1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_dcb_lib.h"
7 
8 /**
9  * ice_setup_rx_ctx - Configure a receive ring context
10  * @ring: The Rx ring to configure
11  *
12  * Configure the Rx descriptor ring in RLAN context.
13  */
ice_setup_rx_ctx(struct ice_ring * ring)14 static int ice_setup_rx_ctx(struct ice_ring *ring)
15 {
16 	struct ice_vsi *vsi = ring->vsi;
17 	struct ice_hw *hw = &vsi->back->hw;
18 	u32 rxdid = ICE_RXDID_FLEX_NIC;
19 	struct ice_rlan_ctx rlan_ctx;
20 	u32 regval;
21 	u16 pf_q;
22 	int err;
23 
24 	/* what is Rx queue number in global space of 2K Rx queues */
25 	pf_q = vsi->rxq_map[ring->q_index];
26 
27 	/* clear the context structure first */
28 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
29 
30 	rlan_ctx.base = ring->dma >> 7;
31 
32 	rlan_ctx.qlen = ring->count;
33 
34 	/* Receive Packet Data Buffer Size.
35 	 * The Packet Data Buffer Size is defined in 128 byte units.
36 	 */
37 	rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
38 
39 	/* use 32 byte descriptors */
40 	rlan_ctx.dsize = 1;
41 
42 	/* Strip the Ethernet CRC bytes before the packet is posted to host
43 	 * memory.
44 	 */
45 	rlan_ctx.crcstrip = 1;
46 
47 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
48 	rlan_ctx.l2tsel = 1;
49 
50 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
51 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
52 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
53 
54 	/* This controls whether VLAN is stripped from inner headers
55 	 * The VLAN in the inner L2 header is stripped to the receive
56 	 * descriptor if enabled by this flag.
57 	 */
58 	rlan_ctx.showiv = 0;
59 
60 	/* Max packet size for this queue - must not be set to a larger value
61 	 * than 5 x DBUF
62 	 */
63 	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
64 			       ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
65 
66 	/* Rx queue threshold in units of 64 */
67 	rlan_ctx.lrxqthresh = 1;
68 
69 	 /* Enable Flexible Descriptors in the queue context which
70 	  * allows this driver to select a specific receive descriptor format
71 	  */
72 	if (vsi->type != ICE_VSI_VF) {
73 		regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
74 		regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
75 			QRXFLXP_CNTXT_RXDID_IDX_M;
76 
77 		/* increasing context priority to pick up profile ID;
78 		 * default is 0x01; setting to 0x03 to ensure profile
79 		 * is programming if prev context is of same priority
80 		 */
81 		regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
82 			QRXFLXP_CNTXT_RXDID_PRIO_M;
83 
84 		wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
85 	}
86 
87 	/* Absolute queue number out of 2K needs to be passed */
88 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
89 	if (err) {
90 		dev_err(&vsi->back->pdev->dev,
91 			"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
92 			pf_q, err);
93 		return -EIO;
94 	}
95 
96 	if (vsi->type == ICE_VSI_VF)
97 		return 0;
98 
99 	/* init queue specific tail register */
100 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
101 	writel(0, ring->tail);
102 	ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
103 
104 	return 0;
105 }
106 
107 /**
108  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
109  * @ring: The Tx ring to configure
110  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
111  * @pf_q: queue index in the PF space
112  *
113  * Configure the Tx descriptor ring in TLAN context.
114  */
115 static void
ice_setup_tx_ctx(struct ice_ring * ring,struct ice_tlan_ctx * tlan_ctx,u16 pf_q)116 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
117 {
118 	struct ice_vsi *vsi = ring->vsi;
119 	struct ice_hw *hw = &vsi->back->hw;
120 
121 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
122 
123 	tlan_ctx->port_num = vsi->port_info->lport;
124 
125 	/* Transmit Queue Length */
126 	tlan_ctx->qlen = ring->count;
127 
128 	ice_set_cgd_num(tlan_ctx, ring);
129 
130 	/* PF number */
131 	tlan_ctx->pf_num = hw->pf_id;
132 
133 	/* queue belongs to a specific VSI type
134 	 * VF / VM index should be programmed per vmvf_type setting:
135 	 * for vmvf_type = VF, it is VF number between 0-256
136 	 * for vmvf_type = VM, it is VM number between 0-767
137 	 * for PF or EMP this field should be set to zero
138 	 */
139 	switch (vsi->type) {
140 	case ICE_VSI_LB:
141 		/* fall through */
142 	case ICE_VSI_PF:
143 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
144 		break;
145 	case ICE_VSI_VF:
146 		/* Firmware expects vmvf_num to be absolute VF ID */
147 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
148 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
149 		break;
150 	default:
151 		return;
152 	}
153 
154 	/* make sure the context is associated with the right VSI */
155 	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
156 
157 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
158 	tlan_ctx->tso_qnum = pf_q;
159 
160 	/* Legacy or Advanced Host Interface:
161 	 * 0: Advanced Host Interface
162 	 * 1: Legacy Host Interface
163 	 */
164 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
165 }
166 
167 /**
168  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
169  * @pf: the PF being configured
170  * @pf_q: the PF queue
171  * @ena: enable or disable state of the queue
172  *
173  * This routine will wait for the given Rx queue of the PF to reach the
174  * enabled or disabled state.
175  * Returns -ETIMEDOUT in case of failing to reach the requested state after
176  * multiple retries; else will return 0 in case of success.
177  */
ice_pf_rxq_wait(struct ice_pf * pf,int pf_q,bool ena)178 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
179 {
180 	int i;
181 
182 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
183 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
184 			      QRX_CTRL_QENA_STAT_M))
185 			return 0;
186 
187 		usleep_range(20, 40);
188 	}
189 
190 	return -ETIMEDOUT;
191 }
192 
193 /**
194  * ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
195  * @vsi: the VSI being configured
196  * @ena: start or stop the Rx rings
197  * @rxq_idx: Rx queue index
198  */
199 #ifndef CONFIG_PCI_IOV
200 static
201 #endif /* !CONFIG_PCI_IOV */
ice_vsi_ctrl_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx)202 int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
203 {
204 	int pf_q = vsi->rxq_map[rxq_idx];
205 	struct ice_pf *pf = vsi->back;
206 	struct ice_hw *hw = &pf->hw;
207 	int ret = 0;
208 	u32 rx_reg;
209 
210 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
211 
212 	/* Skip if the queue is already in the requested state */
213 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
214 		return 0;
215 
216 	/* turn on/off the queue */
217 	if (ena)
218 		rx_reg |= QRX_CTRL_QENA_REQ_M;
219 	else
220 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
221 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
222 
223 	/* wait for the change to finish */
224 	ret = ice_pf_rxq_wait(pf, pf_q, ena);
225 	if (ret)
226 		dev_err(&pf->pdev->dev,
227 			"VSI idx %d Rx ring %d %sable timeout\n",
228 			vsi->idx, pf_q, (ena ? "en" : "dis"));
229 
230 	return ret;
231 }
232 
233 /**
234  * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
235  * @vsi: the VSI being configured
236  * @ena: start or stop the Rx rings
237  */
ice_vsi_ctrl_rx_rings(struct ice_vsi * vsi,bool ena)238 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
239 {
240 	int i, ret = 0;
241 
242 	for (i = 0; i < vsi->num_rxq; i++) {
243 		ret = ice_vsi_ctrl_rx_ring(vsi, ena, i);
244 		if (ret)
245 			break;
246 	}
247 
248 	return ret;
249 }
250 
251 /**
252  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
253  * @vsi: VSI pointer
254  *
255  * On error: returns error code (negative)
256  * On success: returns 0
257  */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)258 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
259 {
260 	struct ice_pf *pf = vsi->back;
261 
262 	/* allocate memory for both Tx and Rx ring pointers */
263 	vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
264 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
265 	if (!vsi->tx_rings)
266 		return -ENOMEM;
267 
268 	vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
269 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
270 	if (!vsi->rx_rings)
271 		goto err_rings;
272 
273 	vsi->txq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
274 				    sizeof(*vsi->txq_map), GFP_KERNEL);
275 
276 	if (!vsi->txq_map)
277 		goto err_txq_map;
278 
279 	vsi->rxq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
280 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
281 	if (!vsi->rxq_map)
282 		goto err_rxq_map;
283 
284 
285 	/* There is no need to allocate q_vectors for a loopback VSI. */
286 	if (vsi->type == ICE_VSI_LB)
287 		return 0;
288 
289 	/* allocate memory for q_vector pointers */
290 	vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors,
291 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
292 	if (!vsi->q_vectors)
293 		goto err_vectors;
294 
295 	return 0;
296 
297 err_vectors:
298 	devm_kfree(&pf->pdev->dev, vsi->rxq_map);
299 err_rxq_map:
300 	devm_kfree(&pf->pdev->dev, vsi->txq_map);
301 err_txq_map:
302 	devm_kfree(&pf->pdev->dev, vsi->rx_rings);
303 err_rings:
304 	devm_kfree(&pf->pdev->dev, vsi->tx_rings);
305 	return -ENOMEM;
306 }
307 
308 /**
309  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
310  * @vsi: the VSI being configured
311  */
ice_vsi_set_num_desc(struct ice_vsi * vsi)312 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
313 {
314 	switch (vsi->type) {
315 	case ICE_VSI_PF:
316 		/* fall through */
317 	case ICE_VSI_LB:
318 		vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
319 		vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
320 		break;
321 	default:
322 		dev_dbg(&vsi->back->pdev->dev,
323 			"Not setting number of Tx/Rx descriptors for VSI type %d\n",
324 			vsi->type);
325 		break;
326 	}
327 }
328 
329 /**
330  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
331  * @vsi: the VSI being configured
332  * @vf_id: ID of the VF being configured
333  *
334  * Return 0 on success and a negative value on error
335  */
ice_vsi_set_num_qs(struct ice_vsi * vsi,u16 vf_id)336 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
337 {
338 	struct ice_pf *pf = vsi->back;
339 	struct ice_vf *vf = NULL;
340 
341 	if (vsi->type == ICE_VSI_VF)
342 		vsi->vf_id = vf_id;
343 
344 	switch (vsi->type) {
345 	case ICE_VSI_PF:
346 		vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf),
347 				       num_online_cpus());
348 
349 		pf->num_lan_tx = vsi->alloc_txq;
350 
351 		/* only 1 Rx queue unless RSS is enabled */
352 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
353 			vsi->alloc_rxq = 1;
354 		else
355 			vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf),
356 					       num_online_cpus());
357 
358 		pf->num_lan_rx = vsi->alloc_rxq;
359 
360 		vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq);
361 		break;
362 	case ICE_VSI_VF:
363 		vf = &pf->vf[vsi->vf_id];
364 		vsi->alloc_txq = vf->num_vf_qs;
365 		vsi->alloc_rxq = vf->num_vf_qs;
366 		/* pf->num_vf_msix includes (VF miscellaneous vector +
367 		 * data queue interrupts). Since vsi->num_q_vectors is number
368 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
369 		 * original vector count
370 		 */
371 		vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF;
372 		break;
373 	case ICE_VSI_LB:
374 		vsi->alloc_txq = 1;
375 		vsi->alloc_rxq = 1;
376 		break;
377 	default:
378 		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
379 		break;
380 	}
381 
382 	ice_vsi_set_num_desc(vsi);
383 }
384 
385 /**
386  * ice_get_free_slot - get the next non-NULL location index in array
387  * @array: array to search
388  * @size: size of the array
389  * @curr: last known occupied index to be used as a search hint
390  *
391  * void * is being used to keep the functionality generic. This lets us use this
392  * function on any array of pointers.
