1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2021 Intel Corporation
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 /*
37 * monitor mode reception
38 *
39 * This function cleans up the SKB, i.e. it removes all the stuff
40 * only useful for monitoring.
41 */
ieee80211_clean_skb(struct sk_buff * skb,unsigned int present_fcs_len,unsigned int rtap_space)42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 unsigned int present_fcs_len,
44 unsigned int rtap_space)
45 {
46 struct ieee80211_hdr *hdr;
47 unsigned int hdrlen;
48 __le16 fc;
49
50 if (present_fcs_len)
51 __pskb_trim(skb, skb->len - present_fcs_len);
52 __pskb_pull(skb, rtap_space);
53
54 hdr = (void *)skb->data;
55 fc = hdr->frame_control;
56
57 /*
58 * Remove the HT-Control field (if present) on management
59 * frames after we've sent the frame to monitoring. We
60 * (currently) don't need it, and don't properly parse
61 * frames with it present, due to the assumption of a
62 * fixed management header length.
63 */
64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
65 return skb;
66
67 hdrlen = ieee80211_hdrlen(fc);
68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
69
70 if (!pskb_may_pull(skb, hdrlen)) {
71 dev_kfree_skb(skb);
72 return NULL;
73 }
74
75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
76 hdrlen - IEEE80211_HT_CTL_LEN);
77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN);
78
79 return skb;
80 }
81
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_space)82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
83 unsigned int rtap_space)
84 {
85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
86 struct ieee80211_hdr *hdr;
87
88 hdr = (void *)(skb->data + rtap_space);
89
90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
91 RX_FLAG_FAILED_PLCP_CRC |
92 RX_FLAG_ONLY_MONITOR |
93 RX_FLAG_NO_PSDU))
94 return true;
95
96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
97 return true;
98
99 if (ieee80211_is_ctl(hdr->frame_control) &&
100 !ieee80211_is_pspoll(hdr->frame_control) &&
101 !ieee80211_is_back_req(hdr->frame_control))
102 return true;
103
104 return false;
105 }
106
107 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
109 struct ieee80211_rx_status *status,
110 struct sk_buff *skb)
111 {
112 int len;
113
114 /* always present fields */
115 len = sizeof(struct ieee80211_radiotap_header) + 8;
116
117 /* allocate extra bitmaps */
118 if (status->chains)
119 len += 4 * hweight8(status->chains);
120 /* vendor presence bitmap */
121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
122 len += 4;
123
124 if (ieee80211_have_rx_timestamp(status)) {
125 len = ALIGN(len, 8);
126 len += 8;
127 }
128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
129 len += 1;
130
131 /* antenna field, if we don't have per-chain info */
132 if (!status->chains)
133 len += 1;
134
135 /* padding for RX_FLAGS if necessary */
136 len = ALIGN(len, 2);
137
138 if (status->encoding == RX_ENC_HT) /* HT info */
139 len += 3;
140
141 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
142 len = ALIGN(len, 4);
143 len += 8;
144 }
145
146 if (status->encoding == RX_ENC_VHT) {
147 len = ALIGN(len, 2);
148 len += 12;
149 }
150
151 if (local->hw.radiotap_timestamp.units_pos >= 0) {
152 len = ALIGN(len, 8);
153 len += 12;
154 }
155
156 if (status->encoding == RX_ENC_HE &&
157 status->flag & RX_FLAG_RADIOTAP_HE) {
158 len = ALIGN(len, 2);
159 len += 12;
160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
161 }
162
163 if (status->encoding == RX_ENC_HE &&
164 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
165 len = ALIGN(len, 2);
166 len += 12;
167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
168 }
169
170 if (status->flag & RX_FLAG_NO_PSDU)
171 len += 1;
172
173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
174 len = ALIGN(len, 2);
175 len += 4;
176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
177 }
178
179 if (status->chains) {
180 /* antenna and antenna signal fields */
181 len += 2 * hweight8(status->chains);
182 }
183
184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
185 struct ieee80211_vendor_radiotap *rtap;
186 int vendor_data_offset = 0;
187
188 /*
189 * The position to look at depends on the existence (or non-
190 * existence) of other elements, so take that into account...
191 */
192 if (status->flag & RX_FLAG_RADIOTAP_HE)
193 vendor_data_offset +=
194 sizeof(struct ieee80211_radiotap_he);
195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
196 vendor_data_offset +=
197 sizeof(struct ieee80211_radiotap_he_mu);
198 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
199 vendor_data_offset +=
200 sizeof(struct ieee80211_radiotap_lsig);
201
202 rtap = (void *)&skb->data[vendor_data_offset];
203
204 /* alignment for fixed 6-byte vendor data header */
205 len = ALIGN(len, 2);
206 /* vendor data header */
207 len += 6;
208 if (WARN_ON(rtap->align == 0))
209 rtap->align = 1;
210 len = ALIGN(len, rtap->align);
211 len += rtap->len + rtap->pad;
212 }
213
214 return len;
215 }
216
__ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,struct sk_buff * skb)217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
218 struct sta_info *sta,
219 struct sk_buff *skb)
220 {
221 skb_queue_tail(&sdata->skb_queue, skb);
222 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
223 if (sta)
224 sta->rx_stats.packets++;
225 }
226
ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,struct sk_buff * skb)227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
228 struct sta_info *sta,
229 struct sk_buff *skb)
230 {
231 skb->protocol = 0;
232 __ieee80211_queue_skb_to_iface(sdata, sta, skb);
233 }
234
ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int rtap_space)235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
236 struct sk_buff *skb,
237 int rtap_space)
238 {
239 struct {
240 struct ieee80211_hdr_3addr hdr;
241 u8 category;
242 u8 action_code;
243 } __packed __aligned(2) action;
244
245 if (!sdata)
246 return;
247
248 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
249
250 if (skb->len < rtap_space + sizeof(action) +
251 VHT_MUMIMO_GROUPS_DATA_LEN)
252 return;
253
254 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
255 return;
256
257 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
258
259 if (!ieee80211_is_action(action.hdr.frame_control))
260 return;
261
262 if (action.category != WLAN_CATEGORY_VHT)
263 return;
264
265 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
266 return;
267
268 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
269 return;
270
271 skb = skb_copy(skb, GFP_ATOMIC);
272 if (!skb)
273 return;
274
275 ieee80211_queue_skb_to_iface(sdata, NULL, skb);
276 }
277
278 /*
279 * ieee80211_add_rx_radiotap_header - add radiotap header
280 *
281 * add a radiotap header containing all the fields which the hardware provided.
282 */
283 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
285 struct sk_buff *skb,
286 struct ieee80211_rate *rate,
287 int rtap_len, bool has_fcs)
288 {
289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
290 struct ieee80211_radiotap_header *rthdr;
291 unsigned char *pos;
292 __le32 *it_present;
293 u32 it_present_val;
294 u16 rx_flags = 0;
295 u16 channel_flags = 0;
296 int mpdulen, chain;
297 unsigned long chains = status->chains;
298 struct ieee80211_vendor_radiotap rtap = {};
299 struct ieee80211_radiotap_he he = {};
300 struct ieee80211_radiotap_he_mu he_mu = {};
301 struct ieee80211_radiotap_lsig lsig = {};
302
303 if (status->flag & RX_FLAG_RADIOTAP_HE) {
304 he = *(struct ieee80211_radiotap_he *)skb->data;
305 skb_pull(skb, sizeof(he));
306 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
307 }
308
309 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
310 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
311 skb_pull(skb, sizeof(he_mu));
312 }
313
314 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
315 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
316 skb_pull(skb, sizeof(lsig));
317 }
318
319 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
320 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
321 /* rtap.len and rtap.pad are undone immediately */
322 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
323 }
324
325 mpdulen = skb->len;
326 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
327 mpdulen += FCS_LEN;
328
329 rthdr = skb_push(skb, rtap_len);
330 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
331 it_present = &rthdr->it_present;
332
333 /* radiotap header, set always present flags */
334 rthdr->it_len = cpu_to_le16(rtap_len);
335 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
336 BIT(IEEE80211_RADIOTAP_CHANNEL) |
337 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
338
339 if (!status->chains)
340 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
341
342 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
343 it_present_val |=
344 BIT(IEEE80211_RADIOTAP_EXT) |
345 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
346 put_unaligned_le32(it_present_val, it_present);
347 it_present++;
348 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
349 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
350 }
351
352 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
353 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
354 BIT(IEEE80211_RADIOTAP_EXT);
355 put_unaligned_le32(it_present_val, it_present);
356 it_present++;
357 it_present_val = rtap.present;
358 }
359
360 put_unaligned_le32(it_present_val, it_present);
361
362 /* This references through an offset into it_optional[] rather
363 * than via it_present otherwise later uses of pos will cause
364 * the compiler to think we have walked past the end of the
365 * struct member.
366 */
367 pos = (void *)&rthdr->it_optional[it_present - rthdr->it_optional];
368
369 /* the order of the following fields is important */
370
371 /* IEEE80211_RADIOTAP_TSFT */
372 if (ieee80211_have_rx_timestamp(status)) {
373 /* padding */
374 while ((pos - (u8 *)rthdr) & 7)
375 *pos++ = 0;
376 put_unaligned_le64(
377 ieee80211_calculate_rx_timestamp(local, status,
378 mpdulen, 0),
379 pos);
380 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
381 pos += 8;
382 }
383
384 /* IEEE80211_RADIOTAP_FLAGS */
385 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
386 *pos |= IEEE80211_RADIOTAP_F_FCS;
387 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
388 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
389 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
390 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
391 pos++;
392
393 /* IEEE80211_RADIOTAP_RATE */
394 if (!rate || status->encoding != RX_ENC_LEGACY) {
395 /*
396 * Without rate information don't add it. If we have,
397 * MCS information is a separate field in radiotap,
398 * added below. The byte here is needed as padding
399 * for the channel though, so initialise it to 0.
400 */
401 *pos = 0;
402 } else {
403 int shift = 0;
404 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
405 if (status->bw == RATE_INFO_BW_10)
406 shift = 1;
407 else if (status->bw == RATE_INFO_BW_5)
408 shift = 2;
409 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
410 }
411 pos++;
412
413 /* IEEE80211_RADIOTAP_CHANNEL */
414 /* TODO: frequency offset in KHz */
415 put_unaligned_le16(status->freq, pos);
416 pos += 2;
417 if (status->bw == RATE_INFO_BW_10)
418 channel_flags |= IEEE80211_CHAN_HALF;
419 else if (status->bw == RATE_INFO_BW_5)
420 channel_flags |= IEEE80211_CHAN_QUARTER;
421
422 if (status->band == NL80211_BAND_5GHZ ||
423 status->band == NL80211_BAND_6GHZ)
424 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
425 else if (status->encoding != RX_ENC_LEGACY)
426 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
427 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
428 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
429 else if (rate)
430 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
431 else
432 channel_flags |= IEEE80211_CHAN_2GHZ;
433 put_unaligned_le16(channel_flags, pos);
434 pos += 2;
435
436 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
437 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
438 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
439 *pos = status->signal;
440 rthdr->it_present |=
441 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
442 pos++;
443 }
444
445 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
446
447 if (!status->chains) {
448 /* IEEE80211_RADIOTAP_ANTENNA */
449 *pos = status->antenna;
450 pos++;
451 }
452
453 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
454
455 /* IEEE80211_RADIOTAP_RX_FLAGS */
456 /* ensure 2 byte alignment for the 2 byte field as required */
457 if ((pos - (u8 *)rthdr) & 1)
458 *pos++ = 0;
459 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
460 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
461 put_unaligned_le16(rx_flags, pos);
462 pos += 2;
463
464 if (status->encoding == RX_ENC_HT) {
465 unsigned int stbc;
466
467 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
468 *pos++ = local->hw.radiotap_mcs_details;
469 *pos = 0;
470 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
471 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
472 if (status->bw == RATE_INFO_BW_40)
473 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
474 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
475 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
476 if (status->enc_flags & RX_ENC_FLAG_LDPC)
477 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
478 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
479 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
480 pos++;
481 *pos++ = status->rate_idx;
482 }
483
484 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
485 u16 flags = 0;
486
487 /* ensure 4 byte alignment */
488 while ((pos - (u8 *)rthdr) & 3)
489 pos++;
490 rthdr->it_present |=
491 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
492 put_unaligned_le32(status->ampdu_reference, pos);
493 pos += 4;
494 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
495 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
496 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
497 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
498 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
499 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
500 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
501 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
502 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
503 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
504 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
505 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
506 put_unaligned_le16(flags, pos);
507 pos += 2;
508 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
509 *pos++ = status->ampdu_delimiter_crc;
510 else
511 *pos++ = 0;
512 *pos++ = 0;
513 }
514
515 if (status->encoding == RX_ENC_VHT) {
516 u16 known = local->hw.radiotap_vht_details;
517
518 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
519 put_unaligned_le16(known, pos);
520 pos += 2;
521 /* flags */
522 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
523 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
524 /* in VHT, STBC is binary */
525 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
526 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
527 if (status->enc_flags & RX_ENC_FLAG_BF)
528 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
529 pos++;
530 /* bandwidth */
531 switch (status->bw) {
532 case RATE_INFO_BW_80:
533 *pos++ = 4;
534 break;
535 case RATE_INFO_BW_160:
536 *pos++ = 11;
537 break;
538 case RATE_INFO_BW_40:
539 *pos++ = 1;
540 break;
541 default:
542 *pos++ = 0;
543 }
544 /* MCS/NSS */
545 *pos = (status->rate_idx << 4) | status->nss;
546 pos += 4;
547 /* coding field */
548 if (status->enc_flags & RX_ENC_FLAG_LDPC)
549 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
550 pos++;
551 /* group ID */
552 pos++;
553 /* partial_aid */
554 pos += 2;
555 }
556
557 if (local->hw.radiotap_timestamp.units_pos >= 0) {
558 u16 accuracy = 0;
559 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
560
561 rthdr->it_present |=
562 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
563
564 /* ensure 8 byte alignment */
565 while ((pos - (u8 *)rthdr) & 7)
566 pos++;
567
568 put_unaligned_le64(status->device_timestamp, pos);
569 pos += sizeof(u64);
570
571 if (local->hw.radiotap_timestamp.accuracy >= 0) {
572 accuracy = local->hw.radiotap_timestamp.accuracy;
573 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
574 }
575 put_unaligned_le16(accuracy, pos);
576 pos += sizeof(u16);
577
578 *pos++ = local->hw.radiotap_timestamp.units_pos;
579 *pos++ = flags;
580 }
581
582 if (status->encoding == RX_ENC_HE &&
583 status->flag & RX_FLAG_RADIOTAP_HE) {
584 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
585
586 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
587 he.data6 |= HE_PREP(DATA6_NSTS,
588 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
589 status->enc_flags));
590 he.data3 |= HE_PREP(DATA3_STBC, 1);
591 } else {
592 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
593 }
594
595 #define CHECK_GI(s) \
596 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
597 (int)NL80211_RATE_INFO_HE_GI_##s)
598
599 CHECK_GI(0_8);
600 CHECK_GI(1_6);
601 CHECK_GI(3_2);
602
603 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
604 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
605 he.data3 |= HE_PREP(DATA3_CODING,
606 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
607
608 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
609
610 switch (status->bw) {
611 case RATE_INFO_BW_20:
612 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
613 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
614 break;
615 case RATE_INFO_BW_40:
616 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
617 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
618 break;
619 case RATE_INFO_BW_80:
620 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
621 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
622 break;
623 case RATE_INFO_BW_160:
624 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
625 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
626 break;
627 case RATE_INFO_BW_HE_RU:
628 #define CHECK_RU_ALLOC(s) \
629 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
630 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
631
632 CHECK_RU_ALLOC(26);
633 CHECK_RU_ALLOC(52);
634 CHECK_RU_ALLOC(106);
635 CHECK_RU_ALLOC(242);
636 CHECK_RU_ALLOC(484);
637 CHECK_RU_ALLOC(996);
638 CHECK_RU_ALLOC(2x996);
639
640 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
641 status->he_ru + 4);
642 break;
643 default:
644 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
645 }
646
647 /* ensure 2 byte alignment */
648 while ((pos - (u8 *)rthdr) & 1)
649 pos++;
650 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
651 memcpy(pos, &he, sizeof(he));
652 pos += sizeof(he);
653 }
654
655 if (status->encoding == RX_ENC_HE &&
656 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
657 /* ensure 2 byte alignment */
658 while ((pos - (u8 *)rthdr) & 1)
659 pos++;
660 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
661 memcpy(pos, &he_mu, sizeof(he_mu));
662 pos += sizeof(he_mu);
663 }
664
665 if (status->flag & RX_FLAG_NO_PSDU) {
666 rthdr->it_present |=
667 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
668 *pos++ = status->zero_length_psdu_type;
669 }
670
671 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
672 /* ensure 2 byte alignment */
673 while ((pos - (u8 *)rthdr) & 1)
674 pos++;
675 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
676 memcpy(pos, &lsig, sizeof(lsig));
677 pos += sizeof(lsig);
678 }
679
680 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
681 *pos++ = status->chain_signal[chain];
682 *pos++ = chain;
683 }
684
685 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
686 /* ensure 2 byte alignment for the vendor field as required */
687 if ((pos - (u8 *)rthdr) & 1)
688 *pos++ = 0;
689 *pos++ = rtap.oui[0];
690 *pos++ = rtap.oui[1];
691 *pos++ = rtap.oui[2];
692 *pos++ = rtap.subns;
693 put_unaligned_le16(rtap.len, pos);
694 pos += 2;
695 /* align the actual payload as requested */
696 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
697 *pos++ = 0;
698 /* data (and possible padding) already follows */
699 }
700 }
701
702 static struct sk_buff *
ieee80211_make_monitor_skb(struct ieee80211_local * local,struct sk_buff ** origskb,struct ieee80211_rate * rate,int rtap_space,bool use_origskb)703 ieee80211_make_monitor_skb(struct ieee80211_local *local,
704 struct sk_buff **origskb,
705 struct ieee80211_rate *rate,
706 int rtap_space, bool use_origskb)
707 {
708 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
709 int rt_hdrlen, needed_headroom;
710 struct sk_buff *skb;
711
712 /* room for the radiotap header based on driver features */
713 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
714 needed_headroom = rt_hdrlen - rtap_space;
715
716 if (use_origskb) {
717 /* only need to expand headroom if necessary */
718 skb = *origskb;
719 *origskb = NULL;
720
721 /*
722 * This shouldn't trigger often because most devices have an
723 * RX header they pull before we get here, and that should
724 * be big enough for our radiotap information. We should
725 * probably export the length to drivers so that we can have
726 * them allocate enough headroom to start with.
