1 #include <linux/bitmap.h>
2 #include <linux/bug.h>
3 #include <linux/export.h>
4 #include <linux/idr.h>
5 #include <linux/slab.h>
6 #include <linux/spinlock.h>
7 #include <linux/xarray.h>
8
9 DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
10
11 /**
12 * idr_alloc_u32() - Allocate an ID.
13 * @idr: IDR handle.
14 * @ptr: Pointer to be associated with the new ID.
15 * @nextid: Pointer to an ID.
16 * @max: The maximum ID to allocate (inclusive).
17 * @gfp: Memory allocation flags.
18 *
19 * Allocates an unused ID in the range specified by @nextid and @max.
20 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
21 * is exclusive. The new ID is assigned to @nextid before the pointer
22 * is inserted into the IDR, so if @nextid points into the object pointed
23 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
24 *
25 * The caller should provide their own locking to ensure that two
26 * concurrent modifications to the IDR are not possible. Read-only
27 * accesses to the IDR may be done under the RCU read lock or may
28 * exclude simultaneous writers.
29 *
30 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
31 * or -ENOSPC if no free IDs could be found. If an error occurred,
32 * @nextid is unchanged.
33 */
idr_alloc_u32(struct idr * idr,void * ptr,u32 * nextid,unsigned long max,gfp_t gfp)34 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
35 unsigned long max, gfp_t gfp)
36 {
37 struct radix_tree_iter iter;
38 void __rcu **slot;
39 unsigned int base = idr->idr_base;
40 unsigned int id = *nextid;
41
42 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
43 return -EINVAL;
44 if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR)))
45 idr->idr_rt.gfp_mask |= IDR_RT_MARKER;
46
47 id = (id < base) ? 0 : id - base;
48 radix_tree_iter_init(&iter, id);
49 slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
50 if (IS_ERR(slot))
51 return PTR_ERR(slot);
52
53 *nextid = iter.index + base;
54 /* there is a memory barrier inside radix_tree_iter_replace() */
55 radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
56 radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
57
58 return 0;
59 }
60 EXPORT_SYMBOL_GPL(idr_alloc_u32);
61
62 /**
63 * idr_alloc() - Allocate an ID.
64 * @idr: IDR handle.
65 * @ptr: Pointer to be associated with the new ID.
66 * @start: The minimum ID (inclusive).
67 * @end: The maximum ID (exclusive).
68 * @gfp: Memory allocation flags.
69 *
70 * Allocates an unused ID in the range specified by @start and @end. If
71 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
72 * callers to use @start + N as @end as long as N is within integer range.
73 *
74 * The caller should provide their own locking to ensure that two
75 * concurrent modifications to the IDR are not possible. Read-only
76 * accesses to the IDR may be done under the RCU read lock or may
77 * exclude simultaneous writers.
78 *
79 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
80 * or -ENOSPC if no free IDs could be found.
81 */
idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp)82 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
83 {
84 u32 id = start;
85 int ret;
86
87 if (WARN_ON_ONCE(start < 0))
88 return -EINVAL;
89
90 ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
91 if (ret)
92 return ret;
93
94 return id;
95 }
96 EXPORT_SYMBOL_GPL(idr_alloc);
97
98 /**
99 * idr_alloc_cyclic() - Allocate an ID cyclically.
100 * @idr: IDR handle.
101 * @ptr: Pointer to be associated with the new ID.
102 * @start: The minimum ID (inclusive).
103 * @end: The maximum ID (exclusive).
104 * @gfp: Memory allocation flags.
105 *
106 * Allocates an unused ID in the range specified by @nextid and @end. If
107 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
108 * callers to use @start + N as @end as long as N is within integer range.
109 * The search for an unused ID will start at the last ID allocated and will
110 * wrap around to @start if no free IDs are found before reaching @end.