393  */
ice_get_free_slot(void * array,int size,int curr)394 static int ice_get_free_slot(void *array, int size, int curr)
395 {
396 	int **tmp_array = (int **)array;
397 	int next;
398 
399 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
400 		next = curr + 1;
401 	} else {
402 		int i = 0;
403 
404 		while ((i < size) && (tmp_array[i]))
405 			i++;
406 		if (i == size)
407 			next = ICE_NO_VSI;
408 		else
409 			next = i;
410 	}
411 	return next;
412 }
413 
414 /**
415  * ice_vsi_delete - delete a VSI from the switch
416  * @vsi: pointer to VSI being removed
417  */
ice_vsi_delete(struct ice_vsi * vsi)418 void ice_vsi_delete(struct ice_vsi *vsi)
419 {
420 	struct ice_pf *pf = vsi->back;
421 	struct ice_vsi_ctx *ctxt;
422 	enum ice_status status;
423 
424 	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
425 	if (!ctxt)
426 		return;
427 
428 	if (vsi->type == ICE_VSI_VF)
429 		ctxt->vf_num = vsi->vf_id;
430 	ctxt->vsi_num = vsi->vsi_num;
431 
432 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
433 
434 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
435 	if (status)
436 		dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
437 			vsi->vsi_num);
438 
439 	devm_kfree(&pf->pdev->dev, ctxt);
440 }
441 
442 /**
443  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
444  * @vsi: pointer to VSI being cleared
445  */
ice_vsi_free_arrays(struct ice_vsi * vsi)446 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
447 {
448 	struct ice_pf *pf = vsi->back;
449 
450 	/* free the ring and vector containers */
451 	if (vsi->q_vectors) {
452 		devm_kfree(&pf->pdev->dev, vsi->q_vectors);
453 		vsi->q_vectors = NULL;
454 	}
455 	if (vsi->tx_rings) {
456 		devm_kfree(&pf->pdev->dev, vsi->tx_rings);
457 		vsi->tx_rings = NULL;
458 	}
459 	if (vsi->rx_rings) {
460 		devm_kfree(&pf->pdev->dev, vsi->rx_rings);
461 		vsi->rx_rings = NULL;
462 	}
463 	if (vsi->txq_map) {
464 		devm_kfree(&pf->pdev->dev, vsi->txq_map);
465 		vsi->txq_map = NULL;
466 	}
467 	if (vsi->rxq_map) {
468 		devm_kfree(&pf->pdev->dev, vsi->rxq_map);
469 		vsi->rxq_map = NULL;
470 	}
471 }
472 
473 /**
474  * ice_vsi_clear - clean up and deallocate the provided VSI
475  * @vsi: pointer to VSI being cleared
476  *
477  * This deallocates the VSI's queue resources, removes it from the PF's
478  * VSI array if necessary, and deallocates the VSI
479  *
480  * Returns 0 on success, negative on failure
481  */
ice_vsi_clear(struct ice_vsi * vsi)482 int ice_vsi_clear(struct ice_vsi *vsi)
483 {
484 	struct ice_pf *pf = NULL;
485 
486 	if (!vsi)
487 		return 0;
488 
489 	if (!vsi->back)
490 		return -EINVAL;
491 
492 	pf = vsi->back;
493 
494 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
495 		dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
496 			vsi->idx);
497 		return -EINVAL;
498 	}
499 
500 	mutex_lock(&pf->sw_mutex);
501 	/* updates the PF for this cleared VSI */
502 
503 	pf->vsi[vsi->idx] = NULL;
504 	if (vsi->idx < pf->next_vsi)
505 		pf->next_vsi = vsi->idx;
506 
507 	ice_vsi_free_arrays(vsi);
508 	mutex_unlock(&pf->sw_mutex);
509 	devm_kfree(&pf->pdev->dev, vsi);
510 
511 	return 0;
512 }
513 
514 /**
515  * ice_msix_clean_rings - MSIX mode Interrupt Handler
516  * @irq: interrupt number
517  * @data: pointer to a q_vector
518  */
ice_msix_clean_rings(int __always_unused irq,void * data)519 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
520 {
521 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
522 
523 	if (!q_vector->tx.ring && !q_vector->rx.ring)
524 		return IRQ_HANDLED;
525 
526 	napi_schedule(&q_vector->napi);
527 
528 	return IRQ_HANDLED;
529 }
530 
531 /**
532  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
533  * @pf: board private structure
534  * @type: type of VSI
535  * @vf_id: ID of the VF being configured
536  *
537  * returns a pointer to a VSI on success, NULL on failure.
538  */
539 static struct ice_vsi *
ice_vsi_alloc(struct ice_pf * pf,enum ice_vsi_type type,u16 vf_id)540 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
541 {
542 	struct ice_vsi *vsi = NULL;
543 
544 	/* Need to protect the allocation of the VSIs at the PF level */
545 	mutex_lock(&pf->sw_mutex);
546 
547 	/* If we have already allocated our maximum number of VSIs,
548 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
549 	 * is available to be populated
550 	 */
551 	if (pf->next_vsi == ICE_NO_VSI) {
552 		dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
553 		goto unlock_pf;
554 	}
555 
556 	vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
557 	if (!vsi)
558 		goto unlock_pf;
559 
560 	vsi->type = type;
561 	vsi->back = pf;
562 	set_bit(__ICE_DOWN, vsi->state);
563 
564 	vsi->idx = pf->next_vsi;
565 
566 	if (type == ICE_VSI_VF)
567 		ice_vsi_set_num_qs(vsi, vf_id);
568 	else
569 		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
570 
571 	switch (vsi->type) {
572 	case ICE_VSI_PF:
573 		if (ice_vsi_alloc_arrays(vsi))
574 			goto err_rings;
575 
576 		/* Setup default MSIX irq handler for VSI */
577 		vsi->irq_handler = ice_msix_clean_rings;
578 		break;
579 	case ICE_VSI_VF:
580 		if (ice_vsi_alloc_arrays(vsi))
581 			goto err_rings;
582 		break;
583 	case ICE_VSI_LB:
584 		if (ice_vsi_alloc_arrays(vsi))
585 			goto err_rings;
586 		break;
587 	default:
588 		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
589 		goto unlock_pf;
590 	}
591 
592 	/* fill VSI slot in the PF struct */
593 	pf->vsi[pf->next_vsi] = vsi;
594 
595 	/* prepare pf->next_vsi for next use */
596 	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
597 					 pf->next_vsi);
598 	goto unlock_pf;
599 
600 err_rings:
601 	devm_kfree(&pf->pdev->dev, vsi);
602 	vsi = NULL;
603 unlock_pf:
604 	mutex_unlock(&pf->sw_mutex);
605 	return vsi;
606 }
607 
608 /**
609  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
610  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
611  *
612  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
613  */
__ice_vsi_get_qs_contig(struct ice_qs_cfg * qs_cfg)614 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
615 {
616 	int offset, i;
617 
618 	mutex_lock(qs_cfg->qs_mutex);
619 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
620 					    0, qs_cfg->q_count, 0);
621 	if (offset >= qs_cfg->pf_map_size) {
622 		mutex_unlock(qs_cfg->qs_mutex);
623 		return -ENOMEM;
624 	}
625 
626 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
627 	for (i = 0; i < qs_cfg->q_count; i++)
628 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
629 	mutex_unlock(qs_cfg->qs_mutex);
630 
631 	return 0;
632 }
633 
634 /**
635  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
636  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
637  *
638  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
639  */
__ice_vsi_get_qs_sc(struct ice_qs_cfg * qs_cfg)640 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
641 {
642 	int i, index = 0;
643 
644 	mutex_lock(qs_cfg->qs_mutex);
645 	for (i = 0; i < qs_cfg->q_count; i++) {
646 		index = find_next_zero_bit(qs_cfg->pf_map,
647 					   qs_cfg->pf_map_size, index);
648 		if (index >= qs_cfg->pf_map_size)
649 			goto err_scatter;
650 		set_bit(index, qs_cfg->pf_map);
651 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
652 	}
653 	mutex_unlock(qs_cfg->qs_mutex);
654 
655 	return 0;
656 err_scatter:
657 	for (index = 0; index < i; index++) {
658 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
659 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
660 	}
661 	mutex_unlock(qs_cfg->qs_mutex);
662 
663 	return -ENOMEM;
664 }
665 
666 /**
667  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
668  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
669  *
670  * This function first tries to find contiguous space. If it is not successful,
671  * it tries with the scatter approach.
672  *
673  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
674  */
__ice_vsi_get_qs(struct ice_qs_cfg * qs_cfg)675 static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
676 {
677 	int ret = 0;
678 
679 	ret = __ice_vsi_get_qs_contig(qs_cfg);
680 	if (ret) {
681 		/* contig failed, so try with scatter approach */
682 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
683 		qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
684 					qs_cfg->scatter_count);
685 		ret = __ice_vsi_get_qs_sc(qs_cfg);
686 	}
687 	return ret;
688 }
689 
690 /**
691  * ice_vsi_get_qs - Assign queues from PF to VSI
692  * @vsi: the VSI to assign queues to
693  *
694  * Returns 0 on success and a negative value on error
695  */
ice_vsi_get_qs(struct ice_vsi * vsi)696 static int ice_vsi_get_qs(struct ice_vsi *vsi)
697 {
698 	struct ice_pf *pf = vsi->back;
699 	struct ice_qs_cfg tx_qs_cfg = {
700 		.qs_mutex = &pf->avail_q_mutex,
701 		.pf_map = pf->avail_txqs,
702 		.pf_map_size = pf->max_pf_txqs,
703 		.q_count = vsi->alloc_txq,
704 		.scatter_count = ICE_MAX_SCATTER_TXQS,
705 		.vsi_map = vsi->txq_map,
706 		.vsi_map_offset = 0,
707 		.mapping_mode = vsi->tx_mapping_mode
708 	};
709 	struct ice_qs_cfg rx_qs_cfg = {
710 		.qs_mutex = &pf->avail_q_mutex,
711 		.pf_map = pf->avail_rxqs,
712 		.pf_map_size = pf->max_pf_rxqs,
713 		.q_count = vsi->alloc_rxq,
714 		.scatter_count = ICE_MAX_SCATTER_RXQS,
715 		.vsi_map = vsi->rxq_map,
716 		.vsi_map_offset = 0,
717 		.mapping_mode = vsi->rx_mapping_mode
718 	};
719 	int ret = 0;
720 
721 	vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
722 	vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
723 
724 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
725 	if (!ret)
726 		ret = __ice_vsi_get_qs(&rx_qs_cfg);
727 
728 	return ret;
729 }
730 
731 /**
732  * ice_vsi_put_qs - Release queues from VSI to PF
733  * @vsi: the VSI that is going to release queues
734  */
ice_vsi_put_qs(struct ice_vsi * vsi)735 void ice_vsi_put_qs(struct ice_vsi *vsi)
736 {
737 	struct ice_pf *pf = vsi->back;
738 	int i;
739 
740 	mutex_lock(&pf->avail_q_mutex);
741 
742 	for (i = 0; i < vsi->alloc_txq; i++) {
743 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
744 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
745 	}
746 
747 	for (i = 0; i < vsi->alloc_rxq; i++) {
748 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
749 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
750 	}
751 
752 	mutex_unlock(&pf->avail_q_mutex);
753 }
754 
755 /**
756  * ice_is_safe_mode
757  * @pf: pointer to the PF struct
758  *
759  * returns true if driver is in safe mode, false otherwise
760  */
ice_is_safe_mode(struct ice_pf * pf)761 bool ice_is_safe_mode(struct ice_pf *pf)
762 {
763 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
764 }
765 
766 /**
767  * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
768  * @vsi: the VSI being removed
769  */
ice_rss_clean(struct ice_vsi * vsi)770 static void ice_rss_clean(struct ice_vsi *vsi)
771 {
772 	struct ice_pf *pf;
773 
774 	pf = vsi->back;
775 
776 	if (vsi->rss_hkey_user)
777 		devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
778 	if (vsi->rss_lut_user)
779 		devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
780 }
781 
782 /**
783  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
784  * @vsi: the VSI being configured
785  */
ice_vsi_set_rss_params(struct ice_vsi * vsi)786 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
787 {
788 	struct ice_hw_common_caps *cap;
789 	struct ice_pf *pf = vsi->back;
790 
791 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
792 		vsi->rss_size = 1;
793 		return;
794 	}
795 
796 	cap = &pf->hw.func_caps.common_cap;
797 	switch (vsi->type) {
798 	case ICE_VSI_PF:
799 		/* PF VSI will inherit RSS instance of PF */
800 		vsi->rss_table_size = cap->rss_table_size;
801 		vsi->rss_size = min_t(int, num_online_cpus(),
802 				      BIT(cap->rss_table_entry_width));
803 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
804 		break;
805 	case ICE_VSI_VF:
806 		/* VF VSI will gets a small RSS table
807 		 * For VSI_LUT, LUT size should be set to 64 bytes
808 		 */
809 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
810 		vsi->rss_size = min_t(int, num_online_cpus(),
811 				      BIT(cap->rss_table_entry_width));
812 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
813 		break;
814 	case ICE_VSI_LB:
815 		break;
816 	default:
817 		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
818 			 vsi->type);
819 		break;
820 	}
821 }
822 
823 /**
824  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
825  * @ctxt: the VSI context being set
826  *
827  * This initializes a default VSI context for all sections except the Queues.
828  */
ice_set_dflt_vsi_ctx(struct ice_vsi_ctx * ctxt)829 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
830 {
831 	u32 table = 0;
832 
833 	memset(&ctxt->info, 0, sizeof(ctxt->info));
834 	/* VSI's should be allocated from shared pool */
835 	ctxt->alloc_from_pool = true;
836 	/* Src pruning enabled by default */
837 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
838 	/* Traffic from VSI can be sent to LAN */
839 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
840 	/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
841 	 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
842 	 * packets untagged/tagged.
