1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #include <linux/if_ether.h>
5 #include <linux/delay.h>
6
7 #include "e1000_mac.h"
8 #include "e1000_phy.h"
9
10 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
11 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
12 u16 *phy_ctrl);
13 static s32 igb_wait_autoneg(struct e1000_hw *hw);
14 static s32 igb_set_master_slave_mode(struct e1000_hw *hw);
15
16 /* Cable length tables */
17 static const u16 e1000_m88_cable_length_table[] = {
18 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
19
20 static const u16 e1000_igp_2_cable_length_table[] = {
21 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
22 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
23 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
24 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
25 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
26 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
27 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
28 104, 109, 114, 118, 121, 124};
29
30 /**
31 * igb_check_reset_block - Check if PHY reset is blocked
32 * @hw: pointer to the HW structure
33 *
34 * Read the PHY management control register and check whether a PHY reset
35 * is blocked. If a reset is not blocked return 0, otherwise
36 * return E1000_BLK_PHY_RESET (12).
37 **/
igb_check_reset_block(struct e1000_hw * hw)38 s32 igb_check_reset_block(struct e1000_hw *hw)
39 {
40 u32 manc;
41
42 manc = rd32(E1000_MANC);
43
44 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
45 }
46
47 /**
48 * igb_get_phy_id - Retrieve the PHY ID and revision
49 * @hw: pointer to the HW structure
50 *
51 * Reads the PHY registers and stores the PHY ID and possibly the PHY
52 * revision in the hardware structure.
53 **/
igb_get_phy_id(struct e1000_hw * hw)54 s32 igb_get_phy_id(struct e1000_hw *hw)
55 {
56 struct e1000_phy_info *phy = &hw->phy;
57 s32 ret_val = 0;
58 u16 phy_id;
59
60 /* ensure PHY page selection to fix misconfigured i210 */
61 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
62 phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0);
63
64 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
65 if (ret_val)
66 goto out;
67
68 phy->id = (u32)(phy_id << 16);
69 udelay(20);
70 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
71 if (ret_val)
72 goto out;
73
74 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
75 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
76
77 out:
78 return ret_val;
79 }
80
81 /**
82 * igb_phy_reset_dsp - Reset PHY DSP
83 * @hw: pointer to the HW structure
84 *
85 * Reset the digital signal processor.
86 **/
igb_phy_reset_dsp(struct e1000_hw * hw)87 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
88 {
89 s32 ret_val = 0;
90
91 if (!(hw->phy.ops.write_reg))
92 goto out;
93
94 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
95 if (ret_val)
96 goto out;
97
98 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
99
100 out:
101 return ret_val;
102 }
103
104 /**
105 * igb_read_phy_reg_mdic - Read MDI control register
106 * @hw: pointer to the HW structure
107 * @offset: register offset to be read
108 * @data: pointer to the read data
109 *
110 * Reads the MDI control register in the PHY at offset and stores the
111 * information read to data.
112 **/
igb_read_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 * data)113 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
114 {
115 struct e1000_phy_info *phy = &hw->phy;
116 u32 i, mdic = 0;
117 s32 ret_val = 0;
118
119 if (offset > MAX_PHY_REG_ADDRESS) {
120 hw_dbg("PHY Address %d is out of range\n", offset);
121 ret_val = -E1000_ERR_PARAM;
122 goto out;
123 }
124
125 /* Set up Op-code, Phy Address, and register offset in the MDI
126 * Control register. The MAC will take care of interfacing with the
127 * PHY to retrieve the desired data.
128 */
129 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
130 (phy->addr << E1000_MDIC_PHY_SHIFT) |
131 (E1000_MDIC_OP_READ));
132
133 wr32(E1000_MDIC, mdic);
134
135 /* Poll the ready bit to see if the MDI read completed
136 * Increasing the time out as testing showed failures with
137 * the lower time out
138 */
139 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
140 udelay(50);
141 mdic = rd32(E1000_MDIC);
142 if (mdic & E1000_MDIC_READY)
143 break;
144 }
145 if (!(mdic & E1000_MDIC_READY)) {
146 hw_dbg("MDI Read did not complete\n");
147 ret_val = -E1000_ERR_PHY;
148 goto out;
149 }
150 if (mdic & E1000_MDIC_ERROR) {
151 hw_dbg("MDI Error\n");
152 ret_val = -E1000_ERR_PHY;
153 goto out;
154 }
155 *data = (u16) mdic;
156
157 out:
158 return ret_val;
159 }
160
161 /**
162 * igb_write_phy_reg_mdic - Write MDI control register
163 * @hw: pointer to the HW structure
164 * @offset: register offset to write to
165 * @data: data to write to register at offset
166 *
167 * Writes data to MDI control register in the PHY at offset.
168 **/
igb_write_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 data)169 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
170 {
171 struct e1000_phy_info *phy = &hw->phy;
172 u32 i, mdic = 0;
173 s32 ret_val = 0;
174
175 if (offset > MAX_PHY_REG_ADDRESS) {
176 hw_dbg("PHY Address %d is out of range\n", offset);
177 ret_val = -E1000_ERR_PARAM;
178 goto out;
179 }
180
181 /* Set up Op-code, Phy Address, and register offset in the MDI
182 * Control register. The MAC will take care of interfacing with the
183 * PHY to retrieve the desired data.
184 */
185 mdic = (((u32)data) |
186 (offset << E1000_MDIC_REG_SHIFT) |
187 (phy->addr << E1000_MDIC_PHY_SHIFT) |
188 (E1000_MDIC_OP_WRITE));
189
190 wr32(E1000_MDIC, mdic);
191
192 /* Poll the ready bit to see if the MDI read completed
193 * Increasing the time out as testing showed failures with
194 * the lower time out
195 */
196 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
197 udelay(50);
198 mdic = rd32(E1000_MDIC);
199 if (mdic & E1000_MDIC_READY)
200 break;
201 }
202 if (!(mdic & E1000_MDIC_READY)) {
203 hw_dbg("MDI Write did not complete\n");
204 ret_val = -E1000_ERR_PHY;
205 goto out;
206 }
207 if (mdic & E1000_MDIC_ERROR) {
208 hw_dbg("MDI Error\n");
209 ret_val = -E1000_ERR_PHY;
210 goto out;
211 }
212
213 out:
214 return ret_val;
215 }
216
217 /**
218 * igb_read_phy_reg_i2c - Read PHY register using i2c
219 * @hw: pointer to the HW structure
220 * @offset: register offset to be read
221 * @data: pointer to the read data
222 *
223 * Reads the PHY register at offset using the i2c interface and stores the
224 * retrieved information in data.
225 **/
igb_read_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 * data)226 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
227 {
228 struct e1000_phy_info *phy = &hw->phy;
229 u32 i, i2ccmd = 0;
230
231 /* Set up Op-code, Phy Address, and register address in the I2CCMD
232 * register. The MAC will take care of interfacing with the
233 * PHY to retrieve the desired data.
234 */
235 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
236 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
237 (E1000_I2CCMD_OPCODE_READ));
238
239 wr32(E1000_I2CCMD, i2ccmd);
240
241 /* Poll the ready bit to see if the I2C read completed */
242 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
243 udelay(50);
244 i2ccmd = rd32(E1000_I2CCMD);
245 if (i2ccmd & E1000_I2CCMD_READY)
246 break;
247 }
248 if (!(i2ccmd & E1000_I2CCMD_READY)) {
249 hw_dbg("I2CCMD Read did not complete\n");
250 return -E1000_ERR_PHY;
251 }
252 if (i2ccmd & E1000_I2CCMD_ERROR) {
253 hw_dbg("I2CCMD Error bit set\n");
254 return -E1000_ERR_PHY;
255 }
256
257 /* Need to byte-swap the 16-bit value. */
258 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
259
260 return 0;
261 }
262
263 /**
264 * igb_write_phy_reg_i2c - Write PHY register using i2c
265 * @hw: pointer to the HW structure
266 * @offset: register offset to write to
267 * @data: data to write at register offset
268 *
269 * Writes the data to PHY register at the offset using the i2c interface.
270 **/
igb_write_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 data)271 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
272 {
273 struct e1000_phy_info *phy = &hw->phy;
274 u32 i, i2ccmd = 0;
275 u16 phy_data_swapped;
276
277 /* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/
278 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
279 hw_dbg("PHY I2C Address %d is out of range.\n",
280 hw->phy.addr);
281 return -E1000_ERR_CONFIG;
282 }
283
284 /* Swap the data bytes for the I2C interface */
285 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
286
287 /* Set up Op-code, Phy Address, and register address in the I2CCMD
288 * register. The MAC will take care of interfacing with the
289 * PHY to retrieve the desired data.
290 */
291 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
292 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
293 E1000_I2CCMD_OPCODE_WRITE |
294 phy_data_swapped);
295
296 wr32(E1000_I2CCMD, i2ccmd);
297
298 /* Poll the ready bit to see if the I2C read completed */
299 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
300 udelay(50);
301 i2ccmd = rd32(E1000_I2CCMD);
302 if (i2ccmd & E1000_I2CCMD_READY)
303 break;
304 }
305 if (!(i2ccmd & E1000_I2CCMD_READY)) {
306 hw_dbg("I2CCMD Write did not complete\n");
307 return -E1000_ERR_PHY;
308 }
309 if (i2ccmd & E1000_I2CCMD_ERROR) {
310 hw_dbg("I2CCMD Error bit set\n");
311 return -E1000_ERR_PHY;
312 }
313
314 return 0;
315 }
316
317 /**
318 * igb_read_sfp_data_byte - Reads SFP module data.