727 */
728 if (skb_headroom(skb) < needed_headroom &&
729 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
730 dev_kfree_skb(skb);
731 return NULL;
732 }
733 } else {
734 /*
735 * Need to make a copy and possibly remove radiotap header
736 * and FCS from the original.
737 */
738 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD,
739 0, GFP_ATOMIC);
740
741 if (!skb)
742 return NULL;
743 }
744
745 /* prepend radiotap information */
746 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
747
748 skb_reset_mac_header(skb);
749 skb->ip_summed = CHECKSUM_UNNECESSARY;
750 skb->pkt_type = PACKET_OTHERHOST;
751 skb->protocol = htons(ETH_P_802_2);
752
753 return skb;
754 }
755
756 /*
757 * This function copies a received frame to all monitor interfaces and
758 * returns a cleaned-up SKB that no longer includes the FCS nor the
759 * radiotap header the driver might have added.
760 */
761 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)762 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
763 struct ieee80211_rate *rate)
764 {
765 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
766 struct ieee80211_sub_if_data *sdata;
767 struct sk_buff *monskb = NULL;
768 int present_fcs_len = 0;
769 unsigned int rtap_space = 0;
770 struct ieee80211_sub_if_data *monitor_sdata =
771 rcu_dereference(local->monitor_sdata);
772 bool only_monitor = false;
773 unsigned int min_head_len;
774
775 if (status->flag & RX_FLAG_RADIOTAP_HE)
776 rtap_space += sizeof(struct ieee80211_radiotap_he);
777
778 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
779 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
780
781 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
782 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
783
784 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
785 struct ieee80211_vendor_radiotap *rtap =
786 (void *)(origskb->data + rtap_space);
787
788 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
789 }
790
791 min_head_len = rtap_space;
792
793 /*
794 * First, we may need to make a copy of the skb because
795 * (1) we need to modify it for radiotap (if not present), and
796 * (2) the other RX handlers will modify the skb we got.
797 *
798 * We don't need to, of course, if we aren't going to return
799 * the SKB because it has a bad FCS/PLCP checksum.
800 */
801
802 if (!(status->flag & RX_FLAG_NO_PSDU)) {
803 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
804 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
805 /* driver bug */
806 WARN_ON(1);
807 dev_kfree_skb(origskb);
808 return NULL;
809 }
810 present_fcs_len = FCS_LEN;
811 }
812
813 /* also consider the hdr->frame_control */
814 min_head_len += 2;
815 }
816
817 /* ensure that the expected data elements are in skb head */
818 if (!pskb_may_pull(origskb, min_head_len)) {
819 dev_kfree_skb(origskb);
820 return NULL;
821 }
822
823 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
824
825 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
826 if (only_monitor) {
827 dev_kfree_skb(origskb);
828 return NULL;
829 }
830
831 return ieee80211_clean_skb(origskb, present_fcs_len,
832 rtap_space);
833 }
834
835 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
836
837 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
838 bool last_monitor = list_is_last(&sdata->u.mntr.list,
839 &local->mon_list);
840
841 if (!monskb)
842 monskb = ieee80211_make_monitor_skb(local, &origskb,
843 rate, rtap_space,
844 only_monitor &&
845 last_monitor);
846
847 if (monskb) {
848 struct sk_buff *skb;
849
850 if (last_monitor) {
851 skb = monskb;
852 monskb = NULL;
853 } else {
854 skb = skb_clone(monskb, GFP_ATOMIC);
855 }
856
857 if (skb) {
858 skb->dev = sdata->dev;
859 dev_sw_netstats_rx_add(skb->dev, skb->len);
860 netif_receive_skb(skb);
861 }
862 }
863
864 if (last_monitor)
865 break;
866 }
867
868 /* this happens if last_monitor was erroneously false */
869 dev_kfree_skb(monskb);
870
871 /* ditto */
872 if (!origskb)
873 return NULL;
874
875 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
876 }
877
ieee80211_parse_qos(struct ieee80211_rx_data * rx)878 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
879 {
880 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
881 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
882 int tid, seqno_idx, security_idx;
883
884 /* does the frame have a qos control field? */
885 if (ieee80211_is_data_qos(hdr->frame_control)) {
886 u8 *qc = ieee80211_get_qos_ctl(hdr);
887 /* frame has qos control */
888 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
889 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
890 status->rx_flags |= IEEE80211_RX_AMSDU;
891
892 seqno_idx = tid;
893 security_idx = tid;
894 } else {
895 /*
896 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
897 *
898 * Sequence numbers for management frames, QoS data
899 * frames with a broadcast/multicast address in the
900 * Address 1 field, and all non-QoS data frames sent
901 * by QoS STAs are assigned using an additional single
902 * modulo-4096 counter, [...]
903 *
904 * We also use that counter for non-QoS STAs.
905 */
906 seqno_idx = IEEE80211_NUM_TIDS;
907 security_idx = 0;
908 if (ieee80211_is_mgmt(hdr->frame_control))
909 security_idx = IEEE80211_NUM_TIDS;
910 tid = 0;
911 }
912
913 rx->seqno_idx = seqno_idx;
914 rx->security_idx = security_idx;
915 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
916 * For now, set skb->priority to 0 for other cases. */
917 rx->skb->priority = (tid > 7) ? 0 : tid;
918 }
919
920 /**
921 * DOC: Packet alignment
922 *
923 * Drivers always need to pass packets that are aligned to two-byte boundaries
924 * to the stack.
925 *
926 * Additionally, should, if possible, align the payload data in a way that
927 * guarantees that the contained IP header is aligned to a four-byte
928 * boundary. In the case of regular frames, this simply means aligning the
929 * payload to a four-byte boundary (because either the IP header is directly
930 * contained, or IV/RFC1042 headers that have a length divisible by four are
931 * in front of it). If the payload data is not properly aligned and the
932 * architecture doesn't support efficient unaligned operations, mac80211
933 * will align the data.
934 *
935 * With A-MSDU frames, however, the payload data address must yield two modulo
936 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
937 * push the IP header further back to a multiple of four again. Thankfully, the
938 * specs were sane enough this time around to require padding each A-MSDU
939 * subframe to a length that is a multiple of four.
940 *
941 * Padding like Atheros hardware adds which is between the 802.11 header and
942 * the payload is not supported, the driver is required to move the 802.11
943 * header to be directly in front of the payload in that case.
944 */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)945 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
946 {
947 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
948 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
949 #endif
950 }
951
952
953 /* rx handlers */
954
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)955 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
956 {
957 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
958
959 if (is_multicast_ether_addr(hdr->addr1))
960 return 0;
961
962 return ieee80211_is_robust_mgmt_frame(skb);
963 }
964
965
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)966 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
967 {
968 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
969
970 if (!is_multicast_ether_addr(hdr->addr1))
971 return 0;
972
973 return ieee80211_is_robust_mgmt_frame(skb);
974 }
975
976
977 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)978 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
979 {
980 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
981 struct ieee80211_mmie *mmie;
982 struct ieee80211_mmie_16 *mmie16;
983
984 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
985 return -1;
986
987 if (!ieee80211_is_robust_mgmt_frame(skb) &&
988 !ieee80211_is_beacon(hdr->frame_control))
989 return -1; /* not a robust management frame */
990
991 mmie = (struct ieee80211_mmie *)
992 (skb->data + skb->len - sizeof(*mmie));
993 if (mmie->element_id == WLAN_EID_MMIE &&
994 mmie->length == sizeof(*mmie) - 2)
995 return le16_to_cpu(mmie->key_id);
996
997 mmie16 = (struct ieee80211_mmie_16 *)
998 (skb->data + skb->len - sizeof(*mmie16));
999 if (skb->len >= 24 + sizeof(*mmie16) &&
1000 mmie16->element_id == WLAN_EID_MMIE &&
1001 mmie16->length == sizeof(*mmie16) - 2)
1002 return le16_to_cpu(mmie16->key_id);
1003
1004 return -1;
1005 }
1006
ieee80211_get_keyid(struct sk_buff * skb,const struct ieee80211_cipher_scheme * cs)1007 static int ieee80211_get_keyid(struct sk_buff *skb,
1008 const struct ieee80211_cipher_scheme *cs)
1009 {
1010 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1011 __le16 fc;
1012 int hdrlen;
1013 int minlen;
1014 u8 key_idx_off;
1015 u8 key_idx_shift;
1016 u8 keyid;
1017
1018 fc = hdr->frame_control;
1019 hdrlen = ieee80211_hdrlen(fc);
1020
1021 if (cs) {
1022 minlen = hdrlen + cs->hdr_len;
1023 key_idx_off = hdrlen + cs->key_idx_off;
1024 key_idx_shift = cs->key_idx_shift;
1025 } else {
1026 /* WEP, TKIP, CCMP and GCMP */
1027 minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1028 key_idx_off = hdrlen + 3;
1029 key_idx_shift = 6;
1030 }
1031
1032 if (unlikely(skb->len < minlen))
1033 return -EINVAL;
1034
1035 skb_copy_bits(skb, key_idx_off, &keyid, 1);
1036
1037 if (cs)
1038 keyid &= cs->key_idx_mask;
1039 keyid >>= key_idx_shift;
1040
1041 /* cs could use more than the usual two bits for the keyid */
1042 if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1043 return -EINVAL;
1044
1045 return keyid;
1046 }
1047
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)1048 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1049 {
1050 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1051 char *dev_addr = rx->sdata->vif.addr;
1052
1053 if (ieee80211_is_data(hdr->frame_control)) {
1054 if (is_multicast_ether_addr(hdr->addr1)) {
1055 if (ieee80211_has_tods(hdr->frame_control) ||
1056 !ieee80211_has_fromds(hdr->frame_control))
1057 return RX_DROP_MONITOR;
1058 if (ether_addr_equal(hdr->addr3, dev_addr))
1059 return RX_DROP_MONITOR;
1060 } else {
1061 if (!ieee80211_has_a4(hdr->frame_control))
1062 return RX_DROP_MONITOR;
1063 if (ether_addr_equal(hdr->addr4, dev_addr))
1064 return RX_DROP_MONITOR;
1065 }
1066 }
1067
1068 /* If there is not an established peer link and this is not a peer link
1069 * establisment frame, beacon or probe, drop the frame.
1070 */
1071
1072 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1073 struct ieee80211_mgmt *mgmt;
1074
1075 if (!ieee80211_is_mgmt(hdr->frame_control))
1076 return RX_DROP_MONITOR;
1077
1078 if (ieee80211_is_action(hdr->frame_control)) {
1079 u8 category;
1080
1081 /* make sure category field is present */
1082 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1083 return RX_DROP_MONITOR;
1084
1085 mgmt = (struct ieee80211_mgmt *)hdr;
1086 category = mgmt->u.action.category;
1087 if (category != WLAN_CATEGORY_MESH_ACTION &&
1088 category != WLAN_CATEGORY_SELF_PROTECTED)
1089 return RX_DROP_MONITOR;
1090 return RX_CONTINUE;
1091 }
1092
1093 if (ieee80211_is_probe_req(hdr->frame_control) ||
1094 ieee80211_is_probe_resp(hdr->frame_control) ||
1095 ieee80211_is_beacon(hdr->frame_control) ||
1096 ieee80211_is_auth(hdr->frame_control))
1097 return RX_CONTINUE;
1098
1099 return RX_DROP_MONITOR;
1100 }
1101
1102 return RX_CONTINUE;
1103 }
1104
ieee80211_rx_reorder_ready(struct tid_ampdu_rx * tid_agg_rx,int index)1105 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1106 int index)
1107 {
1108 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1109 struct sk_buff *tail = skb_peek_tail(frames);
1110 struct ieee80211_rx_status *status;
1111
1112 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1113 return true;
1114
1115 if (!tail)
1116 return false;
1117
1118 status = IEEE80211_SKB_RXCB(tail);
1119 if (status->flag & RX_FLAG_AMSDU_MORE)
1120 return false;
1121
1122 return true;
1123 }
1124
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)1125 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1126 struct tid_ampdu_rx *tid_agg_rx,
1127 int index,
1128 struct sk_buff_head *frames)
1129 {
1130 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1131 struct sk_buff *skb;
1132 struct ieee80211_rx_status *status;
1133
1134 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1135
1136 if (skb_queue_empty(skb_list))
1137 goto no_frame;
1138
1139 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1140 __skb_queue_purge(skb_list);
1141 goto no_frame;
1142 }
1143
1144 /* release frames from the reorder ring buffer */
1145 tid_agg_rx->stored_mpdu_num--;
1146 while ((skb = __skb_dequeue(skb_list))) {
1147 status = IEEE80211_SKB_RXCB(skb);
1148 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1149 __skb_queue_tail(frames, skb);
1150 }
1151
1152 no_frame:
1153 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1154 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1155 }
1156
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)1157 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1158 struct tid_ampdu_rx *tid_agg_rx,
1159 u16 head_seq_num,
1160 struct sk_buff_head *frames)
1161 {
1162 int index;
1163
1164 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1165
1166 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1167 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1168 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1169 frames);
1170 }
1171 }
1172
1173 /*
1174 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1175 * the skb was added to the buffer longer than this time ago, the earlier
1176 * frames that have not yet been received are assumed to be lost and the skb
1177 * can be released for processing. This may also release other skb's from the
1178 * reorder buffer if there are no additional gaps between the frames.
1179 *
1180 * Callers must hold tid_agg_rx->reorder_lock.
1181 */
1182 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1183
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)1184 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1185 struct tid_ampdu_rx *tid_agg_rx,
1186 struct sk_buff_head *frames)
1187 {
1188 int index, i, j;
1189
1190 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1191
1192 /* release the buffer until next missing frame */
1193 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1194 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1195 tid_agg_rx->stored_mpdu_num) {
1196 /*
1197 * No buffers ready to be released, but check whether any
1198 * frames in the reorder buffer have timed out.
1199 */
1200 int skipped = 1;
1201 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1202 j = (j + 1) % tid_agg_rx->buf_size) {
1203 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1204 skipped++;
1205 continue;
1206 }
1207 if (skipped &&
1208 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1209 HT_RX_REORDER_BUF_TIMEOUT))
1210 goto set_release_timer;
1211
1212 /* don't leave incomplete A-MSDUs around */
1213 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1214 i = (i + 1) % tid_agg_rx->buf_size)
1215 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1216
1217 ht_dbg_ratelimited(sdata,
1218 "release an RX reorder frame due to timeout on earlier frames\n");
1219 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1220 frames);
1221
1222 /*
1223 * Increment the head seq# also for the skipped slots.
1224 */
1225 tid_agg_rx->head_seq_num =
1226 (tid_agg_rx->head_seq_num +
1227 skipped) & IEEE80211_SN_MASK;
1228 skipped = 0;
1229 }
1230 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1231 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1232 frames);
1233 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1234 }
1235
1236 if (tid_agg_rx->stored_mpdu_num) {
1237 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1238
1239 for (; j != (index - 1) % tid_agg_rx->buf_size;
1240 j = (j + 1) % tid_agg_rx->buf_size) {
1241 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1242 break;
1243 }
1244
1245 set_release_timer:
1246
1247 if (!tid_agg_rx->removed)
1248 mod_timer(&tid_agg_rx->reorder_timer,
1249 tid_agg_rx->reorder_time[j] + 1 +
1250 HT_RX_REORDER_BUF_TIMEOUT);
1251 } else {
1252 del_timer(&tid_agg_rx->reorder_timer);
1253 }
1254 }
1255
1256 /*
1257 * As this function belongs to the RX path it must be under
1258 * rcu_read_lock protection. It returns false if the frame
1259 * can be processed immediately, true if it was consumed.
1260 */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)1261 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1262 struct tid_ampdu_rx *tid_agg_rx,
1263 struct sk_buff *skb,
1264 struct sk_buff_head *frames)
1265 {
1266 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1267 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1268 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1269 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1270 u16 head_seq_num, buf_size;
1271 int index;
1272 bool ret = true;
1273
1274 spin_lock(&tid_agg_rx->reorder_lock);
1275
1276 /*
1277 * Offloaded BA sessions have no known starting sequence number so pick
1278 * one from first Rxed frame for this tid after BA was started.
1279 */
1280 if (unlikely(tid_agg_rx->auto_seq)) {
1281 tid_agg_rx->auto_seq = false;
1282 tid_agg_rx->ssn = mpdu_seq_num;
1283 tid_agg_rx->head_seq_num = mpdu_seq_num;
1284 }
1285
1286 buf_size = tid_agg_rx->buf_size;
1287 head_seq_num = tid_agg_rx->head_seq_num;
1288
1289 /*
1290 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1291 * be reordered.
1292 */
1293 if (unlikely(!tid_agg_rx->started)) {
1294 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1295 ret = false;
1296 goto out;
1297 }
1298 tid_agg_rx->started = true;
1299 }
1300
1301 /* frame with out of date sequence number */
1302 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1303 dev_kfree_skb(skb);
1304 goto out;
1305 }
1306
1307 /*
1308 * If frame the sequence number exceeds our buffering window
1309 * size release some previous frames to make room for this one.
1310 */
1311 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1312 head_seq_num = ieee80211_sn_inc(
1313 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1314 /* release stored frames up to new head to stack */
1315 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1316 head_seq_num, frames);
1317 }
1318
1319 /* Now the new frame is always in the range of the reordering buffer */
1320
1321 index = mpdu_seq_num % tid_agg_rx->buf_size;
1322
1323 /* check if we already stored this frame */
1324 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1325 dev_kfree_skb(skb);
1326 goto out;
1327 }
1328
1329 /*
1330 * If the current MPDU is in the right order and nothing else
1331 * is stored we can process it directly, no need to buffer it.
1332 * If it is first but there's something stored, we may be able
1333 * to release frames after this one.
