1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 */
9 #include <linux/export.h>
10 #include <linux/bitops.h>
11 #include <linux/etherdevice.h>
12 #include <linux/slab.h>
13 #include <net/cfg80211.h>
14 #include <net/ip.h>
15 #include <net/dsfield.h>
16 #include <linux/if_vlan.h>
17 #include <linux/mpls.h>
18 #include <linux/gcd.h>
19 #include "core.h"
20 #include "rdev-ops.h"
21
22
23 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)24 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
25 u32 basic_rates, int bitrate)
26 {
27 struct ieee80211_rate *result = &sband->bitrates[0];
28 int i;
29
30 for (i = 0; i < sband->n_bitrates; i++) {
31 if (!(basic_rates & BIT(i)))
32 continue;
33 if (sband->bitrates[i].bitrate > bitrate)
34 continue;
35 result = &sband->bitrates[i];
36 }
37
38 return result;
39 }
40 EXPORT_SYMBOL(ieee80211_get_response_rate);
41
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)42 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
43 enum nl80211_bss_scan_width scan_width)
44 {
45 struct ieee80211_rate *bitrates;
46 u32 mandatory_rates = 0;
47 enum ieee80211_rate_flags mandatory_flag;
48 int i;
49
50 if (WARN_ON(!sband))
51 return 1;
52
53 if (sband->band == NL80211_BAND_2GHZ) {
54 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
55 scan_width == NL80211_BSS_CHAN_WIDTH_10)
56 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
57 else
58 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
59 } else {
60 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
61 }
62
63 bitrates = sband->bitrates;
64 for (i = 0; i < sband->n_bitrates; i++)
65 if (bitrates[i].flags & mandatory_flag)
66 mandatory_rates |= BIT(i);
67 return mandatory_rates;
68 }
69 EXPORT_SYMBOL(ieee80211_mandatory_rates);
70
ieee80211_channel_to_frequency(int chan,enum nl80211_band band)71 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
72 {
73 /* see 802.11 17.3.8.3.2 and Annex J
74 * there are overlapping channel numbers in 5GHz and 2GHz bands */
75 if (chan <= 0)
76 return 0; /* not supported */
77 switch (band) {
78 case NL80211_BAND_2GHZ:
79 if (chan == 14)
80 return 2484;
81 else if (chan < 14)
82 return 2407 + chan * 5;
83 break;
84 case NL80211_BAND_5GHZ:
85 if (chan >= 182 && chan <= 196)
86 return 4000 + chan * 5;
87 else
88 return 5000 + chan * 5;
89 break;
90 case NL80211_BAND_60GHZ:
91 if (chan < 5)
92 return 56160 + chan * 2160;
93 break;
94 default:
95 ;
96 }
97 return 0; /* not supported */
98 }
99 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
100
ieee80211_frequency_to_channel(int freq)101 int ieee80211_frequency_to_channel(int freq)
102 {
103 /* see 802.11 17.3.8.3.2 and Annex J */
104 if (freq == 2484)
105 return 14;
106 else if (freq < 2484)
107 return (freq - 2407) / 5;
108 else if (freq >= 4910 && freq <= 4980)
109 return (freq - 4000) / 5;
110 else if (freq <= 45000) /* DMG band lower limit */
111 return (freq - 5000) / 5;
112 else if (freq >= 58320 && freq <= 64800)
113 return (freq - 56160) / 2160;
114 else
115 return 0;
116 }
117 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
118
ieee80211_get_channel(struct wiphy * wiphy,int freq)119 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
120 {
121 enum nl80211_band band;
122 struct ieee80211_supported_band *sband;
123 int i;
124
125 for (band = 0; band < NUM_NL80211_BANDS; band++) {
126 sband = wiphy->bands[band];
127
128 if (!sband)
129 continue;
130
131 for (i = 0; i < sband->n_channels; i++) {
132 if (sband->channels[i].center_freq == freq)
133 return &sband->channels[i];
134 }
135 }
136
137 return NULL;
138 }
139 EXPORT_SYMBOL(ieee80211_get_channel);
140
set_mandatory_flags_band(struct ieee80211_supported_band * sband)141 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
142 {
143 int i, want;
144
145 switch (sband->band) {
146 case NL80211_BAND_5GHZ:
147 want = 3;
148 for (i = 0; i < sband->n_bitrates; i++) {
149 if (sband->bitrates[i].bitrate == 60 ||
150 sband->bitrates[i].bitrate == 120 ||
151 sband->bitrates[i].bitrate == 240) {
152 sband->bitrates[i].flags |=
153 IEEE80211_RATE_MANDATORY_A;
154 want--;
155 }
156 }
157 WARN_ON(want);
158 break;
159 case NL80211_BAND_2GHZ:
160 want = 7;
161 for (i = 0; i < sband->n_bitrates; i++) {
162 switch (sband->bitrates[i].bitrate) {
163 case 10:
164 case 20:
165 case 55:
166 case 110:
167 sband->bitrates[i].flags |=
168 IEEE80211_RATE_MANDATORY_B |
169 IEEE80211_RATE_MANDATORY_G;
170 want--;
171 break;
172 case 60:
173 case 120:
174 case 240:
175 sband->bitrates[i].flags |=
176 IEEE80211_RATE_MANDATORY_G;
177 want--;
178 /* fall through */
179 default:
180 sband->bitrates[i].flags |=
181 IEEE80211_RATE_ERP_G;
182 break;
183 }
184 }
185 WARN_ON(want != 0 && want != 3);
186 break;
187 case NL80211_BAND_60GHZ:
188 /* check for mandatory HT MCS 1..4 */
189 WARN_ON(!sband->ht_cap.ht_supported);
190 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191 break;
192 case NUM_NL80211_BANDS:
193 default:
194 WARN_ON(1);
195 break;
196 }
197 }
198
ieee80211_set_bitrate_flags(struct wiphy * wiphy)199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 enum nl80211_band band;
202
203 for (band = 0; band < NUM_NL80211_BANDS; band++)
204 if (wiphy->bands[band])
205 set_mandatory_flags_band(wiphy->bands[band]);
206 }
207
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 int i;
211 for (i = 0; i < wiphy->n_cipher_suites; i++)
212 if (cipher == wiphy->cipher_suites[i])
213 return true;
214 return false;
215 }
216
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 struct key_params *params, int key_idx,
219 bool pairwise, const u8 *mac_addr)
220 {
221 if (key_idx < 0 || key_idx > 5)
222 return -EINVAL;
223
224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 return -EINVAL;
226
227 if (pairwise && !mac_addr)
228 return -EINVAL;
229
230 switch (params->cipher) {
231 case WLAN_CIPHER_SUITE_TKIP:
232 case WLAN_CIPHER_SUITE_CCMP:
233 case WLAN_CIPHER_SUITE_CCMP_256:
234 case WLAN_CIPHER_SUITE_GCMP:
235 case WLAN_CIPHER_SUITE_GCMP_256:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
241 */
242 if (pairwise && key_idx)
243 return -EINVAL;
244 break;
245 case WLAN_CIPHER_SUITE_AES_CMAC:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
250 if (pairwise)
251 return -EINVAL;
252 if (key_idx < 4)
253 return -EINVAL;
254 break;
255 case WLAN_CIPHER_SUITE_WEP40:
256 case WLAN_CIPHER_SUITE_WEP104:
257 if (key_idx > 3)
258 return -EINVAL;
259 default:
260 break;
261 }
262
263 switch (params->cipher) {
264 case WLAN_CIPHER_SUITE_WEP40:
265 if (params->key_len != WLAN_KEY_LEN_WEP40)
266 return -EINVAL;
267 break;
268 case WLAN_CIPHER_SUITE_TKIP:
269 if (params->key_len != WLAN_KEY_LEN_TKIP)
270 return -EINVAL;
271 break;
272 case WLAN_CIPHER_SUITE_CCMP:
273 if (params->key_len != WLAN_KEY_LEN_CCMP)
274 return -EINVAL;
275 break;
276 case WLAN_CIPHER_SUITE_CCMP_256:
277 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 return -EINVAL;
279 break;
280 case WLAN_CIPHER_SUITE_GCMP:
281 if (params->key_len != WLAN_KEY_LEN_GCMP)
282 return -EINVAL;
283 break;
284 case WLAN_CIPHER_SUITE_GCMP_256:
285 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 return -EINVAL;
287 break;
288 case WLAN_CIPHER_SUITE_WEP104:
289 if (params->key_len != WLAN_KEY_LEN_WEP104)
290 return -EINVAL;
291 break;
292 case WLAN_CIPHER_SUITE_AES_CMAC:
293 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 return -EINVAL;
295 break;
296 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 return -EINVAL;
299 break;
300 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 return -EINVAL;
303 break;
304 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 return -EINVAL;
307 break;
308 default:
309 /*
310 * We don't know anything about this algorithm,
311 * allow using it -- but the driver must check
312 * all parameters! We still check below whether
313 * or not the driver supports this algorithm,
314 * of course.
315 */
316 break;
317 }
318
319 if (params->seq) {
320 switch (params->cipher) {
321 case WLAN_CIPHER_SUITE_WEP40:
322 case WLAN_CIPHER_SUITE_WEP104:
323 /* These ciphers do not use key sequence */
324 return -EINVAL;
325 case WLAN_CIPHER_SUITE_TKIP:
326 case WLAN_CIPHER_SUITE_CCMP:
327 case WLAN_CIPHER_SUITE_CCMP_256:
328 case WLAN_CIPHER_SUITE_GCMP:
329 case WLAN_CIPHER_SUITE_GCMP_256:
330 case WLAN_CIPHER_SUITE_AES_CMAC:
331 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 if (params->seq_len != 6)
335 return -EINVAL;
336 break;
337 }
338 }
339
340 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 return -EINVAL;
342
343 return 0;
344 }
345
ieee80211_hdrlen(__le16 fc)346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 unsigned int hdrlen = 24;
349
350 if (ieee80211_is_data(fc)) {
351 if (ieee80211_has_a4(fc))
352 hdrlen = 30;
353 if (ieee80211_is_data_qos(fc)) {
354 hdrlen += IEEE80211_QOS_CTL_LEN;
355 if (ieee80211_has_order(fc))
356 hdrlen += IEEE80211_HT_CTL_LEN;
357 }
358 goto out;
359 }
360
361 if (ieee80211_is_mgmt(fc)) {
362 if (ieee80211_has_order(fc))
363 hdrlen += IEEE80211_HT_CTL_LEN;
364 goto out;
365 }
366
367 if (ieee80211_is_ctl(fc)) {
368 /*
369 * ACK and CTS are 10 bytes, all others 16. To see how
370 * to get this condition consider
371 * subtype mask: 0b0000000011110000 (0x00F0)
372 * ACK subtype: 0b0000000011010000 (0x00D0)
373 * CTS subtype: 0b0000000011000000 (0x00C0)
374 * bits that matter: ^^^ (0x00E0)
375 * value of those: 0b0000000011000000 (0x00C0)
376 */
377 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 hdrlen = 10;
379 else
380 hdrlen = 16;
381 }
382 out:
383 return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 const struct ieee80211_hdr *hdr =
390 (const struct ieee80211_hdr *)skb->data;
391 unsigned int hdrlen;
392
393 if (unlikely(skb->len < 10))
394 return 0;
395 hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 if (unlikely(hdrlen > skb->len))
397 return 0;
398 return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401
__ieee80211_get_mesh_hdrlen(u8 flags)402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 int ae = flags & MESH_FLAGS_AE;
405 /* 802.11-2012, 8.2.4.7.3 */
406 switch (ae) {
407 default:
408 case 0:
409 return 6;
410 case MESH_FLAGS_AE_A4:
411 return 12;
412 case MESH_FLAGS_AE_A5_A6:
413 return 18;
414 }
415 }
416
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset)423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 const u8 *addr, enum nl80211_iftype iftype,
425 u8 data_offset)
426 {
427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428 struct {
429 u8 hdr[ETH_ALEN] __aligned(2);
430 __be16 proto;
431 } payload;
432 struct ethhdr tmp;
433 u16 hdrlen;
434 u8 mesh_flags = 0;
435
436 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
437 return -1;
438
439 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
440 if (skb->len < hdrlen + 8)
441 return -1;
442
443 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
444 * header
445 * IEEE 802.11 address fields:
446 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
447 * 0 0 DA SA BSSID n/a
448 * 0 1 DA BSSID SA n/a
449 * 1 0 BSSID SA DA n/a
450 * 1 1 RA TA DA SA
451 */
452 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
453 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
454
455 if (iftype == NL80211_IFTYPE_MESH_POINT)
456 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
457
458 mesh_flags &= MESH_FLAGS_AE;
459
460 switch (hdr->frame_control &
461 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
462 case cpu_to_le16(IEEE80211_FCTL_TODS):
463 if (unlikely(iftype != NL80211_IFTYPE_AP &&
464 iftype != NL80211_IFTYPE_AP_VLAN &&
465 iftype != NL80211_IFTYPE_P2P_GO))
466 return -1;
467 break;
468 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
469 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
470 iftype != NL80211_IFTYPE_MESH_POINT &&
471 iftype != NL80211_IFTYPE_AP_VLAN &&
472 iftype != NL80211_IFTYPE_STATION))
473 return -1;
474 if (iftype == NL80211_IFTYPE_MESH_POINT) {
475 if (mesh_flags == MESH_FLAGS_AE_A4)
476 return -1;
477 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
478 skb_copy_bits(skb, hdrlen +
479 offsetof(struct ieee80211s_hdr, eaddr1),
480 tmp.h_dest, 2 * ETH_ALEN);
481 }
482 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
483 }
484 break;
485 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
486 if ((iftype != NL80211_IFTYPE_STATION &&
487 iftype != NL80211_IFTYPE_P2P_CLIENT &&
488 iftype != NL80211_IFTYPE_MESH_POINT) ||
489 (is_multicast_ether_addr(tmp.h_dest) &&
490 ether_addr_equal(tmp.h_source, addr)))
491 return -1;
492 if (iftype == NL80211_IFTYPE_MESH_POINT) {
493 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
494 return -1;
