1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44 QUEUE_MODE_STRICT_PRIORITY,
45 QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49 TX_QUEUE_PRIO_HIGH,
50 TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 /* required last entry */
100 {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 .notifier_call = igb_notify_dca,
199 .next = NULL,
200 .priority = 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static const struct pci_error_handlers igb_err_handler = {
215 .error_detected = igb_io_error_detected,
216 .slot_reset = igb_io_slot_reset,
217 .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223 .name = igb_driver_name,
224 .id_table = igb_pci_tbl,
225 .probe = igb_probe,
226 .remove = igb_remove,
227 #ifdef CONFIG_PM
228 .driver.pm = &igb_pm_ops,
229 #endif
230 .shutdown = igb_shutdown,
231 .sriov_configure = igb_pci_sriov_configure,
232 .err_handler = &igb_err_handler
233 };
234
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244 struct igb_reg_info {
245 u32 ofs;
246 char *name;
247 };
248
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251 /* General Registers */
252 {E1000_CTRL, "CTRL"},
253 {E1000_STATUS, "STATUS"},
254 {E1000_CTRL_EXT, "CTRL_EXT"},
255
256 /* Interrupt Registers */
257 {E1000_ICR, "ICR"},
258
259 /* RX Registers */
260 {E1000_RCTL, "RCTL"},
261 {E1000_RDLEN(0), "RDLEN"},
262 {E1000_RDH(0), "RDH"},
263 {E1000_RDT(0), "RDT"},
264 {E1000_RXDCTL(0), "RXDCTL"},
265 {E1000_RDBAL(0), "RDBAL"},
266 {E1000_RDBAH(0), "RDBAH"},
267
268 /* TX Registers */
269 {E1000_TCTL, "TCTL"},
270 {E1000_TDBAL(0), "TDBAL"},
271 {E1000_TDBAH(0), "TDBAH"},
272 {E1000_TDLEN(0), "TDLEN"},
273 {E1000_TDH(0), "TDH"},
274 {E1000_TDT(0), "TDT"},
275 {E1000_TXDCTL(0), "TXDCTL"},
276 {E1000_TDFH, "TDFH"},
277 {E1000_TDFT, "TDFT"},
278 {E1000_TDFHS, "TDFHS"},
279 {E1000_TDFPC, "TDFPC"},
280
281 /* List Terminator */
282 {}
283 };
284
285 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 int n = 0;
289 char rname[16];
290 u32 regs[8];
291
292 switch (reginfo->ofs) {
293 case E1000_RDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDLEN(n));
296 break;
297 case E1000_RDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_RDH(n));
300 break;
301 case E1000_RDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDT(n));
304 break;
305 case E1000_RXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RXDCTL(n));
308 break;
309 case E1000_RDBAL(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDBAL(n));
312 break;
313 case E1000_RDBAH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDBAH(n));
316 break;
317 case E1000_TDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_TDBAL(n));
320 break;
321 case E1000_TDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_TDBAH(n));
324 break;
325 case E1000_TDLEN(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_TDLEN(n));
328 break;
329 case E1000_TDH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDH(n));
332 break;
333 case E1000_TDT(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDT(n));
336 break;
337 case E1000_TXDCTL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TXDCTL(n));
340 break;
341 default:
342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 return;
344 }
345
346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 regs[2], regs[3]);
349 }
350
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 struct net_device *netdev = adapter->netdev;
355 struct e1000_hw *hw = &adapter->hw;
356 struct igb_reg_info *reginfo;
357 struct igb_ring *tx_ring;
358 union e1000_adv_tx_desc *tx_desc;
359 struct my_u0 { __le64 a; __le64 b; } *u0;
360 struct igb_ring *rx_ring;
361 union e1000_adv_rx_desc *rx_desc;
362 u32 staterr;
363 u16 i, n;
364
365 if (!netif_msg_hw(adapter))
366 return;
367
368 /* Print netdevice Info */
369 if (netdev) {
370 dev_info(&adapter->pdev->dev, "Net device Info\n");
371 pr_info("Device Name state trans_start\n");
372 pr_info("%-15s %016lX %016lX\n", netdev->name,
373 netdev->state, dev_trans_start(netdev));
374 }
375
376 /* Print Registers */
377 dev_info(&adapter->pdev->dev, "Register Dump\n");
378 pr_info(" Register Name Value\n");
379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 reginfo->name; reginfo++) {
381 igb_regdump(hw, reginfo);
382 }
383
384 /* Print TX Ring Summary */
385 if (!netdev || !netif_running(netdev))
386 goto exit;
387
388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
390 for (n = 0; n < adapter->num_tx_queues; n++) {
391 struct igb_tx_buffer *buffer_info;
392 tx_ring = adapter->tx_ring[n];
393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 (u64)dma_unmap_addr(buffer_info, dma),
397 dma_unmap_len(buffer_info, len),
398 buffer_info->next_to_watch,
399 (u64)buffer_info->time_stamp);
400 }
401
402 /* Print TX Rings */
403 if (!netif_msg_tx_done(adapter))
404 goto rx_ring_summary;
405
406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408 /* Transmit Descriptor Formats
409 *
410 * Advanced Transmit Descriptor
411 * +--------------------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +--------------------------------------------------------------+
414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
415 * +--------------------------------------------------------------+
416 * 63 46 45 40 39 38 36 35 32 31 24 15 0
417 */
418
419 for (n = 0; n < adapter->num_tx_queues; n++) {
420 tx_ring = adapter->tx_ring[n];
421 pr_info("------------------------------------\n");
422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 pr_info("------------------------------------\n");
424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
425
426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 const char *next_desc;
428 struct igb_tx_buffer *buffer_info;
429 tx_desc = IGB_TX_DESC(tx_ring, i);
430 buffer_info = &tx_ring->tx_buffer_info[i];
431 u0 = (struct my_u0 *)tx_desc;
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 next_desc = " NTC/U";
435 else if (i == tx_ring->next_to_use)
436 next_desc = " NTU";
437 else if (i == tx_ring->next_to_clean)
438 next_desc = " NTC";
439 else
440 next_desc = "";
441
442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
443 i, le64_to_cpu(u0->a),
444 le64_to_cpu(u0->b),
445 (u64)dma_unmap_addr(buffer_info, dma),
446 dma_unmap_len(buffer_info, len),
447 buffer_info->next_to_watch,
448 (u64)buffer_info->time_stamp,
449 buffer_info->skb, next_desc);
450
451 if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 print_hex_dump(KERN_INFO, "",
453 DUMP_PREFIX_ADDRESS,
454 16, 1, buffer_info->skb->data,
455 dma_unmap_len(buffer_info, len),
456 true);
457 }
458 }
459
460 /* Print RX Rings Summary */
461 rx_ring_summary:
462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 pr_info("Queue [NTU] [NTC]\n");
464 for (n = 0; n < adapter->num_rx_queues; n++) {
465 rx_ring = adapter->rx_ring[n];
466 pr_info(" %5d %5X %5X\n",
467 n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 }
469
470 /* Print RX Rings */
471 if (!netif_msg_rx_status(adapter))
472 goto exit;
473
474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476 /* Advanced Receive Descriptor (Read) Format
477 * 63 1 0
478 * +-----------------------------------------------------+
479 * 0 | Packet Buffer Address [63:1] |A0/NSE|
480 * +----------------------------------------------+------+
481 * 8 | Header Buffer Address [63:1] | DD |
482 * +-----------------------------------------------------+
483 *
484 *
485 * Advanced Receive Descriptor (Write-Back) Format
486 *
487 * 63 48 47 32 31 30 21 20 17 16 4 3 0
488 * +------------------------------------------------------+
489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
490 * | Checksum Ident | | | | Type | Type |
491 * +------------------------------------------------------+
492 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 * +------------------------------------------------------+
494 * 63 48 47 32 31 20 19 0
495 */
496
497 for (n = 0; n < adapter->num_rx_queues; n++) {
498 rx_ring = adapter->rx_ring[n];
499 pr_info("------------------------------------\n");
500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 pr_info("------------------------------------\n");
502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505 for (i = 0; i < rx_ring->count; i++) {
506 const char *next_desc;
507 struct igb_rx_buffer *buffer_info;
508 buffer_info = &rx_ring->rx_buffer_info[i];
509 rx_desc = IGB_RX_DESC(rx_ring, i);
510 u0 = (struct my_u0 *)rx_desc;
511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513 if (i == rx_ring->next_to_use)
514 next_desc = " NTU";
515 else if (i == rx_ring->next_to_clean)
516 next_desc = " NTC";
517 else
518 next_desc = "";
519
520 if (staterr & E1000_RXD_STAT_DD) {
521 /* Descriptor Done */
522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
523 "RWB", i,
524 le64_to_cpu(u0->a),
525 le64_to_cpu(u0->b),
526 next_desc);
527 } else {
528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
529 "R ", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 (u64)buffer_info->dma,
533 next_desc);
534
535 if (netif_msg_pktdata(adapter) &&
536 buffer_info->dma && buffer_info->page) {
537 print_hex_dump(KERN_INFO, "",
538 DUMP_PREFIX_ADDRESS,
539 16, 1,
540 page_address(buffer_info->page) +
541 buffer_info->page_offset,
542 igb_rx_bufsz(rx_ring), true);
543 }
544 }
545 }
546 }
547
548 exit:
549 return;
550 }
551
552 /**
553 * igb_get_i2c_data - Reads the I2C SDA data bit
554 * @data: opaque pointer to adapter struct
555 *
556 * Returns the I2C data bit value
557 **/
igb_get_i2c_data(void * data)558 static int igb_get_i2c_data(void *data)
559 {
560 struct igb_adapter *adapter = (struct igb_adapter *)data;
561 struct e1000_hw *hw = &adapter->hw;
562 s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564 return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566
567 /**
568 * igb_set_i2c_data - Sets the I2C data bit
569 * @data: pointer to hardware structure
570 * @state: I2C data value (0 or 1) to set
571 *
572 * Sets the I2C data bit
573 **/
igb_set_i2c_data(void * data,int state)574 static void igb_set_i2c_data(void *data, int state)
575 {
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 if (state) {
581 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
582 } else {
583 i2cctl &= ~E1000_I2C_DATA_OE_N;
584 i2cctl &= ~E1000_I2C_DATA_OUT;
585 }
586
587 wr32(E1000_I2CPARAMS, i2cctl);
588 wrfl();
589 }
590
591 /**
592 * igb_set_i2c_clk - Sets the I2C SCL clock
593 * @data: pointer to hardware structure
594 * @state: state to set clock
595 *
596 * Sets the I2C clock line to state
597 **/
igb_set_i2c_clk(void * data,int state)598 static void igb_set_i2c_clk(void *data, int state)
599 {
600 struct igb_adapter *adapter = (struct igb_adapter *)data;
601 struct e1000_hw *hw = &adapter->hw;
602 s32 i2cctl = rd32(E1000_I2CPARAMS);
603
604 if (state) {
605 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
606 } else {
607 i2cctl &= ~E1000_I2C_CLK_OUT;
608 i2cctl &= ~E1000_I2C_CLK_OE_N;
609 }
610 wr32(E1000_I2CPARAMS, i2cctl);
611 wrfl();
612 }
613
614 /**
615 * igb_get_i2c_clk - Gets the I2C SCL clock state
616 * @data: pointer to hardware structure
617 *
618 * Gets the I2C clock state
619 **/
igb_get_i2c_clk(void * data)620 static int igb_get_i2c_clk(void *data)
621 {
622 struct igb_adapter *adapter = (struct igb_adapter *)data;
623 struct e1000_hw *hw = &adapter->hw;
624 s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626 return !!(i2cctl & E1000_I2C_CLK_IN);
627 }
628
629 static const struct i2c_algo_bit_data igb_i2c_algo = {
630 .setsda = igb_set_i2c_data,
631 .setscl = igb_set_i2c_clk,
632 .getsda = igb_get_i2c_data,
633 .getscl = igb_get_i2c_clk,
634 .udelay = 5,
635 .timeout = 20,
636 };
637
638 /**
639 * igb_get_hw_dev - return device
640 * @hw: pointer to hardware structure
641 *
642 * used by hardware layer to print debugging information
643 **/
igb_get_hw_dev(struct e1000_hw * hw)644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
645 {
646 struct igb_adapter *adapter = hw->back;
647 return adapter->netdev;
648 }
649
650 /**
651 * igb_init_module - Driver Registration Routine
652 *
653 * igb_init_module is the first routine called when the driver is
654 * loaded. All it does is register with the PCI subsystem.
655 **/
igb_init_module(void)656 static int __init igb_init_module(void)
657 {
658 int ret;
659
660 pr_info("%s\n", igb_driver_string);
661 pr_info("%s\n", igb_copyright);
662
663 #ifdef CONFIG_IGB_DCA
664 dca_register_notify(&dca_notifier);
665 #endif
666 ret = pci_register_driver(&igb_driver);
667 return ret;
668 }
669
670 module_init(igb_init_module);
671
672 /**
673 * igb_exit_module - Driver Exit Cleanup Routine
674 *
675 * igb_exit_module is called just before the driver is removed
676 * from memory.
677 **/
igb_exit_module(void)678 static void __exit igb_exit_module(void)
679 {
680 #ifdef CONFIG_IGB_DCA
681 dca_unregister_notify(&dca_notifier);
682 #endif
683 pci_unregister_driver(&igb_driver);
684 }
685
686 module_exit(igb_exit_module);
687
688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
689 /**
690 * igb_cache_ring_register - Descriptor ring to register mapping
691 * @adapter: board private structure to initialize
692 *
693 * Once we know the feature-set enabled for the device, we'll cache
694 * the register offset the descriptor ring is assigned to.
695 **/
igb_cache_ring_register(struct igb_adapter * adapter)696 static void igb_cache_ring_register(struct igb_adapter *adapter)
697 {
698 int i = 0, j = 0;
699 u32 rbase_offset = adapter->vfs_allocated_count;
700
701 switch (adapter->hw.mac.type) {
702 case e1000_82576:
703 /* The queues are allocated for virtualization such that VF 0
704 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705 * In order to avoid collision we start at the first free queue
706 * and continue consuming queues in the same sequence
707 */
708 if (adapter->vfs_allocated_count) {
709 for (; i < adapter->rss_queues; i++)
710 adapter->rx_ring[i]->reg_idx = rbase_offset +
711 Q_IDX_82576(i);
712 }
713 fallthrough;
714 case e1000_82575:
715 case e1000_82580:
716 case e1000_i350:
717 case e1000_i354:
718 case e1000_i210:
719 case e1000_i211:
720 default:
721 for (; i < adapter->num_rx_queues; i++)
722 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723 for (; j < adapter->num_tx_queues; j++)
724 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
725 break;
726 }
727 }
728
igb_rd32(struct e1000_hw * hw,u32 reg)729 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
730 {
731 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
733 u32 value = 0;
734
735 if (E1000_REMOVED(hw_addr))
736 return ~value;
737
738 value = readl(&hw_addr[reg]);
739
740 /* reads should not return all F's */
741 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
742 struct net_device *netdev = igb->netdev;
743 hw->hw_addr = NULL;
744 netdev_err(netdev, "PCIe link lost\n");
745 WARN(pci_device_is_present(igb->pdev),
746 "igb: Failed to read reg 0x%x!\n", reg);
747 }
748
749 return value;
750 }
751
752 /**
753 * igb_write_ivar - configure ivar for given MSI-X vector
754 * @hw: pointer to the HW structure
755 * @msix_vector: vector number we are allocating to a given ring
756 * @index: row index of IVAR register to write within IVAR table
757 * @offset: column offset of in IVAR, should be multiple of 8
758 *
759 * This function is intended to handle the writing of the IVAR register
760 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
761 * each containing an cause allocation for an Rx and Tx ring, and a
762 * variable number of rows depending on the number of queues supported.
763 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 int index, int offset)
766 {
767 u32 ivar = array_rd32(E1000_IVAR0, index);
768
769 /* clear any bits that are currently set */
770 ivar &= ~((u32)0xFF << offset);
771
772 /* write vector and valid bit */
773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
777
778 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 struct igb_adapter *adapter = q_vector->adapter;
782 struct e1000_hw *hw = &adapter->hw;
783 int rx_queue = IGB_N0_QUEUE;
784 int tx_queue = IGB_N0_QUEUE;
785 u32 msixbm = 0;
786
787 if (q_vector->rx.ring)
788 rx_queue = q_vector->rx.ring->reg_idx;
789 if (q_vector->tx.ring)
790 tx_queue = q_vector->tx.ring->reg_idx;
791
792 switch (hw->mac.type) {
793 case e1000_82575:
794 /* The 82575 assigns vectors using a bitmask, which matches the
795 * bitmask for the EICR/EIMS/EIMC registers. To assign one
796 * or more queues to a vector, we write the appropriate bits
797 * into the MSIXBM register for that vector.
798 */
799 if (rx_queue > IGB_N0_QUEUE)
800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 if (tx_queue > IGB_N0_QUEUE)
802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804 msixbm |= E1000_EIMS_OTHER;
805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 q_vector->eims_value = msixbm;
807 break;
808 case e1000_82576:
809 /* 82576 uses a table that essentially consists of 2 columns
810 * with 8 rows. The ordering is column-major so we use the
811 * lower 3 bits as the row index, and the 4th bit as the
812 * column offset.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue & 0x7,
817 (rx_queue & 0x8) << 1);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue & 0x7,
821 ((tx_queue & 0x8) << 1) + 8);
822 q_vector->eims_value = BIT(msix_vector);
823 break;
824 case e1000_82580:
825 case e1000_i350:
826 case e1000_i354:
827 case e1000_i210:
828 case e1000_i211:
829 /* On 82580 and newer adapters the scheme is similar to 82576
830 * however instead of ordering column-major we have things
831 * ordered row-major. So we traverse the table by using
832 * bit 0 as the column offset, and the remaining bits as the
833 * row index.
834 */
835 if (rx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 rx_queue >> 1,
838 (rx_queue & 0x1) << 4);
839 if (tx_queue > IGB_N0_QUEUE)
840 igb_write_ivar(hw, msix_vector,
841 tx_queue >> 1,
842 ((tx_queue & 0x1) << 4) + 8);
843 q_vector->eims_value = BIT(msix_vector);
844 break;
845 default:
846 BUG();
847 break;
848 }
849
850 /* add q_vector eims value to global eims_enable_mask */
851 adapter->eims_enable_mask |= q_vector->eims_value;
852
853 /* configure q_vector to set itr on first interrupt */
854 q_vector->set_itr = 1;
855 }
856
857 /**
858 * igb_configure_msix - Configure MSI-X hardware
859 * @adapter: board private structure to initialize
860 *
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
863 **/
igb_configure_msix(struct igb_adapter * adapter)864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
871
872 /* set vector for other causes, i.e. link changes */
873 switch (hw->mac.type) {
874 case e1000_82575:
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
884
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 adapter->eims_other = E1000_EIMS_OTHER;
888
889 break;
890
891 case e1000_82576:
892 case e1000_82580:
893 case e1000_i350:
894 case e1000_i354:
895 case e1000_i210:
896 case e1000_i211:
897 /* Turn on MSI-X capability first, or our settings
898 * won't stick. And it will take days to debug.
899 */
900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 E1000_GPIE_NSICR);
903
904 /* enable msix_other interrupt */
905 adapter->eims_other = BIT(vector);
906 tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908 wr32(E1000_IVAR_MISC, tmp);
909 break;
910 default:
911 /* do nothing, since nothing else supports MSI-X */
912 break;
913 } /* switch (hw->mac.type) */
914
915 adapter->eims_enable_mask |= adapter->eims_other;
916
917 for (i = 0; i < adapter->num_q_vectors; i++)
918 igb_assign_vector(adapter->q_vector[i], vector++);
919
920 wrfl();
921 }
922
923 /**
924 * igb_request_msix - Initialize MSI-X interrupts
925 * @adapter: board private structure to initialize
926 *
927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
928 * kernel.
929 **/
igb_request_msix(struct igb_adapter * adapter)930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 unsigned int num_q_vectors = adapter->num_q_vectors;
933 struct net_device *netdev = adapter->netdev;
934 int i, err = 0, vector = 0, free_vector = 0;
935
936 err = request_irq(adapter->msix_entries[vector].vector,
937 igb_msix_other, 0, netdev->name, adapter);
938 if (err)
939 goto err_out;
940
941 if (num_q_vectors > MAX_Q_VECTORS) {
942 num_q_vectors = MAX_Q_VECTORS;
943 dev_warn(&adapter->pdev->dev,
944 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945 adapter->num_q_vectors, MAX_Q_VECTORS);
946 }
947 for (i = 0; i < num_q_vectors; i++) {
948 struct igb_q_vector *q_vector = adapter->q_vector[i];
949
950 vector++;
951
952 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
953
954 if (q_vector->rx.ring && q_vector->tx.ring)
955 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
956 q_vector->rx.ring->queue_index);
957 else if (q_vector->tx.ring)
958 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
959 q_vector->tx.ring->queue_index);
960 else if (q_vector->rx.ring)
961 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
962 q_vector->rx.ring->queue_index);
963 else
964 sprintf(q_vector->name, "%s-unused", netdev->name);
965
966 err = request_irq(adapter->msix_entries[vector].vector,
967 igb_msix_ring, 0, q_vector->name,
968 q_vector);
969 if (err)
970 goto err_free;
971 }
972
973 igb_configure_msix(adapter);
974 return 0;
975
976 err_free:
977 /* free already assigned IRQs */
978 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
979
980 vector--;
981 for (i = 0; i < vector; i++) {
982 free_irq(adapter->msix_entries[free_vector++].vector,
983 adapter->q_vector[i]);
984 }
985 err_out:
986 return err;
987 }
988
989 /**
990 * igb_free_q_vector - Free memory allocated for specific interrupt vector
991 * @adapter: board private structure to initialize
992 * @v_idx: Index of vector to be freed
993 *
994 * This function frees the memory allocated to the q_vector.
995 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
997 {
998 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999
1000 adapter->q_vector[v_idx] = NULL;
1001
1002 /* igb_get_stats64() might access the rings on this vector,
1003 * we must wait a grace period before freeing it.
1004 */
1005 if (q_vector)
1006 kfree_rcu(q_vector, rcu);
1007 }
1008
1009 /**
1010 * igb_reset_q_vector - Reset config for interrupt vector
1011 * @adapter: board private structure to initialize
1012 * @v_idx: Index of vector to be reset
1013 *
1014 * If NAPI is enabled it will delete any references to the
1015 * NAPI struct. This is preparation for igb_free_q_vector.
1016 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018 {
1019 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020
1021 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1022 * allocated. So, q_vector is NULL so we should stop here.
1023 */
1024 if (!q_vector)
1025 return;
1026
1027 if (q_vector->tx.ring)
1028 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029
1030 if (q_vector->rx.ring)
1031 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032
1033 netif_napi_del(&q_vector->napi);
1034
1035 }
1036
igb_reset_interrupt_capability(struct igb_adapter * adapter)1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038 {
1039 int v_idx = adapter->num_q_vectors;
1040
1041 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042 pci_disable_msix(adapter->pdev);
1043 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044 pci_disable_msi(adapter->pdev);
1045
1046 while (v_idx--)
1047 igb_reset_q_vector(adapter, v_idx);
1048 }
1049
1050 /**
1051 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1052 * @adapter: board private structure to initialize
1053 *
1054 * This function frees the memory allocated to the q_vectors. In addition if
1055 * NAPI is enabled it will delete any references to the NAPI struct prior
1056 * to freeing the q_vector.
1057 **/
igb_free_q_vectors(struct igb_adapter * adapter)1058 static void igb_free_q_vectors(struct igb_adapter *adapter)
1059 {
1060 int v_idx = adapter->num_q_vectors;
1061
1062 adapter->num_tx_queues = 0;
1063 adapter->num_rx_queues = 0;
1064 adapter->num_q_vectors = 0;
1065
1066 while (v_idx--) {
1067 igb_reset_q_vector(adapter, v_idx);
1068 igb_free_q_vector(adapter, v_idx);
1069 }
1070 }
1071
1072 /**
1073 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074 * @adapter: board private structure to initialize
1075 *
1076 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1077 * MSI-X interrupts allocated.
1078 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080 {
1081 igb_free_q_vectors(adapter);
1082 igb_reset_interrupt_capability(adapter);
1083 }
1084
1085 /**
1086 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1087 * @adapter: board private structure to initialize
1088 * @msix: boolean value of MSIX capability
1089 *
1090 * Attempt to configure interrupts using the best available
1091 * capabilities of the hardware and kernel.
1092 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094 {
1095 int err;
1096 int numvecs, i;
1097
1098 if (!msix)
1099 goto msi_only;
1100 adapter->flags |= IGB_FLAG_HAS_MSIX;
1101
1102 /* Number of supported queues. */
1103 adapter->num_rx_queues = adapter->rss_queues;
1104 if (adapter->vfs_allocated_count)
1105 adapter->num_tx_queues = 1;
1106 else
1107 adapter->num_tx_queues = adapter->rss_queues;
1108
1109 /* start with one vector for every Rx queue */
1110 numvecs = adapter->num_rx_queues;
1111
1112 /* if Tx handler is separate add 1 for every Tx queue */
1113 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114 numvecs += adapter->num_tx_queues;
1115
1116 /* store the number of vectors reserved for queues */
1117 adapter->num_q_vectors = numvecs;
1118
1119 /* add 1 vector for link status interrupts */
1120 numvecs++;
1121 for (i = 0; i < numvecs; i++)
1122 adapter->msix_entries[i].entry = i;
1123
1124 err = pci_enable_msix_range(adapter->pdev,
1125 adapter->msix_entries,
1126 numvecs,
1127 numvecs);
1128 if (err > 0)
1129 return;
1130
1131 igb_reset_interrupt_capability(adapter);
1132
1133 /* If we can't do MSI-X, try MSI */
1134 msi_only:
1135 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136 #ifdef CONFIG_PCI_IOV
1137 /* disable SR-IOV for non MSI-X configurations */
1138 if (adapter->vf_data) {
1139 struct e1000_hw *hw = &adapter->hw;
1140 /* disable iov and allow time for transactions to clear */
1141 pci_disable_sriov(adapter->pdev);
1142 msleep(500);
1143
1144 kfree(adapter->vf_mac_list);
1145 adapter->vf_mac_list = NULL;
1146 kfree(adapter->vf_data);
1147 adapter->vf_data = NULL;
1148 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149 wrfl();
1150 msleep(100);
1151 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152 }
1153 #endif
1154 adapter->vfs_allocated_count = 0;
1155 adapter->rss_queues = 1;
1156 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157 adapter->num_rx_queues = 1;
1158 adapter->num_tx_queues = 1;
1159 adapter->num_q_vectors = 1;
1160 if (!pci_enable_msi(adapter->pdev))
1161 adapter->flags |= IGB_FLAG_HAS_MSI;
1162 }
1163
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1164 static void igb_add_ring(struct igb_ring *ring,
1165 struct igb_ring_container *head)
1166 {
1167 head->ring = ring;
1168 head->count++;
1169 }
1170
1171 /**
1172 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173 * @adapter: board private structure to initialize
1174 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1175 * @v_idx: index of vector in adapter struct
1176 * @txr_count: total number of Tx rings to allocate
1177 * @txr_idx: index of first Tx ring to allocate
1178 * @rxr_count: total number of Rx rings to allocate
1179 * @rxr_idx: index of first Rx ring to allocate
1180 *
1181 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1182 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1183 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184 int v_count, int v_idx,
1185 int txr_count, int txr_idx,
1186 int rxr_count, int rxr_idx)
1187 {
1188 struct igb_q_vector *q_vector;
1189 struct igb_ring *ring;
1190 int ring_count;
1191 size_t size;
1192
1193 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194 if (txr_count > 1 || rxr_count > 1)
1195 return -ENOMEM;
1196
1197 ring_count = txr_count + rxr_count;
1198 size = struct_size(q_vector, ring, ring_count);
1199
1200 /* allocate q_vector and rings */
1201 q_vector = adapter->q_vector[v_idx];
1202 if (!q_vector) {
1203 q_vector = kzalloc(size, GFP_KERNEL);
1204 } else if (size > ksize(q_vector)) {
1205 kfree_rcu(q_vector, rcu);
1206 q_vector = kzalloc(size, GFP_KERNEL);
1207 } else {
1208 memset(q_vector, 0, size);
1209 }
1210 if (!q_vector)
1211 return -ENOMEM;
1212
1213 /* initialize NAPI */
1214 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1215
1216 /* tie q_vector and adapter together */
1217 adapter->q_vector[v_idx] = q_vector;
1218 q_vector->adapter = adapter;
1219
1220 /* initialize work limits */
1221 q_vector->tx.work_limit = adapter->tx_work_limit;
1222
1223 /* initialize ITR configuration */
1224 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1225 q_vector->itr_val = IGB_START_ITR;
1226
1227 /* initialize pointer to rings */
1228 ring = q_vector->ring;
1229
1230 /* intialize ITR */
1231 if (rxr_count) {
1232 /* rx or rx/tx vector */
1233 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1234 q_vector->itr_val = adapter->rx_itr_setting;
1235 } else {
1236 /* tx only vector */
1237 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1238 q_vector->itr_val = adapter->tx_itr_setting;
1239 }
1240
1241 if (txr_count) {
1242 /* assign generic ring traits */
1243 ring->dev = &adapter->pdev->dev;
1244 ring->netdev = adapter->netdev;
1245
1246 /* configure backlink on ring */
1247 ring->q_vector = q_vector;
1248
1249 /* update q_vector Tx values */
1250 igb_add_ring(ring, &q_vector->tx);
1251
1252 /* For 82575, context index must be unique per ring. */
1253 if (adapter->hw.mac.type == e1000_82575)
1254 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1255
1256 /* apply Tx specific ring traits */
1257 ring->count = adapter->tx_ring_count;
1258 ring->queue_index = txr_idx;
1259
1260 ring->cbs_enable = false;
1261 ring->idleslope = 0;
1262 ring->sendslope = 0;
1263 ring->hicredit = 0;
1264 ring->locredit = 0;
1265
1266 u64_stats_init(&ring->tx_syncp);
1267 u64_stats_init(&ring->tx_syncp2);
1268
1269 /* assign ring to adapter */
1270 adapter->tx_ring[txr_idx] = ring;
1271
1272 /* push pointer to next ring */
1273 ring++;
1274 }
1275
1276 if (rxr_count) {
1277 /* assign generic ring traits */
1278 ring->dev = &adapter->pdev->dev;
1279 ring->netdev = adapter->netdev;
1280
1281 /* configure backlink on ring */
1282 ring->q_vector = q_vector;
1283
1284 /* update q_vector Rx values */
1285 igb_add_ring(ring, &q_vector->rx);
1286
1287 /* set flag indicating ring supports SCTP checksum offload */
1288 if (adapter->hw.mac.type >= e1000_82576)
1289 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1290
1291 /* On i350, i354, i210, and i211, loopback VLAN packets
1292 * have the tag byte-swapped.
1293 */
1294 if (adapter->hw.mac.type >= e1000_i350)
1295 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1296
1297 /* apply Rx specific ring traits */
1298 ring->count = adapter->rx_ring_count;
1299 ring->queue_index = rxr_idx;
1300
1301 u64_stats_init(&ring->rx_syncp);
1302
1303 /* assign ring to adapter */
1304 adapter->rx_ring[rxr_idx] = ring;
1305 }
1306
1307 return 0;
1308 }
1309
1310
1311 /**
1312 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1313 * @adapter: board private structure to initialize
1314 *
1315 * We allocate one q_vector per queue interrupt. If allocation fails we
1316 * return -ENOMEM.
1317 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1318 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1319 {
1320 int q_vectors = adapter->num_q_vectors;
1321 int rxr_remaining = adapter->num_rx_queues;
1322 int txr_remaining = adapter->num_tx_queues;
1323 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1324 int err;
1325
1326 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1327 for (; rxr_remaining; v_idx++) {
1328 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1329 0, 0, 1, rxr_idx);
1330
1331 if (err)
1332 goto err_out;
1333
1334 /* update counts and index */
1335 rxr_remaining--;
1336 rxr_idx++;
1337 }
1338 }
1339
1340 for (; v_idx < q_vectors; v_idx++) {
1341 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1342 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1343
1344 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1345 tqpv, txr_idx, rqpv, rxr_idx);
1346
1347 if (err)
1348 goto err_out;
1349
1350 /* update counts and index */
1351 rxr_remaining -= rqpv;
1352 txr_remaining -= tqpv;
1353 rxr_idx++;
1354 txr_idx++;
1355 }
1356
1357 return 0;
1358
1359 err_out:
1360 adapter->num_tx_queues = 0;
1361 adapter->num_rx_queues = 0;
1362 adapter->num_q_vectors = 0;
1363
1364 while (v_idx--)
1365 igb_free_q_vector(adapter, v_idx);
1366
1367 return -ENOMEM;
1368 }
1369
1370 /**
1371 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1372 * @adapter: board private structure to initialize
1373 * @msix: boolean value of MSIX capability
1374 *
1375 * This function initializes the interrupts and allocates all of the queues.
1376 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1377 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1378 {
1379 struct pci_dev *pdev = adapter->pdev;
1380 int err;
1381
1382 igb_set_interrupt_capability(adapter, msix);
1383
1384 err = igb_alloc_q_vectors(adapter);
1385 if (err) {
1386 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1387 goto err_alloc_q_vectors;
1388 }
1389
1390 igb_cache_ring_register(adapter);
1391
1392 return 0;
1393
1394 err_alloc_q_vectors:
1395 igb_reset_interrupt_capability(adapter);
1396 return err;
1397 }
1398
1399 /**
1400 * igb_request_irq - initialize interrupts
1401 * @adapter: board private structure to initialize
1402 *
1403 * Attempts to configure interrupts using the best available
1404 * capabilities of the hardware and kernel.
1405 **/
igb_request_irq(struct igb_adapter * adapter)1406 static int igb_request_irq(struct igb_adapter *adapter)
1407 {
1408 struct net_device *netdev = adapter->netdev;
1409 struct pci_dev *pdev = adapter->pdev;
1410 int err = 0;
1411
1412 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1413 err = igb_request_msix(adapter);
1414 if (!err)
1415 goto request_done;
1416 /* fall back to MSI */
1417 igb_free_all_tx_resources(adapter);
1418 igb_free_all_rx_resources(adapter);
1419
1420 igb_clear_interrupt_scheme(adapter);
1421 err = igb_init_interrupt_scheme(adapter, false);
1422 if (err)
1423 goto request_done;
1424
1425 igb_setup_all_tx_resources(adapter);
1426 igb_setup_all_rx_resources(adapter);
1427 igb_configure(adapter);
1428 }
1429
1430 igb_assign_vector(adapter->q_vector[0], 0);
1431
1432 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1433 err = request_irq(pdev->irq, igb_intr_msi, 0,
1434 netdev->name, adapter);
1435 if (!err)
1436 goto request_done;
1437
1438 /* fall back to legacy interrupts */
1439 igb_reset_interrupt_capability(adapter);
1440 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1441 }
1442
1443 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1444 netdev->name, adapter);
1445
1446 if (err)
1447 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1448 err);
1449
1450 request_done:
1451 return err;
1452 }
1453
igb_free_irq(struct igb_adapter * adapter)1454 static void igb_free_irq(struct igb_adapter *adapter)
1455 {
1456 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1457 int vector = 0, i;
1458
1459 free_irq(adapter->msix_entries[vector++].vector, adapter);
1460
1461 for (i = 0; i < adapter->num_q_vectors; i++)
1462 free_irq(adapter->msix_entries[vector++].vector,
1463 adapter->q_vector[i]);
1464 } else {
1465 free_irq(adapter->pdev->irq, adapter);
1466 }
1467 }
1468
1469 /**
1470 * igb_irq_disable - Mask off interrupt generation on the NIC
1471 * @adapter: board private structure
1472 **/
igb_irq_disable(struct igb_adapter * adapter)1473 static void igb_irq_disable(struct igb_adapter *adapter)
1474 {
1475 struct e1000_hw *hw = &adapter->hw;
1476
1477 /* we need to be careful when disabling interrupts. The VFs are also
1478 * mapped into these registers and so clearing the bits can cause
1479 * issues on the VF drivers so we only need to clear what we set
1480 */
1481 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1482 u32 regval = rd32(E1000_EIAM);
1483
1484 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1485 wr32(E1000_EIMC, adapter->eims_enable_mask);
1486 regval = rd32(E1000_EIAC);
1487 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1488 }
1489
1490 wr32(E1000_IAM, 0);
1491 wr32(E1000_IMC, ~0);
1492 wrfl();
1493 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1494 int i;
1495
1496 for (i = 0; i < adapter->num_q_vectors; i++)
1497 synchronize_irq(adapter->msix_entries[i].vector);
1498 } else {
1499 synchronize_irq(adapter->pdev->irq);
1500 }
1501 }
1502
1503 /**
1504 * igb_irq_enable - Enable default interrupt generation settings
1505 * @adapter: board private structure
1506 **/
igb_irq_enable(struct igb_adapter * adapter)1507 static void igb_irq_enable(struct igb_adapter *adapter)
1508 {
1509 struct e1000_hw *hw = &adapter->hw;
1510
1511 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1512 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1513 u32 regval = rd32(E1000_EIAC);
1514
1515 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1516 regval = rd32(E1000_EIAM);
1517 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1518 wr32(E1000_EIMS, adapter->eims_enable_mask);
1519 if (adapter->vfs_allocated_count) {
1520 wr32(E1000_MBVFIMR, 0xFF);
1521 ims |= E1000_IMS_VMMB;
1522 }
1523 wr32(E1000_IMS, ims);
1524 } else {
1525 wr32(E1000_IMS, IMS_ENABLE_MASK |
1526 E1000_IMS_DRSTA);
1527 wr32(E1000_IAM, IMS_ENABLE_MASK |
1528 E1000_IMS_DRSTA);
1529 }
1530 }
1531
igb_update_mng_vlan(struct igb_adapter * adapter)1532 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1533 {
1534 struct e1000_hw *hw = &adapter->hw;
1535 u16 pf_id = adapter->vfs_allocated_count;
1536 u16 vid = adapter->hw.mng_cookie.vlan_id;
1537 u16 old_vid = adapter->mng_vlan_id;
1538
1539 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1540 /* add VID to filter table */
1541 igb_vfta_set(hw, vid, pf_id, true, true);
1542 adapter->mng_vlan_id = vid;
1543 } else {
1544 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1545 }
1546
1547 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1548 (vid != old_vid) &&
1549 !test_bit(old_vid, adapter->active_vlans)) {
1550 /* remove VID from filter table */
1551 igb_vfta_set(hw, vid, pf_id, false, true);
1552 }
1553 }
1554
1555 /**
1556 * igb_release_hw_control - release control of the h/w to f/w
1557 * @adapter: address of board private structure
1558 *
1559 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1560 * For ASF and Pass Through versions of f/w this means that the
1561 * driver is no longer loaded.
