1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8
9 #include "igb.h"
10
11 #define INCVALUE_MASK 0x7fffffff
12 #define ISGN 0x80000000
13
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
16 *
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
21 * register, TIMINCA.
22 *
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
27 *
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
34 * TIMINCA register.
35 *
36 *
37 * SYSTIMH SYSTIML
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
42 *
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
47 *
48 *
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
51 *
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
54 *
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
57 * to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, and also the NIC
59 * clock can be adjusted to run up to 6% faster and the system clock
60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
61 * interval in the NIC time is shorter than 9.16 minutes.
62 */
63
64 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
66 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580 40
70
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72
73 /* SYSTIM read access for the 82576 */
igb_ptp_read_82576(const struct cyclecounter * cc)74 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
75 {
76 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
77 struct e1000_hw *hw = &igb->hw;
78 u64 val;
79 u32 lo, hi;
80
81 lo = rd32(E1000_SYSTIML);
82 hi = rd32(E1000_SYSTIMH);
83
84 val = ((u64) hi) << 32;
85 val |= lo;
86
87 return val;
88 }
89
90 /* SYSTIM read access for the 82580 */
igb_ptp_read_82580(const struct cyclecounter * cc)91 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
92 {
93 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
94 struct e1000_hw *hw = &igb->hw;
95 u32 lo, hi;
96 u64 val;
97
98 /* The timestamp latches on lowest register read. For the 82580
99 * the lowest register is SYSTIMR instead of SYSTIML. However we only
100 * need to provide nanosecond resolution, so we just ignore it.
101 */
102 rd32(E1000_SYSTIMR);
103 lo = rd32(E1000_SYSTIML);
104 hi = rd32(E1000_SYSTIMH);
105
106 val = ((u64) hi) << 32;
107 val |= lo;
108
109 return val;
110 }
111
112 /* SYSTIM read access for I210/I211 */
igb_ptp_read_i210(struct igb_adapter * adapter,struct timespec64 * ts)113 static void igb_ptp_read_i210(struct igb_adapter *adapter,
114 struct timespec64 *ts)
115 {
116 struct e1000_hw *hw = &adapter->hw;
117 u32 sec, nsec;
118
119 /* The timestamp latches on lowest register read. For I210/I211, the
120 * lowest register is SYSTIMR. Since we only need to provide nanosecond
121 * resolution, we can ignore it.
122 */
123 rd32(E1000_SYSTIMR);
124 nsec = rd32(E1000_SYSTIML);
125 sec = rd32(E1000_SYSTIMH);
126
127 ts->tv_sec = sec;
128 ts->tv_nsec = nsec;
129 }
130
igb_ptp_write_i210(struct igb_adapter * adapter,const struct timespec64 * ts)131 static void igb_ptp_write_i210(struct igb_adapter *adapter,
132 const struct timespec64 *ts)
133 {
134 struct e1000_hw *hw = &adapter->hw;
135
136 /* Writing the SYSTIMR register is not necessary as it only provides
137 * sub-nanosecond resolution.
138 */
139 wr32(E1000_SYSTIML, ts->tv_nsec);
140 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
141 }
142
143 /**
144 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
145 * @adapter: board private structure
146 * @hwtstamps: timestamp structure to update
147 * @systim: unsigned 64bit system time value.
148 *
149 * We need to convert the system time value stored in the RX/TXSTMP registers
150 * into a hwtstamp which can be used by the upper level timestamping functions.
151 *
152 * The 'tmreg_lock' spinlock is used to protect the consistency of the
153 * system time value. This is needed because reading the 64 bit time
154 * value involves reading two (or three) 32 bit registers. The first
155 * read latches the value. Ditto for writing.
156 *
157 * In addition, here have extended the system time with an overflow
158 * counter in software.