495 if (mesh_flags == MESH_FLAGS_AE_A4)
496 skb_copy_bits(skb, hdrlen +
497 offsetof(struct ieee80211s_hdr, eaddr1),
498 tmp.h_source, ETH_ALEN);
499 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
500 }
501 break;
502 case cpu_to_le16(0):
503 if (iftype != NL80211_IFTYPE_ADHOC &&
504 iftype != NL80211_IFTYPE_STATION &&
505 iftype != NL80211_IFTYPE_OCB)
506 return -1;
507 break;
508 }
509
510 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
511 tmp.h_proto = payload.proto;
512
513 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
514 tmp.h_proto != htons(ETH_P_AARP) &&
515 tmp.h_proto != htons(ETH_P_IPX)) ||
516 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
517 /* remove RFC1042 or Bridge-Tunnel encapsulation and
518 * replace EtherType */
519 hdrlen += ETH_ALEN + 2;
520 else
521 tmp.h_proto = htons(skb->len - hdrlen);
522
523 pskb_pull(skb, hdrlen);
524
525 if (!ehdr)
526 ehdr = skb_push(skb, sizeof(struct ethhdr));
527 memcpy(ehdr, &tmp, sizeof(tmp));
528
529 return 0;
530 }
531 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
532
533 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)534 __frame_add_frag(struct sk_buff *skb, struct page *page,
535 void *ptr, int len, int size)
536 {
537 struct skb_shared_info *sh = skb_shinfo(skb);
538 int page_offset;
539
540 page_ref_inc(page);
541 page_offset = ptr - page_address(page);
542 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
543 }
544
545 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)546 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
547 int offset, int len)
548 {
549 struct skb_shared_info *sh = skb_shinfo(skb);
550 const skb_frag_t *frag = &sh->frags[0];
551 struct page *frag_page;
552 void *frag_ptr;
553 int frag_len, frag_size;
554 int head_size = skb->len - skb->data_len;
555 int cur_len;
556
557 frag_page = virt_to_head_page(skb->head);
558 frag_ptr = skb->data;
559 frag_size = head_size;
560
561 while (offset >= frag_size) {
562 offset -= frag_size;
563 frag_page = skb_frag_page(frag);
564 frag_ptr = skb_frag_address(frag);
565 frag_size = skb_frag_size(frag);
566 frag++;
567 }
568
569 frag_ptr += offset;
570 frag_len = frag_size - offset;
571
572 cur_len = min(len, frag_len);
573
574 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
575 len -= cur_len;
576
577 while (len > 0) {
578 frag_len = skb_frag_size(frag);
579 cur_len = min(len, frag_len);
580 __frame_add_frag(frame, skb_frag_page(frag),
581 skb_frag_address(frag), cur_len, frag_len);
582 len -= cur_len;
583 frag++;
584 }
585 }
586
587 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)588 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
589 int offset, int len, bool reuse_frag)
590 {
591 struct sk_buff *frame;
592 int cur_len = len;
593
594 if (skb->len - offset < len)
595 return NULL;
596
597 /*
598 * When reusing framents, copy some data to the head to simplify
599 * ethernet header handling and speed up protocol header processing
600 * in the stack later.
601 */
602 if (reuse_frag)
603 cur_len = min_t(int, len, 32);
604
605 /*
606 * Allocate and reserve two bytes more for payload
607 * alignment since sizeof(struct ethhdr) is 14.
608 */
609 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
610 if (!frame)
611 return NULL;
612
613 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
614 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
615
616 len -= cur_len;
617 if (!len)
618 return frame;
619
620 offset += cur_len;
621 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
622
623 return frame;
624 }
625
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)626 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
627 const u8 *addr, enum nl80211_iftype iftype,
628 const unsigned int extra_headroom,
629 const u8 *check_da, const u8 *check_sa)
630 {
631 unsigned int hlen = ALIGN(extra_headroom, 4);
632 struct sk_buff *frame = NULL;
633 u16 ethertype;
634 u8 *payload;
635 int offset = 0, remaining;
636 struct ethhdr eth;
637 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
638 bool reuse_skb = false;
639 bool last = false;
640
641 while (!last) {
642 unsigned int subframe_len;
643 int len;
644 u8 padding;
645
646 skb_copy_bits(skb, offset, ð, sizeof(eth));
647 len = ntohs(eth.h_proto);
648 subframe_len = sizeof(struct ethhdr) + len;
649 padding = (4 - subframe_len) & 0x3;
650
651 /* the last MSDU has no padding */
652 remaining = skb->len - offset;
653 if (subframe_len > remaining)
654 goto purge;
655
656 offset += sizeof(struct ethhdr);
657 last = remaining <= subframe_len + padding;
658
659 /* FIXME: should we really accept multicast DA? */
660 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
661 !ether_addr_equal(check_da, eth.h_dest)) ||
662 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
663 offset += len + padding;
664 continue;
665 }
666
667 /* reuse skb for the last subframe */
668 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
669 skb_pull(skb, offset);
670 frame = skb;
671 reuse_skb = true;
672 } else {
673 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
674 reuse_frag);
675 if (!frame)
676 goto purge;
677
678 offset += len + padding;
679 }
680
681 skb_reset_network_header(frame);
682 frame->dev = skb->dev;
683 frame->priority = skb->priority;
684
685 payload = frame->data;
686 ethertype = (payload[6] << 8) | payload[7];
687 if (likely((ether_addr_equal(payload, rfc1042_header) &&
688 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
689 ether_addr_equal(payload, bridge_tunnel_header))) {
690 eth.h_proto = htons(ethertype);
691 skb_pull(frame, ETH_ALEN + 2);
692 }
693
694 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
695 __skb_queue_tail(list, frame);
696 }
697
698 if (!reuse_skb)
699 dev_kfree_skb(skb);
700
701 return;
702
703 purge:
704 __skb_queue_purge(list);
705 dev_kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
708
709 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)710 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
711 struct cfg80211_qos_map *qos_map)
712 {
713 unsigned int dscp;
714 unsigned char vlan_priority;
715
716 /* skb->priority values from 256->263 are magic values to
717 * directly indicate a specific 802.1d priority. This is used
718 * to allow 802.1d priority to be passed directly in from VLAN
719 * tags, etc.
