1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* The driver transmit and receive code */
5
6 #include <linux/mm.h>
7 #include <linux/netdevice.h>
8 #include <linux/prefetch.h>
9 #include <linux/bpf_trace.h>
10 #include <net/dsfield.h>
11 #include <net/mpls.h>
12 #include <net/xdp.h>
13 #include "ice_txrx_lib.h"
14 #include "ice_lib.h"
15 #include "ice.h"
16 #include "ice_trace.h"
17 #include "ice_dcb_lib.h"
18 #include "ice_xsk.h"
19 #include "ice_eswitch.h"
20
21 #define ICE_RX_HDR_SIZE 256
22
23 #define FDIR_DESC_RXDID 0x40
24 #define ICE_FDIR_CLEAN_DELAY 10
25
26 /**
27 * ice_prgm_fdir_fltr - Program a Flow Director filter
28 * @vsi: VSI to send dummy packet
29 * @fdir_desc: flow director descriptor
30 * @raw_packet: allocated buffer for flow director
31 */
32 int
ice_prgm_fdir_fltr(struct ice_vsi * vsi,struct ice_fltr_desc * fdir_desc,u8 * raw_packet)33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
34 u8 *raw_packet)
35 {
36 struct ice_tx_buf *tx_buf, *first;
37 struct ice_fltr_desc *f_desc;
38 struct ice_tx_desc *tx_desc;
39 struct ice_tx_ring *tx_ring;
40 struct device *dev;
41 dma_addr_t dma;
42 u32 td_cmd;
43 u16 i;
44
45 /* VSI and Tx ring */
46 if (!vsi)
47 return -ENOENT;
48 tx_ring = vsi->tx_rings[0];
49 if (!tx_ring || !tx_ring->desc)
50 return -ENOENT;
51 dev = tx_ring->dev;
52
53 /* we are using two descriptors to add/del a filter and we can wait */
54 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
55 if (!i)
56 return -EAGAIN;
57 msleep_interruptible(1);
58 }
59
60 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
61 DMA_TO_DEVICE);
62
63 if (dma_mapping_error(dev, dma))
64 return -EINVAL;
65
66 /* grab the next descriptor */
67 i = tx_ring->next_to_use;
68 first = &tx_ring->tx_buf[i];
69 f_desc = ICE_TX_FDIRDESC(tx_ring, i);
70 memcpy(f_desc, fdir_desc, sizeof(*f_desc));
71
72 i++;
73 i = (i < tx_ring->count) ? i : 0;
74 tx_desc = ICE_TX_DESC(tx_ring, i);
75 tx_buf = &tx_ring->tx_buf[i];
76
77 i++;
78 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
79
80 memset(tx_buf, 0, sizeof(*tx_buf));
81 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
82 dma_unmap_addr_set(tx_buf, dma, dma);
83
84 tx_desc->buf_addr = cpu_to_le64(dma);
85 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
86 ICE_TX_DESC_CMD_RE;
87
88 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
89 tx_buf->raw_buf = raw_packet;
90
91 tx_desc->cmd_type_offset_bsz =
92 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
93
94 /* Force memory write to complete before letting h/w know
95 * there are new descriptors to fetch.
96 */
97 wmb();
98
99 /* mark the data descriptor to be watched */
100 first->next_to_watch = tx_desc;
101
102 writel(tx_ring->next_to_use, tx_ring->tail);
103
104 return 0;
105 }
106
107 /**
108 * ice_unmap_and_free_tx_buf - Release a Tx buffer
109 * @ring: the ring that owns the buffer
110 * @tx_buf: the buffer to free
111 */
112 static void
ice_unmap_and_free_tx_buf(struct ice_tx_ring * ring,struct ice_tx_buf * tx_buf)113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
114 {
115 if (tx_buf->skb) {
116 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
117 devm_kfree(ring->dev, tx_buf->raw_buf);
118 else if (ice_ring_is_xdp(ring))
119 page_frag_free(tx_buf->raw_buf);
120 else
121 dev_kfree_skb_any(tx_buf->skb);
122 if (dma_unmap_len(tx_buf, len))
123 dma_unmap_single(ring->dev,
124 dma_unmap_addr(tx_buf, dma),
125 dma_unmap_len(tx_buf, len),
126 DMA_TO_DEVICE);
127 } else if (dma_unmap_len(tx_buf, len)) {
128 dma_unmap_page(ring->dev,
129 dma_unmap_addr(tx_buf, dma),
130 dma_unmap_len(tx_buf, len),
131 DMA_TO_DEVICE);
132 }
133
134 tx_buf->next_to_watch = NULL;
135 tx_buf->skb = NULL;
136 dma_unmap_len_set(tx_buf, len, 0);
137 /* tx_buf must be completely set up in the transmit path */
138 }
139
txring_txq(const struct ice_tx_ring * ring)140 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
141 {
142 return netdev_get_tx_queue(ring->netdev, ring->q_index);
143 }
144
145 /**
146 * ice_clean_tx_ring - Free any empty Tx buffers
147 * @tx_ring: ring to be cleaned
148 */
ice_clean_tx_ring(struct ice_tx_ring * tx_ring)149 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
150 {
151 u32 size;
152 u16 i;
153
154 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
155 ice_xsk_clean_xdp_ring(tx_ring);
156 goto tx_skip_free;
157 }
158
159 /* ring already cleared, nothing to do */
160 if (!tx_ring->tx_buf)
161 return;
162
163 /* Free all the Tx ring sk_buffs */
164 for (i = 0; i < tx_ring->count; i++)
165 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
