1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2020 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bitops.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24 
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34 
ieee80211_rx_stats(struct net_device * dev,u32 len)35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38 
39 	u64_stats_update_begin(&tstats->syncp);
40 	tstats->rx_packets++;
41 	tstats->rx_bytes += len;
42 	u64_stats_update_end(&tstats->syncp);
43 }
44 
45 /*
46  * monitor mode reception
47  *
48  * This function cleans up the SKB, i.e. it removes all the stuff
49  * only useful for monitoring.
50  */
ieee80211_clean_skb(struct sk_buff * skb,unsigned int present_fcs_len,unsigned int rtap_space)51 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
52 					   unsigned int present_fcs_len,
53 					   unsigned int rtap_space)
54 {
55 	struct ieee80211_hdr *hdr;
56 	unsigned int hdrlen;
57 	__le16 fc;
58 
59 	if (present_fcs_len)
60 		__pskb_trim(skb, skb->len - present_fcs_len);
61 	__pskb_pull(skb, rtap_space);
62 
63 	hdr = (void *)skb->data;
64 	fc = hdr->frame_control;
65 
66 	/*
67 	 * Remove the HT-Control field (if present) on management
68 	 * frames after we've sent the frame to monitoring. We
69 	 * (currently) don't need it, and don't properly parse
70 	 * frames with it present, due to the assumption of a
71 	 * fixed management header length.
72 	 */
73 	if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
74 		return skb;
75 
76 	hdrlen = ieee80211_hdrlen(fc);
77 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
78 
79 	if (!pskb_may_pull(skb, hdrlen)) {
80 		dev_kfree_skb(skb);
81 		return NULL;
82 	}
83 
84 	memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
85 		hdrlen - IEEE80211_HT_CTL_LEN);
86 	__pskb_pull(skb, IEEE80211_HT_CTL_LEN);
87 
88 	return skb;
89 }
90 
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_space)91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
92 				     unsigned int rtap_space)
93 {
94 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
95 	struct ieee80211_hdr *hdr;
96 
97 	hdr = (void *)(skb->data + rtap_space);
98 
99 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
100 			    RX_FLAG_FAILED_PLCP_CRC |
101 			    RX_FLAG_ONLY_MONITOR |
102 			    RX_FLAG_NO_PSDU))
103 		return true;
104 
105 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
106 		return true;
107 
108 	if (ieee80211_is_ctl(hdr->frame_control) &&
109 	    !ieee80211_is_pspoll(hdr->frame_control) &&
110 	    !ieee80211_is_back_req(hdr->frame_control))
111 		return true;
112 
113 	return false;
114 }
115 
116 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
118 			     struct ieee80211_rx_status *status,
119 			     struct sk_buff *skb)
120 {
121 	int len;
122 
123 	/* always present fields */
124 	len = sizeof(struct ieee80211_radiotap_header) + 8;
125 
126 	/* allocate extra bitmaps */
127 	if (status->chains)
128 		len += 4 * hweight8(status->chains);
129 	/* vendor presence bitmap */
130 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
131 		len += 4;
132 
133 	if (ieee80211_have_rx_timestamp(status)) {
134 		len = ALIGN(len, 8);
135 		len += 8;
136 	}
137 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
138 		len += 1;
139 
140 	/* antenna field, if we don't have per-chain info */
141 	if (!status->chains)
142 		len += 1;
143 
144 	/* padding for RX_FLAGS if necessary */
145 	len = ALIGN(len, 2);
146 
147 	if (status->encoding == RX_ENC_HT) /* HT info */
148 		len += 3;
149 
150 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
151 		len = ALIGN(len, 4);
152 		len += 8;
153 	}
154 
155 	if (status->encoding == RX_ENC_VHT) {
156 		len = ALIGN(len, 2);
157 		len += 12;
158 	}
159 
160 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
161 		len = ALIGN(len, 8);
162 		len += 12;
163 	}
164 
165 	if (status->encoding == RX_ENC_HE &&
166 	    status->flag & RX_FLAG_RADIOTAP_HE) {
167 		len = ALIGN(len, 2);
168 		len += 12;
169 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
170 	}
171 
172 	if (status->encoding == RX_ENC_HE &&
173 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
174 		len = ALIGN(len, 2);
175 		len += 12;
176 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
177 	}
178 
179 	if (status->flag & RX_FLAG_NO_PSDU)
180 		len += 1;
181 
182 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
183 		len = ALIGN(len, 2);
184 		len += 4;
185 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
186 	}
187 
188 	if (status->chains) {
189 		/* antenna and antenna signal fields */
190 		len += 2 * hweight8(status->chains);
191 	}
192 
193 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 		struct ieee80211_vendor_radiotap *rtap;
195 		int vendor_data_offset = 0;
196 
197 		/*
198 		 * The position to look at depends on the existence (or non-
199 		 * existence) of other elements, so take that into account...
200 		 */
201 		if (status->flag & RX_FLAG_RADIOTAP_HE)
202 			vendor_data_offset +=
203 				sizeof(struct ieee80211_radiotap_he);
204 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
205 			vendor_data_offset +=
206 				sizeof(struct ieee80211_radiotap_he_mu);
207 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
208 			vendor_data_offset +=
209 				sizeof(struct ieee80211_radiotap_lsig);
210 
211 		rtap = (void *)&skb->data[vendor_data_offset];
212 
213 		/* alignment for fixed 6-byte vendor data header */
214 		len = ALIGN(len, 2);
215 		/* vendor data header */
216 		len += 6;
217 		if (WARN_ON(rtap->align == 0))
218 			rtap->align = 1;
219 		len = ALIGN(len, rtap->align);
220 		len += rtap->len + rtap->pad;
221 	}
222 
223 	return len;
224 }
225 
ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int rtap_space)226 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
227 					 struct sk_buff *skb,
228 					 int rtap_space)
229 {
230 	struct {
231 		struct ieee80211_hdr_3addr hdr;
232 		u8 category;
233 		u8 action_code;
234 	} __packed __aligned(2) action;
235 
236 	if (!sdata)
237 		return;
238 
239 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
240 
241 	if (skb->len < rtap_space + sizeof(action) +
242 		       VHT_MUMIMO_GROUPS_DATA_LEN)
243 		return;
244 
245 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
246 		return;
247 
248 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
249 
250 	if (!ieee80211_is_action(action.hdr.frame_control))
251 		return;
252 
253 	if (action.category != WLAN_CATEGORY_VHT)
254 		return;
255 
256 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
257 		return;
258 
259 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
260 		return;
261 
262 	skb = skb_copy(skb, GFP_ATOMIC);
263 	if (!skb)
264 		return;
265 
266 	skb_queue_tail(&sdata->skb_queue, skb);
267 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
268 }
269 
270 /*
271  * ieee80211_add_rx_radiotap_header - add radiotap header
272  *
273  * add a radiotap header containing all the fields which the hardware provided.
274  */
275 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)276 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
277 				 struct sk_buff *skb,
278 				 struct ieee80211_rate *rate,
279 				 int rtap_len, bool has_fcs)
280 {
281 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
282 	struct ieee80211_radiotap_header *rthdr;
283 	unsigned char *pos;
284 	__le32 *it_present;
285 	u32 it_present_val;
286 	u16 rx_flags = 0;
287 	u16 channel_flags = 0;
288 	int mpdulen, chain;
289 	unsigned long chains = status->chains;
290 	struct ieee80211_vendor_radiotap rtap = {};
291 	struct ieee80211_radiotap_he he = {};
292 	struct ieee80211_radiotap_he_mu he_mu = {};
293 	struct ieee80211_radiotap_lsig lsig = {};
294 
295 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
296 		he = *(struct ieee80211_radiotap_he *)skb->data;
297 		skb_pull(skb, sizeof(he));
298 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
299 	}
300 
301 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
302 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
303 		skb_pull(skb, sizeof(he_mu));
304 	}
305 
306 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
307 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
308 		skb_pull(skb, sizeof(lsig));
309 	}
310 
311 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
312 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
313 		/* rtap.len and rtap.pad are undone immediately */
314 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
315 	}
316 
317 	mpdulen = skb->len;
318 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
319 		mpdulen += FCS_LEN;
320 
321 	rthdr = skb_push(skb, rtap_len);
322 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
323 	it_present = &rthdr->it_present;
324 
325 	/* radiotap header, set always present flags */
326 	rthdr->it_len = cpu_to_le16(rtap_len);
327 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
328 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
329 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
330 
331 	if (!status->chains)
332 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
333 
334 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
335 		it_present_val |=
336 			BIT(IEEE80211_RADIOTAP_EXT) |
337 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
338 		put_unaligned_le32(it_present_val, it_present);
339 		it_present++;
340 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
341 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
342 	}
343 
344 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
345 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
346 				  BIT(IEEE80211_RADIOTAP_EXT);
347 		put_unaligned_le32(it_present_val, it_present);
348 		it_present++;
349 		it_present_val = rtap.present;
350 	}
351 
352 	put_unaligned_le32(it_present_val, it_present);
353 
354 	pos = (void *)(it_present + 1);
355 
356 	/* the order of the following fields is important */
357 
358 	/* IEEE80211_RADIOTAP_TSFT */
359 	if (ieee80211_have_rx_timestamp(status)) {
360 		/* padding */
361 		while ((pos - (u8 *)rthdr) & 7)
362 			*pos++ = 0;
363 		put_unaligned_le64(
364 			ieee80211_calculate_rx_timestamp(local, status,
365 							 mpdulen, 0),
366 			pos);
367 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
368 		pos += 8;
369 	}
370 
371 	/* IEEE80211_RADIOTAP_FLAGS */
372 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
373 		*pos |= IEEE80211_RADIOTAP_F_FCS;
374 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
375 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
376 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
377 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
378 	pos++;
379 
380 	/* IEEE80211_RADIOTAP_RATE */
381 	if (!rate || status->encoding != RX_ENC_LEGACY) {
382 		/*
383 		 * Without rate information don't add it. If we have,
384 		 * MCS information is a separate field in radiotap,
385 		 * added below. The byte here is needed as padding
386 		 * for the channel though, so initialise it to 0.
387 		 */
388 		*pos = 0;
389 	} else {
390 		int shift = 0;
391 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
392 		if (status->bw == RATE_INFO_BW_10)
393 			shift = 1;
394 		else if (status->bw == RATE_INFO_BW_5)
395 			shift = 2;
396 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
397 	}
398 	pos++;
399 
400 	/* IEEE80211_RADIOTAP_CHANNEL */
401 	/* TODO: frequency offset in KHz */
402 	put_unaligned_le16(status->freq, pos);
403 	pos += 2;
404 	if (status->bw == RATE_INFO_BW_10)
405 		channel_flags |= IEEE80211_CHAN_HALF;
406 	else if (status->bw == RATE_INFO_BW_5)
407 		channel_flags |= IEEE80211_CHAN_QUARTER;
408 
409 	if (status->band == NL80211_BAND_5GHZ ||
410 	    status->band == NL80211_BAND_6GHZ)
411 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
412 	else if (status->encoding != RX_ENC_LEGACY)
413 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
414 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
415 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
416 	else if (rate)
417 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
418 	else
419 		channel_flags |= IEEE80211_CHAN_2GHZ;
420 	put_unaligned_le16(channel_flags, pos);
421 	pos += 2;
422 
423 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
424 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
425 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
426 		*pos = status->signal;
427 		rthdr->it_present |=
428 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
429 		pos++;
430 	}
431 
432 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
433 
434 	if (!status->chains) {
435 		/* IEEE80211_RADIOTAP_ANTENNA */
436 		*pos = status->antenna;
437 		pos++;
438 	}
439 
440 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
441 
442 	/* IEEE80211_RADIOTAP_RX_FLAGS */
443 	/* ensure 2 byte alignment for the 2 byte field as required */
444 	if ((pos - (u8 *)rthdr) & 1)
445 		*pos++ = 0;
446 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
447 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
448 	put_unaligned_le16(rx_flags, pos);
449 	pos += 2;
450 
451 	if (status->encoding == RX_ENC_HT) {
452 		unsigned int stbc;
453 
454 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
455 		*pos++ = local->hw.radiotap_mcs_details;
456 		*pos = 0;
457 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
458 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
459 		if (status->bw == RATE_INFO_BW_40)
460 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
461 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
462 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
463 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
464 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
465 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
466 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
467 		pos++;
468 		*pos++ = status->rate_idx;
469 	}
470 
471 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
472 		u16 flags = 0;
473 
474 		/* ensure 4 byte alignment */
475 		while ((pos - (u8 *)rthdr) & 3)
476 			pos++;
477 		rthdr->it_present |=
478 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
479 		put_unaligned_le32(status->ampdu_reference, pos);
480 		pos += 4;
481 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
482 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
483 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
484 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
485 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
486 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
487 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
488 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
489 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
490 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
491 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
492 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
493 		put_unaligned_le16(flags, pos);
494 		pos += 2;
495 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
496 			*pos++ = status->ampdu_delimiter_crc;
497 		else
498 			*pos++ = 0;
499 		*pos++ = 0;
500 	}
501 
502 	if (status->encoding == RX_ENC_VHT) {
503 		u16 known = local->hw.radiotap_vht_details;
504 
505 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
506 		put_unaligned_le16(known, pos);
507 		pos += 2;
508 		/* flags */
509 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
510 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
511 		/* in VHT, STBC is binary */
512 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
513 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
514 		if (status->enc_flags & RX_ENC_FLAG_BF)
515 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
516 		pos++;
517 		/* bandwidth */
518 		switch (status->bw) {
519 		case RATE_INFO_BW_80:
520 			*pos++ = 4;
521 			break;
522 		case RATE_INFO_BW_160:
523 			*pos++ = 11;
524 			break;
525 		case RATE_INFO_BW_40:
526 			*pos++ = 1;
527 			break;
528 		default:
529 			*pos++ = 0;
530 		}
531 		/* MCS/NSS */
532 		*pos = (status->rate_idx << 4) | status->nss;
533 		pos += 4;
534 		/* coding field */
535 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
536 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
537 		pos++;
538 		/* group ID */
539 		pos++;
540 		/* partial_aid */
541 		pos += 2;
542 	}
543 
544 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
545 		u16 accuracy = 0;
546 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
547 
548 		rthdr->it_present |=
549 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
550 
551 		/* ensure 8 byte alignment */
552 		while ((pos - (u8 *)rthdr) & 7)
553 			pos++;
554 
555 		put_unaligned_le64(status->device_timestamp, pos);
556 		pos += sizeof(u64);
557 
558 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
559 			accuracy = local->hw.radiotap_timestamp.accuracy;
560 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
561 		}
562 		put_unaligned_le16(accuracy, pos);
563 		pos += sizeof(u16);
564 
565 		*pos++ = local->hw.radiotap_timestamp.units_pos;
566 		*pos++ = flags;
567 	}
568 
569 	if (status->encoding == RX_ENC_HE &&
570 	    status->flag & RX_FLAG_RADIOTAP_HE) {
571 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
572 
573 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
574 			he.data6 |= HE_PREP(DATA6_NSTS,
575 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
576 						      status->enc_flags));
577 			he.data3 |= HE_PREP(DATA3_STBC, 1);
578 		} else {
579 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
580 		}
581 
582 #define CHECK_GI(s) \
583 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
584 		     (int)NL80211_RATE_INFO_HE_GI_##s)
585 
586 		CHECK_GI(0_8);
587 		CHECK_GI(1_6);
588 		CHECK_GI(3_2);
589 
590 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
591 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
592 		he.data3 |= HE_PREP(DATA3_CODING,
593 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
594 
595 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
596 
597 		switch (status->bw) {
598 		case RATE_INFO_BW_20:
599 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
600 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
601 			break;
602 		case RATE_INFO_BW_40:
603 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
604 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
605 			break;
606 		case RATE_INFO_BW_80:
607 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
608 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
609 			break;
610 		case RATE_INFO_BW_160:
611 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
612 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
613 			break;
614 		case RATE_INFO_BW_HE_RU:
615 #define CHECK_RU_ALLOC(s) \
616 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
617 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
618 
619 			CHECK_RU_ALLOC(26);
620 			CHECK_RU_ALLOC(52);
621 			CHECK_RU_ALLOC(106);
622 			CHECK_RU_ALLOC(242);
623 			CHECK_RU_ALLOC(484);
624 			CHECK_RU_ALLOC(996);
625 			CHECK_RU_ALLOC(2x996);
626 
627 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
628 					    status->he_ru + 4);
629 			break;
630 		default:
631 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
632 		}
633 
634 		/* ensure 2 byte alignment */
635 		while ((pos - (u8 *)rthdr) & 1)
636 			pos++;
637 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
638 		memcpy(pos, &he, sizeof(he));
639 		pos += sizeof(he);
640 	}
641 
642 	if (status->encoding == RX_ENC_HE &&
643 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
644 		/* ensure 2 byte alignment */
645 		while ((pos - (u8 *)rthdr) & 1)
646 			pos++;
647 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
648 		memcpy(pos, &he_mu, sizeof(he_mu));
649 		pos += sizeof(he_mu);
650 	}
651 
652 	if (status->flag & RX_FLAG_NO_PSDU) {
653 		rthdr->it_present |=
654 			cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
655 		*pos++ = status->zero_length_psdu_type;
656 	}
657 
658 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
659 		/* ensure 2 byte alignment */
660 		while ((pos - (u8 *)rthdr) & 1)
661 			pos++;
662 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
663 		memcpy(pos, &lsig, sizeof(lsig));
664 		pos += sizeof(lsig);
665 	}
666 
667 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
668 		*pos++ = status->chain_signal[chain];
669 		*pos++ = chain;
670 	}
671 
672 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
673 		/* ensure 2 byte alignment for the vendor field as required */
674 		if ((pos - (u8 *)rthdr) & 1)
675 			*pos++ = 0;
676 		*pos++ = rtap.oui[0];
677 		*pos++ = rtap.oui[1];
678 		*pos++ = rtap.oui[2];
679 		*pos++ = rtap.subns;
680 		put_unaligned_le16(rtap.len, pos);
681 		pos += 2;
682 		/* align the actual payload as requested */
683 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
684 			*pos++ = 0;
685 		/* data (and possible padding) already follows */
686 	}
687 }
688 
689 static struct sk_buff *
ieee80211_make_monitor_skb(struct ieee80211_local * local,struct sk_buff ** origskb,struct ieee80211_rate * rate,int rtap_space,bool use_origskb)690 ieee80211_make_monitor_skb(struct ieee80211_local *local,
691 			   struct sk_buff **origskb,
692 			   struct ieee80211_rate *rate,
693 			   int rtap_space, bool use_origskb)
694 {
695 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
696 	int rt_hdrlen, needed_headroom;
697 	struct sk_buff *skb;
698 
699 	/* room for the radiotap header based on driver features */
700 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
701 	needed_headroom = rt_hdrlen - rtap_space;
702 
703 	if (use_origskb) {
704 		/* only need to expand headroom if necessary */
705 		skb = *origskb;
706 		*origskb = NULL;
707 
708 		/*
709 		 * This shouldn't trigger often because most devices have an
710 		 * RX header they pull before we get here, and that should
711 		 * be big enough for our radiotap information. We should
712 		 * probably export the length to drivers so that we can have
713 		 * them allocate enough headroom to start with.