1334 */
1335 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1336 tid_agg_rx->stored_mpdu_num == 0) {
1337 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1338 tid_agg_rx->head_seq_num =
1339 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1340 ret = false;
1341 goto out;
1342 }
1343
1344 /* put the frame in the reordering buffer */
1345 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1346 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1347 tid_agg_rx->reorder_time[index] = jiffies;
1348 tid_agg_rx->stored_mpdu_num++;
1349 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1350 }
1351
1352 out:
1353 spin_unlock(&tid_agg_rx->reorder_lock);
1354 return ret;
1355 }
1356
1357 /*
1358 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1359 * true if the MPDU was buffered, false if it should be processed.
1360 */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1361 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1362 struct sk_buff_head *frames)
1363 {
1364 struct sk_buff *skb = rx->skb;
1365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1366 struct sta_info *sta = rx->sta;
1367 struct tid_ampdu_rx *tid_agg_rx;
1368 u16 sc;
1369 u8 tid, ack_policy;
1370
1371 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1372 is_multicast_ether_addr(hdr->addr1))
1373 goto dont_reorder;
1374
1375 /*
1376 * filter the QoS data rx stream according to
1377 * STA/TID and check if this STA/TID is on aggregation
1378 */
1379
1380 if (!sta)
1381 goto dont_reorder;
1382
1383 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1384 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1385 tid = ieee80211_get_tid(hdr);
1386
1387 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1388 if (!tid_agg_rx) {
1389 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1390 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1391 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1392 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1393 WLAN_BACK_RECIPIENT,
1394 WLAN_REASON_QSTA_REQUIRE_SETUP);
1395 goto dont_reorder;
1396 }
1397
1398 /* qos null data frames are excluded */
1399 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1400 goto dont_reorder;
1401
1402 /* not part of a BA session */
1403 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1404 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1405 goto dont_reorder;
1406
1407 /* new, potentially un-ordered, ampdu frame - process it */
1408
1409 /* reset session timer */
1410 if (tid_agg_rx->timeout)
1411 tid_agg_rx->last_rx = jiffies;
1412
1413 /* if this mpdu is fragmented - terminate rx aggregation session */
1414 sc = le16_to_cpu(hdr->seq_ctrl);
1415 if (sc & IEEE80211_SCTL_FRAG) {
1416 ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb);
1417 return;
1418 }
1419
1420 /*
1421 * No locking needed -- we will only ever process one
1422 * RX packet at a time, and thus own tid_agg_rx. All
1423 * other code manipulating it needs to (and does) make
1424 * sure that we cannot get to it any more before doing
1425 * anything with it.
1426 */
1427 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1428 frames))
1429 return;
1430
1431 dont_reorder:
1432 __skb_queue_tail(frames, skb);
1433 }
1434
1435 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1436 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1437 {
1438 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1439 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1440
1441 if (status->flag & RX_FLAG_DUP_VALIDATED)
1442 return RX_CONTINUE;
1443
1444 /*
1445 * Drop duplicate 802.11 retransmissions
1446 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1447 */
1448
1449 if (rx->skb->len < 24)
1450 return RX_CONTINUE;
1451
1452 if (ieee80211_is_ctl(hdr->frame_control) ||
1453 ieee80211_is_any_nullfunc(hdr->frame_control) ||
1454 is_multicast_ether_addr(hdr->addr1))
1455 return RX_CONTINUE;
1456
1457 if (!rx->sta)
1458 return RX_CONTINUE;
1459
1460 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1461 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1462 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1463 rx->sta->rx_stats.num_duplicates++;
1464 return RX_DROP_UNUSABLE;
1465 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1466 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1467 }
1468
1469 return RX_CONTINUE;
1470 }
1471
1472 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1473 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1474 {
1475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1476
1477 /* Drop disallowed frame classes based on STA auth/assoc state;
1478 * IEEE 802.11, Chap 5.5.
1479 *
1480 * mac80211 filters only based on association state, i.e. it drops
1481 * Class 3 frames from not associated stations. hostapd sends
1482 * deauth/disassoc frames when needed. In addition, hostapd is
1483 * responsible for filtering on both auth and assoc states.
1484 */
1485
1486 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1487 return ieee80211_rx_mesh_check(rx);
1488
1489 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1490 ieee80211_is_pspoll(hdr->frame_control)) &&
1491 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1492 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1493 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1494 /*
1495 * accept port control frames from the AP even when it's not
1496 * yet marked ASSOC to prevent a race where we don't set the
1497 * assoc bit quickly enough before it sends the first frame
1498 */
1499 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1500 ieee80211_is_data_present(hdr->frame_control)) {
1501 unsigned int hdrlen;
1502 __be16 ethertype;
1503
1504 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1505
1506 if (rx->skb->len < hdrlen + 8)
1507 return RX_DROP_MONITOR;
1508
1509 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2);
1510 if (ethertype == rx->sdata->control_port_protocol)
1511 return RX_CONTINUE;
1512 }
1513
1514 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1515 cfg80211_rx_spurious_frame(rx->sdata->dev,
1516 hdr->addr2,
1517 GFP_ATOMIC))
1518 return RX_DROP_UNUSABLE;
1519
1520 return RX_DROP_MONITOR;
1521 }
1522
1523 return RX_CONTINUE;
1524 }
1525
1526
1527 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1528 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1529 {
1530 struct ieee80211_local *local;
1531 struct ieee80211_hdr *hdr;
1532 struct sk_buff *skb;
1533
1534 local = rx->local;
1535 skb = rx->skb;
1536 hdr = (struct ieee80211_hdr *) skb->data;
1537
1538 if (!local->pspolling)
1539 return RX_CONTINUE;
1540
1541 if (!ieee80211_has_fromds(hdr->frame_control))
1542 /* this is not from AP */
1543 return RX_CONTINUE;
1544
1545 if (!ieee80211_is_data(hdr->frame_control))
1546 return RX_CONTINUE;
1547
1548 if (!ieee80211_has_moredata(hdr->frame_control)) {
1549 /* AP has no more frames buffered for us */
1550 local->pspolling = false;
1551 return RX_CONTINUE;
1552 }
1553
1554 /* more data bit is set, let's request a new frame from the AP */
1555 ieee80211_send_pspoll(local, rx->sdata);
1556
1557 return RX_CONTINUE;
1558 }
1559
sta_ps_start(struct sta_info * sta)1560 static void sta_ps_start(struct sta_info *sta)
1561 {
1562 struct ieee80211_sub_if_data *sdata = sta->sdata;
1563 struct ieee80211_local *local = sdata->local;
1564 struct ps_data *ps;
1565 int tid;
1566
1567 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1568 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1569 ps = &sdata->bss->ps;
1570 else
1571 return;
1572
1573 atomic_inc(&ps->num_sta_ps);
1574 set_sta_flag(sta, WLAN_STA_PS_STA);
1575 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1576 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1577 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1578 sta->sta.addr, sta->sta.aid);
1579
1580 ieee80211_clear_fast_xmit(sta);
1581
1582 if (!sta->sta.txq[0])
1583 return;
1584
1585 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1586 struct ieee80211_txq *txq = sta->sta.txq[tid];
1587
1588 ieee80211_unschedule_txq(&local->hw, txq, false);
1589
1590 if (txq_has_queue(txq))
1591 set_bit(tid, &sta->txq_buffered_tids);
1592 else
1593 clear_bit(tid, &sta->txq_buffered_tids);
1594 }
1595 }
1596
sta_ps_end(struct sta_info * sta)1597 static void sta_ps_end(struct sta_info *sta)
1598 {
1599 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1600 sta->sta.addr, sta->sta.aid);
1601
1602 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1603 /*
1604 * Clear the flag only if the other one is still set
1605 * so that the TX path won't start TX'ing new frames
1606 * directly ... In the case that the driver flag isn't
1607 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1608 */
1609 clear_sta_flag(sta, WLAN_STA_PS_STA);
1610 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1611 sta->sta.addr, sta->sta.aid);
1612 return;
1613 }
1614
1615 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1616 clear_sta_flag(sta, WLAN_STA_PS_STA);
1617 ieee80211_sta_ps_deliver_wakeup(sta);
1618 }
1619
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1620 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1621 {
1622 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1623 bool in_ps;
1624
1625 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1626
1627 /* Don't let the same PS state be set twice */
1628 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1629 if ((start && in_ps) || (!start && !in_ps))
1630 return -EINVAL;
1631
1632 if (start)
1633 sta_ps_start(sta);
1634 else
1635 sta_ps_end(sta);
1636
1637 return 0;
1638 }
1639 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1640
ieee80211_sta_pspoll(struct ieee80211_sta * pubsta)1641 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1642 {
1643 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1644
1645 if (test_sta_flag(sta, WLAN_STA_SP))
1646 return;
1647
1648 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1649 ieee80211_sta_ps_deliver_poll_response(sta);
1650 else
1651 set_sta_flag(sta, WLAN_STA_PSPOLL);
1652 }
1653 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1654
ieee80211_sta_uapsd_trigger(struct ieee80211_sta * pubsta,u8 tid)1655 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1656 {
1657 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1658 int ac = ieee80211_ac_from_tid(tid);
1659
1660 /*
1661 * If this AC is not trigger-enabled do nothing unless the
1662 * driver is calling us after it already checked.
1663 *
1664 * NB: This could/should check a separate bitmap of trigger-
1665 * enabled queues, but for now we only implement uAPSD w/o
1666 * TSPEC changes to the ACs, so they're always the same.
1667 */
1668 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1669 tid != IEEE80211_NUM_TIDS)
1670 return;
1671
1672 /* if we are in a service period, do nothing */
1673 if (test_sta_flag(sta, WLAN_STA_SP))
1674 return;
1675
1676 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1677 ieee80211_sta_ps_deliver_uapsd(sta);
1678 else
1679 set_sta_flag(sta, WLAN_STA_UAPSD);
1680 }
1681 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1682
1683 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1684 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1685 {
1686 struct ieee80211_sub_if_data *sdata = rx->sdata;
1687 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1688 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1689
1690 if (!rx->sta)
1691 return RX_CONTINUE;
1692
1693 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1694 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1695 return RX_CONTINUE;
1696
1697 /*
1698 * The device handles station powersave, so don't do anything about
1699 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1700 * it to mac80211 since they're handled.)
1701 */
1702 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1703 return RX_CONTINUE;
1704
1705 /*
1706 * Don't do anything if the station isn't already asleep. In
1707 * the uAPSD case, the station will probably be marked asleep,
1708 * in the PS-Poll case the station must be confused ...
1709 */
1710 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1711 return RX_CONTINUE;
1712
1713 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1714 ieee80211_sta_pspoll(&rx->sta->sta);
1715
1716 /* Free PS Poll skb here instead of returning RX_DROP that would
1717 * count as an dropped frame. */
1718 dev_kfree_skb(rx->skb);
1719
1720 return RX_QUEUED;
1721 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1722 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1723 ieee80211_has_pm(hdr->frame_control) &&
1724 (ieee80211_is_data_qos(hdr->frame_control) ||
1725 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1726 u8 tid = ieee80211_get_tid(hdr);
1727
1728 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1729 }
1730
1731 return RX_CONTINUE;
1732 }
1733
1734 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1735 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1736 {
1737 struct sta_info *sta = rx->sta;
1738 struct sk_buff *skb = rx->skb;
1739 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1740 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1741 int i;
1742
1743 if (!sta)
1744 return RX_CONTINUE;
1745
1746 /*
1747 * Update last_rx only for IBSS packets which are for the current
1748 * BSSID and for station already AUTHORIZED to avoid keeping the
1749 * current IBSS network alive in cases where other STAs start
1750 * using different BSSID. This will also give the station another
1751 * chance to restart the authentication/authorization in case
1752 * something went wrong the first time.
1753 */
1754 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1755 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1756 NL80211_IFTYPE_ADHOC);
1757 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1758 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1759 sta->rx_stats.last_rx = jiffies;
1760 if (ieee80211_is_data(hdr->frame_control) &&
1761 !is_multicast_ether_addr(hdr->addr1))
1762 sta->rx_stats.last_rate =
1763 sta_stats_encode_rate(status);
1764 }
1765 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1766 sta->rx_stats.last_rx = jiffies;
1767 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1768 !is_multicast_ether_addr(hdr->addr1)) {
1769 /*
1770 * Mesh beacons will update last_rx when if they are found to
1771 * match the current local configuration when processed.
1772 */
1773 sta->rx_stats.last_rx = jiffies;
1774 if (ieee80211_is_data(hdr->frame_control))
1775 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1776 }
1777
1778 sta->rx_stats.fragments++;
1779
1780 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1781 sta->rx_stats.bytes += rx->skb->len;
1782 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1783
1784 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1785 sta->rx_stats.last_signal = status->signal;
1786 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1787 }
1788
1789 if (status->chains) {
1790 sta->rx_stats.chains = status->chains;
1791 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1792 int signal = status->chain_signal[i];
1793
1794 if (!(status->chains & BIT(i)))
1795 continue;
1796
1797 sta->rx_stats.chain_signal_last[i] = signal;
1798 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1799 -signal);
1800 }
1801 }
1802
1803 if (ieee80211_is_s1g_beacon(hdr->frame_control))
1804 return RX_CONTINUE;
1805
1806 /*
1807 * Change STA power saving mode only at the end of a frame
1808 * exchange sequence, and only for a data or management
1809 * frame as specified in IEEE 802.11-2016 11.2.3.2
1810 */
1811 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1812 !ieee80211_has_morefrags(hdr->frame_control) &&
1813 !is_multicast_ether_addr(hdr->addr1) &&
1814 (ieee80211_is_mgmt(hdr->frame_control) ||
1815 ieee80211_is_data(hdr->frame_control)) &&
1816 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1817 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1818 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1819 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1820 if (!ieee80211_has_pm(hdr->frame_control))
1821 sta_ps_end(sta);
1822 } else {
1823 if (ieee80211_has_pm(hdr->frame_control))
1824 sta_ps_start(sta);
1825 }
1826 }
1827
1828 /* mesh power save support */
1829 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1830 ieee80211_mps_rx_h_sta_process(sta, hdr);
1831
1832 /*
1833 * Drop (qos-)data::nullfunc frames silently, since they
1834 * are used only to control station power saving mode.
1835 */
1836 if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1837 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1838
1839 /*
1840 * If we receive a 4-addr nullfunc frame from a STA
1841 * that was not moved to a 4-addr STA vlan yet send
1842 * the event to userspace and for older hostapd drop
1843 * the frame to the monitor interface.
1844 */
1845 if (ieee80211_has_a4(hdr->frame_control) &&
1846 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1847 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1848 !rx->sdata->u.vlan.sta))) {
1849 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1850 cfg80211_rx_unexpected_4addr_frame(
1851 rx->sdata->dev, sta->sta.addr,
1852 GFP_ATOMIC);
1853 return RX_DROP_MONITOR;
1854 }
1855 /*
1856 * Update counter and free packet here to avoid
1857 * counting this as a dropped packed.
1858 */
1859 sta->rx_stats.packets++;
1860 dev_kfree_skb(rx->skb);
1861 return RX_QUEUED;
1862 }
1863
1864 return RX_CONTINUE;
1865 } /* ieee80211_rx_h_sta_process */
1866
1867 static struct ieee80211_key *
ieee80211_rx_get_bigtk(struct ieee80211_rx_data * rx,int idx)1868 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1869 {
1870 struct ieee80211_key *key = NULL;
1871 struct ieee80211_sub_if_data *sdata = rx->sdata;
1872 int idx2;
1873
1874 /* Make sure key gets set if either BIGTK key index is set so that
1875 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1876 * Beacon frames and Beacon frames that claim to use another BIGTK key
1877 * index (i.e., a key that we do not have).
1878 */
1879
1880 if (idx < 0) {
1881 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1882 idx2 = idx + 1;
1883 } else {
1884 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1885 idx2 = idx + 1;
1886 else
1887 idx2 = idx - 1;
1888 }
1889
1890 if (rx->sta)
1891 key = rcu_dereference(rx->sta->gtk[idx]);
1892 if (!key)
1893 key = rcu_dereference(sdata->keys[idx]);
1894 if (!key && rx->sta)
1895 key = rcu_dereference(rx->sta->gtk[idx2]);
1896 if (!key)
1897 key = rcu_dereference(sdata->keys[idx2]);
1898
1899 return key;
1900 }
1901
1902 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1903 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1904 {
1905 struct sk_buff *skb = rx->skb;
1906 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1907 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1908 int keyidx;
1909 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1910 struct ieee80211_key *sta_ptk = NULL;
1911 struct ieee80211_key *ptk_idx = NULL;
1912 int mmie_keyidx = -1;
1913 __le16 fc;
1914 const struct ieee80211_cipher_scheme *cs = NULL;
1915
1916 if (ieee80211_is_ext(hdr->frame_control))
1917 return RX_CONTINUE;
1918
1919 /*
1920 * Key selection 101
1921 *
1922 * There are five types of keys:
1923 * - GTK (group keys)
1924 * - IGTK (group keys for management frames)
1925 * - BIGTK (group keys for Beacon frames)
1926 * - PTK (pairwise keys)
1927 * - STK (station-to-station pairwise keys)
1928 *
1929 * When selecting a key, we have to distinguish between multicast
1930 * (including broadcast) and unicast frames, the latter can only
1931 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1932 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1933 * then unicast frames can also use key indices like GTKs. Hence, if we
1934 * don't have a PTK/STK we check the key index for a WEP key.
1935 *
1936 * Note that in a regular BSS, multicast frames are sent by the
1937 * AP only, associated stations unicast the frame to the AP first
1938 * which then multicasts it on their behalf.
1939 *
1940 * There is also a slight problem in IBSS mode: GTKs are negotiated
1941 * with each station, that is something we don't currently handle.
1942 * The spec seems to expect that one negotiates the same key with
1943 * every station but there's no such requirement; VLANs could be
1944 * possible.
