1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/io-64-nonatomic-lo-hi.h>
8 #include <linux/dmaengine.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/sched/mm.h>
12 #include <uapi/linux/idxd.h>
13 #include "../dmaengine.h"
14 #include "idxd.h"
15 #include "registers.h"
16
17 enum irq_work_type {
18 IRQ_WORK_NORMAL = 0,
19 IRQ_WORK_PROCESS_FAULT,
20 };
21
22 struct idxd_resubmit {
23 struct work_struct work;
24 struct idxd_desc *desc;
25 };
26
27 struct idxd_int_handle_revoke {
28 struct work_struct work;
29 struct idxd_device *idxd;
30 };
31
idxd_device_reinit(struct work_struct * work)32 static void idxd_device_reinit(struct work_struct *work)
33 {
34 struct idxd_device *idxd = container_of(work, struct idxd_device, work);
35 struct device *dev = &idxd->pdev->dev;
36 int rc, i;
37
38 idxd_device_reset(idxd);
39 rc = idxd_device_config(idxd);
40 if (rc < 0)
41 goto out;
42
43 rc = idxd_device_enable(idxd);
44 if (rc < 0)
45 goto out;
46
47 for (i = 0; i < idxd->max_wqs; i++) {
48 if (test_bit(i, idxd->wq_enable_map)) {
49 struct idxd_wq *wq = idxd->wqs[i];
50
51 rc = idxd_wq_enable(wq);
52 if (rc < 0) {
53 clear_bit(i, idxd->wq_enable_map);
54 dev_warn(dev, "Unable to re-enable wq %s\n",
55 dev_name(wq_confdev(wq)));
56 }
57 }
58 }
59
60 return;
61
62 out:
63 idxd_device_clear_state(idxd);
64 }
65
66 /*
67 * The function sends a drain descriptor for the interrupt handle. The drain ensures
68 * all descriptors with this interrupt handle is flushed and the interrupt
69 * will allow the cleanup of the outstanding descriptors.
70 */
idxd_int_handle_revoke_drain(struct idxd_irq_entry * ie)71 static void idxd_int_handle_revoke_drain(struct idxd_irq_entry *ie)
72 {
73 struct idxd_wq *wq = ie_to_wq(ie);
74 struct idxd_device *idxd = wq->idxd;
75 struct device *dev = &idxd->pdev->dev;
76 struct dsa_hw_desc desc = {};
77 void __iomem *portal;
78 int rc;
79
80 /* Issue a simple drain operation with interrupt but no completion record */
81 desc.flags = IDXD_OP_FLAG_RCI;
82 desc.opcode = DSA_OPCODE_DRAIN;
83 desc.priv = 1;
84
85 if (ie->pasid != IOMMU_PASID_INVALID)
86 desc.pasid = ie->pasid;
87 desc.int_handle = ie->int_handle;
88 portal = idxd_wq_portal_addr(wq);
89
90 /*
91 * The wmb() makes sure that the descriptor is all there before we
92 * issue.