714 		 */
715 		if (skb_headroom(skb) < needed_headroom &&
716 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
717 			dev_kfree_skb(skb);
718 			return NULL;
719 		}
720 	} else {
721 		/*
722 		 * Need to make a copy and possibly remove radiotap header
723 		 * and FCS from the original.
724 		 */
725 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
726 
727 		if (!skb)
728 			return NULL;
729 	}
730 
731 	/* prepend radiotap information */
732 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
733 
734 	skb_reset_mac_header(skb);
735 	skb->ip_summed = CHECKSUM_UNNECESSARY;
736 	skb->pkt_type = PACKET_OTHERHOST;
737 	skb->protocol = htons(ETH_P_802_2);
738 
739 	return skb;
740 }
741 
742 /*
743  * This function copies a received frame to all monitor interfaces and
744  * returns a cleaned-up SKB that no longer includes the FCS nor the
745  * radiotap header the driver might have added.
746  */
747 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)748 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
749 		     struct ieee80211_rate *rate)
750 {
751 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
752 	struct ieee80211_sub_if_data *sdata;
753 	struct sk_buff *monskb = NULL;
754 	int present_fcs_len = 0;
755 	unsigned int rtap_space = 0;
756 	struct ieee80211_sub_if_data *monitor_sdata =
757 		rcu_dereference(local->monitor_sdata);
758 	bool only_monitor = false;
759 	unsigned int min_head_len;
760 
761 	if (status->flag & RX_FLAG_RADIOTAP_HE)
762 		rtap_space += sizeof(struct ieee80211_radiotap_he);
763 
764 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
765 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
766 
767 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
768 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
769 
770 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
771 		struct ieee80211_vendor_radiotap *rtap =
772 			(void *)(origskb->data + rtap_space);
773 
774 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
775 	}
776 
777 	min_head_len = rtap_space;
778 
779 	/*
780 	 * First, we may need to make a copy of the skb because
781 	 *  (1) we need to modify it for radiotap (if not present), and
782 	 *  (2) the other RX handlers will modify the skb we got.
783 	 *
784 	 * We don't need to, of course, if we aren't going to return
785 	 * the SKB because it has a bad FCS/PLCP checksum.
786 	 */
787 
788 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
789 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
790 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
791 				/* driver bug */
792 				WARN_ON(1);
793 				dev_kfree_skb(origskb);
794 				return NULL;
795 			}
796 			present_fcs_len = FCS_LEN;
797 		}
798 
799 		/* also consider the hdr->frame_control */
800 		min_head_len += 2;
801 	}
802 
803 	/* ensure that the expected data elements are in skb head */
804 	if (!pskb_may_pull(origskb, min_head_len)) {
805 		dev_kfree_skb(origskb);
806 		return NULL;
807 	}
808 
809 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
810 
811 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
812 		if (only_monitor) {
813 			dev_kfree_skb(origskb);
814 			return NULL;
815 		}
816 
817 		return ieee80211_clean_skb(origskb, present_fcs_len,
818 					   rtap_space);
819 	}
820 
821 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
822 
823 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
824 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
825 						 &local->mon_list);
826 
827 		if (!monskb)
828 			monskb = ieee80211_make_monitor_skb(local, &origskb,
829 							    rate, rtap_space,
830 							    only_monitor &&
831 							    last_monitor);
832 
833 		if (monskb) {
834 			struct sk_buff *skb;
835 
836 			if (last_monitor) {
837 				skb = monskb;
838 				monskb = NULL;
839 			} else {
840 				skb = skb_clone(monskb, GFP_ATOMIC);
841 			}
842 
843 			if (skb) {
844 				skb->dev = sdata->dev;
845 				ieee80211_rx_stats(skb->dev, skb->len);
846 				netif_receive_skb(skb);
847 			}
848 		}
849 
850 		if (last_monitor)
851 			break;
852 	}
853 
854 	/* this happens if last_monitor was erroneously false */
855 	dev_kfree_skb(monskb);
856 
857 	/* ditto */
858 	if (!origskb)
859 		return NULL;
860 
861 	return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
862 }
863 
ieee80211_parse_qos(struct ieee80211_rx_data * rx)864 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
865 {
866 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
867 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
868 	int tid, seqno_idx, security_idx;
869 
870 	/* does the frame have a qos control field? */
871 	if (ieee80211_is_data_qos(hdr->frame_control)) {
872 		u8 *qc = ieee80211_get_qos_ctl(hdr);
873 		/* frame has qos control */
874 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
875 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
876 			status->rx_flags |= IEEE80211_RX_AMSDU;
877 
878 		seqno_idx = tid;
879 		security_idx = tid;
880 	} else {
881 		/*
882 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
883 		 *
884 		 *	Sequence numbers for management frames, QoS data
885 		 *	frames with a broadcast/multicast address in the
886 		 *	Address 1 field, and all non-QoS data frames sent
887 		 *	by QoS STAs are assigned using an additional single
888 		 *	modulo-4096 counter, [...]
889 		 *
890 		 * We also use that counter for non-QoS STAs.
891 		 */
892 		seqno_idx = IEEE80211_NUM_TIDS;
893 		security_idx = 0;
894 		if (ieee80211_is_mgmt(hdr->frame_control))
895 			security_idx = IEEE80211_NUM_TIDS;
896 		tid = 0;
897 	}
898 
899 	rx->seqno_idx = seqno_idx;
900 	rx->security_idx = security_idx;
901 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
902 	 * For now, set skb->priority to 0 for other cases. */
903 	rx->skb->priority = (tid > 7) ? 0 : tid;
904 }
905 
906 /**
907  * DOC: Packet alignment
908  *
909  * Drivers always need to pass packets that are aligned to two-byte boundaries
910  * to the stack.
911  *
912  * Additionally, should, if possible, align the payload data in a way that
913  * guarantees that the contained IP header is aligned to a four-byte
914  * boundary. In the case of regular frames, this simply means aligning the
915  * payload to a four-byte boundary (because either the IP header is directly
916  * contained, or IV/RFC1042 headers that have a length divisible by four are
917  * in front of it).  If the payload data is not properly aligned and the
918  * architecture doesn't support efficient unaligned operations, mac80211
919  * will align the data.
920  *
921  * With A-MSDU frames, however, the payload data address must yield two modulo
922  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
923  * push the IP header further back to a multiple of four again. Thankfully, the
924  * specs were sane enough this time around to require padding each A-MSDU
925  * subframe to a length that is a multiple of four.
926  *
927  * Padding like Atheros hardware adds which is between the 802.11 header and
928  * the payload is not supported, the driver is required to move the 802.11
929  * header to be directly in front of the payload in that case.
930  */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)931 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
932 {
933 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
934 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
935 #endif
936 }
937 
938 
939 /* rx handlers */
940 
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)941 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
942 {
943 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
944 
945 	if (is_multicast_ether_addr(hdr->addr1))
946 		return 0;
947 
948 	return ieee80211_is_robust_mgmt_frame(skb);
949 }
950 
951 
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)952 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
953 {
954 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
955 
956 	if (!is_multicast_ether_addr(hdr->addr1))
957 		return 0;
958 
959 	return ieee80211_is_robust_mgmt_frame(skb);
960 }
961 
962 
963 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)964 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
965 {
966 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
967 	struct ieee80211_mmie *mmie;
968 	struct ieee80211_mmie_16 *mmie16;
969 
970 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
971 		return -1;
972 
973 	if (!ieee80211_is_robust_mgmt_frame(skb) &&
974 	    !ieee80211_is_beacon(hdr->frame_control))
975 		return -1; /* not a robust management frame */
976 
977 	mmie = (struct ieee80211_mmie *)
978 		(skb->data + skb->len - sizeof(*mmie));
979 	if (mmie->element_id == WLAN_EID_MMIE &&
980 	    mmie->length == sizeof(*mmie) - 2)
981 		return le16_to_cpu(mmie->key_id);
982 
983 	mmie16 = (struct ieee80211_mmie_16 *)
984 		(skb->data + skb->len - sizeof(*mmie16));
985 	if (skb->len >= 24 + sizeof(*mmie16) &&
986 	    mmie16->element_id == WLAN_EID_MMIE &&
987 	    mmie16->length == sizeof(*mmie16) - 2)
988 		return le16_to_cpu(mmie16->key_id);
989 
990 	return -1;
991 }
992 
ieee80211_get_keyid(struct sk_buff * skb,const struct ieee80211_cipher_scheme * cs)993 static int ieee80211_get_keyid(struct sk_buff *skb,
994 			       const struct ieee80211_cipher_scheme *cs)
995 {
996 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
997 	__le16 fc;
998 	int hdrlen;
999 	int minlen;
1000 	u8 key_idx_off;
1001 	u8 key_idx_shift;
1002 	u8 keyid;
1003 
1004 	fc = hdr->frame_control;
1005 	hdrlen = ieee80211_hdrlen(fc);
1006 
1007 	if (cs) {
1008 		minlen = hdrlen + cs->hdr_len;
1009 		key_idx_off = hdrlen + cs->key_idx_off;
1010 		key_idx_shift = cs->key_idx_shift;
1011 	} else {
1012 		/* WEP, TKIP, CCMP and GCMP */
1013 		minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1014 		key_idx_off = hdrlen + 3;
1015 		key_idx_shift = 6;
1016 	}
1017 
1018 	if (unlikely(skb->len < minlen))
1019 		return -EINVAL;
1020 
1021 	skb_copy_bits(skb, key_idx_off, &keyid, 1);
1022 
1023 	if (cs)
1024 		keyid &= cs->key_idx_mask;
1025 	keyid >>= key_idx_shift;
1026 
1027 	/* cs could use more than the usual two bits for the keyid */
1028 	if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1029 		return -EINVAL;
1030 
1031 	return keyid;
1032 }
1033 
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)1034 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1035 {
1036 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1037 	char *dev_addr = rx->sdata->vif.addr;
1038 
1039 	if (ieee80211_is_data(hdr->frame_control)) {
1040 		if (is_multicast_ether_addr(hdr->addr1)) {
1041 			if (ieee80211_has_tods(hdr->frame_control) ||
1042 			    !ieee80211_has_fromds(hdr->frame_control))
1043 				return RX_DROP_MONITOR;
1044 			if (ether_addr_equal(hdr->addr3, dev_addr))
1045 				return RX_DROP_MONITOR;
1046 		} else {
1047 			if (!ieee80211_has_a4(hdr->frame_control))
1048 				return RX_DROP_MONITOR;
1049 			if (ether_addr_equal(hdr->addr4, dev_addr))
1050 				return RX_DROP_MONITOR;
1051 		}
1052 	}
1053 
1054 	/* If there is not an established peer link and this is not a peer link
1055 	 * establisment frame, beacon or probe, drop the frame.
1056 	 */
1057 
1058 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1059 		struct ieee80211_mgmt *mgmt;
1060 
1061 		if (!ieee80211_is_mgmt(hdr->frame_control))
1062 			return RX_DROP_MONITOR;
1063 
1064 		if (ieee80211_is_action(hdr->frame_control)) {
1065 			u8 category;
1066 
1067 			/* make sure category field is present */
1068 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1069 				return RX_DROP_MONITOR;
1070 
1071 			mgmt = (struct ieee80211_mgmt *)hdr;
1072 			category = mgmt->u.action.category;
1073 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1074 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1075 				return RX_DROP_MONITOR;
1076 			return RX_CONTINUE;
1077 		}
1078 
1079 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1080 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1081 		    ieee80211_is_beacon(hdr->frame_control) ||
1082 		    ieee80211_is_auth(hdr->frame_control))
1083 			return RX_CONTINUE;
1084 
1085 		return RX_DROP_MONITOR;
1086 	}
1087 
1088 	return RX_CONTINUE;
1089 }
1090 
ieee80211_rx_reorder_ready(struct tid_ampdu_rx * tid_agg_rx,int index)1091 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1092 					      int index)
1093 {
1094 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1095 	struct sk_buff *tail = skb_peek_tail(frames);
1096 	struct ieee80211_rx_status *status;
1097 
1098 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1099 		return true;
1100 
1101 	if (!tail)
1102 		return false;
1103 
1104 	status = IEEE80211_SKB_RXCB(tail);
1105 	if (status->flag & RX_FLAG_AMSDU_MORE)
1106 		return false;
1107 
1108 	return true;
1109 }
1110 
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)1111 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1112 					    struct tid_ampdu_rx *tid_agg_rx,
1113 					    int index,
1114 					    struct sk_buff_head *frames)
1115 {
1116 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1117 	struct sk_buff *skb;
1118 	struct ieee80211_rx_status *status;
1119 
1120 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1121 
1122 	if (skb_queue_empty(skb_list))
1123 		goto no_frame;
1124 
1125 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1126 		__skb_queue_purge(skb_list);
1127 		goto no_frame;
1128 	}
1129 
1130 	/* release frames from the reorder ring buffer */
1131 	tid_agg_rx->stored_mpdu_num--;
1132 	while ((skb = __skb_dequeue(skb_list))) {
1133 		status = IEEE80211_SKB_RXCB(skb);
1134 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1135 		__skb_queue_tail(frames, skb);
1136 	}
1137 
1138 no_frame:
1139 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1140 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1141 }
1142 
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)1143 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1144 					     struct tid_ampdu_rx *tid_agg_rx,
1145 					     u16 head_seq_num,
1146 					     struct sk_buff_head *frames)
1147 {
1148 	int index;
1149 
1150 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1151 
1152 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1153 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1154 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1155 						frames);
1156 	}
1157 }
1158 
1159 /*
1160  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1161  * the skb was added to the buffer longer than this time ago, the earlier
1162  * frames that have not yet been received are assumed to be lost and the skb
1163  * can be released for processing. This may also release other skb's from the
1164  * reorder buffer if there are no additional gaps between the frames.
1165  *
1166  * Callers must hold tid_agg_rx->reorder_lock.
1167  */
1168 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1169 
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)1170 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1171 					  struct tid_ampdu_rx *tid_agg_rx,
1172 					  struct sk_buff_head *frames)
1173 {
1174 	int index, i, j;
1175 
1176 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1177 
1178 	/* release the buffer until next missing frame */
1179 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1180 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1181 	    tid_agg_rx->stored_mpdu_num) {
1182 		/*
1183 		 * No buffers ready to be released, but check whether any
1184 		 * frames in the reorder buffer have timed out.
1185 		 */
1186 		int skipped = 1;
1187 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1188 		     j = (j + 1) % tid_agg_rx->buf_size) {
1189 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1190 				skipped++;
1191 				continue;
1192 			}
1193 			if (skipped &&
1194 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1195 					HT_RX_REORDER_BUF_TIMEOUT))
1196 				goto set_release_timer;
1197 
1198 			/* don't leave incomplete A-MSDUs around */
1199 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1200 			     i = (i + 1) % tid_agg_rx->buf_size)
1201 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1202 
1203 			ht_dbg_ratelimited(sdata,
1204 					   "release an RX reorder frame due to timeout on earlier frames\n");
1205 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1206 							frames);
1207 
1208 			/*
1209 			 * Increment the head seq# also for the skipped slots.
1210 			 */
1211 			tid_agg_rx->head_seq_num =
1212 				(tid_agg_rx->head_seq_num +
1213 				 skipped) & IEEE80211_SN_MASK;
1214 			skipped = 0;
1215 		}
1216 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1217 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1218 						frames);
1219 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1220 	}
1221 
1222 	if (tid_agg_rx->stored_mpdu_num) {
1223 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1224 
1225 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1226 		     j = (j + 1) % tid_agg_rx->buf_size) {
1227 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1228 				break;
1229 		}
1230 
1231  set_release_timer:
1232 
1233 		if (!tid_agg_rx->removed)
1234 			mod_timer(&tid_agg_rx->reorder_timer,
1235 				  tid_agg_rx->reorder_time[j] + 1 +
1236 				  HT_RX_REORDER_BUF_TIMEOUT);
1237 	} else {
1238 		del_timer(&tid_agg_rx->reorder_timer);
1239 	}
1240 }
1241 
1242 /*
1243  * As this function belongs to the RX path it must be under
1244  * rcu_read_lock protection. It returns false if the frame
1245  * can be processed immediately, true if it was consumed.