720 */
721 if (skb->priority >= 256 && skb->priority <= 263)
722 return skb->priority - 256;
723
724 if (skb_vlan_tag_present(skb)) {
725 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
726 >> VLAN_PRIO_SHIFT;
727 if (vlan_priority > 0)
728 return vlan_priority;
729 }
730
731 switch (skb->protocol) {
732 case htons(ETH_P_IP):
733 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
734 break;
735 case htons(ETH_P_IPV6):
736 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
737 break;
738 case htons(ETH_P_MPLS_UC):
739 case htons(ETH_P_MPLS_MC): {
740 struct mpls_label mpls_tmp, *mpls;
741
742 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
743 sizeof(*mpls), &mpls_tmp);
744 if (!mpls)
745 return 0;
746
747 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
748 >> MPLS_LS_TC_SHIFT;
749 }
750 case htons(ETH_P_80221):
751 /* 802.21 is always network control traffic */
752 return 7;
753 default:
754 return 0;
755 }
756
757 if (qos_map) {
758 unsigned int i, tmp_dscp = dscp >> 2;
759
760 for (i = 0; i < qos_map->num_des; i++) {
761 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
762 return qos_map->dscp_exception[i].up;
763 }
764
765 for (i = 0; i < 8; i++) {
766 if (tmp_dscp >= qos_map->up[i].low &&
767 tmp_dscp <= qos_map->up[i].high)
768 return i;
769 }
770 }
771
772 return dscp >> 5;
773 }
774 EXPORT_SYMBOL(cfg80211_classify8021d);
775
ieee80211_bss_get_ie(struct cfg80211_bss * bss,u8 ie)776 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
777 {
778 const struct cfg80211_bss_ies *ies;
779
780 ies = rcu_dereference(bss->ies);
781 if (!ies)
782 return NULL;
783
784 return cfg80211_find_ie(ie, ies->data, ies->len);
785 }
786 EXPORT_SYMBOL(ieee80211_bss_get_ie);
787
cfg80211_upload_connect_keys(struct wireless_dev * wdev)788 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
789 {
790 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
791 struct net_device *dev = wdev->netdev;
792 int i;
793
794 if (!wdev->connect_keys)
795 return;
796
797 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
798 if (!wdev->connect_keys->params[i].cipher)
799 continue;
800 if (rdev_add_key(rdev, dev, i, false, NULL,
801 &wdev->connect_keys->params[i])) {
802 netdev_err(dev, "failed to set key %d\n", i);
803 continue;
804 }
805 if (wdev->connect_keys->def == i &&
806 rdev_set_default_key(rdev, dev, i, true, true)) {
807 netdev_err(dev, "failed to set defkey %d\n", i);
808 continue;
809 }
810 }
811
812 kzfree(wdev->connect_keys);
813 wdev->connect_keys = NULL;
814 }
815
cfg80211_process_wdev_events(struct wireless_dev * wdev)816 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
817 {
818 struct cfg80211_event *ev;
819 unsigned long flags;
820
821 spin_lock_irqsave(&wdev->event_lock, flags);
822 while (!list_empty(&wdev->event_list)) {
823 ev = list_first_entry(&wdev->event_list,
824 struct cfg80211_event, list);
825 list_del(&ev->list);
826 spin_unlock_irqrestore(&wdev->event_lock, flags);
827
828 wdev_lock(wdev);
829 switch (ev->type) {
830 case EVENT_CONNECT_RESULT:
831 __cfg80211_connect_result(
832 wdev->netdev,
833 &ev->cr,
834 ev->cr.status == WLAN_STATUS_SUCCESS);
835 break;
836 case EVENT_ROAMED:
837 __cfg80211_roamed(wdev, &ev->rm);
838 break;
839 case EVENT_DISCONNECTED:
840 __cfg80211_disconnected(wdev->netdev,
841 ev->dc.ie, ev->dc.ie_len,
842 ev->dc.reason,
843 !ev->dc.locally_generated);
844 break;
845 case EVENT_IBSS_JOINED:
846 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
847 ev->ij.channel);
848 break;
849 case EVENT_STOPPED:
850 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
851 break;
852 case EVENT_PORT_AUTHORIZED:
853 __cfg80211_port_authorized(wdev, ev->pa.bssid);
854 break;
855 }
856 wdev_unlock(wdev);
857
858 kfree(ev);
859
860 spin_lock_irqsave(&wdev->event_lock, flags);
861 }
862 spin_unlock_irqrestore(&wdev->event_lock, flags);
863 }
864
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)865 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
866 {
867 struct wireless_dev *wdev;
868
869 ASSERT_RTNL();
870
871 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
872 cfg80211_process_wdev_events(wdev);
873 }
874
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)875 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
876 struct net_device *dev, enum nl80211_iftype ntype,
877 struct vif_params *params)
878 {
879 int err;
880 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
881
882 ASSERT_RTNL();
883
884 /* don't support changing VLANs, you just re-create them */
885 if (otype == NL80211_IFTYPE_AP_VLAN)
886 return -EOPNOTSUPP;
887
888 /* cannot change into P2P device or NAN */
889 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
890 ntype == NL80211_IFTYPE_NAN)
891 return -EOPNOTSUPP;
892
893 if (!rdev->ops->change_virtual_intf ||
894 !(rdev->wiphy.interface_modes & (1 << ntype)))
895 return -EOPNOTSUPP;
896
897 /* if it's part of a bridge, reject changing type to station/ibss */
898 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
899 (ntype == NL80211_IFTYPE_ADHOC ||
900 ntype == NL80211_IFTYPE_STATION ||
901 ntype == NL80211_IFTYPE_P2P_CLIENT))
902 return -EBUSY;
903
904 if (ntype != otype) {
905 dev->ieee80211_ptr->use_4addr = false;
906 dev->ieee80211_ptr->mesh_id_up_len = 0;
907 wdev_lock(dev->ieee80211_ptr);
908 rdev_set_qos_map(rdev, dev, NULL);
909 wdev_unlock(dev->ieee80211_ptr);
910
911 switch (otype) {
912 case NL80211_IFTYPE_AP:
913 cfg80211_stop_ap(rdev, dev, true);
914 break;
915 case NL80211_IFTYPE_ADHOC:
916 cfg80211_leave_ibss(rdev, dev, false);
917 break;
918 case NL80211_IFTYPE_STATION:
919 case NL80211_IFTYPE_P2P_CLIENT:
920 wdev_lock(dev->ieee80211_ptr);
921 cfg80211_disconnect(rdev, dev,
922 WLAN_REASON_DEAUTH_LEAVING, true);
923 wdev_unlock(dev->ieee80211_ptr);
924 break;
925 case NL80211_IFTYPE_MESH_POINT:
926 /* mesh should be handled? */
927 break;
928 default:
929 break;
930 }
931
932 cfg80211_process_rdev_events(rdev);
933 }
934
935 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
936
937 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
938
939 if (!err && params && params->use_4addr != -1)
940 dev->ieee80211_ptr->use_4addr = params->use_4addr;