93 */
94 wmb();
95 if (wq_dedicated(wq)) {
96 iosubmit_cmds512(portal, &desc, 1);
97 } else {
98 rc = idxd_enqcmds(wq, portal, &desc);
99 /* This should not fail unless hardware failed. */
100 if (rc < 0)
101 dev_warn(dev, "Failed to submit drain desc on wq %d\n", wq->id);
102 }
103 }
104
idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry * ie)105 static void idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry *ie)
106 {
107 LIST_HEAD(flist);
108 struct idxd_desc *d, *t;
109 struct llist_node *head;
110
111 spin_lock(&ie->list_lock);
112 head = llist_del_all(&ie->pending_llist);
113 if (head) {
114 llist_for_each_entry_safe(d, t, head, llnode)
115 list_add_tail(&d->list, &ie->work_list);
116 }
117
118 list_for_each_entry_safe(d, t, &ie->work_list, list) {
119 if (d->completion->status == DSA_COMP_INT_HANDLE_INVAL)
120 list_move_tail(&d->list, &flist);
121 }
122 spin_unlock(&ie->list_lock);
123
124 list_for_each_entry_safe(d, t, &flist, list) {
125 list_del(&d->list);
126 idxd_dma_complete_txd(d, IDXD_COMPLETE_ABORT, true);
127 }
128 }
129
idxd_int_handle_revoke(struct work_struct * work)130 static void idxd_int_handle_revoke(struct work_struct *work)
131 {
132 struct idxd_int_handle_revoke *revoke =
133 container_of(work, struct idxd_int_handle_revoke, work);
134 struct idxd_device *idxd = revoke->idxd;
135 struct pci_dev *pdev = idxd->pdev;
136 struct device *dev = &pdev->dev;
137 int i, new_handle, rc;
138
139 if (!idxd->request_int_handles) {
140 kfree(revoke);
141 dev_warn(dev, "Unexpected int handle refresh interrupt.\n");
142 return;
143 }
144
145 /*
146 * The loop attempts to acquire new interrupt handle for all interrupt
147 * vectors that supports a handle. If a new interrupt handle is acquired and the
148 * wq is kernel type, the driver will kill the percpu_ref to pause all
149 * ongoing descriptor submissions. The interrupt handle is then changed.
150 * After change, the percpu_ref is revived and all the pending submissions
151 * are woken to try again. A drain is sent to for the interrupt handle
152 * at the end to make sure all invalid int handle descriptors are processed.
153 */
154 for (i = 1; i < idxd->irq_cnt; i++) {
155 struct idxd_irq_entry *ie = idxd_get_ie(idxd, i);
156 struct idxd_wq *wq = ie_to_wq(ie);
157
158 if (ie->int_handle == INVALID_INT_HANDLE)
159 continue;
160
161 rc = idxd_device_request_int_handle(idxd, i, &new_handle, IDXD_IRQ_MSIX);
162 if (rc < 0) {
163 dev_warn(dev, "get int handle %d failed: %d\n", i, rc);
164 /*
165 * Failed to acquire new interrupt handle. Kill the WQ
166 * and release all the pending submitters. The submitters will
167 * get error return code and handle appropriately.
168 */
169 ie->int_handle = INVALID_INT_HANDLE;
170 idxd_wq_quiesce(wq);
171 idxd_abort_invalid_int_handle_descs(ie);
172 continue;
173 }
174
175 /* No change in interrupt handle, nothing needs to be done */
176 if (ie->int_handle == new_handle)
177 continue;
178
179 if (wq->state != IDXD_WQ_ENABLED || wq->type != IDXD_WQT_KERNEL) {
180 /*
181 * All the MSIX interrupts are allocated at once during probe.
182 * Therefore we need to update all interrupts even if the WQ
183 * isn't supporting interrupt operations.
184 */
185 ie->int_handle = new_handle;
186 continue;
187 }
188
189 mutex_lock(&wq->wq_lock);
190 reinit_completion(&wq->wq_resurrect);
191
192 /* Kill percpu_ref to pause additional descriptor submissions */
193 percpu_ref_kill(&wq->wq_active);
194
195 /* Wait for all submitters quiesce before we change interrupt handle */
196 wait_for_completion(&wq->wq_dead);
197
198 ie->int_handle = new_handle;
199
200 /* Revive percpu ref and wake up all the waiting submitters */
201 percpu_ref_reinit(&wq->wq_active);
202 complete_all(&wq->wq_resurrect);
203 mutex_unlock(&wq->wq_lock);
204
205 /*
206 * The delay here is to wait for all possible MOVDIR64B that
207 * are issued before percpu_ref_kill() has happened to have
208 * reached the PCIe domain before the drain is issued. The driver
209 * needs to ensure that the drain descriptor issued does not pass
210 * all the other issued descriptors that contain the invalid
211 * interrupt handle in order to ensure that the drain descriptor
212 * interrupt will allow the cleanup of all the descriptors with
213 * invalid interrupt handle.