159 **/
igb_ptp_systim_to_hwtstamp(struct igb_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)160 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
161 struct skb_shared_hwtstamps *hwtstamps,
162 u64 systim)
163 {
164 unsigned long flags;
165 u64 ns;
166
167 switch (adapter->hw.mac.type) {
168 case e1000_82576:
169 case e1000_82580:
170 case e1000_i354:
171 case e1000_i350:
172 spin_lock_irqsave(&adapter->tmreg_lock, flags);
173
174 ns = timecounter_cyc2time(&adapter->tc, systim);
175
176 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
177
178 memset(hwtstamps, 0, sizeof(*hwtstamps));
179 hwtstamps->hwtstamp = ns_to_ktime(ns);
180 break;
181 case e1000_i210:
182 case e1000_i211:
183 memset(hwtstamps, 0, sizeof(*hwtstamps));
184 /* Upper 32 bits contain s, lower 32 bits contain ns. */
185 hwtstamps->hwtstamp = ktime_set(systim >> 32,
186 systim & 0xFFFFFFFF);
187 break;
188 default:
189 break;
190 }
191 }
192
193 /* PTP clock operations */
igb_ptp_adjfreq_82576(struct ptp_clock_info * ptp,s32 ppb)194 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
195 {
196 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197 ptp_caps);
198 struct e1000_hw *hw = &igb->hw;
199 int neg_adj = 0;
200 u64 rate;
201 u32 incvalue;
202
203 if (ppb < 0) {
204 neg_adj = 1;
205 ppb = -ppb;
206 }
207 rate = ppb;
208 rate <<= 14;
209 rate = div_u64(rate, 1953125);
210
211 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
212
213 if (neg_adj)
214 incvalue -= rate;
215 else
216 incvalue += rate;
217
218 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
219
220 return 0;
221 }
222
igb_ptp_adjfine_82580(struct ptp_clock_info * ptp,long scaled_ppm)223 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
224 {
225 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
226 ptp_caps);
227 struct e1000_hw *hw = &igb->hw;
228 int neg_adj = 0;
229 u64 rate;
230 u32 inca;
231
232 if (scaled_ppm < 0) {
233 neg_adj = 1;
234 scaled_ppm = -scaled_ppm;
235 }
236 rate = scaled_ppm;
237 rate <<= 13;
238 rate = div_u64(rate, 15625);
239
240 inca = rate & INCVALUE_MASK;
241 if (neg_adj)
242 inca |= ISGN;
243
244 wr32(E1000_TIMINCA, inca);
245
246 return 0;
247 }
248
igb_ptp_adjtime_82576(struct ptp_clock_info * ptp,s64 delta)249 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
250 {
251 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
252 ptp_caps);
253 unsigned long flags;
254
255 spin_lock_irqsave(&igb->tmreg_lock, flags);
256 timecounter_adjtime(&igb->tc, delta);
257 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
258
259 return 0;
260 }
261
igb_ptp_adjtime_i210(struct ptp_clock_info * ptp,s64 delta)262 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
263 {
264 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
265 ptp_caps);
266 unsigned long flags;
267 struct timespec64 now, then = ns_to_timespec64(delta);
268
269 spin_lock_irqsave(&igb->tmreg_lock, flags);
270
271 igb_ptp_read_i210(igb, &now);
272 now = timespec64_add(now, then);
273 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
274
275 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
276
277 return 0;
278 }
279
igb_ptp_gettimex_82576(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)280 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
281 struct timespec64 *ts,
282 struct ptp_system_timestamp *sts)
283 {
284 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
285 ptp_caps);
286 struct e1000_hw *hw = &igb->hw;
287 unsigned long flags;
288 u32 lo, hi;
289 u64 ns;
290
291 spin_lock_irqsave(&igb->tmreg_lock, flags);
292
293 ptp_read_system_prets(sts);
294 lo = rd32(E1000_SYSTIML);
295 ptp_read_system_postts(sts);
296 hi = rd32(E1000_SYSTIMH);
297
298 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
299
300 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
301
302 *ts = ns_to_timespec64(ns);
303
304 return 0;
305 }
306
igb_ptp_gettimex_82580(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)307 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
308 struct timespec64 *ts,
309 struct ptp_system_timestamp *sts)
310 {
311 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
312 ptp_caps);
313 struct e1000_hw *hw = &igb->hw;
314 unsigned long flags;
315 u32 lo, hi;
316 u64 ns;
317
318 spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320 ptp_read_system_prets(sts);
321 rd32(E1000_SYSTIMR);
322 ptp_read_system_postts(sts);
323 lo = rd32(E1000_SYSTIML);
324 hi = rd32(E1000_SYSTIMH);
325
326 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
327
328 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
329
330 *ts = ns_to_timespec64(ns);
331
332 return 0;
333 }
334
igb_ptp_gettimex_i210(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)335 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
336 struct timespec64 *ts,
337 struct ptp_system_timestamp *sts)
338 {
339 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340 ptp_caps);
341 struct e1000_hw *hw = &igb->hw;
342 unsigned long flags;
343
344 spin_lock_irqsave(&igb->tmreg_lock, flags);
345
346 ptp_read_system_prets(sts);
347 rd32(E1000_SYSTIMR);
348 ptp_read_system_postts(sts);
349 ts->tv_nsec = rd32(E1000_SYSTIML);
350 ts->tv_sec = rd32(E1000_SYSTIMH);
351
352 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
353
354 return 0;
355 }
356
igb_ptp_settime_82576(struct ptp_clock_info * ptp,const struct timespec64 * ts)357 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
358 const struct timespec64 *ts)
359 {
360 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
361 ptp_caps);
362 unsigned long flags;
363 u64 ns;
364
365 ns = timespec64_to_ns(ts);