1562 **/
igb_release_hw_control(struct igb_adapter * adapter)1563 static void igb_release_hw_control(struct igb_adapter *adapter)
1564 {
1565 struct e1000_hw *hw = &adapter->hw;
1566 u32 ctrl_ext;
1567
1568 /* Let firmware take over control of h/w */
1569 ctrl_ext = rd32(E1000_CTRL_EXT);
1570 wr32(E1000_CTRL_EXT,
1571 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1572 }
1573
1574 /**
1575 * igb_get_hw_control - get control of the h/w from f/w
1576 * @adapter: address of board private structure
1577 *
1578 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1579 * For ASF and Pass Through versions of f/w this means that
1580 * the driver is loaded.
1581 **/
igb_get_hw_control(struct igb_adapter * adapter)1582 static void igb_get_hw_control(struct igb_adapter *adapter)
1583 {
1584 struct e1000_hw *hw = &adapter->hw;
1585 u32 ctrl_ext;
1586
1587 /* Let firmware know the driver has taken over */
1588 ctrl_ext = rd32(E1000_CTRL_EXT);
1589 wr32(E1000_CTRL_EXT,
1590 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1591 }
1592
enable_fqtss(struct igb_adapter * adapter,bool enable)1593 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1594 {
1595 struct net_device *netdev = adapter->netdev;
1596 struct e1000_hw *hw = &adapter->hw;
1597
1598 WARN_ON(hw->mac.type != e1000_i210);
1599
1600 if (enable)
1601 adapter->flags |= IGB_FLAG_FQTSS;
1602 else
1603 adapter->flags &= ~IGB_FLAG_FQTSS;
1604
1605 if (netif_running(netdev))
1606 schedule_work(&adapter->reset_task);
1607 }
1608
is_fqtss_enabled(struct igb_adapter * adapter)1609 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1610 {
1611 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1612 }
1613
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1614 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1615 enum tx_queue_prio prio)
1616 {
1617 u32 val;
1618
1619 WARN_ON(hw->mac.type != e1000_i210);
1620 WARN_ON(queue < 0 || queue > 4);
1621
1622 val = rd32(E1000_I210_TXDCTL(queue));
1623
1624 if (prio == TX_QUEUE_PRIO_HIGH)
1625 val |= E1000_TXDCTL_PRIORITY;
1626 else
1627 val &= ~E1000_TXDCTL_PRIORITY;
1628
1629 wr32(E1000_I210_TXDCTL(queue), val);
1630 }
1631
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1632 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1633 {
1634 u32 val;
1635
1636 WARN_ON(hw->mac.type != e1000_i210);
1637 WARN_ON(queue < 0 || queue > 1);
1638
1639 val = rd32(E1000_I210_TQAVCC(queue));
1640
1641 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1642 val |= E1000_TQAVCC_QUEUEMODE;
1643 else
1644 val &= ~E1000_TQAVCC_QUEUEMODE;
1645
1646 wr32(E1000_I210_TQAVCC(queue), val);
1647 }
1648
is_any_cbs_enabled(struct igb_adapter * adapter)1649 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1650 {
1651 int i;
1652
1653 for (i = 0; i < adapter->num_tx_queues; i++) {
1654 if (adapter->tx_ring[i]->cbs_enable)
1655 return true;
1656 }
1657
1658 return false;
1659 }
1660
is_any_txtime_enabled(struct igb_adapter * adapter)1661 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1662 {
1663 int i;
1664
1665 for (i = 0; i < adapter->num_tx_queues; i++) {
1666 if (adapter->tx_ring[i]->launchtime_enable)
1667 return true;
1668 }
1669
1670 return false;
1671 }
1672
1673 /**
1674 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1675 * @adapter: pointer to adapter struct
1676 * @queue: queue number
1677 *
1678 * Configure CBS and Launchtime for a given hardware queue.
1679 * Parameters are retrieved from the correct Tx ring, so
1680 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1681 * for setting those correctly prior to this function being called.
1682 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1683 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1684 {
1685 struct net_device *netdev = adapter->netdev;
1686 struct e1000_hw *hw = &adapter->hw;
1687 struct igb_ring *ring;
1688 u32 tqavcc, tqavctrl;
1689 u16 value;
1690
1691 WARN_ON(hw->mac.type != e1000_i210);
1692 WARN_ON(queue < 0 || queue > 1);
1693 ring = adapter->tx_ring[queue];
1694
1695 /* If any of the Qav features is enabled, configure queues as SR and
1696 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1697 * as SP.
1698 */
1699 if (ring->cbs_enable || ring->launchtime_enable) {
1700 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1701 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1702 } else {
1703 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1704 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1705 }
1706
1707 /* If CBS is enabled, set DataTranARB and config its parameters. */
1708 if (ring->cbs_enable || queue == 0) {
1709 /* i210 does not allow the queue 0 to be in the Strict
1710 * Priority mode while the Qav mode is enabled, so,
1711 * instead of disabling strict priority mode, we give
1712 * queue 0 the maximum of credits possible.
1713 *
1714 * See section 8.12.19 of the i210 datasheet, "Note:
1715 * Queue0 QueueMode must be set to 1b when
1716 * TransmitMode is set to Qav."
1717 */
1718 if (queue == 0 && !ring->cbs_enable) {
1719 /* max "linkspeed" idleslope in kbps */
1720 ring->idleslope = 1000000;
1721 ring->hicredit = ETH_FRAME_LEN;
1722 }
1723
1724 /* Always set data transfer arbitration to credit-based
1725 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1726 * the queues.
1727 */
1728 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1729 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1730 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1731
1732 /* According to i210 datasheet section 7.2.7.7, we should set
1733 * the 'idleSlope' field from TQAVCC register following the
1734 * equation:
1735 *
1736 * For 100 Mbps link speed:
1737 *
1738 * value = BW * 0x7735 * 0.2 (E1)
1739 *
1740 * For 1000Mbps link speed:
1741 *
1742 * value = BW * 0x7735 * 2 (E2)
1743 *
1744 * E1 and E2 can be merged into one equation as shown below.
1745 * Note that 'link-speed' is in Mbps.
1746 *
1747 * value = BW * 0x7735 * 2 * link-speed
1748 * -------------- (E3)
1749 * 1000
1750 *
1751 * 'BW' is the percentage bandwidth out of full link speed
1752 * which can be found with the following equation. Note that
1753 * idleSlope here is the parameter from this function which
1754 * is in kbps.
1755 *
1756 * BW = idleSlope
1757 * ----------------- (E4)
1758 * link-speed * 1000
1759 *
1760 * That said, we can come up with a generic equation to
1761 * calculate the value we should set it TQAVCC register by
1762 * replacing 'BW' in E3 by E4. The resulting equation is:
1763 *
1764 * value = idleSlope * 0x7735 * 2 * link-speed
1765 * ----------------- -------------- (E5)
1766 * link-speed * 1000 1000
1767 *
1768 * 'link-speed' is present in both sides of the fraction so
1769 * it is canceled out. The final equation is the following:
1770 *
1771 * value = idleSlope * 61034
1772 * ----------------- (E6)
1773 * 1000000
1774 *
1775 * NOTE: For i210, given the above, we can see that idleslope
1776 * is represented in 16.38431 kbps units by the value at
1777 * the TQAVCC register (1Gbps / 61034), which reduces
1778 * the granularity for idleslope increments.
1779 * For instance, if you want to configure a 2576kbps
1780 * idleslope, the value to be written on the register
1781 * would have to be 157.23. If rounded down, you end
1782 * up with less bandwidth available than originally
1783 * required (~2572 kbps). If rounded up, you end up
1784 * with a higher bandwidth (~2589 kbps). Below the
1785 * approach we take is to always round up the
1786 * calculated value, so the resulting bandwidth might
1787 * be slightly higher for some configurations.
1788 */
1789 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1790
1791 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1792 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1793 tqavcc |= value;
1794 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1795
1796 wr32(E1000_I210_TQAVHC(queue),
1797 0x80000000 + ring->hicredit * 0x7735);
1798 } else {
1799
1800 /* Set idleSlope to zero. */
1801 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1802 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1803 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1804
1805 /* Set hiCredit to zero. */
1806 wr32(E1000_I210_TQAVHC(queue), 0);
1807
1808 /* If CBS is not enabled for any queues anymore, then return to
1809 * the default state of Data Transmission Arbitration on
1810 * TQAVCTRL.
1811 */
1812 if (!is_any_cbs_enabled(adapter)) {
1813 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1814 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1815 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1816 }
1817 }
1818
1819 /* If LaunchTime is enabled, set DataTranTIM. */
1820 if (ring->launchtime_enable) {
1821 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1822 * for any of the SR queues, and configure fetchtime delta.
1823 * XXX NOTE:
1824 * - LaunchTime will be enabled for all SR queues.
1825 * - A fixed offset can be added relative to the launch
1826 * time of all packets if configured at reg LAUNCH_OS0.
1827 * We are keeping it as 0 for now (default value).
1828 */
1829 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1830 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1831 E1000_TQAVCTRL_FETCHTIME_DELTA;
1832 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1833 } else {
1834 /* If Launchtime is not enabled for any SR queues anymore,
1835 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1836 * effectively disabling Launchtime.
1837 */
1838 if (!is_any_txtime_enabled(adapter)) {
1839 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1840 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1841 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1842 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1843 }
1844 }
1845
1846 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1847 * CBS are not configurable by software so we don't do any 'controller
1848 * configuration' in respect to these parameters.
1849 */
1850
1851 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1852 ring->cbs_enable ? "enabled" : "disabled",
1853 ring->launchtime_enable ? "enabled" : "disabled",
1854 queue,
1855 ring->idleslope, ring->sendslope,
1856 ring->hicredit, ring->locredit);
1857 }
1858
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1859 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1860 bool enable)
1861 {
1862 struct igb_ring *ring;
1863
1864 if (queue < 0 || queue > adapter->num_tx_queues)
1865 return -EINVAL;
1866
1867 ring = adapter->tx_ring[queue];
1868 ring->launchtime_enable = enable;
1869
1870 return 0;
1871 }
1872
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1873 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1874 bool enable, int idleslope, int sendslope,
1875 int hicredit, int locredit)
1876 {
1877 struct igb_ring *ring;
1878
1879 if (queue < 0 || queue > adapter->num_tx_queues)
1880 return -EINVAL;
1881
1882 ring = adapter->tx_ring[queue];
1883
1884 ring->cbs_enable = enable;
1885 ring->idleslope = idleslope;
1886 ring->sendslope = sendslope;
1887 ring->hicredit = hicredit;
1888 ring->locredit = locredit;
1889
1890 return 0;
1891 }
1892
1893 /**
1894 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1895 * @adapter: pointer to adapter struct
1896 *
1897 * Configure TQAVCTRL register switching the controller's Tx mode
1898 * if FQTSS mode is enabled or disabled. Additionally, will issue
1899 * a call to igb_config_tx_modes() per queue so any previously saved
1900 * Tx parameters are applied.
1901 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1902 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1903 {
1904 struct net_device *netdev = adapter->netdev;
1905 struct e1000_hw *hw = &adapter->hw;
1906 u32 val;
1907
1908 /* Only i210 controller supports changing the transmission mode. */
1909 if (hw->mac.type != e1000_i210)
1910 return;
1911
1912 if (is_fqtss_enabled(adapter)) {
1913 int i, max_queue;
1914
1915 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1916 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1917 * so SP queues wait for SR ones.
1918 */
1919 val = rd32(E1000_I210_TQAVCTRL);
1920 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1921 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1922 wr32(E1000_I210_TQAVCTRL, val);
1923
1924 /* Configure Tx and Rx packet buffers sizes as described in
1925 * i210 datasheet section 7.2.7.7.
1926 */
1927 val = rd32(E1000_TXPBS);
1928 val &= ~I210_TXPBSIZE_MASK;
1929 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1930 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1931 wr32(E1000_TXPBS, val);
1932
1933 val = rd32(E1000_RXPBS);
1934 val &= ~I210_RXPBSIZE_MASK;
1935 val |= I210_RXPBSIZE_PB_30KB;
1936 wr32(E1000_RXPBS, val);
1937
1938 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1939 * register should not exceed the buffer size programmed in
1940 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1941 * so according to the datasheet we should set MAX_TPKT_SIZE to
1942 * 4kB / 64.
1943 *
1944 * However, when we do so, no frame from queue 2 and 3 are
1945 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1946 * or _equal_ to the buffer size programmed in TXPBS. For this
1947 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1948 */
1949 val = (4096 - 1) / 64;
1950 wr32(E1000_I210_DTXMXPKTSZ, val);
1951
1952 /* Since FQTSS mode is enabled, apply any CBS configuration
1953 * previously set. If no previous CBS configuration has been
1954 * done, then the initial configuration is applied, which means
1955 * CBS is disabled.
1956 */
1957 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1958 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1959
1960 for (i = 0; i < max_queue; i++) {
1961 igb_config_tx_modes(adapter, i);
1962 }
1963 } else {
1964 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1965 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1966 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1967
1968 val = rd32(E1000_I210_TQAVCTRL);
1969 /* According to Section 8.12.21, the other flags we've set when
1970 * enabling FQTSS are not relevant when disabling FQTSS so we
1971 * don't set they here.
1972 */
1973 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1974 wr32(E1000_I210_TQAVCTRL, val);
1975 }
1976
1977 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1978 "enabled" : "disabled");
1979 }
1980
1981 /**
1982 * igb_configure - configure the hardware for RX and TX
1983 * @adapter: private board structure
1984 **/
igb_configure(struct igb_adapter * adapter)1985 static void igb_configure(struct igb_adapter *adapter)
1986 {
1987 struct net_device *netdev = adapter->netdev;
1988 int i;
1989
1990 igb_get_hw_control(adapter);
1991 igb_set_rx_mode(netdev);
1992 igb_setup_tx_mode(adapter);
1993
1994 igb_restore_vlan(adapter);
1995
1996 igb_setup_tctl(adapter);
1997 igb_setup_mrqc(adapter);
1998 igb_setup_rctl(adapter);
1999
2000 igb_nfc_filter_restore(adapter);
2001 igb_configure_tx(adapter);
2002 igb_configure_rx(adapter);
2003
2004 igb_rx_fifo_flush_82575(&adapter->hw);
2005
2006 /* call igb_desc_unused which always leaves
2007 * at least 1 descriptor unused to make sure
2008 * next_to_use != next_to_clean
2009 */
2010 for (i = 0; i < adapter->num_rx_queues; i++) {
2011 struct igb_ring *ring = adapter->rx_ring[i];
2012 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2013 }
2014 }
2015
2016 /**
2017 * igb_power_up_link - Power up the phy/serdes link
2018 * @adapter: address of board private structure
2019 **/
igb_power_up_link(struct igb_adapter * adapter)2020 void igb_power_up_link(struct igb_adapter *adapter)
2021 {
2022 igb_reset_phy(&adapter->hw);
2023
2024 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2025 igb_power_up_phy_copper(&adapter->hw);
2026 else
2027 igb_power_up_serdes_link_82575(&adapter->hw);
2028
2029 igb_setup_link(&adapter->hw);
2030 }
2031
2032 /**
2033 * igb_power_down_link - Power down the phy/serdes link
2034 * @adapter: address of board private structure
2035 */
igb_power_down_link(struct igb_adapter * adapter)2036 static void igb_power_down_link(struct igb_adapter *adapter)
2037 {
2038 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2039 igb_power_down_phy_copper_82575(&adapter->hw);
2040 else
2041 igb_shutdown_serdes_link_82575(&adapter->hw);
2042 }
2043
2044 /**
2045 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2046 * @adapter: address of the board private structure
2047 **/
igb_check_swap_media(struct igb_adapter * adapter)2048 static void igb_check_swap_media(struct igb_adapter *adapter)
2049 {
2050 struct e1000_hw *hw = &adapter->hw;
2051 u32 ctrl_ext, connsw;
2052 bool swap_now = false;
2053
2054 ctrl_ext = rd32(E1000_CTRL_EXT);
2055 connsw = rd32(E1000_CONNSW);
2056
2057 /* need to live swap if current media is copper and we have fiber/serdes
2058 * to go to.
2059 */
2060
2061 if ((hw->phy.media_type == e1000_media_type_copper) &&
2062 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2063 swap_now = true;
2064 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2065 !(connsw & E1000_CONNSW_SERDESD)) {
2066 /* copper signal takes time to appear */
2067 if (adapter->copper_tries < 4) {
2068 adapter->copper_tries++;
2069 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2070 wr32(E1000_CONNSW, connsw);
2071 return;
2072 } else {
2073 adapter->copper_tries = 0;
2074 if ((connsw & E1000_CONNSW_PHYSD) &&
2075 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2076 swap_now = true;
2077 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2078 wr32(E1000_CONNSW, connsw);
2079 }
2080 }
2081 }
2082
2083 if (!swap_now)
2084 return;
2085
2086 switch (hw->phy.media_type) {
2087 case e1000_media_type_copper:
2088 netdev_info(adapter->netdev,
2089 "MAS: changing media to fiber/serdes\n");
2090 ctrl_ext |=
2091 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2092 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2093 adapter->copper_tries = 0;
2094 break;
2095 case e1000_media_type_internal_serdes:
2096 case e1000_media_type_fiber:
2097 netdev_info(adapter->netdev,
2098 "MAS: changing media to copper\n");
2099 ctrl_ext &=
2100 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2101 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2102 break;
2103 default:
2104 /* shouldn't get here during regular operation */
2105 netdev_err(adapter->netdev,
2106 "AMS: Invalid media type found, returning\n");
2107 break;
2108 }
2109 wr32(E1000_CTRL_EXT, ctrl_ext);
2110 }
2111
2112 /**
2113 * igb_up - Open the interface and prepare it to handle traffic
2114 * @adapter: board private structure
2115 **/
igb_up(struct igb_adapter * adapter)2116 int igb_up(struct igb_adapter *adapter)
2117 {
2118 struct e1000_hw *hw = &adapter->hw;
2119 int i;
2120
2121 /* hardware has been reset, we need to reload some things */
2122 igb_configure(adapter);
2123
2124 clear_bit(__IGB_DOWN, &adapter->state);
2125
2126 for (i = 0; i < adapter->num_q_vectors; i++)
2127 napi_enable(&(adapter->q_vector[i]->napi));
2128
2129 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2130 igb_configure_msix(adapter);
2131 else
2132 igb_assign_vector(adapter->q_vector[0], 0);
2133
2134 /* Clear any pending interrupts. */
2135 rd32(E1000_TSICR);
2136 rd32(E1000_ICR);
2137 igb_irq_enable(adapter);
2138
2139 /* notify VFs that reset has been completed */
2140 if (adapter->vfs_allocated_count) {
2141 u32 reg_data = rd32(E1000_CTRL_EXT);
2142
2143 reg_data |= E1000_CTRL_EXT_PFRSTD;
2144 wr32(E1000_CTRL_EXT, reg_data);
2145 }
2146
2147 netif_tx_start_all_queues(adapter->netdev);
2148
2149 /* start the watchdog. */
2150 hw->mac.get_link_status = 1;
2151 schedule_work(&adapter->watchdog_task);
2152
2153 if ((adapter->flags & IGB_FLAG_EEE) &&
2154 (!hw->dev_spec._82575.eee_disable))
2155 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2156
2157 return 0;
2158 }
2159
igb_down(struct igb_adapter * adapter)2160 void igb_down(struct igb_adapter *adapter)
2161 {
2162 struct net_device *netdev = adapter->netdev;
2163 struct e1000_hw *hw = &adapter->hw;
2164 u32 tctl, rctl;
2165 int i;
2166
2167 /* signal that we're down so the interrupt handler does not
2168 * reschedule our watchdog timer
2169 */
2170 set_bit(__IGB_DOWN, &adapter->state);
2171
2172 /* disable receives in the hardware */
2173 rctl = rd32(E1000_RCTL);
2174 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2175 /* flush and sleep below */
2176
2177 igb_nfc_filter_exit(adapter);
2178
2179 netif_carrier_off(netdev);
2180 netif_tx_stop_all_queues(netdev);
2181
2182 /* disable transmits in the hardware */
2183 tctl = rd32(E1000_TCTL);
2184 tctl &= ~E1000_TCTL_EN;
2185 wr32(E1000_TCTL, tctl);
2186 /* flush both disables and wait for them to finish */
2187 wrfl();
2188 usleep_range(10000, 11000);
2189
2190 igb_irq_disable(adapter);
2191
2192 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2193
2194 for (i = 0; i < adapter->num_q_vectors; i++) {
2195 if (adapter->q_vector[i]) {
2196 napi_synchronize(&adapter->q_vector[i]->napi);
2197 napi_disable(&adapter->q_vector[i]->napi);
2198 }
2199 }
2200
2201 del_timer_sync(&adapter->watchdog_timer);
2202 del_timer_sync(&adapter->phy_info_timer);
2203
2204 /* record the stats before reset*/
2205 spin_lock(&adapter->stats64_lock);
2206 igb_update_stats(adapter);
2207 spin_unlock(&adapter->stats64_lock);
2208
2209 adapter->link_speed = 0;
2210 adapter->link_duplex = 0;
2211
2212 if (!pci_channel_offline(adapter->pdev))
2213 igb_reset(adapter);
2214
2215 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2216 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2217
2218 igb_clean_all_tx_rings(adapter);
2219 igb_clean_all_rx_rings(adapter);
2220 #ifdef CONFIG_IGB_DCA
2221
2222 /* since we reset the hardware DCA settings were cleared */
2223 igb_setup_dca(adapter);
2224 #endif
2225 }
2226
igb_reinit_locked(struct igb_adapter * adapter)2227 void igb_reinit_locked(struct igb_adapter *adapter)
2228 {
2229 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2230 usleep_range(1000, 2000);
2231 igb_down(adapter);
2232 igb_up(adapter);
2233 clear_bit(__IGB_RESETTING, &adapter->state);
2234 }
2235
2236 /** igb_enable_mas - Media Autosense re-enable after swap
2237 *
2238 * @adapter: adapter struct
2239 **/
igb_enable_mas(struct igb_adapter * adapter)2240 static void igb_enable_mas(struct igb_adapter *adapter)
2241 {
2242 struct e1000_hw *hw = &adapter->hw;
2243 u32 connsw = rd32(E1000_CONNSW);
2244
2245 /* configure for SerDes media detect */
2246 if ((hw->phy.media_type == e1000_media_type_copper) &&
2247 (!(connsw & E1000_CONNSW_SERDESD))) {
2248 connsw |= E1000_CONNSW_ENRGSRC;
2249 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2250 wr32(E1000_CONNSW, connsw);
2251 wrfl();
2252 }
2253 }
2254
igb_reset(struct igb_adapter * adapter)2255 void igb_reset(struct igb_adapter *adapter)
2256 {
2257 struct pci_dev *pdev = adapter->pdev;
2258 struct e1000_hw *hw = &adapter->hw;
2259 struct e1000_mac_info *mac = &hw->mac;
2260 struct e1000_fc_info *fc = &hw->fc;
2261 u32 pba, hwm;
2262
2263 /* Repartition Pba for greater than 9k mtu
2264 * To take effect CTRL.RST is required.
2265 */
2266 switch (mac->type) {
2267 case e1000_i350:
2268 case e1000_i354:
2269 case e1000_82580:
2270 pba = rd32(E1000_RXPBS);
2271 pba = igb_rxpbs_adjust_82580(pba);
2272 break;
2273 case e1000_82576:
2274 pba = rd32(E1000_RXPBS);
2275 pba &= E1000_RXPBS_SIZE_MASK_82576;
2276 break;
2277 case e1000_82575:
2278 case e1000_i210:
2279 case e1000_i211:
2280 default:
2281 pba = E1000_PBA_34K;
2282 break;
2283 }
2284
2285 if (mac->type == e1000_82575) {
2286 u32 min_rx_space, min_tx_space, needed_tx_space;
2287
2288 /* write Rx PBA so that hardware can report correct Tx PBA */
2289 wr32(E1000_PBA, pba);
2290
2291 /* To maintain wire speed transmits, the Tx FIFO should be
2292 * large enough to accommodate two full transmit packets,
2293 * rounded up to the next 1KB and expressed in KB. Likewise,
2294 * the Rx FIFO should be large enough to accommodate at least
2295 * one full receive packet and is similarly rounded up and
2296 * expressed in KB.
2297 */
2298 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2299
2300 /* The Tx FIFO also stores 16 bytes of information about the Tx
2301 * but don't include Ethernet FCS because hardware appends it.
2302 * We only need to round down to the nearest 512 byte block
2303 * count since the value we care about is 2 frames, not 1.
2304 */
2305 min_tx_space = adapter->max_frame_size;
2306 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2307 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2308
2309 /* upper 16 bits has Tx packet buffer allocation size in KB */
2310 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2311
2312 /* If current Tx allocation is less than the min Tx FIFO size,
2313 * and the min Tx FIFO size is less than the current Rx FIFO
2314 * allocation, take space away from current Rx allocation.
2315 */
2316 if (needed_tx_space < pba) {
2317 pba -= needed_tx_space;
2318
2319 /* if short on Rx space, Rx wins and must trump Tx
2320 * adjustment
2321 */
2322 if (pba < min_rx_space)
2323 pba = min_rx_space;
2324 }
2325
2326 /* adjust PBA for jumbo frames */
2327 wr32(E1000_PBA, pba);
2328 }
2329
2330 /* flow control settings
2331 * The high water mark must be low enough to fit one full frame
2332 * after transmitting the pause frame. As such we must have enough
2333 * space to allow for us to complete our current transmit and then
2334 * receive the frame that is in progress from the link partner.
2335 * Set it to:
2336 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2337 */
2338 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2339
2340 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2341 fc->low_water = fc->high_water - 16;
2342 fc->pause_time = 0xFFFF;
2343 fc->send_xon = 1;
2344 fc->current_mode = fc->requested_mode;
2345
2346 /* disable receive for all VFs and wait one second */
2347 if (adapter->vfs_allocated_count) {
2348 int i;
2349
2350 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2351 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2352
2353 /* ping all the active vfs to let them know we are going down */
2354 igb_ping_all_vfs(adapter);
2355
2356 /* disable transmits and receives */
2357 wr32(E1000_VFRE, 0);
2358 wr32(E1000_VFTE, 0);
2359 }
2360
2361 /* Allow time for pending master requests to run */
2362 hw->mac.ops.reset_hw(hw);
2363 wr32(E1000_WUC, 0);
2364
2365 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2366 /* need to resetup here after media swap */
2367 adapter->ei.get_invariants(hw);
2368 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2369 }
2370 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2371 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2372 igb_enable_mas(adapter);
2373 }
2374 if (hw->mac.ops.init_hw(hw))
2375 dev_err(&pdev->dev, "Hardware Error\n");
2376
2377 /* RAR registers were cleared during init_hw, clear mac table */
2378 igb_flush_mac_table(adapter);
2379 __dev_uc_unsync(adapter->netdev, NULL);
2380
2381 /* Recover default RAR entry */
2382 igb_set_default_mac_filter(adapter);
2383
2384 /* Flow control settings reset on hardware reset, so guarantee flow
2385 * control is off when forcing speed.
2386 */
2387 if (!hw->mac.autoneg)
2388 igb_force_mac_fc(hw);
2389
2390 igb_init_dmac(adapter, pba);
2391 #ifdef CONFIG_IGB_HWMON
2392 /* Re-initialize the thermal sensor on i350 devices. */
2393 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2394 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2395 /* If present, re-initialize the external thermal sensor
2396 * interface.
2397 */
2398 if (adapter->ets)
2399 mac->ops.init_thermal_sensor_thresh(hw);
2400 }
2401 }
2402 #endif
2403 /* Re-establish EEE setting */
2404 if (hw->phy.media_type == e1000_media_type_copper) {
2405 switch (mac->type) {
2406 case e1000_i350:
2407 case e1000_i210:
2408 case e1000_i211:
2409 igb_set_eee_i350(hw, true, true);
2410 break;
2411 case e1000_i354:
2412 igb_set_eee_i354(hw, true, true);
2413 break;
2414 default:
2415 break;
2416 }
2417 }
2418 if (!netif_running(adapter->netdev))
2419 igb_power_down_link(adapter);
2420
2421 igb_update_mng_vlan(adapter);
2422
2423 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2424 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2425
2426 /* Re-enable PTP, where applicable. */
2427 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2428 igb_ptp_reset(adapter);
2429
2430 igb_get_phy_info(hw);
2431 }
2432
igb_fix_features(struct net_device * netdev,netdev_features_t features)2433 static netdev_features_t igb_fix_features(struct net_device *netdev,
2434 netdev_features_t features)
2435 {
2436 /* Since there is no support for separate Rx/Tx vlan accel
2437 * enable/disable make sure Tx flag is always in same state as Rx.
2438 */
2439 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2440 features |= NETIF_F_HW_VLAN_CTAG_TX;
2441 else
2442 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2443
2444 return features;
2445 }
2446
igb_set_features(struct net_device * netdev,netdev_features_t features)2447 static int igb_set_features(struct net_device *netdev,
2448 netdev_features_t features)
2449 {
2450 netdev_features_t changed = netdev->features ^ features;
2451 struct igb_adapter *adapter = netdev_priv(netdev);
2452
2453 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2454 igb_vlan_mode(netdev, features);
2455
2456 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2457 return 0;
2458
2459 if (!(features & NETIF_F_NTUPLE)) {
2460 struct hlist_node *node2;
2461 struct igb_nfc_filter *rule;
2462
2463 spin_lock(&adapter->nfc_lock);
2464 hlist_for_each_entry_safe(rule, node2,
2465 &adapter->nfc_filter_list, nfc_node) {
2466 igb_erase_filter(adapter, rule);
2467 hlist_del(&rule->nfc_node);
2468 kfree(rule);
2469 }
2470 spin_unlock(&adapter->nfc_lock);
2471 adapter->nfc_filter_count = 0;
2472 }
2473
2474 netdev->features = features;
2475
2476 if (netif_running(netdev))
2477 igb_reinit_locked(adapter);
2478 else
2479 igb_reset(adapter);
2480
2481 return 1;
2482 }
2483
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2484 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2485 struct net_device *dev,
2486 const unsigned char *addr, u16 vid,
2487 u16 flags,
2488 struct netlink_ext_ack *extack)
2489 {
2490 /* guarantee we can provide a unique filter for the unicast address */
2491 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2492 struct igb_adapter *adapter = netdev_priv(dev);
2493 int vfn = adapter->vfs_allocated_count;
2494
2495 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2496 return -ENOMEM;
2497 }
2498
2499 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2500 }
2501
2502 #define IGB_MAX_MAC_HDR_LEN 127
2503 #define IGB_MAX_NETWORK_HDR_LEN 511
2504
2505 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2506 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2507 netdev_features_t features)
2508 {
2509 unsigned int network_hdr_len, mac_hdr_len;
2510
2511 /* Make certain the headers can be described by a context descriptor */
2512 mac_hdr_len = skb_network_header(skb) - skb->data;
2513 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2514 return features & ~(NETIF_F_HW_CSUM |
2515 NETIF_F_SCTP_CRC |
2516 NETIF_F_GSO_UDP_L4 |
2517 NETIF_F_HW_VLAN_CTAG_TX |
2518 NETIF_F_TSO |
2519 NETIF_F_TSO6);
2520
2521 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2522 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2523 return features & ~(NETIF_F_HW_CSUM |
2524 NETIF_F_SCTP_CRC |
2525 NETIF_F_GSO_UDP_L4 |
2526 NETIF_F_TSO |
2527 NETIF_F_TSO6);
2528
2529 /* We can only support IPV4 TSO in tunnels if we can mangle the
2530 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2531 */
2532 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2533 features &= ~NETIF_F_TSO;
2534
2535 return features;
2536 }
2537
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2538 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2539 {
2540 if (!is_fqtss_enabled(adapter)) {
2541 enable_fqtss(adapter, true);
2542 return;
2543 }
2544
2545 igb_config_tx_modes(adapter, queue);
2546
2547 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2548 enable_fqtss(adapter, false);
2549 }
2550
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2551 static int igb_offload_cbs(struct igb_adapter *adapter,
2552 struct tc_cbs_qopt_offload *qopt)
2553 {
2554 struct e1000_hw *hw = &adapter->hw;
2555 int err;
2556
2557 /* CBS offloading is only supported by i210 controller. */
2558 if (hw->mac.type != e1000_i210)
2559 return -EOPNOTSUPP;
2560
2561 /* CBS offloading is only supported by queue 0 and queue 1. */
2562 if (qopt->queue < 0 || qopt->queue > 1)
2563 return -EINVAL;
2564
2565 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2566 qopt->idleslope, qopt->sendslope,
2567 qopt->hicredit, qopt->locredit);
2568 if (err)
2569 return err;
2570
2571 igb_offload_apply(adapter, qopt->queue);
2572
2573 return 0;
2574 }
2575
2576 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2577 #define VLAN_PRIO_FULL_MASK (0x07)
2578
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2579 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2580 struct flow_cls_offload *f,
2581 int traffic_class,
2582 struct igb_nfc_filter *input)
2583 {
2584 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2585 struct flow_dissector *dissector = rule->match.dissector;
2586 struct netlink_ext_ack *extack = f->common.extack;
2587
2588 if (dissector->used_keys &
2589 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2590 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2591 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2592 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2593 NL_SET_ERR_MSG_MOD(extack,
2594 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2595 return -EOPNOTSUPP;
2596 }
2597
2598 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2599 struct flow_match_eth_addrs match;
2600
2601 flow_rule_match_eth_addrs(rule, &match);
2602 if (!is_zero_ether_addr(match.mask->dst)) {
2603 if (!is_broadcast_ether_addr(match.mask->dst)) {
2604 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2605 return -EINVAL;
2606 }
2607
2608 input->filter.match_flags |=
2609 IGB_FILTER_FLAG_DST_MAC_ADDR;
2610 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2611 }
2612
2613 if (!is_zero_ether_addr(match.mask->src)) {
2614 if (!is_broadcast_ether_addr(match.mask->src)) {
2615 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2616 return -EINVAL;
2617 }
2618
2619 input->filter.match_flags |=
2620 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2621 ether_addr_copy(input->filter.src_addr, match.key->src);
2622 }
2623 }
2624
2625 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2626 struct flow_match_basic match;
2627
2628 flow_rule_match_basic(rule, &match);
2629 if (match.mask->n_proto) {
2630 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2631 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2632 return -EINVAL;
2633 }
2634
2635 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2636 input->filter.etype = match.key->n_proto;
2637 }
2638 }
2639
2640 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2641 struct flow_match_vlan match;
2642
2643 flow_rule_match_vlan(rule, &match);
2644 if (match.mask->vlan_priority) {
2645 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2646 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2647 return -EINVAL;
2648 }
2649
2650 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2651 input->filter.vlan_tci =
2652 (__force __be16)match.key->vlan_priority;
2653 }
2654 }
2655
2656 input->action = traffic_class;
2657 input->cookie = f->cookie;
2658
2659 return 0;
2660 }
2661
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2662 static int igb_configure_clsflower(struct igb_adapter *adapter,
2663 struct flow_cls_offload *cls_flower)
2664 {
2665 struct netlink_ext_ack *extack = cls_flower->common.extack;
2666 struct igb_nfc_filter *filter, *f;
2667 int err, tc;
2668
2669 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2670 if (tc < 0) {
2671 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2672 return -EINVAL;
2673 }
2674
2675 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2676 if (!filter)
2677 return -ENOMEM;
2678
2679 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2680 if (err < 0)
2681 goto err_parse;
2682
2683 spin_lock(&adapter->nfc_lock);
2684
2685 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2686 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2687 err = -EEXIST;
2688 NL_SET_ERR_MSG_MOD(extack,
2689 "This filter is already set in ethtool");
2690 goto err_locked;
2691 }
2692 }
2693
2694 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2695 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2696 err = -EEXIST;
2697 NL_SET_ERR_MSG_MOD(extack,
2698 "This filter is already set in cls_flower");
2699 goto err_locked;
2700 }
2701 }
2702
2703 err = igb_add_filter(adapter, filter);
2704 if (err < 0) {
2705 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2706 goto err_locked;
2707 }
2708
2709 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2710
2711 spin_unlock(&adapter->nfc_lock);
2712
2713 return 0;
2714
2715 err_locked:
2716 spin_unlock(&adapter->nfc_lock);
2717
2718 err_parse:
2719 kfree(filter);
2720
2721 return err;
2722 }
2723
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2724 static int igb_delete_clsflower(struct igb_adapter *adapter,
2725 struct flow_cls_offload *cls_flower)
2726 {
2727 struct igb_nfc_filter *filter;
2728 int err;
2729
2730 spin_lock(&adapter->nfc_lock);
2731
2732 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2733 if (filter->cookie == cls_flower->cookie)
2734 break;
2735
2736 if (!filter) {
2737 err = -ENOENT;
2738 goto out;
2739 }
2740
2741 err = igb_erase_filter(adapter, filter);
2742 if (err < 0)
2743 goto out;
2744
2745 hlist_del(&filter->nfc_node);
2746 kfree(filter);
2747
2748 out:
2749 spin_unlock(&adapter->nfc_lock);
2750
2751 return err;
2752 }
2753
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2754 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2755 struct flow_cls_offload *cls_flower)
2756 {
2757 switch (cls_flower->command) {
2758 case FLOW_CLS_REPLACE:
2759 return igb_configure_clsflower(adapter, cls_flower);
2760 case FLOW_CLS_DESTROY:
2761 return igb_delete_clsflower(adapter, cls_flower);
2762 case FLOW_CLS_STATS:
2763 return -EOPNOTSUPP;
2764 default:
2765 return -EOPNOTSUPP;
2766 }
2767 }
2768
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2769 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2770 void *cb_priv)
2771 {
2772 struct igb_adapter *adapter = cb_priv;
2773
2774 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2775 return -EOPNOTSUPP;
2776
2777 switch (type) {
2778 case TC_SETUP_CLSFLOWER:
2779 return igb_setup_tc_cls_flower(adapter, type_data);
2780
2781 default:
2782 return -EOPNOTSUPP;
2783 }
2784 }
2785
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2786 static int igb_offload_txtime(struct igb_adapter *adapter,
2787 struct tc_etf_qopt_offload *qopt)
2788 {
2789 struct e1000_hw *hw = &adapter->hw;
2790 int err;
2791
2792 /* Launchtime offloading is only supported by i210 controller. */
2793 if (hw->mac.type != e1000_i210)
2794 return -EOPNOTSUPP;
2795
2796 /* Launchtime offloading is only supported by queues 0 and 1. */
2797 if (qopt->queue < 0 || qopt->queue > 1)
2798 return -EINVAL;
2799
2800 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2801 if (err)
2802 return err;
2803
2804 igb_offload_apply(adapter, qopt->queue);
2805
2806 return 0;
2807 }
2808
2809 static LIST_HEAD(igb_block_cb_list);
2810
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2811 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2812 void *type_data)
2813 {
2814 struct igb_adapter *adapter = netdev_priv(dev);
2815
2816 switch (type) {
2817 case TC_SETUP_QDISC_CBS:
2818 return igb_offload_cbs(adapter, type_data);
2819 case TC_SETUP_BLOCK:
2820 return flow_block_cb_setup_simple(type_data,
2821 &igb_block_cb_list,
2822 igb_setup_tc_block_cb,
2823 adapter, adapter, true);
2824
2825 case TC_SETUP_QDISC_ETF:
2826 return igb_offload_txtime(adapter, type_data);
2827
2828 default:
2829 return -EOPNOTSUPP;
2830 }
2831 }
2832
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2833 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2834 {
2835 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2836 struct igb_adapter *adapter = netdev_priv(dev);
2837 struct bpf_prog *prog = bpf->prog, *old_prog;
2838 bool running = netif_running(dev);
2839 bool need_reset;
2840
2841 /* verify igb ring attributes are sufficient for XDP */
2842 for (i = 0; i < adapter->num_rx_queues; i++) {
2843 struct igb_ring *ring = adapter->rx_ring[i];
2844
2845 if (frame_size > igb_rx_bufsz(ring)) {
2846 NL_SET_ERR_MSG_MOD(bpf->extack,
2847 "The RX buffer size is too small for the frame size");
2848 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2849 igb_rx_bufsz(ring), frame_size);
2850 return -EINVAL;
2851 }
2852 }
2853
2854 old_prog = xchg(&adapter->xdp_prog, prog);
2855 need_reset = (!!prog != !!old_prog);
2856
2857 /* device is up and bpf is added/removed, must setup the RX queues */
2858 if (need_reset && running) {
2859 igb_close(dev);
2860 } else {
2861 for (i = 0; i < adapter->num_rx_queues; i++)
2862 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2863 adapter->xdp_prog);
2864 }
2865
2866 if (old_prog)
2867 bpf_prog_put(old_prog);
2868
2869 /* bpf is just replaced, RXQ and MTU are already setup */
2870 if (!need_reset)
2871 return 0;
2872
2873 if (running)
2874 igb_open(dev);
2875
2876 return 0;
2877 }
2878
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2879 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2880 {
2881 switch (xdp->command) {
2882 case XDP_SETUP_PROG:
2883 return igb_xdp_setup(dev, xdp);
2884 default:
2885 return -EINVAL;
2886 }
2887 }
2888
igb_xdp_ring_update_tail(struct igb_ring * ring)2889 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2890 {
2891 /* Force memory writes to complete before letting h/w know there
2892 * are new descriptors to fetch.