1246  */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)1247 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1248 					     struct tid_ampdu_rx *tid_agg_rx,
1249 					     struct sk_buff *skb,
1250 					     struct sk_buff_head *frames)
1251 {
1252 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1253 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1254 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1255 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1256 	u16 head_seq_num, buf_size;
1257 	int index;
1258 	bool ret = true;
1259 
1260 	spin_lock(&tid_agg_rx->reorder_lock);
1261 
1262 	/*
1263 	 * Offloaded BA sessions have no known starting sequence number so pick
1264 	 * one from first Rxed frame for this tid after BA was started.
1265 	 */
1266 	if (unlikely(tid_agg_rx->auto_seq)) {
1267 		tid_agg_rx->auto_seq = false;
1268 		tid_agg_rx->ssn = mpdu_seq_num;
1269 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1270 	}
1271 
1272 	buf_size = tid_agg_rx->buf_size;
1273 	head_seq_num = tid_agg_rx->head_seq_num;
1274 
1275 	/*
1276 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1277 	 * be reordered.
1278 	 */
1279 	if (unlikely(!tid_agg_rx->started)) {
1280 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1281 			ret = false;
1282 			goto out;
1283 		}
1284 		tid_agg_rx->started = true;
1285 	}
1286 
1287 	/* frame with out of date sequence number */
1288 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1289 		dev_kfree_skb(skb);
1290 		goto out;
1291 	}
1292 
1293 	/*
1294 	 * If frame the sequence number exceeds our buffering window
1295 	 * size release some previous frames to make room for this one.
1296 	 */
1297 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1298 		head_seq_num = ieee80211_sn_inc(
1299 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1300 		/* release stored frames up to new head to stack */
1301 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1302 						 head_seq_num, frames);
1303 	}
1304 
1305 	/* Now the new frame is always in the range of the reordering buffer */
1306 
1307 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1308 
1309 	/* check if we already stored this frame */
1310 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1311 		dev_kfree_skb(skb);
1312 		goto out;
1313 	}
1314 
1315 	/*
1316 	 * If the current MPDU is in the right order and nothing else
1317 	 * is stored we can process it directly, no need to buffer it.
1318 	 * If it is first but there's something stored, we may be able
1319 	 * to release frames after this one.
1320 	 */
1321 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1322 	    tid_agg_rx->stored_mpdu_num == 0) {
1323 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1324 			tid_agg_rx->head_seq_num =
1325 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1326 		ret = false;
1327 		goto out;
1328 	}
1329 
1330 	/* put the frame in the reordering buffer */
1331 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1332 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1333 		tid_agg_rx->reorder_time[index] = jiffies;
1334 		tid_agg_rx->stored_mpdu_num++;
1335 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1336 	}
1337 
1338  out:
1339 	spin_unlock(&tid_agg_rx->reorder_lock);
1340 	return ret;
1341 }
1342 
1343 /*
1344  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1345  * true if the MPDU was buffered, false if it should be processed.
1346  */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1347 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1348 				       struct sk_buff_head *frames)
1349 {
1350 	struct sk_buff *skb = rx->skb;
1351 	struct ieee80211_local *local = rx->local;
1352 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1353 	struct sta_info *sta = rx->sta;
1354 	struct tid_ampdu_rx *tid_agg_rx;
1355 	u16 sc;
1356 	u8 tid, ack_policy;
1357 
1358 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1359 	    is_multicast_ether_addr(hdr->addr1))
1360 		goto dont_reorder;
1361 
1362 	/*
1363 	 * filter the QoS data rx stream according to
1364 	 * STA/TID and check if this STA/TID is on aggregation
1365 	 */
1366 
1367 	if (!sta)
1368 		goto dont_reorder;
1369 
1370 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1371 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1372 	tid = ieee80211_get_tid(hdr);
1373 
1374 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1375 	if (!tid_agg_rx) {
1376 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1377 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1378 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1379 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1380 					     WLAN_BACK_RECIPIENT,
1381 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1382 		goto dont_reorder;
1383 	}
1384 
1385 	/* qos null data frames are excluded */
1386 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1387 		goto dont_reorder;
1388 
1389 	/* not part of a BA session */
1390 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1391 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1392 		goto dont_reorder;
1393 
1394 	/* new, potentially un-ordered, ampdu frame - process it */
1395 
1396 	/* reset session timer */
1397 	if (tid_agg_rx->timeout)
1398 		tid_agg_rx->last_rx = jiffies;
1399 
1400 	/* if this mpdu is fragmented - terminate rx aggregation session */
1401 	sc = le16_to_cpu(hdr->seq_ctrl);
1402 	if (sc & IEEE80211_SCTL_FRAG) {
1403 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1404 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1405 		return;
1406 	}
1407 
1408 	/*
1409 	 * No locking needed -- we will only ever process one
1410 	 * RX packet at a time, and thus own tid_agg_rx. All
1411 	 * other code manipulating it needs to (and does) make
1412 	 * sure that we cannot get to it any more before doing
1413 	 * anything with it.
1414 	 */
1415 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1416 					     frames))
1417 		return;
1418 
1419  dont_reorder:
1420 	__skb_queue_tail(frames, skb);
1421 }
1422 
1423 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1424 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1425 {
1426 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1427 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1428 
1429 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1430 		return RX_CONTINUE;
1431 
1432 	/*
1433 	 * Drop duplicate 802.11 retransmissions
1434 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1435 	 */
1436 
1437 	if (rx->skb->len < 24)
1438 		return RX_CONTINUE;
1439 
1440 	if (ieee80211_is_ctl(hdr->frame_control) ||
1441 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1442 	    is_multicast_ether_addr(hdr->addr1))
1443 		return RX_CONTINUE;
1444 
1445 	if (!rx->sta)
1446 		return RX_CONTINUE;
1447 
1448 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1449 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1450 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1451 		rx->sta->rx_stats.num_duplicates++;
1452 		return RX_DROP_UNUSABLE;
1453 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1454 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1455 	}
1456 
1457 	return RX_CONTINUE;
1458 }
1459 
1460 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1461 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1462 {
1463 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1464 
1465 	/* Drop disallowed frame classes based on STA auth/assoc state;
1466 	 * IEEE 802.11, Chap 5.5.
1467 	 *
1468 	 * mac80211 filters only based on association state, i.e. it drops
1469 	 * Class 3 frames from not associated stations. hostapd sends
1470 	 * deauth/disassoc frames when needed. In addition, hostapd is
1471 	 * responsible for filtering on both auth and assoc states.
1472 	 */
1473 
1474 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1475 		return ieee80211_rx_mesh_check(rx);
1476 
1477 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1478 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1479 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1480 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1481 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1482 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1483 		/*
1484 		 * accept port control frames from the AP even when it's not
1485 		 * yet marked ASSOC to prevent a race where we don't set the
1486 		 * assoc bit quickly enough before it sends the first frame
1487 		 */
1488 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1489 		    ieee80211_is_data_present(hdr->frame_control)) {
1490 			unsigned int hdrlen;
1491 			__be16 ethertype;
1492 
1493 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1494 
1495 			if (rx->skb->len < hdrlen + 8)
1496 				return RX_DROP_MONITOR;
1497 
1498 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1499 			if (ethertype == rx->sdata->control_port_protocol)
1500 				return RX_CONTINUE;
1501 		}
1502 
1503 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1504 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1505 					       hdr->addr2,
1506 					       GFP_ATOMIC))
1507 			return RX_DROP_UNUSABLE;
1508 
1509 		return RX_DROP_MONITOR;
1510 	}
1511 
1512 	return RX_CONTINUE;
1513 }
1514 
1515 
1516 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1517 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1518 {
1519 	struct ieee80211_local *local;
1520 	struct ieee80211_hdr *hdr;
1521 	struct sk_buff *skb;
1522 
1523 	local = rx->local;
1524 	skb = rx->skb;
1525 	hdr = (struct ieee80211_hdr *) skb->data;
1526 
1527 	if (!local->pspolling)
1528 		return RX_CONTINUE;
1529 
1530 	if (!ieee80211_has_fromds(hdr->frame_control))
1531 		/* this is not from AP */
1532 		return RX_CONTINUE;
1533 
1534 	if (!ieee80211_is_data(hdr->frame_control))
1535 		return RX_CONTINUE;
1536 
1537 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1538 		/* AP has no more frames buffered for us */
1539 		local->pspolling = false;
1540 		return RX_CONTINUE;
1541 	}
1542 
1543 	/* more data bit is set, let's request a new frame from the AP */
1544 	ieee80211_send_pspoll(local, rx->sdata);
1545 
1546 	return RX_CONTINUE;
1547 }
1548 
sta_ps_start(struct sta_info * sta)1549 static void sta_ps_start(struct sta_info *sta)
1550 {
1551 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1552 	struct ieee80211_local *local = sdata->local;
1553 	struct ps_data *ps;
1554 	int tid;
1555 
1556 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1557 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1558 		ps = &sdata->bss->ps;
1559 	else
1560 		return;
1561 
1562 	atomic_inc(&ps->num_sta_ps);
1563 	set_sta_flag(sta, WLAN_STA_PS_STA);
1564 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1565 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1566 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1567 	       sta->sta.addr, sta->sta.aid);
1568 
1569 	ieee80211_clear_fast_xmit(sta);
1570 
1571 	if (!sta->sta.txq[0])
1572 		return;
1573 
1574 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1575 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1576 		struct txq_info *txqi = to_txq_info(txq);
1577 
1578 		spin_lock(&local->active_txq_lock[txq->ac]);
1579 		if (!list_empty(&txqi->schedule_order))
1580 			list_del_init(&txqi->schedule_order);
1581 		spin_unlock(&local->active_txq_lock[txq->ac]);
1582 
1583 		if (txq_has_queue(txq))
1584 			set_bit(tid, &sta->txq_buffered_tids);
1585 		else
1586 			clear_bit(tid, &sta->txq_buffered_tids);
1587 	}
1588 }
1589 
sta_ps_end(struct sta_info * sta)1590 static void sta_ps_end(struct sta_info *sta)
1591 {
1592 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1593 	       sta->sta.addr, sta->sta.aid);
1594 
1595 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1596 		/*
1597 		 * Clear the flag only if the other one is still set
1598 		 * so that the TX path won't start TX'ing new frames
1599 		 * directly ... In the case that the driver flag isn't
1600 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1601 		 */
1602 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1603 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1604 		       sta->sta.addr, sta->sta.aid);
1605 		return;
1606 	}
1607 
1608 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1609 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1610 	ieee80211_sta_ps_deliver_wakeup(sta);
1611 }
1612 
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1613 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1614 {
1615 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1616 	bool in_ps;
1617 
1618 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1619 
1620 	/* Don't let the same PS state be set twice */
1621 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1622 	if ((start && in_ps) || (!start && !in_ps))
1623 		return -EINVAL;
1624 
1625 	if (start)
1626 		sta_ps_start(sta);
1627 	else
1628 		sta_ps_end(sta);
1629 
1630 	return 0;
1631 }
1632 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1633 
ieee80211_sta_pspoll(struct ieee80211_sta * pubsta)1634 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1635 {
1636 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1637 
1638 	if (test_sta_flag(sta, WLAN_STA_SP))
1639 		return;
1640 
1641 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1642 		ieee80211_sta_ps_deliver_poll_response(sta);
1643 	else
1644 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1645 }
1646 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1647 
ieee80211_sta_uapsd_trigger(struct ieee80211_sta * pubsta,u8 tid)1648 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1649 {
1650 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1651 	int ac = ieee80211_ac_from_tid(tid);
1652 
1653 	/*
1654 	 * If this AC is not trigger-enabled do nothing unless the
1655 	 * driver is calling us after it already checked.
1656 	 *
1657 	 * NB: This could/should check a separate bitmap of trigger-
1658 	 * enabled queues, but for now we only implement uAPSD w/o
1659 	 * TSPEC changes to the ACs, so they're always the same.
1660 	 */
1661 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1662 	    tid != IEEE80211_NUM_TIDS)
1663 		return;
1664 
1665 	/* if we are in a service period, do nothing */
1666 	if (test_sta_flag(sta, WLAN_STA_SP))
1667 		return;
1668 
1669 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1670 		ieee80211_sta_ps_deliver_uapsd(sta);
1671 	else
1672 		set_sta_flag(sta, WLAN_STA_UAPSD);
1673 }
1674 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1675 
1676 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1677 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1678 {
1679 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1680 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1681 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1682 
1683 	if (!rx->sta)
1684 		return RX_CONTINUE;
1685 
1686 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1687 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1688 		return RX_CONTINUE;
1689 
1690 	/*
1691 	 * The device handles station powersave, so don't do anything about
1692 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1693 	 * it to mac80211 since they're handled.)
1694 	 */
1695 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1696 		return RX_CONTINUE;
1697 
1698 	/*
1699 	 * Don't do anything if the station isn't already asleep. In
1700 	 * the uAPSD case, the station will probably be marked asleep,
1701 	 * in the PS-Poll case the station must be confused ...
1702 	 */
1703 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1704 		return RX_CONTINUE;
1705 
1706 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1707 		ieee80211_sta_pspoll(&rx->sta->sta);
1708 
1709 		/* Free PS Poll skb here instead of returning RX_DROP that would
1710 		 * count as an dropped frame. */
1711 		dev_kfree_skb(rx->skb);
1712 
1713 		return RX_QUEUED;
1714 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1715 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1716 		   ieee80211_has_pm(hdr->frame_control) &&
1717 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1718 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1719 		u8 tid = ieee80211_get_tid(hdr);
1720 
1721 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1722 	}
1723 
1724 	return RX_CONTINUE;
1725 }
1726 
1727 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1728 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1729 {
1730 	struct sta_info *sta = rx->sta;
1731 	struct sk_buff *skb = rx->skb;
1732 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1733 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1734 	int i;
1735 
1736 	if (!sta)
1737 		return RX_CONTINUE;
1738 
1739 	/*
1740 	 * Update last_rx only for IBSS packets which are for the current
1741 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1742 	 * current IBSS network alive in cases where other STAs start
1743 	 * using different BSSID. This will also give the station another
1744 	 * chance to restart the authentication/authorization in case
1745 	 * something went wrong the first time.
1746 	 */
1747 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1748 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1749 						NL80211_IFTYPE_ADHOC);
1750 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1751 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1752 			sta->rx_stats.last_rx = jiffies;
1753 			if (ieee80211_is_data(hdr->frame_control) &&
1754 			    !is_multicast_ether_addr(hdr->addr1))
1755 				sta->rx_stats.last_rate =
1756 					sta_stats_encode_rate(status);
1757 		}
1758 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1759 		sta->rx_stats.last_rx = jiffies;
1760 	} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1761 		   is_multicast_ether_addr(hdr->addr1)) {
1762 		/*
1763 		 * Mesh beacons will update last_rx when if they are found to
1764 		 * match the current local configuration when processed.
1765 		 */
1766 		sta->rx_stats.last_rx = jiffies;
1767 		if (ieee80211_is_data(hdr->frame_control))
1768 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1769 	}
1770 
1771 	sta->rx_stats.fragments++;
1772 
1773 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1774 	sta->rx_stats.bytes += rx->skb->len;
1775 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1776 
1777 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1778 		sta->rx_stats.last_signal = status->signal;
1779 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1780 	}
1781 
1782 	if (status->chains) {
1783 		sta->rx_stats.chains = status->chains;
1784 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1785 			int signal = status->chain_signal[i];
1786 
1787 			if (!(status->chains & BIT(i)))
1788 				continue;
1789 
1790 			sta->rx_stats.chain_signal_last[i] = signal;
1791 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1792 					-signal);
1793 		}
1794 	}
1795 
1796 	if (ieee80211_is_s1g_beacon(hdr->frame_control))
1797 		return RX_CONTINUE;
1798 
1799 	/*
1800 	 * Change STA power saving mode only at the end of a frame
1801 	 * exchange sequence, and only for a data or management
1802 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1803 	 */
1804 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1805 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1806 	    !is_multicast_ether_addr(hdr->addr1) &&
1807 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1808 	     ieee80211_is_data(hdr->frame_control)) &&
1809 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1810 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1811 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1812 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1813 			if (!ieee80211_has_pm(hdr->frame_control))
1814 				sta_ps_end(sta);
1815 		} else {
1816 			if (ieee80211_has_pm(hdr->frame_control))
1817 				sta_ps_start(sta);
1818 		}
1819 	}
1820 
1821 	/* mesh power save support */
1822 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1823 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1824 
1825 	/*
1826 	 * Drop (qos-)data::nullfunc frames silently, since they
1827 	 * are used only to control station power saving mode.
1828 	 */
1829 	if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1830 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1831 
1832 		/*
1833 		 * If we receive a 4-addr nullfunc frame from a STA
1834 		 * that was not moved to a 4-addr STA vlan yet send
1835 		 * the event to userspace and for older hostapd drop
1836 		 * the frame to the monitor interface.
1837 		 */
1838 		if (ieee80211_has_a4(hdr->frame_control) &&
1839 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1840 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1841 		      !rx->sdata->u.vlan.sta))) {
1842 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1843 				cfg80211_rx_unexpected_4addr_frame(
1844 					rx->sdata->dev, sta->sta.addr,
1845 					GFP_ATOMIC);
1846 			return RX_DROP_MONITOR;
1847 		}
1848 		/*
1849 		 * Update counter and free packet here to avoid
1850 		 * counting this as a dropped packed.
