn't exist yet, just open code it.
6079 */
6080 smp_mb();
6081
6082 /* We need to check again in a case another CPU has just
6083 * made room available.
6084 */
6085 if (igb_desc_unused(tx_ring) < size)
6086 return -EBUSY;
6087
6088 /* A reprieve! */
6089 netif_wake_subqueue(netdev, tx_ring->queue_index);
6090
6091 u64_stats_update_begin(&tx_ring->tx_syncp2);
6092 tx_ring->tx_stats.restart_queue2++;
6093 u64_stats_update_end(&tx_ring->tx_syncp2);
6094
6095 return 0;
6096 }
6097
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6098 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6099 {
6100 if (igb_desc_unused(tx_ring) >= size)
6101 return 0;
6102 return __igb_maybe_stop_tx(tx_ring, size);
6103 }
6104
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6105 static int igb_tx_map(struct igb_ring *tx_ring,
6106 struct igb_tx_buffer *first,
6107 const u8 hdr_len)
6108 {
6109 struct sk_buff *skb = first->skb;
6110 struct igb_tx_buffer *tx_buffer;
6111 union e1000_adv_tx_desc *tx_desc;
6112 skb_frag_t *frag;
6113 dma_addr_t dma;
6114 unsigned int data_len, size;
6115 u32 tx_flags = first->tx_flags;
6116 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6117 u16 i = tx_ring->next_to_use;
6118
6119 tx_desc = IGB_TX_DESC(tx_ring, i);
6120
6121 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6122
6123 size = skb_headlen(skb);
6124 data_len = skb->data_len;
6125
6126 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6127
6128 tx_buffer = first;
6129
6130 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6131 if (dma_mapping_error(tx_ring->dev, dma))
6132 goto dma_error;
6133
6134 /* record length, and DMA address */
6135 dma_unmap_len_set(tx_buffer, len, size);
6136 dma_unmap_addr_set(tx_buffer, dma, dma);
6137
6138 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6139
6140 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6141 tx_desc->read.cmd_type_len =
6142 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6143
6144 i++;
6145 tx_desc++;
6146 if (i == tx_ring->count) {
6147 tx_desc = IGB_TX_DESC(tx_ring, 0);
6148 i = 0;
6149 }
6150 tx_desc->read.olinfo_status = 0;
6151
6152 dma += IGB_MAX_DATA_PER_TXD;
6153 size -= IGB_MAX_DATA_PER_TXD;
6154
6155 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6156 }
6157
6158 if (likely(!data_len))
6159 break;
6160
6161 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6162
6163 i++;
6164 tx_desc++;
6165 if (i == tx_ring->count) {
6166 tx_desc = IGB_TX_DESC(tx_ring, 0);
6167 i = 0;
6168 }
6169 tx_desc->read.olinfo_status = 0;
6170
6171 size = skb_frag_size(frag);
6172 data_len -= size;
6173
6174 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6175 size, DMA_TO_DEVICE);
6176
6177 tx_buffer = &tx_ring->tx_buffer_info[i];
6178 }
6179
6180 /* write last descriptor with RS and EOP bits */
6181 cmd_type |= size | IGB_TXD_DCMD;
6182 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6183
6184 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6185
6186 /* set the timestamp */
6187 first->time_stamp = jiffies;
6188
6189 skb_tx_timestamp(skb);
6190
6191 /* Force memory writes to complete before letting h/w know there
6192 * are new descriptors to fetch. (Only applicable for weak-ordered
6193 * memory model archs, such as IA-64).
6194 *
6195 * We also need this memory barrier to make certain all of the
6196 * status bits have been updated before next_to_watch is written.
6197 */
6198 dma_wmb();
6199
6200 /* set next_to_watch value indicating a packet is present */
6201 first->next_to_watch = tx_desc;
6202
6203 i++;
6204 if (i == tx_ring->count)
6205 i = 0;
6206
6207 tx_ring->next_to_use = i;
6208
6209 /* Make sure there is space in the ring for the next send. */
6210 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6211
6212 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6213 writel(i, tx_ring->tail);
6214 }
6215 return 0;
6216
6217 dma_error:
6218 dev_err(tx_ring->dev, "TX DMA map failed\n");
6219 tx_buffer = &tx_ring->tx_buffer_info[i];
6220
6221 /* clear dma mappings for failed tx_buffer_info map */
6222 while (tx_buffer != first) {
6223 if (dma_unmap_len(tx_buffer, len))
6224 dma_unmap_page(tx_ring->dev,
6225 dma_unmap_addr(tx_buffer, dma),
6226 dma_unmap_len(tx_buffer, len),
6227 DMA_TO_DEVICE);
6228 dma_unmap_len_set(tx_buffer, len, 0);
6229
6230 if (i-- == 0)
6231 i += tx_ring->count;
6232 tx_buffer = &tx_ring->tx_buffer_info[i];
6233 }
6234
6235 if (dma_unmap_len(tx_buffer, len))
6236 dma_unmap_single(tx_ring->dev,
6237 dma_unmap_addr(tx_buffer, dma),
6238 dma_unmap_len(tx_buffer, len),
6239 DMA_TO_DEVICE);
6240 dma_unmap_len_set(tx_buffer, len, 0);
6241
6242 dev_kfree_skb_any(tx_buffer->skb);
6243 tx_buffer->skb = NULL;
6244
6245 tx_ring->next_to_use = i;
6246
6247 return -1;
6248 }
6249
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6250 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6251 struct igb_ring *tx_ring,
6252 struct xdp_frame *xdpf)
6253 {
6254 union e1000_adv_tx_desc *tx_desc;
6255 u32 len, cmd_type, olinfo_status;
6256 struct igb_tx_buffer *tx_buffer;
6257 dma_addr_t dma;
6258 u16 i;
6259
6260 len = xdpf->len;
6261
6262 if (unlikely(!igb_desc_unused(tx_ring)))
6263 return IGB_XDP_CONSUMED;
6264
6265 dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6266 if (dma_mapping_error(tx_ring->dev, dma))
6267 return IGB_XDP_CONSUMED;
6268
6269 /* record the location of the first descriptor for this packet */
6270 tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6271 tx_buffer->bytecount = len;
6272 tx_buffer->gso_segs = 1;
6273 tx_buffer->protocol = 0;
6274
6275 i = tx_ring->next_to_use;
6276 tx_desc = IGB_TX_DESC(tx_ring, i);
6277
6278 dma_unmap_len_set(tx_buffer, len, len);
6279 dma_unmap_addr_set(tx_buffer, dma, dma);
6280 tx_buffer->type = IGB_TYPE_XDP;
6281 tx_buffer->xdpf = xdpf;
6282
6283 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6284
6285 /* put descriptor type bits */
6286 cmd_type = E1000_ADVTXD_DTYP_DATA |
6287 E1000_ADVTXD_DCMD_DEXT |
6288 E1000_ADVTXD_DCMD_IFCS;
6289 cmd_type |= len | IGB_TXD_DCMD;
6290 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6291
6292 olinfo_status = cpu_to_le32(len << E1000_ADVTXD_PAYLEN_SHIFT);
6293 /* 82575 requires a unique index per ring */
6294 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6295 olinfo_status |= tx_ring->reg_idx << 4;
6296
6297 tx_desc->read.olinfo_status = olinfo_status;
6298
6299 netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6300
6301 /* set the timestamp */
6302 tx_buffer->time_stamp = jiffies;
6303
6304 /* Avoid any potential race with xdp_xmit and cleanup */
6305 smp_wmb();
6306
6307 /* set next_to_watch value indicating a packet is present */
6308 i++;
6309 if (i == tx_ring->count)
6310 i = 0;
6311
6312 tx_buffer->next_to_watch = tx_desc;
6313 tx_ring->next_to_use = i;
6314
6315 /* Make sure there is space in the ring for the next send. */
6316 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6317
6318 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6319 writel(i, tx_ring->tail);
6320
6321 return IGB_XDP_TX;
6322 }
6323
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6324 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6325 struct igb_ring *tx_ring)
6326 {
6327 struct igb_tx_buffer *first;
6328 int tso;
6329 u32 tx_flags = 0;
6330 unsigned short f;
6331 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6332 __be16 protocol = vlan_get_protocol(skb);
6333 u8 hdr_len = 0;
6334
6335 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6336 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6337 * + 2 desc gap to keep tail from touching head,
6338 * + 1 desc for context descriptor,
6339 * otherwise try next time
6340 */
6341 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6342 count += TXD_USE_COUNT(skb_frag_size(
6343 &skb_shinfo(skb)->frags[f]));
6344
6345 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6346 /* this is a hard error */
6347 return NETDEV_TX_BUSY;
6348 }
6349
6350 /* record the location of the first descriptor for this packet */
6351 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6352 first->type = IGB_TYPE_SKB;
6353 first->skb = skb;
6354 first->bytecount = skb->len;
6355 first->gso_segs = 1;
6356
6357 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6358 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6359
6360 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6361 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6362 &adapter->state)) {
6363 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6364 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6365
6366 adapter->ptp_tx_skb = skb_get(skb);
6367 adapter->ptp_tx_start = jiffies;
6368 if (adapter->hw.mac.type == e1000_82576)
6369 schedule_work(&adapter->ptp_tx_work);
6370 } else {
6371 adapter->tx_hwtstamp_skipped++;
6372 }
6373 }
6374
6375 if (skb_vlan_tag_present(skb)) {
6376 tx_flags |= IGB_TX_FLAGS_VLAN;
6377 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6378 }
6379
6380 /* record initial flags and protocol */
6381 first->tx_flags = tx_flags;
6382 first->protocol = protocol;
6383
6384 tso = igb_tso(tx_ring, first, &hdr_len);
6385 if (tso < 0)
6386 goto out_drop;
6387 else if (!tso)
6388 igb_tx_csum(tx_ring, first);
6389
6390 if (igb_tx_map(tx_ring, first, hdr_len))
6391 goto cleanup_tx_tstamp;
6392
6393 return NETDEV_TX_OK;
6394
6395 out_drop:
6396 dev_kfree_skb_any(first->skb);
6397 first->skb = NULL;
6398 cleanup_tx_tstamp:
6399 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6400 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6401
6402 dev_kfree_skb_any(adapter->ptp_tx_skb);
6403 adapter->ptp_tx_skb = NULL;
6404 if (adapter->hw.mac.type == e1000_82576)
6405 cancel_work_sync(&adapter->ptp_tx_work);
6406 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6407 }
6408
6409 return NETDEV_TX_OK;
6410 }
6411
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6412 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6413 struct sk_buff *skb)
6414 {
6415 unsigned int r_idx = skb->queue_mapping;
6416
6417 if (r_idx >= adapter->num_tx_queues)
6418 r_idx = r_idx % adapter->num_tx_queues;
6419
6420 return adapter->tx_ring[r_idx];
6421 }
6422
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6423 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6424 struct net_device *netdev)
6425 {
6426 struct igb_adapter *adapter = netdev_priv(netdev);
6427
6428 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6429 * in order to meet this minimum size requirement.
6430 */
6431 if (skb_put_padto(skb, 17))
6432 return NETDEV_TX_OK;
6433
6434 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6435 }
6436
6437 /**
6438 * igb_tx_timeout - Respond to a Tx Hang
6439 * @netdev: network interface device structure
6440 * @txqueue: number of the Tx queue that hung (unused)
6441 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6442 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6443 {
6444 struct igb_adapter *adapter = netdev_priv(netdev);
6445 struct e1000_hw *hw = &adapter->hw;
6446
6447 /* Do the reset outside of interrupt context */
6448 adapter->tx_timeout_count++;
6449
6450 if (hw->mac.type >= e1000_82580)
6451 hw->dev_spec._82575.global_device_reset = true;
6452
6453 schedule_work(&adapter->reset_task);
6454 wr32(E1000_EICS,
6455 (adapter->eims_enable_mask & ~adapter->eims_other));
6456 }
6457
igb_reset_task(struct work_struct * work)6458 static void igb_reset_task(struct work_struct *work)
6459 {
6460 struct igb_adapter *adapter;
6461 adapter = container_of(work, struct igb_adapter, reset_task);
6462
6463 rtnl_lock();
6464 /* If we're already down or resetting, just bail */
6465 if (test_bit(__IGB_DOWN, &adapter->state) ||
6466 test_bit(__IGB_RESETTING, &adapter->state)) {
6467 rtnl_unlock();
6468 return;
6469 }
6470
6471 igb_dump(adapter);
6472 netdev_err(adapter->netdev, "Reset adapter\n");
6473 igb_reinit_locked(adapter);
6474 rtnl_unlock();
6475 }
6476
6477 /**
6478 * igb_get_stats64 - Get System Network Statistics
6479 * @netdev: network interface device structure
6480 * @stats: rtnl_link_stats64 pointer
6481 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6482 static void igb_get_stats64(struct net_device *netdev,
6483 struct rtnl_link_stats64 *stats)
6484 {
6485 struct igb_adapter *adapter = netdev_priv(netdev);
6486
6487 spin_lock(&adapter->stats64_lock);
6488 igb_update_stats(adapter);
6489 memcpy(stats, &adapter->stats64, sizeof(*stats));
6490 spin_unlock(&adapter->stats64_lock);
6491 }
6492
6493 /**
6494 * igb_change_mtu - Change the Maximum Transfer Unit
6495 * @netdev: network interface device structure
6496 * @new_mtu: new value for maximum frame size
6497 *
6498 * Returns 0 on success, negative on failure
6499 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6500 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6501 {
6502 struct igb_adapter *adapter = netdev_priv(netdev);
6503 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6504
6505 if (adapter->xdp_prog) {
6506 int i;
6507
6508 for (i = 0; i < adapter->num_rx_queues; i++) {
6509 struct igb_ring *ring = adapter->rx_ring[i];
6510
6511 if (max_frame > igb_rx_bufsz(ring)) {
6512 netdev_warn(adapter->netdev,
6513 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6514 max_frame);
6515 return -EINVAL;
6516 }
6517 }
6518 }
6519
6520 /* adjust max frame to be at least the size of a standard frame */
6521 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6522 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6523
6524 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6525 usleep_range(1000, 2000);
6526
6527 /* igb_down has a dependency on max_frame_size */
6528 adapter->max_frame_size = max_frame;
6529
6530 if (netif_running(netdev))
6531 igb_down(adapter);
6532
6533 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6534 netdev->mtu, new_mtu);
6535 netdev->mtu = new_mtu;
6536
6537 if (netif_running(netdev))
6538 igb_up(adapter);
6539 else
6540 igb_reset(adapter);
6541
6542 clear_bit(__IGB_RESETTING, &adapter->state);
6543
6544 return 0;
6545 }
6546
6547 /**
6548 * igb_update_stats - Update the board statistics counters
6549 * @adapter: board private structure
6550 **/
igb_update_stats(struct igb_adapter * adapter)6551 void igb_update_stats(struct igb_adapter *adapter)
6552 {
6553 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6554 struct e1000_hw *hw = &adapter->hw;
6555 struct pci_dev *pdev = adapter->pdev;
6556 u32 reg, mpc;
6557 int i;
6558 u64 bytes, packets;
6559 unsigned int start;
6560 u64 _bytes, _packets;
6561
6562 /* Prevent stats update while adapter is being reset, or if the pci
6563 * connection is down.