111 *
112 * The caller should provide their own locking to ensure that two
113 * concurrent modifications to the IDR are not possible. Read-only
114 * accesses to the IDR may be done under the RCU read lock or may
115 * exclude simultaneous writers.
116 *
117 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
118 * or -ENOSPC if no free IDs could be found.
119 */
idr_alloc_cyclic(struct idr * idr,void * ptr,int start,int end,gfp_t gfp)120 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
121 {
122 u32 id = idr->idr_next;
123 int err, max = end > 0 ? end - 1 : INT_MAX;
124
125 if ((int)id < start)
126 id = start;
127
128 err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 if ((err == -ENOSPC) && (id > start)) {
130 id = start;
131 err = idr_alloc_u32(idr, ptr, &id, max, gfp);
132 }
133 if (err)
134 return err;
135
136 idr->idr_next = id + 1;
137 return id;
138 }
139 EXPORT_SYMBOL(idr_alloc_cyclic);
140
141 /**
142 * idr_remove() - Remove an ID from the IDR.
143 * @idr: IDR handle.
144 * @id: Pointer ID.
145 *
146 * Removes this ID from the IDR. If the ID was not previously in the IDR,
147 * this function returns %NULL.
148 *
149 * Since this function modifies the IDR, the caller should provide their
150 * own locking to ensure that concurrent modification of the same IDR is
151 * not possible.
152 *
153 * Return: The pointer formerly associated with this ID.
154 */
idr_remove(struct idr * idr,unsigned long id)155 void *idr_remove(struct idr *idr, unsigned long id)
156 {
157 return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
158 }
159 EXPORT_SYMBOL_GPL(idr_remove);
160
161 /**
162 * idr_find() - Return pointer for given ID.
163 * @idr: IDR handle.
164 * @id: Pointer ID.
165 *
166 * Looks up the pointer associated with this ID. A %NULL pointer may
167 * indicate that @id is not allocated or that the %NULL pointer was
168 * associated with this ID.
169 *
170 * This function can be called under rcu_read_lock(), given that the leaf
171 * pointers lifetimes are correctly managed.
172 *
173 * Return: The pointer associated with this ID.
174 */
idr_find(const struct idr * idr,unsigned long id)175 void *idr_find(const struct idr *idr, unsigned long id)
176 {
177 return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
178 }
179 EXPORT_SYMBOL_GPL(idr_find);
180
181 /**
182 * idr_for_each() - Iterate through all stored pointers.
183 * @idr: IDR handle.
184 * @fn: Function to be called for each pointer.
185 * @data: Data passed to callback function.
186 *
187 * The callback function will be called for each entry in @idr, passing
188 * the ID, the entry and @data.
189 *
190 * If @fn returns anything other than %0, the iteration stops and that
191 * value is returned from this function.
192 *
193 * idr_for_each() can be called concurrently with idr_alloc() and
194 * idr_remove() if protected by RCU. Newly added entries may not be
195 * seen and deleted entries may be seen, but adding and removing entries
196 * will not cause other entries to be skipped, nor spurious ones to be seen.
197 */
idr_for_each(const struct idr * idr,int (* fn)(int id,void * p,void * data),void * data)198 int idr_for_each(const struct idr *idr,
199 int (*fn)(int id, void *p, void *data), void *data)
200 {
201 struct radix_tree_iter iter;
202 void __rcu **slot;
203 int base = idr->idr_base;
204
205 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
206 int ret;
207 unsigned long id = iter.index + base;
208
209 if (WARN_ON_ONCE(id > INT_MAX))
210 break;
211 ret = fn(id, rcu_dereference_raw(*slot), data);
212 if (ret)
213 return ret;
214 }
215
216 return 0;
217 }
218 EXPORT_SYMBOL(idr_for_each);
219
220 /**
221 * idr_get_next() - Find next populated entry.
222 * @idr: IDR handle.
223 * @nextid: Pointer to an ID.