1945 */
1946
1947 /* start without a key */
1948 rx->key = NULL;
1949 fc = hdr->frame_control;
1950
1951 if (rx->sta) {
1952 int keyid = rx->sta->ptk_idx;
1953 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1954
1955 if (ieee80211_has_protected(fc)) {
1956 cs = rx->sta->cipher_scheme;
1957 keyid = ieee80211_get_keyid(rx->skb, cs);
1958
1959 if (unlikely(keyid < 0))
1960 return RX_DROP_UNUSABLE;
1961
1962 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1963 }
1964 }
1965
1966 if (!ieee80211_has_protected(fc))
1967 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1968
1969 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1970 rx->key = ptk_idx ? ptk_idx : sta_ptk;
1971 if ((status->flag & RX_FLAG_DECRYPTED) &&
1972 (status->flag & RX_FLAG_IV_STRIPPED))
1973 return RX_CONTINUE;
1974 /* Skip decryption if the frame is not protected. */
1975 if (!ieee80211_has_protected(fc))
1976 return RX_CONTINUE;
1977 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1978 /* Broadcast/multicast robust management frame / BIP */
1979 if ((status->flag & RX_FLAG_DECRYPTED) &&
1980 (status->flag & RX_FLAG_IV_STRIPPED))
1981 return RX_CONTINUE;
1982
1983 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1984 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1985 NUM_DEFAULT_BEACON_KEYS) {
1986 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1987 skb->data,
1988 skb->len);
1989 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1990 }
1991
1992 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1993 if (!rx->key)
1994 return RX_CONTINUE; /* Beacon protection not in use */
1995 } else if (mmie_keyidx >= 0) {
1996 /* Broadcast/multicast robust management frame / BIP */
1997 if ((status->flag & RX_FLAG_DECRYPTED) &&
1998 (status->flag & RX_FLAG_IV_STRIPPED))
1999 return RX_CONTINUE;
2000
2001 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
2002 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
2003 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
2004 if (rx->sta) {
2005 if (ieee80211_is_group_privacy_action(skb) &&
2006 test_sta_flag(rx->sta, WLAN_STA_MFP))
2007 return RX_DROP_MONITOR;
2008
2009 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
2010 }
2011 if (!rx->key)
2012 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2013 } else if (!ieee80211_has_protected(fc)) {
2014 /*
2015 * The frame was not protected, so skip decryption. However, we
2016 * need to set rx->key if there is a key that could have been
2017 * used so that the frame may be dropped if encryption would
2018 * have been expected.
2019 */
2020 struct ieee80211_key *key = NULL;
2021 struct ieee80211_sub_if_data *sdata = rx->sdata;
2022 int i;
2023
2024 if (ieee80211_is_beacon(fc)) {
2025 key = ieee80211_rx_get_bigtk(rx, -1);
2026 } else if (ieee80211_is_mgmt(fc) &&
2027 is_multicast_ether_addr(hdr->addr1)) {
2028 key = rcu_dereference(rx->sdata->default_mgmt_key);
2029 } else {
2030 if (rx->sta) {
2031 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2032 key = rcu_dereference(rx->sta->gtk[i]);
2033 if (key)
2034 break;
2035 }
2036 }
2037 if (!key) {
2038 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2039 key = rcu_dereference(sdata->keys[i]);
2040 if (key)
2041 break;
2042 }
2043 }
2044 }
2045 if (key)
2046 rx->key = key;
2047 return RX_CONTINUE;
2048 } else {
2049 /*
2050 * The device doesn't give us the IV so we won't be
2051 * able to look up the key. That's ok though, we
2052 * don't need to decrypt the frame, we just won't
2053 * be able to keep statistics accurate.
2054 * Except for key threshold notifications, should
2055 * we somehow allow the driver to tell us which key
2056 * the hardware used if this flag is set?
2057 */
2058 if ((status->flag & RX_FLAG_DECRYPTED) &&
2059 (status->flag & RX_FLAG_IV_STRIPPED))
2060 return RX_CONTINUE;
2061
2062 keyidx = ieee80211_get_keyid(rx->skb, cs);
2063
2064 if (unlikely(keyidx < 0))
2065 return RX_DROP_UNUSABLE;
2066
2067 /* check per-station GTK first, if multicast packet */
2068 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2069 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2070
2071 /* if not found, try default key */
2072 if (!rx->key) {
2073 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2074
2075 /*
2076 * RSNA-protected unicast frames should always be
2077 * sent with pairwise or station-to-station keys,
2078 * but for WEP we allow using a key index as well.
2079 */
2080 if (rx->key &&
2081 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2082 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2083 !is_multicast_ether_addr(hdr->addr1))
2084 rx->key = NULL;
2085 }
2086 }
2087
2088 if (rx->key) {
2089 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2090 return RX_DROP_MONITOR;
2091
2092 /* TODO: add threshold stuff again */
2093 } else {
2094 return RX_DROP_MONITOR;
2095 }
2096
2097 switch (rx->key->conf.cipher) {
2098 case WLAN_CIPHER_SUITE_WEP40:
2099 case WLAN_CIPHER_SUITE_WEP104:
2100 result = ieee80211_crypto_wep_decrypt(rx);
2101 break;
2102 case WLAN_CIPHER_SUITE_TKIP:
2103 result = ieee80211_crypto_tkip_decrypt(rx);
2104 break;
2105 case WLAN_CIPHER_SUITE_CCMP:
2106 result = ieee80211_crypto_ccmp_decrypt(
2107 rx, IEEE80211_CCMP_MIC_LEN);
2108 break;
2109 case WLAN_CIPHER_SUITE_CCMP_256:
2110 result = ieee80211_crypto_ccmp_decrypt(
2111 rx, IEEE80211_CCMP_256_MIC_LEN);
2112 break;
2113 case WLAN_CIPHER_SUITE_AES_CMAC:
2114 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2115 break;
2116 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2117 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2118 break;
2119 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2120 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2121 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2122 break;
2123 case WLAN_CIPHER_SUITE_GCMP:
2124 case WLAN_CIPHER_SUITE_GCMP_256:
2125 result = ieee80211_crypto_gcmp_decrypt(rx);
2126 break;
2127 default:
2128 result = ieee80211_crypto_hw_decrypt(rx);
2129 }
2130
2131 /* the hdr variable is invalid after the decrypt handlers */
2132
2133 /* either the frame has been decrypted or will be dropped */
2134 status->flag |= RX_FLAG_DECRYPTED;
2135
2136 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE))
2137 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2138 skb->data, skb->len);
2139
2140 return result;
2141 }
2142
ieee80211_init_frag_cache(struct ieee80211_fragment_cache * cache)2143 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2144 {
2145 int i;
2146
2147 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2148 skb_queue_head_init(&cache->entries[i].skb_list);
2149 }
2150
ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache * cache)2151 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2152 {
2153 int i;
2154
2155 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2156 __skb_queue_purge(&cache->entries[i].skb_list);
2157 }
2158
2159 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)2160 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2161 unsigned int frag, unsigned int seq, int rx_queue,
2162 struct sk_buff **skb)
2163 {
2164 struct ieee80211_fragment_entry *entry;
2165
2166 entry = &cache->entries[cache->next++];
2167 if (cache->next >= IEEE80211_FRAGMENT_MAX)
2168 cache->next = 0;
2169
2170 __skb_queue_purge(&entry->skb_list);
2171
2172 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2173 *skb = NULL;
2174 entry->first_frag_time = jiffies;
2175 entry->seq = seq;
2176 entry->rx_queue = rx_queue;
2177 entry->last_frag = frag;
2178 entry->check_sequential_pn = false;
2179 entry->extra_len = 0;
2180
2181 return entry;
2182 }
2183
2184 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)2185 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2186 unsigned int frag, unsigned int seq,
2187 int rx_queue, struct ieee80211_hdr *hdr)
2188 {
2189 struct ieee80211_fragment_entry *entry;
2190 int i, idx;
2191
2192 idx = cache->next;
2193 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2194 struct ieee80211_hdr *f_hdr;
2195 struct sk_buff *f_skb;
2196
2197 idx--;
2198 if (idx < 0)
2199 idx = IEEE80211_FRAGMENT_MAX - 1;
2200
2201 entry = &cache->entries[idx];
2202 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2203 entry->rx_queue != rx_queue ||
2204 entry->last_frag + 1 != frag)
2205 continue;
2206
2207 f_skb = __skb_peek(&entry->skb_list);
2208 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2209
2210 /*
2211 * Check ftype and addresses are equal, else check next fragment
2212 */
2213 if (((hdr->frame_control ^ f_hdr->frame_control) &
2214 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2215 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2216 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2217 continue;
2218
2219 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2220 __skb_queue_purge(&entry->skb_list);
2221 continue;
2222 }
2223 return entry;
2224 }
2225
2226 return NULL;
2227 }
2228
requires_sequential_pn(struct ieee80211_rx_data * rx,__le16 fc)2229 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2230 {
2231 return rx->key &&
2232 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2233 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2234 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2235 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2236 ieee80211_has_protected(fc);
2237 }
2238
2239 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)2240 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2241 {
2242 struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2243 struct ieee80211_hdr *hdr;
2244 u16 sc;
2245 __le16 fc;
2246 unsigned int frag, seq;
2247 struct ieee80211_fragment_entry *entry;
2248 struct sk_buff *skb;
2249 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2250
2251 hdr = (struct ieee80211_hdr *)rx->skb->data;
2252 fc = hdr->frame_control;
2253
2254 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2255 return RX_CONTINUE;
2256
2257 sc = le16_to_cpu(hdr->seq_ctrl);
2258 frag = sc & IEEE80211_SCTL_FRAG;
2259
2260 if (rx->sta)
2261 cache = &rx->sta->frags;
2262
2263 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2264 goto out;
2265
2266 if (is_multicast_ether_addr(hdr->addr1))
2267 return RX_DROP_MONITOR;
2268
2269 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2270
2271 if (skb_linearize(rx->skb))
2272 return RX_DROP_UNUSABLE;
2273
2274 /*
2275 * skb_linearize() might change the skb->data and
2276 * previously cached variables (in this case, hdr) need to
2277 * be refreshed with the new data.
2278 */
2279 hdr = (struct ieee80211_hdr *)rx->skb->data;
2280 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2281
2282 if (frag == 0) {
2283 /* This is the first fragment of a new frame. */
2284 entry = ieee80211_reassemble_add(cache, frag, seq,
2285 rx->seqno_idx, &(rx->skb));
2286 if (requires_sequential_pn(rx, fc)) {
2287 int queue = rx->security_idx;
2288
2289 /* Store CCMP/GCMP PN so that we can verify that the
2290 * next fragment has a sequential PN value.
2291 */
2292 entry->check_sequential_pn = true;
2293 entry->is_protected = true;
2294 entry->key_color = rx->key->color;
2295 memcpy(entry->last_pn,
2296 rx->key->u.ccmp.rx_pn[queue],
2297 IEEE80211_CCMP_PN_LEN);
2298 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2299 u.ccmp.rx_pn) !=
2300 offsetof(struct ieee80211_key,
2301 u.gcmp.rx_pn));
2302 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2303 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2304 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2305 IEEE80211_GCMP_PN_LEN);
2306 } else if (rx->key &&
2307 (ieee80211_has_protected(fc) ||
2308 (status->flag & RX_FLAG_DECRYPTED))) {
2309 entry->is_protected = true;
2310 entry->key_color = rx->key->color;
2311 }
2312 return RX_QUEUED;
2313 }
2314
2315 /* This is a fragment for a frame that should already be pending in
2316 * fragment cache. Add this fragment to the end of the pending entry.
2317 */
2318 entry = ieee80211_reassemble_find(cache, frag, seq,
2319 rx->seqno_idx, hdr);
2320 if (!entry) {
2321 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2322 return RX_DROP_MONITOR;
2323 }
2324
2325 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2326 * MPDU PN values are not incrementing in steps of 1."
2327 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2328 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2329 */
2330 if (entry->check_sequential_pn) {
2331 int i;
2332 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2333
2334 if (!requires_sequential_pn(rx, fc))
2335 return RX_DROP_UNUSABLE;
2336
2337 /* Prevent mixed key and fragment cache attacks */
2338 if (entry->key_color != rx->key->color)
2339 return RX_DROP_UNUSABLE;
2340
2341 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2342 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2343 pn[i]++;
2344 if (pn[i])
2345 break;
2346 }
2347
2348 rpn = rx->ccm_gcm.pn;
2349 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2350 return RX_DROP_UNUSABLE;
2351 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2352 } else if (entry->is_protected &&
2353 (!rx->key ||
2354 (!ieee80211_has_protected(fc) &&
2355 !(status->flag & RX_FLAG_DECRYPTED)) ||
2356 rx->key->color != entry->key_color)) {
2357 /* Drop this as a mixed key or fragment cache attack, even
2358 * if for TKIP Michael MIC should protect us, and WEP is a
2359 * lost cause anyway.
2360 */
2361 return RX_DROP_UNUSABLE;
2362 } else if (entry->is_protected && rx->key &&
2363 entry->key_color != rx->key->color &&
2364 (status->flag & RX_FLAG_DECRYPTED)) {
2365 return RX_DROP_UNUSABLE;
2366 }
2367
2368 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2369 __skb_queue_tail(&entry->skb_list, rx->skb);
2370 entry->last_frag = frag;
2371 entry->extra_len += rx->skb->len;
2372 if (ieee80211_has_morefrags(fc)) {
2373 rx->skb = NULL;
2374 return RX_QUEUED;
2375 }
2376
2377 rx->skb = __skb_dequeue(&entry->skb_list);
2378 if (skb_tailroom(rx->skb) < entry->extra_len) {
2379 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2380 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2381 GFP_ATOMIC))) {
2382 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2383 __skb_queue_purge(&entry->skb_list);
2384 return RX_DROP_UNUSABLE;
2385 }
2386 }
2387 while ((skb = __skb_dequeue(&entry->skb_list))) {
2388 skb_put_data(rx->skb, skb->data, skb->len);
2389 dev_kfree_skb(skb);
2390 }
2391
2392 out:
2393 ieee80211_led_rx(rx->local);
2394 if (rx->sta)
2395 rx->sta->rx_stats.packets++;
2396 return RX_CONTINUE;
2397 }
2398
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)2399 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2400 {
2401 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2402 return -EACCES;
2403
2404 return 0;
2405 }
2406
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)2407 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2408 {
2409 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2410 struct sk_buff *skb = rx->skb;
2411 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2412
2413 /*
2414 * Pass through unencrypted frames if the hardware has
2415 * decrypted them already.
2416 */
2417 if (status->flag & RX_FLAG_DECRYPTED)
2418 return 0;
2419
2420 /* check mesh EAPOL frames first */
2421 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2422 ieee80211_is_data(fc))) {
2423 struct ieee80211s_hdr *mesh_hdr;
2424 u16 hdr_len = ieee80211_hdrlen(fc);
2425 u16 ethertype_offset;
2426 __be16 ethertype;
2427
2428 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2429 goto drop_check;
2430
2431 /* make sure fixed part of mesh header is there, also checks skb len */
2432 if (!pskb_may_pull(rx->skb, hdr_len + 6))
2433 goto drop_check;
2434
2435 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2436 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2437 sizeof(rfc1042_header);
2438
2439 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 &&
2440 ethertype == rx->sdata->control_port_protocol)
2441 return 0;
2442 }
2443
2444 drop_check:
2445 /* Drop unencrypted frames if key is set. */
2446 if (unlikely(!ieee80211_has_protected(fc) &&
2447 !ieee80211_is_any_nullfunc(fc) &&
2448 ieee80211_is_data(fc) && rx->key))
2449 return -EACCES;
2450
2451 return 0;
2452 }
2453
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)2454 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2455 {
2456 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2457 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2458 __le16 fc = hdr->frame_control;
2459
2460 /*
2461 * Pass through unencrypted frames if the hardware has
2462 * decrypted them already.
2463 */
2464 if (status->flag & RX_FLAG_DECRYPTED)
2465 return 0;
2466
2467 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2468 if (unlikely(!ieee80211_has_protected(fc) &&
2469 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2470 rx->key)) {
2471 if (ieee80211_is_deauth(fc) ||
2472 ieee80211_is_disassoc(fc))
2473 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2474 rx->skb->data,
2475 rx->skb->len);
2476 return -EACCES;
2477 }
2478 /* BIP does not use Protected field, so need to check MMIE */
2479 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2480 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2481 if (ieee80211_is_deauth(fc) ||
2482 ieee80211_is_disassoc(fc))
2483 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2484 rx->skb->data,
2485 rx->skb->len);
2486 return -EACCES;
2487 }
2488 if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2489 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2490 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2491 rx->skb->data,
2492 rx->skb->len);
2493 return -EACCES;
2494 }
2495 /*
2496 * When using MFP, Action frames are not allowed prior to
2497 * having configured keys.
2498 */
2499 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2500 ieee80211_is_robust_mgmt_frame(rx->skb)))
2501 return -EACCES;
2502 }
2503
2504 return 0;
2505 }
2506
2507 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2508 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2509 {
2510 struct ieee80211_sub_if_data *sdata = rx->sdata;
2511 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2512 bool check_port_control = false;
2513 struct ethhdr *ehdr;
2514 int ret;
2515
2516 *port_control = false;
2517 if (ieee80211_has_a4(hdr->frame_control) &&
2518 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2519 return -1;
2520
2521 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2522 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2523
2524 if (!sdata->u.mgd.use_4addr)
2525 return -1;
2526 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2527 check_port_control = true;
2528 }
2529
2530 if (is_multicast_ether_addr(hdr->addr1) &&
2531 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2532 return -1;
2533
2534 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2535 if (ret < 0)
2536 return ret;
2537
2538 ehdr = (struct ethhdr *) rx->skb->data;
2539 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2540 *port_control = true;
2541 else if (check_port_control)
2542 return -1;
2543
2544 return 0;
2545 }
2546
2547 /*
2548 * requires that rx->skb is a frame with ethernet header
2549 */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2550 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2551 {
2552 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2553 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2554 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2555
2556 /*
2557 * Allow EAPOL frames to us/the PAE group address regardless of
2558 * whether the frame was encrypted or not, and always disallow
2559 * all other destination addresses for them.