2893 */
2894 wmb();
2895 writel(ring->next_to_use, ring->tail);
2896 }
2897
igb_xdp_tx_queue_mapping(struct igb_adapter * adapter)2898 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2899 {
2900 unsigned int r_idx = smp_processor_id();
2901
2902 if (r_idx >= adapter->num_tx_queues)
2903 r_idx = r_idx % adapter->num_tx_queues;
2904
2905 return adapter->tx_ring[r_idx];
2906 }
2907
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2908 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2909 {
2910 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2911 int cpu = smp_processor_id();
2912 struct igb_ring *tx_ring;
2913 struct netdev_queue *nq;
2914 u32 ret;
2915
2916 if (unlikely(!xdpf))
2917 return IGB_XDP_CONSUMED;
2918
2919 /* During program transitions its possible adapter->xdp_prog is assigned
2920 * but ring has not been configured yet. In this case simply abort xmit.
2921 */
2922 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2923 if (unlikely(!tx_ring))
2924 return IGB_XDP_CONSUMED;
2925
2926 nq = txring_txq(tx_ring);
2927 __netif_tx_lock(nq, cpu);
2928 /* Avoid transmit queue timeout since we share it with the slow path */
2929 txq_trans_cond_update(nq);
2930 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2931 __netif_tx_unlock(nq);
2932
2933 return ret;
2934 }
2935
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2936 static int igb_xdp_xmit(struct net_device *dev, int n,
2937 struct xdp_frame **frames, u32 flags)
2938 {
2939 struct igb_adapter *adapter = netdev_priv(dev);
2940 int cpu = smp_processor_id();
2941 struct igb_ring *tx_ring;
2942 struct netdev_queue *nq;
2943 int nxmit = 0;
2944 int i;
2945
2946 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2947 return -ENETDOWN;
2948
2949 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2950 return -EINVAL;
2951
2952 /* During program transitions its possible adapter->xdp_prog is assigned
2953 * but ring has not been configured yet. In this case simply abort xmit.
2954 */
2955 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2956 if (unlikely(!tx_ring))
2957 return -ENXIO;
2958
2959 nq = txring_txq(tx_ring);
2960 __netif_tx_lock(nq, cpu);
2961
2962 /* Avoid transmit queue timeout since we share it with the slow path */
2963 txq_trans_cond_update(nq);
2964
2965 for (i = 0; i < n; i++) {
2966 struct xdp_frame *xdpf = frames[i];
2967 int err;
2968
2969 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2970 if (err != IGB_XDP_TX)
2971 break;
2972 nxmit++;
2973 }
2974
2975 __netif_tx_unlock(nq);
2976
2977 if (unlikely(flags & XDP_XMIT_FLUSH))
2978 igb_xdp_ring_update_tail(tx_ring);
2979
2980 return nxmit;
2981 }
2982
2983 static const struct net_device_ops igb_netdev_ops = {
2984 .ndo_open = igb_open,
2985 .ndo_stop = igb_close,
2986 .ndo_start_xmit = igb_xmit_frame,
2987 .ndo_get_stats64 = igb_get_stats64,
2988 .ndo_set_rx_mode = igb_set_rx_mode,
2989 .ndo_set_mac_address = igb_set_mac,
2990 .ndo_change_mtu = igb_change_mtu,
2991 .ndo_eth_ioctl = igb_ioctl,
2992 .ndo_tx_timeout = igb_tx_timeout,
2993 .ndo_validate_addr = eth_validate_addr,
2994 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2995 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2996 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2997 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2998 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2999 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3000 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3001 .ndo_get_vf_config = igb_ndo_get_vf_config,
3002 .ndo_fix_features = igb_fix_features,
3003 .ndo_set_features = igb_set_features,
3004 .ndo_fdb_add = igb_ndo_fdb_add,
3005 .ndo_features_check = igb_features_check,
3006 .ndo_setup_tc = igb_setup_tc,
3007 .ndo_bpf = igb_xdp,
3008 .ndo_xdp_xmit = igb_xdp_xmit,
3009 };
3010
3011 /**
3012 * igb_set_fw_version - Configure version string for ethtool
3013 * @adapter: adapter struct
3014 **/
igb_set_fw_version(struct igb_adapter * adapter)3015 void igb_set_fw_version(struct igb_adapter *adapter)
3016 {
3017 struct e1000_hw *hw = &adapter->hw;
3018 struct e1000_fw_version fw;
3019
3020 igb_get_fw_version(hw, &fw);
3021
3022 switch (hw->mac.type) {
3023 case e1000_i210:
3024 case e1000_i211:
3025 if (!(igb_get_flash_presence_i210(hw))) {
3026 snprintf(adapter->fw_version,
3027 sizeof(adapter->fw_version),
3028 "%2d.%2d-%d",
3029 fw.invm_major, fw.invm_minor,
3030 fw.invm_img_type);
3031 break;
3032 }
3033 fallthrough;
3034 default:
3035 /* if option is rom valid, display its version too */
3036 if (fw.or_valid) {
3037 snprintf(adapter->fw_version,
3038 sizeof(adapter->fw_version),
3039 "%d.%d, 0x%08x, %d.%d.%d",
3040 fw.eep_major, fw.eep_minor, fw.etrack_id,
3041 fw.or_major, fw.or_build, fw.or_patch);
3042 /* no option rom */
3043 } else if (fw.etrack_id != 0X0000) {
3044 snprintf(adapter->fw_version,
3045 sizeof(adapter->fw_version),
3046 "%d.%d, 0x%08x",
3047 fw.eep_major, fw.eep_minor, fw.etrack_id);
3048 } else {
3049 snprintf(adapter->fw_version,
3050 sizeof(adapter->fw_version),
3051 "%d.%d.%d",
3052 fw.eep_major, fw.eep_minor, fw.eep_build);
3053 }
3054 break;
3055 }
3056 }
3057
3058 /**
3059 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3060 *
3061 * @adapter: adapter struct
3062 **/
igb_init_mas(struct igb_adapter * adapter)3063 static void igb_init_mas(struct igb_adapter *adapter)
3064 {
3065 struct e1000_hw *hw = &adapter->hw;
3066 u16 eeprom_data;
3067
3068 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3069 switch (hw->bus.func) {
3070 case E1000_FUNC_0:
3071 if (eeprom_data & IGB_MAS_ENABLE_0) {
3072 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3073 netdev_info(adapter->netdev,
3074 "MAS: Enabling Media Autosense for port %d\n",
3075 hw->bus.func);
3076 }
3077 break;
3078 case E1000_FUNC_1:
3079 if (eeprom_data & IGB_MAS_ENABLE_1) {
3080 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3081 netdev_info(adapter->netdev,
3082 "MAS: Enabling Media Autosense for port %d\n",
3083 hw->bus.func);
3084 }
3085 break;
3086 case E1000_FUNC_2:
3087 if (eeprom_data & IGB_MAS_ENABLE_2) {
3088 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3089 netdev_info(adapter->netdev,
3090 "MAS: Enabling Media Autosense for port %d\n",
3091 hw->bus.func);
3092 }
3093 break;
3094 case E1000_FUNC_3:
3095 if (eeprom_data & IGB_MAS_ENABLE_3) {
3096 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3097 netdev_info(adapter->netdev,
3098 "MAS: Enabling Media Autosense for port %d\n",
3099 hw->bus.func);
3100 }
3101 break;
3102 default:
3103 /* Shouldn't get here */
3104 netdev_err(adapter->netdev,
3105 "MAS: Invalid port configuration, returning\n");
3106 break;
3107 }
3108 }
3109
3110 /**
3111 * igb_init_i2c - Init I2C interface
3112 * @adapter: pointer to adapter structure
3113 **/
igb_init_i2c(struct igb_adapter * adapter)3114 static s32 igb_init_i2c(struct igb_adapter *adapter)
3115 {
3116 struct e1000_hw *hw = &adapter->hw;
3117 s32 status = 0;
3118 s32 i2cctl;
3119
3120 /* I2C interface supported on i350 devices */
3121 if (adapter->hw.mac.type != e1000_i350)
3122 return 0;
3123
3124 i2cctl = rd32(E1000_I2CPARAMS);
3125 i2cctl |= E1000_I2CBB_EN
3126 | E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N
3127 | E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
3128 wr32(E1000_I2CPARAMS, i2cctl);
3129 wrfl();
3130
3131 /* Initialize the i2c bus which is controlled by the registers.
3132 * This bus will use the i2c_algo_bit structure that implements
3133 * the protocol through toggling of the 4 bits in the register.
3134 */
3135 adapter->i2c_adap.owner = THIS_MODULE;
3136 adapter->i2c_algo = igb_i2c_algo;
3137 adapter->i2c_algo.data = adapter;
3138 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3139 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3140 strscpy(adapter->i2c_adap.name, "igb BB",
3141 sizeof(adapter->i2c_adap.name));
3142 status = i2c_bit_add_bus(&adapter->i2c_adap);
3143 return status;
3144 }
3145
3146 /**
3147 * igb_probe - Device Initialization Routine
3148 * @pdev: PCI device information struct
3149 * @ent: entry in igb_pci_tbl
3150 *
3151 * Returns 0 on success, negative on failure
3152 *
3153 * igb_probe initializes an adapter identified by a pci_dev structure.
3154 * The OS initialization, configuring of the adapter private structure,
3155 * and a hardware reset occur.
3156 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3157 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3158 {
3159 struct net_device *netdev;
3160 struct igb_adapter *adapter;
3161 struct e1000_hw *hw;
3162 u16 eeprom_data = 0;
3163 s32 ret_val;
3164 static int global_quad_port_a; /* global quad port a indication */
3165 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3166 u8 part_str[E1000_PBANUM_LENGTH];
3167 int err;
3168
3169 /* Catch broken hardware that put the wrong VF device ID in
3170 * the PCIe SR-IOV capability.
3171 */
3172 if (pdev->is_virtfn) {
3173 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3174 pci_name(pdev), pdev->vendor, pdev->device);
3175 return -EINVAL;
3176 }
3177
3178 err = pci_enable_device_mem(pdev);
3179 if (err)
3180 return err;
3181
3182 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3183 if (err) {
3184 dev_err(&pdev->dev,
3185 "No usable DMA configuration, aborting\n");
3186 goto err_dma;
3187 }
3188
3189 err = pci_request_mem_regions(pdev, igb_driver_name);
3190 if (err)
3191 goto err_pci_reg;
3192
3193 pci_enable_pcie_error_reporting(pdev);
3194
3195 pci_set_master(pdev);
3196 pci_save_state(pdev);
3197
3198 err = -ENOMEM;
3199 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3200 IGB_MAX_TX_QUEUES);
3201 if (!netdev)
3202 goto err_alloc_etherdev;
3203
3204 SET_NETDEV_DEV(netdev, &pdev->dev);
3205
3206 pci_set_drvdata(pdev, netdev);
3207 adapter = netdev_priv(netdev);
3208 adapter->netdev = netdev;
3209 adapter->pdev = pdev;
3210 hw = &adapter->hw;
3211 hw->back = adapter;
3212 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3213
3214 err = -EIO;
3215 adapter->io_addr = pci_iomap(pdev, 0, 0);
3216 if (!adapter->io_addr)
3217 goto err_ioremap;
3218 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3219 hw->hw_addr = adapter->io_addr;
3220
3221 netdev->netdev_ops = &igb_netdev_ops;
3222 igb_set_ethtool_ops(netdev);
3223 netdev->watchdog_timeo = 5 * HZ;
3224
3225 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3226
3227 netdev->mem_start = pci_resource_start(pdev, 0);
3228 netdev->mem_end = pci_resource_end(pdev, 0);
3229
3230 /* PCI config space info */
3231 hw->vendor_id = pdev->vendor;
3232 hw->device_id = pdev->device;
3233 hw->revision_id = pdev->revision;
3234 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3235 hw->subsystem_device_id = pdev->subsystem_device;
3236
3237 /* Copy the default MAC, PHY and NVM function pointers */
3238 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3239 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3240 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3241 /* Initialize skew-specific constants */
3242 err = ei->get_invariants(hw);
3243 if (err)
3244 goto err_sw_init;
3245
3246 /* setup the private structure */
3247 err = igb_sw_init(adapter);
3248 if (err)
3249 goto err_sw_init;
3250
3251 igb_get_bus_info_pcie(hw);
3252
3253 hw->phy.autoneg_wait_to_complete = false;
3254
3255 /* Copper options */
3256 if (hw->phy.media_type == e1000_media_type_copper) {
3257 hw->phy.mdix = AUTO_ALL_MODES;
3258 hw->phy.disable_polarity_correction = false;
3259 hw->phy.ms_type = e1000_ms_hw_default;
3260 }
3261
3262 if (igb_check_reset_block(hw))
3263 dev_info(&pdev->dev,
3264 "PHY reset is blocked due to SOL/IDER session.\n");
3265
3266 /* features is initialized to 0 in allocation, it might have bits
3267 * set by igb_sw_init so we should use an or instead of an
3268 * assignment.
3269 */
3270 netdev->features |= NETIF_F_SG |
3271 NETIF_F_TSO |
3272 NETIF_F_TSO6 |
3273 NETIF_F_RXHASH |
3274 NETIF_F_RXCSUM |
3275 NETIF_F_HW_CSUM;
3276
3277 if (hw->mac.type >= e1000_82576)
3278 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3279
3280 if (hw->mac.type >= e1000_i350)
3281 netdev->features |= NETIF_F_HW_TC;
3282
3283 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3284 NETIF_F_GSO_GRE_CSUM | \
3285 NETIF_F_GSO_IPXIP4 | \
3286 NETIF_F_GSO_IPXIP6 | \
3287 NETIF_F_GSO_UDP_TUNNEL | \
3288 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3289
3290 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3291 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3292
3293 /* copy netdev features into list of user selectable features */
3294 netdev->hw_features |= netdev->features |
3295 NETIF_F_HW_VLAN_CTAG_RX |
3296 NETIF_F_HW_VLAN_CTAG_TX |
3297 NETIF_F_RXALL;
3298
3299 if (hw->mac.type >= e1000_i350)
3300 netdev->hw_features |= NETIF_F_NTUPLE;
3301
3302 netdev->features |= NETIF_F_HIGHDMA;
3303
3304 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3305 netdev->mpls_features |= NETIF_F_HW_CSUM;
3306 netdev->hw_enc_features |= netdev->vlan_features;
3307
3308 /* set this bit last since it cannot be part of vlan_features */
3309 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3310 NETIF_F_HW_VLAN_CTAG_RX |
3311 NETIF_F_HW_VLAN_CTAG_TX;
3312
3313 netdev->priv_flags |= IFF_SUPP_NOFCS;
3314
3315 netdev->priv_flags |= IFF_UNICAST_FLT;
3316
3317 /* MTU range: 68 - 9216 */
3318 netdev->min_mtu = ETH_MIN_MTU;
3319 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3320
3321 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3322
3323 /* before reading the NVM, reset the controller to put the device in a
3324 * known good starting state
3325 */
3326 hw->mac.ops.reset_hw(hw);
3327
3328 /* make sure the NVM is good , i211/i210 parts can have special NVM
3329 * that doesn't contain a checksum
3330 */
3331 switch (hw->mac.type) {
3332 case e1000_i210:
3333 case e1000_i211:
3334 if (igb_get_flash_presence_i210(hw)) {
3335 if (hw->nvm.ops.validate(hw) < 0) {
3336 dev_err(&pdev->dev,
3337 "The NVM Checksum Is Not Valid\n");
3338 err = -EIO;
3339 goto err_eeprom;
3340 }
3341 }
3342 break;
3343 default:
3344 if (hw->nvm.ops.validate(hw) < 0) {
3345 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3346 err = -EIO;
3347 goto err_eeprom;
3348 }
3349 break;
3350 }
3351
3352 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3353 /* copy the MAC address out of the NVM */
3354 if (hw->mac.ops.read_mac_addr(hw))
3355 dev_err(&pdev->dev, "NVM Read Error\n");
3356 }
3357
3358 eth_hw_addr_set(netdev, hw->mac.addr);
3359
3360 if (!is_valid_ether_addr(netdev->dev_addr)) {
3361 dev_err(&pdev->dev, "Invalid MAC Address\n");
3362 err = -EIO;
3363 goto err_eeprom;
3364 }
3365
3366 igb_set_default_mac_filter(adapter);
3367
3368 /* get firmware version for ethtool -i */
3369 igb_set_fw_version(adapter);
3370
3371 /* configure RXPBSIZE and TXPBSIZE */
3372 if (hw->mac.type == e1000_i210) {
3373 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3374 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3375 }
3376
3377 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3378 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3379
3380 INIT_WORK(&adapter->reset_task, igb_reset_task);
3381 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3382
3383 /* Initialize link properties that are user-changeable */
3384 adapter->fc_autoneg = true;
3385 hw->mac.autoneg = true;
3386 hw->phy.autoneg_advertised = 0x2f;
3387
3388 hw->fc.requested_mode = e1000_fc_default;
3389 hw->fc.current_mode = e1000_fc_default;
3390
3391 igb_validate_mdi_setting(hw);
3392
3393 /* By default, support wake on port A */
3394 if (hw->bus.func == 0)
3395 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3396
3397 /* Check the NVM for wake support on non-port A ports */
3398 if (hw->mac.type >= e1000_82580)
3399 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3400 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3401 &eeprom_data);
3402 else if (hw->bus.func == 1)
3403 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3404
3405 if (eeprom_data & IGB_EEPROM_APME)
3406 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3407
3408 /* now that we have the eeprom settings, apply the special cases where
3409 * the eeprom may be wrong or the board simply won't support wake on
3410 * lan on a particular port
3411 */
3412 switch (pdev->device) {
3413 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3414 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3415 break;
3416 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3417 case E1000_DEV_ID_82576_FIBER:
3418 case E1000_DEV_ID_82576_SERDES:
3419 /* Wake events only supported on port A for dual fiber
3420 * regardless of eeprom setting
3421 */
3422 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3423 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3424 break;
3425 case E1000_DEV_ID_82576_QUAD_COPPER:
3426 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3427 /* if quad port adapter, disable WoL on all but port A */
3428 if (global_quad_port_a != 0)
3429 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3430 else
3431 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3432 /* Reset for multiple quad port adapters */
3433 if (++global_quad_port_a == 4)
3434 global_quad_port_a = 0;
3435 break;
3436 default:
3437 /* If the device can't wake, don't set software support */
3438 if (!device_can_wakeup(&adapter->pdev->dev))
3439 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3440 }
3441
3442 /* initialize the wol settings based on the eeprom settings */
3443 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3444 adapter->wol |= E1000_WUFC_MAG;
3445
3446 /* Some vendors want WoL disabled by default, but still supported */
3447 if ((hw->mac.type == e1000_i350) &&
3448 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3449 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3450 adapter->wol = 0;
3451 }
3452
3453 /* Some vendors want the ability to Use the EEPROM setting as
3454 * enable/disable only, and not for capability
3455 */
3456 if (((hw->mac.type == e1000_i350) ||
3457 (hw->mac.type == e1000_i354)) &&
3458 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3459 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3460 adapter->wol = 0;
3461 }
3462 if (hw->mac.type == e1000_i350) {
3463 if (((pdev->subsystem_device == 0x5001) ||
3464 (pdev->subsystem_device == 0x5002)) &&
3465 (hw->bus.func == 0)) {
3466 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3467 adapter->wol = 0;
3468 }
3469 if (pdev->subsystem_device == 0x1F52)
3470 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3471 }
3472
3473 device_set_wakeup_enable(&adapter->pdev->dev,
3474 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3475
3476 /* reset the hardware with the new settings */
3477 igb_reset(adapter);
3478
3479 /* Init the I2C interface */
3480 err = igb_init_i2c(adapter);
3481 if (err) {
3482 dev_err(&pdev->dev, "failed to init i2c interface\n");
3483 goto err_eeprom;
3484 }
3485
3486 /* let the f/w know that the h/w is now under the control of the
3487 * driver.
3488 */
3489 igb_get_hw_control(adapter);
3490
3491 strcpy(netdev->name, "eth%d");
3492 err = register_netdev(netdev);
3493 if (err)
3494 goto err_register;
3495
3496 /* carrier off reporting is important to ethtool even BEFORE open */
3497 netif_carrier_off(netdev);
3498
3499 #ifdef CONFIG_IGB_DCA
3500 if (dca_add_requester(&pdev->dev) == 0) {
3501 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3502 dev_info(&pdev->dev, "DCA enabled\n");
3503 igb_setup_dca(adapter);
3504 }
3505
3506 #endif
3507 #ifdef CONFIG_IGB_HWMON
3508 /* Initialize the thermal sensor on i350 devices. */
3509 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3510 u16 ets_word;
3511
3512 /* Read the NVM to determine if this i350 device supports an
3513 * external thermal sensor.
3514 */
3515 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3516 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3517 adapter->ets = true;
3518 else
3519 adapter->ets = false;
3520 if (igb_sysfs_init(adapter))
3521 dev_err(&pdev->dev,
3522 "failed to allocate sysfs resources\n");
3523 } else {
3524 adapter->ets = false;
3525 }
3526 #endif
3527 /* Check if Media Autosense is enabled */
3528 adapter->ei = *ei;
3529 if (hw->dev_spec._82575.mas_capable)
3530 igb_init_mas(adapter);
3531
3532 /* do hw tstamp init after resetting */
3533 igb_ptp_init(adapter);
3534
3535 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3536 /* print bus type/speed/width info, not applicable to i354 */
3537 if (hw->mac.type != e1000_i354) {
3538 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3539 netdev->name,
3540 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3541 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3542 "unknown"),
3543 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3544 "Width x4" :
3545 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3546 "Width x2" :
3547 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3548 "Width x1" : "unknown"), netdev->dev_addr);
3549 }
3550
3551 if ((hw->mac.type == e1000_82576 &&
3552 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3553 (hw->mac.type >= e1000_i210 ||
3554 igb_get_flash_presence_i210(hw))) {
3555 ret_val = igb_read_part_string(hw, part_str,
3556 E1000_PBANUM_LENGTH);
3557 } else {
3558 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3559 }
3560
3561 if (ret_val)
3562 strcpy(part_str, "Unknown");
3563 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3564 dev_info(&pdev->dev,
3565 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3566 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3567 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3568 adapter->num_rx_queues, adapter->num_tx_queues);
3569 if (hw->phy.media_type == e1000_media_type_copper) {
3570 switch (hw->mac.type) {
3571 case e1000_i350:
3572 case e1000_i210:
3573 case e1000_i211:
3574 /* Enable EEE for internal copper PHY devices */
3575 err = igb_set_eee_i350(hw, true, true);
3576 if ((!err) &&
3577 (!hw->dev_spec._82575.eee_disable)) {
3578 adapter->eee_advert =
3579 MDIO_EEE_100TX | MDIO_EEE_1000T;
3580 adapter->flags |= IGB_FLAG_EEE;
3581 }
3582 break;
3583 case e1000_i354:
3584 if ((rd32(E1000_CTRL_EXT) &
3585 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3586 err = igb_set_eee_i354(hw, true, true);
3587 if ((!err) &&
3588 (!hw->dev_spec._82575.eee_disable)) {
3589 adapter->eee_advert =
3590 MDIO_EEE_100TX | MDIO_EEE_1000T;
3591 adapter->flags |= IGB_FLAG_EEE;
3592 }
3593 }
3594 break;
3595 default:
3596 break;
3597 }
3598 }
3599
3600 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3601
3602 pm_runtime_put_noidle(&pdev->dev);
3603 return 0;
3604
3605 err_register:
3606 igb_release_hw_control(adapter);
3607 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3608 err_eeprom:
3609 if (!igb_check_reset_block(hw))
3610 igb_reset_phy(hw);
3611
3612 if (hw->flash_address)
3613 iounmap(hw->flash_address);
3614 err_sw_init:
3615 kfree(adapter->mac_table);
3616 kfree(adapter->shadow_vfta);
3617 igb_clear_interrupt_scheme(adapter);
3618 #ifdef CONFIG_PCI_IOV
3619 igb_disable_sriov(pdev);
3620 #endif
3621 pci_iounmap(pdev, adapter->io_addr);
3622 err_ioremap:
3623 free_netdev(netdev);
3624 err_alloc_etherdev:
3625 pci_disable_pcie_error_reporting(pdev);
3626 pci_release_mem_regions(pdev);
3627 err_pci_reg:
3628 err_dma:
3629 pci_disable_device(pdev);
3630 return err;
3631 }
3632
3633 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3634 static int igb_disable_sriov(struct pci_dev *pdev)
3635 {
3636 struct net_device *netdev = pci_get_drvdata(pdev);
3637 struct igb_adapter *adapter = netdev_priv(netdev);
3638 struct e1000_hw *hw = &adapter->hw;
3639 unsigned long flags;
3640
3641 /* reclaim resources allocated to VFs */
3642 if (adapter->vf_data) {
3643 /* disable iov and allow time for transactions to clear */
3644 if (pci_vfs_assigned(pdev)) {
3645 dev_warn(&pdev->dev,
3646 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3647 return -EPERM;
3648 } else {
3649 pci_disable_sriov(pdev);
3650 msleep(500);
3651 }
3652 spin_lock_irqsave(&adapter->vfs_lock, flags);
3653 kfree(adapter->vf_mac_list);
3654 adapter->vf_mac_list = NULL;
3655 kfree(adapter->vf_data);
3656 adapter->vf_data = NULL;
3657 adapter->vfs_allocated_count = 0;
3658 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3659 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3660 wrfl();
3661 msleep(100);
3662 dev_info(&pdev->dev, "IOV Disabled\n");
3663
3664 /* Re-enable DMA Coalescing flag since IOV is turned off */
3665 adapter->flags |= IGB_FLAG_DMAC;
3666 }
3667
3668 return 0;
3669 }
3670
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3671 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3672 {
3673 struct net_device *netdev = pci_get_drvdata(pdev);
3674 struct igb_adapter *adapter = netdev_priv(netdev);
3675 int old_vfs = pci_num_vf(pdev);
3676 struct vf_mac_filter *mac_list;
3677 int err = 0;
3678 int num_vf_mac_filters, i;
3679
3680 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3681 err = -EPERM;
3682 goto out;
3683 }
3684 if (!num_vfs)
3685 goto out;
3686
3687 if (old_vfs) {
3688 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3689 old_vfs, max_vfs);
3690 adapter->vfs_allocated_count = old_vfs;
3691 } else
3692 adapter->vfs_allocated_count = num_vfs;
3693
3694 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3695 sizeof(struct vf_data_storage), GFP_KERNEL);
3696
3697 /* if allocation failed then we do not support SR-IOV */
3698 if (!adapter->vf_data) {
3699 adapter->vfs_allocated_count = 0;
3700 err = -ENOMEM;
3701 goto out;
3702 }
3703
3704 /* Due to the limited number of RAR entries calculate potential
3705 * number of MAC filters available for the VFs. Reserve entries
3706 * for PF default MAC, PF MAC filters and at least one RAR entry
3707 * for each VF for VF MAC.
3708 */
3709 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3710 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3711 adapter->vfs_allocated_count);
3712
3713 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3714 sizeof(struct vf_mac_filter),
3715 GFP_KERNEL);
3716
3717 mac_list = adapter->vf_mac_list;
3718 INIT_LIST_HEAD(&adapter->vf_macs.l);
3719
3720 if (adapter->vf_mac_list) {
3721 /* Initialize list of VF MAC filters */
3722 for (i = 0; i < num_vf_mac_filters; i++) {
3723 mac_list->vf = -1;
3724 mac_list->free = true;
3725 list_add(&mac_list->l, &adapter->vf_macs.l);
3726 mac_list++;
3727 }
3728 } else {
3729 /* If we could not allocate memory for the VF MAC filters
3730 * we can continue without this feature but warn user.
3731 */
3732 dev_err(&pdev->dev,
3733 "Unable to allocate memory for VF MAC filter list\n");
3734 }
3735
3736 /* only call pci_enable_sriov() if no VFs are allocated already */
3737 if (!old_vfs) {
3738 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3739 if (err)
3740 goto err_out;
3741 }
3742 dev_info(&pdev->dev, "%d VFs allocated\n",
3743 adapter->vfs_allocated_count);
3744 for (i = 0; i < adapter->vfs_allocated_count; i++)
3745 igb_vf_configure(adapter, i);
3746
3747 /* DMA Coalescing is not supported in IOV mode. */
3748 adapter->flags &= ~IGB_FLAG_DMAC;
3749 goto out;
3750
3751 err_out:
3752 kfree(adapter->vf_mac_list);
3753 adapter->vf_mac_list = NULL;
3754 kfree(adapter->vf_data);
3755 adapter->vf_data = NULL;
3756 adapter->vfs_allocated_count = 0;
3757 out:
3758 return err;
3759 }
3760
3761 #endif
3762 /**
3763 * igb_remove_i2c - Cleanup I2C interface
3764 * @adapter: pointer to adapter structure
3765 **/
igb_remove_i2c(struct igb_adapter * adapter)3766 static void igb_remove_i2c(struct igb_adapter *adapter)
3767 {
3768 /* free the adapter bus structure */
3769 i2c_del_adapter(&adapter->i2c_adap);
3770 }
3771
3772 /**
3773 * igb_remove - Device Removal Routine
3774 * @pdev: PCI device information struct
3775 *
3776 * igb_remove is called by the PCI subsystem to alert the driver
3777 * that it should release a PCI device. The could be caused by a
3778 * Hot-Plug event, or because the driver is going to be removed from
3779 * memory.
3780 **/
igb_remove(struct pci_dev * pdev)3781 static void igb_remove(struct pci_dev *pdev)
3782 {
3783 struct net_device *netdev = pci_get_drvdata(pdev);
3784 struct igb_adapter *adapter = netdev_priv(netdev);
3785 struct e1000_hw *hw = &adapter->hw;
3786
3787 pm_runtime_get_noresume(&pdev->dev);
3788 #ifdef CONFIG_IGB_HWMON
3789 igb_sysfs_exit(adapter);
3790 #endif
3791 igb_remove_i2c(adapter);
3792 igb_ptp_stop(adapter);
3793 /* The watchdog timer may be rescheduled, so explicitly
3794 * disable watchdog from being rescheduled.
3795 */
3796 set_bit(__IGB_DOWN, &adapter->state);
3797 del_timer_sync(&adapter->watchdog_timer);
3798 del_timer_sync(&adapter->phy_info_timer);
3799
3800 cancel_work_sync(&adapter->reset_task);
3801 cancel_work_sync(&adapter->watchdog_task);
3802
3803 #ifdef CONFIG_IGB_DCA
3804 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3805 dev_info(&pdev->dev, "DCA disabled\n");
3806 dca_remove_requester(&pdev->dev);
3807 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3808 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3809 }
3810 #endif
3811
3812 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3813 * would have already happened in close and is redundant.
3814 */
3815 igb_release_hw_control(adapter);
3816
3817 #ifdef CONFIG_PCI_IOV
3818 rtnl_lock();
3819 igb_disable_sriov(pdev);
3820 rtnl_unlock();
3821 #endif
3822
3823 unregister_netdev(netdev);
3824
3825 igb_clear_interrupt_scheme(adapter);
3826
3827 pci_iounmap(pdev, adapter->io_addr);
3828 if (hw->flash_address)
3829 iounmap(hw->flash_address);
3830 pci_release_mem_regions(pdev);
3831
3832 kfree(adapter->mac_table);
3833 kfree(adapter->shadow_vfta);
3834 free_netdev(netdev);
3835
3836 pci_disable_pcie_error_reporting(pdev);
3837
3838 pci_disable_device(pdev);
3839 }
3840
3841 /**
3842 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3843 * @adapter: board private structure to initialize
3844 *
3845 * This function initializes the vf specific data storage and then attempts to
3846 * allocate the VFs. The reason for ordering it this way is because it is much
3847 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3848 * the memory for the VFs.
3849 **/
igb_probe_vfs(struct igb_adapter * adapter)3850 static void igb_probe_vfs(struct igb_adapter *adapter)
3851 {
3852 #ifdef CONFIG_PCI_IOV
3853 struct pci_dev *pdev = adapter->pdev;
3854 struct e1000_hw *hw = &adapter->hw;
3855
3856 /* Virtualization features not supported on i210 family. */
3857 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3858 return;
3859
3860 /* Of the below we really only want the effect of getting
3861 * IGB_FLAG_HAS_MSIX set (if available), without which
3862 * igb_enable_sriov() has no effect.
3863 */
3864 igb_set_interrupt_capability(adapter, true);
3865 igb_reset_interrupt_capability(adapter);
3866
3867 pci_sriov_set_totalvfs(pdev, 7);
3868 igb_enable_sriov(pdev, max_vfs);
3869
3870 #endif /* CONFIG_PCI_IOV */
3871 }
3872
igb_get_max_rss_queues(struct igb_adapter * adapter)3873 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3874 {
3875 struct e1000_hw *hw = &adapter->hw;
3876 unsigned int max_rss_queues;
3877
3878 /* Determine the maximum number of RSS queues supported. */
3879 switch (hw->mac.type) {
3880 case e1000_i211:
3881 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3882 break;
3883 case e1000_82575:
3884 case e1000_i210:
3885 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3886 break;
3887 case e1000_i350:
3888 /* I350 cannot do RSS and SR-IOV at the same time */
3889 if (!!adapter->vfs_allocated_count) {
3890 max_rss_queues = 1;
3891 break;
3892 }
3893 fallthrough;
3894 case e1000_82576:
3895 if (!!adapter->vfs_allocated_count) {
3896 max_rss_queues = 2;
3897 break;
3898 }
3899 fallthrough;
3900 case e1000_82580:
3901 case e1000_i354:
3902 default:
3903 max_rss_queues = IGB_MAX_RX_QUEUES;
3904 break;
3905 }
3906
3907 return max_rss_queues;
3908 }
3909
igb_init_queue_configuration(struct igb_adapter * adapter)3910 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3911 {
3912 u32 max_rss_queues;
3913
3914 max_rss_queues = igb_get_max_rss_queues(adapter);
3915 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3916
3917 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3918 }
3919
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3920 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3921 const u32 max_rss_queues)
3922 {
3923 struct e1000_hw *hw = &adapter->hw;
3924
3925 /* Determine if we need to pair queues. */
3926 switch (hw->mac.type) {
3927 case e1000_82575:
3928 case e1000_i211:
3929 /* Device supports enough interrupts without queue pairing. */
3930 break;
3931 case e1000_82576:
3932 case e1000_82580:
3933 case e1000_i350:
3934 case e1000_i354:
3935 case e1000_i210:
3936 default:
3937 /* If rss_queues > half of max_rss_queues, pair the queues in
3938 * order to conserve interrupts due to limited supply.