319 * @hw: pointer to the HW structure
320 * @offset: byte location offset to be read
321 * @data: read data buffer pointer
322 *
323 * Reads one byte from SFP module data stored
324 * in SFP resided EEPROM memory or SFP diagnostic area.
325 * Function should be called with
326 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
327 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
328 * access
329 **/
igb_read_sfp_data_byte(struct e1000_hw * hw,u16 offset,u8 * data)330 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
331 {
332 u32 i = 0;
333 u32 i2ccmd = 0;
334 u32 data_local = 0;
335
336 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
337 hw_dbg("I2CCMD command address exceeds upper limit\n");
338 return -E1000_ERR_PHY;
339 }
340
341 /* Set up Op-code, EEPROM Address,in the I2CCMD
342 * register. The MAC will take care of interfacing with the
343 * EEPROM to retrieve the desired data.
344 */
345 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
346 E1000_I2CCMD_OPCODE_READ);
347
348 wr32(E1000_I2CCMD, i2ccmd);
349
350 /* Poll the ready bit to see if the I2C read completed */
351 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
352 udelay(50);
353 data_local = rd32(E1000_I2CCMD);
354 if (data_local & E1000_I2CCMD_READY)
355 break;
356 }
357 if (!(data_local & E1000_I2CCMD_READY)) {
358 hw_dbg("I2CCMD Read did not complete\n");
359 return -E1000_ERR_PHY;
360 }
361 if (data_local & E1000_I2CCMD_ERROR) {
362 hw_dbg("I2CCMD Error bit set\n");
363 return -E1000_ERR_PHY;
364 }
365 *data = (u8) data_local & 0xFF;
366
367 return 0;
368 }
369
370 /**
371 * igb_read_phy_reg_igp - Read igp PHY register
372 * @hw: pointer to the HW structure
373 * @offset: register offset to be read
374 * @data: pointer to the read data
375 *
376 * Acquires semaphore, if necessary, then reads the PHY register at offset
377 * and storing the retrieved information in data. Release any acquired
378 * semaphores before exiting.
379 **/
igb_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data)380 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
381 {
382 s32 ret_val = 0;
383
384 if (!(hw->phy.ops.acquire))
385 goto out;
386
387 ret_val = hw->phy.ops.acquire(hw);
388 if (ret_val)
389 goto out;
390
391 if (offset > MAX_PHY_MULTI_PAGE_REG) {
392 ret_val = igb_write_phy_reg_mdic(hw,
393 IGP01E1000_PHY_PAGE_SELECT,
394 (u16)offset);
395 if (ret_val) {
396 hw->phy.ops.release(hw);
397 goto out;
398 }
399 }
400
401 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
402 data);
403
404 hw->phy.ops.release(hw);
405
406 out:
407 return ret_val;
408 }
409
410 /**
411 * igb_write_phy_reg_igp - Write igp PHY register
412 * @hw: pointer to the HW structure
413 * @offset: register offset to write to
414 * @data: data to write at register offset
415 *
416 * Acquires semaphore, if necessary, then writes the data to PHY register
417 * at the offset. Release any acquired semaphores before exiting.
418 **/
igb_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data)419 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
420 {
421 s32 ret_val = 0;
422
423 if (!(hw->phy.ops.acquire))
424 goto out;
425
426 ret_val = hw->phy.ops.acquire(hw);
427 if (ret_val)
428 goto out;
429
430 if (offset > MAX_PHY_MULTI_PAGE_REG) {
431 ret_val = igb_write_phy_reg_mdic(hw,
432 IGP01E1000_PHY_PAGE_SELECT,
433 (u16)offset);
434 if (ret_val) {
435 hw->phy.ops.release(hw);
436 goto out;
437 }
438 }
439
440 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
441 data);
442
443 hw->phy.ops.release(hw);
444
445 out:
446 return ret_val;
447 }
448
449 /**
450 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
451 * @hw: pointer to the HW structure
452 *
453 * Sets up Carrier-sense on Transmit and downshift values.
454 **/
igb_copper_link_setup_82580(struct e1000_hw * hw)455 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
456 {
457 struct e1000_phy_info *phy = &hw->phy;
458 s32 ret_val;
459 u16 phy_data;
460
461 if (phy->reset_disable) {
462 ret_val = 0;
463 goto out;
464 }
465
466 if (phy->type == e1000_phy_82580) {
467 ret_val = hw->phy.ops.reset(hw);
468 if (ret_val) {
469 hw_dbg("Error resetting the PHY.\n");
470 goto out;
471 }
472 }
473
474 /* Enable CRS on TX. This must be set for half-duplex operation. */
475 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
476 if (ret_val)
477 goto out;
478
479 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
480
481 /* Enable downshift */
482 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
483
484 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
485 if (ret_val)
486 goto out;
487
488 /* Set MDI/MDIX mode */
489 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
490 if (ret_val)
491 goto out;
492 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
493 /* Options:
494 * 0 - Auto (default)
495 * 1 - MDI mode
496 * 2 - MDI-X mode
497 */
498 switch (hw->phy.mdix) {
499 case 1:
500 break;
501 case 2:
502 phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
503 break;
504 case 0:
505 default:
506 phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
507 break;
508 }
509 ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
510
511 out:
512 return ret_val;
513 }
514
515 /**
516 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
517 * @hw: pointer to the HW structure
518 *
519 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
520 * and downshift values are set also.
521 **/
igb_copper_link_setup_m88(struct e1000_hw * hw)522 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
523 {
524 struct e1000_phy_info *phy = &hw->phy;
525 s32 ret_val;
526 u16 phy_data;
527
528 if (phy->reset_disable) {
529 ret_val = 0;
530 goto out;
531 }
532
533 /* Enable CRS on TX. This must be set for half-duplex operation. */
534 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
535 if (ret_val)
536 goto out;
537
538 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
539
540 /* Options:
541 * MDI/MDI-X = 0 (default)
542 * 0 - Auto for all speeds
543 * 1 - MDI mode
544 * 2 - MDI-X mode
545 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
546 */
547 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
548
549 switch (phy->mdix) {
550 case 1:
551 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
552 break;
553 case 2:
554 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
555 break;
556 case 3:
557 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
558 break;
559 case 0:
560 default:
561 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
562 break;
563 }
564
565 /* Options:
566 * disable_polarity_correction = 0 (default)
567 * Automatic Correction for Reversed Cable Polarity
568 * 0 - Disabled
569 * 1 - Enabled
570 */
571 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
572 if (phy->disable_polarity_correction == 1)
573 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
574
575 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
576 if (ret_val)
577 goto out;
578
579 if (phy->revision < E1000_REVISION_4) {
580 /* Force TX_CLK in the Extended PHY Specific Control Register
581 * to 25MHz clock.
582 */
583 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
584 &phy_data);
585 if (ret_val)
586 goto out;
587
588 phy_data |= M88E1000_EPSCR_TX_CLK_25;
589
590 if ((phy->revision == E1000_REVISION_2) &&
591 (phy->id == M88E1111_I_PHY_ID)) {
592 /* 82573L PHY - set the downshift counter to 5x. */
593 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
594 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
595 } else {
596 /* Configure Master and Slave downshift values */
597 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
598 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
599 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
600 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
601 }
602 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
603 phy_data);
604 if (ret_val)
605 goto out;
606 }
607
608 /* Commit the changes. */
609 ret_val = igb_phy_sw_reset(hw);
610 if (ret_val) {
611 hw_dbg("Error committing the PHY changes\n");
612 goto out;
613 }
614
615 out:
616 return ret_val;
617 }
618
619 /**
620 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
621 * @hw: pointer to the HW structure
622 *
623 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
624 * Also enables and sets the downshift parameters.
625 **/
igb_copper_link_setup_m88_gen2(struct e1000_hw * hw)626 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
627 {
628 struct e1000_phy_info *phy = &hw->phy;
629 s32 ret_val;
630 u16 phy_data;
631
632 if (phy->reset_disable)
633 return 0;
634
635 /* Enable CRS on Tx. This must be set for half-duplex operation. */
636 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
637 if (ret_val)
638 return ret_val;
639
640 /* Options:
641 * MDI/MDI-X = 0 (default)
642 * 0 - Auto for all speeds
643 * 1 - MDI mode
644 * 2 - MDI-X mode
645 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
646 */
647 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
648
649 switch (phy->mdix) {
650 case 1:
651 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
652 break;
653 case 2:
654 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
655 break;
656 case 3:
657 /* M88E1112 does not support this mode) */
658 if (phy->id != M88E1112_E_PHY_ID) {
659 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
660 break;
661 }
662 /* fall through */
663 case 0:
664 default:
665 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
666 break;
667 }
668
669 /* Options:
670 * disable_polarity_correction = 0 (default)
671 * Automatic Correction for Reversed Cable Polarity
672 * 0 - Disabled
673 * 1 - Enabled
674 */
675 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
676 if (phy->disable_polarity_correction == 1)
677 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
678
679 /* Enable downshift and setting it to X6 */
680 if (phy->id == M88E1543_E_PHY_ID) {
681 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
682 ret_val =
683 phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
684 if (ret_val)
685 return ret_val;
686
687 ret_val = igb_phy_sw_reset(hw);
688 if (ret_val) {
689 hw_dbg("Error committing the PHY changes\n");
690 return ret_val;
691 }
692 }
693
694 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
695 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
696 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
697
698 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
699 if (ret_val)
700 return ret_val;
701
702 /* Commit the changes. */
703 ret_val = igb_phy_sw_reset(hw);
704 if (ret_val) {
705 hw_dbg("Error committing the PHY changes\n");
706 return ret_val;
707 }
708 ret_val = igb_set_master_slave_mode(hw);
709 if (ret_val)
710 return ret_val;
711
712 return 0;
713 }
714
715 /**
716 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
717 * @hw: pointer to the HW structure
718 *
719 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
720 * igp PHY's.