941
942 if (!err) {
943 dev->priv_flags &= ~IFF_DONT_BRIDGE;
944 switch (ntype) {
945 case NL80211_IFTYPE_STATION:
946 if (dev->ieee80211_ptr->use_4addr)
947 break;
948 /* fall through */
949 case NL80211_IFTYPE_OCB:
950 case NL80211_IFTYPE_P2P_CLIENT:
951 case NL80211_IFTYPE_ADHOC:
952 dev->priv_flags |= IFF_DONT_BRIDGE;
953 break;
954 case NL80211_IFTYPE_P2P_GO:
955 case NL80211_IFTYPE_AP:
956 case NL80211_IFTYPE_AP_VLAN:
957 case NL80211_IFTYPE_WDS:
958 case NL80211_IFTYPE_MESH_POINT:
959 /* bridging OK */
960 break;
961 case NL80211_IFTYPE_MONITOR:
962 /* monitor can't bridge anyway */
963 break;
964 case NL80211_IFTYPE_UNSPECIFIED:
965 case NUM_NL80211_IFTYPES:
966 /* not happening */
967 break;
968 case NL80211_IFTYPE_P2P_DEVICE:
969 case NL80211_IFTYPE_NAN:
970 WARN_ON(1);
971 break;
972 }
973 }
974
975 if (!err && ntype != otype && netif_running(dev)) {
976 cfg80211_update_iface_num(rdev, ntype, 1);
977 cfg80211_update_iface_num(rdev, otype, -1);
978 }
979
980 return err;
981 }
982
cfg80211_calculate_bitrate_ht(struct rate_info * rate)983 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
984 {
985 int modulation, streams, bitrate;
986
987 /* the formula below does only work for MCS values smaller than 32 */
988 if (WARN_ON_ONCE(rate->mcs >= 32))
989 return 0;
990
991 modulation = rate->mcs & 7;
992 streams = (rate->mcs >> 3) + 1;
993
994 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
995
996 if (modulation < 4)
997 bitrate *= (modulation + 1);
998 else if (modulation == 4)
999 bitrate *= (modulation + 2);
1000 else
1001 bitrate *= (modulation + 3);
1002
1003 bitrate *= streams;
1004
1005 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1006 bitrate = (bitrate / 9) * 10;
1007
1008 /* do NOT round down here */
1009 return (bitrate + 50000) / 100000;
1010 }
1011
cfg80211_calculate_bitrate_60g(struct rate_info * rate)1012 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1013 {
1014 static const u32 __mcs2bitrate[] = {
1015 /* control PHY */
1016 [0] = 275,
1017 /* SC PHY */
1018 [1] = 3850,
1019 [2] = 7700,
1020 [3] = 9625,
1021 [4] = 11550,
1022 [5] = 12512, /* 1251.25 mbps */
1023 [6] = 15400,
1024 [7] = 19250,
1025 [8] = 23100,
1026 [9] = 25025,
1027 [10] = 30800,
1028 [11] = 38500,
1029 [12] = 46200,
1030 /* OFDM PHY */
1031 [13] = 6930,
1032 [14] = 8662, /* 866.25 mbps */
1033 [15] = 13860,
1034 [16] = 17325,
1035 [17] = 20790,
1036 [18] = 27720,
1037 [19] = 34650,
1038 [20] = 41580,
1039 [21] = 45045,
1040 [22] = 51975,
1041 [23] = 62370,
1042 [24] = 67568, /* 6756.75 mbps */
1043 /* LP-SC PHY */
1044 [25] = 6260,
1045 [26] = 8340,
1046 [27] = 11120,
1047 [28] = 12510,
1048 [29] = 16680,
1049 [30] = 22240,
1050 [31] = 25030,
1051 };
1052
1053 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1054 return 0;
1055
1056 return __mcs2bitrate[rate->mcs];
1057 }
1058
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1059 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1060 {
1061 static const u32 base[4][10] = {
1062 { 6500000,
1063 13000000,
1064 19500000,
1065 26000000,
1066 39000000,
1067 52000000,
1068 58500000,
1069 65000000,
1070 78000000,
1071 /* not in the spec, but some devices use this: */
1072 86500000,
1073 },
1074 { 13500000,
1075 27000000,
1076 40500000,
1077 54000000,
1078 81000000,
1079 108000000,
1080 121500000,
1081 135000000,
1082 162000000,
1083 180000000,
1084 },
1085 { 29300000,
1086 58500000,
1087 87800000,
1088 117000000,
1089 175500000,
1090 234000000,
1091 263300000,
1092 292500000,
1093 351000000,
1094 390000000,
1095 },
1096 { 58500000,
1097 117000000,
1098 175500000,
1099 234000000,
1100 351000000,
1101 468000000,
1102 526500000,
1103 585000000,
1104 702000000,
1105 780000000,
1106 },
1107 };
1108 u32 bitrate;
1109 int idx;
1110
1111 if (rate->mcs > 9)
1112 goto warn;
1113
1114 switch (rate->bw) {
1115 case RATE_INFO_BW_160:
1116 idx = 3;
1117 break;
1118 case RATE_INFO_BW_80:
1119 idx = 2;
1120 break;
1121 case RATE_INFO_BW_40:
1122 idx = 1;
1123 break;
1124 case RATE_INFO_BW_5:
1125 case RATE_INFO_BW_10:
1126 default:
1127 goto warn;
1128 case RATE_INFO_BW_20:
1129 idx = 0;
1130 }
1131
1132 bitrate = base[idx][rate->mcs];
1133 bitrate *= rate->nss;
1134
1135 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1136 bitrate = (bitrate / 9) * 10;
1137
1138 /* do NOT round down here */
1139 return (bitrate + 50000) / 100000;
1140 warn:
1141 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1142 rate->bw, rate->mcs, rate->nss);
1143 return 0;
1144 }
1145
cfg80211_calculate_bitrate_he(struct rate_info * rate)1146 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1147 {
1148 #define SCALE 2048
1149 u16 mcs_divisors[12] = {
1150 34133, /* 16.666666... */
1151 17067, /* 8.333333... */
1152 11378, /* 5.555555... */
1153 8533, /* 4.166666... */
1154 5689, /* 2.777777... */
1155 4267, /* 2.083333... */
1156 3923, /* 1.851851... */
1157 3413, /* 1.666666... */
1158 2844, /* 1.388888... */
1159 2560, /* 1.250000... */
1160 2276, /* 1.111111... */
1161 2048, /* 1.000000... */
1162 };
1163 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1164 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1165 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1166 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1167 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1168 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1169 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1170 u64 tmp;
1171 u32 result;
1172
1173 if (WARN_ON_ONCE(rate->mcs > 11))
1174 return 0;
1175
1176 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1177 return 0;
1178 if (WARN_ON_ONCE(rate->he_ru_alloc >
1179 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1180 return 0;
1181 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1182 return 0;
1183
1184 if (rate->bw == RATE_INFO_BW_160)
1185 result = rates_160M[rate->he_gi];
1186 else if (rate->bw == RATE_INFO_BW_80 ||
1187 (rate->bw == RATE_INFO_BW_HE_RU &&
1188 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1189 result = rates_969[rate->he_gi];
1190 else if (rate->bw == RATE_INFO_BW_40 ||
1191 (rate->bw == RATE_INFO_BW_HE_RU &&