214 */
215 if (wq_dedicated(wq))
216 udelay(100);
217 idxd_int_handle_revoke_drain(ie);
218 }
219 kfree(revoke);
220 }
221
idxd_evl_fault_work(struct work_struct * work)222 static void idxd_evl_fault_work(struct work_struct *work)
223 {
224 struct idxd_evl_fault *fault = container_of(work, struct idxd_evl_fault, work);
225 struct idxd_wq *wq = fault->wq;
226 struct idxd_device *idxd = wq->idxd;
227 struct device *dev = &idxd->pdev->dev;
228 struct idxd_evl *evl = idxd->evl;
229 struct __evl_entry *entry_head = fault->entry;
230 void *cr = (void *)entry_head + idxd->data->evl_cr_off;
231 int cr_size = idxd->data->compl_size;
232 u8 *status = (u8 *)cr + idxd->data->cr_status_off;
233 u8 *result = (u8 *)cr + idxd->data->cr_result_off;
234 int copied, copy_size;
235 bool *bf;
236
237 switch (fault->status) {
238 case DSA_COMP_CRA_XLAT:
239 if (entry_head->batch && entry_head->first_err_in_batch)
240 evl->batch_fail[entry_head->batch_id] = false;
241
242 copy_size = cr_size;
243 idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
244 break;
245 case DSA_COMP_BATCH_EVL_ERR:
246 bf = &evl->batch_fail[entry_head->batch_id];
247
248 copy_size = entry_head->rcr || *bf ? cr_size : 0;
249 if (*bf) {
250 if (*status == DSA_COMP_SUCCESS)
251 *status = DSA_COMP_BATCH_FAIL;
252 *result = 1;
253 *bf = false;
254 }
255 idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
256 break;
257 case DSA_COMP_DRAIN_EVL:
258 copy_size = cr_size;
259 break;
260 default:
261 copy_size = 0;
262 dev_dbg_ratelimited(dev, "Unrecognized error code: %#x\n", fault->status);
263 break;
264 }
265
266 if (copy_size == 0)
267 return;
268
269 /*
270 * Copy completion record to fault_addr in user address space
271 * that is found by wq and PASID.
272 */
273 copied = idxd_copy_cr(wq, entry_head->pasid, entry_head->fault_addr,
274 cr, copy_size);
275 /*
276 * The task that triggered the page fault is unknown currently
277 * because multiple threads may share the user address
278 * space or the task exits already before this fault.
279 * So if the copy fails, SIGSEGV can not be sent to the task.
280 * Just print an error for the failure. The user application
281 * waiting for the completion record will time out on this
282 * failure.
283 */
284 switch (fault->status) {
285 case DSA_COMP_CRA_XLAT:
286 if (copied != copy_size) {
287 idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
288 dev_dbg_ratelimited(dev, "Failed to write to completion record: (%d:%d)\n",
289 copy_size, copied);
290 if (entry_head->batch)
291 evl->batch_fail[entry_head->batch_id] = true;
292 }
293 break;
294 case DSA_COMP_BATCH_EVL_ERR:
295 if (copied != copy_size) {
296 idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
297 dev_dbg_ratelimited(dev, "Failed to write to batch completion record: (%d:%d)\n",
298 copy_size, copied);
299 }
300 break;
301 case DSA_COMP_DRAIN_EVL:
302 if (copied != copy_size)
303 dev_dbg_ratelimited(dev, "Failed to write to drain completion record: (%d:%d)\n",
304 copy_size, copied);
305 break;
306 }
307
308 kmem_cache_free(idxd->evl_cache, fault);
309 }
310
process_evl_entry(struct idxd_device * idxd,struct __evl_entry * entry_head,unsigned int index)311 static void process_evl_entry(struct idxd_device *idxd,