721 **/
igb_copper_link_setup_igp(struct e1000_hw * hw)722 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
723 {
724 struct e1000_phy_info *phy = &hw->phy;
725 s32 ret_val;
726 u16 data;
727
728 if (phy->reset_disable) {
729 ret_val = 0;
730 goto out;
731 }
732
733 ret_val = phy->ops.reset(hw);
734 if (ret_val) {
735 hw_dbg("Error resetting the PHY.\n");
736 goto out;
737 }
738
739 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
740 * timeout issues when LFS is enabled.
741 */
742 msleep(100);
743
744 /* The NVM settings will configure LPLU in D3 for
745 * non-IGP1 PHYs.
746 */
747 if (phy->type == e1000_phy_igp) {
748 /* disable lplu d3 during driver init */
749 if (phy->ops.set_d3_lplu_state)
750 ret_val = phy->ops.set_d3_lplu_state(hw, false);
751 if (ret_val) {
752 hw_dbg("Error Disabling LPLU D3\n");
753 goto out;
754 }
755 }
756
757 /* disable lplu d0 during driver init */
758 ret_val = phy->ops.set_d0_lplu_state(hw, false);
759 if (ret_val) {
760 hw_dbg("Error Disabling LPLU D0\n");
761 goto out;
762 }
763 /* Configure mdi-mdix settings */
764 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
765 if (ret_val)
766 goto out;
767
768 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
769
770 switch (phy->mdix) {
771 case 1:
772 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
773 break;
774 case 2:
775 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
776 break;
777 case 0:
778 default:
779 data |= IGP01E1000_PSCR_AUTO_MDIX;
780 break;
781 }
782 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
783 if (ret_val)
784 goto out;
785
786 /* set auto-master slave resolution settings */
787 if (hw->mac.autoneg) {
788 /* when autonegotiation advertisement is only 1000Mbps then we
789 * should disable SmartSpeed and enable Auto MasterSlave
790 * resolution as hardware default.
791 */
792 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
793 /* Disable SmartSpeed */
794 ret_val = phy->ops.read_reg(hw,
795 IGP01E1000_PHY_PORT_CONFIG,
796 &data);
797 if (ret_val)
798 goto out;
799
800 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
801 ret_val = phy->ops.write_reg(hw,
802 IGP01E1000_PHY_PORT_CONFIG,
803 data);
804 if (ret_val)
805 goto out;
806
807 /* Set auto Master/Slave resolution process */
808 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
809 if (ret_val)
810 goto out;
811
812 data &= ~CR_1000T_MS_ENABLE;
813 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
814 if (ret_val)
815 goto out;
816 }
817
818 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
819 if (ret_val)
820 goto out;
821
822 /* load defaults for future use */
823 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
824 ((data & CR_1000T_MS_VALUE) ?
825 e1000_ms_force_master :
826 e1000_ms_force_slave) :
827 e1000_ms_auto;
828
829 switch (phy->ms_type) {
830 case e1000_ms_force_master:
831 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
832 break;
833 case e1000_ms_force_slave:
834 data |= CR_1000T_MS_ENABLE;
835 data &= ~(CR_1000T_MS_VALUE);
836 break;
837 case e1000_ms_auto:
838 data &= ~CR_1000T_MS_ENABLE;
839 default:
840 break;
841 }
842 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
843 if (ret_val)
844 goto out;
845 }
846
847 out:
848 return ret_val;
849 }
850
851 /**
852 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
853 * @hw: pointer to the HW structure
854 *
855 * Performs initial bounds checking on autoneg advertisement parameter, then
856 * configure to advertise the full capability. Setup the PHY to autoneg
857 * and restart the negotiation process between the link partner. If
858 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
859 **/
igb_copper_link_autoneg(struct e1000_hw * hw)860 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
861 {
862 struct e1000_phy_info *phy = &hw->phy;
863 s32 ret_val;
864 u16 phy_ctrl;
865
866 /* Perform some bounds checking on the autoneg advertisement
867 * parameter.
868 */
869 phy->autoneg_advertised &= phy->autoneg_mask;
870
871 /* If autoneg_advertised is zero, we assume it was not defaulted
872 * by the calling code so we set to advertise full capability.
873 */
874 if (phy->autoneg_advertised == 0)
875 phy->autoneg_advertised = phy->autoneg_mask;
876
877 hw_dbg("Reconfiguring auto-neg advertisement params\n");
878 ret_val = igb_phy_setup_autoneg(hw);
879 if (ret_val) {
880 hw_dbg("Error Setting up Auto-Negotiation\n");
881 goto out;
882 }
883 hw_dbg("Restarting Auto-Neg\n");
884
885 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
886 * the Auto Neg Restart bit in the PHY control register.
887 */
888 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
889 if (ret_val)
890 goto out;
891
892 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
893 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
894 if (ret_val)
895 goto out;
896
897 /* Does the user want to wait for Auto-Neg to complete here, or
898 * check at a later time (for example, callback routine).
899 */
900 if (phy->autoneg_wait_to_complete) {
901 ret_val = igb_wait_autoneg(hw);
902 if (ret_val) {
903 hw_dbg("Error while waiting for autoneg to complete\n");
904 goto out;
905 }
906 }
907
908 hw->mac.get_link_status = true;
909
910 out:
911 return ret_val;
912 }
913
914 /**
915 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
916 * @hw: pointer to the HW structure
917 *
918 * Reads the MII auto-neg advertisement register and/or the 1000T control
919 * register and if the PHY is already setup for auto-negotiation, then
920 * return successful. Otherwise, setup advertisement and flow control to
921 * the appropriate values for the wanted auto-negotiation.
922 **/
igb_phy_setup_autoneg(struct e1000_hw * hw)923 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
924 {
925 struct e1000_phy_info *phy = &hw->phy;
926 s32 ret_val;
927 u16 mii_autoneg_adv_reg;
928 u16 mii_1000t_ctrl_reg = 0;
929
930 phy->autoneg_advertised &= phy->autoneg_mask;
931
932 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
933 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
934 if (ret_val)
935 goto out;
936
937 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
938 /* Read the MII 1000Base-T Control Register (Address 9). */
939 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
940 &mii_1000t_ctrl_reg);
941 if (ret_val)
942 goto out;
943 }
944
945 /* Need to parse both autoneg_advertised and fc and set up
946 * the appropriate PHY registers. First we will parse for
947 * autoneg_advertised software override. Since we can advertise
948 * a plethora of combinations, we need to check each bit
949 * individually.
950 */
951
952 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
953 * Advertisement Register (Address 4) and the 1000 mb speed bits in
954 * the 1000Base-T Control Register (Address 9).
955 */
956 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
957 NWAY_AR_100TX_HD_CAPS |
958 NWAY_AR_10T_FD_CAPS |
959 NWAY_AR_10T_HD_CAPS);
960 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
961
962 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
963
964 /* Do we want to advertise 10 Mb Half Duplex? */
965 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
966 hw_dbg("Advertise 10mb Half duplex\n");
967 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
968 }
969
970 /* Do we want to advertise 10 Mb Full Duplex? */
971 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
972 hw_dbg("Advertise 10mb Full duplex\n");
973 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
974 }
975
976 /* Do we want to advertise 100 Mb Half Duplex? */
977 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
978 hw_dbg("Advertise 100mb Half duplex\n");
979 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
980 }
981
982 /* Do we want to advertise 100 Mb Full Duplex? */
983 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
984 hw_dbg("Advertise 100mb Full duplex\n");
985 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
986 }
987
988 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
989 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
990 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
991
992 /* Do we want to advertise 1000 Mb Full Duplex? */
993 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
994 hw_dbg("Advertise 1000mb Full duplex\n");
995 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
996 }
997
998 /* Check for a software override of the flow control settings, and
999 * setup the PHY advertisement registers accordingly. If
1000 * auto-negotiation is enabled, then software will have to set the
1001 * "PAUSE" bits to the correct value in the Auto-Negotiation
1002 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1003 * negotiation.
1004 *
1005 * The possible values of the "fc" parameter are:
1006 * 0: Flow control is completely disabled
1007 * 1: Rx flow control is enabled (we can receive pause frames
1008 * but not send pause frames).
1009 * 2: Tx flow control is enabled (we can send pause frames
1010 * but we do not support receiving pause frames).