1851 		 */
1852 		sta->rx_stats.packets++;
1853 		dev_kfree_skb(rx->skb);
1854 		return RX_QUEUED;
1855 	}
1856 
1857 	return RX_CONTINUE;
1858 } /* ieee80211_rx_h_sta_process */
1859 
1860 static struct ieee80211_key *
ieee80211_rx_get_bigtk(struct ieee80211_rx_data * rx,int idx)1861 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1862 {
1863 	struct ieee80211_key *key = NULL;
1864 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1865 	int idx2;
1866 
1867 	/* Make sure key gets set if either BIGTK key index is set so that
1868 	 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1869 	 * Beacon frames and Beacon frames that claim to use another BIGTK key
1870 	 * index (i.e., a key that we do not have).
1871 	 */
1872 
1873 	if (idx < 0) {
1874 		idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1875 		idx2 = idx + 1;
1876 	} else {
1877 		if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1878 			idx2 = idx + 1;
1879 		else
1880 			idx2 = idx - 1;
1881 	}
1882 
1883 	if (rx->sta)
1884 		key = rcu_dereference(rx->sta->gtk[idx]);
1885 	if (!key)
1886 		key = rcu_dereference(sdata->keys[idx]);
1887 	if (!key && rx->sta)
1888 		key = rcu_dereference(rx->sta->gtk[idx2]);
1889 	if (!key)
1890 		key = rcu_dereference(sdata->keys[idx2]);
1891 
1892 	return key;
1893 }
1894 
1895 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1896 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1897 {
1898 	struct sk_buff *skb = rx->skb;
1899 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1900 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1901 	int keyidx;
1902 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1903 	struct ieee80211_key *sta_ptk = NULL;
1904 	struct ieee80211_key *ptk_idx = NULL;
1905 	int mmie_keyidx = -1;
1906 	__le16 fc;
1907 	const struct ieee80211_cipher_scheme *cs = NULL;
1908 
1909 	if (ieee80211_is_ext(hdr->frame_control))
1910 		return RX_CONTINUE;
1911 
1912 	/*
1913 	 * Key selection 101
1914 	 *
1915 	 * There are five types of keys:
1916 	 *  - GTK (group keys)
1917 	 *  - IGTK (group keys for management frames)
1918 	 *  - BIGTK (group keys for Beacon frames)
1919 	 *  - PTK (pairwise keys)
1920 	 *  - STK (station-to-station pairwise keys)
1921 	 *
1922 	 * When selecting a key, we have to distinguish between multicast
1923 	 * (including broadcast) and unicast frames, the latter can only
1924 	 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1925 	 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1926 	 * then unicast frames can also use key indices like GTKs. Hence, if we
1927 	 * don't have a PTK/STK we check the key index for a WEP key.
1928 	 *
1929 	 * Note that in a regular BSS, multicast frames are sent by the
1930 	 * AP only, associated stations unicast the frame to the AP first
1931 	 * which then multicasts it on their behalf.
1932 	 *
1933 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1934 	 * with each station, that is something we don't currently handle.
1935 	 * The spec seems to expect that one negotiates the same key with
1936 	 * every station but there's no such requirement; VLANs could be
1937 	 * possible.
1938 	 */
1939 
1940 	/* start without a key */
1941 	rx->key = NULL;
1942 	fc = hdr->frame_control;
1943 
1944 	if (rx->sta) {
1945 		int keyid = rx->sta->ptk_idx;
1946 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1947 
1948 		if (ieee80211_has_protected(fc)) {
1949 			cs = rx->sta->cipher_scheme;
1950 			keyid = ieee80211_get_keyid(rx->skb, cs);
1951 
1952 			if (unlikely(keyid < 0))
1953 				return RX_DROP_UNUSABLE;
1954 
1955 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1956 		}
1957 	}
1958 
1959 	if (!ieee80211_has_protected(fc))
1960 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1961 
1962 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1963 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1964 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1965 		    (status->flag & RX_FLAG_IV_STRIPPED))
1966 			return RX_CONTINUE;
1967 		/* Skip decryption if the frame is not protected. */
1968 		if (!ieee80211_has_protected(fc))
1969 			return RX_CONTINUE;
1970 	} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1971 		/* Broadcast/multicast robust management frame / BIP */
1972 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1973 		    (status->flag & RX_FLAG_IV_STRIPPED))
1974 			return RX_CONTINUE;
1975 
1976 		if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1977 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1978 		    NUM_DEFAULT_BEACON_KEYS) {
1979 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1980 						     skb->data,
1981 						     skb->len);
1982 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1983 		}
1984 
1985 		rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1986 		if (!rx->key)
1987 			return RX_CONTINUE; /* Beacon protection not in use */
1988 	} else if (mmie_keyidx >= 0) {
1989 		/* Broadcast/multicast robust management frame / BIP */
1990 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1991 		    (status->flag & RX_FLAG_IV_STRIPPED))
1992 			return RX_CONTINUE;
1993 
1994 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1995 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1996 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1997 		if (rx->sta) {
1998 			if (ieee80211_is_group_privacy_action(skb) &&
1999 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
2000 				return RX_DROP_MONITOR;
2001 
2002 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
2003 		}
2004 		if (!rx->key)
2005 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2006 	} else if (!ieee80211_has_protected(fc)) {
2007 		/*
2008 		 * The frame was not protected, so skip decryption. However, we
2009 		 * need to set rx->key if there is a key that could have been
2010 		 * used so that the frame may be dropped if encryption would
2011 		 * have been expected.
2012 		 */
2013 		struct ieee80211_key *key = NULL;
2014 		struct ieee80211_sub_if_data *sdata = rx->sdata;
2015 		int i;
2016 
2017 		if (ieee80211_is_beacon(fc)) {
2018 			key = ieee80211_rx_get_bigtk(rx, -1);
2019 		} else if (ieee80211_is_mgmt(fc) &&
2020 			   is_multicast_ether_addr(hdr->addr1)) {
2021 			key = rcu_dereference(rx->sdata->default_mgmt_key);
2022 		} else {
2023 			if (rx->sta) {
2024 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2025 					key = rcu_dereference(rx->sta->gtk[i]);
2026 					if (key)
2027 						break;
2028 				}
2029 			}
2030 			if (!key) {
2031 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2032 					key = rcu_dereference(sdata->keys[i]);
2033 					if (key)
2034 						break;
2035 				}
2036 			}
2037 		}
2038 		if (key)
2039 			rx->key = key;
2040 		return RX_CONTINUE;
2041 	} else {
2042 		/*
2043 		 * The device doesn't give us the IV so we won't be
2044 		 * able to look up the key. That's ok though, we
2045 		 * don't need to decrypt the frame, we just won't
2046 		 * be able to keep statistics accurate.
2047 		 * Except for key threshold notifications, should
2048 		 * we somehow allow the driver to tell us which key
2049 		 * the hardware used if this flag is set?
2050 		 */
2051 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2052 		    (status->flag & RX_FLAG_IV_STRIPPED))
2053 			return RX_CONTINUE;
2054 
2055 		keyidx = ieee80211_get_keyid(rx->skb, cs);
2056 
2057 		if (unlikely(keyidx < 0))
2058 			return RX_DROP_UNUSABLE;
2059 
2060 		/* check per-station GTK first, if multicast packet */
2061 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2062 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2063 
2064 		/* if not found, try default key */
2065 		if (!rx->key) {
2066 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2067 
2068 			/*
2069 			 * RSNA-protected unicast frames should always be
2070 			 * sent with pairwise or station-to-station keys,
2071 			 * but for WEP we allow using a key index as well.
2072 			 */
2073 			if (rx->key &&
2074 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2075 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2076 			    !is_multicast_ether_addr(hdr->addr1))
2077 				rx->key = NULL;
2078 		}
2079 	}
2080 
2081 	if (rx->key) {
2082 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2083 			return RX_DROP_MONITOR;
2084 
2085 		/* TODO: add threshold stuff again */
2086 	} else {
2087 		return RX_DROP_MONITOR;
2088 	}
2089 
2090 	switch (rx->key->conf.cipher) {
2091 	case WLAN_CIPHER_SUITE_WEP40:
2092 	case WLAN_CIPHER_SUITE_WEP104:
2093 		result = ieee80211_crypto_wep_decrypt(rx);
2094 		break;
2095 	case WLAN_CIPHER_SUITE_TKIP:
2096 		result = ieee80211_crypto_tkip_decrypt(rx);
2097 		break;
2098 	case WLAN_CIPHER_SUITE_CCMP:
2099 		result = ieee80211_crypto_ccmp_decrypt(
2100 			rx, IEEE80211_CCMP_MIC_LEN);
2101 		break;
2102 	case WLAN_CIPHER_SUITE_CCMP_256:
2103 		result = ieee80211_crypto_ccmp_decrypt(
2104 			rx, IEEE80211_CCMP_256_MIC_LEN);
2105 		break;
2106 	case WLAN_CIPHER_SUITE_AES_CMAC:
2107 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2108 		break;
2109 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2110 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2111 		break;
2112 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2113 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2114 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2115 		break;
2116 	case WLAN_CIPHER_SUITE_GCMP:
2117 	case WLAN_CIPHER_SUITE_GCMP_256:
2118 		result = ieee80211_crypto_gcmp_decrypt(rx);
2119 		break;
2120 	default:
2121 		result = ieee80211_crypto_hw_decrypt(rx);
2122 	}
2123 
2124 	/* the hdr variable is invalid after the decrypt handlers */
2125 
2126 	/* either the frame has been decrypted or will be dropped */
2127 	status->flag |= RX_FLAG_DECRYPTED;
2128 
2129 	if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE))
2130 		cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2131 					     skb->data, skb->len);
2132 
2133 	return result;
2134 }
2135 
2136 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)2137 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2138 			 unsigned int frag, unsigned int seq, int rx_queue,
2139 			 struct sk_buff **skb)
2140 {
2141 	struct ieee80211_fragment_entry *entry;
2142 
2143 	entry = &sdata->fragments[sdata->fragment_next++];
2144 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2145 		sdata->fragment_next = 0;
2146 
2147 	if (!skb_queue_empty(&entry->skb_list))
2148 		__skb_queue_purge(&entry->skb_list);
2149 
2150 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2151 	*skb = NULL;
2152 	entry->first_frag_time = jiffies;
2153 	entry->seq = seq;
2154 	entry->rx_queue = rx_queue;
2155 	entry->last_frag = frag;
2156 	entry->check_sequential_pn = false;
2157 	entry->extra_len = 0;
2158 
2159 	return entry;
2160 }
2161 
2162 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)2163 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2164 			  unsigned int frag, unsigned int seq,
2165 			  int rx_queue, struct ieee80211_hdr *hdr)
2166 {
2167 	struct ieee80211_fragment_entry *entry;
2168 	int i, idx;
2169 
2170 	idx = sdata->fragment_next;
2171 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2172 		struct ieee80211_hdr *f_hdr;
2173 		struct sk_buff *f_skb;
2174 
2175 		idx--;
2176 		if (idx < 0)
2177 			idx = IEEE80211_FRAGMENT_MAX - 1;
2178 
2179 		entry = &sdata->fragments[idx];
2180 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2181 		    entry->rx_queue != rx_queue ||
2182 		    entry->last_frag + 1 != frag)
2183 			continue;
2184 
2185 		f_skb = __skb_peek(&entry->skb_list);
2186 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2187 
2188 		/*
2189 		 * Check ftype and addresses are equal, else check next fragment
2190 		 */
2191 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2192 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2193 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2194 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2195 			continue;
2196 
2197 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2198 			__skb_queue_purge(&entry->skb_list);
2199 			continue;
2200 		}
2201 		return entry;
2202 	}
2203 
2204 	return NULL;
2205 }
2206 
2207 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)2208 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2209 {
2210 	struct ieee80211_hdr *hdr;
2211 	u16 sc;
2212 	__le16 fc;
2213 	unsigned int frag, seq;
2214 	struct ieee80211_fragment_entry *entry;
2215 	struct sk_buff *skb;
2216 
2217 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2218 	fc = hdr->frame_control;
2219 
2220 	if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2221 		return RX_CONTINUE;
2222 
2223 	sc = le16_to_cpu(hdr->seq_ctrl);
2224 	frag = sc & IEEE80211_SCTL_FRAG;
2225 
2226 	if (is_multicast_ether_addr(hdr->addr1)) {
2227 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2228 		goto out_no_led;
2229 	}
2230 
2231 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2232 		goto out;
2233 
2234 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2235 
2236 	if (skb_linearize(rx->skb))
2237 		return RX_DROP_UNUSABLE;
2238 
2239 	/*
2240 	 *  skb_linearize() might change the skb->data and
2241 	 *  previously cached variables (in this case, hdr) need to
2242 	 *  be refreshed with the new data.
2243 	 */
2244 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2245 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2246 
2247 	if (frag == 0) {
2248 		/* This is the first fragment of a new frame. */
2249 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2250 						 rx->seqno_idx, &(rx->skb));
2251 		if (rx->key &&
2252 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2253 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2254 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2255 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2256 		    ieee80211_has_protected(fc)) {
2257 			int queue = rx->security_idx;
2258 
2259 			/* Store CCMP/GCMP PN so that we can verify that the
2260 			 * next fragment has a sequential PN value.
2261 			 */
2262 			entry->check_sequential_pn = true;
2263 			memcpy(entry->last_pn,
2264 			       rx->key->u.ccmp.rx_pn[queue],
2265 			       IEEE80211_CCMP_PN_LEN);
2266 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2267 					      u.ccmp.rx_pn) !=
2268 				     offsetof(struct ieee80211_key,
2269 					      u.gcmp.rx_pn));
2270 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2271 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2272 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2273 				     IEEE80211_GCMP_PN_LEN);
2274 		}
2275 		return RX_QUEUED;
2276 	}
2277 
2278 	/* This is a fragment for a frame that should already be pending in
2279 	 * fragment cache. Add this fragment to the end of the pending entry.
2280 	 */
2281 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2282 					  rx->seqno_idx, hdr);
2283 	if (!entry) {
2284 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2285 		return RX_DROP_MONITOR;
2286 	}
2287 
2288 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2289 	 *  MPDU PN values are not incrementing in steps of 1."
2290 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2291 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2292 	 */
2293 	if (entry->check_sequential_pn) {
2294 		int i;
2295 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2296 		int queue;
2297 
2298 		if (!rx->key ||
2299 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2300 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2301 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2302 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2303 			return RX_DROP_UNUSABLE;
2304 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2305 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2306 			pn[i]++;
2307 			if (pn[i])
2308 				break;
2309 		}
2310 		queue = rx->security_idx;
2311 		rpn = rx->key->u.ccmp.rx_pn[queue];
2312 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2313 			return RX_DROP_UNUSABLE;
2314 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2315 	}
2316 
2317 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2318 	__skb_queue_tail(&entry->skb_list, rx->skb);
2319 	entry->last_frag = frag;
2320 	entry->extra_len += rx->skb->len;
2321 	if (ieee80211_has_morefrags(fc)) {
2322 		rx->skb = NULL;
2323 		return RX_QUEUED;
2324 	}
2325 
2326 	rx->skb = __skb_dequeue(&entry->skb_list);
2327 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2328 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2329 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2330 					      GFP_ATOMIC))) {
2331 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2332 			__skb_queue_purge(&entry->skb_list);
2333 			return RX_DROP_UNUSABLE;
2334 		}
2335 	}
2336 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2337 		skb_put_data(rx->skb, skb->data, skb->len);
2338 		dev_kfree_skb(skb);
2339 	}
2340 
2341  out:
2342 	ieee80211_led_rx(rx->local);
2343  out_no_led:
2344 	if (rx->sta)
2345 		rx->sta->rx_stats.packets++;
2346 	return RX_CONTINUE;
2347 }
2348 
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)2349 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2350 {
2351 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2352 		return -EACCES;
2353 
2354 	return 0;
2355 }
2356 
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)2357 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2358 {
2359 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2360 	struct sk_buff *skb = rx->skb;
2361 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2362 
2363 	/*
2364 	 * Pass through unencrypted frames if the hardware has
2365 	 * decrypted them already.
2366 	 */
2367 	if (status->flag & RX_FLAG_DECRYPTED)
2368 		return 0;
2369 
2370 	/* check mesh EAPOL frames first */
2371 	if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2372 		     ieee80211_is_data(fc))) {
2373 		struct ieee80211s_hdr *mesh_hdr;
2374 		u16 hdr_len = ieee80211_hdrlen(fc);
2375 		u16 ethertype_offset;
2376 		__be16 ethertype;
2377 
2378 		if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2379 			goto drop_check;
2380 
2381 		/* make sure fixed part of mesh header is there, also checks skb len */
2382 		if (!pskb_may_pull(rx->skb, hdr_len + 6))
2383 			goto drop_check;
2384 
2385 		mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2386 		ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2387 				   sizeof(rfc1042_header);
2388 
2389 		if (skb_copy_bits(rx->skb, ethertype_offset, &ethertype, 2) == 0 &&
2390 		    ethertype == rx->sdata->control_port_protocol)
2391 			return 0;
2392 	}
2393 
2394 drop_check:
2395 	/* Drop unencrypted frames if key is set. */
2396 	if (unlikely(!ieee80211_has_protected(fc) &&
2397 		     !ieee80211_is_any_nullfunc(fc) &&
2398 		     ieee80211_is_data(fc) && rx->key))
2399 		return -EACCES;
2400 
2401 	return 0;
2402 }
2403 
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)2404 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2405 {
2406 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2407 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2408 	__le16 fc = hdr->frame_control;
2409 
2410 	/*
2411 	 * Pass through unencrypted frames if the hardware has
2412 	 * decrypted them already.