312 struct __evl_entry *entry_head, unsigned int index)
313 {
314 struct device *dev = &idxd->pdev->dev;
315 struct idxd_evl *evl = idxd->evl;
316 u8 status;
317
318 if (test_bit(index, evl->bmap)) {
319 clear_bit(index, evl->bmap);
320 } else {
321 status = DSA_COMP_STATUS(entry_head->error);
322
323 if (status == DSA_COMP_CRA_XLAT || status == DSA_COMP_DRAIN_EVL ||
324 status == DSA_COMP_BATCH_EVL_ERR) {
325 struct idxd_evl_fault *fault;
326 int ent_size = evl_ent_size(idxd);
327
328 if (entry_head->rci)
329 dev_dbg(dev, "Completion Int Req set, ignoring!\n");
330
331 if (!entry_head->rcr && status == DSA_COMP_DRAIN_EVL)
332 return;
333
334 fault = kmem_cache_alloc(idxd->evl_cache, GFP_ATOMIC);
335 if (fault) {
336 struct idxd_wq *wq = idxd->wqs[entry_head->wq_idx];
337
338 fault->wq = wq;
339 fault->status = status;
340 memcpy(&fault->entry, entry_head, ent_size);
341 INIT_WORK(&fault->work, idxd_evl_fault_work);
342 queue_work(wq->wq, &fault->work);
343 } else {
344 dev_warn(dev, "Failed to service fault work.\n");
345 }
346 } else {
347 dev_warn_ratelimited(dev, "Device error %#x operation: %#x fault addr: %#llx\n",
348 status, entry_head->operation,
349 entry_head->fault_addr);
350 }
351 }
352 }
353
process_evl_entries(struct idxd_device * idxd)354 static void process_evl_entries(struct idxd_device *idxd)
355 {
356 union evl_status_reg evl_status;
357 unsigned int h, t;
358 struct idxd_evl *evl = idxd->evl;
359 struct __evl_entry *entry_head;
360 unsigned int ent_size = evl_ent_size(idxd);
361 u32 size;
362
363 evl_status.bits = 0;
364 evl_status.int_pending = 1;
365
366 spin_lock(&evl->lock);
367 /* Clear interrupt pending bit */
368 iowrite32(evl_status.bits_upper32,
369 idxd->reg_base + IDXD_EVLSTATUS_OFFSET + sizeof(u32));
370 h = evl->head;
371 evl_status.bits = ioread64(idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
372 t = evl_status.tail;
373 size = idxd->evl->size;
374
375 while (h != t) {
376 entry_head = (struct __evl_entry *)(evl->log + (h * ent_size));
377 process_evl_entry(idxd, entry_head, h);
378 h = (h + 1) % size;
379 }
380
381 evl->head = h;
382 evl_status.head = h;
383 iowrite32(evl_status.bits_lower32, idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
384 spin_unlock(&evl->lock);
385 }
386
idxd_misc_thread(int vec,void * data)387 irqreturn_t idxd_misc_thread(int vec, void *data)
388 {
389 struct idxd_irq_entry *irq_entry = data;
390 struct idxd_device *idxd = ie_to_idxd(irq_entry);
391 struct device *dev = &idxd->pdev->dev;
392 union gensts_reg gensts;
393 u32 val = 0;
394 int i;
395 bool err = false;
396 u32 cause;
397
398 cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
399 if (!cause)
400 return IRQ_NONE;
401
402 iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
403
404 if (cause & IDXD_INTC_HALT_STATE)
405 goto halt;
406
407 if (cause & IDXD_INTC_ERR) {
408 spin_lock(&idxd->dev_lock);
409 for (i = 0; i < 4; i++)
410 idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
411 IDXD_SWERR_OFFSET + i * sizeof(u64));
412
413 iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
414 idxd->reg_base + IDXD_SWERR_OFFSET);
415
416 if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
417 int id = idxd->sw_err.wq_idx;