366
367 spin_lock_irqsave(&igb->tmreg_lock, flags);
368
369 timecounter_init(&igb->tc, &igb->cc, ns);
370
371 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
372
373 return 0;
374 }
375
igb_ptp_settime_i210(struct ptp_clock_info * ptp,const struct timespec64 * ts)376 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
377 const struct timespec64 *ts)
378 {
379 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
380 ptp_caps);
381 unsigned long flags;
382
383 spin_lock_irqsave(&igb->tmreg_lock, flags);
384
385 igb_ptp_write_i210(igb, ts);
386
387 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
388
389 return 0;
390 }
391
igb_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)392 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
393 {
394 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
395 static const u32 mask[IGB_N_SDP] = {
396 E1000_CTRL_SDP0_DIR,
397 E1000_CTRL_SDP1_DIR,
398 E1000_CTRL_EXT_SDP2_DIR,
399 E1000_CTRL_EXT_SDP3_DIR,
400 };
401
402 if (input)
403 *ptr &= ~mask[pin];
404 else
405 *ptr |= mask[pin];
406 }
407
igb_pin_extts(struct igb_adapter * igb,int chan,int pin)408 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
409 {
410 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
412 };
413 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
415 };
416 static const u32 ts_sdp_en[IGB_N_SDP] = {
417 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
418 };
419 struct e1000_hw *hw = &igb->hw;
420 u32 ctrl, ctrl_ext, tssdp = 0;
421
422 ctrl = rd32(E1000_CTRL);
423 ctrl_ext = rd32(E1000_CTRL_EXT);
424 tssdp = rd32(E1000_TSSDP);
425
426 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
427
428 /* Make sure this pin is not enabled as an output. */
429 tssdp &= ~ts_sdp_en[pin];
430
431 if (chan == 1) {
432 tssdp &= ~AUX1_SEL_SDP3;
433 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
434 } else {
435 tssdp &= ~AUX0_SEL_SDP3;
436 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
437 }
438
439 wr32(E1000_TSSDP, tssdp);
440 wr32(E1000_CTRL, ctrl);
441 wr32(E1000_CTRL_EXT, ctrl_ext);
442 }
443
igb_pin_perout(struct igb_adapter * igb,int chan,int pin,int freq)444 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
445 {
446 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
447 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
448 };
449 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
450 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
451 };
452 static const u32 ts_sdp_en[IGB_N_SDP] = {
453 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
454 };
455 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
456 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
457 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
458 };
459 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
460 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
461 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
462 };
463 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
464 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
465 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
466 };
467 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
468 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
469 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
470 };
471 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
472 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
473 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
474 };
475 struct e1000_hw *hw = &igb->hw;
476 u32 ctrl, ctrl_ext, tssdp = 0;
477
478 ctrl = rd32(E1000_CTRL);
479 ctrl_ext = rd32(E1000_CTRL_EXT);
480 tssdp = rd32(E1000_TSSDP);
481
482 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
483
484 /* Make sure this pin is not enabled as an input. */
485 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
486 tssdp &= ~AUX0_TS_SDP_EN;
487
488 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
489 tssdp &= ~AUX1_TS_SDP_EN;
490
491 tssdp &= ~ts_sdp_sel_clr[pin];
492 if (freq) {
493 if (chan == 1)
494 tssdp |= ts_sdp_sel_fc1[pin];
495 else
496 tssdp |= ts_sdp_sel_fc0[pin];
497 } else {
498 if (chan == 1)
499 tssdp |= ts_sdp_sel_tt1[pin];
500 else
501 tssdp |= ts_sdp_sel_tt0[pin];
502 }
503 tssdp |= ts_sdp_en[pin];
504
505 wr32(E1000_TSSDP, tssdp);
506 wr32(E1000_CTRL, ctrl);
507 wr32(E1000_CTRL_EXT, ctrl_ext);
508 }
509
igb_ptp_feature_enable_i210(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)510 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
511 struct ptp_clock_request *rq, int on)
512 {
513 struct igb_adapter *igb =
514 container_of(ptp, struct igb_adapter, ptp_caps);
515 struct e1000_hw *hw = &igb->hw;
516 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
517 unsigned long flags;
518 struct timespec64 ts;
519 int use_freq = 0, pin = -1;
520 s64 ns;
521
522 switch (rq->type) {
523 case PTP_CLK_REQ_EXTTS:
524 /* Reject requests with unsupported flags */
525 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
526 PTP_RISING_EDGE |
527 PTP_FALLING_EDGE |
528 PTP_STRICT_FLAGS))
529 return -EOPNOTSUPP;
530
531 /* Reject requests failing to enable both edges. */
532 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
533 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
534 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
535 return -EOPNOTSUPP;
536
537 if (on) {
538 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
539 rq->extts.index);
540 if (pin < 0)
541 return -EBUSY;
542 }
543 if (rq->extts.index == 1) {
544 tsauxc_mask = TSAUXC_EN_TS1;
545 tsim_mask = TSINTR_AUTT1;
546 } else {
547 tsauxc_mask = TSAUXC_EN_TS0;