2413 	 */
2414 	if (status->flag & RX_FLAG_DECRYPTED)
2415 		return 0;
2416 
2417 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2418 		if (unlikely(!ieee80211_has_protected(fc) &&
2419 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2420 			     rx->key)) {
2421 			if (ieee80211_is_deauth(fc) ||
2422 			    ieee80211_is_disassoc(fc))
2423 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2424 							     rx->skb->data,
2425 							     rx->skb->len);
2426 			return -EACCES;
2427 		}
2428 		/* BIP does not use Protected field, so need to check MMIE */
2429 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2430 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2431 			if (ieee80211_is_deauth(fc) ||
2432 			    ieee80211_is_disassoc(fc))
2433 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2434 							     rx->skb->data,
2435 							     rx->skb->len);
2436 			return -EACCES;
2437 		}
2438 		if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2439 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2440 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2441 						     rx->skb->data,
2442 						     rx->skb->len);
2443 			return -EACCES;
2444 		}
2445 		/*
2446 		 * When using MFP, Action frames are not allowed prior to
2447 		 * having configured keys.
2448 		 */
2449 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2450 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2451 			return -EACCES;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2458 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2459 {
2460 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2461 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2462 	bool check_port_control = false;
2463 	struct ethhdr *ehdr;
2464 	int ret;
2465 
2466 	*port_control = false;
2467 	if (ieee80211_has_a4(hdr->frame_control) &&
2468 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2469 		return -1;
2470 
2471 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2472 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2473 
2474 		if (!sdata->u.mgd.use_4addr)
2475 			return -1;
2476 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2477 			check_port_control = true;
2478 	}
2479 
2480 	if (is_multicast_ether_addr(hdr->addr1) &&
2481 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2482 		return -1;
2483 
2484 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2485 	if (ret < 0)
2486 		return ret;
2487 
2488 	ehdr = (struct ethhdr *) rx->skb->data;
2489 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2490 		*port_control = true;
2491 	else if (check_port_control)
2492 		return -1;
2493 
2494 	return 0;
2495 }
2496 
2497 /*
2498  * requires that rx->skb is a frame with ethernet header
2499  */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2500 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2501 {
2502 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2503 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2504 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2505 
2506 	/*
2507 	 * Allow EAPOL frames to us/the PAE group address regardless
2508 	 * of whether the frame was encrypted or not.
2509 	 */
2510 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2511 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2512 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2513 		return true;
2514 
2515 	if (ieee80211_802_1x_port_control(rx) ||
2516 	    ieee80211_drop_unencrypted(rx, fc))
2517 		return false;
2518 
2519 	return true;
2520 }
2521 
ieee80211_deliver_skb_to_local_stack(struct sk_buff * skb,struct ieee80211_rx_data * rx)2522 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2523 						 struct ieee80211_rx_data *rx)
2524 {
2525 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2526 	struct net_device *dev = sdata->dev;
2527 
2528 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2529 		     (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2530 		      !sdata->control_port_no_preauth)) &&
2531 		     sdata->control_port_over_nl80211)) {
2532 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2533 		bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2534 
2535 		cfg80211_rx_control_port(dev, skb, noencrypt);
2536 		dev_kfree_skb(skb);
2537 	} else {
2538 		memset(skb->cb, 0, sizeof(skb->cb));
2539 
2540 		/* deliver to local stack */
2541 		if (rx->list)
2542 			list_add_tail(&skb->list, rx->list);
2543 		else
2544 			netif_receive_skb(skb);
2545 	}
2546 }
2547 
2548 /*
2549  * requires that rx->skb is a frame with ethernet header
2550  */
2551 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2552 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2553 {
2554 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2555 	struct net_device *dev = sdata->dev;
2556 	struct sk_buff *skb, *xmit_skb;
2557 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2558 	struct sta_info *dsta;
2559 
2560 	skb = rx->skb;
2561 	xmit_skb = NULL;
2562 
2563 	ieee80211_rx_stats(dev, skb->len);
2564 
2565 	if (rx->sta) {
2566 		/* The seqno index has the same property as needed
2567 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2568 		 * for non-QoS-data frames. Here we know it's a data
2569 		 * frame, so count MSDUs.
2570 		 */
2571 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2572 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2573 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2574 	}
2575 
2576 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2577 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2578 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2579 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2580 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2581 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2582 			/*
2583 			 * send multicast frames both to higher layers in
2584 			 * local net stack and back to the wireless medium
2585 			 */
2586 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2587 			if (!xmit_skb)
2588 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2589 						    dev->name);
2590 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2591 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2592 			dsta = sta_info_get(sdata, ehdr->h_dest);
2593 			if (dsta) {
2594 				/*
2595 				 * The destination station is associated to
2596 				 * this AP (in this VLAN), so send the frame
2597 				 * directly to it and do not pass it to local
2598 				 * net stack.
2599 				 */
2600 				xmit_skb = skb;
2601 				skb = NULL;
2602 			}
2603 		}
2604 	}
2605 
2606 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2607 	if (skb) {
2608 		/* 'align' will only take the values 0 or 2 here since all
2609 		 * frames are required to be aligned to 2-byte boundaries
2610 		 * when being passed to mac80211; the code here works just
2611 		 * as well if that isn't true, but mac80211 assumes it can
2612 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2613 		 */
2614 		int align;
2615 
2616 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2617 		if (align) {
2618 			if (WARN_ON(skb_headroom(skb) < 3)) {
2619 				dev_kfree_skb(skb);
2620 				skb = NULL;
2621 			} else {
2622 				u8 *data = skb->data;
2623 				size_t len = skb_headlen(skb);
2624 				skb->data -= align;
2625 				memmove(skb->data, data, len);
2626 				skb_set_tail_pointer(skb, len);
2627 			}
2628 		}
2629 	}
2630 #endif
2631 
2632 	if (skb) {
2633 		skb->protocol = eth_type_trans(skb, dev);
2634 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2635 	}
2636 
2637 	if (xmit_skb) {
2638 		/*
2639 		 * Send to wireless media and increase priority by 256 to
2640 		 * keep the received priority instead of reclassifying
2641 		 * the frame (see cfg80211_classify8021d).
2642 		 */
2643 		xmit_skb->priority += 256;
2644 		xmit_skb->protocol = htons(ETH_P_802_3);
2645 		skb_reset_network_header(xmit_skb);
2646 		skb_reset_mac_header(xmit_skb);
2647 		dev_queue_xmit(xmit_skb);
2648 	}
2649 }
2650 
2651 static ieee80211_rx_result debug_noinline
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx,u8 data_offset)2652 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2653 {
2654 	struct net_device *dev = rx->sdata->dev;
2655 	struct sk_buff *skb = rx->skb;
2656 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2657 	__le16 fc = hdr->frame_control;
2658 	struct sk_buff_head frame_list;
2659 	struct ethhdr ethhdr;
2660 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2661 
2662 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2663 		check_da = NULL;
2664 		check_sa = NULL;
2665 	} else switch (rx->sdata->vif.type) {
2666 		case NL80211_IFTYPE_AP:
2667 		case NL80211_IFTYPE_AP_VLAN:
2668 			check_da = NULL;
2669 			break;
2670 		case NL80211_IFTYPE_STATION:
2671 			if (!rx->sta ||
2672 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2673 				check_sa = NULL;
2674 			break;
2675 		case NL80211_IFTYPE_MESH_POINT:
2676 			check_sa = NULL;
2677 			break;
2678 		default:
2679 			break;
2680 	}
2681 
2682 	skb->dev = dev;
2683 	__skb_queue_head_init(&frame_list);
2684 
2685 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2686 					  rx->sdata->vif.addr,
2687 					  rx->sdata->vif.type,
2688 					  data_offset))
2689 		return RX_DROP_UNUSABLE;
2690 
2691 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2692 				 rx->sdata->vif.type,
2693 				 rx->local->hw.extra_tx_headroom,
2694 				 check_da, check_sa);
2695 
2696 	while (!skb_queue_empty(&frame_list)) {
2697 		rx->skb = __skb_dequeue(&frame_list);
2698 
2699 		if (!ieee80211_frame_allowed(rx, fc)) {
2700 			dev_kfree_skb(rx->skb);
2701 			continue;
2702 		}
2703 
2704 		ieee80211_deliver_skb(rx);
2705 	}
2706 
2707 	return RX_QUEUED;
2708 }
2709 
2710 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2711 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2712 {
2713 	struct sk_buff *skb = rx->skb;
2714 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2715 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2716 	__le16 fc = hdr->frame_control;
2717 
2718 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2719 		return RX_CONTINUE;
2720 
2721 	if (unlikely(!ieee80211_is_data(fc)))
2722 		return RX_CONTINUE;
2723 
2724 	if (unlikely(!ieee80211_is_data_present(fc)))
2725 		return RX_DROP_MONITOR;
2726 
2727 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2728 		switch (rx->sdata->vif.type) {
2729 		case NL80211_IFTYPE_AP_VLAN:
2730 			if (!rx->sdata->u.vlan.sta)
2731 				return RX_DROP_UNUSABLE;
2732 			break;
2733 		case NL80211_IFTYPE_STATION:
2734 			if (!rx->sdata->u.mgd.use_4addr)
2735 				return RX_DROP_UNUSABLE;
2736 			break;
2737 		default:
2738 			return RX_DROP_UNUSABLE;
2739 		}
2740 	}
2741 
2742 	if (is_multicast_ether_addr(hdr->addr1))
2743 		return RX_DROP_UNUSABLE;
2744 
2745 	return __ieee80211_rx_h_amsdu(rx, 0);
2746 }
2747 
2748 #ifdef CONFIG_MAC80211_MESH
2749 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2750 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2751 {
2752 	struct ieee80211_hdr *fwd_hdr, *hdr;
2753 	struct ieee80211_tx_info *info;
2754 	struct ieee80211s_hdr *mesh_hdr;
2755 	struct sk_buff *skb = rx->skb, *fwd_skb;
2756 	struct ieee80211_local *local = rx->local;
2757 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2758 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2759 	u16 ac, q, hdrlen;
2760 	int tailroom = 0;
2761 
2762 	hdr = (struct ieee80211_hdr *) skb->data;
2763 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2764 
2765 	/* make sure fixed part of mesh header is there, also checks skb len */
2766 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2767 		return RX_DROP_MONITOR;
2768 
2769 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2770 
2771 	/* make sure full mesh header is there, also checks skb len */
2772 	if (!pskb_may_pull(rx->skb,
2773 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2774 		return RX_DROP_MONITOR;
2775 
2776 	/* reload pointers */
2777 	hdr = (struct ieee80211_hdr *) skb->data;
2778 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2779 
2780 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2781 		return RX_DROP_MONITOR;
2782 
2783 	/* frame is in RMC, don't forward */
2784 	if (ieee80211_is_data(hdr->frame_control) &&
2785 	    is_multicast_ether_addr(hdr->addr1) &&
2786 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2787 		return RX_DROP_MONITOR;
2788 
2789 	if (!ieee80211_is_data(hdr->frame_control))
2790 		return RX_CONTINUE;
2791 
2792 	if (!mesh_hdr->ttl)
2793 		return RX_DROP_MONITOR;
2794 
2795 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2796 		struct mesh_path *mppath;
2797 		char *proxied_addr;
2798 		char *mpp_addr;
2799 
2800 		if (is_multicast_ether_addr(hdr->addr1)) {
2801 			mpp_addr = hdr->addr3;
2802 			proxied_addr = mesh_hdr->eaddr1;
2803 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2804 			    MESH_FLAGS_AE_A5_A6) {
2805 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2806 			mpp_addr = hdr->addr4;
2807 			proxied_addr = mesh_hdr->eaddr2;
2808 		} else {
2809 			return RX_DROP_MONITOR;
2810 		}
2811 
2812 		rcu_read_lock();
2813 		mppath = mpp_path_lookup(sdata, proxied_addr);
2814 		if (!mppath) {
2815 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2816 		} else {
2817 			spin_lock_bh(&mppath->state_lock);
2818 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2819 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2820 			mppath->exp_time = jiffies;
2821 			spin_unlock_bh(&mppath->state_lock);
2822 		}
2823 		rcu_read_unlock();
2824 	}
2825 
2826 	/* Frame has reached destination.  Don't forward */
2827 	if (!is_multicast_ether_addr(hdr->addr1) &&
2828 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2829 		return RX_CONTINUE;
2830 
2831 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2832 	q = sdata->vif.hw_queue[ac];
2833 	if (ieee80211_queue_stopped(&local->hw, q)) {
2834 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2835 		return RX_DROP_MONITOR;
2836 	}
2837 	skb_set_queue_mapping(skb, q);
2838 
2839 	if (!--mesh_hdr->ttl) {
2840 		if (!is_multicast_ether_addr(hdr->addr1))
2841 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2842 						     dropped_frames_ttl);
2843 		goto out;
2844 	}
2845 
2846 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2847 		goto out;
2848 
2849 	if (sdata->crypto_tx_tailroom_needed_cnt)
2850 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2851 
2852 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2853 				       sdata->encrypt_headroom,
2854 				  tailroom, GFP_ATOMIC);
2855 	if (!fwd_skb)
2856 		goto out;
2857 
2858 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2859 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2860 	info = IEEE80211_SKB_CB(fwd_skb);
2861 	memset(info, 0, sizeof(*info));
2862 	info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2863 	info->control.vif = &rx->sdata->vif;
2864 	info->control.jiffies = jiffies;
2865 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2866 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2867 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2868 		/* update power mode indication when forwarding */
2869 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2870 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2871 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2872 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2873 	} else {
2874 		/* unable to resolve next hop */
2875 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2876 				   fwd_hdr->addr3, 0,
2877 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2878 				   fwd_hdr->addr2);
2879 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2880 		kfree_skb(fwd_skb);
2881 		return RX_DROP_MONITOR;
2882 	}
2883 
2884 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2885 	ieee80211_add_pending_skb(local, fwd_skb);
2886  out:
2887 	if (is_multicast_ether_addr(hdr->addr1))
2888 		return RX_CONTINUE;
2889 	return RX_DROP_MONITOR;
2890 }
2891 #endif
2892 
2893 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2894 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2895 {
2896 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2897 	struct ieee80211_local *local = rx->local;
2898 	struct net_device *dev = sdata->dev;
2899 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2900 	__le16 fc = hdr->frame_control;
2901 	bool port_control;
2902 	int err;
2903 
2904 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2905 		return RX_CONTINUE;
2906 
2907 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2908 		return RX_DROP_MONITOR;
2909 
2910 	/*
2911 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2912 	 * also drop the frame to cooked monitor interfaces.
2913 	 */
2914 	if (ieee80211_has_a4(hdr->frame_control) &&
2915 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2916 		if (rx->sta &&
2917 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2918 			cfg80211_rx_unexpected_4addr_frame(
2919 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2920 		return RX_DROP_MONITOR;
2921 	}
2922 
2923 	err = __ieee80211_data_to_8023(rx, &port_control);
2924 	if (unlikely(err))
2925 		return RX_DROP_UNUSABLE;
2926 
2927 	if (!ieee80211_frame_allowed(rx, fc))
2928 		return RX_DROP_MONITOR;
2929 
2930 	/* directly handle TDLS channel switch requests/responses */
2931 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2932 						cpu_to_be16(ETH_P_TDLS))) {
2933 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2934 
2935 		if (pskb_may_pull(rx->skb,
2936 				  offsetof(struct ieee80211_tdls_data, u)) &&
2937 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2938 		    tf->category == WLAN_CATEGORY_TDLS &&
2939 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2940 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2941 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2942 			schedule_work(&local->tdls_chsw_work);
2943 			if (rx->sta)
2944 				rx->sta->rx_stats.packets++;
2945 
2946 			return RX_QUEUED;
2947 		}
2948 	}
2949 
2950 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2951 	    unlikely(port_control) && sdata->bss) {
2952 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2953 				     u.ap);
2954 		dev = sdata->dev;
2955 		rx->sdata = sdata;
2956 	}
2957 
2958 	rx->skb->dev = dev;
2959 
2960 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2961 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2962 	    !is_multicast_ether_addr(
2963 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2964 	    (!local->scanning &&
2965 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2966 		mod_timer(&local->dynamic_ps_timer, jiffies +
2967 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2968 
2969 	ieee80211_deliver_skb(rx);
2970 
2971 	return RX_QUEUED;
2972 }
2973 
2974 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)2975 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2976 {
2977 	struct sk_buff *skb = rx->skb;
2978 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2979 	struct tid_ampdu_rx *tid_agg_rx;
2980 	u16 start_seq_num;
2981 	u16 tid;
2982 
2983 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2984 		return RX_CONTINUE;
2985 
2986 	if (ieee80211_is_back_req(bar->frame_control)) {
2987 		struct {
2988 			__le16 control, start_seq_num;
2989 		} __packed bar_data;
2990 		struct ieee80211_event event = {
2991 			.type = BAR_RX_EVENT,
2992 		};
2993 
2994 		if (!rx->sta)
2995 			return RX_DROP_MONITOR;
2996 
2997 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2998 				  &bar_data, sizeof(bar_data)))
2999 			return RX_DROP_MONITOR;
3000 
3001 		tid = le16_to_cpu(bar_data.control) >> 12;
3002 
3003 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3004 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3005 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3006 					     WLAN_BACK_RECIPIENT,
3007 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
3008 
3009 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3010 		if (!tid_agg_rx)
3011 			return RX_DROP_MONITOR;
3012 
3013 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3014 		event.u.ba.tid = tid;
3015 		event.u.ba.ssn = start_seq_num;
3016 		event.u.ba.sta = &rx->sta->sta;
3017 
3018 		/* reset session timer */
3019 		if (tid_agg_rx->timeout)
3020 			mod_timer(&tid_agg_rx->session_timer,
3021 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
3022 
3023 		spin_lock(&tid_agg_rx->reorder_lock);
3024 		/* release stored frames up to start of BAR */
3025 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3026 						 start_seq_num, frames);
3027 		spin_unlock(&tid_agg_rx->reorder_lock);
3028 
3029 		drv_event_callback(rx->local, rx->sdata, &event);
3030 
3031 		kfree_skb(skb);
3032 		return RX_QUEUED;
3033 	}
3034 
3035 	/*
3036 	 * After this point, we only want management frames,
3037 	 * so we can drop all remaining control frames to
3038 	 * cooked monitor interfaces.