2560 */
2561 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2562 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2563 ether_addr_equal(ehdr->h_dest, pae_group_addr);
2564
2565 if (ieee80211_802_1x_port_control(rx) ||
2566 ieee80211_drop_unencrypted(rx, fc))
2567 return false;
2568
2569 return true;
2570 }
2571
ieee80211_deliver_skb_to_local_stack(struct sk_buff * skb,struct ieee80211_rx_data * rx)2572 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2573 struct ieee80211_rx_data *rx)
2574 {
2575 struct ieee80211_sub_if_data *sdata = rx->sdata;
2576 struct net_device *dev = sdata->dev;
2577
2578 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2579 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2580 !sdata->control_port_no_preauth)) &&
2581 sdata->control_port_over_nl80211)) {
2582 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2583 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2584
2585 cfg80211_rx_control_port(dev, skb, noencrypt);
2586 dev_kfree_skb(skb);
2587 } else {
2588 struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2589
2590 memset(skb->cb, 0, sizeof(skb->cb));
2591
2592 /*
2593 * 802.1X over 802.11 requires that the authenticator address
2594 * be used for EAPOL frames. However, 802.1X allows the use of
2595 * the PAE group address instead. If the interface is part of
2596 * a bridge and we pass the frame with the PAE group address,
2597 * then the bridge will forward it to the network (even if the
2598 * client was not associated yet), which isn't supposed to
2599 * happen.
2600 * To avoid that, rewrite the destination address to our own
2601 * address, so that the authenticator (e.g. hostapd) will see
2602 * the frame, but bridge won't forward it anywhere else. Note
2603 * that due to earlier filtering, the only other address can
2604 * be the PAE group address.
2605 */
2606 if (unlikely(skb->protocol == sdata->control_port_protocol &&
2607 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2608 ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2609
2610 /* deliver to local stack */
2611 if (rx->list)
2612 list_add_tail(&skb->list, rx->list);
2613 else
2614 netif_receive_skb(skb);
2615 }
2616 }
2617
2618 /*
2619 * requires that rx->skb is a frame with ethernet header
2620 */
2621 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2622 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2623 {
2624 struct ieee80211_sub_if_data *sdata = rx->sdata;
2625 struct net_device *dev = sdata->dev;
2626 struct sk_buff *skb, *xmit_skb;
2627 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2628 struct sta_info *dsta;
2629
2630 skb = rx->skb;
2631 xmit_skb = NULL;
2632
2633 dev_sw_netstats_rx_add(dev, skb->len);
2634
2635 if (rx->sta) {
2636 /* The seqno index has the same property as needed
2637 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2638 * for non-QoS-data frames. Here we know it's a data
2639 * frame, so count MSDUs.
2640 */
2641 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2642 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2643 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2644 }
2645
2646 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2647 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2648 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2649 ehdr->h_proto != rx->sdata->control_port_protocol &&
2650 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2651 if (is_multicast_ether_addr(ehdr->h_dest) &&
2652 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2653 /*
2654 * send multicast frames both to higher layers in
2655 * local net stack and back to the wireless medium
2656 */
2657 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2658 if (!xmit_skb)
2659 net_info_ratelimited("%s: failed to clone multicast frame\n",
2660 dev->name);
2661 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2662 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2663 dsta = sta_info_get(sdata, ehdr->h_dest);
2664 if (dsta) {
2665 /*
2666 * The destination station is associated to
2667 * this AP (in this VLAN), so send the frame
2668 * directly to it and do not pass it to local
2669 * net stack.
2670 */
2671 xmit_skb = skb;
2672 skb = NULL;
2673 }
2674 }
2675 }
2676
2677 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2678 if (skb) {
2679 /* 'align' will only take the values 0 or 2 here since all
2680 * frames are required to be aligned to 2-byte boundaries
2681 * when being passed to mac80211; the code here works just
2682 * as well if that isn't true, but mac80211 assumes it can
2683 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2684 */
2685 int align;
2686
2687 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2688 if (align) {
2689 if (WARN_ON(skb_headroom(skb) < 3)) {
2690 dev_kfree_skb(skb);
2691 skb = NULL;
2692 } else {
2693 u8 *data = skb->data;
2694 size_t len = skb_headlen(skb);
2695 skb->data -= align;
2696 memmove(skb->data, data, len);
2697 skb_set_tail_pointer(skb, len);
2698 }
2699 }
2700 }
2701 #endif
2702
2703 if (skb) {
2704 skb->protocol = eth_type_trans(skb, dev);
2705 ieee80211_deliver_skb_to_local_stack(skb, rx);
2706 }
2707
2708 if (xmit_skb) {
2709 /*
2710 * Send to wireless media and increase priority by 256 to
2711 * keep the received priority instead of reclassifying
2712 * the frame (see cfg80211_classify8021d).
2713 */
2714 xmit_skb->priority += 256;
2715 xmit_skb->protocol = htons(ETH_P_802_3);
2716 skb_reset_network_header(xmit_skb);
2717 skb_reset_mac_header(xmit_skb);
2718 dev_queue_xmit(xmit_skb);
2719 }
2720 }
2721
2722 static ieee80211_rx_result debug_noinline
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx,u8 data_offset)2723 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2724 {
2725 struct net_device *dev = rx->sdata->dev;
2726 struct sk_buff *skb = rx->skb;
2727 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2728 __le16 fc = hdr->frame_control;
2729 struct sk_buff_head frame_list;
2730 struct ethhdr ethhdr;
2731 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2732
2733 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2734 check_da = NULL;
2735 check_sa = NULL;
2736 } else switch (rx->sdata->vif.type) {
2737 case NL80211_IFTYPE_AP:
2738 case NL80211_IFTYPE_AP_VLAN:
2739 check_da = NULL;
2740 break;
2741 case NL80211_IFTYPE_STATION:
2742 if (!rx->sta ||
2743 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2744 check_sa = NULL;
2745 break;
2746 case NL80211_IFTYPE_MESH_POINT:
2747 check_sa = NULL;
2748 break;
2749 default:
2750 break;
2751 }
2752
2753 skb->dev = dev;
2754 __skb_queue_head_init(&frame_list);
2755
2756 if (ieee80211_data_to_8023_exthdr(skb, ðhdr,
2757 rx->sdata->vif.addr,
2758 rx->sdata->vif.type,
2759 data_offset, true))
2760 return RX_DROP_UNUSABLE;
2761
2762 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2763 rx->sdata->vif.type,
2764 rx->local->hw.extra_tx_headroom,
2765 check_da, check_sa);
2766
2767 while (!skb_queue_empty(&frame_list)) {
2768 rx->skb = __skb_dequeue(&frame_list);
2769
2770 if (!ieee80211_frame_allowed(rx, fc)) {
2771 dev_kfree_skb(rx->skb);
2772 continue;
2773 }
2774
2775 ieee80211_deliver_skb(rx);
2776 }
2777
2778 return RX_QUEUED;
2779 }
2780
2781 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2782 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2783 {
2784 struct sk_buff *skb = rx->skb;
2785 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2786 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2787 __le16 fc = hdr->frame_control;
2788
2789 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2790 return RX_CONTINUE;
2791
2792 if (unlikely(!ieee80211_is_data(fc)))
2793 return RX_CONTINUE;
2794
2795 if (unlikely(!ieee80211_is_data_present(fc)))
2796 return RX_DROP_MONITOR;
2797
2798 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2799 switch (rx->sdata->vif.type) {
2800 case NL80211_IFTYPE_AP_VLAN:
2801 if (!rx->sdata->u.vlan.sta)
2802 return RX_DROP_UNUSABLE;
2803 break;
2804 case NL80211_IFTYPE_STATION:
2805 if (!rx->sdata->u.mgd.use_4addr)
2806 return RX_DROP_UNUSABLE;
2807 break;
2808 default:
2809 return RX_DROP_UNUSABLE;
2810 }
2811 }
2812
2813 if (is_multicast_ether_addr(hdr->addr1))
2814 return RX_DROP_UNUSABLE;
2815
2816 if (rx->key) {
2817 /*
2818 * We should not receive A-MSDUs on pre-HT connections,
2819 * and HT connections cannot use old ciphers. Thus drop
2820 * them, as in those cases we couldn't even have SPP
2821 * A-MSDUs or such.
2822 */
2823 switch (rx->key->conf.cipher) {
2824 case WLAN_CIPHER_SUITE_WEP40:
2825 case WLAN_CIPHER_SUITE_WEP104:
2826 case WLAN_CIPHER_SUITE_TKIP:
2827 return RX_DROP_UNUSABLE;
2828 default:
2829 break;
2830 }
2831 }
2832
2833 return __ieee80211_rx_h_amsdu(rx, 0);
2834 }
2835
2836 #ifdef CONFIG_MAC80211_MESH
2837 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2838 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2839 {
2840 struct ieee80211_hdr *fwd_hdr, *hdr;
2841 struct ieee80211_tx_info *info;
2842 struct ieee80211s_hdr *mesh_hdr;
2843 struct sk_buff *skb = rx->skb, *fwd_skb;
2844 struct ieee80211_local *local = rx->local;
2845 struct ieee80211_sub_if_data *sdata = rx->sdata;
2846 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2847 u16 ac, q, hdrlen;
2848 int tailroom = 0;
2849
2850 hdr = (struct ieee80211_hdr *) skb->data;
2851 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2852
2853 /* make sure fixed part of mesh header is there, also checks skb len */
2854 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2855 return RX_DROP_MONITOR;
2856
2857 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2858
2859 /* make sure full mesh header is there, also checks skb len */
2860 if (!pskb_may_pull(rx->skb,
2861 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2862 return RX_DROP_MONITOR;
2863
2864 /* reload pointers */
2865 hdr = (struct ieee80211_hdr *) skb->data;
2866 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2867
2868 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2869 return RX_DROP_MONITOR;
2870
2871 /* frame is in RMC, don't forward */
2872 if (ieee80211_is_data(hdr->frame_control) &&
2873 is_multicast_ether_addr(hdr->addr1) &&
2874 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2875 return RX_DROP_MONITOR;
2876
2877 if (!ieee80211_is_data(hdr->frame_control))
2878 return RX_CONTINUE;
2879
2880 if (!mesh_hdr->ttl)
2881 return RX_DROP_MONITOR;
2882
2883 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2884 struct mesh_path *mppath;
2885 char *proxied_addr;
2886 char *mpp_addr;
2887
2888 if (is_multicast_ether_addr(hdr->addr1)) {
2889 mpp_addr = hdr->addr3;
2890 proxied_addr = mesh_hdr->eaddr1;
2891 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2892 MESH_FLAGS_AE_A5_A6) {
2893 /* has_a4 already checked in ieee80211_rx_mesh_check */
2894 mpp_addr = hdr->addr4;
2895 proxied_addr = mesh_hdr->eaddr2;
2896 } else {
2897 return RX_DROP_MONITOR;
2898 }
2899
2900 rcu_read_lock();
2901 mppath = mpp_path_lookup(sdata, proxied_addr);
2902 if (!mppath) {
2903 mpp_path_add(sdata, proxied_addr, mpp_addr);
2904 } else {
2905 spin_lock_bh(&mppath->state_lock);
2906 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2907 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2908 mppath->exp_time = jiffies;
2909 spin_unlock_bh(&mppath->state_lock);
2910 }
2911 rcu_read_unlock();
2912 }
2913
2914 /* Frame has reached destination. Don't forward */
2915 if (!is_multicast_ether_addr(hdr->addr1) &&
2916 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2917 return RX_CONTINUE;
2918
2919 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2920 q = sdata->vif.hw_queue[ac];
2921 if (ieee80211_queue_stopped(&local->hw, q)) {
2922 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2923 return RX_DROP_MONITOR;
2924 }
2925 skb_set_queue_mapping(skb, q);
2926
2927 if (!--mesh_hdr->ttl) {
2928 if (!is_multicast_ether_addr(hdr->addr1))
2929 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2930 dropped_frames_ttl);
2931 goto out;
2932 }
2933
2934 if (!ifmsh->mshcfg.dot11MeshForwarding)
2935 goto out;
2936
2937 if (sdata->crypto_tx_tailroom_needed_cnt)
2938 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2939
2940 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2941 sdata->encrypt_headroom,
2942 tailroom, GFP_ATOMIC);
2943 if (!fwd_skb)
2944 goto out;
2945
2946 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2947 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2948 info = IEEE80211_SKB_CB(fwd_skb);
2949 memset(info, 0, sizeof(*info));
2950 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2951 info->control.vif = &rx->sdata->vif;
2952 info->control.jiffies = jiffies;
2953 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2954 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2955 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2956 /* update power mode indication when forwarding */
2957 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2958 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2959 /* mesh power mode flags updated in mesh_nexthop_lookup */
2960 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2961 } else {
2962 /* unable to resolve next hop */
2963 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2964 fwd_hdr->addr3, 0,
2965 WLAN_REASON_MESH_PATH_NOFORWARD,
2966 fwd_hdr->addr2);
2967 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2968 kfree_skb(fwd_skb);
2969 return RX_DROP_MONITOR;
2970 }
2971
2972 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2973 ieee80211_add_pending_skb(local, fwd_skb);
2974 out:
2975 if (is_multicast_ether_addr(hdr->addr1))
2976 return RX_CONTINUE;
2977 return RX_DROP_MONITOR;
2978 }
2979 #endif
2980
2981 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2982 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2983 {
2984 struct ieee80211_sub_if_data *sdata = rx->sdata;
2985 struct ieee80211_local *local = rx->local;
2986 struct net_device *dev = sdata->dev;
2987 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2988 __le16 fc = hdr->frame_control;
2989 bool port_control;
2990 int err;
2991
2992 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2993 return RX_CONTINUE;
2994
2995 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2996 return RX_DROP_MONITOR;
2997
2998 /*
2999 * Send unexpected-4addr-frame event to hostapd. For older versions,
3000 * also drop the frame to cooked monitor interfaces.
3001 */
3002 if (ieee80211_has_a4(hdr->frame_control) &&
3003 sdata->vif.type == NL80211_IFTYPE_AP) {
3004 if (rx->sta &&
3005 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
3006 cfg80211_rx_unexpected_4addr_frame(
3007 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
3008 return RX_DROP_MONITOR;
3009 }
3010
3011 err = __ieee80211_data_to_8023(rx, &port_control);
3012 if (unlikely(err))
3013 return RX_DROP_UNUSABLE;
3014
3015 if (!ieee80211_frame_allowed(rx, fc))
3016 return RX_DROP_MONITOR;
3017
3018 /* directly handle TDLS channel switch requests/responses */
3019 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3020 cpu_to_be16(ETH_P_TDLS))) {
3021 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3022
3023 if (pskb_may_pull(rx->skb,
3024 offsetof(struct ieee80211_tdls_data, u)) &&
3025 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3026 tf->category == WLAN_CATEGORY_TDLS &&
3027 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3028 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3029 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
3030 __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3031 return RX_QUEUED;
3032 }
3033 }
3034
3035 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3036 unlikely(port_control) && sdata->bss) {
3037 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3038 u.ap);
3039 dev = sdata->dev;
3040 rx->sdata = sdata;
3041 }
3042
3043 rx->skb->dev = dev;
3044
3045 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3046 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3047 !is_multicast_ether_addr(
3048 ((struct ethhdr *)rx->skb->data)->h_dest) &&
3049 (!local->scanning &&
3050 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3051 mod_timer(&local->dynamic_ps_timer, jiffies +
3052 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3053
3054 ieee80211_deliver_skb(rx);
3055
3056 return RX_QUEUED;
3057 }
3058
3059 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3060 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3061 {
3062 struct sk_buff *skb = rx->skb;
3063 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3064 struct tid_ampdu_rx *tid_agg_rx;
3065 u16 start_seq_num;
3066 u16 tid;
3067
3068 if (likely(!ieee80211_is_ctl(bar->frame_control)))
3069 return RX_CONTINUE;
3070
3071 if (ieee80211_is_back_req(bar->frame_control)) {
3072 struct {
3073 __le16 control, start_seq_num;
3074 } __packed bar_data;
3075 struct ieee80211_event event = {
3076 .type = BAR_RX_EVENT,
3077 };
3078
3079 if (!rx->sta)
3080 return RX_DROP_MONITOR;
3081
3082 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3083 &bar_data, sizeof(bar_data)))
3084 return RX_DROP_MONITOR;
3085
3086 tid = le16_to_cpu(bar_data.control) >> 12;
3087
3088 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3089 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3090 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3091 WLAN_BACK_RECIPIENT,
3092 WLAN_REASON_QSTA_REQUIRE_SETUP);
3093
3094 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3095 if (!tid_agg_rx)
3096 return RX_DROP_MONITOR;
3097
3098 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3099 event.u.ba.tid = tid;
3100 event.u.ba.ssn = start_seq_num;
3101 event.u.ba.sta = &rx->sta->sta;
3102
3103 /* reset session timer */
3104 if (tid_agg_rx->timeout)
3105 mod_timer(&tid_agg_rx->session_timer,
3106 TU_TO_EXP_TIME(tid_agg_rx->timeout));
3107
3108 spin_lock(&tid_agg_rx->reorder_lock);
3109 /* release stored frames up to start of BAR */
3110 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3111 start_seq_num, frames);
3112 spin_unlock(&tid_agg_rx->reorder_lock);
3113
3114 drv_event_callback(rx->local, rx->sdata, &event);
3115
3116 kfree_skb(skb);
3117 return RX_QUEUED;
3118 }
3119
3120 /*
3121 * After this point, we only want management frames,
3122 * so we can drop all remaining control frames to
3123 * cooked monitor interfaces.
3124 */
3125 return RX_DROP_MONITOR;
3126 }
3127
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)3128 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3129 struct ieee80211_mgmt *mgmt,
3130 size_t len)
3131 {
3132 struct ieee80211_local *local = sdata->local;
3133 struct sk_buff *skb;
3134 struct ieee80211_mgmt *resp;
3135
3136 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3137 /* Not to own unicast address */
3138 return;
3139 }
3140
3141 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3142 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3143 /* Not from the current AP or not associated yet. */
3144 return;
3145 }
3146
3147 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3148 /* Too short SA Query request frame */
3149 return;
3150 }
3151
3152 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3153 if (skb == NULL)
3154 return;
3155
3156 skb_reserve(skb, local->hw.extra_tx_headroom);
3157 resp = skb_put_zero(skb, 24);
3158 memcpy(resp->da, mgmt->sa, ETH_ALEN);
3159 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3160 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3161 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3162 IEEE80211_STYPE_ACTION);
3163 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3164 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3165 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3166 memcpy(resp->u.action.u.sa_query.trans_id,
3167 mgmt->u.action.u.sa_query.trans_id,
3168 WLAN_SA_QUERY_TR_ID_LEN);
3169
3170 ieee80211_tx_skb(sdata, skb);
3171 }
3172
3173 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)3174 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3175 {
3176 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3177 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3178
3179 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3180 return RX_CONTINUE;
3181
3182 /*
3183 * From here on, look only at management frames.