843 	 */
844 	ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
845 				  ICE_AQ_VSI_VLAN_MODE_M) >>
846 				 ICE_AQ_VSI_VLAN_MODE_S);
847 	/* Have 1:1 UP mapping for both ingress/egress tables */
848 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
849 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
850 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
851 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
852 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
853 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
854 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
855 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
856 	ctxt->info.ingress_table = cpu_to_le32(table);
857 	ctxt->info.egress_table = cpu_to_le32(table);
858 	/* Have 1:1 UP mapping for outer to inner UP table */
859 	ctxt->info.outer_up_table = cpu_to_le32(table);
860 	/* No Outer tag support outer_tag_flags remains to zero */
861 }
862 
863 /**
864  * ice_vsi_setup_q_map - Setup a VSI queue map
865  * @vsi: the VSI being configured
866  * @ctxt: VSI context structure
867  */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)868 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
869 {
870 	u16 offset = 0, qmap = 0, tx_count = 0;
871 	u16 qcount_tx = vsi->alloc_txq;
872 	u16 qcount_rx = vsi->alloc_rxq;
873 	u16 tx_numq_tc, rx_numq_tc;
874 	u16 pow = 0, max_rss = 0;
875 	bool ena_tc0 = false;
876 	u8 netdev_tc = 0;
877 	int i;
878 
879 	/* at least TC0 should be enabled by default */
880 	if (vsi->tc_cfg.numtc) {
881 		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
882 			ena_tc0 = true;
883 	} else {
884 		ena_tc0 = true;
885 	}
886 
887 	if (ena_tc0) {
888 		vsi->tc_cfg.numtc++;
889 		vsi->tc_cfg.ena_tc |= 1;
890 	}
891 
892 	rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
893 	if (!rx_numq_tc)
894 		rx_numq_tc = 1;
895 	tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
896 	if (!tx_numq_tc)
897 		tx_numq_tc = 1;
898 
899 	/* TC mapping is a function of the number of Rx queues assigned to the
900 	 * VSI for each traffic class and the offset of these queues.
901 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
902 	 * queues allocated to TC0. No:of queues is a power-of-2.
903 	 *
904 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
905 	 * queue, this way, traffic for the given TC will be sent to the default
906 	 * queue.
907 	 *
908 	 * Setup number and offset of Rx queues for all TCs for the VSI
909 	 */
910 
911 	qcount_rx = rx_numq_tc;
912 
913 	/* qcount will change if RSS is enabled */
914 	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
915 		if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
916 			if (vsi->type == ICE_VSI_PF)
917 				max_rss = ICE_MAX_LG_RSS_QS;
918 			else
919 				max_rss = ICE_MAX_SMALL_RSS_QS;
920 			qcount_rx = min_t(int, rx_numq_tc, max_rss);
921 			qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
922 		}
923 	}
924 
925 	/* find the (rounded up) power-of-2 of qcount */
926 	pow = order_base_2(qcount_rx);
927 
928 	ice_for_each_traffic_class(i) {
929 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
930 			/* TC is not enabled */
931 			vsi->tc_cfg.tc_info[i].qoffset = 0;
932 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
933 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
934 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
935 			ctxt->info.tc_mapping[i] = 0;
936 			continue;
937 		}
938 
939 		/* TC is enabled */
940 		vsi->tc_cfg.tc_info[i].qoffset = offset;
941 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
942 		vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
943 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
944 
945 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
946 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
947 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
948 			 ICE_AQ_VSI_TC_Q_NUM_M);
949 		offset += qcount_rx;
950 		tx_count += tx_numq_tc;
951 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
952 	}
953 
954 	/* if offset is non-zero, means it is calculated correctly based on
955 	 * enabled TCs for a given VSI otherwise qcount_rx will always
956 	 * be correct and non-zero because it is based off - VSI's
957 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
958 	 * at least 1)
959 	 */
960 	if (offset)
961 		vsi->num_rxq = offset;
962 	else
963 		vsi->num_rxq = qcount_rx;
964 
965 	vsi->num_txq = tx_count;
966 
967 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
968 		dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
969 		/* since there is a chance that num_rxq could have been changed
970 		 * in the above for loop, make num_txq equal to num_rxq.
971 		 */
972 		vsi->num_txq = vsi->num_rxq;
973 	}
974 
975 	/* Rx queue mapping */
976 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
977 	/* q_mapping buffer holds the info for the first queue allocated for
978 	 * this VSI in the PF space and also the number of queues associated
979 	 * with this VSI.
980 	 */
981 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
982 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
983 }
984 
985 /**
986  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
987  * @ctxt: the VSI context being set
988  * @vsi: the VSI being configured
989  */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)990 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
991 {
992 	u8 lut_type, hash_type;
993 	struct ice_pf *pf;
994 
995 	pf = vsi->back;
996 
997 	switch (vsi->type) {
998 	case ICE_VSI_PF:
999 		/* PF VSI will inherit RSS instance of PF */
1000 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1001 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1002 		break;
1003 	case ICE_VSI_VF:
1004 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1005 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1006 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1007 		break;
1008 	case ICE_VSI_LB:
1009 		dev_dbg(&pf->pdev->dev, "Unsupported VSI type %d\n", vsi->type);
1010 		return;
1011 	default:
1012 		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1013 		return;
1014 	}
1015 
1016 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1017 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1018 				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1019 				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1020 }
1021 
1022 /**
1023  * ice_vsi_init - Create and initialize a VSI
1024  * @vsi: the VSI being configured
1025  *
1026  * This initializes a VSI context depending on the VSI type to be added and
1027  * passes it down to the add_vsi aq command to create a new VSI.
1028  */
ice_vsi_init(struct ice_vsi * vsi)1029 static int ice_vsi_init(struct ice_vsi *vsi)
1030 {
1031 	struct ice_pf *pf = vsi->back;
1032 	struct ice_hw *hw = &pf->hw;
1033 	struct ice_vsi_ctx *ctxt;
1034 	int ret = 0;
1035 
1036 	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
1037 	if (!ctxt)
1038 		return -ENOMEM;
1039 
1040 	ctxt->info = vsi->info;
1041 	switch (vsi->type) {
1042 	case ICE_VSI_LB:
1043 		/* fall through */
1044 	case ICE_VSI_PF:
1045 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1046 		break;
1047 	case ICE_VSI_VF:
1048 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1049 		/* VF number here is the absolute VF number (0-255) */
1050 		ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
1051 		break;
1052 	default:
1053 		return -ENODEV;
1054 	}
1055 
1056 	ice_set_dflt_vsi_ctx(ctxt);
1057 	/* if the switch is in VEB mode, allow VSI loopback */
1058 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1059 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1060 
1061 	/* Set LUT type and HASH type if RSS is enabled */
1062 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
1063 		ice_set_rss_vsi_ctx(ctxt, vsi);
1064 
1065 	ctxt->info.sw_id = vsi->port_info->sw_id;
1066 	ice_vsi_setup_q_map(vsi, ctxt);
1067 
1068 	/* Enable MAC Antispoof with new VSI being initialized or updated */
1069 	if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) {
1070 		ctxt->info.valid_sections |=
1071 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1072 		ctxt->info.sec_flags |=
1073 			ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
1074 	}
1075 
1076 	/* Allow control frames out of main VSI */
1077 	if (vsi->type == ICE_VSI_PF) {
1078 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1079 		ctxt->info.valid_sections |=
1080 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1081 	}
1082 
1083 	ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1084 	if (ret) {
1085 		dev_err(&pf->pdev->dev,
1086 			"Add VSI failed, err %d\n", ret);
1087 		return -EIO;
1088 	}
1089 
1090 	/* keep context for update VSI operations */
1091 	vsi->info = ctxt->info;
1092 
1093 	/* record VSI number returned */
1094 	vsi->vsi_num = ctxt->vsi_num;
1095 
1096 	devm_kfree(&pf->pdev->dev, ctxt);
1097 	return ret;
1098 }
1099 
1100 /**
1101  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
1102  * @vsi: VSI having the memory freed
1103  * @v_idx: index of the vector to be freed
1104  */
ice_free_q_vector(struct ice_vsi * vsi,int v_idx)1105 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
1106 {
1107 	struct ice_q_vector *q_vector;
1108 	struct ice_pf *pf = vsi->back;
1109 	struct ice_ring *ring;
1110 
1111 	if (!vsi->q_vectors[v_idx]) {
1112 		dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
1113 			v_idx);
1114 		return;
1115 	}
1116 	q_vector = vsi->q_vectors[v_idx];
1117 
1118 	ice_for_each_ring(ring, q_vector->tx)
1119 		ring->q_vector = NULL;
1120 	ice_for_each_ring(ring, q_vector->rx)
1121 		ring->q_vector = NULL;
1122 
1123 	/* only VSI with an associated netdev is set up with NAPI */
1124 	if (vsi->netdev)
1125 		netif_napi_del(&q_vector->napi);
1126 
1127 	devm_kfree(&pf->pdev->dev, q_vector);
1128 	vsi->q_vectors[v_idx] = NULL;
1129 }
1130 
1131 /**
1132  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
1133  * @vsi: the VSI having memory freed
1134  */
ice_vsi_free_q_vectors(struct ice_vsi * vsi)1135 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
1136 {
1137 	int v_idx;
1138 
1139 	ice_for_each_q_vector(vsi, v_idx)
1140 		ice_free_q_vector(vsi, v_idx);
1141 }
1142 
1143 /**
1144  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
1145  * @vsi: the VSI being configured
1146  * @v_idx: index of the vector in the VSI struct
1147  *
1148  * We allocate one q_vector. If allocation fails we return -ENOMEM.
1149  */
ice_vsi_alloc_q_vector(struct ice_vsi * vsi,int v_idx)1150 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
1151 {
1152 	struct ice_pf *pf = vsi->back;
1153 	struct ice_q_vector *q_vector;
1154 
1155 	/* allocate q_vector */
1156 	q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
1157 	if (!q_vector)
1158 		return -ENOMEM;
1159 
1160 	q_vector->vsi = vsi;
1161 	q_vector->v_idx = v_idx;
1162 	if (vsi->type == ICE_VSI_VF)
1163 		goto out;
1164 	/* only set affinity_mask if the CPU is online */
1165 	if (cpu_online(v_idx))
1166 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
1167 
1168 	/* This will not be called in the driver load path because the netdev
1169 	 * will not be created yet. All other cases with register the NAPI
1170 	 * handler here (i.e. resume, reset/rebuild, etc.)
1171 	 */
1172 	if (vsi->netdev)
1173 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
1174 			       NAPI_POLL_WEIGHT);
1175 
1176 out:
1177 	/* tie q_vector and VSI together */
1178 	vsi->q_vectors[v_idx] = q_vector;
1179 
1180 	return 0;
1181 }
1182 
1183 /**
1184  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
1185  * @vsi: the VSI being configured
1186  *
1187  * We allocate one q_vector per queue interrupt. If allocation fails we
1188  * return -ENOMEM.
1189  */
ice_vsi_alloc_q_vectors(struct ice_vsi * vsi)1190 static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
1191 {
1192 	struct ice_pf *pf = vsi->back;
1193 	int v_idx = 0, num_q_vectors;
1194 	int err;
1195 
1196 	if (vsi->q_vectors[0]) {
1197 		dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
1198 			vsi->vsi_num);
1199 		return -EEXIST;
1200 	}
1201 
1202 	num_q_vectors = vsi->num_q_vectors;
1203 
1204 	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
1205 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
1206 		if (err)
1207 			goto err_out;
1208 	}
1209 
1210 	return 0;
1211 
1212 err_out:
1213 	while (v_idx--)
1214 		ice_free_q_vector(vsi, v_idx);
1215 
1216 	dev_err(&pf->pdev->dev,
1217 		"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
1218 		vsi->num_q_vectors, vsi->vsi_num, err);
1219 	vsi->num_q_vectors = 0;
1220 	return err;
1221 }
1222 
1223 /**
1224  * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1225  * @vsi: ptr to the VSI
1226  *
1227  * This should only be called after ice_vsi_alloc() which allocates the
1228  * corresponding SW VSI structure and initializes num_queue_pairs for the
1229  * newly allocated VSI.