166
167 tx_skip_free:
168 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
169
170 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
171 PAGE_SIZE);
172 /* Zero out the descriptor ring */
173 memset(tx_ring->desc, 0, size);
174
175 tx_ring->next_to_use = 0;
176 tx_ring->next_to_clean = 0;
177 tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1;
178 tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1;
179
180 if (!tx_ring->netdev)
181 return;
182
183 /* cleanup Tx queue statistics */
184 netdev_tx_reset_queue(txring_txq(tx_ring));
185 }
186
187 /**
188 * ice_free_tx_ring - Free Tx resources per queue
189 * @tx_ring: Tx descriptor ring for a specific queue
190 *
191 * Free all transmit software resources
192 */
ice_free_tx_ring(struct ice_tx_ring * tx_ring)193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
194 {
195 u32 size;
196
197 ice_clean_tx_ring(tx_ring);
198 devm_kfree(tx_ring->dev, tx_ring->tx_buf);
199 tx_ring->tx_buf = NULL;
200
201 if (tx_ring->desc) {
202 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
203 PAGE_SIZE);
204 dmam_free_coherent(tx_ring->dev, size,
205 tx_ring->desc, tx_ring->dma);
206 tx_ring->desc = NULL;
207 }
208 }
209
210 /**
211 * ice_clean_tx_irq - Reclaim resources after transmit completes
212 * @tx_ring: Tx ring to clean
213 * @napi_budget: Used to determine if we are in netpoll
214 *
215 * Returns true if there's any budget left (e.g. the clean is finished)
216 */
ice_clean_tx_irq(struct ice_tx_ring * tx_ring,int napi_budget)217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
218 {
219 unsigned int total_bytes = 0, total_pkts = 0;
220 unsigned int budget = ICE_DFLT_IRQ_WORK;
221 struct ice_vsi *vsi = tx_ring->vsi;
222 s16 i = tx_ring->next_to_clean;
223 struct ice_tx_desc *tx_desc;
224 struct ice_tx_buf *tx_buf;
225
226 /* get the bql data ready */
227 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
228
229 tx_buf = &tx_ring->tx_buf[i];
230 tx_desc = ICE_TX_DESC(tx_ring, i);
231 i -= tx_ring->count;
232
233 prefetch(&vsi->state);
234
235 do {
236 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
237
238 /* if next_to_watch is not set then there is no work pending */
239 if (!eop_desc)
240 break;
241
242 /* follow the guidelines of other drivers */
243 prefetchw(&tx_buf->skb->users);
244
245 smp_rmb(); /* prevent any other reads prior to eop_desc */
246
247 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
248 /* if the descriptor isn't done, no work yet to do */
249 if (!(eop_desc->cmd_type_offset_bsz &
250 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
251 break;
252
253 /* clear next_to_watch to prevent false hangs */
254 tx_buf->next_to_watch = NULL;
255
256 /* update the statistics for this packet */
257 total_bytes += tx_buf->bytecount;
258 total_pkts += tx_buf->gso_segs;
259
260 /* free the skb */
261 napi_consume_skb(tx_buf->skb, napi_budget);
262
263 /* unmap skb header data */
264 dma_unmap_single(tx_ring->dev,
265 dma_unmap_addr(tx_buf, dma),
266 dma_unmap_len(tx_buf, len),
267 DMA_TO_DEVICE);
268
269 /* clear tx_buf data */
270 tx_buf->skb = NULL;
271 dma_unmap_len_set(tx_buf, len, 0);
272
273 /* unmap remaining buffers */
274 while (tx_desc != eop_desc) {
275 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
276 tx_buf++;
277 tx_desc++;
278 i++;
279 if (unlikely(!i)) {
280 i -= tx_ring->count;
281 tx_buf = tx_ring->tx_buf;
282 tx_desc = ICE_TX_DESC(tx_ring, 0);
283 }
284
285 /* unmap any remaining paged data */
286 if (dma_unmap_len(tx_buf, len)) {
287 dma_unmap_page(tx_ring->dev,
288 dma_unmap_addr(tx_buf, dma),
289 dma_unmap_len(tx_buf, len),
290 DMA_TO_DEVICE);
291 dma_unmap_len_set(tx_buf, len, 0);
292 }
293 }
294 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
295
296 /* move us one more past the eop_desc for start of next pkt */
297 tx_buf++;
298 tx_desc++;
299 i++;
300 if (unlikely(!i)) {
301 i -= tx_ring->count;
302 tx_buf = tx_ring->tx_buf;
303 tx_desc = ICE_TX_DESC(tx_ring, 0);
304 }
305
306 prefetch(tx_desc);
307
308 /* update budget accounting */
309 budget--;
310 } while (likely(budget));
311
312 i += tx_ring->count;
313 tx_ring->next_to_clean = i;
314
315 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
316 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
317
318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
319 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
320 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
321 /* Make sure that anybody stopping the queue after this
322 * sees the new next_to_clean.