3939 */
3940 if (adapter->rss_queues > (max_rss_queues / 2))
3941 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3942 else
3943 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3944 break;
3945 }
3946 }
3947
3948 /**
3949 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3950 * @adapter: board private structure to initialize
3951 *
3952 * igb_sw_init initializes the Adapter private data structure.
3953 * Fields are initialized based on PCI device information and
3954 * OS network device settings (MTU size).
3955 **/
igb_sw_init(struct igb_adapter * adapter)3956 static int igb_sw_init(struct igb_adapter *adapter)
3957 {
3958 struct e1000_hw *hw = &adapter->hw;
3959 struct net_device *netdev = adapter->netdev;
3960 struct pci_dev *pdev = adapter->pdev;
3961
3962 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3963
3964 /* set default ring sizes */
3965 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3966 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3967
3968 /* set default ITR values */
3969 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3970 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3971
3972 /* set default work limits */
3973 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3974
3975 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3976 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3977
3978 spin_lock_init(&adapter->nfc_lock);
3979 spin_lock_init(&adapter->stats64_lock);
3980
3981 /* init spinlock to avoid concurrency of VF resources */
3982 spin_lock_init(&adapter->vfs_lock);
3983 #ifdef CONFIG_PCI_IOV
3984 switch (hw->mac.type) {
3985 case e1000_82576:
3986 case e1000_i350:
3987 if (max_vfs > 7) {
3988 dev_warn(&pdev->dev,
3989 "Maximum of 7 VFs per PF, using max\n");
3990 max_vfs = adapter->vfs_allocated_count = 7;
3991 } else
3992 adapter->vfs_allocated_count = max_vfs;
3993 if (adapter->vfs_allocated_count)
3994 dev_warn(&pdev->dev,
3995 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3996 break;
3997 default:
3998 break;
3999 }
4000 #endif /* CONFIG_PCI_IOV */
4001
4002 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4003 adapter->flags |= IGB_FLAG_HAS_MSIX;
4004
4005 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4006 sizeof(struct igb_mac_addr),
4007 GFP_KERNEL);
4008 if (!adapter->mac_table)
4009 return -ENOMEM;
4010
4011 igb_probe_vfs(adapter);
4012
4013 igb_init_queue_configuration(adapter);
4014
4015 /* Setup and initialize a copy of the hw vlan table array */
4016 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4017 GFP_KERNEL);
4018 if (!adapter->shadow_vfta)
4019 return -ENOMEM;
4020
4021 /* This call may decrease the number of queues */
4022 if (igb_init_interrupt_scheme(adapter, true)) {
4023 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4024 return -ENOMEM;
4025 }
4026
4027 /* Explicitly disable IRQ since the NIC can be in any state. */
4028 igb_irq_disable(adapter);
4029
4030 if (hw->mac.type >= e1000_i350)
4031 adapter->flags &= ~IGB_FLAG_DMAC;
4032
4033 set_bit(__IGB_DOWN, &adapter->state);
4034 return 0;
4035 }
4036
4037 /**
4038 * __igb_open - Called when a network interface is made active
4039 * @netdev: network interface device structure
4040 * @resuming: indicates whether we are in a resume call
4041 *
4042 * Returns 0 on success, negative value on failure
4043 *
4044 * The open entry point is called when a network interface is made
4045 * active by the system (IFF_UP). At this point all resources needed
4046 * for transmit and receive operations are allocated, the interrupt
4047 * handler is registered with the OS, the watchdog timer is started,
4048 * and the stack is notified that the interface is ready.
4049 **/
__igb_open(struct net_device * netdev,bool resuming)4050 static int __igb_open(struct net_device *netdev, bool resuming)
4051 {
4052 struct igb_adapter *adapter = netdev_priv(netdev);
4053 struct e1000_hw *hw = &adapter->hw;
4054 struct pci_dev *pdev = adapter->pdev;
4055 int err;
4056 int i;
4057
4058 /* disallow open during test */
4059 if (test_bit(__IGB_TESTING, &adapter->state)) {
4060 WARN_ON(resuming);
4061 return -EBUSY;
4062 }
4063
4064 if (!resuming)
4065 pm_runtime_get_sync(&pdev->dev);
4066
4067 netif_carrier_off(netdev);
4068
4069 /* allocate transmit descriptors */
4070 err = igb_setup_all_tx_resources(adapter);
4071 if (err)
4072 goto err_setup_tx;
4073
4074 /* allocate receive descriptors */
4075 err = igb_setup_all_rx_resources(adapter);
4076 if (err)
4077 goto err_setup_rx;
4078
4079 igb_power_up_link(adapter);
4080
4081 /* before we allocate an interrupt, we must be ready to handle it.
4082 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4083 * as soon as we call pci_request_irq, so we have to setup our
4084 * clean_rx handler before we do so.
4085 */
4086 igb_configure(adapter);
4087
4088 err = igb_request_irq(adapter);
4089 if (err)
4090 goto err_req_irq;
4091
4092 /* Notify the stack of the actual queue counts. */
4093 err = netif_set_real_num_tx_queues(adapter->netdev,
4094 adapter->num_tx_queues);
4095 if (err)
4096 goto err_set_queues;
4097
4098 err = netif_set_real_num_rx_queues(adapter->netdev,
4099 adapter->num_rx_queues);
4100 if (err)
4101 goto err_set_queues;
4102
4103 /* From here on the code is the same as igb_up() */
4104 clear_bit(__IGB_DOWN, &adapter->state);
4105
4106 for (i = 0; i < adapter->num_q_vectors; i++)
4107 napi_enable(&(adapter->q_vector[i]->napi));
4108
4109 /* Clear any pending interrupts. */
4110 rd32(E1000_TSICR);
4111 rd32(E1000_ICR);
4112
4113 igb_irq_enable(adapter);
4114
4115 /* notify VFs that reset has been completed */
4116 if (adapter->vfs_allocated_count) {
4117 u32 reg_data = rd32(E1000_CTRL_EXT);
4118
4119 reg_data |= E1000_CTRL_EXT_PFRSTD;
4120 wr32(E1000_CTRL_EXT, reg_data);
4121 }
4122
4123 netif_tx_start_all_queues(netdev);
4124
4125 if (!resuming)
4126 pm_runtime_put(&pdev->dev);
4127
4128 /* start the watchdog. */
4129 hw->mac.get_link_status = 1;
4130 schedule_work(&adapter->watchdog_task);
4131
4132 return 0;
4133
4134 err_set_queues:
4135 igb_free_irq(adapter);
4136 err_req_irq:
4137 igb_release_hw_control(adapter);
4138 igb_power_down_link(adapter);
4139 igb_free_all_rx_resources(adapter);
4140 err_setup_rx:
4141 igb_free_all_tx_resources(adapter);
4142 err_setup_tx:
4143 igb_reset(adapter);
4144 if (!resuming)
4145 pm_runtime_put(&pdev->dev);
4146
4147 return err;
4148 }
4149
igb_open(struct net_device * netdev)4150 int igb_open(struct net_device *netdev)
4151 {
4152 return __igb_open(netdev, false);
4153 }
4154
4155 /**
4156 * __igb_close - Disables a network interface
4157 * @netdev: network interface device structure
4158 * @suspending: indicates we are in a suspend call
4159 *
4160 * Returns 0, this is not allowed to fail
4161 *
4162 * The close entry point is called when an interface is de-activated
4163 * by the OS. The hardware is still under the driver's control, but
4164 * needs to be disabled. A global MAC reset is issued to stop the
4165 * hardware, and all transmit and receive resources are freed.
4166 **/
__igb_close(struct net_device * netdev,bool suspending)4167 static int __igb_close(struct net_device *netdev, bool suspending)
4168 {
4169 struct igb_adapter *adapter = netdev_priv(netdev);
4170 struct pci_dev *pdev = adapter->pdev;
4171
4172 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4173
4174 if (!suspending)
4175 pm_runtime_get_sync(&pdev->dev);
4176
4177 igb_down(adapter);
4178 igb_free_irq(adapter);
4179
4180 igb_free_all_tx_resources(adapter);
4181 igb_free_all_rx_resources(adapter);
4182
4183 if (!suspending)
4184 pm_runtime_put_sync(&pdev->dev);
4185 return 0;
4186 }
4187
igb_close(struct net_device * netdev)4188 int igb_close(struct net_device *netdev)
4189 {
4190 if (netif_device_present(netdev) || netdev->dismantle)
4191 return __igb_close(netdev, false);
4192 return 0;
4193 }
4194
4195 /**
4196 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4197 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4198 *
4199 * Return 0 on success, negative on failure
4200 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4201 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4202 {
4203 struct device *dev = tx_ring->dev;
4204 int size;
4205
4206 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4207
4208 tx_ring->tx_buffer_info = vmalloc(size);
4209 if (!tx_ring->tx_buffer_info)
4210 goto err;
4211
4212 /* round up to nearest 4K */
4213 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4214 tx_ring->size = ALIGN(tx_ring->size, 4096);
4215
4216 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4217 &tx_ring->dma, GFP_KERNEL);
4218 if (!tx_ring->desc)
4219 goto err;
4220
4221 tx_ring->next_to_use = 0;
4222 tx_ring->next_to_clean = 0;
4223
4224 return 0;
4225
4226 err:
4227 vfree(tx_ring->tx_buffer_info);
4228 tx_ring->tx_buffer_info = NULL;
4229 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4230 return -ENOMEM;
4231 }
4232
4233 /**
4234 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4235 * (Descriptors) for all queues
4236 * @adapter: board private structure
4237 *
4238 * Return 0 on success, negative on failure
4239 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4240 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4241 {
4242 struct pci_dev *pdev = adapter->pdev;
4243 int i, err = 0;
4244
4245 for (i = 0; i < adapter->num_tx_queues; i++) {
4246 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4247 if (err) {
4248 dev_err(&pdev->dev,
4249 "Allocation for Tx Queue %u failed\n", i);
4250 for (i--; i >= 0; i--)
4251 igb_free_tx_resources(adapter->tx_ring[i]);
4252 break;
4253 }
4254 }
4255
4256 return err;
4257 }
4258
4259 /**
4260 * igb_setup_tctl - configure the transmit control registers
4261 * @adapter: Board private structure
4262 **/
igb_setup_tctl(struct igb_adapter * adapter)4263 void igb_setup_tctl(struct igb_adapter *adapter)
4264 {
4265 struct e1000_hw *hw = &adapter->hw;
4266 u32 tctl;
4267
4268 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4269 wr32(E1000_TXDCTL(0), 0);
4270
4271 /* Program the Transmit Control Register */
4272 tctl = rd32(E1000_TCTL);
4273 tctl &= ~E1000_TCTL_CT;
4274 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4275 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4276
4277 igb_config_collision_dist(hw);
4278
4279 /* Enable transmits */
4280 tctl |= E1000_TCTL_EN;
4281
4282 wr32(E1000_TCTL, tctl);
4283 }
4284
4285 /**
4286 * igb_configure_tx_ring - Configure transmit ring after Reset
4287 * @adapter: board private structure
4288 * @ring: tx ring to configure
4289 *
4290 * Configure a transmit ring after a reset.
4291 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4292 void igb_configure_tx_ring(struct igb_adapter *adapter,
4293 struct igb_ring *ring)
4294 {
4295 struct e1000_hw *hw = &adapter->hw;
4296 u32 txdctl = 0;
4297 u64 tdba = ring->dma;
4298 int reg_idx = ring->reg_idx;
4299
4300 wr32(E1000_TDLEN(reg_idx),
4301 ring->count * sizeof(union e1000_adv_tx_desc));
4302 wr32(E1000_TDBAL(reg_idx),
4303 tdba & 0x00000000ffffffffULL);
4304 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4305
4306 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4307 wr32(E1000_TDH(reg_idx), 0);
4308 writel(0, ring->tail);
4309
4310 txdctl |= IGB_TX_PTHRESH;
4311 txdctl |= IGB_TX_HTHRESH << 8;
4312 txdctl |= IGB_TX_WTHRESH << 16;
4313
4314 /* reinitialize tx_buffer_info */
4315 memset(ring->tx_buffer_info, 0,
4316 sizeof(struct igb_tx_buffer) * ring->count);
4317
4318 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4319 wr32(E1000_TXDCTL(reg_idx), txdctl);
4320 }
4321
4322 /**
4323 * igb_configure_tx - Configure transmit Unit after Reset
4324 * @adapter: board private structure
4325 *
4326 * Configure the Tx unit of the MAC after a reset.
4327 **/
igb_configure_tx(struct igb_adapter * adapter)4328 static void igb_configure_tx(struct igb_adapter *adapter)
4329 {
4330 struct e1000_hw *hw = &adapter->hw;
4331 int i;
4332
4333 /* disable the queues */
4334 for (i = 0; i < adapter->num_tx_queues; i++)
4335 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4336
4337 wrfl();
4338 usleep_range(10000, 20000);
4339
4340 for (i = 0; i < adapter->num_tx_queues; i++)
4341 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4342 }
4343
4344 /**
4345 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4346 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4347 *
4348 * Returns 0 on success, negative on failure
4349 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4350 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4351 {
4352 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4353 struct device *dev = rx_ring->dev;
4354 int size, res;
4355
4356 /* XDP RX-queue info */
4357 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4358 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4359 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4360 rx_ring->queue_index, 0);
4361 if (res < 0) {
4362 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4363 rx_ring->queue_index);
4364 return res;
4365 }
4366
4367 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4368
4369 rx_ring->rx_buffer_info = vmalloc(size);
4370 if (!rx_ring->rx_buffer_info)
4371 goto err;
4372
4373 /* Round up to nearest 4K */
4374 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4375 rx_ring->size = ALIGN(rx_ring->size, 4096);
4376
4377 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4378 &rx_ring->dma, GFP_KERNEL);
4379 if (!rx_ring->desc)
4380 goto err;
4381
4382 rx_ring->next_to_alloc = 0;
4383 rx_ring->next_to_clean = 0;
4384 rx_ring->next_to_use = 0;
4385
4386 rx_ring->xdp_prog = adapter->xdp_prog;
4387
4388 return 0;
4389
4390 err:
4391 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4392 vfree(rx_ring->rx_buffer_info);
4393 rx_ring->rx_buffer_info = NULL;
4394 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4395 return -ENOMEM;
4396 }
4397
4398 /**
4399 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4400 * (Descriptors) for all queues
4401 * @adapter: board private structure
4402 *
4403 * Return 0 on success, negative on failure
4404 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4405 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4406 {
4407 struct pci_dev *pdev = adapter->pdev;
4408 int i, err = 0;
4409
4410 for (i = 0; i < adapter->num_rx_queues; i++) {
4411 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4412 if (err) {
4413 dev_err(&pdev->dev,
4414 "Allocation for Rx Queue %u failed\n", i);
4415 for (i--; i >= 0; i--)
4416 igb_free_rx_resources(adapter->rx_ring[i]);
4417 break;
4418 }
4419 }
4420
4421 return err;
4422 }
4423
4424 /**
4425 * igb_setup_mrqc - configure the multiple receive queue control registers
4426 * @adapter: Board private structure
4427 **/
igb_setup_mrqc(struct igb_adapter * adapter)4428 static void igb_setup_mrqc(struct igb_adapter *adapter)
4429 {
4430 struct e1000_hw *hw = &adapter->hw;
4431 u32 mrqc, rxcsum;
4432 u32 j, num_rx_queues;
4433 u32 rss_key[10];
4434
4435 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4436 for (j = 0; j < 10; j++)
4437 wr32(E1000_RSSRK(j), rss_key[j]);
4438
4439 num_rx_queues = adapter->rss_queues;
4440
4441 switch (hw->mac.type) {
4442 case e1000_82576:
4443 /* 82576 supports 2 RSS queues for SR-IOV */
4444 if (adapter->vfs_allocated_count)
4445 num_rx_queues = 2;
4446 break;
4447 default:
4448 break;
4449 }
4450
4451 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4452 for (j = 0; j < IGB_RETA_SIZE; j++)
4453 adapter->rss_indir_tbl[j] =
4454 (j * num_rx_queues) / IGB_RETA_SIZE;
4455 adapter->rss_indir_tbl_init = num_rx_queues;
4456 }
4457 igb_write_rss_indir_tbl(adapter);
4458
4459 /* Disable raw packet checksumming so that RSS hash is placed in
4460 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4461 * offloads as they are enabled by default
4462 */
4463 rxcsum = rd32(E1000_RXCSUM);
4464 rxcsum |= E1000_RXCSUM_PCSD;
4465
4466 if (adapter->hw.mac.type >= e1000_82576)
4467 /* Enable Receive Checksum Offload for SCTP */
4468 rxcsum |= E1000_RXCSUM_CRCOFL;
4469
4470 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4471 wr32(E1000_RXCSUM, rxcsum);
4472
4473 /* Generate RSS hash based on packet types, TCP/UDP
4474 * port numbers and/or IPv4/v6 src and dst addresses
4475 */
4476 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4477 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4478 E1000_MRQC_RSS_FIELD_IPV6 |
4479 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4480 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4481
4482 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4483 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4484 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4485 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4486
4487 /* If VMDq is enabled then we set the appropriate mode for that, else
4488 * we default to RSS so that an RSS hash is calculated per packet even
4489 * if we are only using one queue
4490 */
4491 if (adapter->vfs_allocated_count) {
4492 if (hw->mac.type > e1000_82575) {
4493 /* Set the default pool for the PF's first queue */
4494 u32 vtctl = rd32(E1000_VT_CTL);
4495
4496 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4497 E1000_VT_CTL_DISABLE_DEF_POOL);
4498 vtctl |= adapter->vfs_allocated_count <<
4499 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4500 wr32(E1000_VT_CTL, vtctl);
4501 }
4502 if (adapter->rss_queues > 1)
4503 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4504 else
4505 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4506 } else {
4507 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4508 }
4509 igb_vmm_control(adapter);
4510
4511 wr32(E1000_MRQC, mrqc);
4512 }
4513
4514 /**
4515 * igb_setup_rctl - configure the receive control registers
4516 * @adapter: Board private structure
4517 **/
igb_setup_rctl(struct igb_adapter * adapter)4518 void igb_setup_rctl(struct igb_adapter *adapter)
4519 {
4520 struct e1000_hw *hw = &adapter->hw;
4521 u32 rctl;
4522
4523 rctl = rd32(E1000_RCTL);
4524
4525 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4526 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4527
4528 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4529 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4530
4531 /* enable stripping of CRC. It's unlikely this will break BMC
4532 * redirection as it did with e1000. Newer features require
4533 * that the HW strips the CRC.
4534 */
4535 rctl |= E1000_RCTL_SECRC;
4536
4537 /* disable store bad packets and clear size bits. */
4538 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4539
4540 /* enable LPE to allow for reception of jumbo frames */
4541 rctl |= E1000_RCTL_LPE;
4542
4543 /* disable queue 0 to prevent tail write w/o re-config */
4544 wr32(E1000_RXDCTL(0), 0);
4545
4546 /* Attention!!! For SR-IOV PF driver operations you must enable
4547 * queue drop for all VF and PF queues to prevent head of line blocking
4548 * if an un-trusted VF does not provide descriptors to hardware.
4549 */
4550 if (adapter->vfs_allocated_count) {
4551 /* set all queue drop enable bits */
4552 wr32(E1000_QDE, ALL_QUEUES);
4553 }
4554
4555 /* This is useful for sniffing bad packets. */
4556 if (adapter->netdev->features & NETIF_F_RXALL) {
4557 /* UPE and MPE will be handled by normal PROMISC logic
4558 * in e1000e_set_rx_mode
4559 */
4560 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4561 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4562 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4563
4564 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4565 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4566 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4567 * and that breaks VLANs.
4568 */
4569 }
4570
4571 wr32(E1000_RCTL, rctl);
4572 }
4573
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4574 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4575 int vfn)
4576 {
4577 struct e1000_hw *hw = &adapter->hw;
4578 u32 vmolr;
4579
4580 if (size > MAX_JUMBO_FRAME_SIZE)
4581 size = MAX_JUMBO_FRAME_SIZE;
4582
4583 vmolr = rd32(E1000_VMOLR(vfn));
4584 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4585 vmolr |= size | E1000_VMOLR_LPE;
4586 wr32(E1000_VMOLR(vfn), vmolr);
4587
4588 return 0;
4589 }
4590
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4591 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4592 int vfn, bool enable)
4593 {
4594 struct e1000_hw *hw = &adapter->hw;
4595 u32 val, reg;
4596
4597 if (hw->mac.type < e1000_82576)
4598 return;
4599
4600 if (hw->mac.type == e1000_i350)
4601 reg = E1000_DVMOLR(vfn);
4602 else
4603 reg = E1000_VMOLR(vfn);
4604
4605 val = rd32(reg);
4606 if (enable)
4607 val |= E1000_VMOLR_STRVLAN;
4608 else
4609 val &= ~(E1000_VMOLR_STRVLAN);
4610 wr32(reg, val);
4611 }
4612
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4613 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4614 int vfn, bool aupe)
4615 {
4616 struct e1000_hw *hw = &adapter->hw;
4617 u32 vmolr;
4618
4619 /* This register exists only on 82576 and newer so if we are older then
4620 * we should exit and do nothing
4621 */
4622 if (hw->mac.type < e1000_82576)
4623 return;
4624
4625 vmolr = rd32(E1000_VMOLR(vfn));
4626 if (aupe)
4627 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4628 else
4629 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4630
4631 /* clear all bits that might not be set */
4632 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4633
4634 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4635 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4636 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4637 * multicast packets
4638 */
4639 if (vfn <= adapter->vfs_allocated_count)
4640 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4641
4642 wr32(E1000_VMOLR(vfn), vmolr);
4643 }
4644
4645 /**
4646 * igb_setup_srrctl - configure the split and replication receive control
4647 * registers
4648 * @adapter: Board private structure
4649 * @ring: receive ring to be configured
4650 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4651 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4652 {
4653 struct e1000_hw *hw = &adapter->hw;
4654 int reg_idx = ring->reg_idx;
4655 u32 srrctl = 0;
4656
4657 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4658 if (ring_uses_large_buffer(ring))
4659 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4660 else
4661 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4662 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4663 if (hw->mac.type >= e1000_82580)
4664 srrctl |= E1000_SRRCTL_TIMESTAMP;
4665 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4666 * queues and rx flow control is disabled
4667 */
4668 if (adapter->vfs_allocated_count ||
4669 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4670 adapter->num_rx_queues > 1))
4671 srrctl |= E1000_SRRCTL_DROP_EN;
4672
4673 wr32(E1000_SRRCTL(reg_idx), srrctl);
4674 }
4675
4676 /**
4677 * igb_configure_rx_ring - Configure a receive ring after Reset
4678 * @adapter: board private structure
4679 * @ring: receive ring to be configured
4680 *
4681 * Configure the Rx unit of the MAC after a reset.
4682 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4683 void igb_configure_rx_ring(struct igb_adapter *adapter,
4684 struct igb_ring *ring)
4685 {
4686 struct e1000_hw *hw = &adapter->hw;
4687 union e1000_adv_rx_desc *rx_desc;
4688 u64 rdba = ring->dma;
4689 int reg_idx = ring->reg_idx;
4690 u32 rxdctl = 0;
4691
4692 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4693 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4694 MEM_TYPE_PAGE_SHARED, NULL));
4695
4696 /* disable the queue */
4697 wr32(E1000_RXDCTL(reg_idx), 0);
4698
4699 /* Set DMA base address registers */
4700 wr32(E1000_RDBAL(reg_idx),
4701 rdba & 0x00000000ffffffffULL);
4702 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4703 wr32(E1000_RDLEN(reg_idx),
4704 ring->count * sizeof(union e1000_adv_rx_desc));
4705
4706 /* initialize head and tail */
4707 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4708 wr32(E1000_RDH(reg_idx), 0);
4709 writel(0, ring->tail);
4710
4711 /* set descriptor configuration */
4712 igb_setup_srrctl(adapter, ring);
4713
4714 /* set filtering for VMDQ pools */
4715 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4716
4717 rxdctl |= IGB_RX_PTHRESH;
4718 rxdctl |= IGB_RX_HTHRESH << 8;
4719 rxdctl |= IGB_RX_WTHRESH << 16;
4720
4721 /* initialize rx_buffer_info */
4722 memset(ring->rx_buffer_info, 0,
4723 sizeof(struct igb_rx_buffer) * ring->count);
4724
4725 /* initialize Rx descriptor 0 */
4726 rx_desc = IGB_RX_DESC(ring, 0);
4727 rx_desc->wb.upper.length = 0;
4728
4729 /* enable receive descriptor fetching */
4730 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4731 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4732 }
4733
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4734 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4735 struct igb_ring *rx_ring)
4736 {
4737 /* set build_skb and buffer size flags */
4738 clear_ring_build_skb_enabled(rx_ring);
4739 clear_ring_uses_large_buffer(rx_ring);
4740
4741 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4742 return;
4743
4744 set_ring_build_skb_enabled(rx_ring);
4745
4746 #if (PAGE_SIZE < 8192)
4747 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4748 return;
4749
4750 set_ring_uses_large_buffer(rx_ring);
4751 #endif
4752 }
4753
4754 /**
4755 * igb_configure_rx - Configure receive Unit after Reset
4756 * @adapter: board private structure
4757 *
4758 * Configure the Rx unit of the MAC after a reset.
4759 **/
igb_configure_rx(struct igb_adapter * adapter)4760 static void igb_configure_rx(struct igb_adapter *adapter)
4761 {
4762 int i;
4763
4764 /* set the correct pool for the PF default MAC address in entry 0 */
4765 igb_set_default_mac_filter(adapter);
4766
4767 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4768 * the Base and Length of the Rx Descriptor Ring
4769 */
4770 for (i = 0; i < adapter->num_rx_queues; i++) {
4771 struct igb_ring *rx_ring = adapter->rx_ring[i];
4772
4773 igb_set_rx_buffer_len(adapter, rx_ring);
4774 igb_configure_rx_ring(adapter, rx_ring);
4775 }
4776 }
4777
4778 /**
4779 * igb_free_tx_resources - Free Tx Resources per Queue
4780 * @tx_ring: Tx descriptor ring for a specific queue
4781 *
4782 * Free all transmit software resources
4783 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4784 void igb_free_tx_resources(struct igb_ring *tx_ring)
4785 {
4786 igb_clean_tx_ring(tx_ring);
4787
4788 vfree(tx_ring->tx_buffer_info);
4789 tx_ring->tx_buffer_info = NULL;
4790
4791 /* if not set, then don't free */
4792 if (!tx_ring->desc)
4793 return;
4794
4795 dma_free_coherent(tx_ring->dev, tx_ring->size,
4796 tx_ring->desc, tx_ring->dma);
4797
4798 tx_ring->desc = NULL;
4799 }
4800
4801 /**
4802 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4803 * @adapter: board private structure
4804 *
4805 * Free all transmit software resources
4806 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4807 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4808 {
4809 int i;
4810
4811 for (i = 0; i < adapter->num_tx_queues; i++)
4812 if (adapter->tx_ring[i])
4813 igb_free_tx_resources(adapter->tx_ring[i]);
4814 }
4815
4816 /**
4817 * igb_clean_tx_ring - Free Tx Buffers
4818 * @tx_ring: ring to be cleaned
4819 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4820 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4821 {
4822 u16 i = tx_ring->next_to_clean;
4823 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4824
4825 while (i != tx_ring->next_to_use) {
4826 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4827
4828 /* Free all the Tx ring sk_buffs or xdp frames */
4829 if (tx_buffer->type == IGB_TYPE_SKB)
4830 dev_kfree_skb_any(tx_buffer->skb);
4831 else
4832 xdp_return_frame(tx_buffer->xdpf);
4833
4834 /* unmap skb header data */
4835 dma_unmap_single(tx_ring->dev,
4836 dma_unmap_addr(tx_buffer, dma),
4837 dma_unmap_len(tx_buffer, len),
4838 DMA_TO_DEVICE);
4839
4840 /* check for eop_desc to determine the end of the packet */
4841 eop_desc = tx_buffer->next_to_watch;
4842 tx_desc = IGB_TX_DESC(tx_ring, i);
4843
4844 /* unmap remaining buffers */
4845 while (tx_desc != eop_desc) {
4846 tx_buffer++;
4847 tx_desc++;
4848 i++;
4849 if (unlikely(i == tx_ring->count)) {
4850 i = 0;
4851 tx_buffer = tx_ring->tx_buffer_info;
4852 tx_desc = IGB_TX_DESC(tx_ring, 0);
4853 }
4854
4855 /* unmap any remaining paged data */
4856 if (dma_unmap_len(tx_buffer, len))
4857 dma_unmap_page(tx_ring->dev,
4858 dma_unmap_addr(tx_buffer, dma),
4859 dma_unmap_len(tx_buffer, len),
4860 DMA_TO_DEVICE);
4861 }
4862
4863 tx_buffer->next_to_watch = NULL;
4864
4865 /* move us one more past the eop_desc for start of next pkt */
4866 tx_buffer++;
4867 i++;
4868 if (unlikely(i == tx_ring->count)) {
4869 i = 0;
4870 tx_buffer = tx_ring->tx_buffer_info;
4871 }
4872 }
4873
4874 /* reset BQL for queue */
4875 netdev_tx_reset_queue(txring_txq(tx_ring));
4876
4877 /* reset next_to_use and next_to_clean */
4878 tx_ring->next_to_use = 0;
4879 tx_ring->next_to_clean = 0;
4880 }
4881
4882 /**
4883 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4884 * @adapter: board private structure
4885 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4886 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4887 {
4888 int i;
4889
4890 for (i = 0; i < adapter->num_tx_queues; i++)
4891 if (adapter->tx_ring[i])
4892 igb_clean_tx_ring(adapter->tx_ring[i]);
4893 }
4894
4895 /**
4896 * igb_free_rx_resources - Free Rx Resources
4897 * @rx_ring: ring to clean the resources from
4898 *
4899 * Free all receive software resources
4900 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4901 void igb_free_rx_resources(struct igb_ring *rx_ring)
4902 {
4903 igb_clean_rx_ring(rx_ring);
4904
4905 rx_ring->xdp_prog = NULL;
4906 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4907 vfree(rx_ring->rx_buffer_info);
4908 rx_ring->rx_buffer_info = NULL;
4909
4910 /* if not set, then don't free */
4911 if (!rx_ring->desc)
4912 return;
4913
4914 dma_free_coherent(rx_ring->dev, rx_ring->size,
4915 rx_ring->desc, rx_ring->dma);
4916
4917 rx_ring->desc = NULL;
4918 }
4919
4920 /**
4921 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4922 * @adapter: board private structure
4923 *
4924 * Free all receive software resources
4925 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4926 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4927 {
4928 int i;
4929
4930 for (i = 0; i < adapter->num_rx_queues; i++)
4931 if (adapter->rx_ring[i])
4932 igb_free_rx_resources(adapter->rx_ring[i]);
4933 }
4934
4935 /**
4936 * igb_clean_rx_ring - Free Rx Buffers per Queue
4937 * @rx_ring: ring to free buffers from
4938 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4939 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4940 {
4941 u16 i = rx_ring->next_to_clean;
4942
4943 dev_kfree_skb(rx_ring->skb);
4944 rx_ring->skb = NULL;
4945
4946 /* Free all the Rx ring sk_buffs */
4947 while (i != rx_ring->next_to_alloc) {
4948 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4949
4950 /* Invalidate cache lines that may have been written to by
4951 * device so that we avoid corrupting memory.
4952 */
4953 dma_sync_single_range_for_cpu(rx_ring->dev,
4954 buffer_info->dma,
4955 buffer_info->page_offset,
4956 igb_rx_bufsz(rx_ring),
4957 DMA_FROM_DEVICE);
4958
4959 /* free resources associated with mapping */
4960 dma_unmap_page_attrs(rx_ring->dev,
4961 buffer_info->dma,
4962 igb_rx_pg_size(rx_ring),
4963 DMA_FROM_DEVICE,
4964 IGB_RX_DMA_ATTR);
4965 __page_frag_cache_drain(buffer_info->page,
4966 buffer_info->pagecnt_bias);
4967
4968 i++;
4969 if (i == rx_ring->count)
4970 i = 0;
4971 }
4972
4973 rx_ring->next_to_alloc = 0;
4974 rx_ring->next_to_clean = 0;
4975 rx_ring->next_to_use = 0;
4976 }
4977
4978 /**
4979 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4980 * @adapter: board private structure
4981 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4982 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4983 {
4984 int i;
4985
4986 for (i = 0; i < adapter->num_rx_queues; i++)
4987 if (adapter->rx_ring[i])
4988 igb_clean_rx_ring(adapter->rx_ring[i]);
4989 }
4990
4991 /**
4992 * igb_set_mac - Change the Ethernet Address of the NIC
4993 * @netdev: network interface device structure
4994 * @p: pointer to an address structure
4995 *
4996 * Returns 0 on success, negative on failure
4997 **/
igb_set_mac(struct net_device * netdev,void * p)4998 static int igb_set_mac(struct net_device *netdev, void *p)
4999 {
5000 struct igb_adapter *adapter = netdev_priv(netdev);
5001 struct e1000_hw *hw = &adapter->hw;
5002 struct sockaddr *addr = p;
5003
5004 if (!is_valid_ether_addr(addr->sa_data))
5005 return -EADDRNOTAVAIL;
5006
5007 eth_hw_addr_set(netdev, addr->sa_data);
5008 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5009
5010 /* set the correct pool for the new PF MAC address in entry 0 */
5011 igb_set_default_mac_filter(adapter);
5012
5013 return 0;
5014 }
5015
5016 /**
5017 * igb_write_mc_addr_list - write multicast addresses to MTA
5018 * @netdev: network interface device structure
5019 *
5020 * Writes multicast address list to the MTA hash table.
5021 * Returns: -ENOMEM on failure
5022 * 0 on no addresses written
5023 * X on writing X addresses to MTA
5024 **/
igb_write_mc_addr_list(struct net_device * netdev)5025 static int igb_write_mc_addr_list(struct net_device *netdev)
5026 {
5027 struct igb_adapter *adapter = netdev_priv(netdev);
5028 struct e1000_hw *hw = &adapter->hw;
5029 struct netdev_hw_addr *ha;
5030 u8 *mta_list;
5031 int i;
5032
5033 if (netdev_mc_empty(netdev)) {
5034 /* nothing to program, so clear mc list */
5035 igb_update_mc_addr_list(hw, NULL, 0);
5036 igb_restore_vf_multicasts(adapter);
5037 return 0;
5038 }
5039
5040 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5041 if (!mta_list)
5042 return -ENOMEM;
5043
5044 /* The shared function expects a packed array of only addresses. */
5045 i = 0;
5046 netdev_for_each_mc_addr(ha, netdev)
5047 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5048
5049 igb_update_mc_addr_list(hw, mta_list, i);
5050 kfree(mta_list);
5051
5052 return netdev_mc_count(netdev);
5053 }
5054
igb_vlan_promisc_enable(struct igb_adapter * adapter)5055 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5056 {
5057 struct e1000_hw *hw = &adapter->hw;
5058 u32 i, pf_id;
5059
5060 switch (hw->mac.type) {
5061 case e1000_i210:
5062 case e1000_i211:
5063 case e1000_i350:
5064 /* VLAN filtering needed for VLAN prio filter */
5065 if (adapter->netdev->features & NETIF_F_NTUPLE)
5066 break;
5067 fallthrough;
5068 case e1000_82576:
5069 case e1000_82580:
5070 case e1000_i354:
5071 /* VLAN filtering needed for pool filtering */
5072 if (adapter->vfs_allocated_count)
5073 break;
5074 fallthrough;
5075 default:
5076 return 1;
5077 }
5078
5079 /* We are already in VLAN promisc, nothing to do */
5080 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5081 return 0;
5082
5083 if (!adapter->vfs_allocated_count)
5084 goto set_vfta;
5085
5086 /* Add PF to all active pools */
5087 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5088
5089 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5090 u32 vlvf = rd32(E1000_VLVF(i));
5091
5092 vlvf |= BIT(pf_id);
5093 wr32(E1000_VLVF(i), vlvf);
5094 }
5095
5096 set_vfta:
5097 /* Set all bits in the VLAN filter table array */
5098 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5099 hw->mac.ops.write_vfta(hw, i, ~0U);
5100
5101 /* Set flag so we don't redo unnecessary work */
5102 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5103
5104 return 0;
5105 }
5106
5107 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5108 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5109 {
5110 struct e1000_hw *hw = &adapter->hw;
5111 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5112 u32 vid_start = vfta_offset * 32;
5113 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5114 u32 i, vid, word, bits, pf_id;
5115
5116 /* guarantee that we don't scrub out management VLAN */
5117 vid = adapter->mng_vlan_id;
5118 if (vid >= vid_start && vid < vid_end)
5119 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5120
5121 if (!adapter->vfs_allocated_count)
5122 goto set_vfta;
5123
5124 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5125
5126 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5127 u32 vlvf = rd32(E1000_VLVF(i));
5128
5129 /* pull VLAN ID from VLVF */
5130 vid = vlvf & VLAN_VID_MASK;
5131
5132 /* only concern ourselves with a certain range */
5133 if (vid < vid_start || vid >= vid_end)
5134 continue;
5135
5136 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5137 /* record VLAN ID in VFTA */
5138 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5139
5140 /* if PF is part of this then continue */
5141 if (test_bit(vid, adapter->active_vlans))
5142 continue;
5143 }
5144
5145 /* remove PF from the pool */
5146 bits = ~BIT(pf_id);
5147 bits &= rd32(E1000_VLVF(i));
5148 wr32(E1000_VLVF(i), bits);
5149 }
5150
5151 set_vfta:
5152 /* extract values from active_vlans and write back to VFTA */
5153 for (i = VFTA_BLOCK_SIZE; i--;) {
5154 vid = (vfta_offset + i) * 32;
5155 word = vid / BITS_PER_LONG;
5156 bits = vid % BITS_PER_LONG;
5157
5158 vfta[i] |= adapter->active_vlans[word] >> bits;
5159
5160 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5161 }
5162 }
5163
igb_vlan_promisc_disable(struct igb_adapter * adapter)5164 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5165 {
5166 u32 i;
5167
5168 /* We are not in VLAN promisc, nothing to do */
5169 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5170 return;
5171
5172 /* Set flag so we don't redo unnecessary work */
5173 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5174
5175 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5176 igb_scrub_vfta(adapter, i);
5177 }
5178
5179 /**
5180 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5181 * @netdev: network interface device structure
5182 *
5183 * The set_rx_mode entry point is called whenever the unicast or multicast
5184 * address lists or the network interface flags are updated. This routine is
5185 * responsible for configuring the hardware for proper unicast, multicast,
5186 * promiscuous mode, and all-multi behavior.