1230  *
1231  * Returns 0 on success or negative on failure
1232  */
ice_vsi_setup_vector_base(struct ice_vsi * vsi)1233 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1234 {
1235 	struct ice_pf *pf = vsi->back;
1236 	u16 num_q_vectors;
1237 
1238 	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1239 	if (vsi->type == ICE_VSI_VF)
1240 		return 0;
1241 
1242 	if (vsi->base_vector) {
1243 		dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
1244 			vsi->vsi_num, vsi->base_vector);
1245 		return -EEXIST;
1246 	}
1247 
1248 	num_q_vectors = vsi->num_q_vectors;
1249 	/* reserve slots from OS requested IRQs */
1250 	vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1251 				       vsi->idx);
1252 	if (vsi->base_vector < 0) {
1253 		dev_err(&pf->pdev->dev,
1254 			"Failed to get tracking for %d vectors for VSI %d, err=%d\n",
1255 			num_q_vectors, vsi->vsi_num, vsi->base_vector);
1256 		return -ENOENT;
1257 	}
1258 	pf->num_avail_sw_msix -= num_q_vectors;
1259 
1260 	return 0;
1261 }
1262 
1263 /**
1264  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1265  * @vsi: the VSI having rings deallocated
1266  */
ice_vsi_clear_rings(struct ice_vsi * vsi)1267 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1268 {
1269 	int i;
1270 
1271 	if (vsi->tx_rings) {
1272 		for (i = 0; i < vsi->alloc_txq; i++) {
1273 			if (vsi->tx_rings[i]) {
1274 				kfree_rcu(vsi->tx_rings[i], rcu);
1275 				vsi->tx_rings[i] = NULL;
1276 			}
1277 		}
1278 	}
1279 	if (vsi->rx_rings) {
1280 		for (i = 0; i < vsi->alloc_rxq; i++) {
1281 			if (vsi->rx_rings[i]) {
1282 				kfree_rcu(vsi->rx_rings[i], rcu);
1283 				vsi->rx_rings[i] = NULL;
1284 			}
1285 		}
1286 	}
1287 }
1288 
1289 /**
1290  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1291  * @vsi: VSI which is having rings allocated
1292  */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1293 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1294 {
1295 	struct ice_pf *pf = vsi->back;
1296 	int i;
1297 
1298 	/* Allocate Tx rings */
1299 	for (i = 0; i < vsi->alloc_txq; i++) {
1300 		struct ice_ring *ring;
1301 
1302 		/* allocate with kzalloc(), free with kfree_rcu() */
1303 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1304 
1305 		if (!ring)
1306 			goto err_out;
1307 
1308 		ring->q_index = i;
1309 		ring->reg_idx = vsi->txq_map[i];
1310 		ring->ring_active = false;
1311 		ring->vsi = vsi;
1312 		ring->dev = &pf->pdev->dev;
1313 		ring->count = vsi->num_tx_desc;
1314 		vsi->tx_rings[i] = ring;
1315 	}
1316 
1317 	/* Allocate Rx rings */
1318 	for (i = 0; i < vsi->alloc_rxq; i++) {
1319 		struct ice_ring *ring;
1320 
1321 		/* allocate with kzalloc(), free with kfree_rcu() */
1322 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1323 		if (!ring)
1324 			goto err_out;
1325 
1326 		ring->q_index = i;
1327 		ring->reg_idx = vsi->rxq_map[i];
1328 		ring->ring_active = false;
1329 		ring->vsi = vsi;
1330 		ring->netdev = vsi->netdev;
1331 		ring->dev = &pf->pdev->dev;
1332 		ring->count = vsi->num_rx_desc;
1333 		vsi->rx_rings[i] = ring;
1334 	}
1335 
1336 	return 0;
1337 
1338 err_out:
1339 	ice_vsi_clear_rings(vsi);
1340 	return -ENOMEM;
1341 }
1342 
1343 /**
1344  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1345  * @vsi: the VSI being configured
1346  *
1347  * This function maps descriptor rings to the queue-specific vectors allotted
1348  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1349  * and Rx rings to the vector as "efficiently" as possible.
1350  */
1351 #ifdef CONFIG_DCB
ice_vsi_map_rings_to_vectors(struct ice_vsi * vsi)1352 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1353 #else
1354 static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1355 #endif /* CONFIG_DCB */
1356 {
1357 	int q_vectors = vsi->num_q_vectors;
1358 	int tx_rings_rem, rx_rings_rem;
1359 	int v_id;
1360 
1361 	/* initially assigning remaining rings count to VSIs num queue value */
1362 	tx_rings_rem = vsi->num_txq;
1363 	rx_rings_rem = vsi->num_rxq;
1364 
1365 	for (v_id = 0; v_id < q_vectors; v_id++) {
1366 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1367 		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1368 
1369 		/* Tx rings mapping to vector */
1370 		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1371 		q_vector->num_ring_tx = tx_rings_per_v;
1372 		q_vector->tx.ring = NULL;
1373 		q_vector->tx.itr_idx = ICE_TX_ITR;
1374 		q_base = vsi->num_txq - tx_rings_rem;
1375 
1376 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1377 			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1378 
1379 			tx_ring->q_vector = q_vector;
1380 			tx_ring->next = q_vector->tx.ring;
1381 			q_vector->tx.ring = tx_ring;
1382 		}
1383 		tx_rings_rem -= tx_rings_per_v;
1384 
1385 		/* Rx rings mapping to vector */
1386 		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1387 		q_vector->num_ring_rx = rx_rings_per_v;
1388 		q_vector->rx.ring = NULL;
1389 		q_vector->rx.itr_idx = ICE_RX_ITR;
1390 		q_base = vsi->num_rxq - rx_rings_rem;
1391 
1392 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1393 			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1394 
1395 			rx_ring->q_vector = q_vector;
1396 			rx_ring->next = q_vector->rx.ring;
1397 			q_vector->rx.ring = rx_ring;
1398 		}
1399 		rx_rings_rem -= rx_rings_per_v;
1400 	}
1401 }
1402 
1403 /**
1404  * ice_vsi_manage_rss_lut - disable/enable RSS
1405  * @vsi: the VSI being changed
1406  * @ena: boolean value indicating if this is an enable or disable request
1407  *
1408  * In the event of disable request for RSS, this function will zero out RSS
1409  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1410  * LUT.
1411  */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1412 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1413 {
1414 	int err = 0;
1415 	u8 *lut;
1416 
1417 	lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
1418 			   GFP_KERNEL);
1419 	if (!lut)
1420 		return -ENOMEM;
1421 
1422 	if (ena) {
1423 		if (vsi->rss_lut_user)
1424 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1425 		else
1426 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1427 					 vsi->rss_size);
1428 	}
1429 
1430 	err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1431 	devm_kfree(&vsi->back->pdev->dev, lut);
1432 	return err;
1433 }
1434 
1435 /**
1436  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1437  * @vsi: VSI to be configured
1438  */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1439 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1440 {
1441 	struct ice_aqc_get_set_rss_keys *key;
1442 	struct ice_pf *pf = vsi->back;
1443 	enum ice_status status;
1444 	int err = 0;
1445 	u8 *lut;
1446 
1447 	vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
1448 
1449 	lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
1450 	if (!lut)
1451 		return -ENOMEM;
1452 
1453 	if (vsi->rss_lut_user)
1454 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1455 	else
1456 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1457 
1458 	status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1459 				    vsi->rss_table_size);
1460 
1461 	if (status) {
1462 		dev_err(&pf->pdev->dev,
1463 			"set_rss_lut failed, error %d\n", status);
1464 		err = -EIO;
1465 		goto ice_vsi_cfg_rss_exit;
1466 	}
1467 
1468 	key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL);
1469 	if (!key) {
1470 		err = -ENOMEM;
1471 		goto ice_vsi_cfg_rss_exit;
1472 	}
1473 
1474 	if (vsi->rss_hkey_user)
1475 		memcpy(key,
1476 		       (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1477 		       ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1478 	else
1479 		netdev_rss_key_fill((void *)key,
1480 				    ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1481 
1482 	status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1483 
1484 	if (status) {
1485 		dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n",
1486 			status);
1487 		err = -EIO;
1488 	}
1489 
1490 	devm_kfree(&pf->pdev->dev, key);
1491 ice_vsi_cfg_rss_exit:
1492 	devm_kfree(&pf->pdev->dev, lut);
1493 	return err;
1494 }
1495 
1496 /**
1497  * ice_add_mac_to_list - Add a MAC address filter entry to the list
1498  * @vsi: the VSI to be forwarded to
1499  * @add_list: pointer to the list which contains MAC filter entries
1500  * @macaddr: the MAC address to be added.
1501  *
1502  * Adds MAC address filter entry to the temp list
1503  *
1504  * Returns 0 on success or ENOMEM on failure.
1505  */
ice_add_mac_to_list(struct ice_vsi * vsi,struct list_head * add_list,const u8 * macaddr)1506 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
1507 			const u8 *macaddr)
1508 {
1509 	struct ice_fltr_list_entry *tmp;
1510 	struct ice_pf *pf = vsi->back;
1511 
1512 	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
1513 	if (!tmp)
1514 		return -ENOMEM;
1515 
1516 	tmp->fltr_info.flag = ICE_FLTR_TX;
1517 	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1518 	tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
1519 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1520 	tmp->fltr_info.vsi_handle = vsi->idx;
1521 	ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
1522 
1523 	INIT_LIST_HEAD(&tmp->list_entry);
1524 	list_add(&tmp->list_entry, add_list);
1525 
1526 	return 0;
1527 }
1528 
1529 /**
1530  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1531  * @vsi: the VSI to be updated
1532  */
ice_update_eth_stats(struct ice_vsi * vsi)1533 void ice_update_eth_stats(struct ice_vsi *vsi)
1534 {
1535 	struct ice_eth_stats *prev_es, *cur_es;
1536 	struct ice_hw *hw = &vsi->back->hw;
1537 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1538 
1539 	prev_es = &vsi->eth_stats_prev;
1540 	cur_es = &vsi->eth_stats;
1541 
1542 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1543 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1544 
1545 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1546 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1547 
1548 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1549 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1550 
1551 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1552 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1553 
1554 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1555 			  &prev_es->rx_discards, &cur_es->rx_discards);
1556 
1557 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1558 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1559 
1560 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1561 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1562 
1563 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1564 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1565 
1566 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1567 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1568 
1569 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1570 			  &prev_es->tx_errors, &cur_es->tx_errors);
1571 
1572 	vsi->stat_offsets_loaded = true;
1573 }
1574 
1575 /**
1576  * ice_free_fltr_list - free filter lists helper
1577  * @dev: pointer to the device struct
1578  * @h: pointer to the list head to be freed
1579  *
1580  * Helper function to free filter lists previously created using
1581  * ice_add_mac_to_list
1582  */
ice_free_fltr_list(struct device * dev,struct list_head * h)1583 void ice_free_fltr_list(struct device *dev, struct list_head *h)
1584 {
1585 	struct ice_fltr_list_entry *e, *tmp;
1586 
1587 	list_for_each_entry_safe(e, tmp, h, list_entry) {
1588 		list_del(&e->list_entry);
1589 		devm_kfree(dev, e);
1590 	}
1591 }
1592 
1593 /**
1594  * ice_vsi_add_vlan - Add VSI membership for given VLAN
1595  * @vsi: the VSI being configured
1596  * @vid: VLAN ID to be added
1597  */
ice_vsi_add_vlan(struct ice_vsi * vsi,u16 vid)1598 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
1599 {
1600 	struct ice_fltr_list_entry *tmp;
1601 	struct ice_pf *pf = vsi->back;
1602 	LIST_HEAD(tmp_add_list);
1603 	enum ice_status status;
1604 	int err = 0;
1605 
1606 	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
1607 	if (!tmp)
1608 		return -ENOMEM;
1609 
1610 	tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1611 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1612 	tmp->fltr_info.flag = ICE_FLTR_TX;
1613 	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1614 	tmp->fltr_info.vsi_handle = vsi->idx;
1615 	tmp->fltr_info.l_data.vlan.vlan_id = vid;
1616 
1617 	INIT_LIST_HEAD(&tmp->list_entry);
1618 	list_add(&tmp->list_entry, &tmp_add_list);
1619 
1620 	status = ice_add_vlan(&pf->hw, &tmp_add_list);
1621 	if (status) {
1622 		err = -ENODEV;
1623 		dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
1624 			vid, vsi->vsi_num);
1625 	}
1626 
1627 	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1628 	return err;
1629 }
1630 
1631 /**
1632  * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1633  * @vsi: the VSI being configured
1634  * @vid: VLAN ID to be removed
1635  *
1636  * Returns 0 on success and negative on failure
1637  */
ice_vsi_kill_vlan(struct ice_vsi * vsi,u16 vid)1638 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1639 {
1640 	struct ice_fltr_list_entry *list;
1641 	struct ice_pf *pf = vsi->back;
1642 	LIST_HEAD(tmp_add_list);
1643 	enum ice_status status;
1644 	int err = 0;
1645 
1646 	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
1647 	if (!list)
1648 		return -ENOMEM;
1649 
1650 	list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1651 	list->fltr_info.vsi_handle = vsi->idx;
1652 	list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1653 	list->fltr_info.l_data.vlan.vlan_id = vid;
1654 	list->fltr_info.flag = ICE_FLTR_TX;
1655 	list->fltr_info.src_id = ICE_SRC_ID_VSI;
1656 
1657 	INIT_LIST_HEAD(&list->list_entry);
1658 	list_add(&list->list_entry, &tmp_add_list);
1659 
1660 	status = ice_remove_vlan(&pf->hw, &tmp_add_list);
1661 	if (status == ICE_ERR_DOES_NOT_EXIST) {
1662 		dev_dbg(&pf->pdev->dev,
1663 			"Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n",
1664 			vid, vsi->vsi_num, status);
1665 	} else if (status) {
1666 		dev_err(&pf->pdev->dev,
1667 			"Error removing VLAN %d on vsi %i error: %d\n",
1668 			vid, vsi->vsi_num, status);
1669 		err = -EIO;
1670 	}
1671 
1672 	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1673 	return err;
1674 }
1675 
1676 /**
1677  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1678  * @vsi: the VSI being configured
1679  *
1680  * Return 0 on success and a negative value on error
1681  * Configure the Rx VSI for operation.