6564 */
6565 if (adapter->link_speed == 0)
6566 return;
6567 if (pci_channel_offline(pdev))
6568 return;
6569
6570 bytes = 0;
6571 packets = 0;
6572
6573 rcu_read_lock();
6574 for (i = 0; i < adapter->num_rx_queues; i++) {
6575 struct igb_ring *ring = adapter->rx_ring[i];
6576 u32 rqdpc = rd32(E1000_RQDPC(i));
6577 if (hw->mac.type >= e1000_i210)
6578 wr32(E1000_RQDPC(i), 0);
6579
6580 if (rqdpc) {
6581 ring->rx_stats.drops += rqdpc;
6582 net_stats->rx_fifo_errors += rqdpc;
6583 }
6584
6585 do {
6586 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6587 _bytes = ring->rx_stats.bytes;
6588 _packets = ring->rx_stats.packets;
6589 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6590 bytes += _bytes;
6591 packets += _packets;
6592 }
6593
6594 net_stats->rx_bytes = bytes;
6595 net_stats->rx_packets = packets;
6596
6597 bytes = 0;
6598 packets = 0;
6599 for (i = 0; i < adapter->num_tx_queues; i++) {
6600 struct igb_ring *ring = adapter->tx_ring[i];
6601 do {
6602 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6603 _bytes = ring->tx_stats.bytes;
6604 _packets = ring->tx_stats.packets;
6605 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6606 bytes += _bytes;
6607 packets += _packets;
6608 }
6609 net_stats->tx_bytes = bytes;
6610 net_stats->tx_packets = packets;
6611 rcu_read_unlock();
6612
6613 /* read stats registers */
6614 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6615 adapter->stats.gprc += rd32(E1000_GPRC);
6616 adapter->stats.gorc += rd32(E1000_GORCL);
6617 rd32(E1000_GORCH); /* clear GORCL */
6618 adapter->stats.bprc += rd32(E1000_BPRC);
6619 adapter->stats.mprc += rd32(E1000_MPRC);
6620 adapter->stats.roc += rd32(E1000_ROC);
6621
6622 adapter->stats.prc64 += rd32(E1000_PRC64);
6623 adapter->stats.prc127 += rd32(E1000_PRC127);
6624 adapter->stats.prc255 += rd32(E1000_PRC255);
6625 adapter->stats.prc511 += rd32(E1000_PRC511);
6626 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6627 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6628 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6629 adapter->stats.sec += rd32(E1000_SEC);
6630
6631 mpc = rd32(E1000_MPC);
6632 adapter->stats.mpc += mpc;
6633 net_stats->rx_fifo_errors += mpc;
6634 adapter->stats.scc += rd32(E1000_SCC);
6635 adapter->stats.ecol += rd32(E1000_ECOL);
6636 adapter->stats.mcc += rd32(E1000_MCC);
6637 adapter->stats.latecol += rd32(E1000_LATECOL);
6638 adapter->stats.dc += rd32(E1000_DC);
6639 adapter->stats.rlec += rd32(E1000_RLEC);
6640 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6641 adapter->stats.xontxc += rd32(E1000_XONTXC);
6642 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6643 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6644 adapter->stats.fcruc += rd32(E1000_FCRUC);
6645 adapter->stats.gptc += rd32(E1000_GPTC);
6646 adapter->stats.gotc += rd32(E1000_GOTCL);
6647 rd32(E1000_GOTCH); /* clear GOTCL */
6648 adapter->stats.rnbc += rd32(E1000_RNBC);
6649 adapter->stats.ruc += rd32(E1000_RUC);
6650 adapter->stats.rfc += rd32(E1000_RFC);
6651 adapter->stats.rjc += rd32(E1000_RJC);
6652 adapter->stats.tor += rd32(E1000_TORH);
6653 adapter->stats.tot += rd32(E1000_TOTH);
6654 adapter->stats.tpr += rd32(E1000_TPR);
6655
6656 adapter->stats.ptc64 += rd32(E1000_PTC64);
6657 adapter->stats.ptc127 += rd32(E1000_PTC127);
6658 adapter->stats.ptc255 += rd32(E1000_PTC255);
6659 adapter->stats.ptc511 += rd32(E1000_PTC511);
6660 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6661 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6662
6663 adapter->stats.mptc += rd32(E1000_MPTC);
6664 adapter->stats.bptc += rd32(E1000_BPTC);
6665
6666 adapter->stats.tpt += rd32(E1000_TPT);
6667 adapter->stats.colc += rd32(E1000_COLC);
6668
6669 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6670 /* read internal phy specific stats */
6671 reg = rd32(E1000_CTRL_EXT);
6672 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6673 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6674
6675 /* this stat has invalid values on i210/i211 */
6676 if ((hw->mac.type != e1000_i210) &&
6677 (hw->mac.type != e1000_i211))
6678 adapter->stats.tncrs += rd32(E1000_TNCRS);
6679 }
6680
6681 adapter->stats.tsctc += rd32(E1000_TSCTC);
6682 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6683
6684 adapter->stats.iac += rd32(E1000_IAC);
6685 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6686 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6687 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6688 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6689 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6690 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6691 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6692 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6693
6694 /* Fill out the OS statistics structure */
6695 net_stats->multicast = adapter->stats.mprc;
6696 net_stats->collisions = adapter->stats.colc;
6697
6698 /* Rx Errors */
6699
6700 /* RLEC on some newer hardware can be incorrect so build
6701 * our own version based on RUC and ROC
6702 */
6703 net_stats->rx_errors = adapter->stats.rxerrc +
6704 adapter->stats.crcerrs + adapter->stats.algnerrc +
6705 adapter->stats.ruc + adapter->stats.roc +
6706 adapter->stats.cexterr;
6707 net_stats->rx_length_errors = adapter->stats.ruc +
6708 adapter->stats.roc;
6709 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6710 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6711 net_stats->rx_missed_errors = adapter->stats.mpc;
6712
6713 /* Tx Errors */
6714 net_stats->tx_errors = adapter->stats.ecol +
6715 adapter->stats.latecol;
6716 net_stats->tx_aborted_errors = adapter->stats.ecol;
6717 net_stats->tx_window_errors = adapter->stats.latecol;
6718 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6719
6720 /* Tx Dropped needs to be maintained elsewhere */
6721
6722 /* Management Stats */
6723 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6724 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6725 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6726
6727 /* OS2BMC Stats */
6728 reg = rd32(E1000_MANC);
6729 if (reg & E1000_MANC_EN_BMC2OS) {
6730 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6731 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6732 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6733 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6734 }
6735 }
6736
igb_tsync_interrupt(struct igb_adapter * adapter)6737 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6738 {
6739 struct e1000_hw *hw = &adapter->hw;
6740 struct ptp_clock_event event;
6741 struct timespec64 ts;
6742 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6743
6744 if (tsicr & TSINTR_SYS_WRAP) {
6745 event.type = PTP_CLOCK_PPS;
6746 if (adapter->ptp_caps.pps)
6747 ptp_clock_event(adapter->ptp_clock, &event);
6748 ack |= TSINTR_SYS_WRAP;
6749 }
6750
6751 if (tsicr & E1000_TSICR_TXTS) {
6752 /* retrieve hardware timestamp */
6753 schedule_work(&adapter->ptp_tx_work);
6754 ack |= E1000_TSICR_TXTS;
6755 }
6756
6757 if (tsicr & TSINTR_TT0) {
6758 spin_lock(&adapter->tmreg_lock);
6759 ts = timespec64_add(adapter->perout[0].start,
6760 adapter->perout[0].period);
6761 /* u32 conversion of tv_sec is safe until y2106 */
6762 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6763 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6764 tsauxc = rd32(E1000_TSAUXC);
6765 tsauxc |= TSAUXC_EN_TT0;
6766 wr32(E1000_TSAUXC, tsauxc);
6767 adapter->perout[0].start = ts;
6768 spin_unlock(&adapter->tmreg_lock);
6769 ack |= TSINTR_TT0;
6770 }
6771
6772 if (tsicr & TSINTR_TT1) {
6773 spin_lock(&adapter->tmreg_lock);
6774 ts = timespec64_add(adapter->perout[1].start,
6775 adapter->perout[1].period);
6776 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6777 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6778 tsauxc = rd32(E1000_TSAUXC);
6779 tsauxc |= TSAUXC_EN_TT1;
6780 wr32(E1000_TSAUXC, tsauxc);
6781 adapter->perout[1].start = ts;
6782 spin_unlock(&adapter->tmreg_lock);
6783 ack |= TSINTR_TT1;
6784 }
6785
6786 if (tsicr & TSINTR_AUTT0) {
6787 nsec = rd32(E1000_AUXSTMPL0);
6788 sec = rd32(E1000_AUXSTMPH0);
6789 event.type = PTP_CLOCK_EXTTS;
6790 event.index = 0;
6791 event.timestamp = sec * 1000000000ULL + nsec;
6792 ptp_clock_event(adapter->ptp_clock, &event);
6793 ack |= TSINTR_AUTT0;
6794 }
6795
6796 if (tsicr & TSINTR_AUTT1) {
6797 nsec = rd32(E1000_AUXSTMPL1);
6798 sec = rd32(E1000_AUXSTMPH1);
6799 event.type = PTP_CLOCK_EXTTS;
6800 event.index = 1;
6801 event.timestamp = sec * 1000000000ULL + nsec;
6802 ptp_clock_event(adapter->ptp_clock, &event);
6803 ack |= TSINTR_AUTT1;
6804 }
6805
6806 /* acknowledge the interrupts */
6807 wr32(E1000_TSICR, ack);
6808 }
6809
igb_msix_other(int irq,void * data)6810 static irqreturn_t igb_msix_other(int irq, void *data)
6811 {
6812 struct igb_adapter *adapter = data;
6813 struct e1000_hw *hw = &adapter->hw;
6814 u32 icr = rd32(E1000_ICR);
6815 /* reading ICR causes bit 31 of EICR to be cleared */
6816
6817 if (icr & E1000_ICR_DRSTA)
6818 schedule_work(&adapter->reset_task);
6819
6820 if (icr & E1000_ICR_DOUTSYNC) {
6821 /* HW is reporting DMA is out of sync */
6822 adapter->stats.doosync++;
6823 /* The DMA Out of Sync is also indication of a spoof event
6824 * in IOV mode. Check the Wrong VM Behavior register to
6825 * see if it is really a spoof event.
6826 */
6827 igb_check_wvbr(adapter);
6828 }
6829
6830 /* Check for a mailbox event */
6831 if (icr & E1000_ICR_VMMB)
6832 igb_msg_task(adapter);
6833
6834 if (icr & E1000_ICR_LSC) {
6835 hw->mac.get_link_status = 1;
6836 /* guard against interrupt when we're going down */
6837 if (!test_bit(__IGB_DOWN, &adapter->state))
6838 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6839 }
6840
6841 if (icr & E1000_ICR_TS)
6842 igb_tsync_interrupt(adapter);
6843
6844 wr32(E1000_EIMS, adapter->eims_other);
6845
6846 return IRQ_HANDLED;
6847 }
6848
igb_write_itr(struct igb_q_vector * q_vector)6849 static void igb_write_itr(struct igb_q_vector *q_vector)
6850 {
6851 struct igb_adapter *adapter = q_vector->adapter;
6852 u32 itr_val = q_vector->itr_val & 0x7FFC;
6853
6854 if (!q_vector->set_itr)
6855 return;
6856
6857 if (!itr_val)
6858 itr_val = 0x4;
6859
6860 if (adapter->hw.mac.type == e1000_82575)
6861 itr_val |= itr_val << 16;
6862 else
6863 itr_val |= E1000_EITR_CNT_IGNR;
6864
6865 writel(itr_val, q_vector->itr_register);
6866 q_vector->set_itr = 0;
6867 }
6868
igb_msix_ring(int irq,void * data)6869 static irqreturn_t igb_msix_ring(int irq, void *data)
6870 {
6871 struct igb_q_vector *q_vector = data;
6872
6873 /* Write the ITR value calculated from the previous interrupt. */
6874 igb_write_itr(q_vector);
6875
6876 napi_schedule(&q_vector->napi);
6877
6878 return IRQ_HANDLED;
6879 }
6880
6881 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)6882 static void igb_update_tx_dca(struct igb_adapter *adapter,
6883 struct igb_ring *tx_ring,
6884 int cpu)
6885 {
6886 struct e1000_hw *hw = &adapter->hw;
6887 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6888
6889 if (hw->mac.type != e1000_82575)
6890 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6891
6892 /* We can enable relaxed ordering for reads, but not writes when
6893 * DCA is enabled. This is due to a known issue in some chipsets
6894 * which will cause the DCA tag to be cleared.
6895 */
6896 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6897 E1000_DCA_TXCTRL_DATA_RRO_EN |
6898 E1000_DCA_TXCTRL_DESC_DCA_EN;
6899
6900 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6901 }
6902
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)6903 static void igb_update_rx_dca(struct igb_adapter *adapter,
6904 struct igb_ring *rx_ring,
6905 int cpu)
6906 {
6907 struct e1000_hw *hw = &adapter->hw;
6908 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6909
6910 if (hw->mac.type != e1000_82575)
6911 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6912
6913 /* We can enable relaxed ordering for reads, but not writes when
6914 * DCA is enabled. This is due to a known issue in some chipsets
6915 * which will cause the DCA tag to be cleared.