418 struct idxd_wq *wq = idxd->wqs[id];
419
420 if (wq->type == IDXD_WQT_USER)
421 wake_up_interruptible(&wq->err_queue);
422 } else {
423 int i;
424
425 for (i = 0; i < idxd->max_wqs; i++) {
426 struct idxd_wq *wq = idxd->wqs[i];
427
428 if (wq->type == IDXD_WQT_USER)
429 wake_up_interruptible(&wq->err_queue);
430 }
431 }
432
433 spin_unlock(&idxd->dev_lock);
434 val |= IDXD_INTC_ERR;
435
436 for (i = 0; i < 4; i++)
437 dev_warn(dev, "err[%d]: %#16.16llx\n",
438 i, idxd->sw_err.bits[i]);
439 err = true;
440 }
441
442 if (cause & IDXD_INTC_INT_HANDLE_REVOKED) {
443 struct idxd_int_handle_revoke *revoke;
444
445 val |= IDXD_INTC_INT_HANDLE_REVOKED;
446
447 revoke = kzalloc(sizeof(*revoke), GFP_ATOMIC);
448 if (revoke) {
449 revoke->idxd = idxd;
450 INIT_WORK(&revoke->work, idxd_int_handle_revoke);
451 queue_work(idxd->wq, &revoke->work);
452
453 } else {
454 dev_err(dev, "Failed to allocate work for int handle revoke\n");
455 idxd_wqs_quiesce(idxd);
456 }
457 }
458
459 if (cause & IDXD_INTC_CMD) {
460 val |= IDXD_INTC_CMD;
461 complete(idxd->cmd_done);
462 }
463
464 if (cause & IDXD_INTC_OCCUPY) {
465 /* Driver does not utilize occupancy interrupt */
466 val |= IDXD_INTC_OCCUPY;
467 }
468
469 if (cause & IDXD_INTC_PERFMON_OVFL) {
470 val |= IDXD_INTC_PERFMON_OVFL;
471 perfmon_counter_overflow(idxd);
472 }
473
474 if (cause & IDXD_INTC_EVL) {
475 val |= IDXD_INTC_EVL;
476 process_evl_entries(idxd);
477 }
478
479 val ^= cause;
480 if (val)
481 dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
482 val);
483
484 if (!err)
485 goto out;
486
487 halt:
488 gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
489 if (gensts.state == IDXD_DEVICE_STATE_HALT) {
490 idxd->state = IDXD_DEV_HALTED;
491 if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
492 /*
493 * If we need a software reset, we will throw the work
494 * on a system workqueue in order to allow interrupts
495 * for the device command completions.
496 */
497 INIT_WORK(&idxd->work, idxd_device_reinit);
498 queue_work(idxd->wq, &idxd->work);
499 } else {
500 idxd->state = IDXD_DEV_HALTED;
501 idxd_wqs_quiesce(idxd);
502 idxd_wqs_unmap_portal(idxd);
503 idxd_device_clear_state(idxd);
504 dev_err(&idxd->pdev->dev,
505 "idxd halted, need %s.\n",
506 gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
507 "FLR" : "system reset");
508 }
509 }
510
511 out:
512 return IRQ_HANDLED;
513 }
514
idxd_int_handle_resubmit_work(struct work_struct * work)515 static void idxd_int_handle_resubmit_work(struct work_struct *work)
516 {
517 struct idxd_resubmit *irw = container_of(work, struct idxd_resubmit, work);
518 struct idxd_desc *desc = irw->desc;
519 struct idxd_wq *wq = desc->wq;
520 int rc;
521
522 desc->completion->status = 0;
523 rc = idxd_submit_desc(wq, desc);
524 if (rc < 0) {
525 dev_dbg(&wq->idxd->pdev->dev, "Failed to resubmit desc %d to wq %d.\n",
526 desc->id, wq->id);
527 /*
528 * If the error is not -EAGAIN, it means the submission failed due to wq
529 * has been killed instead of ENQCMDS failure. Here the driver needs to
530 * notify the submitter of the failure by reporting abort status.
531 *
532 * -EAGAIN comes from ENQCMDS failure. idxd_submit_desc() will handle the
533 * abort.