1192 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1193 result = rates_484[rate->he_gi];
1194 else if (rate->bw == RATE_INFO_BW_20 ||
1195 (rate->bw == RATE_INFO_BW_HE_RU &&
1196 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1197 result = rates_242[rate->he_gi];
1198 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1199 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1200 result = rates_106[rate->he_gi];
1201 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1202 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1203 result = rates_52[rate->he_gi];
1204 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1205 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1206 result = rates_26[rate->he_gi];
1207 else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1208 rate->bw, rate->he_ru_alloc))
1209 return 0;
1210
1211 /* now scale to the appropriate MCS */
1212 tmp = result;
1213 tmp *= SCALE;
1214 do_div(tmp, mcs_divisors[rate->mcs]);
1215 result = tmp;
1216
1217 /* and take NSS, DCM into account */
1218 result = (result * rate->nss) / 8;
1219 if (rate->he_dcm)
1220 result /= 2;
1221
1222 return result;
1223 }
1224
cfg80211_calculate_bitrate(struct rate_info * rate)1225 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1226 {
1227 if (rate->flags & RATE_INFO_FLAGS_MCS)
1228 return cfg80211_calculate_bitrate_ht(rate);
1229 if (rate->flags & RATE_INFO_FLAGS_60G)
1230 return cfg80211_calculate_bitrate_60g(rate);
1231 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1232 return cfg80211_calculate_bitrate_vht(rate);
1233 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1234 return cfg80211_calculate_bitrate_he(rate);
1235
1236 return rate->legacy;
1237 }
1238 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1239
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1240 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1241 enum ieee80211_p2p_attr_id attr,
1242 u8 *buf, unsigned int bufsize)
1243 {
1244 u8 *out = buf;
1245 u16 attr_remaining = 0;
1246 bool desired_attr = false;
1247 u16 desired_len = 0;
1248
1249 while (len > 0) {
1250 unsigned int iedatalen;
1251 unsigned int copy;
1252 const u8 *iedata;
1253
1254 if (len < 2)
1255 return -EILSEQ;
1256 iedatalen = ies[1];
1257 if (iedatalen + 2 > len)
1258 return -EILSEQ;
1259
1260 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1261 goto cont;
1262
1263 if (iedatalen < 4)
1264 goto cont;
1265
1266 iedata = ies + 2;
1267
1268 /* check WFA OUI, P2P subtype */
1269 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1270 iedata[2] != 0x9a || iedata[3] != 0x09)
1271 goto cont;
1272
1273 iedatalen -= 4;
1274 iedata += 4;
1275
1276 /* check attribute continuation into this IE */
1277 copy = min_t(unsigned int, attr_remaining, iedatalen);
1278 if (copy && desired_attr) {
1279 desired_len += copy;
1280 if (out) {
1281 memcpy(out, iedata, min(bufsize, copy));
1282 out += min(bufsize, copy);
1283 bufsize -= min(bufsize, copy);
1284 }
1285
1286
1287 if (copy == attr_remaining)
1288 return desired_len;
1289 }
1290
1291 attr_remaining -= copy;
1292 if (attr_remaining)
1293 goto cont;
1294
1295 iedatalen -= copy;
1296 iedata += copy;
1297
1298 while (iedatalen > 0) {
1299 u16 attr_len;
1300
1301 /* P2P attribute ID & size must fit */
1302 if (iedatalen < 3)
1303 return -EILSEQ;
1304 desired_attr = iedata[0] == attr;
1305 attr_len = get_unaligned_le16(iedata + 1);
1306 iedatalen -= 3;
1307 iedata += 3;
1308
1309 copy = min_t(unsigned int, attr_len, iedatalen);
1310
1311 if (desired_attr) {
1312 desired_len += copy;
1313 if (out) {
1314 memcpy(out, iedata, min(bufsize, copy));
1315 out += min(bufsize, copy);
1316 bufsize -= min(bufsize, copy);
1317 }
1318
1319 if (copy == attr_len)
1320 return desired_len;
1321 }
1322
1323 iedata += copy;
1324 iedatalen -= copy;
1325 attr_remaining = attr_len - copy;
1326 }
1327
1328 cont:
1329 len -= ies[1] + 2;
1330 ies += ies[1] + 2;
1331 }
1332
1333 if (attr_remaining && desired_attr)
1334 return -EILSEQ;
1335
1336 return -ENOENT;
1337 }
1338 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1339
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1340 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1341 {
1342 int i;
1343
1344 /* Make sure array values are legal */
1345 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1346 return false;
1347
1348 i = 0;
1349 while (i < n_ids) {
1350 if (ids[i] == WLAN_EID_EXTENSION) {
1351 if (id_ext && (ids[i + 1] == id))
1352 return true;
1353
1354 i += 2;
1355 continue;
1356 }
1357
1358 if (ids[i] == id && !id_ext)
1359 return true;
1360
1361 i++;
1362 }
1363 return false;
1364 }
1365
skip_ie(const u8 * ies,size_t ielen,size_t pos)1366 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1367 {
1368 /* we assume a validly formed IEs buffer */
1369 u8 len = ies[pos + 1];
1370
1371 pos += 2 + len;
1372
1373 /* the IE itself must have 255 bytes for fragments to follow */
1374 if (len < 255)
1375 return pos;
1376
1377 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1378 len = ies[pos + 1];
1379 pos += 2 + len;
1380 }
1381
1382 return pos;
1383 }
1384
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1385 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1386 const u8 *ids, int n_ids,
1387 const u8 *after_ric, int n_after_ric,
1388 size_t offset)
1389 {
1390 size_t pos = offset;
1391
1392 while (pos < ielen) {
1393 u8 ext = 0;
1394
1395 if (ies[pos] == WLAN_EID_EXTENSION)
1396 ext = 2;
1397 if ((pos + ext) >= ielen)
1398 break;
1399
1400 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1401 ies[pos] == WLAN_EID_EXTENSION))
1402 break;
1403
1404 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1405 pos = skip_ie(ies, ielen, pos);
1406
1407 while (pos < ielen) {
1408 if (ies[pos] == WLAN_EID_EXTENSION)
1409 ext = 2;
1410 else
1411 ext = 0;
1412
1413 if ((pos + ext) >= ielen)
1414 break;
1415
1416 if (!ieee80211_id_in_list(after_ric,
1417 n_after_ric,
1418 ies[pos + ext],
1419 ext == 2))
1420 pos = skip_ie(ies, ielen, pos);
1421 }
1422 } else {
1423 pos = skip_ie(ies, ielen, pos);
1424 }
1425 }
1426
1427 return pos;
1428 }