1011 * 3: Both Rx and TX flow control (symmetric) are enabled.
1012 * other: No software override. The flow control configuration
1013 * in the EEPROM is used.
1014 */
1015 switch (hw->fc.current_mode) {
1016 case e1000_fc_none:
1017 /* Flow control (RX & TX) is completely disabled by a
1018 * software over-ride.
1019 */
1020 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1021 break;
1022 case e1000_fc_rx_pause:
1023 /* RX Flow control is enabled, and TX Flow control is
1024 * disabled, by a software over-ride.
1025 *
1026 * Since there really isn't a way to advertise that we are
1027 * capable of RX Pause ONLY, we will advertise that we
1028 * support both symmetric and asymmetric RX PAUSE. Later
1029 * (in e1000_config_fc_after_link_up) we will disable the
1030 * hw's ability to send PAUSE frames.
1031 */
1032 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1033 break;
1034 case e1000_fc_tx_pause:
1035 /* TX Flow control is enabled, and RX Flow control is
1036 * disabled, by a software over-ride.
1037 */
1038 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1039 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1040 break;
1041 case e1000_fc_full:
1042 /* Flow control (both RX and TX) is enabled by a software
1043 * over-ride.
1044 */
1045 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1046 break;
1047 default:
1048 hw_dbg("Flow control param set incorrectly\n");
1049 ret_val = -E1000_ERR_CONFIG;
1050 goto out;
1051 }
1052
1053 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1054 if (ret_val)
1055 goto out;
1056
1057 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1058
1059 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1060 ret_val = phy->ops.write_reg(hw,
1061 PHY_1000T_CTRL,
1062 mii_1000t_ctrl_reg);
1063 if (ret_val)
1064 goto out;
1065 }
1066
1067 out:
1068 return ret_val;
1069 }
1070
1071 /**
1072 * igb_setup_copper_link - Configure copper link settings
1073 * @hw: pointer to the HW structure
1074 *
1075 * Calls the appropriate function to configure the link for auto-neg or forced
1076 * speed and duplex. Then we check for link, once link is established calls
1077 * to configure collision distance and flow control are called. If link is
1078 * not established, we return -E1000_ERR_PHY (-2).
1079 **/
igb_setup_copper_link(struct e1000_hw * hw)1080 s32 igb_setup_copper_link(struct e1000_hw *hw)
1081 {
1082 s32 ret_val;
1083 bool link;
1084
1085 if (hw->mac.autoneg) {
1086 /* Setup autoneg and flow control advertisement and perform
1087 * autonegotiation.
1088 */
1089 ret_val = igb_copper_link_autoneg(hw);
1090 if (ret_val)
1091 goto out;
1092 } else {
1093 /* PHY will be set to 10H, 10F, 100H or 100F
1094 * depending on user settings.
1095 */
1096 hw_dbg("Forcing Speed and Duplex\n");
1097 ret_val = hw->phy.ops.force_speed_duplex(hw);
1098 if (ret_val) {
1099 hw_dbg("Error Forcing Speed and Duplex\n");
1100 goto out;
1101 }
1102 }
1103
1104 /* Check link status. Wait up to 100 microseconds for link to become
1105 * valid.
1106 */
1107 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1108 if (ret_val)
1109 goto out;
1110
1111 if (link) {
1112 hw_dbg("Valid link established!!!\n");
1113 igb_config_collision_dist(hw);
1114 ret_val = igb_config_fc_after_link_up(hw);
1115 } else {
1116 hw_dbg("Unable to establish link!!!\n");
1117 }
1118
1119 out:
1120 return ret_val;
1121 }
1122
1123 /**
1124 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1125 * @hw: pointer to the HW structure
1126 *
1127 * Calls the PHY setup function to force speed and duplex. Clears the
1128 * auto-crossover to force MDI manually. Waits for link and returns
1129 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1130 **/
igb_phy_force_speed_duplex_igp(struct e1000_hw * hw)1131 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1132 {
1133 struct e1000_phy_info *phy = &hw->phy;
1134 s32 ret_val;
1135 u16 phy_data;
1136 bool link;
1137
1138 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1139 if (ret_val)
1140 goto out;
1141
1142 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1143
1144 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1145 if (ret_val)
1146 goto out;
1147
1148 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1149 * forced whenever speed and duplex are forced.
1150 */
1151 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1152 if (ret_val)
1153 goto out;
1154
1155 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1156 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1157
1158 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1159 if (ret_val)
1160 goto out;
1161
1162 hw_dbg("IGP PSCR: %X\n", phy_data);
1163
1164 udelay(1);
1165
1166 if (phy->autoneg_wait_to_complete) {
1167 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1168
1169 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1170 if (ret_val)
1171 goto out;
1172
1173 if (!link)
1174 hw_dbg("Link taking longer than expected.\n");
1175
1176 /* Try once more */
1177 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1178 if (ret_val)
1179 goto out;
1180 }
1181
1182 out:
1183 return ret_val;
1184 }
1185
1186 /**
1187 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1188 * @hw: pointer to the HW structure
1189 *
1190 * Calls the PHY setup function to force speed and duplex. Clears the
1191 * auto-crossover to force MDI manually. Resets the PHY to commit the
1192 * changes. If time expires while waiting for link up, we reset the DSP.
1193 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1194 * successful completion, else return corresponding error code.
1195 **/
igb_phy_force_speed_duplex_m88(struct e1000_hw * hw)1196 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1197 {
1198 struct e1000_phy_info *phy = &hw->phy;
1199 s32 ret_val;
1200 u16 phy_data;
1201 bool link;
1202
1203 /* I210 and I211 devices support Auto-Crossover in forced operation. */
1204 if (phy->type != e1000_phy_i210) {
1205 /* Clear Auto-Crossover to force MDI manually. M88E1000
1206 * requires MDI forced whenever speed and duplex are forced.
1207 */
1208 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1209 &phy_data);
1210 if (ret_val)
1211 goto out;
1212
1213 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1214 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1215 phy_data);
1216 if (ret_val)
1217 goto out;
1218
1219 hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1220 }
1221
1222 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1223 if (ret_val)
1224 goto out;
1225
1226 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1227
1228 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1229 if (ret_val)
1230 goto out;
1231
1232 /* Reset the phy to commit changes. */
1233 ret_val = igb_phy_sw_reset(hw);
1234 if (ret_val)
1235 goto out;
1236
1237 if (phy->autoneg_wait_to_complete) {
1238 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1239
1240 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1241 if (ret_val)
1242 goto out;
1243
1244 if (!link) {
1245 bool reset_dsp = true;
1246
1247 switch (hw->phy.id) {
1248 case I347AT4_E_PHY_ID:
1249 case M88E1112_E_PHY_ID:
1250 case M88E1543_E_PHY_ID:
1251 case M88E1512_E_PHY_ID:
1252 case I210_I_PHY_ID:
1253 reset_dsp = false;
1254 break;
1255 default:
1256 if (hw->phy.type != e1000_phy_m88)
1257 reset_dsp = false;
1258 break;
1259 }
1260 if (!reset_dsp) {
1261 hw_dbg("Link taking longer than expected.\n");
1262 } else {
1263 /* We didn't get link.
1264 * Reset the DSP and cross our fingers.
1265 */
1266 ret_val = phy->ops.write_reg(hw,
1267 M88E1000_PHY_PAGE_SELECT,
1268 0x001d);
1269 if (ret_val)
1270 goto out;
1271 ret_val = igb_phy_reset_dsp(hw);
1272 if (ret_val)
1273 goto out;
1274 }
1275 }
1276
1277 /* Try once more */
1278 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1279 100000, &link);
1280 if (ret_val)
1281 goto out;
1282 }
1283
1284 if (hw->phy.type != e1000_phy_m88 ||
1285 hw->phy.id == I347AT4_E_PHY_ID ||
1286 hw->phy.id == M88E1112_E_PHY_ID ||
1287 hw->phy.id == M88E1543_E_PHY_ID ||
1288 hw->phy.id == M88E1512_E_PHY_ID ||
1289 hw->phy.id == I210_I_PHY_ID)
1290 goto out;
1291
1292 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1293 if (ret_val)
1294 goto out;
1295
1296 /* Resetting the phy means we need to re-force TX_CLK in the
1297 * Extended PHY Specific Control Register to 25MHz clock from
1298 * the reset value of 2.5MHz.
1299 */
1300 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1301 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1302 if (ret_val)
1303 goto out;
1304
1305 /* In addition, we must re-enable CRS on Tx for both half and full
1306 * duplex.
1307 */
1308 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1309 if (ret_val)
1310 goto out;
1311
1312 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1313 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1314
1315 out:
1316 return ret_val;
1317 }
1318
1319 /**
1320 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1321 * @hw: pointer to the HW structure
1322 * @phy_ctrl: pointer to current value of PHY_CONTROL
1323 *
1324 * Forces speed and duplex on the PHY by doing the following: disable flow
1325 * control, force speed/duplex on the MAC, disable auto speed detection,
1326 * disable auto-negotiation, configure duplex, configure speed, configure
1327 * the collision distance, write configuration to CTRL register. The
1328 * caller must write to the PHY_CONTROL register for these settings to
1329 * take affect.