6916 */
6917 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6918 E1000_DCA_RXCTRL_DESC_DCA_EN;
6919
6920 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6921 }
6922
igb_update_dca(struct igb_q_vector * q_vector)6923 static void igb_update_dca(struct igb_q_vector *q_vector)
6924 {
6925 struct igb_adapter *adapter = q_vector->adapter;
6926 int cpu = get_cpu();
6927
6928 if (q_vector->cpu == cpu)
6929 goto out_no_update;
6930
6931 if (q_vector->tx.ring)
6932 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6933
6934 if (q_vector->rx.ring)
6935 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6936
6937 q_vector->cpu = cpu;
6938 out_no_update:
6939 put_cpu();
6940 }
6941
igb_setup_dca(struct igb_adapter * adapter)6942 static void igb_setup_dca(struct igb_adapter *adapter)
6943 {
6944 struct e1000_hw *hw = &adapter->hw;
6945 int i;
6946
6947 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6948 return;
6949
6950 /* Always use CB2 mode, difference is masked in the CB driver. */
6951 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6952
6953 for (i = 0; i < adapter->num_q_vectors; i++) {
6954 adapter->q_vector[i]->cpu = -1;
6955 igb_update_dca(adapter->q_vector[i]);
6956 }
6957 }
6958
__igb_notify_dca(struct device * dev,void * data)6959 static int __igb_notify_dca(struct device *dev, void *data)
6960 {
6961 struct net_device *netdev = dev_get_drvdata(dev);
6962 struct igb_adapter *adapter = netdev_priv(netdev);
6963 struct pci_dev *pdev = adapter->pdev;
6964 struct e1000_hw *hw = &adapter->hw;
6965 unsigned long event = *(unsigned long *)data;
6966
6967 switch (event) {
6968 case DCA_PROVIDER_ADD:
6969 /* if already enabled, don't do it again */
6970 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6971 break;
6972 if (dca_add_requester(dev) == 0) {
6973 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6974 dev_info(&pdev->dev, "DCA enabled\n");
6975 igb_setup_dca(adapter);
6976 break;
6977 }
6978 fallthrough; /* since DCA is disabled. */
6979 case DCA_PROVIDER_REMOVE:
6980 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6981 /* without this a class_device is left
6982 * hanging around in the sysfs model
6983 */
6984 dca_remove_requester(dev);
6985 dev_info(&pdev->dev, "DCA disabled\n");
6986 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6987 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6988 }
6989 break;
6990 }
6991
6992 return 0;
6993 }
6994
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)6995 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6996 void *p)
6997 {
6998 int ret_val;
6999
7000 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7001 __igb_notify_dca);
7002
7003 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7004 }
7005 #endif /* CONFIG_IGB_DCA */
7006
7007 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7008 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7009 {
7010 unsigned char mac_addr[ETH_ALEN];
7011
7012 eth_zero_addr(mac_addr);
7013 igb_set_vf_mac(adapter, vf, mac_addr);
7014
7015 /* By default spoof check is enabled for all VFs */
7016 adapter->vf_data[vf].spoofchk_enabled = true;
7017
7018 /* By default VFs are not trusted */
7019 adapter->vf_data[vf].trusted = false;
7020
7021 return 0;
7022 }
7023
7024 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7025 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7026 {
7027 struct e1000_hw *hw = &adapter->hw;
7028 u32 ping;
7029 int i;
7030
7031 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7032 ping = E1000_PF_CONTROL_MSG;
7033 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7034 ping |= E1000_VT_MSGTYPE_CTS;
7035 igb_write_mbx(hw, &ping, 1, i);
7036 }
7037 }
7038
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7039 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7040 {
7041 struct e1000_hw *hw = &adapter->hw;
7042 u32 vmolr = rd32(E1000_VMOLR(vf));
7043 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7044
7045 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7046 IGB_VF_FLAG_MULTI_PROMISC);
7047 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7048
7049 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7050 vmolr |= E1000_VMOLR_MPME;
7051 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7052 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7053 } else {
7054 /* if we have hashes and we are clearing a multicast promisc
7055 * flag we need to write the hashes to the MTA as this step
7056 * was previously skipped
7057 */
7058 if (vf_data->num_vf_mc_hashes > 30) {
7059 vmolr |= E1000_VMOLR_MPME;
7060 } else if (vf_data->num_vf_mc_hashes) {
7061 int j;
7062
7063 vmolr |= E1000_VMOLR_ROMPE;
7064 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7065 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7066 }
7067 }
7068
7069 wr32(E1000_VMOLR(vf), vmolr);
7070
7071 /* there are flags left unprocessed, likely not supported */
7072 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7073 return -EINVAL;
7074
7075 return 0;
7076 }
7077
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7078 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7079 u32 *msgbuf, u32 vf)
7080 {
7081 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7082 u16 *hash_list = (u16 *)&msgbuf[1];
7083 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7084 int i;
7085
7086 /* salt away the number of multicast addresses assigned
7087 * to this VF for later use to restore when the PF multi cast
7088 * list changes
7089 */
7090 vf_data->num_vf_mc_hashes = n;
7091
7092 /* only up to 30 hash values supported */
7093 if (n > 30)
7094 n = 30;
7095
7096 /* store the hashes for later use */
7097 for (i = 0; i < n; i++)
7098 vf_data->vf_mc_hashes[i] = hash_list[i];
7099
7100 /* Flush and reset the mta with the new values */
7101 igb_set_rx_mode(adapter->netdev);
7102
7103 return 0;
7104 }
7105
igb_restore_vf_multicasts(struct igb_adapter * adapter)7106 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7107 {
7108 struct e1000_hw *hw = &adapter->hw;
7109 struct vf_data_storage *vf_data;
7110 int i, j;
7111
7112 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7113 u32 vmolr = rd32(E1000_VMOLR(i));
7114
7115 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7116
7117 vf_data = &adapter->vf_data[i];
7118
7119 if ((vf_data->num_vf_mc_hashes > 30) ||
7120 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7121 vmolr |= E1000_VMOLR_MPME;
7122 } else if (vf_data->num_vf_mc_hashes) {
7123 vmolr |= E1000_VMOLR_ROMPE;
7124 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7125 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7126 }
7127 wr32(E1000_VMOLR(i), vmolr);
7128 }
7129 }
7130
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7131 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7132 {
7133 struct e1000_hw *hw = &adapter->hw;
7134 u32 pool_mask, vlvf_mask, i;
7135
7136 /* create mask for VF and other pools */
7137 pool_mask = E1000_VLVF_POOLSEL_MASK;
7138 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7139
7140 /* drop PF from pool bits */
7141 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7142 adapter->vfs_allocated_count);
7143
7144 /* Find the vlan filter for this id */
7145 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7146 u32 vlvf = rd32(E1000_VLVF(i));
7147 u32 vfta_mask, vid, vfta;
7148
7149 /* remove the vf from the pool */
7150 if (!(vlvf & vlvf_mask))
7151 continue;
7152
7153 /* clear out bit from VLVF */
7154 vlvf ^= vlvf_mask;
7155
7156 /* if other pools are present, just remove ourselves */
7157 if (vlvf & pool_mask)
7158 goto update_vlvfb;
7159
7160 /* if PF is present, leave VFTA */
7161 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7162 goto update_vlvf;
7163
7164 vid = vlvf & E1000_VLVF_VLANID_MASK;
7165 vfta_mask = BIT(vid % 32);
7166
7167 /* clear bit from VFTA */
7168 vfta = adapter->shadow_vfta[vid / 32];
7169 if (vfta & vfta_mask)
7170 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7171 update_vlvf:
7172 /* clear pool selection enable */
7173 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7174 vlvf &= E1000_VLVF_POOLSEL_MASK;
7175 else
7176 vlvf = 0;
7177 update_vlvfb:
7178 /* clear pool bits */
7179 wr32(E1000_VLVF(i), vlvf);
7180 }
7181 }
7182
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7183 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7184 {
7185 u32 vlvf;
7186 int idx;
7187
7188 /* short cut the special case */
7189 if (vlan == 0)
7190 return 0;
7191
7192 /* Search for the VLAN id in the VLVF entries */
7193 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7194 vlvf = rd32(E1000_VLVF(idx));
7195 if ((vlvf & VLAN_VID_MASK) == vlan)
7196 break;
7197 }
7198
7199 return idx;
7200 }
7201
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7202 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7203 {
7204 struct e1000_hw *hw = &adapter->hw;
7205 u32 bits, pf_id;
7206 int idx;
7207
7208 idx = igb_find_vlvf_entry(hw, vid);
7209 if (!idx)
7210 return;
7211
7212 /* See if any other pools are set for this VLAN filter
7213 * entry other than the PF.
7214 */
7215 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7216 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7217 bits &= rd32(E1000_VLVF(idx));
7218
7219 /* Disable the filter so this falls into the default pool. */
7220 if (!bits) {
7221 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7222 wr32(E1000_VLVF(idx), BIT(pf_id));
7223 else
7224 wr32(E1000_VLVF(idx), 0);
7225 }
7226 }
7227
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7228 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7229 bool add, u32 vf)
7230 {
7231 int pf_id = adapter->vfs_allocated_count;
7232 struct e1000_hw *hw = &adapter->hw;
7233 int err;
7234
7235 /* If VLAN overlaps with one the PF is currently monitoring make
7236 * sure that we are able to allocate a VLVF entry. This may be
7237 * redundant but it guarantees PF will maintain visibility to
7238 * the VLAN.
7239 */
7240 if (add && test_bit(vid, adapter->active_vlans)) {
7241 err = igb_vfta_set(hw, vid, pf_id, true, false);
7242 if (err)
7243 return err;
7244 }
7245
7246 err = igb_vfta_set(hw, vid, vf, add, false);
7247
7248 if (add && !err)
7249 return err;
7250
7251 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7252 * we may need to drop the PF pool bit in order to allow us to free
7253 * up the VLVF resources.
7254 */
7255 if (test_bit(vid, adapter->active_vlans) ||
7256 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7257 igb_update_pf_vlvf(adapter, vid);
7258
7259 return err;
7260 }
7261
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7262 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7263 {
7264 struct e1000_hw *hw = &adapter->hw;
7265
7266 if (vid)
7267 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7268 else
7269 wr32(E1000_VMVIR(vf), 0);
7270 }
7271
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7272 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7273 u16 vlan, u8 qos)
7274 {
7275 int err;
7276
7277 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7278 if (err)
7279 return err;
7280
7281 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7282 igb_set_vmolr(adapter, vf, !vlan);
7283
7284 /* revoke access to previous VLAN */
7285 if (vlan != adapter->vf_data[vf].pf_vlan)
7286 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7287 false, vf);
7288
7289 adapter->vf_data[vf].pf_vlan = vlan;
7290 adapter->vf_data[vf].pf_qos = qos;
7291 igb_set_vf_vlan_strip(adapter, vf, true);
7292 dev_info(&adapter->pdev->dev,
7293 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7294 if (test_bit(__IGB_DOWN, &adapter->state)) {
7295 dev_warn(&adapter->pdev->dev,
7296 "The VF VLAN has been set, but the PF device is not up.\n");
7297 dev_warn(&adapter->pdev->dev,
7298 "Bring the PF device up before attempting to use the VF device.\n");
7299 }
7300
7301 return err;
7302 }
7303
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7304 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7305 {
7306 /* Restore tagless access via VLAN 0 */
7307 igb_set_vf_vlan(adapter, 0, true, vf);
7308
7309 igb_set_vmvir(adapter, 0, vf);
7310 igb_set_vmolr(adapter, vf, true);
7311
7312 /* Remove any PF assigned VLAN */
7313 if (adapter->vf_data[vf].pf_vlan)
7314 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7315 false, vf);
7316
7317 adapter->vf_data[vf].pf_vlan = 0;
7318 adapter->vf_data[vf].pf_qos = 0;
7319 igb_set_vf_vlan_strip(adapter, vf, false);
7320
7321 return 0;
7322 }
7323
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7324 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7325 u16 vlan, u8 qos, __be16 vlan_proto)
7326 {
7327 struct igb_adapter *adapter = netdev_priv(netdev);
7328
7329 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7330 return -EINVAL;
7331
7332 if (vlan_proto != htons(ETH_P_8021Q))
7333 return -EPROTONOSUPPORT;
7334
7335 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7336 igb_disable_port_vlan(adapter, vf);
7337 }
7338
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7339 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7340 {
7341 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7342 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7343 int ret;
7344
7345 if (adapter->vf_data[vf].pf_vlan)
7346 return -1;
7347
7348 /* VLAN 0 is a special case, don't allow it to be removed */
7349 if (!vid && !add)
7350 return 0;
7351
7352 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7353 if (!ret)
7354 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7355 return ret;
7356 }
7357
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7358 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7359 {
7360 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7361
7362 /* clear flags - except flag that indicates PF has set the MAC */
7363 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7364 vf_data->last_nack = jiffies;
7365
7366 /* reset vlans for device */
7367 igb_clear_vf_vfta(adapter, vf);
7368 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7369 igb_set_vmvir(adapter, vf_data->pf_vlan |
7370 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7371 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7372 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7373
7374 /* reset multicast table array for vf */
7375 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7376
7377 /* Flush and reset the mta with the new values */
7378 igb_set_rx_mode(adapter->netdev);
7379 }
7380
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7381 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7382 {
7383 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7384
7385 /* clear mac address as we were hotplug removed/added */
7386 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7387 eth_zero_addr(vf_mac);
7388
7389 /* process remaining reset events */
7390 igb_vf_reset(adapter, vf);
7391 }
7392
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7393 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7394 {
7395 struct e1000_hw *hw = &adapter->hw;
7396 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7397 u32 reg, msgbuf[3];
7398 u8 *addr = (u8 *)(&msgbuf[1]);
7399
7400 /* process all the same items cleared in a function level reset */
7401 igb_vf_reset(adapter, vf);
7402
7403 /* set vf mac address */
7404 igb_set_vf_mac(adapter, vf, vf_mac);
7405
7406 /* enable transmit and receive for vf */
7407 reg = rd32(E1000_VFTE);
7408 wr32(E1000_VFTE, reg | BIT(vf));
7409 reg = rd32(E1000_VFRE);
7410 wr32(E1000_VFRE, reg | BIT(vf));
7411
7412 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7413
7414 /* reply to reset with ack and vf mac address */
7415 if (!is_zero_ether_addr(vf_mac)) {
7416 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7417 memcpy(addr, vf_mac, ETH_ALEN);
7418 } else {
7419 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7420 }
7421 igb_write_mbx(hw, msgbuf, 3, vf);
7422 }
7423
igb_flush_mac_table(struct igb_adapter * adapter)7424 static void igb_flush_mac_table(struct igb_adapter *adapter)
7425 {
7426 struct e1000_hw *hw = &adapter->hw;
7427 int i;
7428
7429 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7430 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7431 eth_zero_addr(adapter->mac_table[i].addr);
7432 adapter->mac_table[i].queue = 0;
7433 igb_rar_set_index(adapter, i);
7434 }
7435 }
7436
igb_available_rars(struct igb_adapter * adapter,u8 queue)7437 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7438 {
7439 struct e1000_hw *hw = &adapter->hw;
7440 /* do not count rar entries reserved for VFs MAC addresses */
7441 int rar_entries = hw->mac.rar_entry_count -
7442 adapter->vfs_allocated_count;
7443 int i, count = 0;
7444
7445 for (i = 0; i < rar_entries; i++) {
7446 /* do not count default entries */
7447 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7448 continue;
7449
7450 /* do not count "in use" entries for different queues */
7451 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7452 (adapter->mac_table[i].queue != queue))
7453 continue;
7454
7455 count++;
7456 }
7457
7458 return count;
7459 }
7460
7461 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7462 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7463 {
7464 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7465
7466 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7467 mac_table->queue = adapter->vfs_allocated_count;
7468 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7469
7470 igb_rar_set_index(adapter, 0);
7471 }
7472
7473 /* If the filter to be added and an already existing filter express
7474 * the same address and address type, it should be possible to only
7475 * override the other configurations, for example the queue to steer
7476 * traffic.
7477 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7478 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7479 const u8 *addr, const u8 flags)
7480 {
7481 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7482 return true;
7483
7484 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7485 (flags & IGB_MAC_STATE_SRC_ADDR))
7486 return false;
7487
7488 if (!ether_addr_equal(addr, entry->addr))
7489 return false;
7490
7491 return true;
7492 }
7493
7494 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7495 * 'flags' is used to indicate what kind of match is made, match is by
7496 * default for the destination address, if matching by source address
7497 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7498 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7499 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7500 const u8 *addr, const u8 queue,
7501 const u8 flags)
7502 {
7503 struct e1000_hw *hw = &adapter->hw;
7504 int rar_entries = hw->mac.rar_entry_count -
7505 adapter->vfs_allocated_count;
7506 int i;
7507
7508 if (is_zero_ether_addr(addr))
7509 return -EINVAL;
7510
7511 /* Search for the first empty entry in the MAC table.
7512 * Do not touch entries at the end of the table reserved for the VF MAC
7513 * addresses.