1682  */
ice_vsi_cfg_rxqs(struct ice_vsi * vsi)1683 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1684 {
1685 	u16 i;
1686 
1687 	if (vsi->type == ICE_VSI_VF)
1688 		goto setup_rings;
1689 
1690 	if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
1691 		vsi->max_frame = vsi->netdev->mtu +
1692 			ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1693 	else
1694 		vsi->max_frame = ICE_RXBUF_2048;
1695 
1696 	vsi->rx_buf_len = ICE_RXBUF_2048;
1697 setup_rings:
1698 	/* set up individual rings */
1699 	for (i = 0; i < vsi->num_rxq; i++) {
1700 		int err;
1701 
1702 		err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1703 		if (err) {
1704 			dev_err(&vsi->back->pdev->dev,
1705 				"ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1706 				i, err);
1707 			return err;
1708 		}
1709 	}
1710 
1711 	return 0;
1712 }
1713 
1714 /**
1715  * ice_vsi_cfg_txq - Configure single Tx queue
1716  * @vsi: the VSI that queue belongs to
1717  * @ring: Tx ring to be configured
1718  * @tc_q_idx: queue index within given TC
1719  * @qg_buf: queue group buffer
1720  * @tc: TC that Tx ring belongs to
1721  */
1722 static int
ice_vsi_cfg_txq(struct ice_vsi * vsi,struct ice_ring * ring,u16 tc_q_idx,struct ice_aqc_add_tx_qgrp * qg_buf,u8 tc)1723 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, u16 tc_q_idx,
1724 		struct ice_aqc_add_tx_qgrp *qg_buf, u8 tc)
1725 {
1726 	struct ice_tlan_ctx tlan_ctx = { 0 };
1727 	struct ice_aqc_add_txqs_perq *txq;
1728 	struct ice_pf *pf = vsi->back;
1729 	u8 buf_len = sizeof(*qg_buf);
1730 	enum ice_status status;
1731 	u16 pf_q;
1732 
1733 	pf_q = ring->reg_idx;
1734 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
1735 	/* copy context contents into the qg_buf */
1736 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
1737 	ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
1738 		    ice_tlan_ctx_info);
1739 
1740 	/* init queue specific tail reg. It is referred as
1741 	 * transmit comm scheduler queue doorbell.
1742 	 */
1743 	ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
1744 
1745 	/* Add unique software queue handle of the Tx queue per
1746 	 * TC into the VSI Tx ring
1747 	 */
1748 	ring->q_handle = tc_q_idx;
1749 
1750 	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
1751 				 1, qg_buf, buf_len, NULL);
1752 	if (status) {
1753 		dev_err(&pf->pdev->dev,
1754 			"Failed to set LAN Tx queue context, error: %d\n",
1755 			status);
1756 		return -ENODEV;
1757 	}
1758 
1759 	/* Add Tx Queue TEID into the VSI Tx ring from the
1760 	 * response. This will complete configuring and
1761 	 * enabling the queue.
1762 	 */
1763 	txq = &qg_buf->txqs[0];
1764 	if (pf_q == le16_to_cpu(txq->txq_id))
1765 		ring->txq_teid = le32_to_cpu(txq->q_teid);
1766 
1767 	return 0;
1768 }
1769 
1770 /**
1771  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1772  * @vsi: the VSI being configured
1773  * @rings: Tx ring array to be configured
1774  * @offset: offset within vsi->txq_map
1775  *
1776  * Return 0 on success and a negative value on error
1777  * Configure the Tx VSI for operation.
1778  */
1779 static int
ice_vsi_cfg_txqs(struct ice_vsi * vsi,struct ice_ring ** rings,int offset)1780 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
1781 {
1782 	struct ice_aqc_add_tx_qgrp *qg_buf;
1783 	struct ice_pf *pf = vsi->back;
1784 	u16 q_idx = 0, i;
1785 	int err = 0;
1786 	u8 tc;
1787 
1788 	qg_buf = devm_kzalloc(&pf->pdev->dev, sizeof(*qg_buf), GFP_KERNEL);
1789 	if (!qg_buf)
1790 		return -ENOMEM;
1791 
1792 	qg_buf->num_txqs = 1;
1793 
1794 	/* set up and configure the Tx queues for each enabled TC */
1795 	ice_for_each_traffic_class(tc) {
1796 		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
1797 			break;
1798 
1799 		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
1800 			err = ice_vsi_cfg_txq(vsi, rings[q_idx], i + offset,
1801 					      qg_buf, tc);
1802 			if (err)
1803 				goto err_cfg_txqs;
1804 
1805 			q_idx++;
1806 		}
1807 	}
1808 err_cfg_txqs:
1809 	devm_kfree(&pf->pdev->dev, qg_buf);
1810 	return err;
1811 }
1812 
1813 /**
1814  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1815  * @vsi: the VSI being configured
1816  *
1817  * Return 0 on success and a negative value on error
1818  * Configure the Tx VSI for operation.
1819  */
ice_vsi_cfg_lan_txqs(struct ice_vsi * vsi)1820 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1821 {
1822 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
1823 }
1824 
1825 /**
1826  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1827  * @intrl: interrupt rate limit in usecs
1828  * @gran: interrupt rate limit granularity in usecs
1829  *
1830  * This function converts a decimal interrupt rate limit in usecs to the format
1831  * expected by firmware.
1832  */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1833 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1834 {
1835 	u32 val = intrl / gran;
1836 
1837 	if (val)
1838 		return val | GLINT_RATE_INTRL_ENA_M;
1839 	return 0;
1840 }
1841 
1842 /**
1843  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
1844  * @hw: board specific structure
1845  */
ice_cfg_itr_gran(struct ice_hw * hw)1846 static void ice_cfg_itr_gran(struct ice_hw *hw)
1847 {
1848 	u32 regval = rd32(hw, GLINT_CTL);
1849 
1850 	/* no need to update global register if ITR gran is already set */
1851 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
1852 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
1853 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
1854 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
1855 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
1856 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
1857 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
1858 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
1859 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
1860 		return;
1861 
1862 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
1863 		  GLINT_CTL_ITR_GRAN_200_M) |
1864 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
1865 		  GLINT_CTL_ITR_GRAN_100_M) |
1866 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
1867 		  GLINT_CTL_ITR_GRAN_50_M) |
1868 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
1869 		  GLINT_CTL_ITR_GRAN_25_M);
1870 	wr32(hw, GLINT_CTL, regval);
1871 }
1872 
1873 /**
1874  * ice_cfg_itr - configure the initial interrupt throttle values
1875  * @hw: pointer to the HW structure
1876  * @q_vector: interrupt vector that's being configured
1877  *
1878  * Configure interrupt throttling values for the ring containers that are
1879  * associated with the interrupt vector passed in.
1880  */
1881 static void
ice_cfg_itr(struct ice_hw * hw,struct ice_q_vector * q_vector)1882 ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1883 {
1884 	ice_cfg_itr_gran(hw);
1885 
1886 	if (q_vector->num_ring_rx) {
1887 		struct ice_ring_container *rc = &q_vector->rx;
1888 
1889 		/* if this value is set then don't overwrite with default */
1890 		if (!rc->itr_setting)
1891 			rc->itr_setting = ICE_DFLT_RX_ITR;
1892 
1893 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1894 		rc->next_update = jiffies + 1;
1895 		rc->current_itr = rc->target_itr;
1896 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1897 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1898 	}
1899 
1900 	if (q_vector->num_ring_tx) {
1901 		struct ice_ring_container *rc = &q_vector->tx;
1902 
1903 		/* if this value is set then don't overwrite with default */
1904 		if (!rc->itr_setting)
1905 			rc->itr_setting = ICE_DFLT_TX_ITR;
1906 
1907 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1908 		rc->next_update = jiffies + 1;
1909 		rc->current_itr = rc->target_itr;
1910 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1911 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1912 	}
1913 }
1914 
1915 /**
1916  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1917  * @vsi: the VSI being configured
1918  * @txq: Tx queue being mapped to MSI-X vector
1919  * @msix_idx: MSI-X vector index within the function
1920  * @itr_idx: ITR index of the interrupt cause
1921  *
1922  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1923  * within the function space.
1924  */
1925 #ifdef CONFIG_PCI_IOV
1926 void
ice_cfg_txq_interrupt(struct ice_vsi * vsi,u16 txq,u16 msix_idx,u16 itr_idx)1927 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1928 #else
1929 static void
1930 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1931 #endif /* CONFIG_PCI_IOV */
1932 {
1933 	struct ice_pf *pf = vsi->back;
1934 	struct ice_hw *hw = &pf->hw;
1935 	u32 val;
1936 
1937 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
1938 
1939 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1940 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
1941 
1942 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1943 }
1944 
1945 /**
1946  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1947  * @vsi: the VSI being configured
1948  * @rxq: Rx queue being mapped to MSI-X vector
1949  * @msix_idx: MSI-X vector index within the function
1950  * @itr_idx: ITR index of the interrupt cause
1951  *
1952  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1953  * within the function space.
1954  */
1955 #ifdef CONFIG_PCI_IOV
1956 void
ice_cfg_rxq_interrupt(struct ice_vsi * vsi,u16 rxq,u16 msix_idx,u16 itr_idx)1957 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1958 #else
1959 static void
1960 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1961 #endif /* CONFIG_PCI_IOV */
1962 {
1963 	struct ice_pf *pf = vsi->back;
1964 	struct ice_hw *hw = &pf->hw;
1965 	u32 val;
1966 
1967 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
1968 
1969 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1970 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
1971 
1972 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1973 
1974 	ice_flush(hw);
1975 }
1976 
1977 /**
1978  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1979  * @vsi: the VSI being configured
1980  *
1981  * This configures MSIX mode interrupts for the PF VSI, and should not be used
1982  * for the VF VSI.
1983  */
ice_vsi_cfg_msix(struct ice_vsi * vsi)1984 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1985 {
1986 	struct ice_pf *pf = vsi->back;
1987 	struct ice_hw *hw = &pf->hw;
1988 	u32 txq = 0, rxq = 0;
1989 	int i, q;
1990 
1991 	for (i = 0; i < vsi->num_q_vectors; i++) {
1992 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1993 		u16 reg_idx = q_vector->reg_idx;
1994 
1995 		ice_cfg_itr(hw, q_vector);
1996 
1997 		wr32(hw, GLINT_RATE(reg_idx),
1998 		     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1999 
2000 		/* Both Transmit Queue Interrupt Cause Control register
2001 		 * and Receive Queue Interrupt Cause control register
2002 		 * expects MSIX_INDX field to be the vector index
2003 		 * within the function space and not the absolute
2004 		 * vector index across PF or across device.
2005 		 * For SR-IOV VF VSIs queue vector index always starts
2006 		 * with 1 since first vector index(0) is used for OICR
2007 		 * in VF space. Since VMDq and other PF VSIs are within
2008 		 * the PF function space, use the vector index that is
2009 		 * tracked for this PF.
2010 		 */
2011 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2012 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2013 					      q_vector->tx.itr_idx);
2014 			txq++;
2015 		}
2016 
2017 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2018 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2019 					      q_vector->rx.itr_idx);
2020 			rxq++;
2021 		}
2022 	}
2023 }
2024 
2025 /**
2026  * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
2027  * @vsi: the VSI being changed
2028  */
ice_vsi_manage_vlan_insertion(struct ice_vsi * vsi)2029 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
2030 {
2031 	struct device *dev = &vsi->back->pdev->dev;
2032 	struct ice_hw *hw = &vsi->back->hw;
2033 	struct ice_vsi_ctx *ctxt;
2034 	enum ice_status status;
2035 	int ret = 0;
2036 
2037 	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2038 	if (!ctxt)
2039 		return -ENOMEM;
2040 
2041 	/* Here we are configuring the VSI to let the driver add VLAN tags by
2042 	 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
2043 	 * insertion happens in the Tx hot path, in ice_tx_map.
2044 	 */
2045 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
2046 
2047 	/* Preserve existing VLAN strip setting */
2048 	ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
2049 				  ICE_AQ_VSI_VLAN_EMOD_M);
2050 
2051 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2052 
2053 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2054 	if (status) {
2055 		dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
2056 			status, hw->adminq.sq_last_status);
2057 		ret = -EIO;
2058 		goto out;
2059 	}
2060 
2061 	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2062 out:
2063 	devm_kfree(dev, ctxt);
2064 	return ret;
2065 }
2066 
2067 /**
2068  * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
2069  * @vsi: the VSI being changed
2070  * @ena: boolean value indicating if this is a enable or disable request
2071  */
ice_vsi_manage_vlan_stripping(struct ice_vsi * vsi,bool ena)2072 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
2073 {
2074 	struct device *dev = &vsi->back->pdev->dev;
2075 	struct ice_hw *hw = &vsi->back->hw;
2076 	struct ice_vsi_ctx *ctxt;
2077 	enum ice_status status;
2078 	int ret = 0;
2079 
2080 	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2081 	if (!ctxt)
2082 		return -ENOMEM;
2083 
2084 	/* Here we are configuring what the VSI should do with the VLAN tag in
2085 	 * the Rx packet. We can either leave the tag in the packet or put it in
2086 	 * the Rx descriptor.