3184 * Data and control frames are already handled,
3185 * and unknown (reserved) frames are useless.
3186 */
3187 if (rx->skb->len < 24)
3188 return RX_DROP_MONITOR;
3189
3190 if (!ieee80211_is_mgmt(mgmt->frame_control))
3191 return RX_DROP_MONITOR;
3192
3193 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3194 ieee80211_is_beacon(mgmt->frame_control) &&
3195 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3196 int sig = 0;
3197
3198 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3199 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3200 sig = status->signal;
3201
3202 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3203 rx->skb->data, rx->skb->len,
3204 ieee80211_rx_status_to_khz(status),
3205 sig);
3206 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3207 }
3208
3209 if (ieee80211_drop_unencrypted_mgmt(rx))
3210 return RX_DROP_UNUSABLE;
3211
3212 return RX_CONTINUE;
3213 }
3214
3215 static bool
ieee80211_process_rx_twt_action(struct ieee80211_rx_data * rx)3216 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
3217 {
3218 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
3219 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3220 struct ieee80211_sub_if_data *sdata = rx->sdata;
3221 const struct ieee80211_sta_he_cap *hecap;
3222 struct ieee80211_supported_band *sband;
3223
3224 /* TWT actions are only supported in AP for the moment */
3225 if (sdata->vif.type != NL80211_IFTYPE_AP)
3226 return false;
3227
3228 if (!rx->local->ops->add_twt_setup)
3229 return false;
3230
3231 sband = rx->local->hw.wiphy->bands[status->band];
3232 hecap = ieee80211_get_he_iftype_cap(sband,
3233 ieee80211_vif_type_p2p(&sdata->vif));
3234 if (!hecap)
3235 return false;
3236
3237 if (!(hecap->he_cap_elem.mac_cap_info[0] &
3238 IEEE80211_HE_MAC_CAP0_TWT_RES))
3239 return false;
3240
3241 if (!rx->sta)
3242 return false;
3243
3244 switch (mgmt->u.action.u.s1g.action_code) {
3245 case WLAN_S1G_TWT_SETUP: {
3246 struct ieee80211_twt_setup *twt;
3247
3248 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3249 1 + /* action code */
3250 sizeof(struct ieee80211_twt_setup) +
3251 2 /* TWT req_type agrt */)
3252 break;
3253
3254 twt = (void *)mgmt->u.action.u.s1g.variable;
3255 if (twt->element_id != WLAN_EID_S1G_TWT)
3256 break;
3257
3258 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3259 4 + /* action code + token + tlv */
3260 twt->length)
3261 break;
3262
3263 return true; /* queue the frame */
3264 }
3265 case WLAN_S1G_TWT_TEARDOWN:
3266 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
3267 break;
3268
3269 return true; /* queue the frame */
3270 default:
3271 break;
3272 }
3273
3274 return false;
3275 }
3276
3277 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)3278 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3279 {
3280 struct ieee80211_local *local = rx->local;
3281 struct ieee80211_sub_if_data *sdata = rx->sdata;
3282 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3283 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3284 int len = rx->skb->len;
3285
3286 if (!ieee80211_is_action(mgmt->frame_control))
3287 return RX_CONTINUE;
3288
3289 /* drop too small frames */
3290 if (len < IEEE80211_MIN_ACTION_SIZE)
3291 return RX_DROP_UNUSABLE;
3292
3293 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3294 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3295 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3296 return RX_DROP_UNUSABLE;
3297
3298 switch (mgmt->u.action.category) {
3299 case WLAN_CATEGORY_HT:
3300 /* reject HT action frames from stations not supporting HT */
3301 if (!rx->sta->sta.ht_cap.ht_supported)
3302 goto invalid;
3303
3304 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3305 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3306 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3307 sdata->vif.type != NL80211_IFTYPE_AP &&
3308 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3309 break;
3310
3311 /* verify action & smps_control/chanwidth are present */
3312 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3313 goto invalid;
3314
3315 switch (mgmt->u.action.u.ht_smps.action) {
3316 case WLAN_HT_ACTION_SMPS: {
3317 struct ieee80211_supported_band *sband;
3318 enum ieee80211_smps_mode smps_mode;
3319 struct sta_opmode_info sta_opmode = {};
3320
3321 if (sdata->vif.type != NL80211_IFTYPE_AP &&
3322 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3323 goto handled;
3324
3325 /* convert to HT capability */
3326 switch (mgmt->u.action.u.ht_smps.smps_control) {
3327 case WLAN_HT_SMPS_CONTROL_DISABLED:
3328 smps_mode = IEEE80211_SMPS_OFF;
3329 break;
3330 case WLAN_HT_SMPS_CONTROL_STATIC:
3331 smps_mode = IEEE80211_SMPS_STATIC;
3332 break;
3333 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3334 smps_mode = IEEE80211_SMPS_DYNAMIC;
3335 break;
3336 default:
3337 goto invalid;
3338 }
3339
3340 /* if no change do nothing */
3341 if (rx->sta->sta.smps_mode == smps_mode)
3342 goto handled;
3343 rx->sta->sta.smps_mode = smps_mode;
3344 sta_opmode.smps_mode =
3345 ieee80211_smps_mode_to_smps_mode(smps_mode);
3346 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3347
3348 sband = rx->local->hw.wiphy->bands[status->band];
3349
3350 rate_control_rate_update(local, sband, rx->sta,
3351 IEEE80211_RC_SMPS_CHANGED);
3352 cfg80211_sta_opmode_change_notify(sdata->dev,
3353 rx->sta->addr,
3354 &sta_opmode,
3355 GFP_ATOMIC);
3356 goto handled;
3357 }
3358 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3359 struct ieee80211_supported_band *sband;
3360 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3361 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3362 struct sta_opmode_info sta_opmode = {};
3363
3364 /* If it doesn't support 40 MHz it can't change ... */
3365 if (!(rx->sta->sta.ht_cap.cap &
3366 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3367 goto handled;
3368
3369 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3370 max_bw = IEEE80211_STA_RX_BW_20;
3371 else
3372 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3373
3374 /* set cur_max_bandwidth and recalc sta bw */
3375 rx->sta->cur_max_bandwidth = max_bw;
3376 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3377
3378 if (rx->sta->sta.bandwidth == new_bw)
3379 goto handled;
3380
3381 rx->sta->sta.bandwidth = new_bw;
3382 sband = rx->local->hw.wiphy->bands[status->band];
3383 sta_opmode.bw =
3384 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3385 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3386
3387 rate_control_rate_update(local, sband, rx->sta,
3388 IEEE80211_RC_BW_CHANGED);
3389 cfg80211_sta_opmode_change_notify(sdata->dev,
3390 rx->sta->addr,
3391 &sta_opmode,
3392 GFP_ATOMIC);
3393 goto handled;
3394 }
3395 default:
3396 goto invalid;
3397 }
3398
3399 break;
3400 case WLAN_CATEGORY_PUBLIC:
3401 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3402 goto invalid;
3403 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3404 break;
3405 if (!rx->sta)
3406 break;
3407 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3408 break;
3409 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3410 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3411 break;
3412 if (len < offsetof(struct ieee80211_mgmt,
3413 u.action.u.ext_chan_switch.variable))
3414 goto invalid;
3415 goto queue;
3416 case WLAN_CATEGORY_VHT:
3417 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3418 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3419 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3420 sdata->vif.type != NL80211_IFTYPE_AP &&
3421 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3422 break;
3423
3424 /* verify action code is present */
3425 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3426 goto invalid;
3427
3428 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3429 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3430 /* verify opmode is present */
3431 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3432 goto invalid;
3433 goto queue;
3434 }
3435 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3436 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3437 goto invalid;
3438 goto queue;
3439 }
3440 default:
3441 break;
3442 }
3443 break;
3444 case WLAN_CATEGORY_BACK:
3445 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3446 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3447 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3448 sdata->vif.type != NL80211_IFTYPE_AP &&
3449 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3450 break;
3451
3452 /* verify action_code is present */
3453 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3454 break;
3455
3456 switch (mgmt->u.action.u.addba_req.action_code) {
3457 case WLAN_ACTION_ADDBA_REQ:
3458 if (len < (IEEE80211_MIN_ACTION_SIZE +
3459 sizeof(mgmt->u.action.u.addba_req)))
3460 goto invalid;
3461 break;
3462 case WLAN_ACTION_ADDBA_RESP:
3463 if (len < (IEEE80211_MIN_ACTION_SIZE +
3464 sizeof(mgmt->u.action.u.addba_resp)))
3465 goto invalid;
3466 break;
3467 case WLAN_ACTION_DELBA:
3468 if (len < (IEEE80211_MIN_ACTION_SIZE +
3469 sizeof(mgmt->u.action.u.delba)))
3470 goto invalid;
3471 break;
3472 default:
3473 goto invalid;
3474 }
3475
3476 goto queue;
3477 case WLAN_CATEGORY_SPECTRUM_MGMT:
3478 /* verify action_code is present */
3479 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3480 break;
3481
3482 switch (mgmt->u.action.u.measurement.action_code) {
3483 case WLAN_ACTION_SPCT_MSR_REQ:
3484 if (status->band != NL80211_BAND_5GHZ)
3485 break;
3486
3487 if (len < (IEEE80211_MIN_ACTION_SIZE +
3488 sizeof(mgmt->u.action.u.measurement)))
3489 break;
3490
3491 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3492 break;
3493
3494 ieee80211_process_measurement_req(sdata, mgmt, len);
3495 goto handled;
3496 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3497 u8 *bssid;
3498 if (len < (IEEE80211_MIN_ACTION_SIZE +
3499 sizeof(mgmt->u.action.u.chan_switch)))
3500 break;
3501
3502 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3503 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3504 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3505 break;
3506
3507 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3508 bssid = sdata->u.mgd.bssid;
3509 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3510 bssid = sdata->u.ibss.bssid;
3511 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3512 bssid = mgmt->sa;
3513 else
3514 break;
3515
3516 if (!ether_addr_equal(mgmt->bssid, bssid))
3517 break;
3518
3519 goto queue;
3520 }
3521 }
3522 break;
3523 case WLAN_CATEGORY_SELF_PROTECTED:
3524 if (len < (IEEE80211_MIN_ACTION_SIZE +
3525 sizeof(mgmt->u.action.u.self_prot.action_code)))
3526 break;
3527
3528 switch (mgmt->u.action.u.self_prot.action_code) {
3529 case WLAN_SP_MESH_PEERING_OPEN:
3530 case WLAN_SP_MESH_PEERING_CLOSE:
3531 case WLAN_SP_MESH_PEERING_CONFIRM:
3532 if (!ieee80211_vif_is_mesh(&sdata->vif))
3533 goto invalid;
3534 if (sdata->u.mesh.user_mpm)
3535 /* userspace handles this frame */
3536 break;
3537 goto queue;
3538 case WLAN_SP_MGK_INFORM:
3539 case WLAN_SP_MGK_ACK:
3540 if (!ieee80211_vif_is_mesh(&sdata->vif))
3541 goto invalid;
3542 break;
3543 }
3544 break;
3545 case WLAN_CATEGORY_MESH_ACTION:
3546 if (len < (IEEE80211_MIN_ACTION_SIZE +
3547 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3548 break;
3549
3550 if (!ieee80211_vif_is_mesh(&sdata->vif))
3551 break;
3552 if (mesh_action_is_path_sel(mgmt) &&
3553 !mesh_path_sel_is_hwmp(sdata))
3554 break;
3555 goto queue;
3556 case WLAN_CATEGORY_S1G:
3557 switch (mgmt->u.action.u.s1g.action_code) {
3558 case WLAN_S1G_TWT_SETUP:
3559 case WLAN_S1G_TWT_TEARDOWN:
3560 if (ieee80211_process_rx_twt_action(rx))
3561 goto queue;
3562 break;
3563 default:
3564 break;
3565 }
3566 break;
3567 }
3568
3569 return RX_CONTINUE;
3570
3571 invalid:
3572 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3573 /* will return in the next handlers */
3574 return RX_CONTINUE;
3575
3576 handled:
3577 if (rx->sta)
3578 rx->sta->rx_stats.packets++;
3579 dev_kfree_skb(rx->skb);
3580 return RX_QUEUED;
3581
3582 queue:
3583 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3584 return RX_QUEUED;
3585 }
3586
3587 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)3588 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3589 {
3590 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3591 int sig = 0;
3592
3593 /* skip known-bad action frames and return them in the next handler */
3594 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3595 return RX_CONTINUE;
3596
3597 /*
3598 * Getting here means the kernel doesn't know how to handle
3599 * it, but maybe userspace does ... include returned frames
3600 * so userspace can register for those to know whether ones
3601 * it transmitted were processed or returned.
3602 */
3603
3604 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3605 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3606 sig = status->signal;
3607
3608 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3609 ieee80211_rx_status_to_khz(status), sig,
3610 rx->skb->data, rx->skb->len, 0)) {
3611 if (rx->sta)
3612 rx->sta->rx_stats.packets++;
3613 dev_kfree_skb(rx->skb);
3614 return RX_QUEUED;
3615 }
3616
3617 return RX_CONTINUE;
3618 }
3619
3620 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data * rx)3621 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3622 {
3623 struct ieee80211_sub_if_data *sdata = rx->sdata;
3624 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3625 int len = rx->skb->len;
3626
3627 if (!ieee80211_is_action(mgmt->frame_control))
3628 return RX_CONTINUE;
3629
3630 switch (mgmt->u.action.category) {
3631 case WLAN_CATEGORY_SA_QUERY:
3632 if (len < (IEEE80211_MIN_ACTION_SIZE +
3633 sizeof(mgmt->u.action.u.sa_query)))
3634 break;
3635
3636 switch (mgmt->u.action.u.sa_query.action) {
3637 case WLAN_ACTION_SA_QUERY_REQUEST:
3638 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3639 break;
3640 ieee80211_process_sa_query_req(sdata, mgmt, len);
3641 goto handled;
3642 }
3643 break;
3644 }
3645
3646 return RX_CONTINUE;
3647
3648 handled:
3649 if (rx->sta)
3650 rx->sta->rx_stats.packets++;
3651 dev_kfree_skb(rx->skb);
3652 return RX_QUEUED;
3653 }
3654
3655 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)3656 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3657 {
3658 struct ieee80211_local *local = rx->local;
3659 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3660 struct sk_buff *nskb;
3661 struct ieee80211_sub_if_data *sdata = rx->sdata;
3662 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3663
3664 if (!ieee80211_is_action(mgmt->frame_control))
3665 return RX_CONTINUE;
3666
3667 /*
3668 * For AP mode, hostapd is responsible for handling any action
3669 * frames that we didn't handle, including returning unknown
3670 * ones. For all other modes we will return them to the sender,
3671 * setting the 0x80 bit in the action category, as required by
3672 * 802.11-2012 9.24.4.
3673 * Newer versions of hostapd shall also use the management frame
3674 * registration mechanisms, but older ones still use cooked
3675 * monitor interfaces so push all frames there.
3676 */
3677 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3678 (sdata->vif.type == NL80211_IFTYPE_AP ||
3679 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3680 return RX_DROP_MONITOR;
3681
3682 if (is_multicast_ether_addr(mgmt->da))
3683 return RX_DROP_MONITOR;
3684
3685 /* do not return rejected action frames */
3686 if (mgmt->u.action.category & 0x80)
3687 return RX_DROP_UNUSABLE;
3688
3689 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3690 GFP_ATOMIC);
3691 if (nskb) {
3692 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3693
3694 nmgmt->u.action.category |= 0x80;
3695 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3696 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3697
3698 memset(nskb->cb, 0, sizeof(nskb->cb));
3699
3700 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3701 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3702
3703 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3704 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3705 IEEE80211_TX_CTL_NO_CCK_RATE;
3706 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3707 info->hw_queue =
3708 local->hw.offchannel_tx_hw_queue;
3709 }
3710
3711 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3712 status->band);
3713 }
3714 dev_kfree_skb(rx->skb);
3715 return RX_QUEUED;
3716 }
3717
3718 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ext(struct ieee80211_rx_data * rx)3719 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3720 {
3721 struct ieee80211_sub_if_data *sdata = rx->sdata;
3722 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3723
3724 if (!ieee80211_is_ext(hdr->frame_control))
3725 return RX_CONTINUE;
3726
3727 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3728 return RX_DROP_MONITOR;
3729
3730 /* for now only beacons are ext, so queue them */
3731 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3732
3733 return RX_QUEUED;
3734 }
3735
3736 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3737 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3738 {
3739 struct ieee80211_sub_if_data *sdata = rx->sdata;
3740 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3741 __le16 stype;
3742
3743 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3744
3745 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3746 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3747 sdata->vif.type != NL80211_IFTYPE_OCB &&
3748 sdata->vif.type != NL80211_IFTYPE_STATION)
3749 return RX_DROP_MONITOR;
3750
3751 switch (stype) {
3752 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3753 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3754 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3755 /* process for all: mesh, mlme, ibss */
3756 break;
3757 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3758 if (is_multicast_ether_addr(mgmt->da) &&
3759 !is_broadcast_ether_addr(mgmt->da))
3760 return RX_DROP_MONITOR;
3761
3762 /* process only for station/IBSS */
3763 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3764 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3765 return RX_DROP_MONITOR;
3766 break;
3767 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3768 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3769 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3770 if (is_multicast_ether_addr(mgmt->da) &&
3771 !is_broadcast_ether_addr(mgmt->da))
3772 return RX_DROP_MONITOR;
3773
3774 /* process only for station */
3775 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3776 return RX_DROP_MONITOR;
3777 break;
3778 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3779 /* process only for ibss and mesh */
3780 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3781 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3782 return RX_DROP_MONITOR;
3783 break;
3784 default:
3785 return RX_DROP_MONITOR;
3786 }
3787
3788 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3789
3790 return RX_QUEUED;
3791 }
3792
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3793 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3794 struct ieee80211_rate *rate)
3795 {
3796 struct ieee80211_sub_if_data *sdata;
3797 struct ieee80211_local *local = rx->local;
3798 struct sk_buff *skb = rx->skb, *skb2;
3799 struct net_device *prev_dev = NULL;
3800 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3801 int needed_headroom;
3802
3803 /*
3804 * If cooked monitor has been processed already, then
3805 * don't do it again. If not, set the flag.