1429 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1430
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1431 bool ieee80211_operating_class_to_band(u8 operating_class,
1432 enum nl80211_band *band)
1433 {
1434 switch (operating_class) {
1435 case 112:
1436 case 115 ... 127:
1437 case 128 ... 130:
1438 *band = NL80211_BAND_5GHZ;
1439 return true;
1440 case 81:
1441 case 82:
1442 case 83:
1443 case 84:
1444 *band = NL80211_BAND_2GHZ;
1445 return true;
1446 case 180:
1447 *band = NL80211_BAND_60GHZ;
1448 return true;
1449 }
1450
1451 return false;
1452 }
1453 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1454
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1455 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1456 u8 *op_class)
1457 {
1458 u8 vht_opclass;
1459 u32 freq = chandef->center_freq1;
1460
1461 if (freq >= 2412 && freq <= 2472) {
1462 if (chandef->width > NL80211_CHAN_WIDTH_40)
1463 return false;
1464
1465 /* 2.407 GHz, channels 1..13 */
1466 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1467 if (freq > chandef->chan->center_freq)
1468 *op_class = 83; /* HT40+ */
1469 else
1470 *op_class = 84; /* HT40- */
1471 } else {
1472 *op_class = 81;
1473 }
1474
1475 return true;
1476 }
1477
1478 if (freq == 2484) {
1479 if (chandef->width > NL80211_CHAN_WIDTH_40)
1480 return false;
1481
1482 *op_class = 82; /* channel 14 */
1483 return true;
1484 }
1485
1486 switch (chandef->width) {
1487 case NL80211_CHAN_WIDTH_80:
1488 vht_opclass = 128;
1489 break;
1490 case NL80211_CHAN_WIDTH_160:
1491 vht_opclass = 129;
1492 break;
1493 case NL80211_CHAN_WIDTH_80P80:
1494 vht_opclass = 130;
1495 break;
1496 case NL80211_CHAN_WIDTH_10:
1497 case NL80211_CHAN_WIDTH_5:
1498 return false; /* unsupported for now */
1499 default:
1500 vht_opclass = 0;
1501 break;
1502 }
1503
1504 /* 5 GHz, channels 36..48 */
1505 if (freq >= 5180 && freq <= 5240) {
1506 if (vht_opclass) {
1507 *op_class = vht_opclass;
1508 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1509 if (freq > chandef->chan->center_freq)
1510 *op_class = 116;
1511 else
1512 *op_class = 117;
1513 } else {
1514 *op_class = 115;
1515 }
1516
1517 return true;
1518 }
1519
1520 /* 5 GHz, channels 52..64 */
1521 if (freq >= 5260 && freq <= 5320) {
1522 if (vht_opclass) {
1523 *op_class = vht_opclass;
1524 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1525 if (freq > chandef->chan->center_freq)
1526 *op_class = 119;
1527 else
1528 *op_class = 120;
1529 } else {
1530 *op_class = 118;
1531 }
1532
1533 return true;
1534 }
1535
1536 /* 5 GHz, channels 100..144 */
1537 if (freq >= 5500 && freq <= 5720) {
1538 if (vht_opclass) {
1539 *op_class = vht_opclass;
1540 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1541 if (freq > chandef->chan->center_freq)
1542 *op_class = 122;
1543 else
1544 *op_class = 123;
1545 } else {
1546 *op_class = 121;
1547 }
1548
1549 return true;
1550 }
1551
1552 /* 5 GHz, channels 149..169 */
1553 if (freq >= 5745 && freq <= 5845) {
1554 if (vht_opclass) {
1555 *op_class = vht_opclass;
1556 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1557 if (freq > chandef->chan->center_freq)
1558 *op_class = 126;
1559 else
1560 *op_class = 127;
1561 } else if (freq <= 5805) {
1562 *op_class = 124;
1563 } else {
1564 *op_class = 125;
1565 }
1566
1567 return true;
1568 }
1569
1570 /* 56.16 GHz, channel 1..4 */
1571 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1572 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1573 return false;
1574
1575 *op_class = 180;
1576 return true;
1577 }
1578
1579 /* not supported yet */
1580 return false;
1581 }
1582 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1583
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1584 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1585 u32 *beacon_int_gcd,
1586 bool *beacon_int_different)
1587 {
1588 struct wireless_dev *wdev;
1589
1590 *beacon_int_gcd = 0;
1591 *beacon_int_different = false;
1592
1593 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1594 if (!wdev->beacon_interval)
1595 continue;
1596
1597 if (!*beacon_int_gcd) {
1598 *beacon_int_gcd = wdev->beacon_interval;
1599 continue;
1600 }
1601
1602 if (wdev->beacon_interval == *beacon_int_gcd)
1603 continue;
1604
1605 *beacon_int_different = true;
1606 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1607 }
1608
1609 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1610 if (*beacon_int_gcd)
1611 *beacon_int_different = true;
1612 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1613 }
1614 }
1615
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1616 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1617 enum nl80211_iftype iftype, u32 beacon_int)
1618 {
1619 /*
1620 * This is just a basic pre-condition check; if interface combinations
1621 * are possible the driver must already be checking those with a call
1622 * to cfg80211_check_combinations(), in which case we'll validate more
1623 * through the cfg80211_calculate_bi_data() call and code in
1624 * cfg80211_iter_combinations().
1625 */
1626
1627 if (beacon_int < 10 || beacon_int > 10000)
1628 return -EINVAL;
1629
1630 return 0;
1631 }
1632
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1633 int cfg80211_iter_combinations(struct wiphy *wiphy,
1634 struct iface_combination_params *params,
1635 void (*iter)(const struct ieee80211_iface_combination *c,
1636 void *data),
1637 void *data)
1638 {
1639 const struct ieee80211_regdomain *regdom;
1640 enum nl80211_dfs_regions region = 0;
1641 int i, j, iftype;
1642 int num_interfaces = 0;
1643 u32 used_iftypes = 0;
1644 u32 beacon_int_gcd;
1645 bool beacon_int_different;
1646
1647 /*
1648 * This is a bit strange, since the iteration used to rely only on
1649 * the data given by the driver, but here it now relies on context,
1650 * in form of the currently operating interfaces.
1651 * This is OK for all current users, and saves us from having to
1652 * push the GCD calculations into all the drivers.
1653 * In the future, this should probably rely more on data that's in
1654 * cfg80211 already - the only thing not would appear to be any new
1655 * interfaces (while being brought up) and channel/radar data.