1330 **/
igb_phy_force_speed_duplex_setup(struct e1000_hw * hw,u16 * phy_ctrl)1331 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1332 u16 *phy_ctrl)
1333 {
1334 struct e1000_mac_info *mac = &hw->mac;
1335 u32 ctrl;
1336
1337 /* Turn off flow control when forcing speed/duplex */
1338 hw->fc.current_mode = e1000_fc_none;
1339
1340 /* Force speed/duplex on the mac */
1341 ctrl = rd32(E1000_CTRL);
1342 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1343 ctrl &= ~E1000_CTRL_SPD_SEL;
1344
1345 /* Disable Auto Speed Detection */
1346 ctrl &= ~E1000_CTRL_ASDE;
1347
1348 /* Disable autoneg on the phy */
1349 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1350
1351 /* Forcing Full or Half Duplex? */
1352 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1353 ctrl &= ~E1000_CTRL_FD;
1354 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1355 hw_dbg("Half Duplex\n");
1356 } else {
1357 ctrl |= E1000_CTRL_FD;
1358 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1359 hw_dbg("Full Duplex\n");
1360 }
1361
1362 /* Forcing 10mb or 100mb? */
1363 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1364 ctrl |= E1000_CTRL_SPD_100;
1365 *phy_ctrl |= MII_CR_SPEED_100;
1366 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1367 hw_dbg("Forcing 100mb\n");
1368 } else {
1369 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1370 *phy_ctrl |= MII_CR_SPEED_10;
1371 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1372 hw_dbg("Forcing 10mb\n");
1373 }
1374
1375 igb_config_collision_dist(hw);
1376
1377 wr32(E1000_CTRL, ctrl);
1378 }
1379
1380 /**
1381 * igb_set_d3_lplu_state - Sets low power link up state for D3
1382 * @hw: pointer to the HW structure
1383 * @active: boolean used to enable/disable lplu
1384 *
1385 * Success returns 0, Failure returns 1
1386 *
1387 * The low power link up (lplu) state is set to the power management level D3
1388 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1389 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1390 * is used during Dx states where the power conservation is most important.
1391 * During driver activity, SmartSpeed should be enabled so performance is
1392 * maintained.
1393 **/
igb_set_d3_lplu_state(struct e1000_hw * hw,bool active)1394 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1395 {
1396 struct e1000_phy_info *phy = &hw->phy;
1397 s32 ret_val = 0;
1398 u16 data;
1399
1400 if (!(hw->phy.ops.read_reg))
1401 goto out;
1402
1403 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1404 if (ret_val)
1405 goto out;
1406
1407 if (!active) {
1408 data &= ~IGP02E1000_PM_D3_LPLU;
1409 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1410 data);
1411 if (ret_val)
1412 goto out;
1413 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1414 * during Dx states where the power conservation is most
1415 * important. During driver activity we should enable
1416 * SmartSpeed, so performance is maintained.
1417 */
1418 if (phy->smart_speed == e1000_smart_speed_on) {
1419 ret_val = phy->ops.read_reg(hw,
1420 IGP01E1000_PHY_PORT_CONFIG,
1421 &data);
1422 if (ret_val)
1423 goto out;
1424
1425 data |= IGP01E1000_PSCFR_SMART_SPEED;
1426 ret_val = phy->ops.write_reg(hw,
1427 IGP01E1000_PHY_PORT_CONFIG,
1428 data);
1429 if (ret_val)
1430 goto out;
1431 } else if (phy->smart_speed == e1000_smart_speed_off) {
1432 ret_val = phy->ops.read_reg(hw,
1433 IGP01E1000_PHY_PORT_CONFIG,
1434 &data);
1435 if (ret_val)
1436 goto out;
1437
1438 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1439 ret_val = phy->ops.write_reg(hw,
1440 IGP01E1000_PHY_PORT_CONFIG,
1441 data);
1442 if (ret_val)
1443 goto out;
1444 }
1445 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1446 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1447 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1448 data |= IGP02E1000_PM_D3_LPLU;
1449 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1450 data);
1451 if (ret_val)
1452 goto out;
1453
1454 /* When LPLU is enabled, we should disable SmartSpeed */
1455 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1456 &data);
1457 if (ret_val)
1458 goto out;
1459
1460 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1461 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1462 data);
1463 }
1464
1465 out:
1466 return ret_val;
1467 }
1468
1469 /**
1470 * igb_check_downshift - Checks whether a downshift in speed occurred
1471 * @hw: pointer to the HW structure
1472 *
1473 * Success returns 0, Failure returns 1
1474 *
1475 * A downshift is detected by querying the PHY link health.
1476 **/
igb_check_downshift(struct e1000_hw * hw)1477 s32 igb_check_downshift(struct e1000_hw *hw)
1478 {
1479 struct e1000_phy_info *phy = &hw->phy;
1480 s32 ret_val;
1481 u16 phy_data, offset, mask;
1482
1483 switch (phy->type) {
1484 case e1000_phy_i210:
1485 case e1000_phy_m88:
1486 case e1000_phy_gg82563:
1487 offset = M88E1000_PHY_SPEC_STATUS;
1488 mask = M88E1000_PSSR_DOWNSHIFT;
1489 break;
1490 case e1000_phy_igp_2:
1491 case e1000_phy_igp:
1492 case e1000_phy_igp_3:
1493 offset = IGP01E1000_PHY_LINK_HEALTH;
1494 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1495 break;
1496 default:
1497 /* speed downshift not supported */
1498 phy->speed_downgraded = false;
1499 ret_val = 0;
1500 goto out;
1501 }
1502
1503 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1504
1505 if (!ret_val)
1506 phy->speed_downgraded = (phy_data & mask) ? true : false;
1507
1508 out:
1509 return ret_val;
1510 }
1511
1512 /**
1513 * igb_check_polarity_m88 - Checks the polarity.
1514 * @hw: pointer to the HW structure
1515 *
1516 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1517 *
1518 * Polarity is determined based on the PHY specific status register.
1519 **/
igb_check_polarity_m88(struct e1000_hw * hw)1520 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1521 {
1522 struct e1000_phy_info *phy = &hw->phy;
1523 s32 ret_val;
1524 u16 data;
1525
1526 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1527
1528 if (!ret_val)
1529 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1530 ? e1000_rev_polarity_reversed
1531 : e1000_rev_polarity_normal;
1532
1533 return ret_val;
1534 }
1535
1536 /**
1537 * igb_check_polarity_igp - Checks the polarity.
1538 * @hw: pointer to the HW structure
1539 *
1540 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1541 *
1542 * Polarity is determined based on the PHY port status register, and the
1543 * current speed (since there is no polarity at 100Mbps).
1544 **/
igb_check_polarity_igp(struct e1000_hw * hw)1545 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1546 {
1547 struct e1000_phy_info *phy = &hw->phy;
1548 s32 ret_val;
1549 u16 data, offset, mask;
1550
1551 /* Polarity is determined based on the speed of
1552 * our connection.
1553 */
1554 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1555 if (ret_val)
1556 goto out;
1557
1558 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1559 IGP01E1000_PSSR_SPEED_1000MBPS) {
1560 offset = IGP01E1000_PHY_PCS_INIT_REG;
1561 mask = IGP01E1000_PHY_POLARITY_MASK;
1562 } else {
1563 /* This really only applies to 10Mbps since
1564 * there is no polarity for 100Mbps (always 0).
1565 */
1566 offset = IGP01E1000_PHY_PORT_STATUS;
1567 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1568 }
1569
1570 ret_val = phy->ops.read_reg(hw, offset, &data);
1571
1572 if (!ret_val)
1573 phy->cable_polarity = (data & mask)
1574 ? e1000_rev_polarity_reversed
1575 : e1000_rev_polarity_normal;
1576
1577 out:
1578 return ret_val;
1579 }
1580
1581 /**
1582 * igb_wait_autoneg - Wait for auto-neg completion
1583 * @hw: pointer to the HW structure
1584 *
1585 * Waits for auto-negotiation to complete or for the auto-negotiation time
1586 * limit to expire, which ever happens first.
1587 **/
igb_wait_autoneg(struct e1000_hw * hw)1588 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1589 {
1590 s32 ret_val = 0;
1591 u16 i, phy_status;
1592
1593 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1594 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1595 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1596 if (ret_val)
1597 break;
1598 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1599 if (ret_val)
1600 break;
1601 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1602 break;
1603 msleep(100);
1604 }
1605
1606 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1607 * has completed.
1608 */
1609 return ret_val;
1610 }
1611
1612 /**
1613 * igb_phy_has_link - Polls PHY for link
1614 * @hw: pointer to the HW structure
1615 * @iterations: number of times to poll for link
1616 * @usec_interval: delay between polling attempts
1617 * @success: pointer to whether polling was successful or not
1618 *
1619 * Polls the PHY status register for link, 'iterations' number of times.
1620 **/
igb_phy_has_link(struct e1000_hw * hw,u32 iterations,u32 usec_interval,bool * success)1621 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1622 u32 usec_interval, bool *success)
1623 {
1624 s32 ret_val = 0;
1625 u16 i, phy_status;
1626
1627 for (i = 0; i < iterations; i++) {
1628 /* Some PHYs require the PHY_STATUS register to be read
1629 * twice due to the link bit being sticky. No harm doing
1630 * it across the board.