3806 */
3807 if (rx->flags & IEEE80211_RX_CMNTR)
3808 goto out_free_skb;
3809 rx->flags |= IEEE80211_RX_CMNTR;
3810
3811 /* If there are no cooked monitor interfaces, just free the SKB */
3812 if (!local->cooked_mntrs)
3813 goto out_free_skb;
3814
3815 /* vendor data is long removed here */
3816 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3817 /* room for the radiotap header based on driver features */
3818 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3819
3820 if (skb_headroom(skb) < needed_headroom &&
3821 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3822 goto out_free_skb;
3823
3824 /* prepend radiotap information */
3825 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3826 false);
3827
3828 skb_reset_mac_header(skb);
3829 skb->ip_summed = CHECKSUM_UNNECESSARY;
3830 skb->pkt_type = PACKET_OTHERHOST;
3831 skb->protocol = htons(ETH_P_802_2);
3832
3833 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3834 if (!ieee80211_sdata_running(sdata))
3835 continue;
3836
3837 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3838 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3839 continue;
3840
3841 if (prev_dev) {
3842 skb2 = skb_clone(skb, GFP_ATOMIC);
3843 if (skb2) {
3844 skb2->dev = prev_dev;
3845 netif_receive_skb(skb2);
3846 }
3847 }
3848
3849 prev_dev = sdata->dev;
3850 dev_sw_netstats_rx_add(sdata->dev, skb->len);
3851 }
3852
3853 if (prev_dev) {
3854 skb->dev = prev_dev;
3855 netif_receive_skb(skb);
3856 return;
3857 }
3858
3859 out_free_skb:
3860 dev_kfree_skb(skb);
3861 }
3862
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3863 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3864 ieee80211_rx_result res)
3865 {
3866 switch (res) {
3867 case RX_DROP_MONITOR:
3868 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3869 if (rx->sta)
3870 rx->sta->rx_stats.dropped++;
3871 fallthrough;
3872 case RX_CONTINUE: {
3873 struct ieee80211_rate *rate = NULL;
3874 struct ieee80211_supported_band *sband;
3875 struct ieee80211_rx_status *status;
3876
3877 status = IEEE80211_SKB_RXCB((rx->skb));
3878
3879 sband = rx->local->hw.wiphy->bands[status->band];
3880 if (status->encoding == RX_ENC_LEGACY)
3881 rate = &sband->bitrates[status->rate_idx];
3882
3883 ieee80211_rx_cooked_monitor(rx, rate);
3884 break;
3885 }
3886 case RX_DROP_UNUSABLE:
3887 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3888 if (rx->sta)
3889 rx->sta->rx_stats.dropped++;
3890 dev_kfree_skb(rx->skb);
3891 break;
3892 case RX_QUEUED:
3893 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3894 break;
3895 }
3896 }
3897
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3898 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3899 struct sk_buff_head *frames)
3900 {
3901 ieee80211_rx_result res = RX_DROP_MONITOR;
3902 struct sk_buff *skb;
3903
3904 #define CALL_RXH(rxh) \
3905 do { \
3906 res = rxh(rx); \
3907 if (res != RX_CONTINUE) \
3908 goto rxh_next; \
3909 } while (0)
3910
3911 /* Lock here to avoid hitting all of the data used in the RX
3912 * path (e.g. key data, station data, ...) concurrently when
3913 * a frame is released from the reorder buffer due to timeout
3914 * from the timer, potentially concurrently with RX from the
3915 * driver.
3916 */
3917 spin_lock_bh(&rx->local->rx_path_lock);
3918
3919 while ((skb = __skb_dequeue(frames))) {
3920 /*
3921 * all the other fields are valid across frames
3922 * that belong to an aMPDU since they are on the
3923 * same TID from the same station
3924 */
3925 rx->skb = skb;
3926
3927 CALL_RXH(ieee80211_rx_h_check_more_data);
3928 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3929 CALL_RXH(ieee80211_rx_h_sta_process);
3930 CALL_RXH(ieee80211_rx_h_decrypt);
3931 CALL_RXH(ieee80211_rx_h_defragment);
3932 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3933 /* must be after MMIC verify so header is counted in MPDU mic */
3934 #ifdef CONFIG_MAC80211_MESH
3935 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3936 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3937 #endif
3938 CALL_RXH(ieee80211_rx_h_amsdu);
3939 CALL_RXH(ieee80211_rx_h_data);
3940
3941 /* special treatment -- needs the queue */
3942 res = ieee80211_rx_h_ctrl(rx, frames);
3943 if (res != RX_CONTINUE)
3944 goto rxh_next;
3945
3946 CALL_RXH(ieee80211_rx_h_mgmt_check);
3947 CALL_RXH(ieee80211_rx_h_action);
3948 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3949 CALL_RXH(ieee80211_rx_h_action_post_userspace);
3950 CALL_RXH(ieee80211_rx_h_action_return);
3951 CALL_RXH(ieee80211_rx_h_ext);
3952 CALL_RXH(ieee80211_rx_h_mgmt);
3953
3954 rxh_next:
3955 ieee80211_rx_handlers_result(rx, res);
3956
3957 #undef CALL_RXH
3958 }
3959
3960 spin_unlock_bh(&rx->local->rx_path_lock);
3961 }
3962
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)3963 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3964 {
3965 struct sk_buff_head reorder_release;
3966 ieee80211_rx_result res = RX_DROP_MONITOR;
3967
3968 __skb_queue_head_init(&reorder_release);
3969
3970 #define CALL_RXH(rxh) \
3971 do { \
3972 res = rxh(rx); \
3973 if (res != RX_CONTINUE) \
3974 goto rxh_next; \
3975 } while (0)
3976
3977 CALL_RXH(ieee80211_rx_h_check_dup);
3978 CALL_RXH(ieee80211_rx_h_check);
3979
3980 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3981
3982 ieee80211_rx_handlers(rx, &reorder_release);
3983 return;
3984
3985 rxh_next:
3986 ieee80211_rx_handlers_result(rx, res);
3987
3988 #undef CALL_RXH
3989 }
3990
3991 /*
3992 * This function makes calls into the RX path, therefore
3993 * it has to be invoked under RCU read lock.
3994 */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)3995 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3996 {
3997 struct sk_buff_head frames;
3998 struct ieee80211_rx_data rx = {
3999 .sta = sta,
4000 .sdata = sta->sdata,
4001 .local = sta->local,
4002 /* This is OK -- must be QoS data frame */
4003 .security_idx = tid,
4004 .seqno_idx = tid,
4005 };
4006 struct tid_ampdu_rx *tid_agg_rx;
4007
4008 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4009 if (!tid_agg_rx)
4010 return;
4011
4012 __skb_queue_head_init(&frames);
4013
4014 spin_lock(&tid_agg_rx->reorder_lock);
4015 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4016 spin_unlock(&tid_agg_rx->reorder_lock);
4017
4018 if (!skb_queue_empty(&frames)) {
4019 struct ieee80211_event event = {
4020 .type = BA_FRAME_TIMEOUT,
4021 .u.ba.tid = tid,
4022 .u.ba.sta = &sta->sta,
4023 };
4024 drv_event_callback(rx.local, rx.sdata, &event);
4025 }
4026
4027 ieee80211_rx_handlers(&rx, &frames);
4028 }
4029
ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta * pubsta,u8 tid,u16 ssn,u64 filtered,u16 received_mpdus)4030 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
4031 u16 ssn, u64 filtered,
4032 u16 received_mpdus)
4033 {
4034 struct sta_info *sta;
4035 struct tid_ampdu_rx *tid_agg_rx;
4036 struct sk_buff_head frames;
4037 struct ieee80211_rx_data rx = {
4038 /* This is OK -- must be QoS data frame */
4039 .security_idx = tid,
4040 .seqno_idx = tid,
4041 };
4042 int i, diff;
4043
4044 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
4045 return;
4046
4047 __skb_queue_head_init(&frames);
4048
4049 sta = container_of(pubsta, struct sta_info, sta);
4050
4051 rx.sta = sta;
4052 rx.sdata = sta->sdata;
4053 rx.local = sta->local;
4054
4055 rcu_read_lock();
4056 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4057 if (!tid_agg_rx)
4058 goto out;
4059
4060 spin_lock_bh(&tid_agg_rx->reorder_lock);
4061
4062 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
4063 int release;
4064
4065 /* release all frames in the reorder buffer */
4066 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4067 IEEE80211_SN_MODULO;
4068 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4069 release, &frames);
4070 /* update ssn to match received ssn */
4071 tid_agg_rx->head_seq_num = ssn;
4072 } else {
4073 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4074 &frames);
4075 }
4076
4077 /* handle the case that received ssn is behind the mac ssn.
4078 * it can be tid_agg_rx->buf_size behind and still be valid */
4079 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4080 if (diff >= tid_agg_rx->buf_size) {
4081 tid_agg_rx->reorder_buf_filtered = 0;
4082 goto release;
4083 }
4084 filtered = filtered >> diff;
4085 ssn += diff;
4086
4087 /* update bitmap */
4088 for (i = 0; i < tid_agg_rx->buf_size; i++) {
4089 int index = (ssn + i) % tid_agg_rx->buf_size;
4090
4091 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4092 if (filtered & BIT_ULL(i))
4093 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4094 }
4095
4096 /* now process also frames that the filter marking released */
4097 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4098
4099 release:
4100 spin_unlock_bh(&tid_agg_rx->reorder_lock);
4101
4102 ieee80211_rx_handlers(&rx, &frames);
4103
4104 out:
4105 rcu_read_unlock();
4106 }
4107 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4108
4109 /* main receive path */
4110
ieee80211_accept_frame(struct ieee80211_rx_data * rx)4111 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4112 {
4113 struct ieee80211_sub_if_data *sdata = rx->sdata;
4114 struct sk_buff *skb = rx->skb;
4115 struct ieee80211_hdr *hdr = (void *)skb->data;
4116 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4117 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4118 bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4119 ieee80211_is_s1g_beacon(hdr->frame_control);
4120
4121 switch (sdata->vif.type) {
4122 case NL80211_IFTYPE_STATION:
4123 if (!bssid && !sdata->u.mgd.use_4addr)
4124 return false;
4125 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4126 return false;
4127 if (multicast)
4128 return true;
4129 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4130 case NL80211_IFTYPE_ADHOC:
4131 if (!bssid)
4132 return false;
4133 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4134 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4135 !is_valid_ether_addr(hdr->addr2))
4136 return false;
4137 if (ieee80211_is_beacon(hdr->frame_control))
4138 return true;
4139 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4140 return false;
4141 if (!multicast &&
4142 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4143 return false;
4144 if (!rx->sta) {
4145 int rate_idx;
4146 if (status->encoding != RX_ENC_LEGACY)
4147 rate_idx = 0; /* TODO: HT/VHT rates */
4148 else
4149 rate_idx = status->rate_idx;
4150 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4151 BIT(rate_idx));
4152 }
4153 return true;
4154 case NL80211_IFTYPE_OCB:
4155 if (!bssid)
4156 return false;
4157 if (!ieee80211_is_data_present(hdr->frame_control))
4158 return false;
4159 if (!is_broadcast_ether_addr(bssid))
4160 return false;
4161 if (!multicast &&
4162 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4163 return false;
4164 if (!rx->sta) {
4165 int rate_idx;
4166 if (status->encoding != RX_ENC_LEGACY)
4167 rate_idx = 0; /* TODO: HT rates */
4168 else
4169 rate_idx = status->rate_idx;
4170 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4171 BIT(rate_idx));
4172 }
4173 return true;
4174 case NL80211_IFTYPE_MESH_POINT:
4175 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4176 return false;
4177 if (multicast)
4178 return true;
4179 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4180 case NL80211_IFTYPE_AP_VLAN:
4181 case NL80211_IFTYPE_AP:
4182 if (!bssid)
4183 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4184
4185 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4186 /*
4187 * Accept public action frames even when the
4188 * BSSID doesn't match, this is used for P2P
4189 * and location updates. Note that mac80211
4190 * itself never looks at these frames.
4191 */
4192 if (!multicast &&
4193 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4194 return false;
4195 if (ieee80211_is_public_action(hdr, skb->len))
4196 return true;
4197 return ieee80211_is_beacon(hdr->frame_control);
4198 }
4199
4200 if (!ieee80211_has_tods(hdr->frame_control)) {
4201 /* ignore data frames to TDLS-peers */
4202 if (ieee80211_is_data(hdr->frame_control))
4203 return false;
4204 /* ignore action frames to TDLS-peers */
4205 if (ieee80211_is_action(hdr->frame_control) &&
4206 !is_broadcast_ether_addr(bssid) &&
4207 !ether_addr_equal(bssid, hdr->addr1))
4208 return false;
4209 }
4210
4211 /*
4212 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4213 * the BSSID - we've checked that already but may have accepted
4214 * the wildcard (ff:ff:ff:ff:ff:ff).
4215 *
4216 * It also says:
4217 * The BSSID of the Data frame is determined as follows:
4218 * a) If the STA is contained within an AP or is associated
4219 * with an AP, the BSSID is the address currently in use
4220 * by the STA contained in the AP.
4221 *
4222 * So we should not accept data frames with an address that's
4223 * multicast.
4224 *
4225 * Accepting it also opens a security problem because stations
4226 * could encrypt it with the GTK and inject traffic that way.
4227 */
4228 if (ieee80211_is_data(hdr->frame_control) && multicast)
4229 return false;
4230
4231 return true;
4232 case NL80211_IFTYPE_P2P_DEVICE:
4233 return ieee80211_is_public_action(hdr, skb->len) ||
4234 ieee80211_is_probe_req(hdr->frame_control) ||
4235 ieee80211_is_probe_resp(hdr->frame_control) ||
4236 ieee80211_is_beacon(hdr->frame_control);
4237 case NL80211_IFTYPE_NAN:
4238 /* Currently no frames on NAN interface are allowed */
4239 return false;
4240 default:
4241 break;
4242 }
4243
4244 WARN_ON_ONCE(1);
4245 return false;
4246 }
4247
ieee80211_check_fast_rx(struct sta_info * sta)4248 void ieee80211_check_fast_rx(struct sta_info *sta)
4249 {
4250 struct ieee80211_sub_if_data *sdata = sta->sdata;
4251 struct ieee80211_local *local = sdata->local;
4252 struct ieee80211_key *key;
4253 struct ieee80211_fast_rx fastrx = {
4254 .dev = sdata->dev,
4255 .vif_type = sdata->vif.type,
4256 .control_port_protocol = sdata->control_port_protocol,
4257 }, *old, *new = NULL;
4258 bool set_offload = false;
4259 bool assign = false;
4260 bool offload;
4261
4262 /* use sparse to check that we don't return without updating */
4263 __acquire(check_fast_rx);
4264
4265 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4266 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4267 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4268 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4269
4270 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4271
4272 /* fast-rx doesn't do reordering */
4273 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4274 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4275 goto clear;
4276
4277 switch (sdata->vif.type) {
4278 case NL80211_IFTYPE_STATION:
4279 if (sta->sta.tdls) {
4280 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4281 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4282 fastrx.expected_ds_bits = 0;
4283 } else {
4284 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4285 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4286 fastrx.expected_ds_bits =
4287 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4288 }
4289
4290 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4291 fastrx.expected_ds_bits |=
4292 cpu_to_le16(IEEE80211_FCTL_TODS);
4293 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4294 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4295 }
4296
4297 if (!sdata->u.mgd.powersave)
4298 break;
4299
4300 /* software powersave is a huge mess, avoid all of it */
4301 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4302 goto clear;
4303 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4304 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4305 goto clear;
4306 break;
4307 case NL80211_IFTYPE_AP_VLAN:
4308 case NL80211_IFTYPE_AP:
4309 /* parallel-rx requires this, at least with calls to
4310 * ieee80211_sta_ps_transition()
4311 */
4312 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4313 goto clear;
4314 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4315 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4316 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4317
4318 fastrx.internal_forward =
4319 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4320 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4321 !sdata->u.vlan.sta);
4322
4323 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4324 sdata->u.vlan.sta) {
4325 fastrx.expected_ds_bits |=
4326 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4327 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4328 fastrx.internal_forward = 0;
4329 }
4330
4331 break;
4332 default:
4333 goto clear;
4334 }
4335
4336 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4337 goto clear;
4338
4339 rcu_read_lock();
4340 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4341 if (!key)
4342 key = rcu_dereference(sdata->default_unicast_key);
4343 if (key) {
4344 switch (key->conf.cipher) {
4345 case WLAN_CIPHER_SUITE_TKIP:
4346 /* we don't want to deal with MMIC in fast-rx */
4347 goto clear_rcu;
4348 case WLAN_CIPHER_SUITE_CCMP:
4349 case WLAN_CIPHER_SUITE_CCMP_256:
4350 case WLAN_CIPHER_SUITE_GCMP:
4351 case WLAN_CIPHER_SUITE_GCMP_256:
4352 break;
4353 default:
4354 /* We also don't want to deal with
4355 * WEP or cipher scheme.