548 tsim_mask = TSINTR_AUTT0;
549 }
550 spin_lock_irqsave(&igb->tmreg_lock, flags);
551 tsauxc = rd32(E1000_TSAUXC);
552 tsim = rd32(E1000_TSIM);
553 if (on) {
554 igb_pin_extts(igb, rq->extts.index, pin);
555 tsauxc |= tsauxc_mask;
556 tsim |= tsim_mask;
557 } else {
558 tsauxc &= ~tsauxc_mask;
559 tsim &= ~tsim_mask;
560 }
561 wr32(E1000_TSAUXC, tsauxc);
562 wr32(E1000_TSIM, tsim);
563 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
564 return 0;
565
566 case PTP_CLK_REQ_PEROUT:
567 /* Reject requests with unsupported flags */
568 if (rq->perout.flags)
569 return -EOPNOTSUPP;
570
571 if (on) {
572 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
573 rq->perout.index);
574 if (pin < 0)
575 return -EBUSY;
576 }
577 ts.tv_sec = rq->perout.period.sec;
578 ts.tv_nsec = rq->perout.period.nsec;
579 ns = timespec64_to_ns(&ts);
580 ns = ns >> 1;
581 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
582 (ns == 250000000LL) || (ns == 500000000LL))) {
583 if (ns < 8LL)
584 return -EINVAL;
585 use_freq = 1;
586 }
587 ts = ns_to_timespec64(ns);
588 if (rq->perout.index == 1) {
589 if (use_freq) {
590 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
591 tsim_mask = 0;
592 } else {
593 tsauxc_mask = TSAUXC_EN_TT1;
594 tsim_mask = TSINTR_TT1;
595 }
596 trgttiml = E1000_TRGTTIML1;
597 trgttimh = E1000_TRGTTIMH1;
598 freqout = E1000_FREQOUT1;
599 } else {
600 if (use_freq) {
601 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
602 tsim_mask = 0;
603 } else {
604 tsauxc_mask = TSAUXC_EN_TT0;
605 tsim_mask = TSINTR_TT0;
606 }
607 trgttiml = E1000_TRGTTIML0;
608 trgttimh = E1000_TRGTTIMH0;
609 freqout = E1000_FREQOUT0;
610 }
611 spin_lock_irqsave(&igb->tmreg_lock, flags);
612 tsauxc = rd32(E1000_TSAUXC);
613 tsim = rd32(E1000_TSIM);
614 if (rq->perout.index == 1) {
615 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
616 tsim &= ~TSINTR_TT1;
617 } else {
618 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
619 tsim &= ~TSINTR_TT0;
620 }
621 if (on) {
622 int i = rq->perout.index;
623 igb_pin_perout(igb, i, pin, use_freq);
624 igb->perout[i].start.tv_sec = rq->perout.start.sec;
625 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
626 igb->perout[i].period.tv_sec = ts.tv_sec;
627 igb->perout[i].period.tv_nsec = ts.tv_nsec;
628 wr32(trgttimh, rq->perout.start.sec);
629 wr32(trgttiml, rq->perout.start.nsec);
630 if (use_freq)
631 wr32(freqout, ns);
632 tsauxc |= tsauxc_mask;
633 tsim |= tsim_mask;
634 }
635 wr32(E1000_TSAUXC, tsauxc);
636 wr32(E1000_TSIM, tsim);
637 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
638 return 0;
639
640 case PTP_CLK_REQ_PPS:
641 spin_lock_irqsave(&igb->tmreg_lock, flags);
642 tsim = rd32(E1000_TSIM);
643 if (on)
644 tsim |= TSINTR_SYS_WRAP;
645 else
646 tsim &= ~TSINTR_SYS_WRAP;
647 igb->pps_sys_wrap_on = !!on;
648 wr32(E1000_TSIM, tsim);
649 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
650 return 0;
651 }
652
653 return -EOPNOTSUPP;
654 }
655
igb_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)656 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
657 struct ptp_clock_request *rq, int on)
658 {
659 return -EOPNOTSUPP;
660 }
661
igb_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)662 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
663 enum ptp_pin_function func, unsigned int chan)
664 {
665 switch (func) {
666 case PTP_PF_NONE:
667 case PTP_PF_EXTTS:
668 case PTP_PF_PEROUT:
669 break;
670 case PTP_PF_PHYSYNC:
671 return -1;
672 }
673 return 0;
674 }
675
676 /**
677 * igb_ptp_tx_work
678 * @work: pointer to work struct
679 *
680 * This work function polls the TSYNCTXCTL valid bit to determine when a
681 * timestamp has been taken for the current stored skb.
682 **/
igb_ptp_tx_work(struct work_struct * work)683 static void igb_ptp_tx_work(struct work_struct *work)
684 {
685 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
686 ptp_tx_work);
687 struct e1000_hw *hw = &adapter->hw;
688 u32 tsynctxctl;
689
690 if (!adapter->ptp_tx_skb)
691 return;
692
693 if (time_is_before_jiffies(adapter->ptp_tx_start +
694 IGB_PTP_TX_TIMEOUT)) {
695 dev_kfree_skb_any(adapter->ptp_tx_skb);
696 adapter->ptp_tx_skb = NULL;
697 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
698 adapter->tx_hwtstamp_timeouts++;
699 /* Clear the tx valid bit in TSYNCTXCTL register to enable
700 * interrupt
701 */
702 rd32(E1000_TXSTMPH);
703 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
704 return;
705 }
706
707 tsynctxctl = rd32(E1000_TSYNCTXCTL);
708 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
709 igb_ptp_tx_hwtstamp(adapter);
710 else
711 /* reschedule to check later */
712 schedule_work(&adapter->ptp_tx_work);
713 }
714
igb_ptp_overflow_check(struct work_struct * work)715 static void igb_ptp_overflow_check(struct work_struct *work)
716 {
717 struct igb_adapter *igb =
718 container_of(work, struct igb_adapter, ptp_overflow_work.work);
719 struct timespec64 ts;
720 u64 ns;
721
722 /* Update the timecounter */
723 ns = timecounter_read(&igb->tc);
724
725 ts = ns_to_timespec64(ns);
726 pr_debug("igb overflow check at %lld.%09lu\n",
727 (long long) ts.tv_sec, ts.tv_nsec);
728
729 schedule_delayed_work(&igb->ptp_overflow_work,
730 IGB_SYSTIM_OVERFLOW_PERIOD);
731 }
732
733 /**
734 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
735 * @adapter: private network adapter structure
736 *
737 * This watchdog task is scheduled to detect error case where hardware has
738 * dropped an Rx packet that was timestamped when the ring is full. The
739 * particular error is rare but leaves the device in a state unable to timestamp
740 * any future packets.