2087 	 */
2088 	if (ena)
2089 		/* Strip VLAN tag from Rx packet and put it in the desc */
2090 		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2091 	else
2092 		/* Disable stripping. Leave tag in packet */
2093 		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2094 
2095 	/* Allow all packets untagged/tagged */
2096 	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2097 
2098 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2099 
2100 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2101 	if (status) {
2102 		dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
2103 			ena, status, hw->adminq.sq_last_status);
2104 		ret = -EIO;
2105 		goto out;
2106 	}
2107 
2108 	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2109 out:
2110 	devm_kfree(dev, ctxt);
2111 	return ret;
2112 }
2113 
2114 /**
2115  * ice_vsi_start_rx_rings - start VSI's Rx rings
2116  * @vsi: the VSI whose rings are to be started
2117  *
2118  * Returns 0 on success and a negative value on error
2119  */
ice_vsi_start_rx_rings(struct ice_vsi * vsi)2120 int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
2121 {
2122 	return ice_vsi_ctrl_rx_rings(vsi, true);
2123 }
2124 
2125 /**
2126  * ice_vsi_stop_rx_rings - stop VSI's Rx rings
2127  * @vsi: the VSI
2128  *
2129  * Returns 0 on success and a negative value on error
2130  */
ice_vsi_stop_rx_rings(struct ice_vsi * vsi)2131 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
2132 {
2133 	return ice_vsi_ctrl_rx_rings(vsi, false);
2134 }
2135 
2136 /**
2137  * ice_trigger_sw_intr - trigger a software interrupt
2138  * @hw: pointer to the HW structure
2139  * @q_vector: interrupt vector to trigger the software interrupt for
2140  */
ice_trigger_sw_intr(struct ice_hw * hw,struct ice_q_vector * q_vector)2141 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
2142 {
2143 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
2144 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
2145 	     GLINT_DYN_CTL_SWINT_TRIG_M |
2146 	     GLINT_DYN_CTL_INTENA_M);
2147 }
2148 
2149 /**
2150  * ice_vsi_stop_tx_ring - Disable single Tx ring
2151  * @vsi: the VSI being configured
2152  * @rst_src: reset source
2153  * @rel_vmvf_num: Relative ID of VF/VM
2154  * @ring: Tx ring to be stopped
2155  * @txq_meta: Meta data of Tx ring to be stopped
2156  */
2157 #ifndef CONFIG_PCI_IOV
2158 static
2159 #endif /* !CONFIG_PCI_IOV */
2160 int
ice_vsi_stop_tx_ring(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_ring * ring,struct ice_txq_meta * txq_meta)2161 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2162 		     u16 rel_vmvf_num, struct ice_ring *ring,
2163 		     struct ice_txq_meta *txq_meta)
2164 {
2165 	struct ice_pf *pf = vsi->back;
2166 	struct ice_q_vector *q_vector;
2167 	struct ice_hw *hw = &pf->hw;
2168 	enum ice_status status;
2169 	u32 val;
2170 
2171 	/* clear cause_ena bit for disabled queues */
2172 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
2173 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
2174 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
2175 
2176 	/* software is expected to wait for 100 ns */
2177 	ndelay(100);
2178 
2179 	/* trigger a software interrupt for the vector
2180 	 * associated to the queue to schedule NAPI handler
2181 	 */
2182 	q_vector = ring->q_vector;
2183 	if (q_vector)
2184 		ice_trigger_sw_intr(hw, q_vector);
2185 
2186 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
2187 				 txq_meta->tc, 1, &txq_meta->q_handle,
2188 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
2189 				 rel_vmvf_num, NULL);
2190 
2191 	/* if the disable queue command was exercised during an
2192 	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
2193 	 * This is not an error as the reset operation disables
2194 	 * queues at the hardware level anyway.
2195 	 */
2196 	if (status == ICE_ERR_RESET_ONGOING) {
2197 		dev_dbg(&vsi->back->pdev->dev,
2198 			"Reset in progress. LAN Tx queues already disabled\n");
2199 	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
2200 		dev_dbg(&vsi->back->pdev->dev,
2201 			"LAN Tx queues do not exist, nothing to disable\n");
2202 	} else if (status) {
2203 		dev_err(&vsi->back->pdev->dev,
2204 			"Failed to disable LAN Tx queues, error: %d\n", status);
2205 		return -ENODEV;
2206 	}
2207 
2208 	return 0;
2209 }
2210 
2211 /**
2212  * ice_fill_txq_meta - Prepare the Tx queue's meta data
2213  * @vsi: VSI that ring belongs to
2214  * @ring: ring that txq_meta will be based on
2215  * @txq_meta: a helper struct that wraps Tx queue's information
2216  *
2217  * Set up a helper struct that will contain all the necessary fields that
2218  * are needed for stopping Tx queue
2219  */
2220 #ifndef CONFIG_PCI_IOV
2221 static
2222 #endif /* !CONFIG_PCI_IOV */
2223 void
ice_fill_txq_meta(struct ice_vsi * vsi,struct ice_ring * ring,struct ice_txq_meta * txq_meta)2224 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
2225 		  struct ice_txq_meta *txq_meta)
2226 {
2227 	u8 tc = 0;
2228 
2229 #ifdef CONFIG_DCB
2230 	tc = ring->dcb_tc;
2231 #endif /* CONFIG_DCB */
2232 	txq_meta->q_id = ring->reg_idx;
2233 	txq_meta->q_teid = ring->txq_teid;
2234 	txq_meta->q_handle = ring->q_handle;
2235 	txq_meta->vsi_idx = vsi->idx;
2236 	txq_meta->tc = tc;
2237 }
2238 
2239 /**
2240  * ice_vsi_stop_tx_rings - Disable Tx rings
2241  * @vsi: the VSI being configured
2242  * @rst_src: reset source
2243  * @rel_vmvf_num: Relative ID of VF/VM
2244  * @rings: Tx ring array to be stopped
2245  */
2246 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_ring ** rings)2247 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2248 		      u16 rel_vmvf_num, struct ice_ring **rings)
2249 {
2250 	u16 i, q_idx = 0;
2251 	int status;
2252 	u8 tc;
2253 
2254 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2255 		return -EINVAL;
2256 
2257 	/* set up the Tx queue list to be disabled for each enabled TC */
2258 	ice_for_each_traffic_class(tc) {
2259 		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
2260 			break;
2261 
2262 		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
2263 			struct ice_txq_meta txq_meta = { };
2264 
2265 			if (!rings || !rings[q_idx])
2266 				return -EINVAL;
2267 
2268 			ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2269 			status = ice_vsi_stop_tx_ring(vsi, rst_src,
2270 						      rel_vmvf_num,
2271 						      rings[q_idx], &txq_meta);
2272 
2273 			if (status)
2274 				return status;
2275 
2276 			q_idx++;
2277 		}
2278 	}
2279 
2280 	return 0;
2281 }
2282 
2283 /**
2284  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2285  * @vsi: the VSI being configured
2286  * @rst_src: reset source
2287  * @rel_vmvf_num: Relative ID of VF/VM
2288  */
2289 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)2290 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2291 			  u16 rel_vmvf_num)
2292 {
2293 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings);
2294 }
2295 
2296 /**
2297  * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2298  * @vsi: VSI to enable or disable VLAN pruning on
2299  * @ena: set to true to enable VLAN pruning and false to disable it
2300  * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2301  *
2302  * returns 0 if VSI is updated, negative otherwise
2303  */
ice_cfg_vlan_pruning(struct ice_vsi * vsi,bool ena,bool vlan_promisc)2304 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2305 {
2306 	struct ice_vsi_ctx *ctxt;
2307 	struct device *dev;
2308 	struct ice_pf *pf;
2309 	int status;
2310 
2311 	if (!vsi)
2312 		return -EINVAL;
2313 
2314 	pf = vsi->back;
2315 	dev = &pf->pdev->dev;
2316 	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2317 	if (!ctxt)
2318 		return -ENOMEM;
2319 
2320 	ctxt->info = vsi->info;
2321 
2322 	if (ena) {
2323 		ctxt->info.sec_flags |=
2324 			ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2325 			ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
2326 		ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2327 	} else {
2328 		ctxt->info.sec_flags &=
2329 			~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2330 			  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2331 		ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2332 	}
2333 
2334 	if (!vlan_promisc)
2335 		ctxt->info.valid_sections =
2336 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
2337 				    ICE_AQ_VSI_PROP_SW_VALID);
2338 
2339 	status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2340 	if (status) {
2341 		netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2342 			   ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2343 			   pf->hw.adminq.sq_last_status);
2344 		goto err_out;
2345 	}
2346 
2347 	vsi->info.sec_flags = ctxt->info.sec_flags;
2348 	vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2349 
2350 	devm_kfree(dev, ctxt);
2351 	return 0;
2352 
2353 err_out:
2354 	devm_kfree(dev, ctxt);
2355 	return -EIO;
2356 }
2357 
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2358 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2359 {
2360 	struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2361 
2362 	vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2363 	vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2364 }
2365 
2366 /**
2367  * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2368  * @vsi: VSI to set the q_vectors register index on
2369  */
2370 static int
ice_vsi_set_q_vectors_reg_idx(struct ice_vsi * vsi)2371 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2372 {
2373 	u16 i;
2374 
2375 	if (!vsi || !vsi->q_vectors)
2376 		return -EINVAL;
2377 
2378 	ice_for_each_q_vector(vsi, i) {
2379 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2380 
2381 		if (!q_vector) {
2382 			dev_err(&vsi->back->pdev->dev,
2383 				"Failed to set reg_idx on q_vector %d VSI %d\n",
2384 				i, vsi->vsi_num);
2385 			goto clear_reg_idx;
2386 		}
2387 
2388 		if (vsi->type == ICE_VSI_VF) {
2389 			struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2390 
2391 			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2392 		} else {
2393 			q_vector->reg_idx =
2394 				q_vector->v_idx + vsi->base_vector;
2395 		}
2396 	}
2397 
2398 	return 0;
2399 
2400 clear_reg_idx:
2401 	ice_for_each_q_vector(vsi, i) {
2402 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2403 
2404 		if (q_vector)
2405 			q_vector->reg_idx = 0;
2406 	}
2407 
2408 	return -EINVAL;
2409 }
2410 
2411 /**
2412  * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule
2413  * @vsi: the VSI being configured
2414  * @add_rule: boolean value to add or remove ethertype filter rule
2415  */
2416 static void
ice_vsi_add_rem_eth_mac(struct ice_vsi * vsi,bool add_rule)2417 ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule)
2418 {
2419 	struct ice_fltr_list_entry *list;
2420 	struct ice_pf *pf = vsi->back;
2421 	LIST_HEAD(tmp_add_list);
2422 	enum ice_status status;
2423 
2424 	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2425 	if (!list)
2426 		return;
2427 
2428 	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2429 	list->fltr_info.fltr_act = ICE_DROP_PACKET;
2430 	list->fltr_info.flag = ICE_FLTR_TX;
2431 	list->fltr_info.src_id = ICE_SRC_ID_VSI;
2432 	list->fltr_info.vsi_handle = vsi->idx;
2433 	list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype;
2434 
2435 	INIT_LIST_HEAD(&list->list_entry);
2436 	list_add(&list->list_entry, &tmp_add_list);
2437 
2438 	if (add_rule)
2439 		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2440 	else
2441 		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2442 
2443 	if (status)
2444 		dev_err(&pf->pdev->dev,
2445 			"Failure Adding or Removing Ethertype on VSI %i error: %d\n",
2446 			vsi->vsi_num, status);
2447 
2448 	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2449 }
2450 
2451 /**
2452  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2453  * @vsi: the VSI being configured
2454  * @tx: bool to determine Tx or Rx rule
2455  * @create: bool to determine create or remove Rule
2456  */
ice_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2457 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2458 {
2459 	struct ice_fltr_list_entry *list;
2460 	struct ice_pf *pf = vsi->back;
2461 	LIST_HEAD(tmp_add_list);
2462 	enum ice_status status;
2463 
2464 	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2465 	if (!list)
2466 		return;
2467 
2468 	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2469 	list->fltr_info.vsi_handle = vsi->idx;
2470 	list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP;
2471 
2472 	if (tx) {
2473 		list->fltr_info.fltr_act = ICE_DROP_PACKET;
2474 		list->fltr_info.flag = ICE_FLTR_TX;
2475 		list->fltr_info.src_id = ICE_SRC_ID_VSI;
2476 	} else {
2477 		list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2478 		list->fltr_info.flag = ICE_FLTR_RX;
2479 		list->fltr_info.src_id = ICE_SRC_ID_LPORT;
2480 	}
2481 
2482 	INIT_LIST_HEAD(&list->list_entry);
2483 	list_add(&list->list_entry, &tmp_add_list);
2484 
2485 	if (create)
2486 		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2487 	else
2488 		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2489 
2490 	if (status)
2491 		dev_err(&pf->pdev->dev,
2492 			"Fail %s %s LLDP rule on VSI %i error: %d\n",
2493 			create ? "adding" : "removing", tx ? "TX" : "RX",
2494 			vsi->vsi_num, status);
2495 
2496 	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2497 }
2498 
2499 /**
2500  * ice_vsi_setup - Set up a VSI by a given type
2501  * @pf: board private structure
2502  * @pi: pointer to the port_info instance
2503  * @type: VSI type
2504  * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2505  *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2506  *         fill-in ICE_INVAL_VFID as input.
2507  *
2508  * This allocates the sw VSI structure and its queue resources.
2509  *
2510  * Returns pointer to the successfully allocated and configured VSI sw struct on
2511  * success, NULL on failure.