224 *
225 * Returns the next populated entry in the tree with an ID greater than
226 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
227 * to the ID of the found value. To use in a loop, the value pointed to by
228 * nextid must be incremented by the user.
229 */
idr_get_next(struct idr * idr,int * nextid)230 void *idr_get_next(struct idr *idr, int *nextid)
231 {
232 struct radix_tree_iter iter;
233 void __rcu **slot;
234 unsigned long base = idr->idr_base;
235 unsigned long id = *nextid;
236
237 id = (id < base) ? 0 : id - base;
238 slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
239 if (!slot)
240 return NULL;
241 id = iter.index + base;
242
243 if (WARN_ON_ONCE(id > INT_MAX))
244 return NULL;
245
246 *nextid = id;
247 return rcu_dereference_raw(*slot);
248 }
249 EXPORT_SYMBOL(idr_get_next);
250
251 /**
252 * idr_get_next_ul() - Find next populated entry.
253 * @idr: IDR handle.
254 * @nextid: Pointer to an ID.
255 *
256 * Returns the next populated entry in the tree with an ID greater than
257 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
258 * to the ID of the found value. To use in a loop, the value pointed to by
259 * nextid must be incremented by the user.
260 */
idr_get_next_ul(struct idr * idr,unsigned long * nextid)261 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
262 {
263 struct radix_tree_iter iter;
264 void __rcu **slot;
265 unsigned long base = idr->idr_base;
266 unsigned long id = *nextid;
267
268 id = (id < base) ? 0 : id - base;
269 slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
270 if (!slot)
271 return NULL;
272
273 *nextid = iter.index + base;
274 return rcu_dereference_raw(*slot);
275 }
276 EXPORT_SYMBOL(idr_get_next_ul);
277
278 /**
279 * idr_replace() - replace pointer for given ID.
280 * @idr: IDR handle.
281 * @ptr: New pointer to associate with the ID.
282 * @id: ID to change.
283 *
284 * Replace the pointer registered with an ID and return the old value.
285 * This function can be called under the RCU read lock concurrently with
286 * idr_alloc() and idr_remove() (as long as the ID being removed is not
287 * the one being replaced!).
288 *
289 * Returns: the old value on success. %-ENOENT indicates that @id was not
290 * found. %-EINVAL indicates that @ptr was not valid.
291 */
idr_replace(struct idr * idr,void * ptr,unsigned long id)292 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
293 {
294 struct radix_tree_node *node;
295 void __rcu **slot = NULL;
296 void *entry;
297
298 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
299 return ERR_PTR(-EINVAL);
300 id -= idr->idr_base;
301
302 entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
303 if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
304 return ERR_PTR(-ENOENT);
305
306 __radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
307
308 return entry;
309 }
310 EXPORT_SYMBOL(idr_replace);
311
312 /**
313 * DOC: IDA description
314 *
315 * The IDA is an ID allocator which does not provide the ability to
316 * associate an ID with a pointer. As such, it only needs to store one
317 * bit per ID, and so is more space efficient than an IDR. To use an IDA,
318 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
319 * then initialise it using ida_init()). To allocate a new ID, call
320 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
321 * To free an ID, call ida_free().
322 *
323 * ida_destroy() can be used to dispose of an IDA without needing to
324 * free the individual IDs in it. You can use ida_is_empty() to find
325 * out whether the IDA has any IDs currently allocated.
326 *
327 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
328 * limitation, it should be quite straightforward to raise the maximum.
329 */
330
331 /*
332 * Developer's notes:
333 *
334 * The IDA uses the functionality provided by the IDR & radix tree to store
335 * bitmaps in each entry. The IDR_FREE tag means there is at least one bit
336 * free, unlike the IDR where it means at least one entry is free.