741 **/
igb_ptp_rx_hang(struct igb_adapter * adapter)742 void igb_ptp_rx_hang(struct igb_adapter *adapter)
743 {
744 struct e1000_hw *hw = &adapter->hw;
745 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
746 unsigned long rx_event;
747
748 /* Other hardware uses per-packet timestamps */
749 if (hw->mac.type != e1000_82576)
750 return;
751
752 /* If we don't have a valid timestamp in the registers, just update the
753 * timeout counter and exit
754 */
755 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
756 adapter->last_rx_ptp_check = jiffies;
757 return;
758 }
759
760 /* Determine the most recent watchdog or rx_timestamp event */
761 rx_event = adapter->last_rx_ptp_check;
762 if (time_after(adapter->last_rx_timestamp, rx_event))
763 rx_event = adapter->last_rx_timestamp;
764
765 /* Only need to read the high RXSTMP register to clear the lock */
766 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
767 rd32(E1000_RXSTMPH);
768 adapter->last_rx_ptp_check = jiffies;
769 adapter->rx_hwtstamp_cleared++;
770 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
771 }
772 }
773
774 /**
775 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
776 * @adapter: private network adapter structure
777 */
igb_ptp_tx_hang(struct igb_adapter * adapter)778 void igb_ptp_tx_hang(struct igb_adapter *adapter)
779 {
780 struct e1000_hw *hw = &adapter->hw;
781 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
782 IGB_PTP_TX_TIMEOUT);
783
784 if (!adapter->ptp_tx_skb)
785 return;
786
787 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
788 return;
789
790 /* If we haven't received a timestamp within the timeout, it is
791 * reasonable to assume that it will never occur, so we can unlock the
792 * timestamp bit when this occurs.
793 */
794 if (timeout) {
795 cancel_work_sync(&adapter->ptp_tx_work);
796 dev_kfree_skb_any(adapter->ptp_tx_skb);
797 adapter->ptp_tx_skb = NULL;
798 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
799 adapter->tx_hwtstamp_timeouts++;
800 /* Clear the tx valid bit in TSYNCTXCTL register to enable
801 * interrupt
802 */
803 rd32(E1000_TXSTMPH);
804 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
805 }
806 }
807
808 /**
809 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
810 * @adapter: Board private structure.
811 *
812 * If we were asked to do hardware stamping and such a time stamp is
813 * available, then it must have been for this skb here because we only
814 * allow only one such packet into the queue.
815 **/
igb_ptp_tx_hwtstamp(struct igb_adapter * adapter)816 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
817 {
818 struct sk_buff *skb = adapter->ptp_tx_skb;
819 struct e1000_hw *hw = &adapter->hw;
820 struct skb_shared_hwtstamps shhwtstamps;
821 u64 regval;
822 int adjust = 0;
823
824 regval = rd32(E1000_TXSTMPL);
825 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
826
827 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
828 /* adjust timestamp for the TX latency based on link speed */
829 if (adapter->hw.mac.type == e1000_i210) {
830 switch (adapter->link_speed) {
831 case SPEED_10:
832 adjust = IGB_I210_TX_LATENCY_10;
833 break;
834 case SPEED_100:
835 adjust = IGB_I210_TX_LATENCY_100;
836 break;
837 case SPEED_1000:
838 adjust = IGB_I210_TX_LATENCY_1000;
839 break;
840 }
841 }
842
843 shhwtstamps.hwtstamp =
844 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
845
846 /* Clear the lock early before calling skb_tstamp_tx so that
847 * applications are not woken up before the lock bit is clear. We use
848 * a copy of the skb pointer to ensure other threads can't change it
849 * while we're notifying the stack.
850 */
851 adapter->ptp_tx_skb = NULL;
852 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
853
854 /* Notify the stack and free the skb after we've unlocked */
855 skb_tstamp_tx(skb, &shhwtstamps);
856 dev_kfree_skb_any(skb);
857 }
858
859 /**
860 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
861 * @q_vector: Pointer to interrupt specific structure
862 * @va: Pointer to address containing Rx buffer
863 * @skb: Buffer containing timestamp and packet
864 *
865 * This function is meant to retrieve a timestamp from the first buffer of an
866 * incoming frame. The value is stored in little endian format starting on
867 * byte 8.
868 **/
igb_ptp_rx_pktstamp(struct igb_q_vector * q_vector,void * va,struct sk_buff * skb)869 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
870 struct sk_buff *skb)
871 {
872 __le64 *regval = (__le64 *)va;
873 struct igb_adapter *adapter = q_vector->adapter;
874 int adjust = 0;
875
876 /* The timestamp is recorded in little endian format.