3039 	 */
3040 	return RX_DROP_MONITOR;
3041 }
3042 
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)3043 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3044 					   struct ieee80211_mgmt *mgmt,
3045 					   size_t len)
3046 {
3047 	struct ieee80211_local *local = sdata->local;
3048 	struct sk_buff *skb;
3049 	struct ieee80211_mgmt *resp;
3050 
3051 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3052 		/* Not to own unicast address */
3053 		return;
3054 	}
3055 
3056 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3057 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3058 		/* Not from the current AP or not associated yet. */
3059 		return;
3060 	}
3061 
3062 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3063 		/* Too short SA Query request frame */
3064 		return;
3065 	}
3066 
3067 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3068 	if (skb == NULL)
3069 		return;
3070 
3071 	skb_reserve(skb, local->hw.extra_tx_headroom);
3072 	resp = skb_put_zero(skb, 24);
3073 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
3074 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3075 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3076 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3077 					  IEEE80211_STYPE_ACTION);
3078 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3079 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3080 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3081 	memcpy(resp->u.action.u.sa_query.trans_id,
3082 	       mgmt->u.action.u.sa_query.trans_id,
3083 	       WLAN_SA_QUERY_TR_ID_LEN);
3084 
3085 	ieee80211_tx_skb(sdata, skb);
3086 }
3087 
3088 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)3089 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3090 {
3091 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3092 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3093 
3094 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3095 		return RX_CONTINUE;
3096 
3097 	/*
3098 	 * From here on, look only at management frames.
3099 	 * Data and control frames are already handled,
3100 	 * and unknown (reserved) frames are useless.
3101 	 */
3102 	if (rx->skb->len < 24)
3103 		return RX_DROP_MONITOR;
3104 
3105 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3106 		return RX_DROP_MONITOR;
3107 
3108 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3109 	    ieee80211_is_beacon(mgmt->frame_control) &&
3110 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3111 		int sig = 0;
3112 
3113 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3114 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3115 			sig = status->signal;
3116 
3117 		cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3118 						rx->skb->data, rx->skb->len,
3119 						ieee80211_rx_status_to_khz(status),
3120 						sig);
3121 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3122 	}
3123 
3124 	if (ieee80211_drop_unencrypted_mgmt(rx))
3125 		return RX_DROP_UNUSABLE;
3126 
3127 	return RX_CONTINUE;
3128 }
3129 
3130 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)3131 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3132 {
3133 	struct ieee80211_local *local = rx->local;
3134 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3135 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3136 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3137 	int len = rx->skb->len;
3138 
3139 	if (!ieee80211_is_action(mgmt->frame_control))
3140 		return RX_CONTINUE;
3141 
3142 	/* drop too small frames */
3143 	if (len < IEEE80211_MIN_ACTION_SIZE)
3144 		return RX_DROP_UNUSABLE;
3145 
3146 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3147 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3148 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3149 		return RX_DROP_UNUSABLE;
3150 
3151 	switch (mgmt->u.action.category) {
3152 	case WLAN_CATEGORY_HT:
3153 		/* reject HT action frames from stations not supporting HT */
3154 		if (!rx->sta->sta.ht_cap.ht_supported)
3155 			goto invalid;
3156 
3157 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3158 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3159 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3160 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3161 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3162 			break;
3163 
3164 		/* verify action & smps_control/chanwidth are present */
3165 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3166 			goto invalid;
3167 
3168 		switch (mgmt->u.action.u.ht_smps.action) {
3169 		case WLAN_HT_ACTION_SMPS: {
3170 			struct ieee80211_supported_band *sband;
3171 			enum ieee80211_smps_mode smps_mode;
3172 			struct sta_opmode_info sta_opmode = {};
3173 
3174 			if (sdata->vif.type != NL80211_IFTYPE_AP &&
3175 			    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3176 				goto handled;
3177 
3178 			/* convert to HT capability */
3179 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3180 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3181 				smps_mode = IEEE80211_SMPS_OFF;
3182 				break;
3183 			case WLAN_HT_SMPS_CONTROL_STATIC:
3184 				smps_mode = IEEE80211_SMPS_STATIC;
3185 				break;
3186 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3187 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3188 				break;
3189 			default:
3190 				goto invalid;
3191 			}
3192 
3193 			/* if no change do nothing */
3194 			if (rx->sta->sta.smps_mode == smps_mode)
3195 				goto handled;
3196 			rx->sta->sta.smps_mode = smps_mode;
3197 			sta_opmode.smps_mode =
3198 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3199 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3200 
3201 			sband = rx->local->hw.wiphy->bands[status->band];
3202 
3203 			rate_control_rate_update(local, sband, rx->sta,
3204 						 IEEE80211_RC_SMPS_CHANGED);
3205 			cfg80211_sta_opmode_change_notify(sdata->dev,
3206 							  rx->sta->addr,
3207 							  &sta_opmode,
3208 							  GFP_ATOMIC);
3209 			goto handled;
3210 		}
3211 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3212 			struct ieee80211_supported_band *sband;
3213 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3214 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3215 			struct sta_opmode_info sta_opmode = {};
3216 
3217 			/* If it doesn't support 40 MHz it can't change ... */
3218 			if (!(rx->sta->sta.ht_cap.cap &
3219 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3220 				goto handled;
3221 
3222 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3223 				max_bw = IEEE80211_STA_RX_BW_20;
3224 			else
3225 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3226 
3227 			/* set cur_max_bandwidth and recalc sta bw */
3228 			rx->sta->cur_max_bandwidth = max_bw;
3229 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3230 
3231 			if (rx->sta->sta.bandwidth == new_bw)
3232 				goto handled;
3233 
3234 			rx->sta->sta.bandwidth = new_bw;
3235 			sband = rx->local->hw.wiphy->bands[status->band];
3236 			sta_opmode.bw =
3237 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3238 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3239 
3240 			rate_control_rate_update(local, sband, rx->sta,
3241 						 IEEE80211_RC_BW_CHANGED);
3242 			cfg80211_sta_opmode_change_notify(sdata->dev,
3243 							  rx->sta->addr,
3244 							  &sta_opmode,
3245 							  GFP_ATOMIC);
3246 			goto handled;
3247 		}
3248 		default:
3249 			goto invalid;
3250 		}
3251 
3252 		break;
3253 	case WLAN_CATEGORY_PUBLIC:
3254 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3255 			goto invalid;
3256 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3257 			break;
3258 		if (!rx->sta)
3259 			break;
3260 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3261 			break;
3262 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3263 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3264 			break;
3265 		if (len < offsetof(struct ieee80211_mgmt,
3266 				   u.action.u.ext_chan_switch.variable))
3267 			goto invalid;
3268 		goto queue;
3269 	case WLAN_CATEGORY_VHT:
3270 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3271 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3272 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3273 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3274 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3275 			break;
3276 
3277 		/* verify action code is present */
3278 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3279 			goto invalid;
3280 
3281 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3282 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3283 			/* verify opmode is present */
3284 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3285 				goto invalid;
3286 			goto queue;
3287 		}
3288 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3289 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3290 				goto invalid;
3291 			goto queue;
3292 		}
3293 		default:
3294 			break;
3295 		}
3296 		break;
3297 	case WLAN_CATEGORY_BACK:
3298 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3299 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3300 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3301 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3302 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3303 			break;
3304 
3305 		/* verify action_code is present */
3306 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3307 			break;
3308 
3309 		switch (mgmt->u.action.u.addba_req.action_code) {
3310 		case WLAN_ACTION_ADDBA_REQ:
3311 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3312 				   sizeof(mgmt->u.action.u.addba_req)))
3313 				goto invalid;
3314 			break;
3315 		case WLAN_ACTION_ADDBA_RESP:
3316 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3317 				   sizeof(mgmt->u.action.u.addba_resp)))
3318 				goto invalid;
3319 			break;
3320 		case WLAN_ACTION_DELBA:
3321 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3322 				   sizeof(mgmt->u.action.u.delba)))
3323 				goto invalid;
3324 			break;
3325 		default:
3326 			goto invalid;
3327 		}
3328 
3329 		goto queue;
3330 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3331 		/* verify action_code is present */
3332 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3333 			break;
3334 
3335 		switch (mgmt->u.action.u.measurement.action_code) {
3336 		case WLAN_ACTION_SPCT_MSR_REQ:
3337 			if (status->band != NL80211_BAND_5GHZ)
3338 				break;
3339 
3340 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3341 				   sizeof(mgmt->u.action.u.measurement)))
3342 				break;
3343 
3344 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3345 				break;
3346 
3347 			ieee80211_process_measurement_req(sdata, mgmt, len);
3348 			goto handled;
3349 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3350 			u8 *bssid;
3351 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3352 				   sizeof(mgmt->u.action.u.chan_switch)))
3353 				break;
3354 
3355 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3356 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3357 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3358 				break;
3359 
3360 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3361 				bssid = sdata->u.mgd.bssid;
3362 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3363 				bssid = sdata->u.ibss.bssid;
3364 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3365 				bssid = mgmt->sa;
3366 			else
3367 				break;
3368 
3369 			if (!ether_addr_equal(mgmt->bssid, bssid))
3370 				break;
3371 
3372 			goto queue;
3373 			}
3374 		}
3375 		break;
3376 	case WLAN_CATEGORY_SELF_PROTECTED:
3377 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3378 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3379 			break;
3380 
3381 		switch (mgmt->u.action.u.self_prot.action_code) {
3382 		case WLAN_SP_MESH_PEERING_OPEN:
3383 		case WLAN_SP_MESH_PEERING_CLOSE:
3384 		case WLAN_SP_MESH_PEERING_CONFIRM:
3385 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3386 				goto invalid;
3387 			if (sdata->u.mesh.user_mpm)
3388 				/* userspace handles this frame */
3389 				break;
3390 			goto queue;
3391 		case WLAN_SP_MGK_INFORM:
3392 		case WLAN_SP_MGK_ACK:
3393 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3394 				goto invalid;
3395 			break;
3396 		}
3397 		break;
3398 	case WLAN_CATEGORY_MESH_ACTION:
3399 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3400 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3401 			break;
3402 
3403 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3404 			break;
3405 		if (mesh_action_is_path_sel(mgmt) &&
3406 		    !mesh_path_sel_is_hwmp(sdata))
3407 			break;
3408 		goto queue;
3409 	}
3410 
3411 	return RX_CONTINUE;
3412 
3413  invalid:
3414 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3415 	/* will return in the next handlers */
3416 	return RX_CONTINUE;
3417 
3418  handled:
3419 	if (rx->sta)
3420 		rx->sta->rx_stats.packets++;
3421 	dev_kfree_skb(rx->skb);
3422 	return RX_QUEUED;
3423 
3424  queue:
3425 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3426 	ieee80211_queue_work(&local->hw, &sdata->work);
3427 	if (rx->sta)
3428 		rx->sta->rx_stats.packets++;
3429 	return RX_QUEUED;
3430 }
3431 
3432 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)3433 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3434 {
3435 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3436 	int sig = 0;
3437 
3438 	/* skip known-bad action frames and return them in the next handler */
3439 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3440 		return RX_CONTINUE;
3441 
3442 	/*
3443 	 * Getting here means the kernel doesn't know how to handle
3444 	 * it, but maybe userspace does ... include returned frames
3445 	 * so userspace can register for those to know whether ones
3446 	 * it transmitted were processed or returned.
3447 	 */
3448 
3449 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3450 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3451 		sig = status->signal;
3452 
3453 	if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3454 				 ieee80211_rx_status_to_khz(status), sig,
3455 				 rx->skb->data, rx->skb->len, 0)) {
3456 		if (rx->sta)
3457 			rx->sta->rx_stats.packets++;
3458 		dev_kfree_skb(rx->skb);
3459 		return RX_QUEUED;
3460 	}
3461 
3462 	return RX_CONTINUE;
3463 }
3464 
3465 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data * rx)3466 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3467 {
3468 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3469 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3470 	int len = rx->skb->len;
3471 
3472 	if (!ieee80211_is_action(mgmt->frame_control))
3473 		return RX_CONTINUE;
3474 
3475 	switch (mgmt->u.action.category) {
3476 	case WLAN_CATEGORY_SA_QUERY:
3477 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3478 			   sizeof(mgmt->u.action.u.sa_query)))
3479 			break;
3480 
3481 		switch (mgmt->u.action.u.sa_query.action) {
3482 		case WLAN_ACTION_SA_QUERY_REQUEST:
3483 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3484 				break;
3485 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3486 			goto handled;
3487 		}
3488 		break;
3489 	}
3490 
3491 	return RX_CONTINUE;
3492 
3493  handled:
3494 	if (rx->sta)
3495 		rx->sta->rx_stats.packets++;
3496 	dev_kfree_skb(rx->skb);
3497 	return RX_QUEUED;
3498 }
3499 
3500 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)3501 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3502 {
3503 	struct ieee80211_local *local = rx->local;
3504 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3505 	struct sk_buff *nskb;
3506 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3507 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3508 
3509 	if (!ieee80211_is_action(mgmt->frame_control))
3510 		return RX_CONTINUE;
3511 
3512 	/*
3513 	 * For AP mode, hostapd is responsible for handling any action
3514 	 * frames that we didn't handle, including returning unknown
3515 	 * ones. For all other modes we will return them to the sender,
3516 	 * setting the 0x80 bit in the action category, as required by
3517 	 * 802.11-2012 9.24.4.
3518 	 * Newer versions of hostapd shall also use the management frame
3519 	 * registration mechanisms, but older ones still use cooked
3520 	 * monitor interfaces so push all frames there.
3521 	 */
3522 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3523 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3524 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3525 		return RX_DROP_MONITOR;
3526 
3527 	if (is_multicast_ether_addr(mgmt->da))
3528 		return RX_DROP_MONITOR;
3529 
3530 	/* do not return rejected action frames */
3531 	if (mgmt->u.action.category & 0x80)
3532 		return RX_DROP_UNUSABLE;
3533 
3534 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3535 			       GFP_ATOMIC);
3536 	if (nskb) {
3537 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3538 
3539 		nmgmt->u.action.category |= 0x80;
3540 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3541 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3542 
3543 		memset(nskb->cb, 0, sizeof(nskb->cb));
3544 
3545 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3546 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3547 
3548 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3549 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3550 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3551 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3552 				info->hw_queue =
3553 					local->hw.offchannel_tx_hw_queue;
3554 		}
3555 
3556 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3557 					    status->band);
3558 	}
3559 	dev_kfree_skb(rx->skb);
3560 	return RX_QUEUED;
3561 }
3562 
3563 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ext(struct ieee80211_rx_data * rx)3564 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3565 {
3566 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3567 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3568 
3569 	if (!ieee80211_is_ext(hdr->frame_control))
3570 		return RX_CONTINUE;
3571 
3572 	if (sdata->vif.type != NL80211_IFTYPE_STATION)
3573 		return RX_DROP_MONITOR;
3574 
3575 	/* for now only beacons are ext, so queue them */
3576 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3577 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3578 	if (rx->sta)
3579 		rx->sta->rx_stats.packets++;
3580 
3581 	return RX_QUEUED;
3582 }
3583 
3584 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3585 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3586 {
3587 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3588 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3589 	__le16 stype;
3590 
3591 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3592 
3593 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3594 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3595 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3596 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3597 		return RX_DROP_MONITOR;
3598 
3599 	switch (stype) {
3600 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3601 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3602 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3603 		/* process for all: mesh, mlme, ibss */
3604 		break;
3605 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3606 		if (is_multicast_ether_addr(mgmt->da) &&
3607 		    !is_broadcast_ether_addr(mgmt->da))
3608 			return RX_DROP_MONITOR;
3609 
3610 		/* process only for station/IBSS */
3611 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3612 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3613 			return RX_DROP_MONITOR;
3614 		break;
3615 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3616 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3617 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3618 		if (is_multicast_ether_addr(mgmt->da) &&
3619 		    !is_broadcast_ether_addr(mgmt->da))
3620 			return RX_DROP_MONITOR;
3621 
3622 		/* process only for station */
3623 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3624 			return RX_DROP_MONITOR;
3625 		break;
3626 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3627 		/* process only for ibss and mesh */
3628 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3629 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3630 			return RX_DROP_MONITOR;
3631 		break;
3632 	default:
3633 		return RX_DROP_MONITOR;
3634 	}
3635 
3636 	/* queue up frame and kick off work to process it */
3637 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3638 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3639 	if (rx->sta)
3640 		rx->sta->rx_stats.packets++;
3641 
3642 	return RX_QUEUED;
3643 }
3644 
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3645 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3646 					struct ieee80211_rate *rate)
3647 {
3648 	struct ieee80211_sub_if_data *sdata;
3649 	struct ieee80211_local *local = rx->local;
3650 	struct sk_buff *skb = rx->skb, *skb2;
3651 	struct net_device *prev_dev = NULL;
3652 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3653 	int needed_headroom;
3654 
3655 	/*
3656 	 * If cooked monitor has been processed already, then
3657 	 * don't do it again. If not, set the flag.