337 *
338 * I considered telling the radix tree that each slot is an order-10 node
339 * and storing the bit numbers in the radix tree, but the radix tree can't
340 * allow a single multiorder entry at index 0, which would significantly
341 * increase memory consumption for the IDA. So instead we divide the index
342 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
343 *
344 * As an optimisation, if there are only a few low bits set in any given
345 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
346 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
347 * directly in the entry. By being really tricksy, we could store
348 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
349 * for 0-3 allocated IDs.
350 *
351 * We allow the radix tree 'exceptional' count to get out of date. Nothing
352 * in the IDA nor the radix tree code checks it. If it becomes important
353 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
354 * calls to radix_tree_iter_replace() which will correct the exceptional
355 * count.
356 *
357 * The IDA always requires a lock to alloc/free. If we add a 'test_bit'
358 * equivalent, it will still need locking. Going to RCU lookup would require
359 * using RCU to free bitmaps, and that's not trivial without embedding an
360 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
361 * bitmap, which is excessive.
362 */
363
364 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
365
ida_get_new_above(struct ida * ida,int start)366 static int ida_get_new_above(struct ida *ida, int start)
367 {
368 struct radix_tree_root *root = &ida->ida_rt;
369 void __rcu **slot;
370 struct radix_tree_iter iter;
371 struct ida_bitmap *bitmap;
372 unsigned long index;
373 unsigned bit, ebit;
374 int new;
375
376 index = start / IDA_BITMAP_BITS;
377 bit = start % IDA_BITMAP_BITS;
378 ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
379
380 slot = radix_tree_iter_init(&iter, index);
381 for (;;) {
382 if (slot)
383 slot = radix_tree_next_slot(slot, &iter,
384 RADIX_TREE_ITER_TAGGED);
385 if (!slot) {
386 slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
387 if (IS_ERR(slot)) {
388 if (slot == ERR_PTR(-ENOMEM))
389 return -EAGAIN;
390 return PTR_ERR(slot);
391 }
392 }
393 if (iter.index > index) {
394 bit = 0;
395 ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
396 }
397 new = iter.index * IDA_BITMAP_BITS;
398 bitmap = rcu_dereference_raw(*slot);
399 if (radix_tree_exception(bitmap)) {
400 unsigned long tmp = (unsigned long)bitmap;
401 ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
402 if (ebit < BITS_PER_LONG) {
403 tmp |= 1UL << ebit;
404 rcu_assign_pointer(*slot, (void *)tmp);
405 return new + ebit -
406 RADIX_TREE_EXCEPTIONAL_SHIFT;
407 }
408 bitmap = this_cpu_xchg(ida_bitmap, NULL);
409 if (!bitmap)
410 return -EAGAIN;
411 bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
412 rcu_assign_pointer(*slot, bitmap);
413 }
414
415 if (bitmap) {
416 bit = find_next_zero_bit(bitmap->bitmap,
417 IDA_BITMAP_BITS, bit);
418 new += bit;
419 if (new < 0)
420 return -ENOSPC;
421 if (bit == IDA_BITMAP_BITS)
422 continue;
423
424 __set_bit(bit, bitmap->bitmap);
425 if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
426 radix_tree_iter_tag_clear(root, &iter,
427 IDR_FREE);
428 } else {
429 new += bit;
430 if (new < 0)
431 return -ENOSPC;
432 if (ebit < BITS_PER_LONG) {
433 bitmap = (void *)((1UL << ebit) |
434 RADIX_TREE_EXCEPTIONAL_ENTRY);
435 radix_tree_iter_replace(root, &iter, slot,
436 bitmap);
437 return new;
438 }
439 bitmap = this_cpu_xchg(ida_bitmap, NULL);
440 if (!bitmap)
441 return -EAGAIN;
442 __set_bit(bit, bitmap->bitmap);
443 radix_tree_iter_replace(root, &iter, slot, bitmap);
444 }
445
446 return new;
447 }
448 }
449
ida_remove(struct ida * ida,int id)450 static void ida_remove(struct ida *ida, int id)
451 {
452 unsigned long index = id / IDA_BITMAP_BITS;
453 unsigned offset = id % IDA_BITMAP_BITS;
454 struct ida_bitmap *bitmap;
455 unsigned long *btmp;
456 struct radix_tree_iter iter;
457 void __rcu **slot;
458
459 slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
460 if (!slot)
461 goto err;
462
463 bitmap = rcu_dereference_raw(*slot);
464 if (radix_tree_exception(bitmap)) {
465 btmp = (unsigned long *)slot;
466 offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
467 if (offset >= BITS_PER_LONG)
468 goto err;
469 } else {
470 btmp = bitmap->bitmap;
471 }
472 if (!test_bit(offset, btmp))
473 goto err;
474
475 __clear_bit(offset, btmp);
476 radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
477 if (radix_tree_exception(bitmap)) {
478 if (rcu_dereference_raw(*slot) ==
479 (void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
480 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
481 } else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
482 kfree(bitmap);
483 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
484 }
485 return;
486 err:
487 WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
488 }
489
490 /**
491 * ida_destroy() - Free all IDs.