1656 */
1657 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1658 &beacon_int_gcd, &beacon_int_different);
1659
1660 if (params->radar_detect) {
1661 rcu_read_lock();
1662 regdom = rcu_dereference(cfg80211_regdomain);
1663 if (regdom)
1664 region = regdom->dfs_region;
1665 rcu_read_unlock();
1666 }
1667
1668 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1669 num_interfaces += params->iftype_num[iftype];
1670 if (params->iftype_num[iftype] > 0 &&
1671 !(wiphy->software_iftypes & BIT(iftype)))
1672 used_iftypes |= BIT(iftype);
1673 }
1674
1675 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1676 const struct ieee80211_iface_combination *c;
1677 struct ieee80211_iface_limit *limits;
1678 u32 all_iftypes = 0;
1679
1680 c = &wiphy->iface_combinations[i];
1681
1682 if (num_interfaces > c->max_interfaces)
1683 continue;
1684 if (params->num_different_channels > c->num_different_channels)
1685 continue;
1686
1687 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1688 GFP_KERNEL);
1689 if (!limits)
1690 return -ENOMEM;
1691
1692 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1693 if (wiphy->software_iftypes & BIT(iftype))
1694 continue;
1695 for (j = 0; j < c->n_limits; j++) {
1696 all_iftypes |= limits[j].types;
1697 if (!(limits[j].types & BIT(iftype)))
1698 continue;
1699 if (limits[j].max < params->iftype_num[iftype])
1700 goto cont;
1701 limits[j].max -= params->iftype_num[iftype];
1702 }
1703 }
1704
1705 if (params->radar_detect !=
1706 (c->radar_detect_widths & params->radar_detect))
1707 goto cont;
1708
1709 if (params->radar_detect && c->radar_detect_regions &&
1710 !(c->radar_detect_regions & BIT(region)))
1711 goto cont;
1712
1713 /* Finally check that all iftypes that we're currently
1714 * using are actually part of this combination. If they
1715 * aren't then we can't use this combination and have
1716 * to continue to the next.
1717 */
1718 if ((all_iftypes & used_iftypes) != used_iftypes)
1719 goto cont;
1720
1721 if (beacon_int_gcd) {
1722 if (c->beacon_int_min_gcd &&
1723 beacon_int_gcd < c->beacon_int_min_gcd)
1724 goto cont;
1725 if (!c->beacon_int_min_gcd && beacon_int_different)
1726 goto cont;
1727 }
1728
1729 /* This combination covered all interface types and
1730 * supported the requested numbers, so we're good.
1731 */
1732
1733 (*iter)(c, data);
1734 cont:
1735 kfree(limits);
1736 }
1737
1738 return 0;
1739 }
1740 EXPORT_SYMBOL(cfg80211_iter_combinations);
1741
1742 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1743 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1744 void *data)
1745 {
1746 int *num = data;
1747 (*num)++;
1748 }
1749
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)1750 int cfg80211_check_combinations(struct wiphy *wiphy,
1751 struct iface_combination_params *params)
1752 {
1753 int err, num = 0;
1754
1755 err = cfg80211_iter_combinations(wiphy, params,
1756 cfg80211_iter_sum_ifcombs, &num);
1757 if (err)
1758 return err;
1759 if (num == 0)
1760 return -EBUSY;
1761
1762 return 0;
1763 }
1764 EXPORT_SYMBOL(cfg80211_check_combinations);
1765
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1766 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1767 const u8 *rates, unsigned int n_rates,
1768 u32 *mask)
1769 {
1770 int i, j;
1771
1772 if (!sband)
1773 return -EINVAL;
1774
1775 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1776 return -EINVAL;
1777
1778 *mask = 0;
1779
1780 for (i = 0; i < n_rates; i++) {
1781 int rate = (rates[i] & 0x7f) * 5;
1782 bool found = false;
1783
1784 for (j = 0; j < sband->n_bitrates; j++) {
1785 if (sband->bitrates[j].bitrate == rate) {
1786 found = true;
1787 *mask |= BIT(j);
1788 break;
1789 }
1790 }
1791 if (!found)
1792 return -EINVAL;
1793 }
1794
1795 /*
1796 * mask must have at least one bit set here since we
1797 * didn't accept a 0-length rates array nor allowed
1798 * entries in the array that didn't exist
1799 */
1800
1801 return 0;
1802 }
1803
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1804 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1805 {
1806 enum nl80211_band band;
1807 unsigned int n_channels = 0;
1808
1809 for (band = 0; band < NUM_NL80211_BANDS; band++)
1810 if (wiphy->bands[band])
1811 n_channels += wiphy->bands[band]->n_channels;
1812
1813 return n_channels;
1814 }
1815 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1816
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)1817 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1818 struct station_info *sinfo)
1819 {
1820 struct cfg80211_registered_device *rdev;
1821 struct wireless_dev *wdev;
1822
1823 wdev = dev->ieee80211_ptr;
1824 if (!wdev)
1825 return -EOPNOTSUPP;
1826
1827 rdev = wiphy_to_rdev(wdev->wiphy);
1828 if (!rdev->ops->get_station)
1829 return -EOPNOTSUPP;
1830
1831 memset(sinfo, 0, sizeof(*sinfo));
1832
1833 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1834 }
1835 EXPORT_SYMBOL(cfg80211_get_station);
1836
cfg80211_free_nan_func(struct cfg80211_nan_func * f)1837 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1838 {
1839 int i;
1840
1841 if (!f)
1842 return;
1843
1844 kfree(f->serv_spec_info);
1845 kfree(f->srf_bf);
1846 kfree(f->srf_macs);
1847 for (i = 0; i < f->num_rx_filters; i++)
1848 kfree(f->rx_filters[i].filter);
1849
1850 for (i = 0; i < f->num_tx_filters; i++)
1851 kfree(f->tx_filters[i].filter);
1852
1853 kfree(f->rx_filters);
1854 kfree(f->tx_filters);
1855 kfree(f);
1856 }
1857 EXPORT_SYMBOL(cfg80211_free_nan_func);
1858
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)1859 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1860 u32 center_freq_khz, u32 bw_khz)
1861 {
1862 u32 start_freq_khz, end_freq_khz;
1863
1864 start_freq_khz = center_freq_khz - (bw_khz / 2);
1865 end_freq_khz = center_freq_khz + (bw_khz / 2);
1866
1867 if (start_freq_khz >= freq_range->start_freq_khz &&
1868 end_freq_khz <= freq_range->end_freq_khz)
1869 return true;
1870
1871 return false;
1872 }
1873
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)1874 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1875 {
1876 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1877 sizeof(*(sinfo->pertid)),
1878 gfp);
1879 if (!sinfo->pertid)
1880 return -ENOMEM;
1881
1882 return 0;
1883 }
1884 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1885
1886 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1887 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1888 const unsigned char rfc1042_header[] __aligned(2) =
1889 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1890 EXPORT_SYMBOL(rfc1042_header);
1891
1892 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1893 const unsigned char bridge_tunnel_header[] __aligned(2) =
1894 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1895 EXPORT_SYMBOL(bridge_tunnel_header);
1896