4356 */
4357 goto clear_rcu;
4358 }
4359
4360 fastrx.key = true;
4361 fastrx.icv_len = key->conf.icv_len;
4362 }
4363
4364 assign = true;
4365 clear_rcu:
4366 rcu_read_unlock();
4367 clear:
4368 __release(check_fast_rx);
4369
4370 if (assign)
4371 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4372
4373 offload = assign &&
4374 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
4375
4376 if (offload)
4377 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4378 else
4379 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4380
4381 if (set_offload)
4382 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4383
4384 spin_lock_bh(&sta->lock);
4385 old = rcu_dereference_protected(sta->fast_rx, true);
4386 rcu_assign_pointer(sta->fast_rx, new);
4387 spin_unlock_bh(&sta->lock);
4388
4389 if (old)
4390 kfree_rcu(old, rcu_head);
4391 }
4392
ieee80211_clear_fast_rx(struct sta_info * sta)4393 void ieee80211_clear_fast_rx(struct sta_info *sta)
4394 {
4395 struct ieee80211_fast_rx *old;
4396
4397 spin_lock_bh(&sta->lock);
4398 old = rcu_dereference_protected(sta->fast_rx, true);
4399 RCU_INIT_POINTER(sta->fast_rx, NULL);
4400 spin_unlock_bh(&sta->lock);
4401
4402 if (old)
4403 kfree_rcu(old, rcu_head);
4404 }
4405
__ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4406 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4407 {
4408 struct ieee80211_local *local = sdata->local;
4409 struct sta_info *sta;
4410
4411 lockdep_assert_held(&local->sta_mtx);
4412
4413 list_for_each_entry(sta, &local->sta_list, list) {
4414 if (sdata != sta->sdata &&
4415 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4416 continue;
4417 ieee80211_check_fast_rx(sta);
4418 }
4419 }
4420
ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4421 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4422 {
4423 struct ieee80211_local *local = sdata->local;
4424
4425 mutex_lock(&local->sta_mtx);
4426 __ieee80211_check_fast_rx_iface(sdata);
4427 mutex_unlock(&local->sta_mtx);
4428 }
4429
ieee80211_rx_8023(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx,int orig_len)4430 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4431 struct ieee80211_fast_rx *fast_rx,
4432 int orig_len)
4433 {
4434 struct ieee80211_sta_rx_stats *stats;
4435 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4436 struct sta_info *sta = rx->sta;
4437 struct sk_buff *skb = rx->skb;
4438 void *sa = skb->data + ETH_ALEN;
4439 void *da = skb->data;
4440
4441 stats = &sta->rx_stats;
4442 if (fast_rx->uses_rss)
4443 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4444
4445 /* statistics part of ieee80211_rx_h_sta_process() */
4446 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4447 stats->last_signal = status->signal;
4448 if (!fast_rx->uses_rss)
4449 ewma_signal_add(&sta->rx_stats_avg.signal,
4450 -status->signal);
4451 }
4452
4453 if (status->chains) {
4454 int i;
4455
4456 stats->chains = status->chains;
4457 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4458 int signal = status->chain_signal[i];
4459
4460 if (!(status->chains & BIT(i)))
4461 continue;
4462
4463 stats->chain_signal_last[i] = signal;
4464 if (!fast_rx->uses_rss)
4465 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4466 -signal);
4467 }
4468 }
4469 /* end of statistics */
4470
4471 stats->last_rx = jiffies;
4472 stats->last_rate = sta_stats_encode_rate(status);
4473
4474 stats->fragments++;
4475 stats->packets++;
4476
4477 skb->dev = fast_rx->dev;
4478
4479 dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4480
4481 /* The seqno index has the same property as needed
4482 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4483 * for non-QoS-data frames. Here we know it's a data
4484 * frame, so count MSDUs.
4485 */
4486 u64_stats_update_begin(&stats->syncp);
4487 stats->msdu[rx->seqno_idx]++;
4488 stats->bytes += orig_len;
4489 u64_stats_update_end(&stats->syncp);
4490
4491 if (fast_rx->internal_forward) {
4492 struct sk_buff *xmit_skb = NULL;
4493 if (is_multicast_ether_addr(da)) {
4494 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4495 } else if (!ether_addr_equal(da, sa) &&
4496 sta_info_get(rx->sdata, da)) {
4497 xmit_skb = skb;
4498 skb = NULL;
4499 }
4500
4501 if (xmit_skb) {
4502 /*
4503 * Send to wireless media and increase priority by 256
4504 * to keep the received priority instead of
4505 * reclassifying the frame (see cfg80211_classify8021d).
4506 */
4507 xmit_skb->priority += 256;
4508 xmit_skb->protocol = htons(ETH_P_802_3);
4509 skb_reset_network_header(xmit_skb);
4510 skb_reset_mac_header(xmit_skb);
4511 dev_queue_xmit(xmit_skb);
4512 }
4513
4514 if (!skb)
4515 return;
4516 }
4517
4518 /* deliver to local stack */
4519 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4520 memset(skb->cb, 0, sizeof(skb->cb));
4521 if (rx->list)
4522 list_add_tail(&skb->list, rx->list);
4523 else
4524 netif_receive_skb(skb);
4525
4526 }
4527
ieee80211_invoke_fast_rx(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx)4528 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4529 struct ieee80211_fast_rx *fast_rx)
4530 {
4531 struct sk_buff *skb = rx->skb;
4532 struct ieee80211_hdr *hdr = (void *)skb->data;
4533 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4534 struct sta_info *sta = rx->sta;
4535 int orig_len = skb->len;
4536 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4537 int snap_offs = hdrlen;
4538 struct {
4539 u8 snap[sizeof(rfc1042_header)];
4540 __be16 proto;
4541 } *payload __aligned(2);
4542 struct {
4543 u8 da[ETH_ALEN];
4544 u8 sa[ETH_ALEN];
4545 } addrs __aligned(2);
4546 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4547
4548 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4549 * to a common data structure; drivers can implement that per queue
4550 * but we don't have that information in mac80211
4551 */
4552 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4553 return false;
4554
4555 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4556
4557 /* If using encryption, we also need to have:
4558 * - PN_VALIDATED: similar, but the implementation is tricky
4559 * - DECRYPTED: necessary for PN_VALIDATED
4560 */
4561 if (fast_rx->key &&
4562 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4563 return false;
4564
4565 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4566 return false;
4567
4568 if (unlikely(ieee80211_is_frag(hdr)))
4569 return false;
4570
4571 /* Since our interface address cannot be multicast, this
4572 * implicitly also rejects multicast frames without the
4573 * explicit check.
4574 *
4575 * We shouldn't get any *data* frames not addressed to us
4576 * (AP mode will accept multicast *management* frames), but
4577 * punting here will make it go through the full checks in
4578 * ieee80211_accept_frame().
4579 */
4580 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4581 return false;
4582
4583 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4584 IEEE80211_FCTL_TODS)) !=
4585 fast_rx->expected_ds_bits)
4586 return false;
4587
4588 /* assign the key to drop unencrypted frames (later)
4589 * and strip the IV/MIC if necessary
4590 */
4591 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4592 /* GCMP header length is the same */
4593 snap_offs += IEEE80211_CCMP_HDR_LEN;
4594 }
4595
4596 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4597 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4598 goto drop;
4599
4600 payload = (void *)(skb->data + snap_offs);
4601
4602 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4603 return false;
4604
4605 /* Don't handle these here since they require special code.
4606 * Accept AARP and IPX even though they should come with a
4607 * bridge-tunnel header - but if we get them this way then
4608 * there's little point in discarding them.
4609 */
4610 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4611 payload->proto == fast_rx->control_port_protocol))
4612 return false;
4613 }
4614
4615 /* after this point, don't punt to the slowpath! */
4616
4617 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4618 pskb_trim(skb, skb->len - fast_rx->icv_len))
4619 goto drop;
4620
4621 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4622 goto drop;
4623
4624 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4625 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4626 RX_QUEUED)
4627 goto drop;
4628
4629 return true;
4630 }
4631
4632 /* do the header conversion - first grab the addresses */
4633 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4634 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4635 /* remove the SNAP but leave the ethertype */
4636 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4637 /* push the addresses in front */
4638 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4639
4640 ieee80211_rx_8023(rx, fast_rx, orig_len);
4641
4642 return true;
4643 drop:
4644 dev_kfree_skb(skb);
4645 if (fast_rx->uses_rss)
4646 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4647
4648 stats->dropped++;
4649 return true;
4650 }
4651
4652 /*
4653 * This function returns whether or not the SKB
4654 * was destined for RX processing or not, which,
4655 * if consume is true, is equivalent to whether
4656 * or not the skb was consumed.
4657 */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)4658 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4659 struct sk_buff *skb, bool consume)
4660 {
4661 struct ieee80211_local *local = rx->local;
4662 struct ieee80211_sub_if_data *sdata = rx->sdata;
4663
4664 rx->skb = skb;
4665
4666 /* See if we can do fast-rx; if we have to copy we already lost,
4667 * so punt in that case. We should never have to deliver a data
4668 * frame to multiple interfaces anyway.
4669 *
4670 * We skip the ieee80211_accept_frame() call and do the necessary
4671 * checking inside ieee80211_invoke_fast_rx().
4672 */
4673 if (consume && rx->sta) {
4674 struct ieee80211_fast_rx *fast_rx;
4675
4676 fast_rx = rcu_dereference(rx->sta->fast_rx);
4677 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4678 return true;
4679 }
4680
4681 if (!ieee80211_accept_frame(rx))
4682 return false;
4683
4684 if (!consume) {
4685 skb = skb_copy(skb, GFP_ATOMIC);
4686 if (!skb) {
4687 if (net_ratelimit())
4688 wiphy_debug(local->hw.wiphy,
4689 "failed to copy skb for %s\n",
4690 sdata->name);
4691 return true;
4692 }
4693
4694 rx->skb = skb;
4695 }
4696
4697 ieee80211_invoke_rx_handlers(rx);
4698 return true;
4699 }
4700
__ieee80211_rx_handle_8023(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4701 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4702 struct ieee80211_sta *pubsta,
4703 struct sk_buff *skb,
4704 struct list_head *list)
4705 {
4706 struct ieee80211_local *local = hw_to_local(hw);
4707 struct ieee80211_fast_rx *fast_rx;
4708 struct ieee80211_rx_data rx;
4709
4710 memset(&rx, 0, sizeof(rx));
4711 rx.skb = skb;
4712 rx.local = local;
4713 rx.list = list;
4714
4715 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4716
4717 /* drop frame if too short for header */
4718 if (skb->len < sizeof(struct ethhdr))
4719 goto drop;
4720
4721 if (!pubsta)
4722 goto drop;
4723
4724 rx.sta = container_of(pubsta, struct sta_info, sta);
4725 rx.sdata = rx.sta->sdata;
4726
4727 fast_rx = rcu_dereference(rx.sta->fast_rx);
4728 if (!fast_rx)
4729 goto drop;
4730
4731 ieee80211_rx_8023(&rx, fast_rx, skb->len);
4732 return;
4733
4734 drop:
4735 dev_kfree_skb(skb);
4736 }
4737
4738 /*
4739 * This is the actual Rx frames handler. as it belongs to Rx path it must
4740 * be called with rcu_read_lock protection.
4741 */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4742 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4743 struct ieee80211_sta *pubsta,
4744 struct sk_buff *skb,
4745 struct list_head *list)
4746 {
4747 struct ieee80211_local *local = hw_to_local(hw);
4748 struct ieee80211_sub_if_data *sdata;
4749 struct ieee80211_hdr *hdr;
4750 __le16 fc;
4751 struct ieee80211_rx_data rx;
4752 struct ieee80211_sub_if_data *prev;
4753 struct rhlist_head *tmp;
4754 int err = 0;
4755
4756 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4757 memset(&rx, 0, sizeof(rx));
4758 rx.skb = skb;
4759 rx.local = local;
4760 rx.list = list;
4761
4762 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4763 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4764
4765 if (ieee80211_is_mgmt(fc)) {
4766 /* drop frame if too short for header */
4767 if (skb->len < ieee80211_hdrlen(fc))
4768 err = -ENOBUFS;
4769 else
4770 err = skb_linearize(skb);
4771 } else {
4772 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4773 }
4774
4775 if (err) {
4776 dev_kfree_skb(skb);
4777 return;
4778 }
4779
4780 hdr = (struct ieee80211_hdr *)skb->data;
4781 ieee80211_parse_qos(&rx);
4782 ieee80211_verify_alignment(&rx);
4783
4784 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4785 ieee80211_is_beacon(hdr->frame_control) ||
4786 ieee80211_is_s1g_beacon(hdr->frame_control)))
4787 ieee80211_scan_rx(local, skb);
4788
4789 if (ieee80211_is_data(fc)) {
4790 struct sta_info *sta, *prev_sta;
4791
4792 if (pubsta) {
4793 rx.sta = container_of(pubsta, struct sta_info, sta);
4794 rx.sdata = rx.sta->sdata;
4795 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4796 return;
4797 goto out;
4798 }
4799
4800 prev_sta = NULL;
4801
4802 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4803 if (!prev_sta) {
4804 prev_sta = sta;
4805 continue;
4806 }
4807
4808 rx.sta = prev_sta;
4809 rx.sdata = prev_sta->sdata;
4810 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4811
4812 prev_sta = sta;
4813 }
4814
4815 if (prev_sta) {
4816 rx.sta = prev_sta;
4817 rx.sdata = prev_sta->sdata;
4818
4819 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4820 return;
4821 goto out;
4822 }
4823 }
4824
4825 prev = NULL;
4826
4827 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4828 if (!ieee80211_sdata_running(sdata))
4829 continue;
4830
4831 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4832 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4833 continue;
4834
4835 /*
4836 * frame is destined for this interface, but if it's
4837 * not also for the previous one we handle that after
4838 * the loop to avoid copying the SKB once too much
4839 */
4840
4841 if (!prev) {
4842 prev = sdata;
4843 continue;
4844 }
4845
4846 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4847 rx.sdata = prev;
4848 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4849
4850 prev = sdata;
4851 }
4852
4853 if (prev) {
4854 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4855 rx.sdata = prev;
4856
4857 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4858 return;
4859 }
4860
4861 out:
4862 dev_kfree_skb(skb);
4863 }
4864
4865 /*
4866 * This is the receive path handler. It is called by a low level driver when an
4867 * 802.11 MPDU is received from the hardware.
4868 */
ieee80211_rx_list(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4869 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4870 struct sk_buff *skb, struct list_head *list)
4871 {
4872 struct ieee80211_local *local = hw_to_local(hw);
4873 struct ieee80211_rate *rate = NULL;
4874 struct ieee80211_supported_band *sband;
4875 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4876
4877 WARN_ON_ONCE(softirq_count() == 0);
4878
4879 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4880 goto drop;
4881
4882 sband = local->hw.wiphy->bands[status->band];
4883 if (WARN_ON(!sband))
4884 goto drop;
4885
4886 /*
4887 * If we're suspending, it is possible although not too likely
4888 * that we'd be receiving frames after having already partially
4889 * quiesced the stack. We can't process such frames then since
4890 * that might, for example, cause stations to be added or other
4891 * driver callbacks be invoked.
4892 */
4893 if (unlikely(local->quiescing || local->suspended))
4894 goto drop;
4895
4896 /* We might be during a HW reconfig, prevent Rx for the same reason */
4897 if (unlikely(local->in_reconfig))
4898 goto drop;
4899
4900 /*
4901 * The same happens when we're not even started,
4902 * but that's worth a warning.
4903 */
4904 if (WARN_ON(!local->started))
4905 goto drop;
4906
4907 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4908 /*
4909 * Validate the rate, unless a PLCP error means that
4910 * we probably can't have a valid rate here anyway.
4911 */
4912
4913 switch (status->encoding) {
4914 case RX_ENC_HT:
4915 /*
4916 * rate_idx is MCS index, which can be [0-76]
4917 * as documented on:
4918 *
4919 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4920 *
4921 * Anything else would be some sort of driver or
4922 * hardware error. The driver should catch hardware
4923 * errors.
4924 */
4925 if (WARN(status->rate_idx > 76,
4926 "Rate marked as an HT rate but passed "
4927 "status->rate_idx is not "
4928 "an MCS index [0-76]: %d (0x%02x)\n",
4929 status->rate_idx,
4930 status->rate_idx))
4931 goto drop;
4932 break;
4933 case RX_ENC_VHT:
4934 if (WARN_ONCE(status->rate_idx > 9 ||
4935 !status->nss ||
4936 status->nss > 8,
4937 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4938 status->rate_idx, status->nss))
4939 goto drop;
4940 break;
4941 case RX_ENC_HE:
4942 if (WARN_ONCE(status->rate_idx > 11 ||
4943 !status->nss ||
4944 status->nss > 8,
4945 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4946 status->rate_idx, status->nss))
4947 goto drop;
4948 break;
4949 default:
4950 WARN_ON_ONCE(1);
4951 fallthrough;
4952 case RX_ENC_LEGACY:
4953 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4954 goto drop;
4955 rate = &sband->bitrates[status->rate_idx];
4956 }
4957 }
4958
4959 status->rx_flags = 0;
4960
4961 kcov_remote_start_common(skb_get_kcov_handle(skb));
4962
4963 /*
4964 * Frames with failed FCS/PLCP checksum are not returned,
4965 * all other frames are returned without radiotap header
4966 * if it was previously present.
4967 * Also, frames with less than 16 bytes are dropped.
4968 */
4969 if (!(status->flag & RX_FLAG_8023))
4970 skb = ieee80211_rx_monitor(local, skb, rate);
4971 if (skb) {
4972 ieee80211_tpt_led_trig_rx(local,
4973 ((struct ieee80211_hdr *)skb->data)->frame_control,
4974 skb->len);
4975
4976 if (status->flag & RX_FLAG_8023)
4977 __ieee80211_rx_handle_8023(hw, pubsta, skb, list);
4978 else
4979 __ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4980 }
4981
4982 kcov_remote_stop();
4983 return;
4984 drop:
4985 kfree_skb(skb);
4986 }
4987 EXPORT_SYMBOL(ieee80211_rx_list);
4988
ieee80211_rx_napi(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)4989 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4990 struct sk_buff *skb, struct napi_struct *napi)
4991 {
4992 struct sk_buff *tmp;
4993 LIST_HEAD(list);
4994
4995
4996 /*
4997 * key references and virtual interfaces are protected using RCU
4998 * and this requires that we are in a read-side RCU section during
4999 * receive processing
5000 */
5001 rcu_read_lock();
5002 ieee80211_rx_list(hw, pubsta, skb, &list);
5003 rcu_read_unlock();
5004
5005 if (!napi) {
5006 netif_receive_skb_list(&list);
5007 return;
5008 }
5009
5010 list_for_each_entry_safe(skb, tmp, &list, list) {
5011 skb_list_del_init(skb);
5012 napi_gro_receive(napi, skb);
5013 }
5014 }
5015 EXPORT_SYMBOL(ieee80211_rx_napi);
5016
5017 /* This is a version of the rx handler that can be called from hard irq
5018 * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)5019 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
5020 {
5021 struct ieee80211_local *local = hw_to_local(hw);
5022
5023 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
5024
5025 skb->pkt_type = IEEE80211_RX_MSG;
5026 skb_queue_tail(&local->skb_queue, skb);
5027 tasklet_schedule(&local->tasklet);
5028 }
5029 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
5030