3658 	 */
3659 	if (rx->flags & IEEE80211_RX_CMNTR)
3660 		goto out_free_skb;
3661 	rx->flags |= IEEE80211_RX_CMNTR;
3662 
3663 	/* If there are no cooked monitor interfaces, just free the SKB */
3664 	if (!local->cooked_mntrs)
3665 		goto out_free_skb;
3666 
3667 	/* vendor data is long removed here */
3668 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3669 	/* room for the radiotap header based on driver features */
3670 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3671 
3672 	if (skb_headroom(skb) < needed_headroom &&
3673 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3674 		goto out_free_skb;
3675 
3676 	/* prepend radiotap information */
3677 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3678 					 false);
3679 
3680 	skb_reset_mac_header(skb);
3681 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3682 	skb->pkt_type = PACKET_OTHERHOST;
3683 	skb->protocol = htons(ETH_P_802_2);
3684 
3685 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3686 		if (!ieee80211_sdata_running(sdata))
3687 			continue;
3688 
3689 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3690 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3691 			continue;
3692 
3693 		if (prev_dev) {
3694 			skb2 = skb_clone(skb, GFP_ATOMIC);
3695 			if (skb2) {
3696 				skb2->dev = prev_dev;
3697 				netif_receive_skb(skb2);
3698 			}
3699 		}
3700 
3701 		prev_dev = sdata->dev;
3702 		ieee80211_rx_stats(sdata->dev, skb->len);
3703 	}
3704 
3705 	if (prev_dev) {
3706 		skb->dev = prev_dev;
3707 		netif_receive_skb(skb);
3708 		return;
3709 	}
3710 
3711  out_free_skb:
3712 	dev_kfree_skb(skb);
3713 }
3714 
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3715 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3716 					 ieee80211_rx_result res)
3717 {
3718 	switch (res) {
3719 	case RX_DROP_MONITOR:
3720 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3721 		if (rx->sta)
3722 			rx->sta->rx_stats.dropped++;
3723 		fallthrough;
3724 	case RX_CONTINUE: {
3725 		struct ieee80211_rate *rate = NULL;
3726 		struct ieee80211_supported_band *sband;
3727 		struct ieee80211_rx_status *status;
3728 
3729 		status = IEEE80211_SKB_RXCB((rx->skb));
3730 
3731 		sband = rx->local->hw.wiphy->bands[status->band];
3732 		if (status->encoding == RX_ENC_LEGACY)
3733 			rate = &sband->bitrates[status->rate_idx];
3734 
3735 		ieee80211_rx_cooked_monitor(rx, rate);
3736 		break;
3737 		}
3738 	case RX_DROP_UNUSABLE:
3739 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3740 		if (rx->sta)
3741 			rx->sta->rx_stats.dropped++;
3742 		dev_kfree_skb(rx->skb);
3743 		break;
3744 	case RX_QUEUED:
3745 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3746 		break;
3747 	}
3748 }
3749 
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3750 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3751 				  struct sk_buff_head *frames)
3752 {
3753 	ieee80211_rx_result res = RX_DROP_MONITOR;
3754 	struct sk_buff *skb;
3755 
3756 #define CALL_RXH(rxh)			\
3757 	do {				\
3758 		res = rxh(rx);		\
3759 		if (res != RX_CONTINUE)	\
3760 			goto rxh_next;  \
3761 	} while (0)
3762 
3763 	/* Lock here to avoid hitting all of the data used in the RX
3764 	 * path (e.g. key data, station data, ...) concurrently when
3765 	 * a frame is released from the reorder buffer due to timeout
3766 	 * from the timer, potentially concurrently with RX from the
3767 	 * driver.
3768 	 */
3769 	spin_lock_bh(&rx->local->rx_path_lock);
3770 
3771 	while ((skb = __skb_dequeue(frames))) {
3772 		/*
3773 		 * all the other fields are valid across frames
3774 		 * that belong to an aMPDU since they are on the
3775 		 * same TID from the same station
3776 		 */
3777 		rx->skb = skb;
3778 
3779 		CALL_RXH(ieee80211_rx_h_check_more_data);
3780 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3781 		CALL_RXH(ieee80211_rx_h_sta_process);
3782 		CALL_RXH(ieee80211_rx_h_decrypt);
3783 		CALL_RXH(ieee80211_rx_h_defragment);
3784 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3785 		/* must be after MMIC verify so header is counted in MPDU mic */
3786 #ifdef CONFIG_MAC80211_MESH
3787 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3788 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3789 #endif
3790 		CALL_RXH(ieee80211_rx_h_amsdu);
3791 		CALL_RXH(ieee80211_rx_h_data);
3792 
3793 		/* special treatment -- needs the queue */
3794 		res = ieee80211_rx_h_ctrl(rx, frames);
3795 		if (res != RX_CONTINUE)
3796 			goto rxh_next;
3797 
3798 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3799 		CALL_RXH(ieee80211_rx_h_action);
3800 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3801 		CALL_RXH(ieee80211_rx_h_action_post_userspace);
3802 		CALL_RXH(ieee80211_rx_h_action_return);
3803 		CALL_RXH(ieee80211_rx_h_ext);
3804 		CALL_RXH(ieee80211_rx_h_mgmt);
3805 
3806  rxh_next:
3807 		ieee80211_rx_handlers_result(rx, res);
3808 
3809 #undef CALL_RXH
3810 	}
3811 
3812 	spin_unlock_bh(&rx->local->rx_path_lock);
3813 }
3814 
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)3815 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3816 {
3817 	struct sk_buff_head reorder_release;
3818 	ieee80211_rx_result res = RX_DROP_MONITOR;
3819 
3820 	__skb_queue_head_init(&reorder_release);
3821 
3822 #define CALL_RXH(rxh)			\
3823 	do {				\
3824 		res = rxh(rx);		\
3825 		if (res != RX_CONTINUE)	\
3826 			goto rxh_next;  \
3827 	} while (0)
3828 
3829 	CALL_RXH(ieee80211_rx_h_check_dup);
3830 	CALL_RXH(ieee80211_rx_h_check);
3831 
3832 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3833 
3834 	ieee80211_rx_handlers(rx, &reorder_release);
3835 	return;
3836 
3837  rxh_next:
3838 	ieee80211_rx_handlers_result(rx, res);
3839 
3840 #undef CALL_RXH
3841 }
3842 
3843 /*
3844  * This function makes calls into the RX path, therefore
3845  * it has to be invoked under RCU read lock.
3846  */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)3847 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3848 {
3849 	struct sk_buff_head frames;
3850 	struct ieee80211_rx_data rx = {
3851 		.sta = sta,
3852 		.sdata = sta->sdata,
3853 		.local = sta->local,
3854 		/* This is OK -- must be QoS data frame */
3855 		.security_idx = tid,
3856 		.seqno_idx = tid,
3857 	};
3858 	struct tid_ampdu_rx *tid_agg_rx;
3859 
3860 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3861 	if (!tid_agg_rx)
3862 		return;
3863 
3864 	__skb_queue_head_init(&frames);
3865 
3866 	spin_lock(&tid_agg_rx->reorder_lock);
3867 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3868 	spin_unlock(&tid_agg_rx->reorder_lock);
3869 
3870 	if (!skb_queue_empty(&frames)) {
3871 		struct ieee80211_event event = {
3872 			.type = BA_FRAME_TIMEOUT,
3873 			.u.ba.tid = tid,
3874 			.u.ba.sta = &sta->sta,
3875 		};
3876 		drv_event_callback(rx.local, rx.sdata, &event);
3877 	}
3878 
3879 	ieee80211_rx_handlers(&rx, &frames);
3880 }
3881 
ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta * pubsta,u8 tid,u16 ssn,u64 filtered,u16 received_mpdus)3882 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3883 					  u16 ssn, u64 filtered,
3884 					  u16 received_mpdus)
3885 {
3886 	struct sta_info *sta;
3887 	struct tid_ampdu_rx *tid_agg_rx;
3888 	struct sk_buff_head frames;
3889 	struct ieee80211_rx_data rx = {
3890 		/* This is OK -- must be QoS data frame */
3891 		.security_idx = tid,
3892 		.seqno_idx = tid,
3893 	};
3894 	int i, diff;
3895 
3896 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3897 		return;
3898 
3899 	__skb_queue_head_init(&frames);
3900 
3901 	sta = container_of(pubsta, struct sta_info, sta);
3902 
3903 	rx.sta = sta;
3904 	rx.sdata = sta->sdata;
3905 	rx.local = sta->local;
3906 
3907 	rcu_read_lock();
3908 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3909 	if (!tid_agg_rx)
3910 		goto out;
3911 
3912 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3913 
3914 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3915 		int release;
3916 
3917 		/* release all frames in the reorder buffer */
3918 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3919 			   IEEE80211_SN_MODULO;
3920 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3921 						 release, &frames);
3922 		/* update ssn to match received ssn */
3923 		tid_agg_rx->head_seq_num = ssn;
3924 	} else {
3925 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3926 						 &frames);
3927 	}
3928 
3929 	/* handle the case that received ssn is behind the mac ssn.
3930 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3931 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3932 	if (diff >= tid_agg_rx->buf_size) {
3933 		tid_agg_rx->reorder_buf_filtered = 0;
3934 		goto release;
3935 	}
3936 	filtered = filtered >> diff;
3937 	ssn += diff;
3938 
3939 	/* update bitmap */
3940 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3941 		int index = (ssn + i) % tid_agg_rx->buf_size;
3942 
3943 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3944 		if (filtered & BIT_ULL(i))
3945 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3946 	}
3947 
3948 	/* now process also frames that the filter marking released */
3949 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3950 
3951 release:
3952 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3953 
3954 	ieee80211_rx_handlers(&rx, &frames);
3955 
3956  out:
3957 	rcu_read_unlock();
3958 }
3959 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3960 
3961 /* main receive path */
3962 
ieee80211_accept_frame(struct ieee80211_rx_data * rx)3963 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3964 {
3965 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3966 	struct sk_buff *skb = rx->skb;
3967 	struct ieee80211_hdr *hdr = (void *)skb->data;
3968 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3969 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3970 	bool multicast = is_multicast_ether_addr(hdr->addr1) ||
3971 			 ieee80211_is_s1g_beacon(hdr->frame_control);
3972 
3973 	switch (sdata->vif.type) {
3974 	case NL80211_IFTYPE_STATION:
3975 		if (!bssid && !sdata->u.mgd.use_4addr)
3976 			return false;
3977 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
3978 			return false;
3979 		if (multicast)
3980 			return true;
3981 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3982 	case NL80211_IFTYPE_ADHOC:
3983 		if (!bssid)
3984 			return false;
3985 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3986 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3987 			return false;
3988 		if (ieee80211_is_beacon(hdr->frame_control))
3989 			return true;
3990 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3991 			return false;
3992 		if (!multicast &&
3993 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3994 			return false;
3995 		if (!rx->sta) {
3996 			int rate_idx;
3997 			if (status->encoding != RX_ENC_LEGACY)
3998 				rate_idx = 0; /* TODO: HT/VHT rates */
3999 			else
4000 				rate_idx = status->rate_idx;
4001 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4002 						 BIT(rate_idx));
4003 		}
4004 		return true;
4005 	case NL80211_IFTYPE_OCB:
4006 		if (!bssid)
4007 			return false;
4008 		if (!ieee80211_is_data_present(hdr->frame_control))
4009 			return false;
4010 		if (!is_broadcast_ether_addr(bssid))
4011 			return false;
4012 		if (!multicast &&
4013 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4014 			return false;
4015 		if (!rx->sta) {
4016 			int rate_idx;
4017 			if (status->encoding != RX_ENC_LEGACY)
4018 				rate_idx = 0; /* TODO: HT rates */
4019 			else
4020 				rate_idx = status->rate_idx;
4021 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4022 						BIT(rate_idx));
4023 		}
4024 		return true;
4025 	case NL80211_IFTYPE_MESH_POINT:
4026 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4027 			return false;
4028 		if (multicast)
4029 			return true;
4030 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4031 	case NL80211_IFTYPE_AP_VLAN:
4032 	case NL80211_IFTYPE_AP:
4033 		if (!bssid)
4034 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4035 
4036 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4037 			/*
4038 			 * Accept public action frames even when the
4039 			 * BSSID doesn't match, this is used for P2P
4040 			 * and location updates. Note that mac80211
4041 			 * itself never looks at these frames.
4042 			 */
4043 			if (!multicast &&
4044 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4045 				return false;
4046 			if (ieee80211_is_public_action(hdr, skb->len))
4047 				return true;
4048 			return ieee80211_is_beacon(hdr->frame_control);
4049 		}
4050 
4051 		if (!ieee80211_has_tods(hdr->frame_control)) {
4052 			/* ignore data frames to TDLS-peers */
4053 			if (ieee80211_is_data(hdr->frame_control))
4054 				return false;
4055 			/* ignore action frames to TDLS-peers */
4056 			if (ieee80211_is_action(hdr->frame_control) &&
4057 			    !is_broadcast_ether_addr(bssid) &&
4058 			    !ether_addr_equal(bssid, hdr->addr1))
4059 				return false;
4060 		}
4061 
4062 		/*
4063 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4064 		 * the BSSID - we've checked that already but may have accepted
4065 		 * the wildcard (ff:ff:ff:ff:ff:ff).
4066 		 *
4067 		 * It also says:
4068 		 *	The BSSID of the Data frame is determined as follows:
4069 		 *	a) If the STA is contained within an AP or is associated
4070 		 *	   with an AP, the BSSID is the address currently in use
4071 		 *	   by the STA contained in the AP.
4072 		 *
4073 		 * So we should not accept data frames with an address that's
4074 		 * multicast.
4075 		 *
4076 		 * Accepting it also opens a security problem because stations
4077 		 * could encrypt it with the GTK and inject traffic that way.
4078 		 */
4079 		if (ieee80211_is_data(hdr->frame_control) && multicast)
4080 			return false;
4081 
4082 		return true;
4083 	case NL80211_IFTYPE_WDS:
4084 		if (bssid || !ieee80211_is_data(hdr->frame_control))
4085 			return false;
4086 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
4087 	case NL80211_IFTYPE_P2P_DEVICE:
4088 		return ieee80211_is_public_action(hdr, skb->len) ||
4089 		       ieee80211_is_probe_req(hdr->frame_control) ||
4090 		       ieee80211_is_probe_resp(hdr->frame_control) ||
4091 		       ieee80211_is_beacon(hdr->frame_control);
4092 	case NL80211_IFTYPE_NAN:
4093 		/* Currently no frames on NAN interface are allowed */
4094 		return false;
4095 	default:
4096 		break;
4097 	}
4098 
4099 	WARN_ON_ONCE(1);
4100 	return false;
4101 }
4102 
ieee80211_check_fast_rx(struct sta_info * sta)4103 void ieee80211_check_fast_rx(struct sta_info *sta)
4104 {
4105 	struct ieee80211_sub_if_data *sdata = sta->sdata;
4106 	struct ieee80211_local *local = sdata->local;
4107 	struct ieee80211_key *key;
4108 	struct ieee80211_fast_rx fastrx = {
4109 		.dev = sdata->dev,
4110 		.vif_type = sdata->vif.type,
4111 		.control_port_protocol = sdata->control_port_protocol,
4112 	}, *old, *new = NULL;
4113 	bool assign = false;
4114 
4115 	/* use sparse to check that we don't return without updating */
4116 	__acquire(check_fast_rx);
4117 
4118 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4119 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4120 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4121 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4122 
4123 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4124 
4125 	/* fast-rx doesn't do reordering */
4126 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4127 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4128 		goto clear;
4129 
4130 	switch (sdata->vif.type) {
4131 	case NL80211_IFTYPE_STATION:
4132 		if (sta->sta.tdls) {
4133 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4134 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4135 			fastrx.expected_ds_bits = 0;
4136 		} else {
4137 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4138 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4139 			fastrx.expected_ds_bits =
4140 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4141 		}
4142 
4143 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4144 			fastrx.expected_ds_bits |=
4145 				cpu_to_le16(IEEE80211_FCTL_TODS);
4146 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4147 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4148 		}
4149 
4150 		if (!sdata->u.mgd.powersave)
4151 			break;
4152 
4153 		/* software powersave is a huge mess, avoid all of it */
4154 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4155 			goto clear;
4156 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4157 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4158 			goto clear;
4159 		break;
4160 	case NL80211_IFTYPE_AP_VLAN:
4161 	case NL80211_IFTYPE_AP:
4162 		/* parallel-rx requires this, at least with calls to
4163 		 * ieee80211_sta_ps_transition()
4164 		 */
4165 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4166 			goto clear;
4167 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4168 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4169 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4170 
4171 		fastrx.internal_forward =
4172 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4173 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4174 			 !sdata->u.vlan.sta);
4175 
4176 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4177 		    sdata->u.vlan.sta) {
4178 			fastrx.expected_ds_bits |=
4179 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4180 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4181 			fastrx.internal_forward = 0;
4182 		}
4183 
4184 		break;
4185 	default:
4186 		goto clear;
4187 	}
4188 
4189 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4190 		goto clear;
4191 
4192 	rcu_read_lock();
4193 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4194 	if (key) {
4195 		switch (key->conf.cipher) {
4196 		case WLAN_CIPHER_SUITE_TKIP:
4197 			/* we don't want to deal with MMIC in fast-rx */
4198 			goto clear_rcu;
4199 		case WLAN_CIPHER_SUITE_CCMP:
4200 		case WLAN_CIPHER_SUITE_CCMP_256:
4201 		case WLAN_CIPHER_SUITE_GCMP:
4202 		case WLAN_CIPHER_SUITE_GCMP_256:
4203 			break;
4204 		default:
4205 			/* We also don't want to deal with
4206 			 * WEP or cipher scheme.