2512  */
2513 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,enum ice_vsi_type type,u16 vf_id)2514 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2515 	      enum ice_vsi_type type, u16 vf_id)
2516 {
2517 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2518 	struct device *dev = &pf->pdev->dev;
2519 	enum ice_status status;
2520 	struct ice_vsi *vsi;
2521 	int ret, i;
2522 
2523 	if (type == ICE_VSI_VF)
2524 		vsi = ice_vsi_alloc(pf, type, vf_id);
2525 	else
2526 		vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID);
2527 
2528 	if (!vsi) {
2529 		dev_err(dev, "could not allocate VSI\n");
2530 		return NULL;
2531 	}
2532 
2533 	vsi->port_info = pi;
2534 	vsi->vsw = pf->first_sw;
2535 	if (vsi->type == ICE_VSI_PF)
2536 		vsi->ethtype = ETH_P_PAUSE;
2537 
2538 	if (vsi->type == ICE_VSI_VF)
2539 		vsi->vf_id = vf_id;
2540 
2541 	if (ice_vsi_get_qs(vsi)) {
2542 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2543 			vsi->idx);
2544 		goto unroll_get_qs;
2545 	}
2546 
2547 	/* set RSS capabilities */
2548 	ice_vsi_set_rss_params(vsi);
2549 
2550 	/* set TC configuration */
2551 	ice_vsi_set_tc_cfg(vsi);
2552 
2553 	/* create the VSI */
2554 	ret = ice_vsi_init(vsi);
2555 	if (ret)
2556 		goto unroll_get_qs;
2557 
2558 	switch (vsi->type) {
2559 	case ICE_VSI_PF:
2560 		ret = ice_vsi_alloc_q_vectors(vsi);
2561 		if (ret)
2562 			goto unroll_vsi_init;
2563 
2564 		ret = ice_vsi_setup_vector_base(vsi);
2565 		if (ret)
2566 			goto unroll_alloc_q_vector;
2567 
2568 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2569 		if (ret)
2570 			goto unroll_vector_base;
2571 
2572 		ret = ice_vsi_alloc_rings(vsi);
2573 		if (ret)
2574 			goto unroll_vector_base;
2575 
2576 		ice_vsi_map_rings_to_vectors(vsi);
2577 
2578 		/* Do not exit if configuring RSS had an issue, at least
2579 		 * receive traffic on first queue. Hence no need to capture
2580 		 * return value
2581 		 */
2582 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2583 			ice_vsi_cfg_rss_lut_key(vsi);
2584 		break;
2585 	case ICE_VSI_VF:
2586 		/* VF driver will take care of creating netdev for this type and
2587 		 * map queues to vectors through Virtchnl, PF driver only
2588 		 * creates a VSI and corresponding structures for bookkeeping
2589 		 * purpose
2590 		 */
2591 		ret = ice_vsi_alloc_q_vectors(vsi);
2592 		if (ret)
2593 			goto unroll_vsi_init;
2594 
2595 		ret = ice_vsi_alloc_rings(vsi);
2596 		if (ret)
2597 			goto unroll_alloc_q_vector;
2598 
2599 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2600 		if (ret)
2601 			goto unroll_vector_base;
2602 
2603 		/* Do not exit if configuring RSS had an issue, at least
2604 		 * receive traffic on first queue. Hence no need to capture
2605 		 * return value
2606 		 */
2607 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2608 			ice_vsi_cfg_rss_lut_key(vsi);
2609 		break;
2610 	case ICE_VSI_LB:
2611 		ret = ice_vsi_alloc_rings(vsi);
2612 		if (ret)
2613 			goto unroll_vsi_init;
2614 		break;
2615 	default:
2616 		/* clean up the resources and exit */
2617 		goto unroll_vsi_init;
2618 	}
2619 
2620 	/* configure VSI nodes based on number of queues and TC's */
2621 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2622 		max_txqs[i] = vsi->alloc_txq;
2623 
2624 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2625 				 max_txqs);
2626 	if (status) {
2627 		dev_err(&pf->pdev->dev,
2628 			"VSI %d failed lan queue config, error %d\n",
2629 			vsi->vsi_num, status);
2630 		goto unroll_vector_base;
2631 	}
2632 
2633 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2634 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2635 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2636 	 * The rule is added once for PF VSI in order to create appropriate
2637 	 * recipe, since VSI/VSI list is ignored with drop action...
2638 	 * Also add rules to handle LLDP Tx and Rx packets.  Tx LLDP packets
2639 	 * need to be dropped so that VFs cannot send LLDP packets to reconfig
2640 	 * DCB settings in the HW.  Also, if the FW DCBX engine is not running
2641 	 * then Rx LLDP packets need to be redirected up the stack.
2642 	 */
2643 	if (!ice_is_safe_mode(pf)) {
2644 		if (vsi->type == ICE_VSI_PF) {
2645 			ice_vsi_add_rem_eth_mac(vsi, true);
2646 
2647 			/* Tx LLDP packets */
2648 			ice_cfg_sw_lldp(vsi, true, true);
2649 
2650 			/* Rx LLDP packets */
2651 			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2652 				ice_cfg_sw_lldp(vsi, false, true);
2653 		}
2654 	}
2655 
2656 	return vsi;
2657 
2658 unroll_vector_base:
2659 	/* reclaim SW interrupts back to the common pool */
2660 	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2661 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2662 unroll_alloc_q_vector:
2663 	ice_vsi_free_q_vectors(vsi);
2664 unroll_vsi_init:
2665 	ice_vsi_delete(vsi);
2666 unroll_get_qs:
2667 	ice_vsi_put_qs(vsi);
2668 	ice_vsi_clear(vsi);
2669 
2670 	return NULL;
2671 }
2672 
2673 /**
2674  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2675  * @vsi: the VSI being cleaned up
2676  */
ice_vsi_release_msix(struct ice_vsi * vsi)2677 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2678 {
2679 	struct ice_pf *pf = vsi->back;
2680 	struct ice_hw *hw = &pf->hw;
2681 	u32 txq = 0;
2682 	u32 rxq = 0;
2683 	int i, q;
2684 
2685 	for (i = 0; i < vsi->num_q_vectors; i++) {
2686 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2687 		u16 reg_idx = q_vector->reg_idx;
2688 
2689 		wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2690 		wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2691 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2692 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2693 			txq++;
2694 		}
2695 
2696 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2697 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2698 			rxq++;
2699 		}
2700 	}
2701 
2702 	ice_flush(hw);
2703 }
2704 
2705 /**
2706  * ice_vsi_free_irq - Free the IRQ association with the OS
2707  * @vsi: the VSI being configured
2708  */
ice_vsi_free_irq(struct ice_vsi * vsi)2709 void ice_vsi_free_irq(struct ice_vsi *vsi)
2710 {
2711 	struct ice_pf *pf = vsi->back;
2712 	int base = vsi->base_vector;
2713 	int i;
2714 
2715 	if (!vsi->q_vectors || !vsi->irqs_ready)
2716 		return;
2717 
2718 	ice_vsi_release_msix(vsi);
2719 	if (vsi->type == ICE_VSI_VF)
2720 		return;
2721 
2722 	vsi->irqs_ready = false;
2723 	ice_for_each_q_vector(vsi, i) {
2724 		u16 vector = i + base;
2725 		int irq_num;
2726 
2727 		irq_num = pf->msix_entries[vector].vector;
2728 
2729 		/* free only the irqs that were actually requested */
2730 		if (!vsi->q_vectors[i] ||
2731 		    !(vsi->q_vectors[i]->num_ring_tx ||
2732 		      vsi->q_vectors[i]->num_ring_rx))
2733 			continue;
2734 
2735 		/* clear the affinity notifier in the IRQ descriptor */
2736 		irq_set_affinity_notifier(irq_num, NULL);
2737 
2738 		/* clear the affinity_mask in the IRQ descriptor */
2739 		irq_set_affinity_hint(irq_num, NULL);
2740 		synchronize_irq(irq_num);
2741 		devm_free_irq(&pf->pdev->dev, irq_num,
2742 			      vsi->q_vectors[i]);
2743 	}
2744 }
2745 
2746 /**
2747  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2748  * @vsi: the VSI having resources freed
2749  */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2750 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2751 {
2752 	int i;
2753 
2754 	if (!vsi->tx_rings)
2755 		return;
2756 
2757 	ice_for_each_txq(vsi, i)
2758 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2759 			ice_free_tx_ring(vsi->tx_rings[i]);
2760 }
2761 
2762 /**
2763  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2764  * @vsi: the VSI having resources freed
2765  */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2766 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2767 {
2768 	int i;
2769 
2770 	if (!vsi->rx_rings)
2771 		return;
2772 
2773 	ice_for_each_rxq(vsi, i)
2774 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2775 			ice_free_rx_ring(vsi->rx_rings[i]);
2776 }
2777 
2778 /**
2779  * ice_vsi_close - Shut down a VSI
2780  * @vsi: the VSI being shut down
2781  */
ice_vsi_close(struct ice_vsi * vsi)2782 void ice_vsi_close(struct ice_vsi *vsi)
2783 {
2784 	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2785 		ice_down(vsi);
2786 
2787 	ice_vsi_free_irq(vsi);
2788 	ice_vsi_free_tx_rings(vsi);
2789 	ice_vsi_free_rx_rings(vsi);
2790 }
2791 
2792 /**
2793  * ice_free_res - free a block of resources
2794  * @res: pointer to the resource
2795  * @index: starting index previously returned by ice_get_res
2796  * @id: identifier to track owner
2797  *
2798  * Returns number of resources freed
2799  */
ice_free_res(struct ice_res_tracker * res,u16 index,u16 id)2800 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
2801 {
2802 	int count = 0;
2803 	int i;
2804 
2805 	if (!res || index >= res->end)
2806 		return -EINVAL;
2807 
2808 	id |= ICE_RES_VALID_BIT;
2809 	for (i = index; i < res->end && res->list[i] == id; i++) {
2810 		res->list[i] = 0;
2811 		count++;
2812 	}
2813 
2814 	return count;
2815 }
2816 
2817 /**
2818  * ice_search_res - Search the tracker for a block of resources
2819  * @res: pointer to the resource
2820  * @needed: size of the block needed
2821  * @id: identifier to track owner
2822  *
2823  * Returns the base item index of the block, or -ENOMEM for error
2824  */
ice_search_res(struct ice_res_tracker * res,u16 needed,u16 id)2825 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
2826 {
2827 	int start = 0, end = 0;
2828 
2829 	if (needed > res->end)
2830 		return -ENOMEM;
2831 
2832 	id |= ICE_RES_VALID_BIT;
2833 
2834 	do {
2835 		/* skip already allocated entries */
2836 		if (res->list[end++] & ICE_RES_VALID_BIT) {
2837 			start = end;
2838 			if ((start + needed) > res->end)
2839 				break;
2840 		}
2841 
2842 		if (end == (start + needed)) {
2843 			int i = start;
2844 
2845 			/* there was enough, so assign it to the requestor */
2846 			while (i != end)
2847 				res->list[i++] = id;
2848 
2849 			return start;
2850 		}
2851 	} while (end < res->end);
2852 
2853 	return -ENOMEM;
2854 }
2855 
2856 /**
2857  * ice_get_res - get a block of resources
2858  * @pf: board private structure
2859  * @res: pointer to the resource
2860  * @needed: size of the block needed
2861  * @id: identifier to track owner
2862  *
2863  * Returns the base item index of the block, or negative for error
2864  */
2865 int
ice_get_res(struct ice_pf * pf,struct ice_res_tracker * res,u16 needed,u16 id)2866 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
2867 {
2868 	if (!res || !pf)
2869 		return -EINVAL;
2870 
2871 	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
2872 		dev_err(&pf->pdev->dev,
2873 			"param err: needed=%d, num_entries = %d id=0x%04x\n",
2874 			needed, res->num_entries, id);
2875 		return -EINVAL;
2876 	}
2877 
2878 	return ice_search_res(res, needed, id);
2879 }
2880 
2881 /**
2882  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2883  * @vsi: the VSI being un-configured
2884  */
ice_vsi_dis_irq(struct ice_vsi * vsi)2885 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2886 {
2887 	int base = vsi->base_vector;
2888 	struct ice_pf *pf = vsi->back;
2889 	struct ice_hw *hw = &pf->hw;
2890 	u32 val;
2891 	int i;
2892 
2893 	/* disable interrupt causation from each queue */
2894 	if (vsi->tx_rings) {
2895 		ice_for_each_txq(vsi, i) {
2896 			if (vsi->tx_rings[i]) {
2897 				u16 reg;
2898 
2899 				reg = vsi->tx_rings[i]->reg_idx;
2900 				val = rd32(hw, QINT_TQCTL(reg));
2901 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2902 				wr32(hw, QINT_TQCTL(reg), val);
2903 			}
2904 		}
2905 	}
2906 
2907 	if (vsi->rx_rings) {
2908 		ice_for_each_rxq(vsi, i) {
2909 			if (vsi->rx_rings[i]) {
2910 				u16 reg;
2911 
2912 				reg = vsi->rx_rings[i]->reg_idx;
2913 				val = rd32(hw, QINT_RQCTL(reg));
2914 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2915 				wr32(hw, QINT_RQCTL(reg), val);
2916 			}
2917 		}
2918 	}
2919 
2920 	/* disable each interrupt */
2921 	ice_for_each_q_vector(vsi, i) {
2922 		if (!vsi->q_vectors[i])
2923 			continue;
2924 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2925 	}
2926 
2927 	ice_flush(hw);
2928 
2929 	/* don't call synchronize_irq() for VF's from the host */
2930 	if (vsi->type == ICE_VSI_VF)
2931 		return;
2932 
2933 	ice_for_each_q_vector(vsi, i)
2934 		synchronize_irq(pf->msix_entries[i + base].vector);
2935 }
2936 
2937 /**
2938  * ice_napi_del - Remove NAPI handler for the VSI
2939  * @vsi: VSI for which NAPI handler is to be removed
2940  */
ice_napi_del(struct ice_vsi * vsi)2941 void ice_napi_del(struct ice_vsi *vsi)
2942 {
2943 	int v_idx;
2944 
2945 	if (!vsi->netdev)
2946 		return;
2947 
2948 	ice_for_each_q_vector(vsi, v_idx)
2949 		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2950 }
2951 
2952 /**
2953  * ice_vsi_release - Delete a VSI and free its resources
2954  * @vsi: the VSI being removed
2955  *
2956  * Returns 0 on success or < 0 on error
2957  */
ice_vsi_release(struct ice_vsi * vsi)2958 int ice_vsi_release(struct ice_vsi *vsi)
2959 {
2960 	struct ice_pf *pf;
2961 
2962 	if (!vsi->back)
2963 		return -ENODEV;
2964 	pf = vsi->back;
2965 
2966 	/* do not unregister while driver is in the reset recovery pending
2967 	 * state. Since reset/rebuild happens through PF service task workqueue,
2968 	 * it's not a good idea to unregister netdev that is associated to the
2969 	 * PF that is running the work queue items currently. This is done to
2970 	 * avoid check_flush_dependency() warning on this wq
2971 	 */
2972 	if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
2973 		unregister_netdev(vsi->netdev);
2974 
2975 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2976 		ice_rss_clean(vsi);
2977 
2978 	/* Disable VSI and free resources */
2979 	if (vsi->type != ICE_VSI_LB)
2980 		ice_vsi_dis_irq(vsi);
2981 	ice_vsi_close(vsi);
2982 
2983 	/* SR-IOV determines needed MSIX resources all at once instead of per
2984 	 * VSI since when VFs are spawned we know how many VFs there are and how
2985 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2986 	 * cleared in the same manner.