492 * @ida: IDA handle.
493 *
494 * Calling this function frees all IDs and releases all resources used
495 * by an IDA. When this call returns, the IDA is empty and can be reused
496 * or freed. If the IDA is already empty, there is no need to call this
497 * function.
498 *
499 * Context: Any context.
500 */
ida_destroy(struct ida * ida)501 void ida_destroy(struct ida *ida)
502 {
503 unsigned long flags;
504 struct radix_tree_iter iter;
505 void __rcu **slot;
506
507 xa_lock_irqsave(&ida->ida_rt, flags);
508 radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
509 struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
510 if (!radix_tree_exception(bitmap))
511 kfree(bitmap);
512 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
513 }
514 xa_unlock_irqrestore(&ida->ida_rt, flags);
515 }
516 EXPORT_SYMBOL(ida_destroy);
517
518 /**
519 * ida_alloc_range() - Allocate an unused ID.
520 * @ida: IDA handle.
521 * @min: Lowest ID to allocate.
522 * @max: Highest ID to allocate.
523 * @gfp: Memory allocation flags.
524 *
525 * Allocate an ID between @min and @max, inclusive. The allocated ID will
526 * not exceed %INT_MAX, even if @max is larger.
527 *
528 * Context: Any context.
529 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
530 * or %-ENOSPC if there are no free IDs.
531 */
ida_alloc_range(struct ida * ida,unsigned int min,unsigned int max,gfp_t gfp)532 int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
533 gfp_t gfp)
534 {
535 int id = 0;
536 unsigned long flags;
537
538 if ((int)min < 0)
539 return -ENOSPC;
540
541 if ((int)max < 0)
542 max = INT_MAX;
543
544 again:
545 xa_lock_irqsave(&ida->ida_rt, flags);
546 id = ida_get_new_above(ida, min);
547 if (id > (int)max) {
548 ida_remove(ida, id);
549 id = -ENOSPC;
550 }
551 xa_unlock_irqrestore(&ida->ida_rt, flags);
552
553 if (unlikely(id == -EAGAIN)) {
554 if (!ida_pre_get(ida, gfp))
555 return -ENOMEM;
556 goto again;
557 }
558
559 return id;
560 }
561 EXPORT_SYMBOL(ida_alloc_range);
562
563 /**
564 * ida_free() - Release an allocated ID.
565 * @ida: IDA handle.
566 * @id: Previously allocated ID.
567 *
568 * Context: Any context.
569 */
ida_free(struct ida * ida,unsigned int id)570 void ida_free(struct ida *ida, unsigned int id)
571 {
572 unsigned long flags;
573
574 BUG_ON((int)id < 0);
575 xa_lock_irqsave(&ida->ida_rt, flags);
576 ida_remove(ida, id);
577 xa_unlock_irqrestore(&ida->ida_rt, flags);
578 }
579 EXPORT_SYMBOL(ida_free);
580