5187 **/
igb_set_rx_mode(struct net_device * netdev)5188 static void igb_set_rx_mode(struct net_device *netdev)
5189 {
5190 struct igb_adapter *adapter = netdev_priv(netdev);
5191 struct e1000_hw *hw = &adapter->hw;
5192 unsigned int vfn = adapter->vfs_allocated_count;
5193 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5194 int count;
5195
5196 /* Check for Promiscuous and All Multicast modes */
5197 if (netdev->flags & IFF_PROMISC) {
5198 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5199 vmolr |= E1000_VMOLR_MPME;
5200
5201 /* enable use of UTA filter to force packets to default pool */
5202 if (hw->mac.type == e1000_82576)
5203 vmolr |= E1000_VMOLR_ROPE;
5204 } else {
5205 if (netdev->flags & IFF_ALLMULTI) {
5206 rctl |= E1000_RCTL_MPE;
5207 vmolr |= E1000_VMOLR_MPME;
5208 } else {
5209 /* Write addresses to the MTA, if the attempt fails
5210 * then we should just turn on promiscuous mode so
5211 * that we can at least receive multicast traffic
5212 */
5213 count = igb_write_mc_addr_list(netdev);
5214 if (count < 0) {
5215 rctl |= E1000_RCTL_MPE;
5216 vmolr |= E1000_VMOLR_MPME;
5217 } else if (count) {
5218 vmolr |= E1000_VMOLR_ROMPE;
5219 }
5220 }
5221 }
5222
5223 /* Write addresses to available RAR registers, if there is not
5224 * sufficient space to store all the addresses then enable
5225 * unicast promiscuous mode
5226 */
5227 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5228 rctl |= E1000_RCTL_UPE;
5229 vmolr |= E1000_VMOLR_ROPE;
5230 }
5231
5232 /* enable VLAN filtering by default */
5233 rctl |= E1000_RCTL_VFE;
5234
5235 /* disable VLAN filtering for modes that require it */
5236 if ((netdev->flags & IFF_PROMISC) ||
5237 (netdev->features & NETIF_F_RXALL)) {
5238 /* if we fail to set all rules then just clear VFE */
5239 if (igb_vlan_promisc_enable(adapter))
5240 rctl &= ~E1000_RCTL_VFE;
5241 } else {
5242 igb_vlan_promisc_disable(adapter);
5243 }
5244
5245 /* update state of unicast, multicast, and VLAN filtering modes */
5246 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5247 E1000_RCTL_VFE);
5248 wr32(E1000_RCTL, rctl);
5249
5250 #if (PAGE_SIZE < 8192)
5251 if (!adapter->vfs_allocated_count) {
5252 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5253 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5254 }
5255 #endif
5256 wr32(E1000_RLPML, rlpml);
5257
5258 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5259 * the VMOLR to enable the appropriate modes. Without this workaround
5260 * we will have issues with VLAN tag stripping not being done for frames
5261 * that are only arriving because we are the default pool
5262 */
5263 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5264 return;
5265
5266 /* set UTA to appropriate mode */
5267 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5268
5269 vmolr |= rd32(E1000_VMOLR(vfn)) &
5270 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5271
5272 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5273 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5274 #if (PAGE_SIZE < 8192)
5275 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5276 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5277 else
5278 #endif
5279 vmolr |= MAX_JUMBO_FRAME_SIZE;
5280 vmolr |= E1000_VMOLR_LPE;
5281
5282 wr32(E1000_VMOLR(vfn), vmolr);
5283
5284 igb_restore_vf_multicasts(adapter);
5285 }
5286
igb_check_wvbr(struct igb_adapter * adapter)5287 static void igb_check_wvbr(struct igb_adapter *adapter)
5288 {
5289 struct e1000_hw *hw = &adapter->hw;
5290 u32 wvbr = 0;
5291
5292 switch (hw->mac.type) {
5293 case e1000_82576:
5294 case e1000_i350:
5295 wvbr = rd32(E1000_WVBR);
5296 if (!wvbr)
5297 return;
5298 break;
5299 default:
5300 break;
5301 }
5302
5303 adapter->wvbr |= wvbr;
5304 }
5305
5306 #define IGB_STAGGERED_QUEUE_OFFSET 8
5307
igb_spoof_check(struct igb_adapter * adapter)5308 static void igb_spoof_check(struct igb_adapter *adapter)
5309 {
5310 int j;
5311
5312 if (!adapter->wvbr)
5313 return;
5314
5315 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5316 if (adapter->wvbr & BIT(j) ||
5317 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5318 dev_warn(&adapter->pdev->dev,
5319 "Spoof event(s) detected on VF %d\n", j);
5320 adapter->wvbr &=
5321 ~(BIT(j) |
5322 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5323 }
5324 }
5325 }
5326
5327 /* Need to wait a few seconds after link up to get diagnostic information from
5328 * the phy
5329 */
igb_update_phy_info(struct timer_list * t)5330 static void igb_update_phy_info(struct timer_list *t)
5331 {
5332 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5333 igb_get_phy_info(&adapter->hw);
5334 }
5335
5336 /**
5337 * igb_has_link - check shared code for link and determine up/down
5338 * @adapter: pointer to driver private info
5339 **/
igb_has_link(struct igb_adapter * adapter)5340 bool igb_has_link(struct igb_adapter *adapter)
5341 {
5342 struct e1000_hw *hw = &adapter->hw;
5343 bool link_active = false;
5344
5345 /* get_link_status is set on LSC (link status) interrupt or
5346 * rx sequence error interrupt. get_link_status will stay
5347 * false until the e1000_check_for_link establishes link
5348 * for copper adapters ONLY
5349 */
5350 switch (hw->phy.media_type) {
5351 case e1000_media_type_copper:
5352 if (!hw->mac.get_link_status)
5353 return true;
5354 fallthrough;
5355 case e1000_media_type_internal_serdes:
5356 hw->mac.ops.check_for_link(hw);
5357 link_active = !hw->mac.get_link_status;
5358 break;
5359 default:
5360 case e1000_media_type_unknown:
5361 break;
5362 }
5363
5364 if (((hw->mac.type == e1000_i210) ||
5365 (hw->mac.type == e1000_i211)) &&
5366 (hw->phy.id == I210_I_PHY_ID)) {
5367 if (!netif_carrier_ok(adapter->netdev)) {
5368 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5369 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5370 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5371 adapter->link_check_timeout = jiffies;
5372 }
5373 }
5374
5375 return link_active;
5376 }
5377
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5378 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5379 {
5380 bool ret = false;
5381 u32 ctrl_ext, thstat;
5382
5383 /* check for thermal sensor event on i350 copper only */
5384 if (hw->mac.type == e1000_i350) {
5385 thstat = rd32(E1000_THSTAT);
5386 ctrl_ext = rd32(E1000_CTRL_EXT);
5387
5388 if ((hw->phy.media_type == e1000_media_type_copper) &&
5389 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5390 ret = !!(thstat & event);
5391 }
5392
5393 return ret;
5394 }
5395
5396 /**
5397 * igb_check_lvmmc - check for malformed packets received
5398 * and indicated in LVMMC register
5399 * @adapter: pointer to adapter
5400 **/
igb_check_lvmmc(struct igb_adapter * adapter)5401 static void igb_check_lvmmc(struct igb_adapter *adapter)
5402 {
5403 struct e1000_hw *hw = &adapter->hw;
5404 u32 lvmmc;
5405
5406 lvmmc = rd32(E1000_LVMMC);
5407 if (lvmmc) {
5408 if (unlikely(net_ratelimit())) {
5409 netdev_warn(adapter->netdev,
5410 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5411 lvmmc);
5412 }
5413 }
5414 }
5415
5416 /**
5417 * igb_watchdog - Timer Call-back
5418 * @t: pointer to timer_list containing our private info pointer
5419 **/
igb_watchdog(struct timer_list * t)5420 static void igb_watchdog(struct timer_list *t)
5421 {
5422 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5423 /* Do the rest outside of interrupt context */
5424 schedule_work(&adapter->watchdog_task);
5425 }
5426
igb_watchdog_task(struct work_struct * work)5427 static void igb_watchdog_task(struct work_struct *work)
5428 {
5429 struct igb_adapter *adapter = container_of(work,
5430 struct igb_adapter,
5431 watchdog_task);
5432 struct e1000_hw *hw = &adapter->hw;
5433 struct e1000_phy_info *phy = &hw->phy;
5434 struct net_device *netdev = adapter->netdev;
5435 u32 link;
5436 int i;
5437 u32 connsw;
5438 u16 phy_data, retry_count = 20;
5439
5440 link = igb_has_link(adapter);
5441
5442 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5443 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5444 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5445 else
5446 link = false;
5447 }
5448
5449 /* Force link down if we have fiber to swap to */
5450 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5451 if (hw->phy.media_type == e1000_media_type_copper) {
5452 connsw = rd32(E1000_CONNSW);
5453 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5454 link = 0;
5455 }
5456 }
5457 if (link) {
5458 /* Perform a reset if the media type changed. */
5459 if (hw->dev_spec._82575.media_changed) {
5460 hw->dev_spec._82575.media_changed = false;
5461 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5462 igb_reset(adapter);
5463 }
5464 /* Cancel scheduled suspend requests. */
5465 pm_runtime_resume(netdev->dev.parent);
5466
5467 if (!netif_carrier_ok(netdev)) {
5468 u32 ctrl;
5469
5470 hw->mac.ops.get_speed_and_duplex(hw,
5471 &adapter->link_speed,
5472 &adapter->link_duplex);
5473
5474 ctrl = rd32(E1000_CTRL);
5475 /* Links status message must follow this format */
5476 netdev_info(netdev,
5477 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5478 netdev->name,
5479 adapter->link_speed,
5480 adapter->link_duplex == FULL_DUPLEX ?
5481 "Full" : "Half",
5482 (ctrl & E1000_CTRL_TFCE) &&
5483 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5484 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5485 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5486
5487 /* disable EEE if enabled */
5488 if ((adapter->flags & IGB_FLAG_EEE) &&
5489 (adapter->link_duplex == HALF_DUPLEX)) {
5490 dev_info(&adapter->pdev->dev,
5491 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5492 adapter->hw.dev_spec._82575.eee_disable = true;
5493 adapter->flags &= ~IGB_FLAG_EEE;
5494 }
5495
5496 /* check if SmartSpeed worked */
5497 igb_check_downshift(hw);
5498 if (phy->speed_downgraded)
5499 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5500
5501 /* check for thermal sensor event */
5502 if (igb_thermal_sensor_event(hw,
5503 E1000_THSTAT_LINK_THROTTLE))
5504 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5505
5506 /* adjust timeout factor according to speed/duplex */
5507 adapter->tx_timeout_factor = 1;
5508 switch (adapter->link_speed) {
5509 case SPEED_10:
5510 adapter->tx_timeout_factor = 14;
5511 break;
5512 case SPEED_100:
5513 /* maybe add some timeout factor ? */
5514 break;
5515 }
5516
5517 if (adapter->link_speed != SPEED_1000 ||
5518 !hw->phy.ops.read_reg)
5519 goto no_wait;
5520
5521 /* wait for Remote receiver status OK */
5522 retry_read_status:
5523 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5524 &phy_data)) {
5525 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5526 retry_count) {
5527 msleep(100);
5528 retry_count--;
5529 goto retry_read_status;
5530 } else if (!retry_count) {
5531 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5532 }
5533 } else {
5534 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5535 }
5536 no_wait:
5537 netif_carrier_on(netdev);
5538
5539 igb_ping_all_vfs(adapter);
5540 igb_check_vf_rate_limit(adapter);
5541
5542 /* link state has changed, schedule phy info update */
5543 if (!test_bit(__IGB_DOWN, &adapter->state))
5544 mod_timer(&adapter->phy_info_timer,
5545 round_jiffies(jiffies + 2 * HZ));
5546 }
5547 } else {
5548 if (netif_carrier_ok(netdev)) {
5549 adapter->link_speed = 0;
5550 adapter->link_duplex = 0;
5551
5552 /* check for thermal sensor event */
5553 if (igb_thermal_sensor_event(hw,
5554 E1000_THSTAT_PWR_DOWN)) {
5555 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5556 }
5557
5558 /* Links status message must follow this format */
5559 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5560 netdev->name);
5561 netif_carrier_off(netdev);
5562
5563 igb_ping_all_vfs(adapter);
5564
5565 /* link state has changed, schedule phy info update */
5566 if (!test_bit(__IGB_DOWN, &adapter->state))
5567 mod_timer(&adapter->phy_info_timer,
5568 round_jiffies(jiffies + 2 * HZ));
5569
5570 /* link is down, time to check for alternate media */
5571 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5572 igb_check_swap_media(adapter);
5573 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5574 schedule_work(&adapter->reset_task);
5575 /* return immediately */
5576 return;
5577 }
5578 }
5579 pm_schedule_suspend(netdev->dev.parent,
5580 MSEC_PER_SEC * 5);
5581
5582 /* also check for alternate media here */
5583 } else if (!netif_carrier_ok(netdev) &&
5584 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5585 igb_check_swap_media(adapter);
5586 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5587 schedule_work(&adapter->reset_task);
5588 /* return immediately */
5589 return;
5590 }
5591 }
5592 }
5593
5594 spin_lock(&adapter->stats64_lock);
5595 igb_update_stats(adapter);
5596 spin_unlock(&adapter->stats64_lock);
5597
5598 for (i = 0; i < adapter->num_tx_queues; i++) {
5599 struct igb_ring *tx_ring = adapter->tx_ring[i];
5600 if (!netif_carrier_ok(netdev)) {
5601 /* We've lost link, so the controller stops DMA,
5602 * but we've got queued Tx work that's never going
5603 * to get done, so reset controller to flush Tx.
5604 * (Do the reset outside of interrupt context).
5605 */
5606 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5607 adapter->tx_timeout_count++;
5608 schedule_work(&adapter->reset_task);
5609 /* return immediately since reset is imminent */
5610 return;
5611 }
5612 }
5613
5614 /* Force detection of hung controller every watchdog period */
5615 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5616 }
5617
5618 /* Cause software interrupt to ensure Rx ring is cleaned */
5619 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5620 u32 eics = 0;
5621
5622 for (i = 0; i < adapter->num_q_vectors; i++)
5623 eics |= adapter->q_vector[i]->eims_value;
5624 wr32(E1000_EICS, eics);
5625 } else {
5626 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5627 }
5628
5629 igb_spoof_check(adapter);
5630 igb_ptp_rx_hang(adapter);
5631 igb_ptp_tx_hang(adapter);
5632
5633 /* Check LVMMC register on i350/i354 only */
5634 if ((adapter->hw.mac.type == e1000_i350) ||
5635 (adapter->hw.mac.type == e1000_i354))
5636 igb_check_lvmmc(adapter);
5637
5638 /* Reset the timer */
5639 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5640 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5641 mod_timer(&adapter->watchdog_timer,
5642 round_jiffies(jiffies + HZ));
5643 else
5644 mod_timer(&adapter->watchdog_timer,
5645 round_jiffies(jiffies + 2 * HZ));
5646 }
5647 }
5648
5649 enum latency_range {
5650 lowest_latency = 0,
5651 low_latency = 1,
5652 bulk_latency = 2,
5653 latency_invalid = 255
5654 };
5655
5656 /**
5657 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5658 * @q_vector: pointer to q_vector
5659 *
5660 * Stores a new ITR value based on strictly on packet size. This
5661 * algorithm is less sophisticated than that used in igb_update_itr,
5662 * due to the difficulty of synchronizing statistics across multiple
5663 * receive rings. The divisors and thresholds used by this function
5664 * were determined based on theoretical maximum wire speed and testing
5665 * data, in order to minimize response time while increasing bulk
5666 * throughput.
5667 * This functionality is controlled by ethtool's coalescing settings.
5668 * NOTE: This function is called only when operating in a multiqueue
5669 * receive environment.
5670 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5671 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5672 {
5673 int new_val = q_vector->itr_val;
5674 int avg_wire_size = 0;
5675 struct igb_adapter *adapter = q_vector->adapter;
5676 unsigned int packets;
5677
5678 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5679 * ints/sec - ITR timer value of 120 ticks.
5680 */
5681 if (adapter->link_speed != SPEED_1000) {
5682 new_val = IGB_4K_ITR;
5683 goto set_itr_val;
5684 }
5685
5686 packets = q_vector->rx.total_packets;
5687 if (packets)
5688 avg_wire_size = q_vector->rx.total_bytes / packets;
5689
5690 packets = q_vector->tx.total_packets;
5691 if (packets)
5692 avg_wire_size = max_t(u32, avg_wire_size,
5693 q_vector->tx.total_bytes / packets);
5694
5695 /* if avg_wire_size isn't set no work was done */
5696 if (!avg_wire_size)
5697 goto clear_counts;
5698
5699 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5700 avg_wire_size += 24;
5701
5702 /* Don't starve jumbo frames */
5703 avg_wire_size = min(avg_wire_size, 3000);
5704
5705 /* Give a little boost to mid-size frames */
5706 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5707 new_val = avg_wire_size / 3;
5708 else
5709 new_val = avg_wire_size / 2;
5710
5711 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5712 if (new_val < IGB_20K_ITR &&
5713 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5714 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5715 new_val = IGB_20K_ITR;
5716
5717 set_itr_val:
5718 if (new_val != q_vector->itr_val) {
5719 q_vector->itr_val = new_val;
5720 q_vector->set_itr = 1;
5721 }
5722 clear_counts:
5723 q_vector->rx.total_bytes = 0;
5724 q_vector->rx.total_packets = 0;
5725 q_vector->tx.total_bytes = 0;
5726 q_vector->tx.total_packets = 0;
5727 }
5728
5729 /**
5730 * igb_update_itr - update the dynamic ITR value based on statistics
5731 * @q_vector: pointer to q_vector
5732 * @ring_container: ring info to update the itr for
5733 *
5734 * Stores a new ITR value based on packets and byte
5735 * counts during the last interrupt. The advantage of per interrupt
5736 * computation is faster updates and more accurate ITR for the current
5737 * traffic pattern. Constants in this function were computed
5738 * based on theoretical maximum wire speed and thresholds were set based
5739 * on testing data as well as attempting to minimize response time
5740 * while increasing bulk throughput.
5741 * This functionality is controlled by ethtool's coalescing settings.
5742 * NOTE: These calculations are only valid when operating in a single-
5743 * queue environment.
5744 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5745 static void igb_update_itr(struct igb_q_vector *q_vector,
5746 struct igb_ring_container *ring_container)
5747 {
5748 unsigned int packets = ring_container->total_packets;
5749 unsigned int bytes = ring_container->total_bytes;
5750 u8 itrval = ring_container->itr;
5751
5752 /* no packets, exit with status unchanged */
5753 if (packets == 0)
5754 return;
5755
5756 switch (itrval) {
5757 case lowest_latency:
5758 /* handle TSO and jumbo frames */
5759 if (bytes/packets > 8000)
5760 itrval = bulk_latency;
5761 else if ((packets < 5) && (bytes > 512))
5762 itrval = low_latency;
5763 break;
5764 case low_latency: /* 50 usec aka 20000 ints/s */
5765 if (bytes > 10000) {
5766 /* this if handles the TSO accounting */
5767 if (bytes/packets > 8000)
5768 itrval = bulk_latency;
5769 else if ((packets < 10) || ((bytes/packets) > 1200))
5770 itrval = bulk_latency;
5771 else if ((packets > 35))
5772 itrval = lowest_latency;
5773 } else if (bytes/packets > 2000) {
5774 itrval = bulk_latency;
5775 } else if (packets <= 2 && bytes < 512) {
5776 itrval = lowest_latency;
5777 }
5778 break;
5779 case bulk_latency: /* 250 usec aka 4000 ints/s */
5780 if (bytes > 25000) {
5781 if (packets > 35)
5782 itrval = low_latency;
5783 } else if (bytes < 1500) {
5784 itrval = low_latency;
5785 }
5786 break;
5787 }
5788
5789 /* clear work counters since we have the values we need */
5790 ring_container->total_bytes = 0;
5791 ring_container->total_packets = 0;
5792
5793 /* write updated itr to ring container */
5794 ring_container->itr = itrval;
5795 }
5796
igb_set_itr(struct igb_q_vector * q_vector)5797 static void igb_set_itr(struct igb_q_vector *q_vector)
5798 {
5799 struct igb_adapter *adapter = q_vector->adapter;
5800 u32 new_itr = q_vector->itr_val;
5801 u8 current_itr = 0;
5802
5803 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5804 if (adapter->link_speed != SPEED_1000) {
5805 current_itr = 0;
5806 new_itr = IGB_4K_ITR;
5807 goto set_itr_now;
5808 }
5809
5810 igb_update_itr(q_vector, &q_vector->tx);
5811 igb_update_itr(q_vector, &q_vector->rx);
5812
5813 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5814
5815 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5816 if (current_itr == lowest_latency &&
5817 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5818 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5819 current_itr = low_latency;
5820
5821 switch (current_itr) {
5822 /* counts and packets in update_itr are dependent on these numbers */
5823 case lowest_latency:
5824 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5825 break;
5826 case low_latency:
5827 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5828 break;
5829 case bulk_latency:
5830 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5831 break;
5832 default:
5833 break;
5834 }
5835
5836 set_itr_now:
5837 if (new_itr != q_vector->itr_val) {
5838 /* this attempts to bias the interrupt rate towards Bulk
5839 * by adding intermediate steps when interrupt rate is
5840 * increasing
5841 */
5842 new_itr = new_itr > q_vector->itr_val ?
5843 max((new_itr * q_vector->itr_val) /
5844 (new_itr + (q_vector->itr_val >> 2)),
5845 new_itr) : new_itr;
5846 /* Don't write the value here; it resets the adapter's
5847 * internal timer, and causes us to delay far longer than
5848 * we should between interrupts. Instead, we write the ITR
5849 * value at the beginning of the next interrupt so the timing
5850 * ends up being correct.
5851 */
5852 q_vector->itr_val = new_itr;
5853 q_vector->set_itr = 1;
5854 }
5855 }
5856
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5857 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5858 struct igb_tx_buffer *first,
5859 u32 vlan_macip_lens, u32 type_tucmd,
5860 u32 mss_l4len_idx)
5861 {
5862 struct e1000_adv_tx_context_desc *context_desc;
5863 u16 i = tx_ring->next_to_use;
5864 struct timespec64 ts;
5865
5866 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5867
5868 i++;
5869 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5870
5871 /* set bits to identify this as an advanced context descriptor */
5872 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5873
5874 /* For 82575, context index must be unique per ring. */
5875 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5876 mss_l4len_idx |= tx_ring->reg_idx << 4;
5877
5878 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5879 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5880 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5881
5882 /* We assume there is always a valid tx time available. Invalid times
5883 * should have been handled by the upper layers.
5884 */
5885 if (tx_ring->launchtime_enable) {
5886 ts = ktime_to_timespec64(first->skb->tstamp);
5887 skb_txtime_consumed(first->skb);
5888 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5889 } else {
5890 context_desc->seqnum_seed = 0;
5891 }
5892 }
5893
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5894 static int igb_tso(struct igb_ring *tx_ring,
5895 struct igb_tx_buffer *first,
5896 u8 *hdr_len)
5897 {
5898 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5899 struct sk_buff *skb = first->skb;
5900 union {
5901 struct iphdr *v4;
5902 struct ipv6hdr *v6;
5903 unsigned char *hdr;
5904 } ip;
5905 union {
5906 struct tcphdr *tcp;
5907 struct udphdr *udp;
5908 unsigned char *hdr;
5909 } l4;
5910 u32 paylen, l4_offset;
5911 int err;
5912
5913 if (skb->ip_summed != CHECKSUM_PARTIAL)
5914 return 0;
5915
5916 if (!skb_is_gso(skb))
5917 return 0;
5918
5919 err = skb_cow_head(skb, 0);
5920 if (err < 0)
5921 return err;
5922
5923 ip.hdr = skb_network_header(skb);
5924 l4.hdr = skb_checksum_start(skb);
5925
5926 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5927 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5928 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5929
5930 /* initialize outer IP header fields */
5931 if (ip.v4->version == 4) {
5932 unsigned char *csum_start = skb_checksum_start(skb);
5933 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5934
5935 /* IP header will have to cancel out any data that
5936 * is not a part of the outer IP header
5937 */
5938 ip.v4->check = csum_fold(csum_partial(trans_start,
5939 csum_start - trans_start,
5940 0));
5941 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5942
5943 ip.v4->tot_len = 0;
5944 first->tx_flags |= IGB_TX_FLAGS_TSO |
5945 IGB_TX_FLAGS_CSUM |
5946 IGB_TX_FLAGS_IPV4;
5947 } else {
5948 ip.v6->payload_len = 0;
5949 first->tx_flags |= IGB_TX_FLAGS_TSO |
5950 IGB_TX_FLAGS_CSUM;
5951 }
5952
5953 /* determine offset of inner transport header */
5954 l4_offset = l4.hdr - skb->data;
5955
5956 /* remove payload length from inner checksum */
5957 paylen = skb->len - l4_offset;
5958 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5959 /* compute length of segmentation header */
5960 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5961 csum_replace_by_diff(&l4.tcp->check,
5962 (__force __wsum)htonl(paylen));
5963 } else {
5964 /* compute length of segmentation header */
5965 *hdr_len = sizeof(*l4.udp) + l4_offset;
5966 csum_replace_by_diff(&l4.udp->check,
5967 (__force __wsum)htonl(paylen));
5968 }
5969
5970 /* update gso size and bytecount with header size */
5971 first->gso_segs = skb_shinfo(skb)->gso_segs;
5972 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5973
5974 /* MSS L4LEN IDX */
5975 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5976 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5977
5978 /* VLAN MACLEN IPLEN */
5979 vlan_macip_lens = l4.hdr - ip.hdr;
5980 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5981 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5982
5983 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5984 type_tucmd, mss_l4len_idx);
5985
5986 return 1;
5987 }
5988
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5989 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5990 {
5991 struct sk_buff *skb = first->skb;
5992 u32 vlan_macip_lens = 0;
5993 u32 type_tucmd = 0;
5994
5995 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5996 csum_failed:
5997 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5998 !tx_ring->launchtime_enable)
5999 return;
6000 goto no_csum;
6001 }
6002
6003 switch (skb->csum_offset) {
6004 case offsetof(struct tcphdr, check):
6005 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6006 fallthrough;
6007 case offsetof(struct udphdr, check):
6008 break;
6009 case offsetof(struct sctphdr, checksum):
6010 /* validate that this is actually an SCTP request */
6011 if (skb_csum_is_sctp(skb)) {
6012 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6013 break;
6014 }
6015 fallthrough;
6016 default:
6017 skb_checksum_help(skb);
6018 goto csum_failed;
6019 }
6020
6021 /* update TX checksum flag */
6022 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6023 vlan_macip_lens = skb_checksum_start_offset(skb) -
6024 skb_network_offset(skb);
6025 no_csum:
6026 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6027 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6028
6029 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6030 }
6031
6032 #define IGB_SET_FLAG(_input, _flag, _result) \
6033 ((_flag <= _result) ? \
6034 ((u32)(_input & _flag) * (_result / _flag)) : \
6035 ((u32)(_input & _flag) / (_flag / _result)))
6036
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6037 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6038 {
6039 /* set type for advanced descriptor with frame checksum insertion */
6040 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6041 E1000_ADVTXD_DCMD_DEXT |
6042 E1000_ADVTXD_DCMD_IFCS;
6043
6044 /* set HW vlan bit if vlan is present */
6045 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6046 (E1000_ADVTXD_DCMD_VLE));
6047
6048 /* set segmentation bits for TSO */
6049 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6050 (E1000_ADVTXD_DCMD_TSE));
6051
6052 /* set timestamp bit if present */
6053 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6054 (E1000_ADVTXD_MAC_TSTAMP));
6055
6056 /* insert frame checksum */
6057 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6058
6059 return cmd_type;
6060 }
6061
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6062 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6063 union e1000_adv_tx_desc *tx_desc,
6064 u32 tx_flags, unsigned int paylen)
6065 {
6066 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6067
6068 /* 82575 requires a unique index per ring */
6069 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6070 olinfo_status |= tx_ring->reg_idx << 4;
6071
6072 /* insert L4 checksum */
6073 olinfo_status |= IGB_SET_FLAG(tx_flags,
6074 IGB_TX_FLAGS_CSUM,
6075 (E1000_TXD_POPTS_TXSM << 8));
6076
6077 /* insert IPv4 checksum */
6078 olinfo_status |= IGB_SET_FLAG(tx_flags,
6079 IGB_TX_FLAGS_IPV4,
6080 (E1000_TXD_POPTS_IXSM << 8));
6081
6082 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6083 }
6084
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6085 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6086 {
6087 struct net_device *netdev = tx_ring->netdev;
6088
6089 netif_stop_subqueue(netdev, tx_ring->queue_index);
6090
6091 /* Herbert's original patch had:
6092 * smp_mb__after_netif_stop_queue();
6093 * but since that doesn't exist yet, just open code it.
6094 */
6095 smp_mb();
6096
6097 /* We need to check again in a case another CPU has just
6098 * made room available.
6099 */
6100 if (igb_desc_unused(tx_ring) < size)
6101 return -EBUSY;
6102
6103 /* A reprieve! */
6104 netif_wake_subqueue(netdev, tx_ring->queue_index);
6105
6106 u64_stats_update_begin(&tx_ring->tx_syncp2);
6107 tx_ring->tx_stats.restart_queue2++;
6108 u64_stats_update_end(&tx_ring->tx_syncp2);
6109
6110 return 0;
6111 }
6112
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6113 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6114 {
6115 if (igb_desc_unused(tx_ring) >= size)
6116 return 0;
6117 return __igb_maybe_stop_tx(tx_ring, size);
6118 }
6119
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6120 static int igb_tx_map(struct igb_ring *tx_ring,
6121 struct igb_tx_buffer *first,
6122 const u8 hdr_len)
6123 {
6124 struct sk_buff *skb = first->skb;
6125 struct igb_tx_buffer *tx_buffer;
6126 union e1000_adv_tx_desc *tx_desc;
6127 skb_frag_t *frag;
6128 dma_addr_t dma;
6129 unsigned int data_len, size;
6130 u32 tx_flags = first->tx_flags;
6131 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6132 u16 i = tx_ring->next_to_use;
6133
6134 tx_desc = IGB_TX_DESC(tx_ring, i);
6135
6136 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6137
6138 size = skb_headlen(skb);
6139 data_len = skb->data_len;
6140
6141 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6142
6143 tx_buffer = first;
6144
6145 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6146 if (dma_mapping_error(tx_ring->dev, dma))
6147 goto dma_error;
6148
6149 /* record length, and DMA address */
6150 dma_unmap_len_set(tx_buffer, len, size);
6151 dma_unmap_addr_set(tx_buffer, dma, dma);
6152
6153 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6154
6155 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6156 tx_desc->read.cmd_type_len =
6157 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6158
6159 i++;
6160 tx_desc++;
6161 if (i == tx_ring->count) {
6162 tx_desc = IGB_TX_DESC(tx_ring, 0);
6163 i = 0;
6164 }
6165 tx_desc->read.olinfo_status = 0;
6166
6167 dma += IGB_MAX_DATA_PER_TXD;
6168 size -= IGB_MAX_DATA_PER_TXD;
6169
6170 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6171 }
6172
6173 if (likely(!data_len))
6174 break;
6175
6176 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6177
6178 i++;
6179 tx_desc++;
6180 if (i == tx_ring->count) {
6181 tx_desc = IGB_TX_DESC(tx_ring, 0);
6182 i = 0;
6183 }
6184 tx_desc->read.olinfo_status = 0;
6185
6186 size = skb_frag_size(frag);
6187 data_len -= size;
6188
6189 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6190 size, DMA_TO_DEVICE);
6191
6192 tx_buffer = &tx_ring->tx_buffer_info[i];
6193 }
6194
6195 /* write last descriptor with RS and EOP bits */
6196 cmd_type |= size | IGB_TXD_DCMD;
6197 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6198
6199 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6200
6201 /* set the timestamp */
6202 first->time_stamp = jiffies;
6203
6204 skb_tx_timestamp(skb);
6205
6206 /* Force memory writes to complete before letting h/w know there
6207 * are new descriptors to fetch. (Only applicable for weak-ordered
6208 * memory model archs, such as IA-64).
6209 *
6210 * We also need this memory barrier to make certain all of the
6211 * status bits have been updated before next_to_watch is written.
6212 */
6213 dma_wmb();
6214
6215 /* set next_to_watch value indicating a packet is present */
6216 first->next_to_watch = tx_desc;
6217
6218 i++;
6219 if (i == tx_ring->count)
6220 i = 0;
6221
6222 tx_ring->next_to_use = i;
6223
6224 /* Make sure there is space in the ring for the next send. */
6225 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6226
6227 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6228 writel(i, tx_ring->tail);
6229 }
6230 return 0;
6231
6232 dma_error:
6233 dev_err(tx_ring->dev, "TX DMA map failed\n");
6234 tx_buffer = &tx_ring->tx_buffer_info[i];
6235
6236 /* clear dma mappings for failed tx_buffer_info map */
6237 while (tx_buffer != first) {
6238 if (dma_unmap_len(tx_buffer, len))
6239 dma_unmap_page(tx_ring->dev,
6240 dma_unmap_addr(tx_buffer, dma),
6241 dma_unmap_len(tx_buffer, len),
6242 DMA_TO_DEVICE);
6243 dma_unmap_len_set(tx_buffer, len, 0);
6244
6245 if (i-- == 0)
6246 i += tx_ring->count;
6247 tx_buffer = &tx_ring->tx_buffer_info[i];
6248 }
6249
6250 if (dma_unmap_len(tx_buffer, len))
6251 dma_unmap_single(tx_ring->dev,
6252 dma_unmap_addr(tx_buffer, dma),
6253 dma_unmap_len(tx_buffer, len),
6254 DMA_TO_DEVICE);
6255 dma_unmap_len_set(tx_buffer, len, 0);
6256
6257 dev_kfree_skb_any(tx_buffer->skb);
6258 tx_buffer->skb = NULL;
6259
6260 tx_ring->next_to_use = i;
6261
6262 return -1;
6263 }
6264
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6265 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6266 struct igb_ring *tx_ring,
6267 struct xdp_frame *xdpf)
6268 {
6269 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6270 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6271 u16 count, i, index = tx_ring->next_to_use;
6272 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6273 struct igb_tx_buffer *tx_buffer = tx_head;
6274 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6275 u32 len = xdpf->len, cmd_type, olinfo_status;
6276 void *data = xdpf->data;
6277
6278 count = TXD_USE_COUNT(len);
6279 for (i = 0; i < nr_frags; i++)
6280 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6281
6282 if (igb_maybe_stop_tx(tx_ring, count + 3))
6283 return IGB_XDP_CONSUMED;
6284
6285 i = 0;
6286 /* record the location of the first descriptor for this packet */
6287 tx_head->bytecount = xdp_get_frame_len(xdpf);
6288 tx_head->type = IGB_TYPE_XDP;
6289 tx_head->gso_segs = 1;
6290 tx_head->xdpf = xdpf;
6291
6292 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6293 /* 82575 requires a unique index per ring */
6294 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6295 olinfo_status |= tx_ring->reg_idx << 4;
6296 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6297
6298 for (;;) {
6299 dma_addr_t dma;
6300
6301 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6302 if (dma_mapping_error(tx_ring->dev, dma))
6303 goto unmap;
6304
6305 /* record length, and DMA address */
6306 dma_unmap_len_set(tx_buffer, len, len);
6307 dma_unmap_addr_set(tx_buffer, dma, dma);
6308
6309 /* put descriptor type bits */
6310 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6311 E1000_ADVTXD_DCMD_IFCS | len;
6312
6313 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6314 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6315
6316 tx_buffer->protocol = 0;
6317
6318 if (++index == tx_ring->count)
6319 index = 0;
6320
6321 if (i == nr_frags)
6322 break;
6323
6324 tx_buffer = &tx_ring->tx_buffer_info[index];
6325 tx_desc = IGB_TX_DESC(tx_ring, index);
6326 tx_desc->read.olinfo_status = 0;
6327
6328 data = skb_frag_address(&sinfo->frags[i]);
6329 len = skb_frag_size(&sinfo->frags[i]);
6330 i++;
6331 }
6332 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6333
6334 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6335 /* set the timestamp */
6336 tx_head->time_stamp = jiffies;
6337
6338 /* Avoid any potential race with xdp_xmit and cleanup */
6339 smp_wmb();
6340
6341 /* set next_to_watch value indicating a packet is present */
6342 tx_head->next_to_watch = tx_desc;
6343 tx_ring->next_to_use = index;
6344
6345 /* Make sure there is space in the ring for the next send. */
6346 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6347
6348 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6349 writel(index, tx_ring->tail);
6350
6351 return IGB_XDP_TX;
6352
6353 unmap:
6354 for (;;) {
6355 tx_buffer = &tx_ring->tx_buffer_info[index];
6356 if (dma_unmap_len(tx_buffer, len))
6357 dma_unmap_page(tx_ring->dev,
6358 dma_unmap_addr(tx_buffer, dma),
6359 dma_unmap_len(tx_buffer, len),
6360 DMA_TO_DEVICE);
6361 dma_unmap_len_set(tx_buffer, len, 0);
6362 if (tx_buffer == tx_head)
6363 break;
6364
6365 if (!index)
6366 index += tx_ring->count;
6367 index--;
6368 }
6369
6370 return IGB_XDP_CONSUMED;
6371 }
6372
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6373 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6374 struct igb_ring *tx_ring)
6375 {
6376 struct igb_tx_buffer *first;
6377 int tso;
6378 u32 tx_flags = 0;
6379 unsigned short f;
6380 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6381 __be16 protocol = vlan_get_protocol(skb);
6382 u8 hdr_len = 0;
6383
6384 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6385 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6386 * + 2 desc gap to keep tail from touching head,
6387 * + 1 desc for context descriptor,
6388 * otherwise try next time
6389 */
6390 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6391 count += TXD_USE_COUNT(skb_frag_size(
6392 &skb_shinfo(skb)->frags[f]));
6393
6394 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6395 /* this is a hard error */
6396 return NETDEV_TX_BUSY;
6397 }
6398
6399 /* record the location of the first descriptor for this packet */
6400 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6401 first->type = IGB_TYPE_SKB;
6402 first->skb = skb;
6403 first->bytecount = skb->len;
6404 first->gso_segs = 1;
6405
6406 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6407 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6408
6409 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6410 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6411 &adapter->state)) {
6412 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6413 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6414
6415 adapter->ptp_tx_skb = skb_get(skb);
6416 adapter->ptp_tx_start = jiffies;
6417 if (adapter->hw.mac.type == e1000_82576)
6418 schedule_work(&adapter->ptp_tx_work);
6419 } else {
6420 adapter->tx_hwtstamp_skipped++;
6421 }
6422 }
6423
6424 if (skb_vlan_tag_present(skb)) {
6425 tx_flags |= IGB_TX_FLAGS_VLAN;
6426 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6427 }
6428
6429 /* record initial flags and protocol */
6430 first->tx_flags = tx_flags;
6431 first->protocol = protocol;
6432
6433 tso = igb_tso(tx_ring, first, &hdr_len);
6434 if (tso < 0)
6435 goto out_drop;
6436 else if (!tso)
6437 igb_tx_csum(tx_ring, first);
6438
6439 if (igb_tx_map(tx_ring, first, hdr_len))
6440 goto cleanup_tx_tstamp;
6441
6442 return NETDEV_TX_OK;
6443
6444 out_drop:
6445 dev_kfree_skb_any(first->skb);
6446 first->skb = NULL;
6447 cleanup_tx_tstamp:
6448 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6449 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6450
6451 dev_kfree_skb_any(adapter->ptp_tx_skb);
6452 adapter->ptp_tx_skb = NULL;
6453 if (adapter->hw.mac.type == e1000_82576)
6454 cancel_work_sync(&adapter->ptp_tx_work);
6455 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6456 }
6457
6458 return NETDEV_TX_OK;
6459 }
6460
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6461 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6462 struct sk_buff *skb)
6463 {
6464 unsigned int r_idx = skb->queue_mapping;
6465
6466 if (r_idx >= adapter->num_tx_queues)
6467 r_idx = r_idx % adapter->num_tx_queues;
6468
6469 return adapter->tx_ring[r_idx];
6470 }
6471
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6472 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6473 struct net_device *netdev)
6474 {
6475 struct igb_adapter *adapter = netdev_priv(netdev);
6476
6477 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6478 * in order to meet this minimum size requirement.