2987 	 */
2988 	if (vsi->type != ICE_VSI_VF) {
2989 		/* reclaim SW interrupts back to the common pool */
2990 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2991 		pf->num_avail_sw_msix += vsi->num_q_vectors;
2992 	}
2993 
2994 	if (!ice_is_safe_mode(pf)) {
2995 		if (vsi->type == ICE_VSI_PF) {
2996 			ice_vsi_add_rem_eth_mac(vsi, false);
2997 			ice_cfg_sw_lldp(vsi, true, false);
2998 			/* The Rx rule will only exist to remove if the LLDP FW
2999 			 * engine is currently stopped
3000 			 */
3001 			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3002 				ice_cfg_sw_lldp(vsi, false, false);
3003 		}
3004 	}
3005 
3006 	ice_remove_vsi_fltr(&pf->hw, vsi->idx);
3007 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3008 	ice_vsi_delete(vsi);
3009 	ice_vsi_free_q_vectors(vsi);
3010 
3011 	/* make sure unregister_netdev() was called by checking __ICE_DOWN */
3012 	if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
3013 		free_netdev(vsi->netdev);
3014 		vsi->netdev = NULL;
3015 	}
3016 
3017 	ice_vsi_clear_rings(vsi);
3018 
3019 	ice_vsi_put_qs(vsi);
3020 
3021 	/* retain SW VSI data structure since it is needed to unregister and
3022 	 * free VSI netdev when PF is not in reset recovery pending state,\
3023 	 * for ex: during rmmod.
3024 	 */
3025 	if (!ice_is_reset_in_progress(pf->state))
3026 		ice_vsi_clear(vsi);
3027 
3028 	return 0;
3029 }
3030 
3031 /**
3032  * ice_vsi_rebuild - Rebuild VSI after reset
3033  * @vsi: VSI to be rebuild
3034  *
3035  * Returns 0 on success and negative value on failure
3036  */
ice_vsi_rebuild(struct ice_vsi * vsi)3037 int ice_vsi_rebuild(struct ice_vsi *vsi)
3038 {
3039 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3040 	struct ice_vf *vf = NULL;
3041 	enum ice_status status;
3042 	struct ice_pf *pf;
3043 	int ret, i;
3044 
3045 	if (!vsi)
3046 		return -EINVAL;
3047 
3048 	pf = vsi->back;
3049 	if (vsi->type == ICE_VSI_VF)
3050 		vf = &pf->vf[vsi->vf_id];
3051 
3052 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3053 	ice_vsi_free_q_vectors(vsi);
3054 
3055 	/* SR-IOV determines needed MSIX resources all at once instead of per
3056 	 * VSI since when VFs are spawned we know how many VFs there are and how
3057 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3058 	 * cleared in the same manner.
3059 	 */
3060 	if (vsi->type != ICE_VSI_VF) {
3061 		/* reclaim SW interrupts back to the common pool */
3062 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3063 		pf->num_avail_sw_msix += vsi->num_q_vectors;
3064 		vsi->base_vector = 0;
3065 	}
3066 
3067 	ice_vsi_put_qs(vsi);
3068 	ice_vsi_clear_rings(vsi);
3069 	ice_vsi_free_arrays(vsi);
3070 	ice_dev_onetime_setup(&pf->hw);
3071 	if (vsi->type == ICE_VSI_VF)
3072 		ice_vsi_set_num_qs(vsi, vf->vf_id);
3073 	else
3074 		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
3075 
3076 	ret = ice_vsi_alloc_arrays(vsi);
3077 	if (ret < 0)
3078 		goto err_vsi;
3079 
3080 	ice_vsi_get_qs(vsi);
3081 	ice_vsi_set_tc_cfg(vsi);
3082 
3083 	/* Initialize VSI struct elements and create VSI in FW */
3084 	ret = ice_vsi_init(vsi);
3085 	if (ret < 0)
3086 		goto err_vsi;
3087 
3088 
3089 	switch (vsi->type) {
3090 	case ICE_VSI_PF:
3091 		ret = ice_vsi_alloc_q_vectors(vsi);
3092 		if (ret)
3093 			goto err_rings;
3094 
3095 		ret = ice_vsi_setup_vector_base(vsi);
3096 		if (ret)
3097 			goto err_vectors;
3098 
3099 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3100 		if (ret)
3101 			goto err_vectors;
3102 
3103 		ret = ice_vsi_alloc_rings(vsi);
3104 		if (ret)
3105 			goto err_vectors;
3106 
3107 		ice_vsi_map_rings_to_vectors(vsi);
3108 		/* Do not exit if configuring RSS had an issue, at least
3109 		 * receive traffic on first queue. Hence no need to capture
3110 		 * return value
3111 		 */
3112 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3113 			ice_vsi_cfg_rss_lut_key(vsi);
3114 		break;
3115 	case ICE_VSI_VF:
3116 		ret = ice_vsi_alloc_q_vectors(vsi);
3117 		if (ret)
3118 			goto err_rings;
3119 
3120 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3121 		if (ret)
3122 			goto err_vectors;
3123 
3124 		ret = ice_vsi_alloc_rings(vsi);
3125 		if (ret)
3126 			goto err_vectors;
3127 
3128 		break;
3129 	default:
3130 		break;
3131 	}
3132 
3133 	/* configure VSI nodes based on number of queues and TC's */
3134 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
3135 		max_txqs[i] = vsi->alloc_txq;
3136 
3137 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3138 				 max_txqs);
3139 	if (status) {
3140 		dev_err(&pf->pdev->dev,
3141 			"VSI %d failed lan queue config, error %d\n",
3142 			vsi->vsi_num, status);
3143 		goto err_vectors;
3144 	}
3145 	return 0;
3146 
3147 err_vectors:
3148 	ice_vsi_free_q_vectors(vsi);
3149 err_rings:
3150 	if (vsi->netdev) {
3151 		vsi->current_netdev_flags = 0;
3152 		unregister_netdev(vsi->netdev);
3153 		free_netdev(vsi->netdev);
3154 		vsi->netdev = NULL;
3155 	}
3156 err_vsi:
3157 	ice_vsi_clear(vsi);
3158 	set_bit(__ICE_RESET_FAILED, pf->state);
3159 	return ret;
3160 }
3161 
3162 /**
3163  * ice_is_reset_in_progress - check for a reset in progress
3164  * @state: PF state field
3165  */
ice_is_reset_in_progress(unsigned long * state)3166 bool ice_is_reset_in_progress(unsigned long *state)
3167 {
3168 	return test_bit(__ICE_RESET_OICR_RECV, state) ||
3169 	       test_bit(__ICE_PFR_REQ, state) ||
3170 	       test_bit(__ICE_CORER_REQ, state) ||
3171 	       test_bit(__ICE_GLOBR_REQ, state);
3172 }
3173 
3174 #ifdef CONFIG_DCB
3175 /**
3176  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3177  * @vsi: VSI being configured
3178  * @ctx: the context buffer returned from AQ VSI update command
3179  */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3180 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3181 {
3182 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3183 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3184 	       sizeof(vsi->info.q_mapping));
3185 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3186 	       sizeof(vsi->info.tc_mapping));
3187 }
3188 
3189 /**
3190  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3191  * @vsi: VSI to be configured
3192  * @ena_tc: TC bitmap
3193  *
3194  * VSI queues expected to be quiesced before calling this function
3195  */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3196 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3197 {
3198 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3199 	struct ice_vsi_ctx *ctx;
3200 	struct ice_pf *pf = vsi->back;
3201 	enum ice_status status;
3202 	int i, ret = 0;
3203 	u8 num_tc = 0;
3204 
3205 	ice_for_each_traffic_class(i) {
3206 		/* build bitmap of enabled TCs */
3207 		if (ena_tc & BIT(i))
3208 			num_tc++;
3209 		/* populate max_txqs per TC */
3210 		max_txqs[i] = vsi->alloc_txq;
3211 	}
3212 
3213 	vsi->tc_cfg.ena_tc = ena_tc;
3214 	vsi->tc_cfg.numtc = num_tc;
3215 
3216 	ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
3217 	if (!ctx)
3218 		return -ENOMEM;
3219 
3220 	ctx->vf_num = 0;
3221 	ctx->info = vsi->info;
3222 
3223 	ice_vsi_setup_q_map(vsi, ctx);
3224 
3225 	/* must to indicate which section of VSI context are being modified */
3226 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3227 	status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3228 	if (status) {
3229 		dev_info(&pf->pdev->dev, "Failed VSI Update\n");
3230 		ret = -EIO;
3231 		goto out;
3232 	}
3233 
3234 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3235 				 max_txqs);
3236 
3237 	if (status) {
3238 		dev_err(&pf->pdev->dev,
3239 			"VSI %d failed TC config, error %d\n",
3240 			vsi->vsi_num, status);
3241 		ret = -EIO;
3242 		goto out;
3243 	}
3244 	ice_vsi_update_q_map(vsi, ctx);
3245 	vsi->info.valid_sections = 0;
3246 
3247 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3248 out:
3249 	devm_kfree(&pf->pdev->dev, ctx);
3250 	return ret;
3251 }
3252 #endif /* CONFIG_DCB */
3253 
3254 /**
3255  * ice_nvm_version_str - format the NVM version strings
3256  * @hw: ptr to the hardware info
3257  */
ice_nvm_version_str(struct ice_hw * hw)3258 char *ice_nvm_version_str(struct ice_hw *hw)
3259 {
3260 	u8 oem_ver, oem_patch, ver_hi, ver_lo;
3261 	static char buf[ICE_NVM_VER_LEN];
3262 	u16 oem_build;
3263 
3264 	ice_get_nvm_version(hw, &oem_ver, &oem_build, &oem_patch, &ver_hi,
3265 			    &ver_lo);
3266 
3267 	snprintf(buf, sizeof(buf), "%x.%02x 0x%x %d.%d.%d", ver_hi, ver_lo,
3268 		 hw->nvm.eetrack, oem_ver, oem_build, oem_patch);
3269 
3270 	return buf;
3271 }
3272 
3273 /**
3274  * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI
3275  * @vsi: the VSI being configured MAC filter
3276  * @macaddr: the MAC address to be added.
3277  * @set: Add or delete a MAC filter
3278  *
3279  * Adds or removes MAC address filter entry for VF VSI
3280  */
3281 enum ice_status
ice_vsi_cfg_mac_fltr(struct ice_vsi * vsi,const u8 * macaddr,bool set)3282 ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set)
3283 {
3284 	LIST_HEAD(tmp_add_list);
3285 	enum ice_status status;
3286 
3287 	 /* Update MAC filter list to be added or removed for a VSI */
3288 	if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) {
3289 		status = ICE_ERR_NO_MEMORY;
3290 		goto cfg_mac_fltr_exit;
3291 	}
3292 
3293 	if (set)
3294 		status = ice_add_mac(&vsi->back->hw, &tmp_add_list);
3295 	else
3296 		status = ice_remove_mac(&vsi->back->hw, &tmp_add_list);
3297 
3298 cfg_mac_fltr_exit:
3299 	ice_free_fltr_list(&vsi->back->pdev->dev, &tmp_add_list);
3300 	return status;
3301 }
3302