1631 */
1632 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1633 if (ret_val && usec_interval > 0) {
1634 /* If the first read fails, another entity may have
1635 * ownership of the resources, wait and try again to
1636 * see if they have relinquished the resources yet.
1637 */
1638 if (usec_interval >= 1000)
1639 mdelay(usec_interval/1000);
1640 else
1641 udelay(usec_interval);
1642 }
1643 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1644 if (ret_val)
1645 break;
1646 if (phy_status & MII_SR_LINK_STATUS)
1647 break;
1648 if (usec_interval >= 1000)
1649 mdelay(usec_interval/1000);
1650 else
1651 udelay(usec_interval);
1652 }
1653
1654 *success = (i < iterations) ? true : false;
1655
1656 return ret_val;
1657 }
1658
1659 /**
1660 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1661 * @hw: pointer to the HW structure
1662 *
1663 * Reads the PHY specific status register to retrieve the cable length
1664 * information. The cable length is determined by averaging the minimum and
1665 * maximum values to get the "average" cable length. The m88 PHY has four
1666 * possible cable length values, which are:
1667 * Register Value Cable Length
1668 * 0 < 50 meters
1669 * 1 50 - 80 meters
1670 * 2 80 - 110 meters
1671 * 3 110 - 140 meters
1672 * 4 > 140 meters
1673 **/
igb_get_cable_length_m88(struct e1000_hw * hw)1674 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1675 {
1676 struct e1000_phy_info *phy = &hw->phy;
1677 s32 ret_val;
1678 u16 phy_data, index;
1679
1680 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1681 if (ret_val)
1682 goto out;
1683
1684 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1685 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1686 if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1687 ret_val = -E1000_ERR_PHY;
1688 goto out;
1689 }
1690
1691 phy->min_cable_length = e1000_m88_cable_length_table[index];
1692 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1693
1694 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1695
1696 out:
1697 return ret_val;
1698 }
1699
igb_get_cable_length_m88_gen2(struct e1000_hw * hw)1700 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1701 {
1702 struct e1000_phy_info *phy = &hw->phy;
1703 s32 ret_val;
1704 u16 phy_data, phy_data2, index, default_page, is_cm;
1705 int len_tot = 0;
1706 u16 len_min;
1707 u16 len_max;
1708
1709 switch (hw->phy.id) {
1710 case M88E1543_E_PHY_ID:
1711 case M88E1512_E_PHY_ID:
1712 case I347AT4_E_PHY_ID:
1713 case I210_I_PHY_ID:
1714 /* Remember the original page select and set it to 7 */
1715 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1716 &default_page);
1717 if (ret_val)
1718 goto out;
1719
1720 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1721 if (ret_val)
1722 goto out;
1723
1724 /* Check if the unit of cable length is meters or cm */
1725 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1726 if (ret_val)
1727 goto out;
1728
1729 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1730
1731 /* Get cable length from Pair 0 length Regs */
1732 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data);
1733 if (ret_val)
1734 goto out;
1735
1736 phy->pair_length[0] = phy_data / (is_cm ? 100 : 1);
1737 len_tot = phy->pair_length[0];
1738 len_min = phy->pair_length[0];
1739 len_max = phy->pair_length[0];
1740
1741 /* Get cable length from Pair 1 length Regs */
1742 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data);
1743 if (ret_val)
1744 goto out;
1745
1746 phy->pair_length[1] = phy_data / (is_cm ? 100 : 1);
1747 len_tot += phy->pair_length[1];
1748 len_min = min(len_min, phy->pair_length[1]);
1749 len_max = max(len_max, phy->pair_length[1]);
1750
1751 /* Get cable length from Pair 2 length Regs */
1752 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data);
1753 if (ret_val)
1754 goto out;
1755
1756 phy->pair_length[2] = phy_data / (is_cm ? 100 : 1);
1757 len_tot += phy->pair_length[2];
1758 len_min = min(len_min, phy->pair_length[2]);
1759 len_max = max(len_max, phy->pair_length[2]);
1760
1761 /* Get cable length from Pair 3 length Regs */
1762 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data);
1763 if (ret_val)
1764 goto out;
1765
1766 phy->pair_length[3] = phy_data / (is_cm ? 100 : 1);
1767 len_tot += phy->pair_length[3];
1768 len_min = min(len_min, phy->pair_length[3]);
1769 len_max = max(len_max, phy->pair_length[3]);
1770
1771 /* Populate the phy structure with cable length in meters */
1772 phy->min_cable_length = len_min;
1773 phy->max_cable_length = len_max;
1774 phy->cable_length = len_tot / 4;
1775
1776 /* Reset the page selec to its original value */
1777 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1778 default_page);
1779 if (ret_val)
1780 goto out;
1781 break;
1782 case M88E1112_E_PHY_ID:
1783 /* Remember the original page select and set it to 5 */
1784 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1785 &default_page);
1786 if (ret_val)
1787 goto out;
1788
1789 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1790 if (ret_val)
1791 goto out;
1792
1793 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1794 &phy_data);
1795 if (ret_val)
1796 goto out;
1797
1798 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1799 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1800 if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1801 ret_val = -E1000_ERR_PHY;
1802 goto out;
1803 }
1804
1805 phy->min_cable_length = e1000_m88_cable_length_table[index];
1806 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1807
1808 phy->cable_length = (phy->min_cable_length +
1809 phy->max_cable_length) / 2;
1810
1811 /* Reset the page select to its original value */
1812 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1813 default_page);
1814 if (ret_val)
1815 goto out;
1816
1817 break;
1818 default:
1819 ret_val = -E1000_ERR_PHY;
1820 goto out;
1821 }
1822
1823 out:
1824 return ret_val;
1825 }
1826
1827 /**
1828 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1829 * @hw: pointer to the HW structure
1830 *
1831 * The automatic gain control (agc) normalizes the amplitude of the
1832 * received signal, adjusting for the attenuation produced by the
1833 * cable. By reading the AGC registers, which represent the
1834 * combination of coarse and fine gain value, the value can be put
1835 * into a lookup table to obtain the approximate cable length
1836 * for each channel.
1837 **/
igb_get_cable_length_igp_2(struct e1000_hw * hw)1838 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1839 {
1840 struct e1000_phy_info *phy = &hw->phy;
1841 s32 ret_val = 0;
1842 u16 phy_data, i, agc_value = 0;
1843 u16 cur_agc_index, max_agc_index = 0;
1844 u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1845 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1846 IGP02E1000_PHY_AGC_A,
1847 IGP02E1000_PHY_AGC_B,
1848 IGP02E1000_PHY_AGC_C,
1849 IGP02E1000_PHY_AGC_D
1850 };
1851
1852 /* Read the AGC registers for all channels */
1853 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1854 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1855 if (ret_val)
1856 goto out;
1857
1858 /* Getting bits 15:9, which represent the combination of
1859 * coarse and fine gain values. The result is a number
1860 * that can be put into the lookup table to obtain the
1861 * approximate cable length.
1862 */
1863 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1864 IGP02E1000_AGC_LENGTH_MASK;
1865
1866 /* Array index bound check. */
1867 if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1868 (cur_agc_index == 0)) {
1869 ret_val = -E1000_ERR_PHY;
1870 goto out;
1871 }
1872
1873 /* Remove min & max AGC values from calculation. */
1874 if (e1000_igp_2_cable_length_table[min_agc_index] >
1875 e1000_igp_2_cable_length_table[cur_agc_index])
1876 min_agc_index = cur_agc_index;
1877 if (e1000_igp_2_cable_length_table[max_agc_index] <
1878 e1000_igp_2_cable_length_table[cur_agc_index])
1879 max_agc_index = cur_agc_index;
1880
1881 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1882 }
1883
1884 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1885 e1000_igp_2_cable_length_table[max_agc_index]);
1886 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1887
1888 /* Calculate cable length with the error range of +/- 10 meters. */
1889 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1890 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1891 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1892
1893 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1894
1895 out:
1896 return ret_val;
1897 }
1898
1899 /**
1900 * igb_get_phy_info_m88 - Retrieve PHY information
1901 * @hw: pointer to the HW structure
1902 *
1903 * Valid for only copper links. Read the PHY status register (sticky read)
1904 * to verify that link is up. Read the PHY special control register to
1905 * determine the polarity and 10base-T extended distance. Read the PHY
1906 * special status register to determine MDI/MDIx and current speed. If
1907 * speed is 1000, then determine cable length, local and remote receiver.