6479 */
6480 if (skb_put_padto(skb, 17))
6481 return NETDEV_TX_OK;
6482
6483 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6484 }
6485
6486 /**
6487 * igb_tx_timeout - Respond to a Tx Hang
6488 * @netdev: network interface device structure
6489 * @txqueue: number of the Tx queue that hung (unused)
6490 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6491 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6492 {
6493 struct igb_adapter *adapter = netdev_priv(netdev);
6494 struct e1000_hw *hw = &adapter->hw;
6495
6496 /* Do the reset outside of interrupt context */
6497 adapter->tx_timeout_count++;
6498
6499 if (hw->mac.type >= e1000_82580)
6500 hw->dev_spec._82575.global_device_reset = true;
6501
6502 schedule_work(&adapter->reset_task);
6503 wr32(E1000_EICS,
6504 (adapter->eims_enable_mask & ~adapter->eims_other));
6505 }
6506
igb_reset_task(struct work_struct * work)6507 static void igb_reset_task(struct work_struct *work)
6508 {
6509 struct igb_adapter *adapter;
6510 adapter = container_of(work, struct igb_adapter, reset_task);
6511
6512 rtnl_lock();
6513 /* If we're already down or resetting, just bail */
6514 if (test_bit(__IGB_DOWN, &adapter->state) ||
6515 test_bit(__IGB_RESETTING, &adapter->state)) {
6516 rtnl_unlock();
6517 return;
6518 }
6519
6520 igb_dump(adapter);
6521 netdev_err(adapter->netdev, "Reset adapter\n");
6522 igb_reinit_locked(adapter);
6523 rtnl_unlock();
6524 }
6525
6526 /**
6527 * igb_get_stats64 - Get System Network Statistics
6528 * @netdev: network interface device structure
6529 * @stats: rtnl_link_stats64 pointer
6530 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6531 static void igb_get_stats64(struct net_device *netdev,
6532 struct rtnl_link_stats64 *stats)
6533 {
6534 struct igb_adapter *adapter = netdev_priv(netdev);
6535
6536 spin_lock(&adapter->stats64_lock);
6537 igb_update_stats(adapter);
6538 memcpy(stats, &adapter->stats64, sizeof(*stats));
6539 spin_unlock(&adapter->stats64_lock);
6540 }
6541
6542 /**
6543 * igb_change_mtu - Change the Maximum Transfer Unit
6544 * @netdev: network interface device structure
6545 * @new_mtu: new value for maximum frame size
6546 *
6547 * Returns 0 on success, negative on failure
6548 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6549 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6550 {
6551 struct igb_adapter *adapter = netdev_priv(netdev);
6552 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6553
6554 if (adapter->xdp_prog) {
6555 int i;
6556
6557 for (i = 0; i < adapter->num_rx_queues; i++) {
6558 struct igb_ring *ring = adapter->rx_ring[i];
6559
6560 if (max_frame > igb_rx_bufsz(ring)) {
6561 netdev_warn(adapter->netdev,
6562 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6563 max_frame);
6564 return -EINVAL;
6565 }
6566 }
6567 }
6568
6569 /* adjust max frame to be at least the size of a standard frame */
6570 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6571 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6572
6573 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6574 usleep_range(1000, 2000);
6575
6576 /* igb_down has a dependency on max_frame_size */
6577 adapter->max_frame_size = max_frame;
6578
6579 if (netif_running(netdev))
6580 igb_down(adapter);
6581
6582 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6583 netdev->mtu, new_mtu);
6584 netdev->mtu = new_mtu;
6585
6586 if (netif_running(netdev))
6587 igb_up(adapter);
6588 else
6589 igb_reset(adapter);
6590
6591 clear_bit(__IGB_RESETTING, &adapter->state);
6592
6593 return 0;
6594 }
6595
6596 /**
6597 * igb_update_stats - Update the board statistics counters
6598 * @adapter: board private structure
6599 **/
igb_update_stats(struct igb_adapter * adapter)6600 void igb_update_stats(struct igb_adapter *adapter)
6601 {
6602 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6603 struct e1000_hw *hw = &adapter->hw;
6604 struct pci_dev *pdev = adapter->pdev;
6605 u32 reg, mpc;
6606 int i;
6607 u64 bytes, packets;
6608 unsigned int start;
6609 u64 _bytes, _packets;
6610
6611 /* Prevent stats update while adapter is being reset, or if the pci
6612 * connection is down.
6613 */
6614 if (adapter->link_speed == 0)
6615 return;
6616 if (pci_channel_offline(pdev))
6617 return;
6618
6619 bytes = 0;
6620 packets = 0;
6621
6622 rcu_read_lock();
6623 for (i = 0; i < adapter->num_rx_queues; i++) {
6624 struct igb_ring *ring = adapter->rx_ring[i];
6625 u32 rqdpc = rd32(E1000_RQDPC(i));
6626 if (hw->mac.type >= e1000_i210)
6627 wr32(E1000_RQDPC(i), 0);
6628
6629 if (rqdpc) {
6630 ring->rx_stats.drops += rqdpc;
6631 net_stats->rx_fifo_errors += rqdpc;
6632 }
6633
6634 do {
6635 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6636 _bytes = ring->rx_stats.bytes;
6637 _packets = ring->rx_stats.packets;
6638 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6639 bytes += _bytes;
6640 packets += _packets;
6641 }
6642
6643 net_stats->rx_bytes = bytes;
6644 net_stats->rx_packets = packets;
6645
6646 bytes = 0;
6647 packets = 0;
6648 for (i = 0; i < adapter->num_tx_queues; i++) {
6649 struct igb_ring *ring = adapter->tx_ring[i];
6650 do {
6651 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6652 _bytes = ring->tx_stats.bytes;
6653 _packets = ring->tx_stats.packets;
6654 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6655 bytes += _bytes;
6656 packets += _packets;
6657 }
6658 net_stats->tx_bytes = bytes;
6659 net_stats->tx_packets = packets;
6660 rcu_read_unlock();
6661
6662 /* read stats registers */
6663 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6664 adapter->stats.gprc += rd32(E1000_GPRC);
6665 adapter->stats.gorc += rd32(E1000_GORCL);
6666 rd32(E1000_GORCH); /* clear GORCL */
6667 adapter->stats.bprc += rd32(E1000_BPRC);
6668 adapter->stats.mprc += rd32(E1000_MPRC);
6669 adapter->stats.roc += rd32(E1000_ROC);
6670
6671 adapter->stats.prc64 += rd32(E1000_PRC64);
6672 adapter->stats.prc127 += rd32(E1000_PRC127);
6673 adapter->stats.prc255 += rd32(E1000_PRC255);
6674 adapter->stats.prc511 += rd32(E1000_PRC511);
6675 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6676 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6677 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6678 adapter->stats.sec += rd32(E1000_SEC);
6679
6680 mpc = rd32(E1000_MPC);
6681 adapter->stats.mpc += mpc;
6682 net_stats->rx_fifo_errors += mpc;
6683 adapter->stats.scc += rd32(E1000_SCC);
6684 adapter->stats.ecol += rd32(E1000_ECOL);
6685 adapter->stats.mcc += rd32(E1000_MCC);
6686 adapter->stats.latecol += rd32(E1000_LATECOL);
6687 adapter->stats.dc += rd32(E1000_DC);
6688 adapter->stats.rlec += rd32(E1000_RLEC);
6689 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6690 adapter->stats.xontxc += rd32(E1000_XONTXC);
6691 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6692 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6693 adapter->stats.fcruc += rd32(E1000_FCRUC);
6694 adapter->stats.gptc += rd32(E1000_GPTC);
6695 adapter->stats.gotc += rd32(E1000_GOTCL);
6696 rd32(E1000_GOTCH); /* clear GOTCL */
6697 adapter->stats.rnbc += rd32(E1000_RNBC);
6698 adapter->stats.ruc += rd32(E1000_RUC);
6699 adapter->stats.rfc += rd32(E1000_RFC);
6700 adapter->stats.rjc += rd32(E1000_RJC);
6701 adapter->stats.tor += rd32(E1000_TORH);
6702 adapter->stats.tot += rd32(E1000_TOTH);
6703 adapter->stats.tpr += rd32(E1000_TPR);
6704
6705 adapter->stats.ptc64 += rd32(E1000_PTC64);
6706 adapter->stats.ptc127 += rd32(E1000_PTC127);
6707 adapter->stats.ptc255 += rd32(E1000_PTC255);
6708 adapter->stats.ptc511 += rd32(E1000_PTC511);
6709 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6710 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6711
6712 adapter->stats.mptc += rd32(E1000_MPTC);
6713 adapter->stats.bptc += rd32(E1000_BPTC);
6714
6715 adapter->stats.tpt += rd32(E1000_TPT);
6716 adapter->stats.colc += rd32(E1000_COLC);
6717
6718 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6719 /* read internal phy specific stats */
6720 reg = rd32(E1000_CTRL_EXT);
6721 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6722 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6723
6724 /* this stat has invalid values on i210/i211 */
6725 if ((hw->mac.type != e1000_i210) &&
6726 (hw->mac.type != e1000_i211))
6727 adapter->stats.tncrs += rd32(E1000_TNCRS);
6728 }
6729
6730 adapter->stats.tsctc += rd32(E1000_TSCTC);
6731 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6732
6733 adapter->stats.iac += rd32(E1000_IAC);
6734 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6735 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6736 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6737 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6738 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6739 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6740 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6741 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6742
6743 /* Fill out the OS statistics structure */
6744 net_stats->multicast = adapter->stats.mprc;
6745 net_stats->collisions = adapter->stats.colc;
6746
6747 /* Rx Errors */
6748
6749 /* RLEC on some newer hardware can be incorrect so build
6750 * our own version based on RUC and ROC
6751 */
6752 net_stats->rx_errors = adapter->stats.rxerrc +
6753 adapter->stats.crcerrs + adapter->stats.algnerrc +
6754 adapter->stats.ruc + adapter->stats.roc +
6755 adapter->stats.cexterr;
6756 net_stats->rx_length_errors = adapter->stats.ruc +
6757 adapter->stats.roc;
6758 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6759 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6760 net_stats->rx_missed_errors = adapter->stats.mpc;
6761
6762 /* Tx Errors */
6763 net_stats->tx_errors = adapter->stats.ecol +
6764 adapter->stats.latecol;
6765 net_stats->tx_aborted_errors = adapter->stats.ecol;
6766 net_stats->tx_window_errors = adapter->stats.latecol;
6767 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6768
6769 /* Tx Dropped needs to be maintained elsewhere */
6770
6771 /* Management Stats */
6772 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6773 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6774 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6775
6776 /* OS2BMC Stats */
6777 reg = rd32(E1000_MANC);
6778 if (reg & E1000_MANC_EN_BMC2OS) {
6779 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6780 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6781 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6782 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6783 }
6784 }
6785
igb_perout(struct igb_adapter * adapter,int tsintr_tt)6786 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6787 {
6788 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6789 struct e1000_hw *hw = &adapter->hw;
6790 struct timespec64 ts;
6791 u32 tsauxc;
6792
6793 if (pin < 0 || pin >= IGB_N_PEROUT)
6794 return;
6795
6796 spin_lock(&adapter->tmreg_lock);
6797
6798 if (hw->mac.type == e1000_82580 ||
6799 hw->mac.type == e1000_i354 ||
6800 hw->mac.type == e1000_i350) {
6801 s64 ns = timespec64_to_ns(&adapter->perout[pin].period);
6802 u32 systiml, systimh, level_mask, level, rem;
6803 u64 systim, now;
6804
6805 /* read systim registers in sequence */
6806 rd32(E1000_SYSTIMR);
6807 systiml = rd32(E1000_SYSTIML);
6808 systimh = rd32(E1000_SYSTIMH);
6809 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6810 now = timecounter_cyc2time(&adapter->tc, systim);
6811
6812 if (pin < 2) {
6813 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6814 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6815 } else {
6816 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6817 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6818 }
6819
6820 div_u64_rem(now, ns, &rem);
6821 systim = systim + (ns - rem);
6822
6823 /* synchronize pin level with rising/falling edges */
6824 div_u64_rem(now, ns << 1, &rem);
6825 if (rem < ns) {
6826 /* first half of period */
6827 if (level == 0) {
6828 /* output is already low, skip this period */
6829 systim += ns;
6830 pr_notice("igb: periodic output on %s missed falling edge\n",
6831 adapter->sdp_config[pin].name);
6832 }
6833 } else {
6834 /* second half of period */
6835 if (level == 1) {
6836 /* output is already high, skip this period */
6837 systim += ns;
6838 pr_notice("igb: periodic output on %s missed rising edge\n",
6839 adapter->sdp_config[pin].name);
6840 }
6841 }
6842
6843 /* for this chip family tv_sec is the upper part of the binary value,
6844 * so not seconds
6845 */
6846 ts.tv_nsec = (u32)systim;
6847 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
6848 } else {
6849 ts = timespec64_add(adapter->perout[pin].start,
6850 adapter->perout[pin].period);
6851 }
6852
6853 /* u32 conversion of tv_sec is safe until y2106 */
6854 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6855 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6856 tsauxc = rd32(E1000_TSAUXC);
6857 tsauxc |= TSAUXC_EN_TT0;
6858 wr32(E1000_TSAUXC, tsauxc);
6859 adapter->perout[pin].start = ts;
6860
6861 spin_unlock(&adapter->tmreg_lock);
6862 }
6863
igb_extts(struct igb_adapter * adapter,int tsintr_tt)6864 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6865 {
6866 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6867 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6868 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6869 struct e1000_hw *hw = &adapter->hw;
6870 struct ptp_clock_event event;
6871 struct timespec64 ts;
6872
6873 if (pin < 0 || pin >= IGB_N_EXTTS)
6874 return;
6875
6876 if (hw->mac.type == e1000_82580 ||
6877 hw->mac.type == e1000_i354 ||
6878 hw->mac.type == e1000_i350) {
6879 s64 ns = rd32(auxstmpl);
6880
6881 ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6882 ts = ns_to_timespec64(ns);
6883 } else {
6884 ts.tv_nsec = rd32(auxstmpl);
6885 ts.tv_sec = rd32(auxstmph);
6886 }
6887
6888 event.type = PTP_CLOCK_EXTTS;
6889 event.index = tsintr_tt;
6890 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6891 ptp_clock_event(adapter->ptp_clock, &event);
6892 }
6893
igb_tsync_interrupt(struct igb_adapter * adapter)6894 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6895 {
6896 struct e1000_hw *hw = &adapter->hw;
6897 u32 ack = 0, tsicr = rd32(E1000_TSICR);
6898 struct ptp_clock_event event;
6899
6900 if (tsicr & TSINTR_SYS_WRAP) {
6901 event.type = PTP_CLOCK_PPS;
6902 if (adapter->ptp_caps.pps)
6903 ptp_clock_event(adapter->ptp_clock, &event);
6904 ack |= TSINTR_SYS_WRAP;
6905 }
6906
6907 if (tsicr & E1000_TSICR_TXTS) {
6908 /* retrieve hardware timestamp */
6909 schedule_work(&adapter->ptp_tx_work);
6910 ack |= E1000_TSICR_TXTS;
6911 }
6912
6913 if (tsicr & TSINTR_TT0) {
6914 igb_perout(adapter, 0);
6915 ack |= TSINTR_TT0;
6916 }
6917
6918 if (tsicr & TSINTR_TT1) {
6919 igb_perout(adapter, 1);
6920 ack |= TSINTR_TT1;
6921 }
6922
6923 if (tsicr & TSINTR_AUTT0) {
6924 igb_extts(adapter, 0);
6925 ack |= TSINTR_AUTT0;
6926 }
6927
6928 if (tsicr & TSINTR_AUTT1) {
6929 igb_extts(adapter, 1);
6930 ack |= TSINTR_AUTT1;
6931 }
6932
6933 /* acknowledge the interrupts */
6934 wr32(E1000_TSICR, ack);
6935 }
6936
igb_msix_other(int irq,void * data)6937 static irqreturn_t igb_msix_other(int irq, void *data)
6938 {
6939 struct igb_adapter *adapter = data;
6940 struct e1000_hw *hw = &adapter->hw;
6941 u32 icr = rd32(E1000_ICR);
6942 /* reading ICR causes bit 31 of EICR to be cleared */
6943
6944 if (icr & E1000_ICR_DRSTA)
6945 schedule_work(&adapter->reset_task);
6946
6947 if (icr & E1000_ICR_DOUTSYNC) {
6948 /* HW is reporting DMA is out of sync */
6949 adapter->stats.doosync++;
6950 /* The DMA Out of Sync is also indication of a spoof event
6951 * in IOV mode. Check the Wrong VM Behavior register to
6952 * see if it is really a spoof event.
6953 */
6954 igb_check_wvbr(adapter);
6955 }
6956
6957 /* Check for a mailbox event */
6958 if (icr & E1000_ICR_VMMB)
6959 igb_msg_task(adapter);
6960
6961 if (icr & E1000_ICR_LSC) {
6962 hw->mac.get_link_status = 1;
6963 /* guard against interrupt when we're going down */
6964 if (!test_bit(__IGB_DOWN, &adapter->state))
6965 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6966 }
6967
6968 if (icr & E1000_ICR_TS)
6969 igb_tsync_interrupt(adapter);
6970
6971 wr32(E1000_EIMS, adapter->eims_other);
6972
6973 return IRQ_HANDLED;
6974 }
6975
igb_write_itr(struct igb_q_vector * q_vector)6976 static void igb_write_itr(struct igb_q_vector *q_vector)
6977 {
6978 struct igb_adapter *adapter = q_vector->adapter;
6979 u32 itr_val = q_vector->itr_val & 0x7FFC;
6980
6981 if (!q_vector->set_itr)
6982 return;
6983
6984 if (!itr_val)
6985 itr_val = 0x4;
6986
6987 if (adapter->hw.mac.type == e1000_82575)
6988 itr_val |= itr_val << 16;
6989 else
6990 itr_val |= E1000_EITR_CNT_IGNR;
6991
6992 writel(itr_val, q_vector->itr_register);
6993 q_vector->set_itr = 0;
6994 }
6995
igb_msix_ring(int irq,void * data)6996 static irqreturn_t igb_msix_ring(int irq, void *data)
6997 {
6998 struct igb_q_vector *q_vector = data;
6999
7000 /* Write the ITR value calculated from the previous interrupt. */
7001 igb_write_itr(q_vector);
7002
7003 napi_schedule(&q_vector->napi);
7004
7005 return IRQ_HANDLED;
7006 }
7007
7008 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)7009 static void igb_update_tx_dca(struct igb_adapter *adapter,
7010 struct igb_ring *tx_ring,
7011 int cpu)
7012 {
7013 struct e1000_hw *hw = &adapter->hw;
7014 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7015
7016 if (hw->mac.type != e1000_82575)
7017 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7018
7019 /* We can enable relaxed ordering for reads, but not writes when
7020 * DCA is enabled. This is due to a known issue in some chipsets
7021 * which will cause the DCA tag to be cleared.
7022 */
7023 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7024 E1000_DCA_TXCTRL_DATA_RRO_EN |
7025 E1000_DCA_TXCTRL_DESC_DCA_EN;
7026
7027 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7028 }
7029
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)7030 static void igb_update_rx_dca(struct igb_adapter *adapter,
7031 struct igb_ring *rx_ring,
7032 int cpu)
7033 {
7034 struct e1000_hw *hw = &adapter->hw;
7035 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7036
7037 if (hw->mac.type != e1000_82575)
7038 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7039
7040 /* We can enable relaxed ordering for reads, but not writes when
7041 * DCA is enabled. This is due to a known issue in some chipsets
7042 * which will cause the DCA tag to be cleared.
7043 */
7044 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7045 E1000_DCA_RXCTRL_DESC_DCA_EN;
7046
7047 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7048 }
7049
igb_update_dca(struct igb_q_vector * q_vector)7050 static void igb_update_dca(struct igb_q_vector *q_vector)
7051 {
7052 struct igb_adapter *adapter = q_vector->adapter;
7053 int cpu = get_cpu();
7054
7055 if (q_vector->cpu == cpu)
7056 goto out_no_update;
7057
7058 if (q_vector->tx.ring)
7059 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7060
7061 if (q_vector->rx.ring)
7062 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7063
7064 q_vector->cpu = cpu;
7065 out_no_update:
7066 put_cpu();
7067 }
7068
igb_setup_dca(struct igb_adapter * adapter)7069 static void igb_setup_dca(struct igb_adapter *adapter)
7070 {
7071 struct e1000_hw *hw = &adapter->hw;
7072 int i;
7073
7074 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7075 return;
7076
7077 /* Always use CB2 mode, difference is masked in the CB driver. */
7078 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7079
7080 for (i = 0; i < adapter->num_q_vectors; i++) {
7081 adapter->q_vector[i]->cpu = -1;
7082 igb_update_dca(adapter->q_vector[i]);
7083 }
7084 }
7085
__igb_notify_dca(struct device * dev,void * data)7086 static int __igb_notify_dca(struct device *dev, void *data)
7087 {
7088 struct net_device *netdev = dev_get_drvdata(dev);
7089 struct igb_adapter *adapter = netdev_priv(netdev);
7090 struct pci_dev *pdev = adapter->pdev;
7091 struct e1000_hw *hw = &adapter->hw;
7092 unsigned long event = *(unsigned long *)data;
7093
7094 switch (event) {
7095 case DCA_PROVIDER_ADD:
7096 /* if already enabled, don't do it again */
7097 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7098 break;
7099 if (dca_add_requester(dev) == 0) {
7100 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7101 dev_info(&pdev->dev, "DCA enabled\n");
7102 igb_setup_dca(adapter);
7103 break;
7104 }
7105 fallthrough; /* since DCA is disabled. */
7106 case DCA_PROVIDER_REMOVE:
7107 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7108 /* without this a class_device is left
7109 * hanging around in the sysfs model
7110 */
7111 dca_remove_requester(dev);
7112 dev_info(&pdev->dev, "DCA disabled\n");
7113 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7114 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7115 }
7116 break;
7117 }
7118
7119 return 0;
7120 }
7121
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7122 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7123 void *p)
7124 {
7125 int ret_val;
7126
7127 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7128 __igb_notify_dca);
7129
7130 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7131 }
7132 #endif /* CONFIG_IGB_DCA */
7133
7134 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7135 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7136 {
7137 unsigned char mac_addr[ETH_ALEN];
7138
7139 eth_zero_addr(mac_addr);
7140 igb_set_vf_mac(adapter, vf, mac_addr);
7141
7142 /* By default spoof check is enabled for all VFs */
7143 adapter->vf_data[vf].spoofchk_enabled = true;
7144
7145 /* By default VFs are not trusted */
7146 adapter->vf_data[vf].trusted = false;
7147
7148 return 0;
7149 }
7150
7151 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7152 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7153 {
7154 struct e1000_hw *hw = &adapter->hw;
7155 u32 ping;
7156 int i;
7157
7158 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7159 ping = E1000_PF_CONTROL_MSG;
7160 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7161 ping |= E1000_VT_MSGTYPE_CTS;
7162 igb_write_mbx(hw, &ping, 1, i);
7163 }
7164 }
7165
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7166 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7167 {
7168 struct e1000_hw *hw = &adapter->hw;
7169 u32 vmolr = rd32(E1000_VMOLR(vf));
7170 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7171
7172 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7173 IGB_VF_FLAG_MULTI_PROMISC);
7174 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7175
7176 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7177 vmolr |= E1000_VMOLR_MPME;
7178 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7179 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7180 } else {
7181 /* if we have hashes and we are clearing a multicast promisc
7182 * flag we need to write the hashes to the MTA as this step
7183 * was previously skipped
7184 */
7185 if (vf_data->num_vf_mc_hashes > 30) {
7186 vmolr |= E1000_VMOLR_MPME;
7187 } else if (vf_data->num_vf_mc_hashes) {
7188 int j;
7189
7190 vmolr |= E1000_VMOLR_ROMPE;
7191 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7192 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7193 }
7194 }
7195
7196 wr32(E1000_VMOLR(vf), vmolr);
7197
7198 /* there are flags left unprocessed, likely not supported */
7199 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7200 return -EINVAL;
7201
7202 return 0;
7203 }
7204
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7205 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7206 u32 *msgbuf, u32 vf)
7207 {
7208 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7209 u16 *hash_list = (u16 *)&msgbuf[1];
7210 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7211 int i;
7212
7213 /* salt away the number of multicast addresses assigned
7214 * to this VF for later use to restore when the PF multi cast
7215 * list changes
7216 */
7217 vf_data->num_vf_mc_hashes = n;
7218
7219 /* only up to 30 hash values supported */
7220 if (n > 30)
7221 n = 30;
7222
7223 /* store the hashes for later use */
7224 for (i = 0; i < n; i++)
7225 vf_data->vf_mc_hashes[i] = hash_list[i];
7226
7227 /* Flush and reset the mta with the new values */
7228 igb_set_rx_mode(adapter->netdev);
7229
7230 return 0;
7231 }
7232
igb_restore_vf_multicasts(struct igb_adapter * adapter)7233 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7234 {
7235 struct e1000_hw *hw = &adapter->hw;
7236 struct vf_data_storage *vf_data;
7237 int i, j;
7238
7239 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7240 u32 vmolr = rd32(E1000_VMOLR(i));
7241
7242 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7243
7244 vf_data = &adapter->vf_data[i];
7245
7246 if ((vf_data->num_vf_mc_hashes > 30) ||
7247 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7248 vmolr |= E1000_VMOLR_MPME;
7249 } else if (vf_data->num_vf_mc_hashes) {
7250 vmolr |= E1000_VMOLR_ROMPE;
7251 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7252 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7253 }
7254 wr32(E1000_VMOLR(i), vmolr);
7255 }
7256 }
7257
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7258 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7259 {
7260 struct e1000_hw *hw = &adapter->hw;
7261 u32 pool_mask, vlvf_mask, i;
7262
7263 /* create mask for VF and other pools */
7264 pool_mask = E1000_VLVF_POOLSEL_MASK;
7265 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7266
7267 /* drop PF from pool bits */
7268 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7269 adapter->vfs_allocated_count);
7270
7271 /* Find the vlan filter for this id */
7272 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7273 u32 vlvf = rd32(E1000_VLVF(i));
7274 u32 vfta_mask, vid, vfta;
7275
7276 /* remove the vf from the pool */
7277 if (!(vlvf & vlvf_mask))
7278 continue;
7279
7280 /* clear out bit from VLVF */
7281 vlvf ^= vlvf_mask;
7282
7283 /* if other pools are present, just remove ourselves */
7284 if (vlvf & pool_mask)
7285 goto update_vlvfb;
7286
7287 /* if PF is present, leave VFTA */
7288 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7289 goto update_vlvf;
7290
7291 vid = vlvf & E1000_VLVF_VLANID_MASK;
7292 vfta_mask = BIT(vid % 32);
7293
7294 /* clear bit from VFTA */
7295 vfta = adapter->shadow_vfta[vid / 32];
7296 if (vfta & vfta_mask)
7297 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7298 update_vlvf:
7299 /* clear pool selection enable */
7300 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7301 vlvf &= E1000_VLVF_POOLSEL_MASK;
7302 else
7303 vlvf = 0;
7304 update_vlvfb:
7305 /* clear pool bits */
7306 wr32(E1000_VLVF(i), vlvf);
7307 }
7308 }
7309
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7310 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7311 {
7312 u32 vlvf;
7313 int idx;
7314
7315 /* short cut the special case */
7316 if (vlan == 0)
7317 return 0;
7318
7319 /* Search for the VLAN id in the VLVF entries */
7320 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7321 vlvf = rd32(E1000_VLVF(idx));
7322 if ((vlvf & VLAN_VID_MASK) == vlan)
7323 break;
7324 }
7325
7326 return idx;
7327 }
7328
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7329 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7330 {
7331 struct e1000_hw *hw = &adapter->hw;
7332 u32 bits, pf_id;
7333 int idx;
7334
7335 idx = igb_find_vlvf_entry(hw, vid);
7336 if (!idx)
7337 return;
7338
7339 /* See if any other pools are set for this VLAN filter
7340 * entry other than the PF.
7341 */
7342 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7343 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7344 bits &= rd32(E1000_VLVF(idx));
7345
7346 /* Disable the filter so this falls into the default pool. */
7347 if (!bits) {
7348 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7349 wr32(E1000_VLVF(idx), BIT(pf_id));
7350 else
7351 wr32(E1000_VLVF(idx), 0);
7352 }
7353 }
7354
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7355 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7356 bool add, u32 vf)
7357 {
7358 int pf_id = adapter->vfs_allocated_count;
7359 struct e1000_hw *hw = &adapter->hw;
7360 int err;
7361
7362 /* If VLAN overlaps with one the PF is currently monitoring make
7363 * sure that we are able to allocate a VLVF entry. This may be
7364 * redundant but it guarantees PF will maintain visibility to
7365 * the VLAN.
7366 */
7367 if (add && test_bit(vid, adapter->active_vlans)) {
7368 err = igb_vfta_set(hw, vid, pf_id, true, false);
7369 if (err)
7370 return err;
7371 }
7372
7373 err = igb_vfta_set(hw, vid, vf, add, false);
7374
7375 if (add && !err)
7376 return err;
7377
7378 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7379 * we may need to drop the PF pool bit in order to allow us to free
7380 * up the VLVF resources.
7381 */
7382 if (test_bit(vid, adapter->active_vlans) ||
7383 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7384 igb_update_pf_vlvf(adapter, vid);
7385
7386 return err;
7387 }
7388
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7389 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7390 {
7391 struct e1000_hw *hw = &adapter->hw;
7392
7393 if (vid)
7394 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7395 else
7396 wr32(E1000_VMVIR(vf), 0);
7397 }
7398
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7399 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7400 u16 vlan, u8 qos)
7401 {
7402 int err;
7403
7404 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7405 if (err)
7406 return err;
7407
7408 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7409 igb_set_vmolr(adapter, vf, !vlan);
7410
7411 /* revoke access to previous VLAN */
7412 if (vlan != adapter->vf_data[vf].pf_vlan)
7413 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7414 false, vf);
7415
7416 adapter->vf_data[vf].pf_vlan = vlan;
7417 adapter->vf_data[vf].pf_qos = qos;
7418 igb_set_vf_vlan_strip(adapter, vf, true);
7419 dev_info(&adapter->pdev->dev,
7420 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7421 if (test_bit(__IGB_DOWN, &adapter->state)) {
7422 dev_warn(&adapter->pdev->dev,
7423 "The VF VLAN has been set, but the PF device is not up.\n");
7424 dev_warn(&adapter->pdev->dev,
7425 "Bring the PF device up before attempting to use the VF device.\n");
7426 }
7427
7428 return err;
7429 }
7430
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7431 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7432 {
7433 /* Restore tagless access via VLAN 0 */
7434 igb_set_vf_vlan(adapter, 0, true, vf);
7435
7436 igb_set_vmvir(adapter, 0, vf);
7437 igb_set_vmolr(adapter, vf, true);
7438
7439 /* Remove any PF assigned VLAN */
7440 if (adapter->vf_data[vf].pf_vlan)
7441 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7442 false, vf);
7443
7444 adapter->vf_data[vf].pf_vlan = 0;
7445 adapter->vf_data[vf].pf_qos = 0;
7446 igb_set_vf_vlan_strip(adapter, vf, false);
7447
7448 return 0;
7449 }
7450
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7451 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7452 u16 vlan, u8 qos, __be16 vlan_proto)
7453 {
7454 struct igb_adapter *adapter = netdev_priv(netdev);
7455
7456 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7457 return -EINVAL;
7458
7459 if (vlan_proto != htons(ETH_P_8021Q))
7460 return -EPROTONOSUPPORT;
7461
7462 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7463 igb_disable_port_vlan(adapter, vf);
7464 }
7465
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7466 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7467 {
7468 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7469 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7470 int ret;
7471
7472 if (adapter->vf_data[vf].pf_vlan)
7473 return -1;
7474
7475 /* VLAN 0 is a special case, don't allow it to be removed */
7476 if (!vid && !add)
7477 return 0;
7478
7479 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7480 if (!ret)
7481 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7482 return ret;
7483 }
7484
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7485 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7486 {
7487 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7488
7489 /* clear flags - except flag that indicates PF has set the MAC */
7490 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7491 vf_data->last_nack = jiffies;
7492
7493 /* reset vlans for device */
7494 igb_clear_vf_vfta(adapter, vf);
7495 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7496 igb_set_vmvir(adapter, vf_data->pf_vlan |
7497 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7498 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7499 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7500
7501 /* reset multicast table array for vf */
7502 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7503
7504 /* Flush and reset the mta with the new values */
7505 igb_set_rx_mode(adapter->netdev);
7506 }
7507
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7508 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7509 {
7510 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7511
7512 /* clear mac address as we were hotplug removed/added */
7513 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7514 eth_zero_addr(vf_mac);
7515
7516 /* process remaining reset events */
7517 igb_vf_reset(adapter, vf);
7518 }
7519
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7520 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7521 {
7522 struct e1000_hw *hw = &adapter->hw;
7523 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7524 u32 reg, msgbuf[3];
7525 u8 *addr = (u8 *)(&msgbuf[1]);
7526
7527 /* process all the same items cleared in a function level reset */
7528 igb_vf_reset(adapter, vf);
7529
7530 /* set vf mac address */
7531 igb_set_vf_mac(adapter, vf, vf_mac);
7532
7533 /* enable transmit and receive for vf */
7534 reg = rd32(E1000_VFTE);
7535 wr32(E1000_VFTE, reg | BIT(vf));
7536 reg = rd32(E1000_VFRE);
7537 wr32(E1000_VFRE, reg | BIT(vf));
7538
7539 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7540
7541 /* reply to reset with ack and vf mac address */
7542 if (!is_zero_ether_addr(vf_mac)) {
7543 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7544 memcpy(addr, vf_mac, ETH_ALEN);
7545 } else {
7546 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7547 }
7548 igb_write_mbx(hw, msgbuf, 3, vf);
7549 }
7550
igb_flush_mac_table(struct igb_adapter * adapter)7551 static void igb_flush_mac_table(struct igb_adapter *adapter)
7552 {
7553 struct e1000_hw *hw = &adapter->hw;
7554 int i;
7555
7556 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7557 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7558 eth_zero_addr(adapter->mac_table[i].addr);
7559 adapter->mac_table[i].queue = 0;
7560 igb_rar_set_index(adapter, i);
7561 }
7562 }
7563
igb_available_rars(struct igb_adapter * adapter,u8 queue)7564 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7565 {
7566 struct e1000_hw *hw = &adapter->hw;
7567 /* do not count rar entries reserved for VFs MAC addresses */
7568 int rar_entries = hw->mac.rar_entry_count -
7569 adapter->vfs_allocated_count;
7570 int i, count = 0;
7571
7572 for (i = 0; i < rar_entries; i++) {
7573 /* do not count default entries */
7574 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7575 continue;
7576
7577 /* do not count "in use" entries for different queues */
7578 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7579 (adapter->mac_table[i].queue != queue))
7580 continue;
7581
7582 count++;
7583 }
7584
7585 return count;
7586 }
7587
7588 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7589 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7590 {
7591 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7592
7593 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7594 mac_table->queue = adapter->vfs_allocated_count;
7595 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7596
7597 igb_rar_set_index(adapter, 0);
7598 }
7599
7600 /* If the filter to be added and an already existing filter express
7601 * the same address and address type, it should be possible to only
7602 * override the other configurations, for example the queue to steer
7603 * traffic.