877 * DWORD: 0 1 2 3
878 * Field: Reserved Reserved SYSTIML SYSTIMH
879 */
880 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
881 le64_to_cpu(regval[1]));
882
883 /* adjust timestamp for the RX latency based on link speed */
884 if (adapter->hw.mac.type == e1000_i210) {
885 switch (adapter->link_speed) {
886 case SPEED_10:
887 adjust = IGB_I210_RX_LATENCY_10;
888 break;
889 case SPEED_100:
890 adjust = IGB_I210_RX_LATENCY_100;
891 break;
892 case SPEED_1000:
893 adjust = IGB_I210_RX_LATENCY_1000;
894 break;
895 }
896 }
897 skb_hwtstamps(skb)->hwtstamp =
898 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
899 }
900
901 /**
902 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
903 * @q_vector: Pointer to interrupt specific structure
904 * @skb: Buffer containing timestamp and packet
905 *
906 * This function is meant to retrieve a timestamp from the internal registers
907 * of the adapter and store it in the skb.
908 **/
igb_ptp_rx_rgtstamp(struct igb_q_vector * q_vector,struct sk_buff * skb)909 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
910 struct sk_buff *skb)
911 {
912 struct igb_adapter *adapter = q_vector->adapter;
913 struct e1000_hw *hw = &adapter->hw;
914 u64 regval;
915 int adjust = 0;
916
917 /* If this bit is set, then the RX registers contain the time stamp. No
918 * other packet will be time stamped until we read these registers, so
919 * read the registers to make them available again. Because only one
920 * packet can be time stamped at a time, we know that the register
921 * values must belong to this one here and therefore we don't need to
922 * compare any of the additional attributes stored for it.
923 *
924 * If nothing went wrong, then it should have a shared tx_flags that we
925 * can turn into a skb_shared_hwtstamps.
926 */
927 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
928 return;
929
930 regval = rd32(E1000_RXSTMPL);
931 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
932
933 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
934
935 /* adjust timestamp for the RX latency based on link speed */
936 if (adapter->hw.mac.type == e1000_i210) {
937 switch (adapter->link_speed) {
938 case SPEED_10:
939 adjust = IGB_I210_RX_LATENCY_10;
940 break;
941 case SPEED_100:
942 adjust = IGB_I210_RX_LATENCY_100;
943 break;
944 case SPEED_1000:
945 adjust = IGB_I210_RX_LATENCY_1000;
946 break;
947 }
948 }
949 skb_hwtstamps(skb)->hwtstamp =
950 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
951
952 /* Update the last_rx_timestamp timer in order to enable watchdog check
953 * for error case of latched timestamp on a dropped packet.
954 */
955 adapter->last_rx_timestamp = jiffies;
956 }
957
958 /**
959 * igb_ptp_get_ts_config - get hardware time stamping config
960 * @netdev:
961 * @ifreq:
962 *
963 * Get the hwtstamp_config settings to return to the user. Rather than attempt
964 * to deconstruct the settings from the registers, just return a shadow copy
965 * of the last known settings.
966 **/
igb_ptp_get_ts_config(struct net_device * netdev,struct ifreq * ifr)967 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
968 {
969 struct igb_adapter *adapter = netdev_priv(netdev);
970 struct hwtstamp_config *config = &adapter->tstamp_config;
971
972 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
973 -EFAULT : 0;
974 }
975
976 /**
977 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
978 * @adapter: networking device structure
979 * @config: hwtstamp configuration
980 *
981 * Outgoing time stamping can be enabled and disabled. Play nice and
982 * disable it when requested, although it shouldn't case any overhead
983 * when no packet needs it. At most one packet in the queue may be
984 * marked for time stamping, otherwise it would be impossible to tell
985 * for sure to which packet the hardware time stamp belongs.
986 *
987 * Incoming time stamping has to be configured via the hardware
988 * filters. Not all combinations are supported, in particular event
989 * type has to be specified. Matching the kind of event packet is
990 * not supported, with the exception of "all V2 events regardless of
991 * level 2 or 4".