1908 **/
igb_get_phy_info_m88(struct e1000_hw * hw)1909 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1910 {
1911 struct e1000_phy_info *phy = &hw->phy;
1912 s32 ret_val;
1913 u16 phy_data;
1914 bool link;
1915
1916 if (phy->media_type != e1000_media_type_copper) {
1917 hw_dbg("Phy info is only valid for copper media\n");
1918 ret_val = -E1000_ERR_CONFIG;
1919 goto out;
1920 }
1921
1922 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1923 if (ret_val)
1924 goto out;
1925
1926 if (!link) {
1927 hw_dbg("Phy info is only valid if link is up\n");
1928 ret_val = -E1000_ERR_CONFIG;
1929 goto out;
1930 }
1931
1932 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1933 if (ret_val)
1934 goto out;
1935
1936 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1937 ? true : false;
1938
1939 ret_val = igb_check_polarity_m88(hw);
1940 if (ret_val)
1941 goto out;
1942
1943 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1944 if (ret_val)
1945 goto out;
1946
1947 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1948
1949 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1950 ret_val = phy->ops.get_cable_length(hw);
1951 if (ret_val)
1952 goto out;
1953
1954 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1955 if (ret_val)
1956 goto out;
1957
1958 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1959 ? e1000_1000t_rx_status_ok
1960 : e1000_1000t_rx_status_not_ok;
1961
1962 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1963 ? e1000_1000t_rx_status_ok
1964 : e1000_1000t_rx_status_not_ok;
1965 } else {
1966 /* Set values to "undefined" */
1967 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1968 phy->local_rx = e1000_1000t_rx_status_undefined;
1969 phy->remote_rx = e1000_1000t_rx_status_undefined;
1970 }
1971
1972 out:
1973 return ret_val;
1974 }
1975
1976 /**
1977 * igb_get_phy_info_igp - Retrieve igp PHY information
1978 * @hw: pointer to the HW structure
1979 *
1980 * Read PHY status to determine if link is up. If link is up, then
1981 * set/determine 10base-T extended distance and polarity correction. Read
1982 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1983 * determine on the cable length, local and remote receiver.
1984 **/
igb_get_phy_info_igp(struct e1000_hw * hw)1985 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1986 {
1987 struct e1000_phy_info *phy = &hw->phy;
1988 s32 ret_val;
1989 u16 data;
1990 bool link;
1991
1992 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1993 if (ret_val)
1994 goto out;
1995
1996 if (!link) {
1997 hw_dbg("Phy info is only valid if link is up\n");
1998 ret_val = -E1000_ERR_CONFIG;
1999 goto out;
2000 }
2001
2002 phy->polarity_correction = true;
2003
2004 ret_val = igb_check_polarity_igp(hw);
2005 if (ret_val)
2006 goto out;
2007
2008 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2009 if (ret_val)
2010 goto out;
2011
2012 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2013
2014 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2015 IGP01E1000_PSSR_SPEED_1000MBPS) {
2016 ret_val = phy->ops.get_cable_length(hw);
2017 if (ret_val)
2018 goto out;
2019
2020 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2021 if (ret_val)
2022 goto out;
2023
2024 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2025 ? e1000_1000t_rx_status_ok
2026 : e1000_1000t_rx_status_not_ok;
2027
2028 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2029 ? e1000_1000t_rx_status_ok
2030 : e1000_1000t_rx_status_not_ok;
2031 } else {
2032 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2033 phy->local_rx = e1000_1000t_rx_status_undefined;
2034 phy->remote_rx = e1000_1000t_rx_status_undefined;
2035 }
2036
2037 out:
2038 return ret_val;
2039 }
2040
2041 /**
2042 * igb_phy_sw_reset - PHY software reset
2043 * @hw: pointer to the HW structure
2044 *
2045 * Does a software reset of the PHY by reading the PHY control register and
2046 * setting/write the control register reset bit to the PHY.
2047 **/
igb_phy_sw_reset(struct e1000_hw * hw)2048 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2049 {
2050 s32 ret_val = 0;
2051 u16 phy_ctrl;
2052
2053 if (!(hw->phy.ops.read_reg))
2054 goto out;
2055
2056 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2057 if (ret_val)
2058 goto out;
2059
2060 phy_ctrl |= MII_CR_RESET;
2061 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2062 if (ret_val)
2063 goto out;
2064
2065 udelay(1);
2066
2067 out:
2068 return ret_val;
2069 }
2070
2071 /**
2072 * igb_phy_hw_reset - PHY hardware reset
2073 * @hw: pointer to the HW structure
2074 *
2075 * Verify the reset block is not blocking us from resetting. Acquire
2076 * semaphore (if necessary) and read/set/write the device control reset
2077 * bit in the PHY. Wait the appropriate delay time for the device to
2078 * reset and release the semaphore (if necessary).
2079 **/
igb_phy_hw_reset(struct e1000_hw * hw)2080 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2081 {
2082 struct e1000_phy_info *phy = &hw->phy;
2083 s32 ret_val;
2084 u32 ctrl;
2085
2086 ret_val = igb_check_reset_block(hw);
2087 if (ret_val) {
2088 ret_val = 0;
2089 goto out;
2090 }
2091
2092 ret_val = phy->ops.acquire(hw);
2093 if (ret_val)
2094 goto out;
2095
2096 ctrl = rd32(E1000_CTRL);
2097 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2098 wrfl();
2099
2100 udelay(phy->reset_delay_us);
2101
2102 wr32(E1000_CTRL, ctrl);
2103 wrfl();
2104
2105 udelay(150);
2106
2107 phy->ops.release(hw);
2108
2109 ret_val = phy->ops.get_cfg_done(hw);
2110
2111 out:
2112 return ret_val;
2113 }
2114
2115 /**
2116 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2117 * @hw: pointer to the HW structure
2118 *
2119 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2120 **/
igb_phy_init_script_igp3(struct e1000_hw * hw)2121 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2122 {
2123 hw_dbg("Running IGP 3 PHY init script\n");
2124
2125 /* PHY init IGP 3 */
2126 /* Enable rise/fall, 10-mode work in class-A */
2127 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2128 /* Remove all caps from Replica path filter */
2129 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2130 /* Bias trimming for ADC, AFE and Driver (Default) */
2131 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2132 /* Increase Hybrid poly bias */
2133 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2134 /* Add 4% to TX amplitude in Giga mode */
2135 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2136 /* Disable trimming (TTT) */
2137 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2138 /* Poly DC correction to 94.6% + 2% for all channels */
2139 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2140 /* ABS DC correction to 95.9% */
2141 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2142 /* BG temp curve trim */
2143 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2144 /* Increasing ADC OPAMP stage 1 currents to max */
2145 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2146 /* Force 1000 ( required for enabling PHY regs configuration) */
2147 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2148 /* Set upd_freq to 6 */
2149 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2150 /* Disable NPDFE */
2151 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2152 /* Disable adaptive fixed FFE (Default) */
2153 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2154 /* Enable FFE hysteresis */
2155 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2156 /* Fixed FFE for short cable lengths */
2157 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2158 /* Fixed FFE for medium cable lengths */
2159 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2160 /* Fixed FFE for long cable lengths */
2161 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2162 /* Enable Adaptive Clip Threshold */
2163 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2164 /* AHT reset limit to 1 */
2165 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2166 /* Set AHT master delay to 127 msec */
2167 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2168 /* Set scan bits for AHT */
2169 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2170 /* Set AHT Preset bits */
2171 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2172 /* Change integ_factor of channel A to 3 */
2173 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2174 /* Change prop_factor of channels BCD to 8 */
2175 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2176 /* Change cg_icount + enable integbp for channels BCD */
2177 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2178 /* Change cg_icount + enable integbp + change prop_factor_master
2179 * to 8 for channel A
2180 */
2181 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2182 /* Disable AHT in Slave mode on channel A */
2183 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2184 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2185 * Enable SPD+B2B
2186 */
2187 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2188 /* Enable restart AN on an1000_dis change */
2189 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2190 /* Enable wh_fifo read clock in 10/100 modes */
2191 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2192 /* Restart AN, Speed selection is 1000 */
2193 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2194
2195 return 0;
2196 }
2197
2198 /**
2199 * igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2200 * @hw: pointer to the HW structure
2201 *
2202 * Initialize Marvel 1512 to work correctly with Avoton.
2203 **/
igb_initialize_M88E1512_phy(struct e1000_hw * hw)2204 s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2205 {
2206 struct e1000_phy_info *phy = &hw->phy;
2207 s32 ret_val = 0;
2208
2209 /* Switch to PHY page 0xFF. */
2210 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2211 if (ret_val)
2212 goto out;
2213
2214 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2215 if (ret_val)
2216 goto out;
2217
2218 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2219 if (ret_val)
2220 goto out;
2221
2222 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2223 if (ret_val)
2224 goto out;
2225
2226 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2227 if (ret_val)
2228 goto out;
2229
2230 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2231 if (ret_val)
2232 goto out;
2233
2234 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2235 if (ret_val)
2236 goto out;
2237
2238 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2239 if (ret_val)
2240 goto out;
2241
2242 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2243 if (ret_val)
2244 goto out;
2245
2246 /* Switch to PHY page 0xFB. */
2247 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2248 if (ret_val)
2249 goto out;
2250
2251 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2252 if (ret_val)
2253 goto out;
2254
2255 /* Switch to PHY page 0x12. */
2256 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2257 if (ret_val)
2258 goto out;
2259
2260 /* Change mode to SGMII-to-Copper */
2261 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2262 if (ret_val)
2263 goto out;
2264
2265 /* Return the PHY to page 0. */
2266 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2267 if (ret_val)
2268 goto out;
2269
2270 ret_val = igb_phy_sw_reset(hw);
2271 if (ret_val) {
2272 hw_dbg("Error committing the PHY changes\n");
2273 return ret_val;
2274 }
2275
2276 /* msec_delay(1000); */
2277 usleep_range(1000, 2000);
2278 out:
2279 return ret_val;
2280 }
2281
2282 /**
2283 * igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2284 * @hw: pointer to the HW structure
2285 *
2286 * Initialize Marvell 1543 to work correctly with Avoton.