7604 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7605 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7606 const u8 *addr, const u8 flags)
7607 {
7608 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7609 return true;
7610
7611 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7612 (flags & IGB_MAC_STATE_SRC_ADDR))
7613 return false;
7614
7615 if (!ether_addr_equal(addr, entry->addr))
7616 return false;
7617
7618 return true;
7619 }
7620
7621 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7622 * 'flags' is used to indicate what kind of match is made, match is by
7623 * default for the destination address, if matching by source address
7624 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7625 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7626 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7627 const u8 *addr, const u8 queue,
7628 const u8 flags)
7629 {
7630 struct e1000_hw *hw = &adapter->hw;
7631 int rar_entries = hw->mac.rar_entry_count -
7632 adapter->vfs_allocated_count;
7633 int i;
7634
7635 if (is_zero_ether_addr(addr))
7636 return -EINVAL;
7637
7638 /* Search for the first empty entry in the MAC table.
7639 * Do not touch entries at the end of the table reserved for the VF MAC
7640 * addresses.
7641 */
7642 for (i = 0; i < rar_entries; i++) {
7643 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7644 addr, flags))
7645 continue;
7646
7647 ether_addr_copy(adapter->mac_table[i].addr, addr);
7648 adapter->mac_table[i].queue = queue;
7649 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7650
7651 igb_rar_set_index(adapter, i);
7652 return i;
7653 }
7654
7655 return -ENOSPC;
7656 }
7657
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7658 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7659 const u8 queue)
7660 {
7661 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7662 }
7663
7664 /* Remove a MAC filter for 'addr' directing matching traffic to
7665 * 'queue', 'flags' is used to indicate what kind of match need to be
7666 * removed, match is by default for the destination address, if
7667 * matching by source address is to be removed the flag
7668 * IGB_MAC_STATE_SRC_ADDR can be used.
7669 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7670 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7671 const u8 *addr, const u8 queue,
7672 const u8 flags)
7673 {
7674 struct e1000_hw *hw = &adapter->hw;
7675 int rar_entries = hw->mac.rar_entry_count -
7676 adapter->vfs_allocated_count;
7677 int i;
7678
7679 if (is_zero_ether_addr(addr))
7680 return -EINVAL;
7681
7682 /* Search for matching entry in the MAC table based on given address
7683 * and queue. Do not touch entries at the end of the table reserved
7684 * for the VF MAC addresses.
7685 */
7686 for (i = 0; i < rar_entries; i++) {
7687 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7688 continue;
7689 if ((adapter->mac_table[i].state & flags) != flags)
7690 continue;
7691 if (adapter->mac_table[i].queue != queue)
7692 continue;
7693 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7694 continue;
7695
7696 /* When a filter for the default address is "deleted",
7697 * we return it to its initial configuration
7698 */
7699 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7700 adapter->mac_table[i].state =
7701 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7702 adapter->mac_table[i].queue =
7703 adapter->vfs_allocated_count;
7704 } else {
7705 adapter->mac_table[i].state = 0;
7706 adapter->mac_table[i].queue = 0;
7707 eth_zero_addr(adapter->mac_table[i].addr);
7708 }
7709
7710 igb_rar_set_index(adapter, i);
7711 return 0;
7712 }
7713
7714 return -ENOENT;
7715 }
7716
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7717 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7718 const u8 queue)
7719 {
7720 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7721 }
7722
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7723 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7724 const u8 *addr, u8 queue, u8 flags)
7725 {
7726 struct e1000_hw *hw = &adapter->hw;
7727
7728 /* In theory, this should be supported on 82575 as well, but
7729 * that part wasn't easily accessible during development.
7730 */
7731 if (hw->mac.type != e1000_i210)
7732 return -EOPNOTSUPP;
7733
7734 return igb_add_mac_filter_flags(adapter, addr, queue,
7735 IGB_MAC_STATE_QUEUE_STEERING | flags);
7736 }
7737
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7738 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7739 const u8 *addr, u8 queue, u8 flags)
7740 {
7741 return igb_del_mac_filter_flags(adapter, addr, queue,
7742 IGB_MAC_STATE_QUEUE_STEERING | flags);
7743 }
7744
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7745 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7746 {
7747 struct igb_adapter *adapter = netdev_priv(netdev);
7748 int ret;
7749
7750 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7751
7752 return min_t(int, ret, 0);
7753 }
7754
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7755 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7756 {
7757 struct igb_adapter *adapter = netdev_priv(netdev);
7758
7759 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7760
7761 return 0;
7762 }
7763
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7764 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7765 const u32 info, const u8 *addr)
7766 {
7767 struct pci_dev *pdev = adapter->pdev;
7768 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7769 struct list_head *pos;
7770 struct vf_mac_filter *entry = NULL;
7771 int ret = 0;
7772
7773 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7774 !vf_data->trusted) {
7775 dev_warn(&pdev->dev,
7776 "VF %d requested MAC filter but is administratively denied\n",
7777 vf);
7778 return -EINVAL;
7779 }
7780 if (!is_valid_ether_addr(addr)) {
7781 dev_warn(&pdev->dev,
7782 "VF %d attempted to set invalid MAC filter\n",
7783 vf);
7784 return -EINVAL;
7785 }
7786
7787 switch (info) {
7788 case E1000_VF_MAC_FILTER_CLR:
7789 /* remove all unicast MAC filters related to the current VF */
7790 list_for_each(pos, &adapter->vf_macs.l) {
7791 entry = list_entry(pos, struct vf_mac_filter, l);
7792 if (entry->vf == vf) {
7793 entry->vf = -1;
7794 entry->free = true;
7795 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7796 }
7797 }
7798 break;
7799 case E1000_VF_MAC_FILTER_ADD:
7800 /* try to find empty slot in the list */
7801 list_for_each(pos, &adapter->vf_macs.l) {
7802 entry = list_entry(pos, struct vf_mac_filter, l);
7803 if (entry->free)
7804 break;
7805 }
7806
7807 if (entry && entry->free) {
7808 entry->free = false;
7809 entry->vf = vf;
7810 ether_addr_copy(entry->vf_mac, addr);
7811
7812 ret = igb_add_mac_filter(adapter, addr, vf);
7813 ret = min_t(int, ret, 0);
7814 } else {
7815 ret = -ENOSPC;
7816 }
7817
7818 if (ret == -ENOSPC)
7819 dev_warn(&pdev->dev,
7820 "VF %d has requested MAC filter but there is no space for it\n",
7821 vf);
7822 break;
7823 default:
7824 ret = -EINVAL;
7825 break;
7826 }
7827
7828 return ret;
7829 }
7830
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7831 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7832 {
7833 struct pci_dev *pdev = adapter->pdev;
7834 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7835 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7836
7837 /* The VF MAC Address is stored in a packed array of bytes
7838 * starting at the second 32 bit word of the msg array
7839 */
7840 unsigned char *addr = (unsigned char *)&msg[1];
7841 int ret = 0;
7842
7843 if (!info) {
7844 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7845 !vf_data->trusted) {
7846 dev_warn(&pdev->dev,
7847 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7848 vf);
7849 return -EINVAL;
7850 }
7851
7852 if (!is_valid_ether_addr(addr)) {
7853 dev_warn(&pdev->dev,
7854 "VF %d attempted to set invalid MAC\n",
7855 vf);
7856 return -EINVAL;
7857 }
7858
7859 ret = igb_set_vf_mac(adapter, vf, addr);
7860 } else {
7861 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7862 }
7863
7864 return ret;
7865 }
7866
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7867 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7868 {
7869 struct e1000_hw *hw = &adapter->hw;
7870 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7871 u32 msg = E1000_VT_MSGTYPE_NACK;
7872
7873 /* if device isn't clear to send it shouldn't be reading either */
7874 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7875 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7876 igb_write_mbx(hw, &msg, 1, vf);
7877 vf_data->last_nack = jiffies;
7878 }
7879 }
7880
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7881 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7882 {
7883 struct pci_dev *pdev = adapter->pdev;
7884 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7885 struct e1000_hw *hw = &adapter->hw;
7886 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7887 s32 retval;
7888
7889 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7890
7891 if (retval) {
7892 /* if receive failed revoke VF CTS stats and restart init */
7893 dev_err(&pdev->dev, "Error receiving message from VF\n");
7894 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7895 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7896 goto unlock;
7897 goto out;
7898 }
7899
7900 /* this is a message we already processed, do nothing */
7901 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7902 goto unlock;
7903
7904 /* until the vf completes a reset it should not be
7905 * allowed to start any configuration.
7906 */
7907 if (msgbuf[0] == E1000_VF_RESET) {
7908 /* unlocks mailbox */
7909 igb_vf_reset_msg(adapter, vf);
7910 return;
7911 }
7912
7913 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7914 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7915 goto unlock;
7916 retval = -1;
7917 goto out;
7918 }
7919
7920 switch ((msgbuf[0] & 0xFFFF)) {
7921 case E1000_VF_SET_MAC_ADDR:
7922 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7923 break;
7924 case E1000_VF_SET_PROMISC:
7925 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7926 break;
7927 case E1000_VF_SET_MULTICAST:
7928 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7929 break;
7930 case E1000_VF_SET_LPE:
7931 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7932 break;
7933 case E1000_VF_SET_VLAN:
7934 retval = -1;
7935 if (vf_data->pf_vlan)
7936 dev_warn(&pdev->dev,
7937 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7938 vf);
7939 else
7940 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7941 break;
7942 default:
7943 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7944 retval = -1;
7945 break;
7946 }
7947
7948 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7949 out:
7950 /* notify the VF of the results of what it sent us */
7951 if (retval)
7952 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7953 else
7954 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7955
7956 /* unlocks mailbox */
7957 igb_write_mbx(hw, msgbuf, 1, vf);
7958 return;
7959
7960 unlock:
7961 igb_unlock_mbx(hw, vf);
7962 }
7963
igb_msg_task(struct igb_adapter * adapter)7964 static void igb_msg_task(struct igb_adapter *adapter)
7965 {
7966 struct e1000_hw *hw = &adapter->hw;
7967 unsigned long flags;
7968 u32 vf;
7969
7970 spin_lock_irqsave(&adapter->vfs_lock, flags);
7971 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7972 /* process any reset requests */
7973 if (!igb_check_for_rst(hw, vf))
7974 igb_vf_reset_event(adapter, vf);
7975
7976 /* process any messages pending */
7977 if (!igb_check_for_msg(hw, vf))
7978 igb_rcv_msg_from_vf(adapter, vf);
7979
7980 /* process any acks */
7981 if (!igb_check_for_ack(hw, vf))
7982 igb_rcv_ack_from_vf(adapter, vf);
7983 }
7984 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
7985 }
7986
7987 /**
7988 * igb_set_uta - Set unicast filter table address
7989 * @adapter: board private structure
7990 * @set: boolean indicating if we are setting or clearing bits
7991 *
7992 * The unicast table address is a register array of 32-bit registers.
7993 * The table is meant to be used in a way similar to how the MTA is used
7994 * however due to certain limitations in the hardware it is necessary to
7995 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7996 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7997 **/
igb_set_uta(struct igb_adapter * adapter,bool set)7998 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7999 {
8000 struct e1000_hw *hw = &adapter->hw;
8001 u32 uta = set ? ~0 : 0;
8002 int i;
8003
8004 /* we only need to do this if VMDq is enabled */
8005 if (!adapter->vfs_allocated_count)
8006 return;
8007
8008 for (i = hw->mac.uta_reg_count; i--;)
8009 array_wr32(E1000_UTA, i, uta);
8010 }
8011
8012 /**
8013 * igb_intr_msi - Interrupt Handler
8014 * @irq: interrupt number
8015 * @data: pointer to a network interface device structure
8016 **/
igb_intr_msi(int irq,void * data)8017 static irqreturn_t igb_intr_msi(int irq, void *data)
8018 {
8019 struct igb_adapter *adapter = data;
8020 struct igb_q_vector *q_vector = adapter->q_vector[0];
8021 struct e1000_hw *hw = &adapter->hw;
8022 /* read ICR disables interrupts using IAM */
8023 u32 icr = rd32(E1000_ICR);
8024
8025 igb_write_itr(q_vector);
8026
8027 if (icr & E1000_ICR_DRSTA)
8028 schedule_work(&adapter->reset_task);
8029
8030 if (icr & E1000_ICR_DOUTSYNC) {
8031 /* HW is reporting DMA is out of sync */
8032 adapter->stats.doosync++;
8033 }
8034
8035 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8036 hw->mac.get_link_status = 1;
8037 if (!test_bit(__IGB_DOWN, &adapter->state))
8038 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8039 }
8040
8041 if (icr & E1000_ICR_TS)
8042 igb_tsync_interrupt(adapter);
8043
8044 napi_schedule(&q_vector->napi);
8045
8046 return IRQ_HANDLED;
8047 }
8048
8049 /**
8050 * igb_intr - Legacy Interrupt Handler
8051 * @irq: interrupt number
8052 * @data: pointer to a network interface device structure
8053 **/
igb_intr(int irq,void * data)8054 static irqreturn_t igb_intr(int irq, void *data)
8055 {
8056 struct igb_adapter *adapter = data;
8057 struct igb_q_vector *q_vector = adapter->q_vector[0];
8058 struct e1000_hw *hw = &adapter->hw;
8059 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8060 * need for the IMC write
8061 */
8062 u32 icr = rd32(E1000_ICR);
8063
8064 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8065 * not set, then the adapter didn't send an interrupt
8066 */
8067 if (!(icr & E1000_ICR_INT_ASSERTED))
8068 return IRQ_NONE;
8069
8070 igb_write_itr(q_vector);
8071
8072 if (icr & E1000_ICR_DRSTA)
8073 schedule_work(&adapter->reset_task);
8074
8075 if (icr & E1000_ICR_DOUTSYNC) {
8076 /* HW is reporting DMA is out of sync */
8077 adapter->stats.doosync++;
8078 }
8079
8080 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8081 hw->mac.get_link_status = 1;
8082 /* guard against interrupt when we're going down */
8083 if (!test_bit(__IGB_DOWN, &adapter->state))
8084 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8085 }
8086
8087 if (icr & E1000_ICR_TS)
8088 igb_tsync_interrupt(adapter);
8089
8090 napi_schedule(&q_vector->napi);
8091
8092 return IRQ_HANDLED;
8093 }
8094
igb_ring_irq_enable(struct igb_q_vector * q_vector)8095 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8096 {
8097 struct igb_adapter *adapter = q_vector->adapter;
8098 struct e1000_hw *hw = &adapter->hw;
8099
8100 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8101 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8102 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8103 igb_set_itr(q_vector);
8104 else
8105 igb_update_ring_itr(q_vector);
8106 }
8107
8108 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8109 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8110 wr32(E1000_EIMS, q_vector->eims_value);
8111 else
8112 igb_irq_enable(adapter);
8113 }
8114 }
8115
8116 /**
8117 * igb_poll - NAPI Rx polling callback
8118 * @napi: napi polling structure
8119 * @budget: count of how many packets we should handle
8120 **/
igb_poll(struct napi_struct * napi,int budget)8121 static int igb_poll(struct napi_struct *napi, int budget)
8122 {
8123 struct igb_q_vector *q_vector = container_of(napi,
8124 struct igb_q_vector,
8125 napi);
8126 bool clean_complete = true;
8127 int work_done = 0;
8128
8129 #ifdef CONFIG_IGB_DCA
8130 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8131 igb_update_dca(q_vector);
8132 #endif
8133 if (q_vector->tx.ring)
8134 clean_complete = igb_clean_tx_irq(q_vector, budget);
8135
8136 if (q_vector->rx.ring) {
8137 int cleaned = igb_clean_rx_irq(q_vector, budget);
8138
8139 work_done += cleaned;
8140 if (cleaned >= budget)
8141 clean_complete = false;
8142 }
8143
8144 /* If all work not completed, return budget and keep polling */
8145 if (!clean_complete)
8146 return budget;
8147
8148 /* Exit the polling mode, but don't re-enable interrupts if stack might
8149 * poll us due to busy-polling
8150 */
8151 if (likely(napi_complete_done(napi, work_done)))
8152 igb_ring_irq_enable(q_vector);
8153
8154 return work_done;
8155 }
8156
8157 /**
8158 * igb_clean_tx_irq - Reclaim resources after transmit completes
8159 * @q_vector: pointer to q_vector containing needed info
8160 * @napi_budget: Used to determine if we are in netpoll
8161 *
8162 * returns true if ring is completely cleaned
8163 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8164 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8165 {
8166 struct igb_adapter *adapter = q_vector->adapter;
8167 struct igb_ring *tx_ring = q_vector->tx.ring;
8168 struct igb_tx_buffer *tx_buffer;
8169 union e1000_adv_tx_desc *tx_desc;
8170 unsigned int total_bytes = 0, total_packets = 0;
8171 unsigned int budget = q_vector->tx.work_limit;
8172 unsigned int i = tx_ring->next_to_clean;
8173
8174 if (test_bit(__IGB_DOWN, &adapter->state))
8175 return true;
8176
8177 tx_buffer = &tx_ring->tx_buffer_info[i];
8178 tx_desc = IGB_TX_DESC(tx_ring, i);
8179 i -= tx_ring->count;
8180
8181 do {
8182 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8183
8184 /* if next_to_watch is not set then there is no work pending */
8185 if (!eop_desc)
8186 break;
8187
8188 /* prevent any other reads prior to eop_desc */
8189 smp_rmb();
8190
8191 /* if DD is not set pending work has not been completed */
8192 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8193 break;
8194
8195 /* clear next_to_watch to prevent false hangs */
8196 tx_buffer->next_to_watch = NULL;
8197
8198 /* update the statistics for this packet */
8199 total_bytes += tx_buffer->bytecount;
8200 total_packets += tx_buffer->gso_segs;
8201
8202 /* free the skb */
8203 if (tx_buffer->type == IGB_TYPE_SKB)
8204 napi_consume_skb(tx_buffer->skb, napi_budget);
8205 else
8206 xdp_return_frame(tx_buffer->xdpf);
8207
8208 /* unmap skb header data */
8209 dma_unmap_single(tx_ring->dev,
8210 dma_unmap_addr(tx_buffer, dma),
8211 dma_unmap_len(tx_buffer, len),
8212 DMA_TO_DEVICE);
8213
8214 /* clear tx_buffer data */
8215 dma_unmap_len_set(tx_buffer, len, 0);
8216
8217 /* clear last DMA location and unmap remaining buffers */
8218 while (tx_desc != eop_desc) {
8219 tx_buffer++;
8220 tx_desc++;
8221 i++;
8222 if (unlikely(!i)) {
8223 i -= tx_ring->count;
8224 tx_buffer = tx_ring->tx_buffer_info;
8225 tx_desc = IGB_TX_DESC(tx_ring, 0);
8226 }
8227
8228 /* unmap any remaining paged data */
8229 if (dma_unmap_len(tx_buffer, len)) {
8230 dma_unmap_page(tx_ring->dev,
8231 dma_unmap_addr(tx_buffer, dma),
8232 dma_unmap_len(tx_buffer, len),
8233 DMA_TO_DEVICE);
8234 dma_unmap_len_set(tx_buffer, len, 0);
8235 }
8236 }
8237
8238 /* move us one more past the eop_desc for start of next pkt */
8239 tx_buffer++;
8240 tx_desc++;
8241 i++;
8242 if (unlikely(!i)) {
8243 i -= tx_ring->count;
8244 tx_buffer = tx_ring->tx_buffer_info;
8245 tx_desc = IGB_TX_DESC(tx_ring, 0);
8246 }
8247
8248 /* issue prefetch for next Tx descriptor */
8249 prefetch(tx_desc);
8250
8251 /* update budget accounting */
8252 budget--;
8253 } while (likely(budget));
8254
8255 netdev_tx_completed_queue(txring_txq(tx_ring),
8256 total_packets, total_bytes);
8257 i += tx_ring->count;
8258 tx_ring->next_to_clean = i;
8259 u64_stats_update_begin(&tx_ring->tx_syncp);
8260 tx_ring->tx_stats.bytes += total_bytes;
8261 tx_ring->tx_stats.packets += total_packets;
8262 u64_stats_update_end(&tx_ring->tx_syncp);
8263 q_vector->tx.total_bytes += total_bytes;
8264 q_vector->tx.total_packets += total_packets;
8265
8266 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8267 struct e1000_hw *hw = &adapter->hw;
8268
8269 /* Detect a transmit hang in hardware, this serializes the
8270 * check with the clearing of time_stamp and movement of i
8271 */
8272 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8273 if (tx_buffer->next_to_watch &&
8274 time_after(jiffies, tx_buffer->time_stamp +
8275 (adapter->tx_timeout_factor * HZ)) &&
8276 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8277
8278 /* detected Tx unit hang */
8279 dev_err(tx_ring->dev,
8280 "Detected Tx Unit Hang\n"
8281 " Tx Queue <%d>\n"
8282 " TDH <%x>\n"
8283 " TDT <%x>\n"
8284 " next_to_use <%x>\n"
8285 " next_to_clean <%x>\n"
8286 "buffer_info[next_to_clean]\n"
8287 " time_stamp <%lx>\n"
8288 " next_to_watch <%p>\n"
8289 " jiffies <%lx>\n"
8290 " desc.status <%x>\n",
8291 tx_ring->queue_index,
8292 rd32(E1000_TDH(tx_ring->reg_idx)),
8293 readl(tx_ring->tail),
8294 tx_ring->next_to_use,
8295 tx_ring->next_to_clean,
8296 tx_buffer->time_stamp,
8297 tx_buffer->next_to_watch,
8298 jiffies,
8299 tx_buffer->next_to_watch->wb.status);
8300 netif_stop_subqueue(tx_ring->netdev,
8301 tx_ring->queue_index);
8302
8303 /* we are about to reset, no point in enabling stuff */
8304 return true;
8305 }
8306 }
8307
8308 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8309 if (unlikely(total_packets &&
8310 netif_carrier_ok(tx_ring->netdev) &&
8311 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8312 /* Make sure that anybody stopping the queue after this
8313 * sees the new next_to_clean.
8314 */
8315 smp_mb();
8316 if (__netif_subqueue_stopped(tx_ring->netdev,
8317 tx_ring->queue_index) &&
8318 !(test_bit(__IGB_DOWN, &adapter->state))) {
8319 netif_wake_subqueue(tx_ring->netdev,
8320 tx_ring->queue_index);
8321
8322 u64_stats_update_begin(&tx_ring->tx_syncp);
8323 tx_ring->tx_stats.restart_queue++;
8324 u64_stats_update_end(&tx_ring->tx_syncp);
8325 }
8326 }
8327
8328 return !!budget;
8329 }
8330
8331 /**
8332 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8333 * @rx_ring: rx descriptor ring to store buffers on
8334 * @old_buff: donor buffer to have page reused
8335 *
8336 * Synchronizes page for reuse by the adapter
8337 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8338 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8339 struct igb_rx_buffer *old_buff)
8340 {
8341 struct igb_rx_buffer *new_buff;
8342 u16 nta = rx_ring->next_to_alloc;
8343
8344 new_buff = &rx_ring->rx_buffer_info[nta];
8345
8346 /* update, and store next to alloc */
8347 nta++;
8348 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8349
8350 /* Transfer page from old buffer to new buffer.
8351 * Move each member individually to avoid possible store
8352 * forwarding stalls.
8353 */
8354 new_buff->dma = old_buff->dma;
8355 new_buff->page = old_buff->page;
8356 new_buff->page_offset = old_buff->page_offset;
8357 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8358 }
8359
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8360 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8361 int rx_buf_pgcnt)
8362 {
8363 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8364 struct page *page = rx_buffer->page;
8365
8366 /* avoid re-using remote and pfmemalloc pages */
8367 if (!dev_page_is_reusable(page))
8368 return false;
8369
8370 #if (PAGE_SIZE < 8192)
8371 /* if we are only owner of page we can reuse it */
8372 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8373 return false;
8374 #else
8375 #define IGB_LAST_OFFSET \
8376 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8377
8378 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8379 return false;
8380 #endif
8381
8382 /* If we have drained the page fragment pool we need to update
8383 * the pagecnt_bias and page count so that we fully restock the
8384 * number of references the driver holds.
8385 */
8386 if (unlikely(pagecnt_bias == 1)) {
8387 page_ref_add(page, USHRT_MAX - 1);
8388 rx_buffer->pagecnt_bias = USHRT_MAX;
8389 }
8390
8391 return true;
8392 }
8393
8394 /**
8395 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8396 * @rx_ring: rx descriptor ring to transact packets on
8397 * @rx_buffer: buffer containing page to add
8398 * @skb: sk_buff to place the data into
8399 * @size: size of buffer to be added
8400 *
8401 * This function will add the data contained in rx_buffer->page to the skb.
8402 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8403 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8404 struct igb_rx_buffer *rx_buffer,
8405 struct sk_buff *skb,
8406 unsigned int size)
8407 {
8408 #if (PAGE_SIZE < 8192)
8409 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8410 #else
8411 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8412 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8413 SKB_DATA_ALIGN(size);
8414 #endif
8415 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8416 rx_buffer->page_offset, size, truesize);
8417 #if (PAGE_SIZE < 8192)
8418 rx_buffer->page_offset ^= truesize;
8419 #else
8420 rx_buffer->page_offset += truesize;
8421 #endif
8422 }
8423
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8424 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8425 struct igb_rx_buffer *rx_buffer,
8426 struct xdp_buff *xdp,
8427 ktime_t timestamp)
8428 {
8429 #if (PAGE_SIZE < 8192)
8430 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8431 #else
8432 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8433 xdp->data_hard_start);
8434 #endif
8435 unsigned int size = xdp->data_end - xdp->data;
8436 unsigned int headlen;
8437 struct sk_buff *skb;
8438
8439 /* prefetch first cache line of first page */
8440 net_prefetch(xdp->data);
8441
8442 /* allocate a skb to store the frags */
8443 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8444 if (unlikely(!skb))
8445 return NULL;
8446
8447 if (timestamp)
8448 skb_hwtstamps(skb)->hwtstamp = timestamp;
8449
8450 /* Determine available headroom for copy */
8451 headlen = size;
8452 if (headlen > IGB_RX_HDR_LEN)
8453 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8454
8455 /* align pull length to size of long to optimize memcpy performance */
8456 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8457
8458 /* update all of the pointers */
8459 size -= headlen;
8460 if (size) {
8461 skb_add_rx_frag(skb, 0, rx_buffer->page,
8462 (xdp->data + headlen) - page_address(rx_buffer->page),
8463 size, truesize);
8464 #if (PAGE_SIZE < 8192)
8465 rx_buffer->page_offset ^= truesize;
8466 #else
8467 rx_buffer->page_offset += truesize;
8468 #endif
8469 } else {
8470 rx_buffer->pagecnt_bias++;
8471 }
8472
8473 return skb;
8474 }
8475
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8476 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8477 struct igb_rx_buffer *rx_buffer,
8478 struct xdp_buff *xdp,
8479 ktime_t timestamp)
8480 {
8481 #if (PAGE_SIZE < 8192)
8482 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8483 #else
8484 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8485 SKB_DATA_ALIGN(xdp->data_end -
8486 xdp->data_hard_start);
8487 #endif
8488 unsigned int metasize = xdp->data - xdp->data_meta;
8489 struct sk_buff *skb;
8490
8491 /* prefetch first cache line of first page */
8492 net_prefetch(xdp->data_meta);
8493
8494 /* build an skb around the page buffer */
8495 skb = napi_build_skb(xdp->data_hard_start, truesize);
8496 if (unlikely(!skb))
8497 return NULL;
8498
8499 /* update pointers within the skb to store the data */
8500 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8501 __skb_put(skb, xdp->data_end - xdp->data);
8502
8503 if (metasize)
8504 skb_metadata_set(skb, metasize);
8505
8506 if (timestamp)
8507 skb_hwtstamps(skb)->hwtstamp = timestamp;
8508
8509 /* update buffer offset */
8510 #if (PAGE_SIZE < 8192)
8511 rx_buffer->page_offset ^= truesize;
8512 #else
8513 rx_buffer->page_offset += truesize;
8514 #endif
8515
8516 return skb;
8517 }
8518
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8519 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8520 struct igb_ring *rx_ring,
8521 struct xdp_buff *xdp)
8522 {
8523 int err, result = IGB_XDP_PASS;
8524 struct bpf_prog *xdp_prog;
8525 u32 act;
8526
8527 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8528
8529 if (!xdp_prog)
8530 goto xdp_out;
8531
8532 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8533
8534 act = bpf_prog_run_xdp(xdp_prog, xdp);
8535 switch (act) {
8536 case XDP_PASS:
8537 break;
8538 case XDP_TX:
8539 result = igb_xdp_xmit_back(adapter, xdp);
8540 if (result == IGB_XDP_CONSUMED)
8541 goto out_failure;
8542 break;
8543 case XDP_REDIRECT:
8544 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8545 if (err)
8546 goto out_failure;
8547 result = IGB_XDP_REDIR;
8548 break;
8549 default:
8550 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8551 fallthrough;
8552 case XDP_ABORTED:
8553 out_failure:
8554 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8555 fallthrough;
8556 case XDP_DROP:
8557 result = IGB_XDP_CONSUMED;
8558 break;
8559 }
8560 xdp_out:
8561 return ERR_PTR(-result);
8562 }
8563
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8564 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8565 unsigned int size)
8566 {
8567 unsigned int truesize;
8568
8569 #if (PAGE_SIZE < 8192)
8570 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8571 #else
8572 truesize = ring_uses_build_skb(rx_ring) ?
8573 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8574 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8575 SKB_DATA_ALIGN(size);
8576 #endif
8577 return truesize;
8578 }
8579
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8580 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8581 struct igb_rx_buffer *rx_buffer,
8582 unsigned int size)
8583 {
8584 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8585 #if (PAGE_SIZE < 8192)
8586 rx_buffer->page_offset ^= truesize;
8587 #else
8588 rx_buffer->page_offset += truesize;
8589 #endif
8590 }
8591
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8592 static inline void igb_rx_checksum(struct igb_ring *ring,
8593 union e1000_adv_rx_desc *rx_desc,
8594 struct sk_buff *skb)
8595 {
8596 skb_checksum_none_assert(skb);
8597
8598 /* Ignore Checksum bit is set */
8599 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8600 return;
8601
8602 /* Rx checksum disabled via ethtool */
8603 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8604 return;
8605
8606 /* TCP/UDP checksum error bit is set */
8607 if (igb_test_staterr(rx_desc,
8608 E1000_RXDEXT_STATERR_TCPE |
8609 E1000_RXDEXT_STATERR_IPE)) {
8610 /* work around errata with sctp packets where the TCPE aka
8611 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8612 * packets, (aka let the stack check the crc32c)
8613 */
8614 if (!((skb->len == 60) &&
8615 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8616 u64_stats_update_begin(&ring->rx_syncp);
8617 ring->rx_stats.csum_err++;
8618 u64_stats_update_end(&ring->rx_syncp);
8619 }
8620 /* let the stack verify checksum errors */
8621 return;
8622 }
8623 /* It must be a TCP or UDP packet with a valid checksum */
8624 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8625 E1000_RXD_STAT_UDPCS))
8626 skb->ip_summed = CHECKSUM_UNNECESSARY;
8627
8628 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8629 le32_to_cpu(rx_desc->wb.upper.status_error));
8630 }
8631
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8632 static inline void igb_rx_hash(struct igb_ring *ring,
8633 union e1000_adv_rx_desc *rx_desc,
8634 struct sk_buff *skb)
8635 {
8636 if (ring->netdev->features & NETIF_F_RXHASH)
8637 skb_set_hash(skb,
8638 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8639 PKT_HASH_TYPE_L3);
8640 }
8641
8642 /**
8643 * igb_is_non_eop - process handling of non-EOP buffers
8644 * @rx_ring: Rx ring being processed
8645 * @rx_desc: Rx descriptor for current buffer
8646 *
8647 * This function updates next to clean. If the buffer is an EOP buffer
8648 * this function exits returning false, otherwise it will place the
8649 * sk_buff in the next buffer to be chained and return true indicating
8650 * that this is in fact a non-EOP buffer.
8651 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8652 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8653 union e1000_adv_rx_desc *rx_desc)
8654 {
8655 u32 ntc = rx_ring->next_to_clean + 1;
8656
8657 /* fetch, update, and store next to clean */
8658 ntc = (ntc < rx_ring->count) ? ntc : 0;
8659 rx_ring->next_to_clean = ntc;
8660
8661 prefetch(IGB_RX_DESC(rx_ring, ntc));
8662
8663 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8664 return false;
8665
8666 return true;
8667 }
8668
8669 /**
8670 * igb_cleanup_headers - Correct corrupted or empty headers
8671 * @rx_ring: rx descriptor ring packet is being transacted on
8672 * @rx_desc: pointer to the EOP Rx descriptor
8673 * @skb: pointer to current skb being fixed
8674 *
8675 * Address the case where we are pulling data in on pages only
8676 * and as such no data is present in the skb header.
8677 *
8678 * In addition if skb is not at least 60 bytes we need to pad it so that
8679 * it is large enough to qualify as a valid Ethernet frame.
8680 *
8681 * Returns true if an error was encountered and skb was freed.
8682 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8683 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8684 union e1000_adv_rx_desc *rx_desc,
8685 struct sk_buff *skb)
8686 {
8687 /* XDP packets use error pointer so abort at this point */
8688 if (IS_ERR(skb))
8689 return true;
8690
8691 if (unlikely((igb_test_staterr(rx_desc,
8692 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8693 struct net_device *netdev = rx_ring->netdev;
8694 if (!(netdev->features & NETIF_F_RXALL)) {
8695 dev_kfree_skb_any(skb);
8696 return true;
8697 }
8698 }
8699
8700 /* if eth_skb_pad returns an error the skb was freed */
8701 if (eth_skb_pad(skb))
8702 return true;
8703
8704 return false;
8705 }
8706
8707 /**
8708 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8709 * @rx_ring: rx descriptor ring packet is being transacted on
8710 * @rx_desc: pointer to the EOP Rx descriptor
8711 * @skb: pointer to current skb being populated
8712 *
8713 * This function checks the ring, descriptor, and packet information in
8714 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8715 * other fields within the skb.