7514 */
7515 for (i = 0; i < rar_entries; i++) {
7516 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7517 addr, flags))
7518 continue;
7519
7520 ether_addr_copy(adapter->mac_table[i].addr, addr);
7521 adapter->mac_table[i].queue = queue;
7522 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7523
7524 igb_rar_set_index(adapter, i);
7525 return i;
7526 }
7527
7528 return -ENOSPC;
7529 }
7530
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7531 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7532 const u8 queue)
7533 {
7534 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7535 }
7536
7537 /* Remove a MAC filter for 'addr' directing matching traffic to
7538 * 'queue', 'flags' is used to indicate what kind of match need to be
7539 * removed, match is by default for the destination address, if
7540 * matching by source address is to be removed the flag
7541 * IGB_MAC_STATE_SRC_ADDR can be used.
7542 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7543 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7544 const u8 *addr, const u8 queue,
7545 const u8 flags)
7546 {
7547 struct e1000_hw *hw = &adapter->hw;
7548 int rar_entries = hw->mac.rar_entry_count -
7549 adapter->vfs_allocated_count;
7550 int i;
7551
7552 if (is_zero_ether_addr(addr))
7553 return -EINVAL;
7554
7555 /* Search for matching entry in the MAC table based on given address
7556 * and queue. Do not touch entries at the end of the table reserved
7557 * for the VF MAC addresses.
7558 */
7559 for (i = 0; i < rar_entries; i++) {
7560 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7561 continue;
7562 if ((adapter->mac_table[i].state & flags) != flags)
7563 continue;
7564 if (adapter->mac_table[i].queue != queue)
7565 continue;
7566 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7567 continue;
7568
7569 /* When a filter for the default address is "deleted",
7570 * we return it to its initial configuration
7571 */
7572 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7573 adapter->mac_table[i].state =
7574 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7575 adapter->mac_table[i].queue =
7576 adapter->vfs_allocated_count;
7577 } else {
7578 adapter->mac_table[i].state = 0;
7579 adapter->mac_table[i].queue = 0;
7580 eth_zero_addr(adapter->mac_table[i].addr);
7581 }
7582
7583 igb_rar_set_index(adapter, i);
7584 return 0;
7585 }
7586
7587 return -ENOENT;
7588 }
7589
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7590 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7591 const u8 queue)
7592 {
7593 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7594 }
7595
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7596 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7597 const u8 *addr, u8 queue, u8 flags)
7598 {
7599 struct e1000_hw *hw = &adapter->hw;
7600
7601 /* In theory, this should be supported on 82575 as well, but
7602 * that part wasn't easily accessible during development.
7603 */
7604 if (hw->mac.type != e1000_i210)
7605 return -EOPNOTSUPP;
7606
7607 return igb_add_mac_filter_flags(adapter, addr, queue,
7608 IGB_MAC_STATE_QUEUE_STEERING | flags);
7609 }
7610
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7611 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7612 const u8 *addr, u8 queue, u8 flags)
7613 {
7614 return igb_del_mac_filter_flags(adapter, addr, queue,
7615 IGB_MAC_STATE_QUEUE_STEERING | flags);
7616 }
7617
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7618 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7619 {
7620 struct igb_adapter *adapter = netdev_priv(netdev);
7621 int ret;
7622
7623 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7624
7625 return min_t(int, ret, 0);
7626 }
7627
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7628 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7629 {
7630 struct igb_adapter *adapter = netdev_priv(netdev);
7631
7632 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7633
7634 return 0;
7635 }
7636
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7637 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7638 const u32 info, const u8 *addr)
7639 {
7640 struct pci_dev *pdev = adapter->pdev;
7641 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7642 struct list_head *pos;
7643 struct vf_mac_filter *entry = NULL;
7644 int ret = 0;
7645
7646 switch (info) {
7647 case E1000_VF_MAC_FILTER_CLR:
7648 /* remove all unicast MAC filters related to the current VF */
7649 list_for_each(pos, &adapter->vf_macs.l) {
7650 entry = list_entry(pos, struct vf_mac_filter, l);
7651 if (entry->vf == vf) {
7652 entry->vf = -1;
7653 entry->free = true;
7654 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7655 }
7656 }
7657 break;
7658 case E1000_VF_MAC_FILTER_ADD:
7659 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7660 !vf_data->trusted) {
7661 dev_warn(&pdev->dev,
7662 "VF %d requested MAC filter but is administratively denied\n",
7663 vf);
7664 return -EINVAL;
7665 }
7666 if (!is_valid_ether_addr(addr)) {
7667 dev_warn(&pdev->dev,
7668 "VF %d attempted to set invalid MAC filter\n",
7669 vf);
7670 return -EINVAL;
7671 }
7672
7673 /* try to find empty slot in the list */
7674 list_for_each(pos, &adapter->vf_macs.l) {
7675 entry = list_entry(pos, struct vf_mac_filter, l);
7676 if (entry->free)
7677 break;
7678 }
7679
7680 if (entry && entry->free) {
7681 entry->free = false;
7682 entry->vf = vf;
7683 ether_addr_copy(entry->vf_mac, addr);
7684
7685 ret = igb_add_mac_filter(adapter, addr, vf);
7686 ret = min_t(int, ret, 0);
7687 } else {
7688 ret = -ENOSPC;
7689 }
7690
7691 if (ret == -ENOSPC)
7692 dev_warn(&pdev->dev,
7693 "VF %d has requested MAC filter but there is no space for it\n",
7694 vf);
7695 break;
7696 default:
7697 ret = -EINVAL;
7698 break;
7699 }
7700
7701 return ret;
7702 }
7703
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7704 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7705 {
7706 struct pci_dev *pdev = adapter->pdev;
7707 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7708 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7709
7710 /* The VF MAC Address is stored in a packed array of bytes
7711 * starting at the second 32 bit word of the msg array
7712 */
7713 unsigned char *addr = (unsigned char *)&msg[1];
7714 int ret = 0;
7715
7716 if (!info) {
7717 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7718 !vf_data->trusted) {
7719 dev_warn(&pdev->dev,
7720 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7721 vf);
7722 return -EINVAL;
7723 }
7724
7725 if (!is_valid_ether_addr(addr)) {
7726 dev_warn(&pdev->dev,
7727 "VF %d attempted to set invalid MAC\n",
7728 vf);
7729 return -EINVAL;
7730 }
7731
7732 ret = igb_set_vf_mac(adapter, vf, addr);
7733 } else {
7734 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7735 }
7736
7737 return ret;
7738 }
7739
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7740 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7741 {
7742 struct e1000_hw *hw = &adapter->hw;
7743 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7744 u32 msg = E1000_VT_MSGTYPE_NACK;
7745
7746 /* if device isn't clear to send it shouldn't be reading either */
7747 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7748 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7749 igb_write_mbx(hw, &msg, 1, vf);
7750 vf_data->last_nack = jiffies;
7751 }
7752 }
7753
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7754 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7755 {
7756 struct pci_dev *pdev = adapter->pdev;
7757 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7758 struct e1000_hw *hw = &adapter->hw;
7759 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7760 s32 retval;
7761
7762 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7763
7764 if (retval) {
7765 /* if receive failed revoke VF CTS stats and restart init */
7766 dev_err(&pdev->dev, "Error receiving message from VF\n");
7767 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7768 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7769 goto unlock;
7770 goto out;
7771 }
7772
7773 /* this is a message we already processed, do nothing */
7774 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7775 goto unlock;
7776
7777 /* until the vf completes a reset it should not be
7778 * allowed to start any configuration.
7779 */
7780 if (msgbuf[0] == E1000_VF_RESET) {
7781 /* unlocks mailbox */
7782 igb_vf_reset_msg(adapter, vf);
7783 return;
7784 }
7785
7786 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7787 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7788 goto unlock;
7789 retval = -1;
7790 goto out;
7791 }
7792
7793 switch ((msgbuf[0] & 0xFFFF)) {
7794 case E1000_VF_SET_MAC_ADDR:
7795 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7796 break;
7797 case E1000_VF_SET_PROMISC:
7798 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7799 break;
7800 case E1000_VF_SET_MULTICAST:
7801 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7802 break;
7803 case E1000_VF_SET_LPE:
7804 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7805 break;
7806 case E1000_VF_SET_VLAN:
7807 retval = -1;
7808 if (vf_data->pf_vlan)
7809 dev_warn(&pdev->dev,
7810 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7811 vf);
7812 else
7813 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7814 break;
7815 default:
7816 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7817 retval = -1;
7818 break;
7819 }
7820
7821 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7822 out:
7823 /* notify the VF of the results of what it sent us */
7824 if (retval)
7825 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7826 else
7827 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7828
7829 /* unlocks mailbox */
7830 igb_write_mbx(hw, msgbuf, 1, vf);
7831 return;
7832
7833 unlock:
7834 igb_unlock_mbx(hw, vf);
7835 }
7836
igb_msg_task(struct igb_adapter * adapter)7837 static void igb_msg_task(struct igb_adapter *adapter)
7838 {
7839 struct e1000_hw *hw = &adapter->hw;
7840 u32 vf;
7841
7842 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7843 /* process any reset requests */
7844 if (!igb_check_for_rst(hw, vf))
7845 igb_vf_reset_event(adapter, vf);
7846
7847 /* process any messages pending */
7848 if (!igb_check_for_msg(hw, vf))
7849 igb_rcv_msg_from_vf(adapter, vf);
7850
7851 /* process any acks */
7852 if (!igb_check_for_ack(hw, vf))
7853 igb_rcv_ack_from_vf(adapter, vf);
7854 }
7855 }
7856
7857 /**
7858 * igb_set_uta - Set unicast filter table address
7859 * @adapter: board private structure
7860 * @set: boolean indicating if we are setting or clearing bits
7861 *
7862 * The unicast table address is a register array of 32-bit registers.
7863 * The table is meant to be used in a way similar to how the MTA is used
7864 * however due to certain limitations in the hardware it is necessary to
7865 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7866 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7867 **/
igb_set_uta(struct igb_adapter * adapter,bool set)7868 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7869 {
7870 struct e1000_hw *hw = &adapter->hw;
7871 u32 uta = set ? ~0 : 0;
7872 int i;
7873
7874 /* we only need to do this if VMDq is enabled */
7875 if (!adapter->vfs_allocated_count)
7876 return;
7877
7878 for (i = hw->mac.uta_reg_count; i--;)
7879 array_wr32(E1000_UTA, i, uta);
7880 }
7881
7882 /**
7883 * igb_intr_msi - Interrupt Handler
7884 * @irq: interrupt number
7885 * @data: pointer to a network interface device structure
7886 **/
igb_intr_msi(int irq,void * data)7887 static irqreturn_t igb_intr_msi(int irq, void *data)
7888 {
7889 struct igb_adapter *adapter = data;
7890 struct igb_q_vector *q_vector = adapter->q_vector[0];
7891 struct e1000_hw *hw = &adapter->hw;
7892 /* read ICR disables interrupts using IAM */
7893 u32 icr = rd32(E1000_ICR);
7894
7895 igb_write_itr(q_vector);
7896
7897 if (icr & E1000_ICR_DRSTA)
7898 schedule_work(&adapter->reset_task);
7899
7900 if (icr & E1000_ICR_DOUTSYNC) {
7901 /* HW is reporting DMA is out of sync */
7902 adapter->stats.doosync++;
7903 }
7904
7905 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7906 hw->mac.get_link_status = 1;
7907 if (!test_bit(__IGB_DOWN, &adapter->state))
7908 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7909 }
7910
7911 if (icr & E1000_ICR_TS)
7912 igb_tsync_interrupt(adapter);
7913
7914 napi_schedule(&q_vector->napi);
7915
7916 return IRQ_HANDLED;
7917 }
7918
7919 /**
7920 * igb_intr - Legacy Interrupt Handler
7921 * @irq: interrupt number
7922 * @data: pointer to a network interface device structure
7923 **/
igb_intr(int irq,void * data)7924 static irqreturn_t igb_intr(int irq, void *data)
7925 {
7926 struct igb_adapter *adapter = data;
7927 struct igb_q_vector *q_vector = adapter->q_vector[0];
7928 struct e1000_hw *hw = &adapter->hw;
7929 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7930 * need for the IMC write
7931 */
7932 u32 icr = rd32(E1000_ICR);
7933
7934 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7935 * not set, then the adapter didn't send an interrupt
7936 */
7937 if (!(icr & E1000_ICR_INT_ASSERTED))
7938 return IRQ_NONE;
7939
7940 igb_write_itr(q_vector);
7941
7942 if (icr & E1000_ICR_DRSTA)
7943 schedule_work(&adapter->reset_task);
7944
7945 if (icr & E1000_ICR_DOUTSYNC) {
7946 /* HW is reporting DMA is out of sync */
7947 adapter->stats.doosync++;
7948 }
7949
7950 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7951 hw->mac.get_link_status = 1;
7952 /* guard against interrupt when we're going down */
7953 if (!test_bit(__IGB_DOWN, &adapter->state))
7954 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7955 }
7956
7957 if (icr & E1000_ICR_TS)
7958 igb_tsync_interrupt(adapter);
7959
7960 napi_schedule(&q_vector->napi);
7961
7962 return IRQ_HANDLED;
7963 }
7964
igb_ring_irq_enable(struct igb_q_vector * q_vector)7965 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7966 {
7967 struct igb_adapter *adapter = q_vector->adapter;
7968 struct e1000_hw *hw = &adapter->hw;
7969
7970 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7971 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7972 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7973 igb_set_itr(q_vector);
7974 else
7975 igb_update_ring_itr(q_vector);
7976 }
7977
7978 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7979 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7980 wr32(E1000_EIMS, q_vector->eims_value);
7981 else
7982 igb_irq_enable(adapter);
7983 }
7984 }
7985
7986 /**
7987 * igb_poll - NAPI Rx polling callback
7988 * @napi: napi polling structure
7989 * @budget: count of how many packets we should handle
7990 **/
igb_poll(struct napi_struct * napi,int budget)7991 static int igb_poll(struct napi_struct *napi, int budget)
7992 {
7993 struct igb_q_vector *q_vector = container_of(napi,
7994 struct igb_q_vector,
7995 napi);
7996 bool clean_complete = true;
7997 int work_done = 0;
7998
7999 #ifdef CONFIG_IGB_DCA
8000 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8001 igb_update_dca(q_vector);
8002 #endif
8003 if (q_vector->tx.ring)
8004 clean_complete = igb_clean_tx_irq(q_vector, budget);
8005
8006 if (q_vector->rx.ring) {
8007 int cleaned = igb_clean_rx_irq(q_vector, budget);
8008
8009 work_done += cleaned;
8010 if (cleaned >= budget)
8011 clean_complete = false;
8012 }
8013
8014 /* If all work not completed, return budget and keep polling */
8015 if (!clean_complete)
8016 return budget;
8017
8018 /* Exit the polling mode, but don't re-enable interrupts if stack might
8019 * poll us due to busy-polling
8020 */
8021 if (likely(napi_complete_done(napi, work_done)))
8022 igb_ring_irq_enable(q_vector);
8023
8024 return min(work_done, budget - 1);
8025 }
8026
8027 /**
8028 * igb_clean_tx_irq - Reclaim resources after transmit completes
8029 * @q_vector: pointer to q_vector containing needed info