2287 **/
igb_initialize_M88E1543_phy(struct e1000_hw * hw)2288 s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw)
2289 {
2290 struct e1000_phy_info *phy = &hw->phy;
2291 s32 ret_val = 0;
2292
2293 /* Switch to PHY page 0xFF. */
2294 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2295 if (ret_val)
2296 goto out;
2297
2298 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2299 if (ret_val)
2300 goto out;
2301
2302 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2303 if (ret_val)
2304 goto out;
2305
2306 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2307 if (ret_val)
2308 goto out;
2309
2310 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2311 if (ret_val)
2312 goto out;
2313
2314 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2315 if (ret_val)
2316 goto out;
2317
2318 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2319 if (ret_val)
2320 goto out;
2321
2322 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2323 if (ret_val)
2324 goto out;
2325
2326 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2327 if (ret_val)
2328 goto out;
2329
2330 /* Switch to PHY page 0xFB. */
2331 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2332 if (ret_val)
2333 goto out;
2334
2335 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D);
2336 if (ret_val)
2337 goto out;
2338
2339 /* Switch to PHY page 0x12. */
2340 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2341 if (ret_val)
2342 goto out;
2343
2344 /* Change mode to SGMII-to-Copper */
2345 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2346 if (ret_val)
2347 goto out;
2348
2349 /* Switch to PHY page 1. */
2350 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2351 if (ret_val)
2352 goto out;
2353
2354 /* Change mode to 1000BASE-X/SGMII and autoneg enable */
2355 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2356 if (ret_val)
2357 goto out;
2358
2359 /* Return the PHY to page 0. */
2360 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2361 if (ret_val)
2362 goto out;
2363
2364 ret_val = igb_phy_sw_reset(hw);
2365 if (ret_val) {
2366 hw_dbg("Error committing the PHY changes\n");
2367 return ret_val;
2368 }
2369
2370 /* msec_delay(1000); */
2371 usleep_range(1000, 2000);
2372 out:
2373 return ret_val;
2374 }
2375
2376 /**
2377 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2378 * @hw: pointer to the HW structure
2379 *
2380 * In the case of a PHY power down to save power, or to turn off link during a
2381 * driver unload, restore the link to previous settings.
2382 **/
igb_power_up_phy_copper(struct e1000_hw * hw)2383 void igb_power_up_phy_copper(struct e1000_hw *hw)
2384 {
2385 u16 mii_reg = 0;
2386
2387 /* The PHY will retain its settings across a power down/up cycle */
2388 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2389 mii_reg &= ~MII_CR_POWER_DOWN;
2390 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2391 }
2392
2393 /**
2394 * igb_power_down_phy_copper - Power down copper PHY
2395 * @hw: pointer to the HW structure
2396 *
2397 * Power down PHY to save power when interface is down and wake on lan
2398 * is not enabled.
2399 **/
igb_power_down_phy_copper(struct e1000_hw * hw)2400 void igb_power_down_phy_copper(struct e1000_hw *hw)
2401 {
2402 u16 mii_reg = 0;
2403
2404 /* The PHY will retain its settings across a power down/up cycle */
2405 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2406 mii_reg |= MII_CR_POWER_DOWN;
2407 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2408 usleep_range(1000, 2000);
2409 }
2410
2411 /**
2412 * igb_check_polarity_82580 - Checks the polarity.
2413 * @hw: pointer to the HW structure
2414 *
2415 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2416 *
2417 * Polarity is determined based on the PHY specific status register.
2418 **/
igb_check_polarity_82580(struct e1000_hw * hw)2419 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2420 {
2421 struct e1000_phy_info *phy = &hw->phy;
2422 s32 ret_val;
2423 u16 data;
2424
2425
2426 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2427
2428 if (!ret_val)
2429 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2430 ? e1000_rev_polarity_reversed
2431 : e1000_rev_polarity_normal;
2432
2433 return ret_val;
2434 }
2435
2436 /**
2437 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2438 * @hw: pointer to the HW structure
2439 *
2440 * Calls the PHY setup function to force speed and duplex. Clears the
2441 * auto-crossover to force MDI manually. Waits for link and returns
2442 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2443 **/
igb_phy_force_speed_duplex_82580(struct e1000_hw * hw)2444 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2445 {
2446 struct e1000_phy_info *phy = &hw->phy;
2447 s32 ret_val;
2448 u16 phy_data;
2449 bool link;
2450
2451 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2452 if (ret_val)
2453 goto out;
2454
2455 igb_phy_force_speed_duplex_setup(hw, &phy_data);
2456
2457 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2458 if (ret_val)
2459 goto out;
2460
2461 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2462 * forced whenever speed and duplex are forced.
2463 */
2464 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2465 if (ret_val)
2466 goto out;
2467
2468 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2469
2470 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2471 if (ret_val)
2472 goto out;
2473
2474 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2475
2476 udelay(1);
2477
2478 if (phy->autoneg_wait_to_complete) {
2479 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2480
2481 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2482 if (ret_val)
2483 goto out;
2484
2485 if (!link)
2486 hw_dbg("Link taking longer than expected.\n");
2487
2488 /* Try once more */
2489 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2490 if (ret_val)
2491 goto out;
2492 }
2493
2494 out:
2495 return ret_val;
2496 }
2497
2498 /**
2499 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2500 * @hw: pointer to the HW structure
2501 *
2502 * Read PHY status to determine if link is up. If link is up, then
2503 * set/determine 10base-T extended distance and polarity correction. Read
2504 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2505 * determine on the cable length, local and remote receiver.
2506 **/
igb_get_phy_info_82580(struct e1000_hw * hw)2507 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2508 {
2509 struct e1000_phy_info *phy = &hw->phy;
2510 s32 ret_val;
2511 u16 data;
2512 bool link;
2513
2514 ret_val = igb_phy_has_link(hw, 1, 0, &link);
2515 if (ret_val)
2516 goto out;
2517
2518 if (!link) {
2519 hw_dbg("Phy info is only valid if link is up\n");
2520 ret_val = -E1000_ERR_CONFIG;
2521 goto out;
2522 }
2523
2524 phy->polarity_correction = true;
2525
2526 ret_val = igb_check_polarity_82580(hw);
2527 if (ret_val)
2528 goto out;
2529
2530 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2531 if (ret_val)
2532 goto out;
2533
2534 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2535
2536 if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2537 I82580_PHY_STATUS2_SPEED_1000MBPS) {
2538 ret_val = hw->phy.ops.get_cable_length(hw);
2539 if (ret_val)
2540 goto out;
2541
2542 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2543 if (ret_val)
2544 goto out;
2545
2546 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2547 ? e1000_1000t_rx_status_ok
2548 : e1000_1000t_rx_status_not_ok;
2549
2550 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2551 ? e1000_1000t_rx_status_ok
2552 : e1000_1000t_rx_status_not_ok;
2553 } else {
2554 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2555 phy->local_rx = e1000_1000t_rx_status_undefined;
2556 phy->remote_rx = e1000_1000t_rx_status_undefined;
2557 }
2558
2559 out:
2560 return ret_val;
2561 }
2562
2563 /**
2564 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2565 * @hw: pointer to the HW structure
2566 *
2567 * Reads the diagnostic status register and verifies result is valid before
2568 * placing it in the phy_cable_length field.
2569 **/
igb_get_cable_length_82580(struct e1000_hw * hw)2570 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2571 {
2572 struct e1000_phy_info *phy = &hw->phy;
2573 s32 ret_val;
2574 u16 phy_data, length;
2575
2576 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2577 if (ret_val)
2578 goto out;
2579
2580 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2581 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2582
2583 if (length == E1000_CABLE_LENGTH_UNDEFINED)
2584 ret_val = -E1000_ERR_PHY;
2585
2586 phy->cable_length = length;
2587
2588 out:
2589 return ret_val;
2590 }
2591
2592 /**
2593 * igb_set_master_slave_mode - Setup PHY for Master/slave mode
2594 * @hw: pointer to the HW structure
2595 *
2596 * Sets up Master/slave mode
2597 **/
igb_set_master_slave_mode(struct e1000_hw * hw)2598 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2599 {
2600 s32 ret_val;
2601 u16 phy_data;
2602
2603 /* Resolve Master/Slave mode */
2604 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2605 if (ret_val)
2606 return ret_val;
2607
2608 /* load defaults for future use */
2609 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2610 ((phy_data & CR_1000T_MS_VALUE) ?
2611 e1000_ms_force_master :
2612 e1000_ms_force_slave) : e1000_ms_auto;
2613
2614 switch (hw->phy.ms_type) {
2615 case e1000_ms_force_master:
2616 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2617 break;
2618 case e1000_ms_force_slave:
2619 phy_data |= CR_1000T_MS_ENABLE;
2620 phy_data &= ~(CR_1000T_MS_VALUE);
2621 break;
2622 case e1000_ms_auto:
2623 phy_data &= ~CR_1000T_MS_ENABLE;
2624 /* fall-through */
2625 default:
2626 break;
2627 }
2628
2629 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2630 }
2631