992 */
igb_ptp_set_timestamp_mode(struct igb_adapter * adapter,struct hwtstamp_config * config)993 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
994 struct hwtstamp_config *config)
995 {
996 struct e1000_hw *hw = &adapter->hw;
997 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
998 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
999 u32 tsync_rx_cfg = 0;
1000 bool is_l4 = false;
1001 bool is_l2 = false;
1002 u32 regval;
1003
1004 /* reserved for future extensions */
1005 if (config->flags)
1006 return -EINVAL;
1007
1008 switch (config->tx_type) {
1009 case HWTSTAMP_TX_OFF:
1010 tsync_tx_ctl = 0;
1011 case HWTSTAMP_TX_ON:
1012 break;
1013 default:
1014 return -ERANGE;
1015 }
1016
1017 switch (config->rx_filter) {
1018 case HWTSTAMP_FILTER_NONE:
1019 tsync_rx_ctl = 0;
1020 break;
1021 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1022 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1023 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1024 is_l4 = true;
1025 break;
1026 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1027 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1028 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1029 is_l4 = true;
1030 break;
1031 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1032 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1033 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1034 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1035 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1036 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1037 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1038 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1039 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1040 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1041 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1042 is_l2 = true;
1043 is_l4 = true;
1044 break;
1045 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1046 case HWTSTAMP_FILTER_NTP_ALL:
1047 case HWTSTAMP_FILTER_ALL:
1048 /* 82576 cannot timestamp all packets, which it needs to do to
1049 * support both V1 Sync and Delay_Req messages
1050 */
1051 if (hw->mac.type != e1000_82576) {
1052 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1053 config->rx_filter = HWTSTAMP_FILTER_ALL;
1054 break;
1055 }
1056 /* fall through */
1057 default:
1058 config->rx_filter = HWTSTAMP_FILTER_NONE;
1059 return -ERANGE;
1060 }
1061
1062 if (hw->mac.type == e1000_82575) {
1063 if (tsync_rx_ctl | tsync_tx_ctl)
1064 return -EINVAL;
1065 return 0;
1066 }
1067
1068 /* Per-packet timestamping only works if all packets are
1069 * timestamped, so enable timestamping in all packets as
1070 * long as one Rx filter was configured.
1071 */
1072 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1073 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1074 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1075 config->rx_filter = HWTSTAMP_FILTER_ALL;
1076 is_l2 = true;
1077 is_l4 = true;
1078
1079 if ((hw->mac.type == e1000_i210) ||
1080 (hw->mac.type == e1000_i211)) {
1081 regval = rd32(E1000_RXPBS);
1082 regval |= E1000_RXPBS_CFG_TS_EN;
1083 wr32(E1000_RXPBS, regval);
1084 }
1085 }
1086
1087 /* enable/disable TX */
1088 regval = rd32(E1000_TSYNCTXCTL);
1089 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1090 regval |= tsync_tx_ctl;
1091 wr32(E1000_TSYNCTXCTL, regval);
1092
1093 /* enable/disable RX */
1094 regval = rd32(E1000_TSYNCRXCTL);
1095 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1096 regval |= tsync_rx_ctl;
1097 wr32(E1000_TSYNCRXCTL, regval);
1098
1099 /* define which PTP packets are time stamped */
1100 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1101
1102 /* define ethertype filter for timestamped packets */
1103 if (is_l2)
1104 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1105 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1106 E1000_ETQF_1588 | /* enable timestamping */
1107 ETH_P_1588)); /* 1588 eth protocol type */
1108 else
1109 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1110
1111 /* L4 Queue Filter[3]: filter by destination port and protocol */
1112 if (is_l4) {
1113 u32 ftqf = (IPPROTO_UDP /* UDP */
1114 | E1000_FTQF_VF_BP /* VF not compared */
1115 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1116 | E1000_FTQF_MASK); /* mask all inputs */
1117 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1118
1119 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1120 wr32(E1000_IMIREXT(3),
1121 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1122 if (hw->mac.type == e1000_82576) {
1123 /* enable source port check */
1124 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1125 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1126 }
1127 wr32(E1000_FTQF(3), ftqf);
1128 } else {
1129 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1130 }
1131 wrfl();
1132
1133 /* clear TX/RX time stamp registers, just to be sure */
1134 regval = rd32(E1000_TXSTMPL);
1135 regval = rd32(E1000_TXSTMPH);
1136 regval = rd32(E1000_RXSTMPL);
1137 regval = rd32(E1000_RXSTMPH);
1138
1139 return 0;
1140 }
1141
1142 /**
1143 * igb_ptp_set_ts_config - set hardware time stamping config
1144 * @netdev:
1145 * @ifreq:
1146 *
1147 **/
igb_ptp_set_ts_config(struct net_device * netdev,struct ifreq * ifr)1148 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1149 {
1150 struct igb_adapter *adapter = netdev_priv(netdev);
1151 struct hwtstamp_config config;
1152 int err;
1153
1154 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1155 return -EFAULT;
1156
1157 err = igb_ptp_set_timestamp_mode(adapter, &config);
1158 if (err)
1159 return err;
1160
1161 /* save these settings for future reference */
1162 memcpy(&adapter->tstamp_config, &config,
1163 sizeof(adapter->tstamp_config));
1164
1165 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1166 -EFAULT : 0;
1167 }
1168
1169 /**
1170 * igb_ptp_init - Initialize PTP functionality
1171 * @adapter: Board private structure
1172 *
1173 * This function is called at device probe to initialize the PTP
1174 * functionality.