8030 * @napi_budget: Used to determine if we are in netpoll
8031 *
8032 * returns true if ring is completely cleaned
8033 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8034 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8035 {
8036 struct igb_adapter *adapter = q_vector->adapter;
8037 struct igb_ring *tx_ring = q_vector->tx.ring;
8038 struct igb_tx_buffer *tx_buffer;
8039 union e1000_adv_tx_desc *tx_desc;
8040 unsigned int total_bytes = 0, total_packets = 0;
8041 unsigned int budget = q_vector->tx.work_limit;
8042 unsigned int i = tx_ring->next_to_clean;
8043
8044 if (test_bit(__IGB_DOWN, &adapter->state))
8045 return true;
8046
8047 tx_buffer = &tx_ring->tx_buffer_info[i];
8048 tx_desc = IGB_TX_DESC(tx_ring, i);
8049 i -= tx_ring->count;
8050
8051 do {
8052 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8053
8054 /* if next_to_watch is not set then there is no work pending */
8055 if (!eop_desc)
8056 break;
8057
8058 /* prevent any other reads prior to eop_desc */
8059 smp_rmb();
8060
8061 /* if DD is not set pending work has not been completed */
8062 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8063 break;
8064
8065 /* clear next_to_watch to prevent false hangs */
8066 tx_buffer->next_to_watch = NULL;
8067
8068 /* update the statistics for this packet */
8069 total_bytes += tx_buffer->bytecount;
8070 total_packets += tx_buffer->gso_segs;
8071
8072 /* free the skb */
8073 if (tx_buffer->type == IGB_TYPE_SKB)
8074 napi_consume_skb(tx_buffer->skb, napi_budget);
8075 else
8076 xdp_return_frame(tx_buffer->xdpf);
8077
8078 /* unmap skb header data */
8079 dma_unmap_single(tx_ring->dev,
8080 dma_unmap_addr(tx_buffer, dma),
8081 dma_unmap_len(tx_buffer, len),
8082 DMA_TO_DEVICE);
8083
8084 /* clear tx_buffer data */
8085 dma_unmap_len_set(tx_buffer, len, 0);
8086
8087 /* clear last DMA location and unmap remaining buffers */
8088 while (tx_desc != eop_desc) {
8089 tx_buffer++;
8090 tx_desc++;
8091 i++;
8092 if (unlikely(!i)) {
8093 i -= tx_ring->count;
8094 tx_buffer = tx_ring->tx_buffer_info;
8095 tx_desc = IGB_TX_DESC(tx_ring, 0);
8096 }
8097
8098 /* unmap any remaining paged data */
8099 if (dma_unmap_len(tx_buffer, len)) {
8100 dma_unmap_page(tx_ring->dev,
8101 dma_unmap_addr(tx_buffer, dma),
8102 dma_unmap_len(tx_buffer, len),
8103 DMA_TO_DEVICE);
8104 dma_unmap_len_set(tx_buffer, len, 0);
8105 }
8106 }
8107
8108 /* move us one more past the eop_desc for start of next pkt */
8109 tx_buffer++;
8110 tx_desc++;
8111 i++;
8112 if (unlikely(!i)) {
8113 i -= tx_ring->count;
8114 tx_buffer = tx_ring->tx_buffer_info;
8115 tx_desc = IGB_TX_DESC(tx_ring, 0);
8116 }
8117
8118 /* issue prefetch for next Tx descriptor */
8119 prefetch(tx_desc);
8120
8121 /* update budget accounting */
8122 budget--;
8123 } while (likely(budget));
8124
8125 netdev_tx_completed_queue(txring_txq(tx_ring),
8126 total_packets, total_bytes);
8127 i += tx_ring->count;
8128 tx_ring->next_to_clean = i;
8129 u64_stats_update_begin(&tx_ring->tx_syncp);
8130 tx_ring->tx_stats.bytes += total_bytes;
8131 tx_ring->tx_stats.packets += total_packets;
8132 u64_stats_update_end(&tx_ring->tx_syncp);
8133 q_vector->tx.total_bytes += total_bytes;
8134 q_vector->tx.total_packets += total_packets;
8135
8136 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8137 struct e1000_hw *hw = &adapter->hw;
8138
8139 /* Detect a transmit hang in hardware, this serializes the
8140 * check with the clearing of time_stamp and movement of i
8141 */
8142 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8143 if (tx_buffer->next_to_watch &&
8144 time_after(jiffies, tx_buffer->time_stamp +
8145 (adapter->tx_timeout_factor * HZ)) &&
8146 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8147
8148 /* detected Tx unit hang */
8149 dev_err(tx_ring->dev,
8150 "Detected Tx Unit Hang\n"
8151 " Tx Queue <%d>\n"
8152 " TDH <%x>\n"
8153 " TDT <%x>\n"
8154 " next_to_use <%x>\n"
8155 " next_to_clean <%x>\n"
8156 "buffer_info[next_to_clean]\n"
8157 " time_stamp <%lx>\n"
8158 " next_to_watch <%p>\n"
8159 " jiffies <%lx>\n"
8160 " desc.status <%x>\n",
8161 tx_ring->queue_index,
8162 rd32(E1000_TDH(tx_ring->reg_idx)),
8163 readl(tx_ring->tail),
8164 tx_ring->next_to_use,
8165 tx_ring->next_to_clean,
8166 tx_buffer->time_stamp,
8167 tx_buffer->next_to_watch,
8168 jiffies,
8169 tx_buffer->next_to_watch->wb.status);
8170 netif_stop_subqueue(tx_ring->netdev,
8171 tx_ring->queue_index);
8172
8173 /* we are about to reset, no point in enabling stuff */
8174 return true;
8175 }
8176 }
8177
8178 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8179 if (unlikely(total_packets &&
8180 netif_carrier_ok(tx_ring->netdev) &&
8181 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8182 /* Make sure that anybody stopping the queue after this
8183 * sees the new next_to_clean.
8184 */
8185 smp_mb();
8186 if (__netif_subqueue_stopped(tx_ring->netdev,
8187 tx_ring->queue_index) &&
8188 !(test_bit(__IGB_DOWN, &adapter->state))) {
8189 netif_wake_subqueue(tx_ring->netdev,
8190 tx_ring->queue_index);
8191
8192 u64_stats_update_begin(&tx_ring->tx_syncp);
8193 tx_ring->tx_stats.restart_queue++;
8194 u64_stats_update_end(&tx_ring->tx_syncp);
8195 }
8196 }
8197
8198 return !!budget;
8199 }
8200
8201 /**
8202 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8203 * @rx_ring: rx descriptor ring to store buffers on
8204 * @old_buff: donor buffer to have page reused
8205 *
8206 * Synchronizes page for reuse by the adapter
8207 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8208 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8209 struct igb_rx_buffer *old_buff)
8210 {
8211 struct igb_rx_buffer *new_buff;
8212 u16 nta = rx_ring->next_to_alloc;
8213
8214 new_buff = &rx_ring->rx_buffer_info[nta];
8215
8216 /* update, and store next to alloc */
8217 nta++;
8218 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8219
8220 /* Transfer page from old buffer to new buffer.
8221 * Move each member individually to avoid possible store
8222 * forwarding stalls.
8223 */
8224 new_buff->dma = old_buff->dma;
8225 new_buff->page = old_buff->page;
8226 new_buff->page_offset = old_buff->page_offset;
8227 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8228 }
8229
igb_page_is_reserved(struct page * page)8230 static inline bool igb_page_is_reserved(struct page *page)
8231 {
8232 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
8233 }
8234
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer)8235 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
8236 {
8237 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8238 struct page *page = rx_buffer->page;
8239
8240 /* avoid re-using remote pages */
8241 if (unlikely(igb_page_is_reserved(page)))
8242 return false;
8243
8244 #if (PAGE_SIZE < 8192)
8245 /* if we are only owner of page we can reuse it */
8246 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
8247 return false;
8248 #else
8249 #define IGB_LAST_OFFSET \
8250 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8251
8252 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8253 return false;
8254 #endif
8255
8256 /* If we have drained the page fragment pool we need to update
8257 * the pagecnt_bias and page count so that we fully restock the
8258 * number of references the driver holds.
8259 */
8260 if (unlikely(pagecnt_bias == 1)) {
8261 page_ref_add(page, USHRT_MAX - 1);
8262 rx_buffer->pagecnt_bias = USHRT_MAX;
8263 }
8264
8265 return true;
8266 }
8267
8268 /**
8269 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8270 * @rx_ring: rx descriptor ring to transact packets on
8271 * @rx_buffer: buffer containing page to add
8272 * @skb: sk_buff to place the data into
8273 * @size: size of buffer to be added
8274 *
8275 * This function will add the data contained in rx_buffer->page to the skb.
8276 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8277 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8278 struct igb_rx_buffer *rx_buffer,
8279 struct sk_buff *skb,
8280 unsigned int size)
8281 {
8282 #if (PAGE_SIZE < 8192)
8283 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8284 #else
8285 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8286 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8287 SKB_DATA_ALIGN(size);
8288 #endif
8289 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8290 rx_buffer->page_offset, size, truesize);
8291 #if (PAGE_SIZE < 8192)
8292 rx_buffer->page_offset ^= truesize;
8293 #else
8294 rx_buffer->page_offset += truesize;
8295 #endif
8296 }
8297
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,union e1000_adv_rx_desc * rx_desc)8298 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8299 struct igb_rx_buffer *rx_buffer,
8300 struct xdp_buff *xdp,
8301 union e1000_adv_rx_desc *rx_desc)
8302 {
8303 #if (PAGE_SIZE < 8192)
8304 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8305 #else
8306 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8307 xdp->data_hard_start);
8308 #endif
8309 unsigned int size = xdp->data_end - xdp->data;
8310 unsigned int headlen;
8311 struct sk_buff *skb;
8312
8313 /* prefetch first cache line of first page */
8314 net_prefetch(xdp->data);
8315
8316 /* allocate a skb to store the frags */
8317 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8318 if (unlikely(!skb))
8319 return NULL;
8320
8321 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8322 igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb);
8323 xdp->data += IGB_TS_HDR_LEN;
8324 size -= IGB_TS_HDR_LEN;
8325 }
8326
8327 /* Determine available headroom for copy */
8328 headlen = size;
8329 if (headlen > IGB_RX_HDR_LEN)
8330 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8331
8332 /* align pull length to size of long to optimize memcpy performance */
8333 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8334
8335 /* update all of the pointers */
8336 size -= headlen;
8337 if (size) {
8338 skb_add_rx_frag(skb, 0, rx_buffer->page,
8339 (xdp->data + headlen) - page_address(rx_buffer->page),
8340 size, truesize);
8341 #if (PAGE_SIZE < 8192)
8342 rx_buffer->page_offset ^= truesize;
8343 #else
8344 rx_buffer->page_offset += truesize;
8345 #endif
8346 } else {
8347 rx_buffer->pagecnt_bias++;
8348 }
8349
8350 return skb;
8351 }
8352
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,union e1000_adv_rx_desc * rx_desc)8353 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8354 struct igb_rx_buffer *rx_buffer,
8355 struct xdp_buff *xdp,
8356 union e1000_adv_rx_desc *rx_desc)
8357 {
8358 #if (PAGE_SIZE < 8192)
8359 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8360 #else
8361 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8362 SKB_DATA_ALIGN(xdp->data_end -
8363 xdp->data_hard_start);
8364 #endif
8365 unsigned int metasize = xdp->data - xdp->data_meta;
8366 struct sk_buff *skb;
8367
8368 /* prefetch first cache line of first page */
8369 net_prefetch(xdp->data_meta);
8370
8371 /* build an skb around the page buffer */
8372 skb = build_skb(xdp->data_hard_start, truesize);
8373 if (unlikely(!skb))
8374 return NULL;
8375
8376 /* update pointers within the skb to store the data */
8377 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8378 __skb_put(skb, xdp->data_end - xdp->data);
8379
8380 if (metasize)
8381 skb_metadata_set(skb, metasize);
8382
8383 /* pull timestamp out of packet data */
8384 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8385 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8386 __skb_pull(skb, IGB_TS_HDR_LEN);
8387 }
8388
8389 /* update buffer offset */
8390 #if (PAGE_SIZE < 8192)
8391 rx_buffer->page_offset ^= truesize;
8392 #else
8393 rx_buffer->page_offset += truesize;
8394 #endif
8395
8396 return skb;
8397 }
8398
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8399 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8400 struct igb_ring *rx_ring,
8401 struct xdp_buff *xdp)
8402 {
8403 int err, result = IGB_XDP_PASS;
8404 struct bpf_prog *xdp_prog;
8405 u32 act;
8406
8407 rcu_read_lock();
8408 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8409
8410 if (!xdp_prog)
8411 goto xdp_out;
8412
8413 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8414
8415 act = bpf_prog_run_xdp(xdp_prog, xdp);
8416 switch (act) {
8417 case XDP_PASS:
8418 break;
8419 case XDP_TX:
8420 result = igb_xdp_xmit_back(adapter, xdp);
8421 break;
8422 case XDP_REDIRECT:
8423 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8424 if (!err)
8425 result = IGB_XDP_REDIR;
8426 else
8427 result = IGB_XDP_CONSUMED;
8428 break;
8429 default:
8430 bpf_warn_invalid_xdp_action(act);
8431 fallthrough;
8432 case XDP_ABORTED:
8433 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8434 fallthrough;
8435 case XDP_DROP:
8436 result = IGB_XDP_CONSUMED;
8437 break;
8438 }
8439 xdp_out:
8440 rcu_read_unlock();
8441 return ERR_PTR(-result);
8442 }
8443
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8444 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8445 unsigned int size)
8446 {
8447 unsigned int truesize;
8448
8449 #if (PAGE_SIZE < 8192)
8450 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8451 #else
8452 truesize = ring_uses_build_skb(rx_ring) ?
8453 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8454 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8455 SKB_DATA_ALIGN(size);
8456 #endif
8457 return truesize;
8458 }
8459
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8460 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8461 struct igb_rx_buffer *rx_buffer,
8462 unsigned int size)
8463 {
8464 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8465 #if (PAGE_SIZE < 8192)
8466 rx_buffer->page_offset ^= truesize;
8467 #else
8468 rx_buffer->page_offset += truesize;
8469 #endif
8470 }
8471
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8472 static inline void igb_rx_checksum(struct igb_ring *ring,
8473 union e1000_adv_rx_desc *rx_desc,
8474 struct sk_buff *skb)
8475 {
8476 skb_checksum_none_assert(skb);
8477
8478 /* Ignore Checksum bit is set */
8479 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8480 return;
8481
8482 /* Rx checksum disabled via ethtool */
8483 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8484 return;
8485
8486 /* TCP/UDP checksum error bit is set */
8487 if (igb_test_staterr(rx_desc,
8488 E1000_RXDEXT_STATERR_TCPE |
8489 E1000_RXDEXT_STATERR_IPE)) {
8490 /* work around errata with sctp packets where the TCPE aka
8491 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8492 * packets, (aka let the stack check the crc32c)
8493 */
8494 if (!((skb->len == 60) &&
8495 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8496 u64_stats_update_begin(&ring->rx_syncp);
8497 ring->rx_stats.csum_err++;
8498 u64_stats_update_end(&ring->rx_syncp);
8499 }
8500 /* let the stack verify checksum errors */
8501 return;
8502 }
8503 /* It must be a TCP or UDP packet with a valid checksum */
8504 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8505 E1000_RXD_STAT_UDPCS))
8506 skb->ip_summed = CHECKSUM_UNNECESSARY;
8507
8508 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8509 le32_to_cpu(rx_desc->wb.upper.status_error));
8510 }
8511
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8512 static inline void igb_rx_hash(struct igb_ring *ring,
8513 union e1000_adv_rx_desc *rx_desc,
8514 struct sk_buff *skb)
8515 {
8516 if (ring->netdev->features & NETIF_F_RXHASH)
8517 skb_set_hash(skb,
8518 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8519 PKT_HASH_TYPE_L3);
8520 }
8521
8522 /**
8523 * igb_is_non_eop - process handling of non-EOP buffers
8524 * @rx_ring: Rx ring being processed
8525 * @rx_desc: Rx descriptor for current buffer
8526 *
8527 * This function updates next to clean. If the buffer is an EOP buffer
8528 * this function exits returning false, otherwise it will place the
8529 * sk_buff in the next buffer to be chained and return true indicating
8530 * that this is in fact a non-EOP buffer.