8716 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8717 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8718 union e1000_adv_rx_desc *rx_desc,
8719 struct sk_buff *skb)
8720 {
8721 struct net_device *dev = rx_ring->netdev;
8722
8723 igb_rx_hash(rx_ring, rx_desc, skb);
8724
8725 igb_rx_checksum(rx_ring, rx_desc, skb);
8726
8727 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8728 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8729 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8730
8731 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8732 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8733 u16 vid;
8734
8735 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8736 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8737 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8738 else
8739 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8740
8741 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8742 }
8743
8744 skb_record_rx_queue(skb, rx_ring->queue_index);
8745
8746 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8747 }
8748
igb_rx_offset(struct igb_ring * rx_ring)8749 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8750 {
8751 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8752 }
8753
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8754 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8755 const unsigned int size, int *rx_buf_pgcnt)
8756 {
8757 struct igb_rx_buffer *rx_buffer;
8758
8759 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8760 *rx_buf_pgcnt =
8761 #if (PAGE_SIZE < 8192)
8762 page_count(rx_buffer->page);
8763 #else
8764 0;
8765 #endif
8766 prefetchw(rx_buffer->page);
8767
8768 /* we are reusing so sync this buffer for CPU use */
8769 dma_sync_single_range_for_cpu(rx_ring->dev,
8770 rx_buffer->dma,
8771 rx_buffer->page_offset,
8772 size,
8773 DMA_FROM_DEVICE);
8774
8775 rx_buffer->pagecnt_bias--;
8776
8777 return rx_buffer;
8778 }
8779
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8780 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8781 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8782 {
8783 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8784 /* hand second half of page back to the ring */
8785 igb_reuse_rx_page(rx_ring, rx_buffer);
8786 } else {
8787 /* We are not reusing the buffer so unmap it and free
8788 * any references we are holding to it
8789 */
8790 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8791 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8792 IGB_RX_DMA_ATTR);
8793 __page_frag_cache_drain(rx_buffer->page,
8794 rx_buffer->pagecnt_bias);
8795 }
8796
8797 /* clear contents of rx_buffer */
8798 rx_buffer->page = NULL;
8799 }
8800
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8801 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8802 {
8803 struct igb_adapter *adapter = q_vector->adapter;
8804 struct igb_ring *rx_ring = q_vector->rx.ring;
8805 struct sk_buff *skb = rx_ring->skb;
8806 unsigned int total_bytes = 0, total_packets = 0;
8807 u16 cleaned_count = igb_desc_unused(rx_ring);
8808 unsigned int xdp_xmit = 0;
8809 struct xdp_buff xdp;
8810 u32 frame_sz = 0;
8811 int rx_buf_pgcnt;
8812
8813 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8814 #if (PAGE_SIZE < 8192)
8815 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8816 #endif
8817 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8818
8819 while (likely(total_packets < budget)) {
8820 union e1000_adv_rx_desc *rx_desc;
8821 struct igb_rx_buffer *rx_buffer;
8822 ktime_t timestamp = 0;
8823 int pkt_offset = 0;
8824 unsigned int size;
8825 void *pktbuf;
8826
8827 /* return some buffers to hardware, one at a time is too slow */
8828 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8829 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8830 cleaned_count = 0;
8831 }
8832
8833 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8834 size = le16_to_cpu(rx_desc->wb.upper.length);
8835 if (!size)
8836 break;
8837
8838 /* This memory barrier is needed to keep us from reading
8839 * any other fields out of the rx_desc until we know the
8840 * descriptor has been written back
8841 */
8842 dma_rmb();
8843
8844 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8845 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8846
8847 /* pull rx packet timestamp if available and valid */
8848 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8849 int ts_hdr_len;
8850
8851 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8852 pktbuf, ×tamp);
8853
8854 pkt_offset += ts_hdr_len;
8855 size -= ts_hdr_len;
8856 }
8857
8858 /* retrieve a buffer from the ring */
8859 if (!skb) {
8860 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8861 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8862
8863 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8864 xdp_buff_clear_frags_flag(&xdp);
8865 #if (PAGE_SIZE > 4096)
8866 /* At larger PAGE_SIZE, frame_sz depend on len size */
8867 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8868 #endif
8869 skb = igb_run_xdp(adapter, rx_ring, &xdp);
8870 }
8871
8872 if (IS_ERR(skb)) {
8873 unsigned int xdp_res = -PTR_ERR(skb);
8874
8875 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8876 xdp_xmit |= xdp_res;
8877 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8878 } else {
8879 rx_buffer->pagecnt_bias++;
8880 }
8881 total_packets++;
8882 total_bytes += size;
8883 } else if (skb)
8884 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8885 else if (ring_uses_build_skb(rx_ring))
8886 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8887 timestamp);
8888 else
8889 skb = igb_construct_skb(rx_ring, rx_buffer,
8890 &xdp, timestamp);
8891
8892 /* exit if we failed to retrieve a buffer */
8893 if (!skb) {
8894 rx_ring->rx_stats.alloc_failed++;
8895 rx_buffer->pagecnt_bias++;
8896 break;
8897 }
8898
8899 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8900 cleaned_count++;
8901
8902 /* fetch next buffer in frame if non-eop */
8903 if (igb_is_non_eop(rx_ring, rx_desc))
8904 continue;
8905
8906 /* verify the packet layout is correct */
8907 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8908 skb = NULL;
8909 continue;
8910 }
8911
8912 /* probably a little skewed due to removing CRC */
8913 total_bytes += skb->len;
8914
8915 /* populate checksum, timestamp, VLAN, and protocol */
8916 igb_process_skb_fields(rx_ring, rx_desc, skb);
8917
8918 napi_gro_receive(&q_vector->napi, skb);
8919
8920 /* reset skb pointer */
8921 skb = NULL;
8922
8923 /* update budget accounting */
8924 total_packets++;
8925 }
8926
8927 /* place incomplete frames back on ring for completion */
8928 rx_ring->skb = skb;
8929
8930 if (xdp_xmit & IGB_XDP_REDIR)
8931 xdp_do_flush();
8932
8933 if (xdp_xmit & IGB_XDP_TX) {
8934 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8935
8936 igb_xdp_ring_update_tail(tx_ring);
8937 }
8938
8939 u64_stats_update_begin(&rx_ring->rx_syncp);
8940 rx_ring->rx_stats.packets += total_packets;
8941 rx_ring->rx_stats.bytes += total_bytes;
8942 u64_stats_update_end(&rx_ring->rx_syncp);
8943 q_vector->rx.total_packets += total_packets;
8944 q_vector->rx.total_bytes += total_bytes;
8945
8946 if (cleaned_count)
8947 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8948
8949 return total_packets;
8950 }
8951
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8952 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8953 struct igb_rx_buffer *bi)
8954 {
8955 struct page *page = bi->page;
8956 dma_addr_t dma;
8957
8958 /* since we are recycling buffers we should seldom need to alloc */
8959 if (likely(page))
8960 return true;
8961
8962 /* alloc new page for storage */
8963 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8964 if (unlikely(!page)) {
8965 rx_ring->rx_stats.alloc_failed++;
8966 return false;
8967 }
8968
8969 /* map page for use */
8970 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8971 igb_rx_pg_size(rx_ring),
8972 DMA_FROM_DEVICE,
8973 IGB_RX_DMA_ATTR);
8974
8975 /* if mapping failed free memory back to system since
8976 * there isn't much point in holding memory we can't use
8977 */
8978 if (dma_mapping_error(rx_ring->dev, dma)) {
8979 __free_pages(page, igb_rx_pg_order(rx_ring));
8980
8981 rx_ring->rx_stats.alloc_failed++;
8982 return false;
8983 }
8984
8985 bi->dma = dma;
8986 bi->page = page;
8987 bi->page_offset = igb_rx_offset(rx_ring);
8988 page_ref_add(page, USHRT_MAX - 1);
8989 bi->pagecnt_bias = USHRT_MAX;
8990
8991 return true;
8992 }
8993
8994 /**
8995 * igb_alloc_rx_buffers - Replace used receive buffers
8996 * @rx_ring: rx descriptor ring to allocate new receive buffers
8997 * @cleaned_count: count of buffers to allocate
8998 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8999 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9000 {
9001 union e1000_adv_rx_desc *rx_desc;
9002 struct igb_rx_buffer *bi;
9003 u16 i = rx_ring->next_to_use;
9004 u16 bufsz;
9005
9006 /* nothing to do */
9007 if (!cleaned_count)
9008 return;
9009
9010 rx_desc = IGB_RX_DESC(rx_ring, i);
9011 bi = &rx_ring->rx_buffer_info[i];
9012 i -= rx_ring->count;
9013
9014 bufsz = igb_rx_bufsz(rx_ring);
9015
9016 do {
9017 if (!igb_alloc_mapped_page(rx_ring, bi))
9018 break;
9019
9020 /* sync the buffer for use by the device */
9021 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9022 bi->page_offset, bufsz,
9023 DMA_FROM_DEVICE);
9024
9025 /* Refresh the desc even if buffer_addrs didn't change
9026 * because each write-back erases this info.
9027 */
9028 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9029
9030 rx_desc++;
9031 bi++;
9032 i++;
9033 if (unlikely(!i)) {
9034 rx_desc = IGB_RX_DESC(rx_ring, 0);
9035 bi = rx_ring->rx_buffer_info;
9036 i -= rx_ring->count;
9037 }
9038
9039 /* clear the length for the next_to_use descriptor */
9040 rx_desc->wb.upper.length = 0;
9041
9042 cleaned_count--;
9043 } while (cleaned_count);
9044
9045 i += rx_ring->count;
9046
9047 if (rx_ring->next_to_use != i) {
9048 /* record the next descriptor to use */
9049 rx_ring->next_to_use = i;
9050
9051 /* update next to alloc since we have filled the ring */
9052 rx_ring->next_to_alloc = i;
9053
9054 /* Force memory writes to complete before letting h/w
9055 * know there are new descriptors to fetch. (Only
9056 * applicable for weak-ordered memory model archs,
9057 * such as IA-64).
9058 */
9059 dma_wmb();
9060 writel(i, rx_ring->tail);
9061 }
9062 }
9063
9064 /**
9065 * igb_mii_ioctl -
9066 * @netdev: pointer to netdev struct
9067 * @ifr: interface structure
9068 * @cmd: ioctl command to execute
9069 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9070 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9071 {
9072 struct igb_adapter *adapter = netdev_priv(netdev);
9073 struct mii_ioctl_data *data = if_mii(ifr);
9074
9075 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9076 return -EOPNOTSUPP;
9077
9078 switch (cmd) {
9079 case SIOCGMIIPHY:
9080 data->phy_id = adapter->hw.phy.addr;
9081 break;
9082 case SIOCGMIIREG:
9083 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9084 &data->val_out))
9085 return -EIO;
9086 break;
9087 case SIOCSMIIREG:
9088 default:
9089 return -EOPNOTSUPP;
9090 }
9091 return 0;
9092 }
9093
9094 /**
9095 * igb_ioctl -
9096 * @netdev: pointer to netdev struct
9097 * @ifr: interface structure
9098 * @cmd: ioctl command to execute
9099 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9100 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9101 {
9102 switch (cmd) {
9103 case SIOCGMIIPHY:
9104 case SIOCGMIIREG:
9105 case SIOCSMIIREG:
9106 return igb_mii_ioctl(netdev, ifr, cmd);
9107 case SIOCGHWTSTAMP:
9108 return igb_ptp_get_ts_config(netdev, ifr);
9109 case SIOCSHWTSTAMP:
9110 return igb_ptp_set_ts_config(netdev, ifr);
9111 default:
9112 return -EOPNOTSUPP;
9113 }
9114 }
9115
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9116 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9117 {
9118 struct igb_adapter *adapter = hw->back;
9119
9120 pci_read_config_word(adapter->pdev, reg, value);
9121 }
9122
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9123 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9124 {
9125 struct igb_adapter *adapter = hw->back;
9126
9127 pci_write_config_word(adapter->pdev, reg, *value);
9128 }
9129
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9130 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9131 {
9132 struct igb_adapter *adapter = hw->back;
9133
9134 if (pcie_capability_read_word(adapter->pdev, reg, value))
9135 return -E1000_ERR_CONFIG;
9136
9137 return 0;
9138 }
9139
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9140 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9141 {
9142 struct igb_adapter *adapter = hw->back;
9143
9144 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9145 return -E1000_ERR_CONFIG;
9146
9147 return 0;
9148 }
9149
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9150 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9151 {
9152 struct igb_adapter *adapter = netdev_priv(netdev);
9153 struct e1000_hw *hw = &adapter->hw;
9154 u32 ctrl, rctl;
9155 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9156
9157 if (enable) {
9158 /* enable VLAN tag insert/strip */
9159 ctrl = rd32(E1000_CTRL);
9160 ctrl |= E1000_CTRL_VME;
9161 wr32(E1000_CTRL, ctrl);
9162
9163 /* Disable CFI check */
9164 rctl = rd32(E1000_RCTL);
9165 rctl &= ~E1000_RCTL_CFIEN;
9166 wr32(E1000_RCTL, rctl);
9167 } else {
9168 /* disable VLAN tag insert/strip */
9169 ctrl = rd32(E1000_CTRL);
9170 ctrl &= ~E1000_CTRL_VME;
9171 wr32(E1000_CTRL, ctrl);
9172 }
9173
9174 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9175 }
9176
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9177 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9178 __be16 proto, u16 vid)
9179 {
9180 struct igb_adapter *adapter = netdev_priv(netdev);
9181 struct e1000_hw *hw = &adapter->hw;
9182 int pf_id = adapter->vfs_allocated_count;
9183
9184 /* add the filter since PF can receive vlans w/o entry in vlvf */
9185 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9186 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9187
9188 set_bit(vid, adapter->active_vlans);
9189
9190 return 0;
9191 }
9192
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9193 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9194 __be16 proto, u16 vid)
9195 {
9196 struct igb_adapter *adapter = netdev_priv(netdev);
9197 int pf_id = adapter->vfs_allocated_count;
9198 struct e1000_hw *hw = &adapter->hw;
9199
9200 /* remove VID from filter table */
9201 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9202 igb_vfta_set(hw, vid, pf_id, false, true);
9203
9204 clear_bit(vid, adapter->active_vlans);
9205
9206 return 0;
9207 }
9208
igb_restore_vlan(struct igb_adapter * adapter)9209 static void igb_restore_vlan(struct igb_adapter *adapter)
9210 {
9211 u16 vid = 1;
9212
9213 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9214 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9215
9216 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9217 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9218 }
9219
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9220 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9221 {
9222 struct pci_dev *pdev = adapter->pdev;
9223 struct e1000_mac_info *mac = &adapter->hw.mac;
9224
9225 mac->autoneg = 0;
9226
9227 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9228 * for the switch() below to work
9229 */
9230 if ((spd & 1) || (dplx & ~1))
9231 goto err_inval;
9232
9233 /* Fiber NIC's only allow 1000 gbps Full duplex
9234 * and 100Mbps Full duplex for 100baseFx sfp
9235 */
9236 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9237 switch (spd + dplx) {
9238 case SPEED_10 + DUPLEX_HALF:
9239 case SPEED_10 + DUPLEX_FULL:
9240 case SPEED_100 + DUPLEX_HALF:
9241 goto err_inval;
9242 default:
9243 break;
9244 }
9245 }
9246
9247 switch (spd + dplx) {
9248 case SPEED_10 + DUPLEX_HALF:
9249 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9250 break;
9251 case SPEED_10 + DUPLEX_FULL:
9252 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9253 break;
9254 case SPEED_100 + DUPLEX_HALF:
9255 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9256 break;
9257 case SPEED_100 + DUPLEX_FULL:
9258 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9259 break;
9260 case SPEED_1000 + DUPLEX_FULL:
9261 mac->autoneg = 1;
9262 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9263 break;
9264 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9265 default:
9266 goto err_inval;
9267 }
9268
9269 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9270 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9271
9272 return 0;
9273
9274 err_inval:
9275 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9276 return -EINVAL;
9277 }
9278
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9279 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9280 bool runtime)
9281 {
9282 struct net_device *netdev = pci_get_drvdata(pdev);
9283 struct igb_adapter *adapter = netdev_priv(netdev);
9284 struct e1000_hw *hw = &adapter->hw;
9285 u32 ctrl, rctl, status;
9286 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9287 bool wake;
9288
9289 rtnl_lock();
9290 netif_device_detach(netdev);
9291
9292 if (netif_running(netdev))
9293 __igb_close(netdev, true);
9294
9295 igb_ptp_suspend(adapter);
9296
9297 igb_clear_interrupt_scheme(adapter);
9298 rtnl_unlock();
9299
9300 status = rd32(E1000_STATUS);
9301 if (status & E1000_STATUS_LU)
9302 wufc &= ~E1000_WUFC_LNKC;
9303
9304 if (wufc) {
9305 igb_setup_rctl(adapter);
9306 igb_set_rx_mode(netdev);
9307
9308 /* turn on all-multi mode if wake on multicast is enabled */
9309 if (wufc & E1000_WUFC_MC) {
9310 rctl = rd32(E1000_RCTL);
9311 rctl |= E1000_RCTL_MPE;
9312 wr32(E1000_RCTL, rctl);
9313 }
9314
9315 ctrl = rd32(E1000_CTRL);
9316 ctrl |= E1000_CTRL_ADVD3WUC;
9317 wr32(E1000_CTRL, ctrl);
9318
9319 /* Allow time for pending master requests to run */
9320 igb_disable_pcie_master(hw);
9321
9322 wr32(E1000_WUC, E1000_WUC_PME_EN);
9323 wr32(E1000_WUFC, wufc);
9324 } else {
9325 wr32(E1000_WUC, 0);
9326 wr32(E1000_WUFC, 0);
9327 }
9328
9329 wake = wufc || adapter->en_mng_pt;
9330 if (!wake)
9331 igb_power_down_link(adapter);
9332 else
9333 igb_power_up_link(adapter);
9334
9335 if (enable_wake)
9336 *enable_wake = wake;
9337
9338 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9339 * would have already happened in close and is redundant.
9340 */
9341 igb_release_hw_control(adapter);
9342
9343 pci_disable_device(pdev);
9344
9345 return 0;
9346 }
9347
igb_deliver_wake_packet(struct net_device * netdev)9348 static void igb_deliver_wake_packet(struct net_device *netdev)
9349 {
9350 struct igb_adapter *adapter = netdev_priv(netdev);
9351 struct e1000_hw *hw = &adapter->hw;
9352 struct sk_buff *skb;
9353 u32 wupl;
9354
9355 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9356
9357 /* WUPM stores only the first 128 bytes of the wake packet.
9358 * Read the packet only if we have the whole thing.
9359 */
9360 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9361 return;
9362
9363 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9364 if (!skb)
9365 return;
9366
9367 skb_put(skb, wupl);
9368
9369 /* Ensure reads are 32-bit aligned */
9370 wupl = roundup(wupl, 4);
9371
9372 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9373
9374 skb->protocol = eth_type_trans(skb, netdev);
9375 netif_rx(skb);
9376 }
9377
igb_suspend(struct device * dev)9378 static int __maybe_unused igb_suspend(struct device *dev)
9379 {
9380 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9381 }
9382
__igb_resume(struct device * dev,bool rpm)9383 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9384 {
9385 struct pci_dev *pdev = to_pci_dev(dev);
9386 struct net_device *netdev = pci_get_drvdata(pdev);
9387 struct igb_adapter *adapter = netdev_priv(netdev);
9388 struct e1000_hw *hw = &adapter->hw;
9389 u32 err, val;
9390
9391 pci_set_power_state(pdev, PCI_D0);
9392 pci_restore_state(pdev);
9393 pci_save_state(pdev);
9394
9395 if (!pci_device_is_present(pdev))
9396 return -ENODEV;
9397 err = pci_enable_device_mem(pdev);
9398 if (err) {
9399 dev_err(&pdev->dev,
9400 "igb: Cannot enable PCI device from suspend\n");
9401 return err;
9402 }
9403 pci_set_master(pdev);
9404
9405 pci_enable_wake(pdev, PCI_D3hot, 0);
9406 pci_enable_wake(pdev, PCI_D3cold, 0);
9407
9408 if (igb_init_interrupt_scheme(adapter, true)) {
9409 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9410 return -ENOMEM;
9411 }
9412
9413 igb_reset(adapter);
9414
9415 /* let the f/w know that the h/w is now under the control of the
9416 * driver.
9417 */
9418 igb_get_hw_control(adapter);
9419
9420 val = rd32(E1000_WUS);
9421 if (val & WAKE_PKT_WUS)
9422 igb_deliver_wake_packet(netdev);
9423
9424 wr32(E1000_WUS, ~0);
9425
9426 if (!rpm)
9427 rtnl_lock();
9428 if (!err && netif_running(netdev))
9429 err = __igb_open(netdev, true);
9430
9431 if (!err)
9432 netif_device_attach(netdev);
9433 if (!rpm)
9434 rtnl_unlock();
9435
9436 return err;
9437 }
9438
igb_resume(struct device * dev)9439 static int __maybe_unused igb_resume(struct device *dev)
9440 {
9441 return __igb_resume(dev, false);
9442 }
9443
igb_runtime_idle(struct device * dev)9444 static int __maybe_unused igb_runtime_idle(struct device *dev)
9445 {
9446 struct net_device *netdev = dev_get_drvdata(dev);
9447 struct igb_adapter *adapter = netdev_priv(netdev);
9448
9449 if (!igb_has_link(adapter))
9450 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9451
9452 return -EBUSY;
9453 }
9454
igb_runtime_suspend(struct device * dev)9455 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9456 {
9457 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9458 }
9459
igb_runtime_resume(struct device * dev)9460 static int __maybe_unused igb_runtime_resume(struct device *dev)
9461 {
9462 return __igb_resume(dev, true);
9463 }
9464
igb_shutdown(struct pci_dev * pdev)9465 static void igb_shutdown(struct pci_dev *pdev)
9466 {
9467 bool wake;
9468
9469 __igb_shutdown(pdev, &wake, 0);
9470
9471 if (system_state == SYSTEM_POWER_OFF) {
9472 pci_wake_from_d3(pdev, wake);
9473 pci_set_power_state(pdev, PCI_D3hot);
9474 }
9475 }
9476
9477 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)9478 static int igb_sriov_reinit(struct pci_dev *dev)
9479 {
9480 struct net_device *netdev = pci_get_drvdata(dev);
9481 struct igb_adapter *adapter = netdev_priv(netdev);
9482 struct pci_dev *pdev = adapter->pdev;
9483
9484 rtnl_lock();
9485
9486 if (netif_running(netdev))
9487 igb_close(netdev);
9488 else
9489 igb_reset(adapter);
9490
9491 igb_clear_interrupt_scheme(adapter);
9492
9493 igb_init_queue_configuration(adapter);
9494
9495 if (igb_init_interrupt_scheme(adapter, true)) {
9496 rtnl_unlock();
9497 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9498 return -ENOMEM;
9499 }
9500
9501 if (netif_running(netdev))
9502 igb_open(netdev);
9503
9504 rtnl_unlock();
9505
9506 return 0;
9507 }
9508
igb_pci_disable_sriov(struct pci_dev * dev)9509 static int igb_pci_disable_sriov(struct pci_dev *dev)
9510 {
9511 int err = igb_disable_sriov(dev);
9512
9513 if (!err)
9514 err = igb_sriov_reinit(dev);
9515
9516 return err;
9517 }
9518
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)9519 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9520 {
9521 int err = igb_enable_sriov(dev, num_vfs);
9522
9523 if (err)
9524 goto out;
9525
9526 err = igb_sriov_reinit(dev);
9527 if (!err)
9528 return num_vfs;
9529
9530 out:
9531 return err;
9532 }
9533
9534 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9535 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9536 {
9537 #ifdef CONFIG_PCI_IOV
9538 if (num_vfs == 0)
9539 return igb_pci_disable_sriov(dev);
9540 else
9541 return igb_pci_enable_sriov(dev, num_vfs);
9542 #endif
9543 return 0;
9544 }
9545
9546 /**
9547 * igb_io_error_detected - called when PCI error is detected
9548 * @pdev: Pointer to PCI device
9549 * @state: The current pci connection state
9550 *
9551 * This function is called after a PCI bus error affecting
9552 * this device has been detected.
9553 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9554 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9555 pci_channel_state_t state)
9556 {
9557 struct net_device *netdev = pci_get_drvdata(pdev);
9558 struct igb_adapter *adapter = netdev_priv(netdev);
9559
9560 netif_device_detach(netdev);
9561
9562 if (state == pci_channel_io_perm_failure)
9563 return PCI_ERS_RESULT_DISCONNECT;
9564
9565 if (netif_running(netdev))
9566 igb_down(adapter);
9567 pci_disable_device(pdev);
9568
9569 /* Request a slot reset. */
9570 return PCI_ERS_RESULT_NEED_RESET;
9571 }
9572
9573 /**
9574 * igb_io_slot_reset - called after the pci bus has been reset.
9575 * @pdev: Pointer to PCI device
9576 *
9577 * Restart the card from scratch, as if from a cold-boot. Implementation
9578 * resembles the first-half of the __igb_resume routine.
9579 **/
igb_io_slot_reset(struct pci_dev * pdev)9580 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9581 {
9582 struct net_device *netdev = pci_get_drvdata(pdev);
9583 struct igb_adapter *adapter = netdev_priv(netdev);
9584 struct e1000_hw *hw = &adapter->hw;
9585 pci_ers_result_t result;
9586
9587 if (pci_enable_device_mem(pdev)) {
9588 dev_err(&pdev->dev,
9589 "Cannot re-enable PCI device after reset.\n");
9590 result = PCI_ERS_RESULT_DISCONNECT;
9591 } else {
9592 pci_set_master(pdev);
9593 pci_restore_state(pdev);
9594 pci_save_state(pdev);
9595
9596 pci_enable_wake(pdev, PCI_D3hot, 0);
9597 pci_enable_wake(pdev, PCI_D3cold, 0);
9598
9599 /* In case of PCI error, adapter lose its HW address
9600 * so we should re-assign it here.
9601 */
9602 hw->hw_addr = adapter->io_addr;
9603
9604 igb_reset(adapter);
9605 wr32(E1000_WUS, ~0);
9606 result = PCI_ERS_RESULT_RECOVERED;
9607 }
9608
9609 return result;
9610 }
9611
9612 /**
9613 * igb_io_resume - called when traffic can start flowing again.
9614 * @pdev: Pointer to PCI device
9615 *
9616 * This callback is called when the error recovery driver tells us that
9617 * its OK to resume normal operation. Implementation resembles the
9618 * second-half of the __igb_resume routine.
9619 */
igb_io_resume(struct pci_dev * pdev)9620 static void igb_io_resume(struct pci_dev *pdev)
9621 {
9622 struct net_device *netdev = pci_get_drvdata(pdev);
9623 struct igb_adapter *adapter = netdev_priv(netdev);
9624
9625 if (netif_running(netdev)) {
9626 if (igb_up(adapter)) {
9627 dev_err(&pdev->dev, "igb_up failed after reset\n");
9628 return;
9629 }
9630 }
9631
9632 netif_device_attach(netdev);
9633
9634 /* let the f/w know that the h/w is now under the control of the
9635 * driver.
9636 */
9637 igb_get_hw_control(adapter);
9638 }
9639
9640 /**
9641 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9642 * @adapter: Pointer to adapter structure
9643 * @index: Index of the RAR entry which need to be synced with MAC table
9644 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9645 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9646 {
9647 struct e1000_hw *hw = &adapter->hw;
9648 u32 rar_low, rar_high;
9649 u8 *addr = adapter->mac_table[index].addr;
9650
9651 /* HW expects these to be in network order when they are plugged
9652 * into the registers which are little endian. In order to guarantee
9653 * that ordering we need to do an leXX_to_cpup here in order to be
9654 * ready for the byteswap that occurs with writel
9655 */
9656 rar_low = le32_to_cpup((__le32 *)(addr));
9657 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9658
9659 /* Indicate to hardware the Address is Valid. */
9660 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9661 if (is_valid_ether_addr(addr))
9662 rar_high |= E1000_RAH_AV;
9663
9664 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9665 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9666
9667 switch (hw->mac.type) {
9668 case e1000_82575:
9669 case e1000_i210:
9670 if (adapter->mac_table[index].state &
9671 IGB_MAC_STATE_QUEUE_STEERING)
9672 rar_high |= E1000_RAH_QSEL_ENABLE;
9673
9674 rar_high |= E1000_RAH_POOL_1 *
9675 adapter->mac_table[index].queue;
9676 break;
9677 default:
9678 rar_high |= E1000_RAH_POOL_1 <<
9679 adapter->mac_table[index].queue;
9680 break;
9681 }
9682 }
9683
9684 wr32(E1000_RAL(index), rar_low);
9685 wrfl();
9686 wr32(E1000_RAH(index), rar_high);
9687 wrfl();
9688 }
9689
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9690 static int igb_set_vf_mac(struct igb_adapter *adapter,
9691 int vf, unsigned char *mac_addr)
9692 {
9693 struct e1000_hw *hw = &adapter->hw;
9694 /* VF MAC addresses start at end of receive addresses and moves
9695 * towards the first, as a result a collision should not be possible
9696 */
9697 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9698 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9699
9700 ether_addr_copy(vf_mac_addr, mac_addr);
9701 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9702 adapter->mac_table[rar_entry].queue = vf;
9703 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9704 igb_rar_set_index(adapter, rar_entry);
9705
9706 return 0;
9707 }
9708
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9709 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9710 {
9711 struct igb_adapter *adapter = netdev_priv(netdev);
9712
9713 if (vf >= adapter->vfs_allocated_count)
9714 return -EINVAL;
9715
9716 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9717 * flag and allows to overwrite the MAC via VF netdev. This
9718 * is necessary to allow libvirt a way to restore the original
9719 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9720 * down a VM.
9721 */
9722 if (is_zero_ether_addr(mac)) {
9723 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9724 dev_info(&adapter->pdev->dev,
9725 "remove administratively set MAC on VF %d\n",
9726 vf);
9727 } else if (is_valid_ether_addr(mac)) {
9728 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9729 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9730 mac, vf);
9731 dev_info(&adapter->pdev->dev,
9732 "Reload the VF driver to make this change effective.");
9733 /* Generate additional warning if PF is down */
9734 if (test_bit(__IGB_DOWN, &adapter->state)) {
9735 dev_warn(&adapter->pdev->dev,
9736 "The VF MAC address has been set, but the PF device is not up.\n");
9737 dev_warn(&adapter->pdev->dev,
9738 "Bring the PF device up before attempting to use the VF device.\n");
9739 }
9740 } else {
9741 return -EINVAL;
9742 }
9743 return igb_set_vf_mac(adapter, vf, mac);
9744 }
9745
igb_link_mbps(int internal_link_speed)9746 static int igb_link_mbps(int internal_link_speed)
9747 {
9748 switch (internal_link_speed) {
9749 case SPEED_100:
9750 return 100;
9751 case SPEED_1000:
9752 return 1000;
9753 default:
9754 return 0;
9755 }
9756 }
9757
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9758 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9759 int link_speed)
9760 {
9761 int rf_dec, rf_int;
9762 u32 bcnrc_val;
9763
9764 if (tx_rate != 0) {
9765 /* Calculate the rate factor values to set */
9766 rf_int = link_speed / tx_rate;
9767 rf_dec = (link_speed - (rf_int * tx_rate));
9768 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9769 tx_rate;
9770
9771 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9772 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9773 E1000_RTTBCNRC_RF_INT_MASK);
9774 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9775 } else {
9776 bcnrc_val = 0;
9777 }
9778
9779 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9780 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9781 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9782 */
9783 wr32(E1000_RTTBCNRM, 0x14);
9784 wr32(E1000_RTTBCNRC, bcnrc_val);
9785 }
9786
igb_check_vf_rate_limit(struct igb_adapter * adapter)9787 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9788 {
9789 int actual_link_speed, i;
9790 bool reset_rate = false;
9791
9792 /* VF TX rate limit was not set or not supported */
9793 if ((adapter->vf_rate_link_speed == 0) ||
9794 (adapter->hw.mac.type != e1000_82576))
9795 return;
9796
9797 actual_link_speed = igb_link_mbps(adapter->link_speed);
9798 if (actual_link_speed != adapter->vf_rate_link_speed) {
9799 reset_rate = true;
9800 adapter->vf_rate_link_speed = 0;
9801 dev_info(&adapter->pdev->dev,
9802 "Link speed has been changed. VF Transmit rate is disabled\n");
9803 }
9804
9805 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9806 if (reset_rate)
9807 adapter->vf_data[i].tx_rate = 0;
9808
9809 igb_set_vf_rate_limit(&adapter->hw, i,
9810 adapter->vf_data[i].tx_rate,
9811 actual_link_speed);
9812 }
9813 }
9814
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9815 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9816 int min_tx_rate, int max_tx_rate)
9817 {
9818 struct igb_adapter *adapter = netdev_priv(netdev);
9819 struct e1000_hw *hw = &adapter->hw;
9820 int actual_link_speed;
9821
9822 if (hw->mac.type != e1000_82576)
9823 return -EOPNOTSUPP;
9824
9825 if (min_tx_rate)
9826 return -EINVAL;
9827
9828 actual_link_speed = igb_link_mbps(adapter->link_speed);
9829 if ((vf >= adapter->vfs_allocated_count) ||
9830 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9831 (max_tx_rate < 0) ||
9832 (max_tx_rate > actual_link_speed))
9833 return -EINVAL;
9834
9835 adapter->vf_rate_link_speed = actual_link_speed;
9836 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9837 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9838
9839 return 0;
9840 }
9841
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9842 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9843 bool setting)
9844 {
9845 struct igb_adapter *adapter = netdev_priv(netdev);
9846 struct e1000_hw *hw = &adapter->hw;
9847 u32 reg_val, reg_offset;
9848
9849 if (!adapter->vfs_allocated_count)
9850 return -EOPNOTSUPP;
9851
9852 if (vf >= adapter->vfs_allocated_count)
9853 return -EINVAL;
9854
9855 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9856 reg_val = rd32(reg_offset);
9857 if (setting)
9858 reg_val |= (BIT(vf) |
9859 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9860 else
9861 reg_val &= ~(BIT(vf) |
9862 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9863 wr32(reg_offset, reg_val);
9864
9865 adapter->vf_data[vf].spoofchk_enabled = setting;
9866 return 0;
9867 }
9868
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9869 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9870 {
9871 struct igb_adapter *adapter = netdev_priv(netdev);
9872
9873 if (vf >= adapter->vfs_allocated_count)
9874 return -EINVAL;
9875 if (adapter->vf_data[vf].trusted == setting)
9876 return 0;
9877
9878 adapter->vf_data[vf].trusted = setting;
9879
9880 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9881 vf, setting ? "" : "not ");
9882 return 0;
9883 }
9884
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9885 static int igb_ndo_get_vf_config(struct net_device *netdev,
9886 int vf, struct ifla_vf_info *ivi)
9887 {
9888 struct igb_adapter *adapter = netdev_priv(netdev);
9889 if (vf >= adapter->vfs_allocated_count)
9890 return -EINVAL;
9891 ivi->vf = vf;
9892 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9893 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9894 ivi->min_tx_rate = 0;
9895 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9896 ivi->qos = adapter->vf_data[vf].pf_qos;
9897 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9898 ivi->trusted = adapter->vf_data[vf].trusted;
9899 return 0;
9900 }
9901
igb_vmm_control(struct igb_adapter * adapter)9902 static void igb_vmm_control(struct igb_adapter *adapter)
9903 {
9904 struct e1000_hw *hw = &adapter->hw;
9905 u32 reg;
9906
9907 switch (hw->mac.type) {
9908 case e1000_82575:
9909 case e1000_i210:
9910 case e1000_i211:
9911 case e1000_i354:
9912 default:
9913 /* replication is not supported for 82575 */
9914 return;
9915 case e1000_82576:
9916 /* notify HW that the MAC is adding vlan tags */
9917 reg = rd32(E1000_DTXCTL);
9918 reg |= E1000_DTXCTL_VLAN_ADDED;
9919 wr32(E1000_DTXCTL, reg);
9920 fallthrough;
9921 case e1000_82580:
9922 /* enable replication vlan tag stripping */
9923 reg = rd32(E1000_RPLOLR);
9924 reg |= E1000_RPLOLR_STRVLAN;
9925 wr32(E1000_RPLOLR, reg);
9926 fallthrough;
9927 case e1000_i350:
9928 /* none of the above registers are supported by i350 */
9929 break;
9930 }
9931
9932 if (adapter->vfs_allocated_count) {
9933 igb_vmdq_set_loopback_pf(hw, true);
9934 igb_vmdq_set_replication_pf(hw, true);
9935 igb_vmdq_set_anti_spoofing_pf(hw, true,
9936 adapter->vfs_allocated_count);
9937 } else {
9938 igb_vmdq_set_loopback_pf(hw, false);
9939 igb_vmdq_set_replication_pf(hw, false);
9940 }
9941 }
9942
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9943 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9944 {
9945 struct e1000_hw *hw = &adapter->hw;
9946 u32 dmac_thr;
9947 u16 hwm;
9948 u32 reg;
9949
9950 if (hw->mac.type > e1000_82580) {
9951 if (adapter->flags & IGB_FLAG_DMAC) {
9952 /* force threshold to 0. */
9953 wr32(E1000_DMCTXTH, 0);
9954
9955 /* DMA Coalescing high water mark needs to be greater
9956 * than the Rx threshold. Set hwm to PBA - max frame
9957 * size in 16B units, capping it at PBA - 6KB.
9958 */
9959 hwm = 64 * (pba - 6);
9960 reg = rd32(E1000_FCRTC);
9961 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9962 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9963 & E1000_FCRTC_RTH_COAL_MASK);
9964 wr32(E1000_FCRTC, reg);
9965
9966 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9967 * frame size, capping it at PBA - 10KB.
9968 */
9969 dmac_thr = pba - 10;
9970 reg = rd32(E1000_DMACR);
9971 reg &= ~E1000_DMACR_DMACTHR_MASK;
9972 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9973 & E1000_DMACR_DMACTHR_MASK);
9974
9975 /* transition to L0x or L1 if available..*/
9976 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9977
9978 /* watchdog timer= +-1000 usec in 32usec intervals */
9979 reg |= (1000 >> 5);
9980
9981 /* Disable BMC-to-OS Watchdog Enable */
9982 if (hw->mac.type != e1000_i354)
9983 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9984 wr32(E1000_DMACR, reg);
9985
9986 /* no lower threshold to disable
9987 * coalescing(smart fifb)-UTRESH=0
9988 */
9989 wr32(E1000_DMCRTRH, 0);
9990
9991 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9992
9993 wr32(E1000_DMCTLX, reg);
9994
9995 /* free space in tx packet buffer to wake from
9996 * DMA coal
9997 */
9998 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9999 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10000 }
10001
10002 if (hw->mac.type >= e1000_i210 ||
10003 (adapter->flags & IGB_FLAG_DMAC)) {
10004 reg = rd32(E1000_PCIEMISC);
10005 reg |= E1000_PCIEMISC_LX_DECISION;
10006 wr32(E1000_PCIEMISC, reg);
10007 } /* endif adapter->dmac is not disabled */
10008 } else if (hw->mac.type == e1000_82580) {
10009 u32 reg = rd32(E1000_PCIEMISC);
10010
10011 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10012 wr32(E1000_DMACR, 0);
10013 }
10014 }
10015
10016 /**
10017 * igb_read_i2c_byte - Reads 8 bit word over I2C
10018 * @hw: pointer to hardware structure
10019 * @byte_offset: byte offset to read
10020 * @dev_addr: device address
10021 * @data: value read
10022 *
10023 * Performs byte read operation over I2C interface at
10024 * a specified device address.
10025 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)10026 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10027 u8 dev_addr, u8 *data)
10028 {
10029 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10030 struct i2c_client *this_client = adapter->i2c_client;
10031 s32 status;
10032 u16 swfw_mask = 0;
10033
10034 if (!this_client)
10035 return E1000_ERR_I2C;
10036
10037 swfw_mask = E1000_SWFW_PHY0_SM;
10038
10039 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10040 return E1000_ERR_SWFW_SYNC;
10041
10042 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10043 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10044
10045 if (status < 0)
10046 return E1000_ERR_I2C;
10047 else {
10048 *data = status;
10049 return 0;
10050 }
10051 }
10052
10053 /**
10054 * igb_write_i2c_byte - Writes 8 bit word over I2C
10055 * @hw: pointer to hardware structure
10056 * @byte_offset: byte offset to write
10057 * @dev_addr: device address
10058 * @data: value to write
10059 *
10060 * Performs byte write operation over I2C interface at
10061 * a specified device address.
10062 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)10063 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10064 u8 dev_addr, u8 data)
10065 {
10066 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10067 struct i2c_client *this_client = adapter->i2c_client;
10068 s32 status;
10069 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10070
10071 if (!this_client)
10072 return E1000_ERR_I2C;
10073
10074 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10075 return E1000_ERR_SWFW_SYNC;
10076 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10077 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10078
10079 if (status)
10080 return E1000_ERR_I2C;
10081 else
10082 return 0;
10083
10084 }
10085
igb_reinit_queues(struct igb_adapter * adapter)10086 int igb_reinit_queues(struct igb_adapter *adapter)
10087 {
10088 struct net_device *netdev = adapter->netdev;
10089 struct pci_dev *pdev = adapter->pdev;
10090 int err = 0;
10091
10092 if (netif_running(netdev))
10093 igb_close(netdev);
10094
10095 igb_reset_interrupt_capability(adapter);
10096
10097 if (igb_init_interrupt_scheme(adapter, true)) {
10098 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10099 return -ENOMEM;
10100 }
10101
10102 if (netif_running(netdev))
10103 err = igb_open(netdev);
10104
10105 return err;
10106 }
10107
igb_nfc_filter_exit(struct igb_adapter * adapter)10108 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10109 {
10110 struct igb_nfc_filter *rule;
10111
10112 spin_lock(&adapter->nfc_lock);
10113
10114 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10115 igb_erase_filter(adapter, rule);
10116
10117 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10118 igb_erase_filter(adapter, rule);
10119
10120 spin_unlock(&adapter->nfc_lock);
10121 }
10122
igb_nfc_filter_restore(struct igb_adapter * adapter)10123 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10124 {
10125 struct igb_nfc_filter *rule;
10126
10127 spin_lock(&adapter->nfc_lock);
10128
10129 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10130 igb_add_filter(adapter, rule);
10131
10132 spin_unlock(&adapter->nfc_lock);
10133 }
10134 /* igb_main.c */
10135