534 */
535 if (rc != -EAGAIN) {
536 desc->completion->status = IDXD_COMP_DESC_ABORT;
537 idxd_dma_complete_txd(desc, IDXD_COMPLETE_ABORT, false);
538 }
539 idxd_free_desc(wq, desc);
540 }
541 kfree(irw);
542 }
543
idxd_queue_int_handle_resubmit(struct idxd_desc * desc)544 bool idxd_queue_int_handle_resubmit(struct idxd_desc *desc)
545 {
546 struct idxd_wq *wq = desc->wq;
547 struct idxd_device *idxd = wq->idxd;
548 struct idxd_resubmit *irw;
549
550 irw = kzalloc(sizeof(*irw), GFP_KERNEL);
551 if (!irw)
552 return false;
553
554 irw->desc = desc;
555 INIT_WORK(&irw->work, idxd_int_handle_resubmit_work);
556 queue_work(idxd->wq, &irw->work);
557 return true;
558 }
559
irq_process_pending_llist(struct idxd_irq_entry * irq_entry)560 static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry)
561 {
562 struct idxd_desc *desc, *t;
563 struct llist_node *head;
564
565 head = llist_del_all(&irq_entry->pending_llist);
566 if (!head)
567 return;
568
569 llist_for_each_entry_safe(desc, t, head, llnode) {
570 u8 status = desc->completion->status & DSA_COMP_STATUS_MASK;
571
572 if (status) {
573 /*
574 * Check against the original status as ABORT is software defined
575 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
576 */
577 if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
578 idxd_dma_complete_txd(desc, IDXD_COMPLETE_ABORT, true);
579 continue;
580 }
581
582 idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL, true);
583 } else {
584 spin_lock(&irq_entry->list_lock);
585 list_add_tail(&desc->list,
586 &irq_entry->work_list);
587 spin_unlock(&irq_entry->list_lock);
588 }
589 }
590 }
591
irq_process_work_list(struct idxd_irq_entry * irq_entry)592 static void irq_process_work_list(struct idxd_irq_entry *irq_entry)
593 {
594 LIST_HEAD(flist);
595 struct idxd_desc *desc, *n;
596
597 /*
598 * This lock protects list corruption from access of list outside of the irq handler
599 * thread.
600 */
601 spin_lock(&irq_entry->list_lock);
602 if (list_empty(&irq_entry->work_list)) {
603 spin_unlock(&irq_entry->list_lock);
604 return;
605 }
606
607 list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
608 if (desc->completion->status) {
609 list_move_tail(&desc->list, &flist);
610 }
611 }
612
613 spin_unlock(&irq_entry->list_lock);
614
615 list_for_each_entry(desc, &flist, list) {
616 /*
617 * Check against the original status as ABORT is software defined
618 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
619 */
620 if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
621 idxd_dma_complete_txd(desc, IDXD_COMPLETE_ABORT, true);
622 continue;
623 }
624
625 idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL, true);
626 }
627 }
628
idxd_wq_thread(int irq,void * data)629 irqreturn_t idxd_wq_thread(int irq, void *data)
630 {
631 struct idxd_irq_entry *irq_entry = data;
632
633 /*
634 * There are two lists we are processing. The pending_llist is where
635 * submmiter adds all the submitted descriptor after sending it to
636 * the workqueue. It's a lockless singly linked list. The work_list
637 * is the common linux double linked list. We are in a scenario of
638 * multiple producers and a single consumer. The producers are all
639 * the kernel submitters of descriptors, and the consumer is the
640 * kernel irq handler thread for the msix vector when using threaded
641 * irq. To work with the restrictions of llist to remain lockless,
642 * we are doing the following steps:
643 * 1. Iterate through the work_list and process any completed
644 * descriptor. Delete the completed entries during iteration.
645 * 2. llist_del_all() from the pending list.
646 * 3. Iterate through the llist that was deleted from the pending list
647 * and process the completed entries.
648 * 4. If the entry is still waiting on hardware, list_add_tail() to
649 * the work_list.
650 */
651 irq_process_work_list(irq_entry);
652 irq_process_pending_llist(irq_entry);
653
654 return IRQ_HANDLED;
655 }
656