8531 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8532 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8533 union e1000_adv_rx_desc *rx_desc)
8534 {
8535 u32 ntc = rx_ring->next_to_clean + 1;
8536
8537 /* fetch, update, and store next to clean */
8538 ntc = (ntc < rx_ring->count) ? ntc : 0;
8539 rx_ring->next_to_clean = ntc;
8540
8541 prefetch(IGB_RX_DESC(rx_ring, ntc));
8542
8543 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8544 return false;
8545
8546 return true;
8547 }
8548
8549 /**
8550 * igb_cleanup_headers - Correct corrupted or empty headers
8551 * @rx_ring: rx descriptor ring packet is being transacted on
8552 * @rx_desc: pointer to the EOP Rx descriptor
8553 * @skb: pointer to current skb being fixed
8554 *
8555 * Address the case where we are pulling data in on pages only
8556 * and as such no data is present in the skb header.
8557 *
8558 * In addition if skb is not at least 60 bytes we need to pad it so that
8559 * it is large enough to qualify as a valid Ethernet frame.
8560 *
8561 * Returns true if an error was encountered and skb was freed.
8562 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8563 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8564 union e1000_adv_rx_desc *rx_desc,
8565 struct sk_buff *skb)
8566 {
8567 /* XDP packets use error pointer so abort at this point */
8568 if (IS_ERR(skb))
8569 return true;
8570
8571 if (unlikely((igb_test_staterr(rx_desc,
8572 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8573 struct net_device *netdev = rx_ring->netdev;
8574 if (!(netdev->features & NETIF_F_RXALL)) {
8575 dev_kfree_skb_any(skb);
8576 return true;
8577 }
8578 }
8579
8580 /* if eth_skb_pad returns an error the skb was freed */
8581 if (eth_skb_pad(skb))
8582 return true;
8583
8584 return false;
8585 }
8586
8587 /**
8588 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8589 * @rx_ring: rx descriptor ring packet is being transacted on
8590 * @rx_desc: pointer to the EOP Rx descriptor
8591 * @skb: pointer to current skb being populated
8592 *
8593 * This function checks the ring, descriptor, and packet information in
8594 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8595 * other fields within the skb.
8596 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8597 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8598 union e1000_adv_rx_desc *rx_desc,
8599 struct sk_buff *skb)
8600 {
8601 struct net_device *dev = rx_ring->netdev;
8602
8603 igb_rx_hash(rx_ring, rx_desc, skb);
8604
8605 igb_rx_checksum(rx_ring, rx_desc, skb);
8606
8607 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8608 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8609 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8610
8611 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8612 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8613 u16 vid;
8614
8615 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8616 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8617 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8618 else
8619 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8620
8621 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8622 }
8623
8624 skb_record_rx_queue(skb, rx_ring->queue_index);
8625
8626 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8627 }
8628
igb_rx_offset(struct igb_ring * rx_ring)8629 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8630 {
8631 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8632 }
8633
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size)8634 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8635 const unsigned int size)
8636 {
8637 struct igb_rx_buffer *rx_buffer;
8638
8639 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8640 prefetchw(rx_buffer->page);
8641
8642 /* we are reusing so sync this buffer for CPU use */
8643 dma_sync_single_range_for_cpu(rx_ring->dev,
8644 rx_buffer->dma,
8645 rx_buffer->page_offset,
8646 size,
8647 DMA_FROM_DEVICE);
8648
8649 rx_buffer->pagecnt_bias--;
8650
8651 return rx_buffer;
8652 }
8653
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer)8654 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8655 struct igb_rx_buffer *rx_buffer)
8656 {
8657 if (igb_can_reuse_rx_page(rx_buffer)) {
8658 /* hand second half of page back to the ring */
8659 igb_reuse_rx_page(rx_ring, rx_buffer);
8660 } else {
8661 /* We are not reusing the buffer so unmap it and free
8662 * any references we are holding to it
8663 */
8664 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8665 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8666 IGB_RX_DMA_ATTR);
8667 __page_frag_cache_drain(rx_buffer->page,
8668 rx_buffer->pagecnt_bias);
8669 }
8670
8671 /* clear contents of rx_buffer */
8672 rx_buffer->page = NULL;
8673 }
8674
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8675 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8676 {
8677 struct igb_adapter *adapter = q_vector->adapter;
8678 struct igb_ring *rx_ring = q_vector->rx.ring;
8679 struct sk_buff *skb = rx_ring->skb;
8680 unsigned int total_bytes = 0, total_packets = 0;
8681 u16 cleaned_count = igb_desc_unused(rx_ring);
8682 unsigned int xdp_xmit = 0;
8683 struct xdp_buff xdp;
8684
8685 xdp.rxq = &rx_ring->xdp_rxq;
8686
8687 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8688 #if (PAGE_SIZE < 8192)
8689 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8690 #endif
8691
8692 while (likely(total_packets < budget)) {
8693 union e1000_adv_rx_desc *rx_desc;
8694 struct igb_rx_buffer *rx_buffer;
8695 unsigned int size;
8696
8697 /* return some buffers to hardware, one at a time is too slow */
8698 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8699 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8700 cleaned_count = 0;
8701 }
8702
8703 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8704 size = le16_to_cpu(rx_desc->wb.upper.length);
8705 if (!size)
8706 break;
8707
8708 /* This memory barrier is needed to keep us from reading
8709 * any other fields out of the rx_desc until we know the
8710 * descriptor has been written back
8711 */
8712 dma_rmb();
8713
8714 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8715
8716 /* retrieve a buffer from the ring */
8717 if (!skb) {
8718 xdp.data = page_address(rx_buffer->page) +
8719 rx_buffer->page_offset;
8720 xdp.data_meta = xdp.data;
8721 xdp.data_hard_start = xdp.data -
8722 igb_rx_offset(rx_ring);
8723 xdp.data_end = xdp.data + size;
8724 #if (PAGE_SIZE > 4096)
8725 /* At larger PAGE_SIZE, frame_sz depend on len size */
8726 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8727 #endif
8728 skb = igb_run_xdp(adapter, rx_ring, &xdp);
8729 }
8730
8731 if (IS_ERR(skb)) {
8732 unsigned int xdp_res = -PTR_ERR(skb);
8733
8734 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8735 xdp_xmit |= xdp_res;
8736 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8737 } else {
8738 rx_buffer->pagecnt_bias++;
8739 }
8740 total_packets++;
8741 total_bytes += size;
8742 } else if (skb)
8743 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8744 else if (ring_uses_build_skb(rx_ring))
8745 skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc);
8746 else
8747 skb = igb_construct_skb(rx_ring, rx_buffer,
8748 &xdp, rx_desc);
8749
8750 /* exit if we failed to retrieve a buffer */
8751 if (!skb) {
8752 rx_ring->rx_stats.alloc_failed++;
8753 rx_buffer->pagecnt_bias++;
8754 break;
8755 }
8756
8757 igb_put_rx_buffer(rx_ring, rx_buffer);
8758 cleaned_count++;
8759
8760 /* fetch next buffer in frame if non-eop */
8761 if (igb_is_non_eop(rx_ring, rx_desc))
8762 continue;
8763
8764 /* verify the packet layout is correct */
8765 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8766 skb = NULL;
8767 continue;
8768 }
8769
8770 /* probably a little skewed due to removing CRC */
8771 total_bytes += skb->len;
8772
8773 /* populate checksum, timestamp, VLAN, and protocol */
8774 igb_process_skb_fields(rx_ring, rx_desc, skb);
8775
8776 napi_gro_receive(&q_vector->napi, skb);
8777
8778 /* reset skb pointer */
8779 skb = NULL;
8780
8781 /* update budget accounting */
8782 total_packets++;
8783 }
8784
8785 /* place incomplete frames back on ring for completion */
8786 rx_ring->skb = skb;
8787
8788 if (xdp_xmit & IGB_XDP_REDIR)
8789 xdp_do_flush();
8790
8791 if (xdp_xmit & IGB_XDP_TX) {
8792 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8793
8794 igb_xdp_ring_update_tail(tx_ring);
8795 }
8796
8797 u64_stats_update_begin(&rx_ring->rx_syncp);
8798 rx_ring->rx_stats.packets += total_packets;
8799 rx_ring->rx_stats.bytes += total_bytes;
8800 u64_stats_update_end(&rx_ring->rx_syncp);
8801 q_vector->rx.total_packets += total_packets;
8802 q_vector->rx.total_bytes += total_bytes;
8803
8804 if (cleaned_count)
8805 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8806
8807 return total_packets;
8808 }
8809
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8810 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8811 struct igb_rx_buffer *bi)
8812 {
8813 struct page *page = bi->page;
8814 dma_addr_t dma;
8815
8816 /* since we are recycling buffers we should seldom need to alloc */
8817 if (likely(page))
8818 return true;
8819
8820 /* alloc new page for storage */
8821 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8822 if (unlikely(!page)) {
8823 rx_ring->rx_stats.alloc_failed++;
8824 return false;
8825 }
8826
8827 /* map page for use */
8828 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8829 igb_rx_pg_size(rx_ring),
8830 DMA_FROM_DEVICE,
8831 IGB_RX_DMA_ATTR);
8832
8833 /* if mapping failed free memory back to system since
8834 * there isn't much point in holding memory we can't use
8835 */
8836 if (dma_mapping_error(rx_ring->dev, dma)) {
8837 __free_pages(page, igb_rx_pg_order(rx_ring));
8838
8839 rx_ring->rx_stats.alloc_failed++;
8840 return false;
8841 }
8842
8843 bi->dma = dma;
8844 bi->page = page;
8845 bi->page_offset = igb_rx_offset(rx_ring);
8846 page_ref_add(page, USHRT_MAX - 1);
8847 bi->pagecnt_bias = USHRT_MAX;
8848
8849 return true;
8850 }
8851
8852 /**
8853 * igb_alloc_rx_buffers - Replace used receive buffers
8854 * @rx_ring: rx descriptor ring to allocate new receive buffers
8855 * @cleaned_count: count of buffers to allocate
8856 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8857 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8858 {
8859 union e1000_adv_rx_desc *rx_desc;
8860 struct igb_rx_buffer *bi;
8861 u16 i = rx_ring->next_to_use;
8862 u16 bufsz;
8863
8864 /* nothing to do */
8865 if (!cleaned_count)
8866 return;
8867
8868 rx_desc = IGB_RX_DESC(rx_ring, i);
8869 bi = &rx_ring->rx_buffer_info[i];
8870 i -= rx_ring->count;
8871
8872 bufsz = igb_rx_bufsz(rx_ring);
8873
8874 do {
8875 if (!igb_alloc_mapped_page(rx_ring, bi))
8876 break;
8877
8878 /* sync the buffer for use by the device */
8879 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8880 bi->page_offset, bufsz,
8881 DMA_FROM_DEVICE);
8882
8883 /* Refresh the desc even if buffer_addrs didn't change
8884 * because each write-back erases this info.
8885 */
8886 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8887
8888 rx_desc++;
8889 bi++;
8890 i++;
8891 if (unlikely(!i)) {
8892 rx_desc = IGB_RX_DESC(rx_ring, 0);
8893 bi = rx_ring->rx_buffer_info;
8894 i -= rx_ring->count;
8895 }
8896
8897 /* clear the length for the next_to_use descriptor */
8898 rx_desc->wb.upper.length = 0;
8899
8900 cleaned_count--;
8901 } while (cleaned_count);
8902
8903 i += rx_ring->count;
8904
8905 if (rx_ring->next_to_use != i) {
8906 /* record the next descriptor to use */
8907 rx_ring->next_to_use = i;
8908
8909 /* update next to alloc since we have filled the ring */
8910 rx_ring->next_to_alloc = i;
8911
8912 /* Force memory writes to complete before letting h/w
8913 * know there are new descriptors to fetch. (Only
8914 * applicable for weak-ordered memory model archs,
8915 * such as IA-64).