4207 			 */
4208 			goto clear_rcu;
4209 		}
4210 
4211 		fastrx.key = true;
4212 		fastrx.icv_len = key->conf.icv_len;
4213 	}
4214 
4215 	assign = true;
4216  clear_rcu:
4217 	rcu_read_unlock();
4218  clear:
4219 	__release(check_fast_rx);
4220 
4221 	if (assign)
4222 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4223 
4224 	spin_lock_bh(&sta->lock);
4225 	old = rcu_dereference_protected(sta->fast_rx, true);
4226 	rcu_assign_pointer(sta->fast_rx, new);
4227 	spin_unlock_bh(&sta->lock);
4228 
4229 	if (old)
4230 		kfree_rcu(old, rcu_head);
4231 }
4232 
ieee80211_clear_fast_rx(struct sta_info * sta)4233 void ieee80211_clear_fast_rx(struct sta_info *sta)
4234 {
4235 	struct ieee80211_fast_rx *old;
4236 
4237 	spin_lock_bh(&sta->lock);
4238 	old = rcu_dereference_protected(sta->fast_rx, true);
4239 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4240 	spin_unlock_bh(&sta->lock);
4241 
4242 	if (old)
4243 		kfree_rcu(old, rcu_head);
4244 }
4245 
__ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4246 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4247 {
4248 	struct ieee80211_local *local = sdata->local;
4249 	struct sta_info *sta;
4250 
4251 	lockdep_assert_held(&local->sta_mtx);
4252 
4253 	list_for_each_entry(sta, &local->sta_list, list) {
4254 		if (sdata != sta->sdata &&
4255 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4256 			continue;
4257 		ieee80211_check_fast_rx(sta);
4258 	}
4259 }
4260 
ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4261 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4262 {
4263 	struct ieee80211_local *local = sdata->local;
4264 
4265 	mutex_lock(&local->sta_mtx);
4266 	__ieee80211_check_fast_rx_iface(sdata);
4267 	mutex_unlock(&local->sta_mtx);
4268 }
4269 
ieee80211_invoke_fast_rx(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx)4270 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4271 				     struct ieee80211_fast_rx *fast_rx)
4272 {
4273 	struct sk_buff *skb = rx->skb;
4274 	struct ieee80211_hdr *hdr = (void *)skb->data;
4275 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4276 	struct sta_info *sta = rx->sta;
4277 	int orig_len = skb->len;
4278 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4279 	int snap_offs = hdrlen;
4280 	struct {
4281 		u8 snap[sizeof(rfc1042_header)];
4282 		__be16 proto;
4283 	} *payload __aligned(2);
4284 	struct {
4285 		u8 da[ETH_ALEN];
4286 		u8 sa[ETH_ALEN];
4287 	} addrs __aligned(2);
4288 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4289 
4290 	if (fast_rx->uses_rss)
4291 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4292 
4293 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4294 	 * to a common data structure; drivers can implement that per queue
4295 	 * but we don't have that information in mac80211
4296 	 */
4297 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4298 		return false;
4299 
4300 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4301 
4302 	/* If using encryption, we also need to have:
4303 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4304 	 *  - DECRYPTED: necessary for PN_VALIDATED
4305 	 */
4306 	if (fast_rx->key &&
4307 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4308 		return false;
4309 
4310 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4311 		return false;
4312 
4313 	if (unlikely(ieee80211_is_frag(hdr)))
4314 		return false;
4315 
4316 	/* Since our interface address cannot be multicast, this
4317 	 * implicitly also rejects multicast frames without the
4318 	 * explicit check.
4319 	 *
4320 	 * We shouldn't get any *data* frames not addressed to us
4321 	 * (AP mode will accept multicast *management* frames), but
4322 	 * punting here will make it go through the full checks in
4323 	 * ieee80211_accept_frame().
4324 	 */
4325 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4326 		return false;
4327 
4328 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4329 					      IEEE80211_FCTL_TODS)) !=
4330 	    fast_rx->expected_ds_bits)
4331 		return false;
4332 
4333 	/* assign the key to drop unencrypted frames (later)
4334 	 * and strip the IV/MIC if necessary
4335 	 */
4336 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4337 		/* GCMP header length is the same */
4338 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4339 	}
4340 
4341 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4342 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4343 			goto drop;
4344 
4345 		payload = (void *)(skb->data + snap_offs);
4346 
4347 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4348 			return false;
4349 
4350 		/* Don't handle these here since they require special code.
4351 		 * Accept AARP and IPX even though they should come with a
4352 		 * bridge-tunnel header - but if we get them this way then
4353 		 * there's little point in discarding them.
4354 		 */
4355 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4356 			     payload->proto == fast_rx->control_port_protocol))
4357 			return false;
4358 	}
4359 
4360 	/* after this point, don't punt to the slowpath! */
4361 
4362 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4363 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4364 		goto drop;
4365 
4366 	/* statistics part of ieee80211_rx_h_sta_process() */
4367 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4368 		stats->last_signal = status->signal;
4369 		if (!fast_rx->uses_rss)
4370 			ewma_signal_add(&sta->rx_stats_avg.signal,
4371 					-status->signal);
4372 	}
4373 
4374 	if (status->chains) {
4375 		int i;
4376 
4377 		stats->chains = status->chains;
4378 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4379 			int signal = status->chain_signal[i];
4380 
4381 			if (!(status->chains & BIT(i)))
4382 				continue;
4383 
4384 			stats->chain_signal_last[i] = signal;
4385 			if (!fast_rx->uses_rss)
4386 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4387 						-signal);
4388 		}
4389 	}
4390 	/* end of statistics */
4391 
4392 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4393 		goto drop;
4394 
4395 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4396 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4397 		    RX_QUEUED)
4398 			goto drop;
4399 
4400 		return true;
4401 	}
4402 
4403 	stats->last_rx = jiffies;
4404 	stats->last_rate = sta_stats_encode_rate(status);
4405 
4406 	stats->fragments++;
4407 	stats->packets++;
4408 
4409 	/* do the header conversion - first grab the addresses */
4410 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4411 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4412 	/* remove the SNAP but leave the ethertype */
4413 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4414 	/* push the addresses in front */
4415 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4416 
4417 	skb->dev = fast_rx->dev;
4418 
4419 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4420 
4421 	/* The seqno index has the same property as needed
4422 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4423 	 * for non-QoS-data frames. Here we know it's a data
4424 	 * frame, so count MSDUs.
4425 	 */
4426 	u64_stats_update_begin(&stats->syncp);
4427 	stats->msdu[rx->seqno_idx]++;
4428 	stats->bytes += orig_len;
4429 	u64_stats_update_end(&stats->syncp);
4430 
4431 	if (fast_rx->internal_forward) {
4432 		struct sk_buff *xmit_skb = NULL;
4433 		if (is_multicast_ether_addr(addrs.da)) {
4434 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4435 		} else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4436 			   sta_info_get(rx->sdata, addrs.da)) {
4437 			xmit_skb = skb;
4438 			skb = NULL;
4439 		}
4440 
4441 		if (xmit_skb) {
4442 			/*
4443 			 * Send to wireless media and increase priority by 256
4444 			 * to keep the received priority instead of
4445 			 * reclassifying the frame (see cfg80211_classify8021d).
4446 			 */
4447 			xmit_skb->priority += 256;
4448 			xmit_skb->protocol = htons(ETH_P_802_3);
4449 			skb_reset_network_header(xmit_skb);
4450 			skb_reset_mac_header(xmit_skb);
4451 			dev_queue_xmit(xmit_skb);
4452 		}
4453 
4454 		if (!skb)
4455 			return true;
4456 	}
4457 
4458 	/* deliver to local stack */
4459 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4460 	memset(skb->cb, 0, sizeof(skb->cb));
4461 	if (rx->list)
4462 		list_add_tail(&skb->list, rx->list);
4463 	else
4464 		netif_receive_skb(skb);
4465 
4466 	return true;
4467  drop:
4468 	dev_kfree_skb(skb);
4469 	stats->dropped++;
4470 	return true;
4471 }
4472 
4473 /*
4474  * This function returns whether or not the SKB
4475  * was destined for RX processing or not, which,
4476  * if consume is true, is equivalent to whether
4477  * or not the skb was consumed.
4478  */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)4479 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4480 					    struct sk_buff *skb, bool consume)
4481 {
4482 	struct ieee80211_local *local = rx->local;
4483 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4484 
4485 	rx->skb = skb;
4486 
4487 	/* See if we can do fast-rx; if we have to copy we already lost,
4488 	 * so punt in that case. We should never have to deliver a data
4489 	 * frame to multiple interfaces anyway.
4490 	 *
4491 	 * We skip the ieee80211_accept_frame() call and do the necessary
4492 	 * checking inside ieee80211_invoke_fast_rx().
4493 	 */
4494 	if (consume && rx->sta) {
4495 		struct ieee80211_fast_rx *fast_rx;
4496 
4497 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4498 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4499 			return true;
4500 	}
4501 
4502 	if (!ieee80211_accept_frame(rx))
4503 		return false;
4504 
4505 	if (!consume) {
4506 		skb = skb_copy(skb, GFP_ATOMIC);
4507 		if (!skb) {
4508 			if (net_ratelimit())
4509 				wiphy_debug(local->hw.wiphy,
4510 					"failed to copy skb for %s\n",
4511 					sdata->name);
4512 			return true;
4513 		}
4514 
4515 		rx->skb = skb;
4516 	}
4517 
4518 	ieee80211_invoke_rx_handlers(rx);
4519 	return true;
4520 }
4521 
4522 /*
4523  * This is the actual Rx frames handler. as it belongs to Rx path it must
4524  * be called with rcu_read_lock protection.
4525  */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4526 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4527 					 struct ieee80211_sta *pubsta,
4528 					 struct sk_buff *skb,
4529 					 struct list_head *list)
4530 {
4531 	struct ieee80211_local *local = hw_to_local(hw);
4532 	struct ieee80211_sub_if_data *sdata;
4533 	struct ieee80211_hdr *hdr;
4534 	__le16 fc;
4535 	struct ieee80211_rx_data rx;
4536 	struct ieee80211_sub_if_data *prev;
4537 	struct rhlist_head *tmp;
4538 	int err = 0;
4539 
4540 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4541 	memset(&rx, 0, sizeof(rx));
4542 	rx.skb = skb;
4543 	rx.local = local;
4544 	rx.list = list;
4545 
4546 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4547 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4548 
4549 	if (ieee80211_is_mgmt(fc)) {
4550 		/* drop frame if too short for header */
4551 		if (skb->len < ieee80211_hdrlen(fc))
4552 			err = -ENOBUFS;
4553 		else
4554 			err = skb_linearize(skb);
4555 	} else {
4556 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4557 	}
4558 
4559 	if (err) {
4560 		dev_kfree_skb(skb);
4561 		return;
4562 	}
4563 
4564 	hdr = (struct ieee80211_hdr *)skb->data;
4565 	ieee80211_parse_qos(&rx);
4566 	ieee80211_verify_alignment(&rx);
4567 
4568 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4569 		     ieee80211_is_beacon(hdr->frame_control) ||
4570 		     ieee80211_is_s1g_beacon(hdr->frame_control)))
4571 		ieee80211_scan_rx(local, skb);
4572 
4573 	if (ieee80211_is_data(fc)) {
4574 		struct sta_info *sta, *prev_sta;
4575 
4576 		if (pubsta) {
4577 			rx.sta = container_of(pubsta, struct sta_info, sta);
4578 			rx.sdata = rx.sta->sdata;
4579 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4580 				return;
4581 			goto out;
4582 		}
4583 
4584 		prev_sta = NULL;
4585 
4586 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4587 			if (!prev_sta) {
4588 				prev_sta = sta;
4589 				continue;
4590 			}
4591 
4592 			rx.sta = prev_sta;
4593 			rx.sdata = prev_sta->sdata;
4594 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4595 
4596 			prev_sta = sta;
4597 		}
4598 
4599 		if (prev_sta) {
4600 			rx.sta = prev_sta;
4601 			rx.sdata = prev_sta->sdata;
4602 
4603 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4604 				return;
4605 			goto out;
4606 		}
4607 	}
4608 
4609 	prev = NULL;
4610 
4611 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4612 		if (!ieee80211_sdata_running(sdata))
4613 			continue;
4614 
4615 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4616 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4617 			continue;
4618 
4619 		/*
4620 		 * frame is destined for this interface, but if it's
4621 		 * not also for the previous one we handle that after
4622 		 * the loop to avoid copying the SKB once too much
4623 		 */
4624 
4625 		if (!prev) {
4626 			prev = sdata;
4627 			continue;
4628 		}
4629 
4630 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4631 		rx.sdata = prev;
4632 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4633 
4634 		prev = sdata;
4635 	}
4636 
4637 	if (prev) {
4638 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4639 		rx.sdata = prev;
4640 
4641 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4642 			return;
4643 	}
4644 
4645  out:
4646 	dev_kfree_skb(skb);
4647 }
4648 
4649 /*
4650  * This is the receive path handler. It is called by a low level driver when an
4651  * 802.11 MPDU is received from the hardware.
4652  */
ieee80211_rx_list(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4653 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4654 		       struct sk_buff *skb, struct list_head *list)
4655 {
4656 	struct ieee80211_local *local = hw_to_local(hw);
4657 	struct ieee80211_rate *rate = NULL;
4658 	struct ieee80211_supported_band *sband;
4659 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4660 
4661 	WARN_ON_ONCE(softirq_count() == 0);
4662 
4663 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4664 		goto drop;
4665 
4666 	sband = local->hw.wiphy->bands[status->band];
4667 	if (WARN_ON(!sband))
4668 		goto drop;
4669 
4670 	/*
4671 	 * If we're suspending, it is possible although not too likely
4672 	 * that we'd be receiving frames after having already partially
4673 	 * quiesced the stack. We can't process such frames then since
4674 	 * that might, for example, cause stations to be added or other
4675 	 * driver callbacks be invoked.
4676 	 */
4677 	if (unlikely(local->quiescing || local->suspended))
4678 		goto drop;
4679 
4680 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4681 	if (unlikely(local->in_reconfig))
4682 		goto drop;
4683 
4684 	/*
4685 	 * The same happens when we're not even started,
4686 	 * but that's worth a warning.
4687 	 */
4688 	if (WARN_ON(!local->started))
4689 		goto drop;
4690 
4691 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4692 		/*
4693 		 * Validate the rate, unless a PLCP error means that
4694 		 * we probably can't have a valid rate here anyway.
4695 		 */
4696 
4697 		switch (status->encoding) {
4698 		case RX_ENC_HT:
4699 			/*
4700 			 * rate_idx is MCS index, which can be [0-76]
4701 			 * as documented on:
4702 			 *
4703 			 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4704 			 *
4705 			 * Anything else would be some sort of driver or
4706 			 * hardware error. The driver should catch hardware
4707 			 * errors.
4708 			 */
4709 			if (WARN(status->rate_idx > 76,
4710 				 "Rate marked as an HT rate but passed "
4711 				 "status->rate_idx is not "
4712 				 "an MCS index [0-76]: %d (0x%02x)\n",
4713 				 status->rate_idx,
4714 				 status->rate_idx))
4715 				goto drop;
4716 			break;
4717 		case RX_ENC_VHT:
4718 			if (WARN_ONCE(status->rate_idx > 9 ||
4719 				      !status->nss ||
4720 				      status->nss > 8,
4721 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4722 				      status->rate_idx, status->nss))
4723 				goto drop;
4724 			break;
4725 		case RX_ENC_HE:
4726 			if (WARN_ONCE(status->rate_idx > 11 ||
4727 				      !status->nss ||
4728 				      status->nss > 8,
4729 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4730 				      status->rate_idx, status->nss))
4731 				goto drop;
4732 			break;
4733 		default:
4734 			WARN_ON_ONCE(1);
4735 			fallthrough;
4736 		case RX_ENC_LEGACY:
4737 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4738 				goto drop;
4739 			rate = &sband->bitrates[status->rate_idx];
4740 		}
4741 	}
4742 
4743 	status->rx_flags = 0;
4744 
4745 	/*
4746 	 * Frames with failed FCS/PLCP checksum are not returned,
4747 	 * all other frames are returned without radiotap header
4748 	 * if it was previously present.
4749 	 * Also, frames with less than 16 bytes are dropped.
4750 	 */
4751 	skb = ieee80211_rx_monitor(local, skb, rate);
4752 	if (!skb)
4753 		return;
4754 
4755 	ieee80211_tpt_led_trig_rx(local,
4756 			((struct ieee80211_hdr *)skb->data)->frame_control,
4757 			skb->len);
4758 
4759 	__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4760 
4761 	return;
4762  drop:
4763 	kfree_skb(skb);
4764 }
4765 EXPORT_SYMBOL(ieee80211_rx_list);
4766 
ieee80211_rx_napi(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)4767 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4768 		       struct sk_buff *skb, struct napi_struct *napi)
4769 {
4770 	struct sk_buff *tmp;
4771 	LIST_HEAD(list);
4772 
4773 
4774 	/*
4775 	 * key references and virtual interfaces are protected using RCU
4776 	 * and this requires that we are in a read-side RCU section during
4777 	 * receive processing
4778 	 */
4779 	rcu_read_lock();
4780 	ieee80211_rx_list(hw, pubsta, skb, &list);
4781 	rcu_read_unlock();
4782 
4783 	if (!napi) {
4784 		netif_receive_skb_list(&list);
4785 		return;
4786 	}
4787 
4788 	list_for_each_entry_safe(skb, tmp, &list, list) {
4789 		skb_list_del_init(skb);
4790 		napi_gro_receive(napi, skb);
4791 	}
4792 }
4793 EXPORT_SYMBOL(ieee80211_rx_napi);
4794 
4795 /* This is a version of the rx handler that can be called from hard irq
4796  * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)4797 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4798 {
4799 	struct ieee80211_local *local = hw_to_local(hw);
4800 
4801 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4802 
4803 	skb->pkt_type = IEEE80211_RX_MSG;
4804 	skb_queue_tail(&local->skb_queue, skb);
4805 	tasklet_schedule(&local->tasklet);
4806 }
4807 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4808