1175 */
igb_ptp_init(struct igb_adapter * adapter)1176 void igb_ptp_init(struct igb_adapter *adapter)
1177 {
1178 struct e1000_hw *hw = &adapter->hw;
1179 struct net_device *netdev = adapter->netdev;
1180 int i;
1181
1182 switch (hw->mac.type) {
1183 case e1000_82576:
1184 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1185 adapter->ptp_caps.owner = THIS_MODULE;
1186 adapter->ptp_caps.max_adj = 999999881;
1187 adapter->ptp_caps.n_ext_ts = 0;
1188 adapter->ptp_caps.pps = 0;
1189 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1190 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1191 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1192 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1193 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1194 adapter->cc.read = igb_ptp_read_82576;
1195 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1196 adapter->cc.mult = 1;
1197 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1198 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1199 break;
1200 case e1000_82580:
1201 case e1000_i354:
1202 case e1000_i350:
1203 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1204 adapter->ptp_caps.owner = THIS_MODULE;
1205 adapter->ptp_caps.max_adj = 62499999;
1206 adapter->ptp_caps.n_ext_ts = 0;
1207 adapter->ptp_caps.pps = 0;
1208 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1209 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1210 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1211 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1212 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1213 adapter->cc.read = igb_ptp_read_82580;
1214 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1215 adapter->cc.mult = 1;
1216 adapter->cc.shift = 0;
1217 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1218 break;
1219 case e1000_i210:
1220 case e1000_i211:
1221 for (i = 0; i < IGB_N_SDP; i++) {
1222 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1223
1224 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1225 ppd->index = i;
1226 ppd->func = PTP_PF_NONE;
1227 }
1228 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1229 adapter->ptp_caps.owner = THIS_MODULE;
1230 adapter->ptp_caps.max_adj = 62499999;
1231 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1232 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1233 adapter->ptp_caps.n_pins = IGB_N_SDP;
1234 adapter->ptp_caps.pps = 1;
1235 adapter->ptp_caps.pin_config = adapter->sdp_config;
1236 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1237 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1238 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1239 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1240 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1241 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1242 break;
1243 default:
1244 adapter->ptp_clock = NULL;
1245 return;
1246 }
1247
1248 spin_lock_init(&adapter->tmreg_lock);
1249 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1250
1251 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1252 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1253 igb_ptp_overflow_check);
1254
1255 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1256 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1257
1258 igb_ptp_reset(adapter);
1259
1260 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1261 &adapter->pdev->dev);
1262 if (IS_ERR(adapter->ptp_clock)) {
1263 adapter->ptp_clock = NULL;
1264 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1265 } else if (adapter->ptp_clock) {
1266 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1267 adapter->netdev->name);
1268 adapter->ptp_flags |= IGB_PTP_ENABLED;
1269 }
1270 }
1271
1272 /**
1273 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1274 * @adapter: Board private structure
1275 *
1276 * This function stops the overflow check work and PTP Tx timestamp work, and
1277 * will prepare the device for OS suspend.
1278 */
igb_ptp_suspend(struct igb_adapter * adapter)1279 void igb_ptp_suspend(struct igb_adapter *adapter)
1280 {
1281 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1282 return;
1283
1284 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1285 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1286
1287 cancel_work_sync(&adapter->ptp_tx_work);
1288 if (adapter->ptp_tx_skb) {
1289 dev_kfree_skb_any(adapter->ptp_tx_skb);
1290 adapter->ptp_tx_skb = NULL;
1291 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1292 }
1293 }
1294
1295 /**
1296 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1297 * @adapter: Board private structure.
1298 *
1299 * This function stops the PTP support and cancels the delayed work.
1300 **/
igb_ptp_stop(struct igb_adapter * adapter)1301 void igb_ptp_stop(struct igb_adapter *adapter)
1302 {
1303 igb_ptp_suspend(adapter);
1304
1305 if (adapter->ptp_clock) {
1306 ptp_clock_unregister(adapter->ptp_clock);
1307 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1308 adapter->netdev->name);
1309 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1310 }
1311 }
1312
1313 /**
1314 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1315 * @adapter: Board private structure.
1316 *
1317 * This function handles the reset work required to re-enable the PTP device.
1318 **/
igb_ptp_reset(struct igb_adapter * adapter)1319 void igb_ptp_reset(struct igb_adapter *adapter)
1320 {
1321 struct e1000_hw *hw = &adapter->hw;
1322 unsigned long flags;
1323
1324 /* reset the tstamp_config */
1325 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1326
1327 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1328
1329 switch (adapter->hw.mac.type) {
1330 case e1000_82576:
1331 /* Dial the nominal frequency. */
1332 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1333 break;
1334 case e1000_82580:
1335 case e1000_i354:
1336 case e1000_i350:
1337 case e1000_i210:
1338 case e1000_i211:
1339 wr32(E1000_TSAUXC, 0x0);
1340 wr32(E1000_TSSDP, 0x0);
1341 wr32(E1000_TSIM,
1342 TSYNC_INTERRUPTS |
1343 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1344 wr32(E1000_IMS, E1000_IMS_TS);
1345 break;
1346 default:
1347 /* No work to do. */
1348 goto out;
1349 }
1350
1351 /* Re-initialize the timer. */
1352 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1353 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1354
1355 igb_ptp_write_i210(adapter, &ts);
1356 } else {
1357 timecounter_init(&adapter->tc, &adapter->cc,
1358 ktime_to_ns(ktime_get_real()));
1359 }
1360 out:
1361 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1362
1363 wrfl();
1364
1365 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1366 schedule_delayed_work(&adapter->ptp_overflow_work,
1367 IGB_SYSTIM_OVERFLOW_PERIOD);
1368 }
1369