8916 */
8917 dma_wmb();
8918 writel(i, rx_ring->tail);
8919 }
8920 }
8921
8922 /**
8923 * igb_mii_ioctl -
8924 * @netdev: pointer to netdev struct
8925 * @ifr: interface structure
8926 * @cmd: ioctl command to execute
8927 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8928 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8929 {
8930 struct igb_adapter *adapter = netdev_priv(netdev);
8931 struct mii_ioctl_data *data = if_mii(ifr);
8932
8933 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8934 return -EOPNOTSUPP;
8935
8936 switch (cmd) {
8937 case SIOCGMIIPHY:
8938 data->phy_id = adapter->hw.phy.addr;
8939 break;
8940 case SIOCGMIIREG:
8941 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8942 &data->val_out))
8943 return -EIO;
8944 break;
8945 case SIOCSMIIREG:
8946 default:
8947 return -EOPNOTSUPP;
8948 }
8949 return 0;
8950 }
8951
8952 /**
8953 * igb_ioctl -
8954 * @netdev: pointer to netdev struct
8955 * @ifr: interface structure
8956 * @cmd: ioctl command to execute
8957 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8958 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8959 {
8960 switch (cmd) {
8961 case SIOCGMIIPHY:
8962 case SIOCGMIIREG:
8963 case SIOCSMIIREG:
8964 return igb_mii_ioctl(netdev, ifr, cmd);
8965 case SIOCGHWTSTAMP:
8966 return igb_ptp_get_ts_config(netdev, ifr);
8967 case SIOCSHWTSTAMP:
8968 return igb_ptp_set_ts_config(netdev, ifr);
8969 default:
8970 return -EOPNOTSUPP;
8971 }
8972 }
8973
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8974 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8975 {
8976 struct igb_adapter *adapter = hw->back;
8977
8978 pci_read_config_word(adapter->pdev, reg, value);
8979 }
8980
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8981 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8982 {
8983 struct igb_adapter *adapter = hw->back;
8984
8985 pci_write_config_word(adapter->pdev, reg, *value);
8986 }
8987
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8988 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8989 {
8990 struct igb_adapter *adapter = hw->back;
8991
8992 if (pcie_capability_read_word(adapter->pdev, reg, value))
8993 return -E1000_ERR_CONFIG;
8994
8995 return 0;
8996 }
8997
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8998 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8999 {
9000 struct igb_adapter *adapter = hw->back;
9001
9002 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9003 return -E1000_ERR_CONFIG;
9004
9005 return 0;
9006 }
9007
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9008 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9009 {
9010 struct igb_adapter *adapter = netdev_priv(netdev);
9011 struct e1000_hw *hw = &adapter->hw;
9012 u32 ctrl, rctl;
9013 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9014
9015 if (enable) {
9016 /* enable VLAN tag insert/strip */
9017 ctrl = rd32(E1000_CTRL);
9018 ctrl |= E1000_CTRL_VME;
9019 wr32(E1000_CTRL, ctrl);
9020
9021 /* Disable CFI check */
9022 rctl = rd32(E1000_RCTL);
9023 rctl &= ~E1000_RCTL_CFIEN;
9024 wr32(E1000_RCTL, rctl);
9025 } else {
9026 /* disable VLAN tag insert/strip */
9027 ctrl = rd32(E1000_CTRL);
9028 ctrl &= ~E1000_CTRL_VME;
9029 wr32(E1000_CTRL, ctrl);
9030 }
9031
9032 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9033 }
9034
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9035 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9036 __be16 proto, u16 vid)
9037 {
9038 struct igb_adapter *adapter = netdev_priv(netdev);
9039 struct e1000_hw *hw = &adapter->hw;
9040 int pf_id = adapter->vfs_allocated_count;
9041
9042 /* add the filter since PF can receive vlans w/o entry in vlvf */
9043 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9044 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9045
9046 set_bit(vid, adapter->active_vlans);
9047
9048 return 0;
9049 }
9050
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9051 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9052 __be16 proto, u16 vid)
9053 {
9054 struct igb_adapter *adapter = netdev_priv(netdev);
9055 int pf_id = adapter->vfs_allocated_count;
9056 struct e1000_hw *hw = &adapter->hw;
9057
9058 /* remove VID from filter table */
9059 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9060 igb_vfta_set(hw, vid, pf_id, false, true);
9061
9062 clear_bit(vid, adapter->active_vlans);
9063
9064 return 0;
9065 }
9066
igb_restore_vlan(struct igb_adapter * adapter)9067 static void igb_restore_vlan(struct igb_adapter *adapter)
9068 {
9069 u16 vid = 1;
9070
9071 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9072 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9073
9074 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9075 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9076 }
9077
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9078 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9079 {
9080 struct pci_dev *pdev = adapter->pdev;
9081 struct e1000_mac_info *mac = &adapter->hw.mac;
9082
9083 mac->autoneg = 0;
9084
9085 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9086 * for the switch() below to work
9087 */
9088 if ((spd & 1) || (dplx & ~1))
9089 goto err_inval;
9090
9091 /* Fiber NIC's only allow 1000 gbps Full duplex
9092 * and 100Mbps Full duplex for 100baseFx sfp
9093 */
9094 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9095 switch (spd + dplx) {
9096 case SPEED_10 + DUPLEX_HALF:
9097 case SPEED_10 + DUPLEX_FULL:
9098 case SPEED_100 + DUPLEX_HALF:
9099 goto err_inval;
9100 default:
9101 break;
9102 }
9103 }
9104
9105 switch (spd + dplx) {
9106 case SPEED_10 + DUPLEX_HALF:
9107 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9108 break;
9109 case SPEED_10 + DUPLEX_FULL:
9110 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9111 break;
9112 case SPEED_100 + DUPLEX_HALF:
9113 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9114 break;
9115 case SPEED_100 + DUPLEX_FULL:
9116 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9117 break;
9118 case SPEED_1000 + DUPLEX_FULL:
9119 mac->autoneg = 1;
9120 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9121 break;
9122 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9123 default:
9124 goto err_inval;
9125 }
9126
9127 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9128 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9129
9130 return 0;
9131
9132 err_inval:
9133 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9134 return -EINVAL;
9135 }
9136
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9137 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9138 bool runtime)
9139 {
9140 struct net_device *netdev = pci_get_drvdata(pdev);
9141 struct igb_adapter *adapter = netdev_priv(netdev);
9142 struct e1000_hw *hw = &adapter->hw;
9143 u32 ctrl, rctl, status;
9144 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9145 bool wake;
9146
9147 rtnl_lock();
9148 netif_device_detach(netdev);
9149
9150 if (netif_running(netdev))
9151 __igb_close(netdev, true);
9152
9153 igb_ptp_suspend(adapter);
9154
9155 igb_clear_interrupt_scheme(adapter);
9156 rtnl_unlock();
9157
9158 status = rd32(E1000_STATUS);
9159 if (status & E1000_STATUS_LU)
9160 wufc &= ~E1000_WUFC_LNKC;
9161
9162 if (wufc) {
9163 igb_setup_rctl(adapter);
9164 igb_set_rx_mode(netdev);
9165
9166 /* turn on all-multi mode if wake on multicast is enabled */
9167 if (wufc & E1000_WUFC_MC) {
9168 rctl = rd32(E1000_RCTL);
9169 rctl |= E1000_RCTL_MPE;
9170 wr32(E1000_RCTL, rctl);
9171 }
9172
9173 ctrl = rd32(E1000_CTRL);
9174 ctrl |= E1000_CTRL_ADVD3WUC;
9175 wr32(E1000_CTRL, ctrl);
9176
9177 /* Allow time for pending master requests to run */
9178 igb_disable_pcie_master(hw);
9179
9180 wr32(E1000_WUC, E1000_WUC_PME_EN);
9181 wr32(E1000_WUFC, wufc);
9182 } else {
9183 wr32(E1000_WUC, 0);
9184 wr32(E1000_WUFC, 0);
9185 }
9186
9187 wake = wufc || adapter->en_mng_pt;
9188 if (!wake)
9189 igb_power_down_link(adapter);
9190 else
9191 igb_power_up_link(adapter);
9192
9193 if (enable_wake)
9194 *enable_wake = wake;
9195
9196 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9197 * would have already happened in close and is redundant.
9198 */
9199 igb_release_hw_control(adapter);
9200
9201 pci_disable_device(pdev);
9202
9203 return 0;
9204 }
9205
igb_deliver_wake_packet(struct net_device * netdev)9206 static void igb_deliver_wake_packet(struct net_device *netdev)
9207 {
9208 struct igb_adapter *adapter = netdev_priv(netdev);
9209 struct e1000_hw *hw = &adapter->hw;
9210 struct sk_buff *skb;
9211 u32 wupl;
9212
9213 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9214
9215 /* WUPM stores only the first 128 bytes of the wake packet.
9216 * Read the packet only if we have the whole thing.
9217 */
9218 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9219 return;
9220
9221 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9222 if (!skb)
9223 return;
9224
9225 skb_put(skb, wupl);
9226
9227 /* Ensure reads are 32-bit aligned */
9228 wupl = roundup(wupl, 4);
9229
9230 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9231
9232 skb->protocol = eth_type_trans(skb, netdev);
9233 netif_rx(skb);
9234 }
9235
igb_suspend(struct device * dev)9236 static int __maybe_unused igb_suspend(struct device *dev)
9237 {
9238 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9239 }
9240
igb_resume(struct device * dev)9241 static int __maybe_unused igb_resume(struct device *dev)
9242 {
9243 struct pci_dev *pdev = to_pci_dev(dev);
9244 struct net_device *netdev = pci_get_drvdata(pdev);
9245 struct igb_adapter *adapter = netdev_priv(netdev);
9246 struct e1000_hw *hw = &adapter->hw;
9247 u32 err, val;
9248
9249 pci_set_power_state(pdev, PCI_D0);
9250 pci_restore_state(pdev);
9251 pci_save_state(pdev);
9252
9253 if (!pci_device_is_present(pdev))
9254 return -ENODEV;
9255 err = pci_enable_device_mem(pdev);
9256 if (err) {
9257 dev_err(&pdev->dev,
9258 "igb: Cannot enable PCI device from suspend\n");
9259 return err;
9260 }
9261 pci_set_master(pdev);
9262
9263 pci_enable_wake(pdev, PCI_D3hot, 0);
9264 pci_enable_wake(pdev, PCI_D3cold, 0);
9265
9266 if (igb_init_interrupt_scheme(adapter, true)) {
9267 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9268 return -ENOMEM;
9269 }
9270
9271 igb_reset(adapter);
9272
9273 /* let the f/w know that the h/w is now under the control of the
9274 * driver.
9275 */
9276 igb_get_hw_control(adapter);
9277
9278 val = rd32(E1000_WUS);
9279 if (val & WAKE_PKT_WUS)
9280 igb_deliver_wake_packet(netdev);
9281
9282 wr32(E1000_WUS, ~0);
9283
9284 rtnl_lock();
9285 if (!err && netif_running(netdev))
9286 err = __igb_open(netdev, true);
9287
9288 if (!err)
9289 netif_device_attach(netdev);
9290 rtnl_unlock();
9291
9292 return err;
9293 }
9294
igb_runtime_idle(struct device * dev)9295 static int __maybe_unused igb_runtime_idle(struct device *dev)
9296 {
9297 struct net_device *netdev = dev_get_drvdata(dev);
9298 struct igb_adapter *adapter = netdev_priv(netdev);
9299
9300 if (!igb_has_link(adapter))
9301 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9302
9303 return -EBUSY;
9304 }
9305
igb_runtime_suspend(struct device * dev)9306 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9307 {
9308 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9309 }
9310
igb_runtime_resume(struct device * dev)9311 static int __maybe_unused igb_runtime_resume(struct device *dev)
9312 {
9313 return igb_resume(dev);
9314 }
9315
igb_shutdown(struct pci_dev * pdev)9316 static void igb_shutdown(struct pci_dev *pdev)
9317 {
9318 bool wake;
9319
9320 __igb_shutdown(pdev, &wake, 0);
9321
9322 if (system_state == SYSTEM_POWER_OFF) {
9323 pci_wake_from_d3(pdev, wake);
9324 pci_set_power_state(pdev, PCI_D3hot);
9325 }
9326 }
9327
9328 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)9329 static int igb_sriov_reinit(struct pci_dev *dev)
9330 {
9331 struct net_device *netdev = pci_get_drvdata(dev);
9332 struct igb_adapter *adapter = netdev_priv(netdev);
9333 struct pci_dev *pdev = adapter->pdev;
9334
9335 rtnl_lock();
9336
9337 if (netif_running(netdev))
9338 igb_close(netdev);
9339 else
9340 igb_reset(adapter);
9341
9342 igb_clear_interrupt_scheme(adapter);
9343
9344 igb_init_queue_configuration(adapter);
9345
9346 if (igb_init_interrupt_scheme(adapter, true)) {
9347 rtnl_unlock();
9348 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9349 return -ENOMEM;
9350 }
9351
9352 if (netif_running(netdev))
9353 igb_open(netdev);
9354
9355 rtnl_unlock();
9356
9357 return 0;
9358 }
9359
igb_pci_disable_sriov(struct pci_dev * dev)9360 static int igb_pci_disable_sriov(struct pci_dev *dev)
9361 {
9362 int err = igb_disable_sriov(dev);
9363
9364 if (!err)
9365 err = igb_sriov_reinit(dev);
9366
9367 return err;
9368 }
9369
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)9370 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9371 {
9372 int err = igb_enable_sriov(dev, num_vfs);
9373
9374 if (err)
9375 goto out;
9376
9377 err = igb_sriov_reinit(dev);
9378 if (!err)
9379 return num_vfs;
9380
9381 out:
9382 return err;
9383 }
9384
9385 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9386 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9387 {
9388 #ifdef CONFIG_PCI_IOV
9389 if (num_vfs == 0)
9390 return igb_pci_disable_sriov(dev);
9391 else
9392 return igb_pci_enable_sriov(dev, num_vfs);
9393 #endif
9394 return 0;
9395 }
9396
9397 /**
9398 * igb_io_error_detected - called when PCI error is detected
9399 * @pdev: Pointer to PCI device
9400 * @state: The current pci connection state
9401 *
9402 * This function is called after a PCI bus error affecting
9403 * this device has been detected.
9404 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9405 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9406 pci_channel_state_t state)
9407 {
9408 struct net_device *netdev = pci_get_drvdata(pdev);
9409 struct igb_adapter *adapter = netdev_priv(netdev);
9410
9411 netif_device_detach(netdev);
9412
9413 if (state == pci_channel_io_perm_failure)
9414 return PCI_ERS_RESULT_DISCONNECT;
9415
9416 if (netif_running(netdev))
9417 igb_down(adapter);
9418 pci_disable_device(pdev);
9419
9420 /* Request a slot slot reset. */
9421 return PCI_ERS_RESULT_NEED_RESET;
9422 }
9423
9424 /**
9425 * igb_io_slot_reset - called after the pci bus has been reset.
9426 * @pdev: Pointer to PCI device
9427 *
9428 * Restart the card from scratch, as if from a cold-boot. Implementation
9429 * resembles the first-half of the igb_resume routine.
9430 **/
igb_io_slot_reset(struct pci_dev * pdev)9431 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9432 {
9433 struct net_device *netdev = pci_get_drvdata(pdev);
9434 struct igb_adapter *adapter = netdev_priv(netdev);
9435 struct e1000_hw *hw = &adapter->hw;
9436 pci_ers_result_t result;
9437
9438 if (pci_enable_device_mem(pdev)) {
9439 dev_err(&pdev->dev,
9440 "Cannot re-enable PCI device after reset.\n");
9441 result = PCI_ERS_RESULT_DISCONNECT;
9442 } else {
9443 pci_set_master(pdev);
9444 pci_restore_state(pdev);
9445 pci_save_state(pdev);
9446
9447 pci_enable_wake(pdev, PCI_D3hot, 0);
9448 pci_enable_wake(pdev, PCI_D3cold, 0);
9449
9450 /* In case of PCI error, adapter lose its HW address
9451 * so we should re-assign it here.
9452 */
9453 hw->hw_addr = adapter->io_addr;
9454
9455 igb_reset(adapter);
9456 wr32(E1000_WUS, ~0);
9457 result = PCI_ERS_RESULT_RECOVERED;
9458 }
9459
9460 return result;
9461 }
9462
9463 /**
9464 * igb_io_resume - called when traffic can start flowing again.
9465 * @pdev: Pointer to PCI device
9466 *
9467 * This callback is called when the error recovery driver tells us that
9468 * its OK to resume normal operation. Implementation resembles the
9469 * second-half of the igb_resume routine.
9470 */
igb_io_resume(struct pci_dev * pdev)9471 static void igb_io_resume(struct pci_dev *pdev)
9472 {
9473 struct net_device *netdev = pci_get_drvdata(pdev);
9474 struct igb_adapter *adapter = netdev_priv(netdev);
9475
9476 if (netif_running(netdev)) {
9477 if (igb_up(adapter)) {
9478 dev_err(&pdev->dev, "igb_up failed after reset\n");
9479 return;
9480 }
9481 }
9482
9483 netif_device_attach(netdev);
9484
9485 /* let the f/w know that the h/w is now under the control of the
9486 * driver.
9487 */
9488 igb_get_hw_control(adapter);
9489 }
9490
9491 /**
9492 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9493 * @adapter: Pointer to adapter structure
9494 * @index: Index of the RAR entry which need to be synced with MAC table
9495 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9496 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9497 {
9498 struct e1000_hw *hw = &adapter->hw;
9499 u32 rar_low, rar_high;
9500 u8 *addr = adapter->mac_table[index].addr;
9501
9502 /* HW expects these to be in network order when they are plugged
9503 * into the registers which are little endian. In order to guarantee
9504 * that ordering we need to do an leXX_to_cpup here in order to be
9505 * ready for the byteswap that occurs with writel
9506 */
9507 rar_low = le32_to_cpup((__le32 *)(addr));
9508 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9509
9510 /* Indicate to hardware the Address is Valid. */
9511 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9512 if (is_valid_ether_addr(addr))
9513 rar_high |= E1000_RAH_AV;
9514
9515 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9516 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9517
9518 switch (hw->mac.type) {
9519 case e1000_82575:
9520 case e1000_i210:
9521 if (adapter->mac_table[index].state &
9522 IGB_MAC_STATE_QUEUE_STEERING)
9523 rar_high |= E1000_RAH_QSEL_ENABLE;
9524
9525 rar_high |= E1000_RAH_POOL_1 *
9526 adapter->mac_table[index].queue;
9527 break;
9528 default:
9529 rar_high |= E1000_RAH_POOL_1 <<
9530 adapter->mac_table[index].queue;
9531 break;
9532 }
9533 }
9534
9535 wr32(E1000_RAL(index), rar_low);
9536 wrfl();
9537 wr32(E1000_RAH(index), rar_high);
9538 wrfl();
9539 }
9540
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9541 static int igb_set_vf_mac(struct igb_adapter *adapter,
9542 int vf, unsigned char *mac_addr)
9543 {
9544 struct e1000_hw *hw = &adapter->hw;
9545 /* VF MAC addresses start at end of receive addresses and moves
9546 * towards the first, as a result a collision should not be possible
9547 */
9548 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9549 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9550
9551 ether_addr_copy(vf_mac_addr, mac_addr);
9552 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9553 adapter->mac_table[rar_entry].queue = vf;
9554 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9555 igb_rar_set_index(adapter, rar_entry);
9556
9557 return 0;
9558 }
9559
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9560 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9561 {
9562 struct igb_adapter *adapter = netdev_priv(netdev);
9563
9564 if (vf >= adapter->vfs_allocated_count)
9565 return -EINVAL;
9566
9567 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9568 * flag and allows to overwrite the MAC via VF netdev. This
9569 * is necessary to allow libvirt a way to restore the original
9570 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9571 * down a VM.
9572 */
9573 if (is_zero_ether_addr(mac)) {
9574 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9575 dev_info(&adapter->pdev->dev,
9576 "remove administratively set MAC on VF %d\n",
9577 vf);
9578 } else if (is_valid_ether_addr(mac)) {
9579 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9580 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9581 mac, vf);
9582 dev_info(&adapter->pdev->dev,
9583 "Reload the VF driver to make this change effective.");
9584 /* Generate additional warning if PF is down */
9585 if (test_bit(__IGB_DOWN, &adapter->state)) {
9586 dev_warn(&adapter->pdev->dev,
9587 "The VF MAC address has been set, but the PF device is not up.\n");
9588 dev_warn(&adapter->pdev->dev,
9589 "Bring the PF device up before attempting to use the VF device.\n");
9590 }
9591 } else {
9592 return -EINVAL;
9593 }
9594 return igb_set_vf_mac(adapter, vf, mac);
9595 }
9596
igb_link_mbps(int internal_link_speed)9597 static int igb_link_mbps(int internal_link_speed)
9598 {
9599 switch (internal_link_speed) {
9600 case SPEED_100:
9601 return 100;
9602 case SPEED_1000:
9603 return 1000;
9604 default:
9605 return 0;
9606 }
9607 }
9608
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9609 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9610 int link_speed)
9611 {
9612 int rf_dec, rf_int;
9613 u32 bcnrc_val;
9614
9615 if (tx_rate != 0) {
9616 /* Calculate the rate factor values to set */
9617 rf_int = link_speed / tx_rate;
9618 rf_dec = (link_speed - (rf_int * tx_rate));
9619 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9620 tx_rate;
9621
9622 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9623 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9624 E1000_RTTBCNRC_RF_INT_MASK);
9625 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9626 } else {
9627 bcnrc_val = 0;
9628 }
9629
9630 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9631 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9632 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9633 */
9634 wr32(E1000_RTTBCNRM, 0x14);
9635 wr32(E1000_RTTBCNRC, bcnrc_val);
9636 }
9637
igb_check_vf_rate_limit(struct igb_adapter * adapter)9638 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9639 {
9640 int actual_link_speed, i;
9641 bool reset_rate = false;
9642
9643 /* VF TX rate limit was not set or not supported */
9644 if ((adapter->vf_rate_link_speed == 0) ||
9645 (adapter->hw.mac.type != e1000_82576))
9646 return;
9647
9648 actual_link_speed = igb_link_mbps(adapter->link_speed);
9649 if (actual_link_speed != adapter->vf_rate_link_speed) {
9650 reset_rate = true;
9651 adapter->vf_rate_link_speed = 0;
9652 dev_info(&adapter->pdev->dev,
9653 "Link speed has been changed. VF Transmit rate is disabled\n");
9654 }
9655
9656 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9657 if (reset_rate)
9658 adapter->vf_data[i].tx_rate = 0;
9659
9660 igb_set_vf_rate_limit(&adapter->hw, i,
9661 adapter->vf_data[i].tx_rate,
9662 actual_link_speed);
9663 }
9664 }
9665
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9666 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9667 int min_tx_rate, int max_tx_rate)
9668 {
9669 struct igb_adapter *adapter = netdev_priv(netdev);
9670 struct e1000_hw *hw = &adapter->hw;
9671 int actual_link_speed;
9672
9673 if (hw->mac.type != e1000_82576)
9674 return -EOPNOTSUPP;
9675
9676 if (min_tx_rate)
9677 return -EINVAL;
9678
9679 actual_link_speed = igb_link_mbps(adapter->link_speed);
9680 if ((vf >= adapter->vfs_allocated_count) ||
9681 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9682 (max_tx_rate < 0) ||
9683 (max_tx_rate > actual_link_speed))
9684 return -EINVAL;
9685
9686 adapter->vf_rate_link_speed = actual_link_speed;
9687 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9688 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9689
9690 return 0;
9691 }
9692
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9693 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9694 bool setting)
9695 {
9696 struct igb_adapter *adapter = netdev_priv(netdev);
9697 struct e1000_hw *hw = &adapter->hw;
9698 u32 reg_val, reg_offset;
9699
9700 if (!adapter->vfs_allocated_count)
9701 return -EOPNOTSUPP;
9702
9703 if (vf >= adapter->vfs_allocated_count)
9704 return -EINVAL;
9705
9706 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9707 reg_val = rd32(reg_offset);
9708 if (setting)
9709 reg_val |= (BIT(vf) |
9710 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9711 else
9712 reg_val &= ~(BIT(vf) |
9713 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9714 wr32(reg_offset, reg_val);
9715
9716 adapter->vf_data[vf].spoofchk_enabled = setting;
9717 return 0;
9718 }
9719
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9720 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9721 {
9722 struct igb_adapter *adapter = netdev_priv(netdev);
9723
9724 if (vf >= adapter->vfs_allocated_count)
9725 return -EINVAL;
9726 if (adapter->vf_data[vf].trusted == setting)
9727 return 0;
9728
9729 adapter->vf_data[vf].trusted = setting;
9730
9731 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9732 vf, setting ? "" : "not ");
9733 return 0;
9734 }
9735
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9736 static int igb_ndo_get_vf_config(struct net_device *netdev,
9737 int vf, struct ifla_vf_info *ivi)
9738 {
9739 struct igb_adapter *adapter = netdev_priv(netdev);
9740 if (vf >= adapter->vfs_allocated_count)
9741 return -EINVAL;
9742 ivi->vf = vf;
9743 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9744 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9745 ivi->min_tx_rate = 0;
9746 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9747 ivi->qos = adapter->vf_data[vf].pf_qos;
9748 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9749 ivi->trusted = adapter->vf_data[vf].trusted;
9750 return 0;
9751 }
9752
igb_vmm_control(struct igb_adapter * adapter)9753 static void igb_vmm_control(struct igb_adapter *adapter)
9754 {
9755 struct e1000_hw *hw = &adapter->hw;
9756 u32 reg;
9757
9758 switch (hw->mac.type) {
9759 case e1000_82575:
9760 case e1000_i210:
9761 case e1000_i211:
9762 case e1000_i354:
9763 default:
9764 /* replication is not supported for 82575 */
9765 return;
9766 case e1000_82576:
9767 /* notify HW that the MAC is adding vlan tags */
9768 reg = rd32(E1000_DTXCTL);
9769 reg |= E1000_DTXCTL_VLAN_ADDED;
9770 wr32(E1000_DTXCTL, reg);
9771 fallthrough;
9772 case e1000_82580:
9773 /* enable replication vlan tag stripping */
9774 reg = rd32(E1000_RPLOLR);
9775 reg |= E1000_RPLOLR_STRVLAN;
9776 wr32(E1000_RPLOLR, reg);
9777 fallthrough;
9778 case e1000_i350:
9779 /* none of the above registers are supported by i350 */
9780 break;
9781 }
9782
9783 if (adapter->vfs_allocated_count) {
9784 igb_vmdq_set_loopback_pf(hw, true);
9785 igb_vmdq_set_replication_pf(hw, true);
9786 igb_vmdq_set_anti_spoofing_pf(hw, true,
9787 adapter->vfs_allocated_count);
9788 } else {
9789 igb_vmdq_set_loopback_pf(hw, false);
9790 igb_vmdq_set_replication_pf(hw, false);
9791 }
9792 }
9793
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9794 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9795 {
9796 struct e1000_hw *hw = &adapter->hw;
9797 u32 dmac_thr;
9798 u16 hwm;
9799
9800 if (hw->mac.type > e1000_82580) {
9801 if (adapter->flags & IGB_FLAG_DMAC) {
9802 u32 reg;
9803
9804 /* force threshold to 0. */
9805 wr32(E1000_DMCTXTH, 0);
9806
9807 /* DMA Coalescing high water mark needs to be greater
9808 * than the Rx threshold. Set hwm to PBA - max frame
9809 * size in 16B units, capping it at PBA - 6KB.
9810 */
9811 hwm = 64 * (pba - 6);
9812 reg = rd32(E1000_FCRTC);
9813 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9814 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9815 & E1000_FCRTC_RTH_COAL_MASK);
9816 wr32(E1000_FCRTC, reg);
9817
9818 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9819 * frame size, capping it at PBA - 10KB.
9820 */
9821 dmac_thr = pba - 10;
9822 reg = rd32(E1000_DMACR);
9823 reg &= ~E1000_DMACR_DMACTHR_MASK;
9824 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9825 & E1000_DMACR_DMACTHR_MASK);
9826
9827 /* transition to L0x or L1 if available..*/
9828 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9829
9830 /* watchdog timer= +-1000 usec in 32usec intervals */
9831 reg |= (1000 >> 5);
9832
9833 /* Disable BMC-to-OS Watchdog Enable */
9834 if (hw->mac.type != e1000_i354)
9835 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9836
9837 wr32(E1000_DMACR, reg);
9838
9839 /* no lower threshold to disable
9840 * coalescing(smart fifb)-UTRESH=0
9841 */
9842 wr32(E1000_DMCRTRH, 0);
9843
9844 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9845
9846 wr32(E1000_DMCTLX, reg);
9847
9848 /* free space in tx packet buffer to wake from
9849 * DMA coal
9850 */
9851 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9852 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9853
9854 /* make low power state decision controlled
9855 * by DMA coal
9856 */
9857 reg = rd32(E1000_PCIEMISC);
9858 reg &= ~E1000_PCIEMISC_LX_DECISION;
9859 wr32(E1000_PCIEMISC, reg);
9860 } /* endif adapter->dmac is not disabled */
9861 } else if (hw->mac.type == e1000_82580) {
9862 u32 reg = rd32(E1000_PCIEMISC);
9863
9864 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9865 wr32(E1000_DMACR, 0);
9866 }
9867 }
9868
9869 /**
9870 * igb_read_i2c_byte - Reads 8 bit word over I2C
9871 * @hw: pointer to hardware structure
9872 * @byte_offset: byte offset to read
9873 * @dev_addr: device address
9874 * @data: value read
9875 *
9876 * Performs byte read operation over I2C interface at
9877 * a specified device address.
9878 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)9879 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9880 u8 dev_addr, u8 *data)
9881 {
9882 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9883 struct i2c_client *this_client = adapter->i2c_client;
9884 s32 status;
9885 u16 swfw_mask = 0;
9886
9887 if (!this_client)
9888 return E1000_ERR_I2C;
9889
9890 swfw_mask = E1000_SWFW_PHY0_SM;
9891
9892 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9893 return E1000_ERR_SWFW_SYNC;
9894
9895 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9896 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9897
9898 if (status < 0)
9899 return E1000_ERR_I2C;
9900 else {
9901 *data = status;
9902 return 0;
9903 }
9904 }
9905
9906 /**
9907 * igb_write_i2c_byte - Writes 8 bit word over I2C
9908 * @hw: pointer to hardware structure
9909 * @byte_offset: byte offset to write
9910 * @dev_addr: device address
9911 * @data: value to write
9912 *
9913 * Performs byte write operation over I2C interface at
9914 * a specified device address.
9915 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)9916 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9917 u8 dev_addr, u8 data)
9918 {
9919 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9920 struct i2c_client *this_client = adapter->i2c_client;
9921 s32 status;
9922 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9923
9924 if (!this_client)
9925 return E1000_ERR_I2C;
9926
9927 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9928 return E1000_ERR_SWFW_SYNC;
9929 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9930 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9931
9932 if (status)
9933 return E1000_ERR_I2C;
9934 else
9935 return 0;
9936
9937 }
9938
igb_reinit_queues(struct igb_adapter * adapter)9939 int igb_reinit_queues(struct igb_adapter *adapter)
9940 {
9941 struct net_device *netdev = adapter->netdev;
9942 struct pci_dev *pdev = adapter->pdev;
9943 int err = 0;
9944
9945 if (netif_running(netdev))
9946 igb_close(netdev);
9947
9948 igb_reset_interrupt_capability(adapter);
9949
9950 if (igb_init_interrupt_scheme(adapter, true)) {
9951 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9952 return -ENOMEM;
9953 }
9954
9955 if (netif_running(netdev))
9956 err = igb_open(netdev);
9957
9958 return err;
9959 }
9960
igb_nfc_filter_exit(struct igb_adapter * adapter)9961 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9962 {
9963 struct igb_nfc_filter *rule;
9964
9965 spin_lock(&adapter->nfc_lock);
9966
9967 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9968 igb_erase_filter(adapter, rule);
9969
9970 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9971 igb_erase_filter(adapter, rule);
9972
9973 spin_unlock(&adapter->nfc_lock);
9974 }
9975
igb_nfc_filter_restore(struct igb_adapter * adapter)9976 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9977 {
9978 struct igb_nfc_filter *rule;
9979
9980 spin_lock(&adapter->nfc_lock);
9981
9982 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9983 igb_add_filter(adapter, rule);
9984
9985 spin_unlock(&adapter->nfc_lock);
9986 }
9987 /* igb_main.c */
9988