323 */
324 smp_mb();
325 if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
326 !test_bit(ICE_VSI_DOWN, vsi->state)) {
327 netif_tx_wake_queue(txring_txq(tx_ring));
328 ++tx_ring->tx_stats.restart_q;
329 }
330 }
331
332 return !!budget;
333 }
334
335 /**
336 * ice_setup_tx_ring - Allocate the Tx descriptors
337 * @tx_ring: the Tx ring to set up
338 *
339 * Return 0 on success, negative on error
340 */
ice_setup_tx_ring(struct ice_tx_ring * tx_ring)341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
342 {
343 struct device *dev = tx_ring->dev;
344 u32 size;
345
346 if (!dev)
347 return -ENOMEM;
348
349 /* warn if we are about to overwrite the pointer */
350 WARN_ON(tx_ring->tx_buf);
351 tx_ring->tx_buf =
352 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
353 GFP_KERNEL);
354 if (!tx_ring->tx_buf)
355 return -ENOMEM;
356
357 /* round up to nearest page */
358 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
359 PAGE_SIZE);
360 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
361 GFP_KERNEL);
362 if (!tx_ring->desc) {
363 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
364 size);
365 goto err;
366 }
367
368 tx_ring->next_to_use = 0;
369 tx_ring->next_to_clean = 0;
370 tx_ring->tx_stats.prev_pkt = -1;
371 return 0;
372
373 err:
374 devm_kfree(dev, tx_ring->tx_buf);
375 tx_ring->tx_buf = NULL;
376 return -ENOMEM;
377 }
378
379 /**
380 * ice_clean_rx_ring - Free Rx buffers
381 * @rx_ring: ring to be cleaned
382 */
ice_clean_rx_ring(struct ice_rx_ring * rx_ring)383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
384 {
385 struct device *dev = rx_ring->dev;
386 u32 size;
387 u16 i;
388
389 /* ring already cleared, nothing to do */
390 if (!rx_ring->rx_buf)
391 return;
392
393 if (rx_ring->skb) {
394 dev_kfree_skb(rx_ring->skb);
395 rx_ring->skb = NULL;
396 }
397
398 if (rx_ring->xsk_pool) {
399 ice_xsk_clean_rx_ring(rx_ring);
400 goto rx_skip_free;
401 }
402
403 /* Free all the Rx ring sk_buffs */
404 for (i = 0; i < rx_ring->count; i++) {
405 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
406
407 if (!rx_buf->page)
408 continue;
409
410 /* Invalidate cache lines that may have been written to by
411 * device so that we avoid corrupting memory.
412 */
413 dma_sync_single_range_for_cpu(dev, rx_buf->dma,
414 rx_buf->page_offset,
415 rx_ring->rx_buf_len,
416 DMA_FROM_DEVICE);
417
418 /* free resources associated with mapping */
419 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
420 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
421 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
422
423 rx_buf->page = NULL;
424 rx_buf->page_offset = 0;
425 }
426
427 rx_skip_free:
428 if (rx_ring->xsk_pool)
429 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
430 else
431 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
432
433 /* Zero out the descriptor ring */
434 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
435 PAGE_SIZE);
436 memset(rx_ring->desc, 0, size);
437
438 rx_ring->next_to_alloc = 0;
439 rx_ring->next_to_clean = 0;
440 rx_ring->next_to_use = 0;
441 }
442
443 /**
444 * ice_free_rx_ring - Free Rx resources
445 * @rx_ring: ring to clean the resources from
446 *
447 * Free all receive software resources
448 */
ice_free_rx_ring(struct ice_rx_ring * rx_ring)449 void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
450 {
451 u32 size;
452
453 ice_clean_rx_ring(rx_ring);
454 if (rx_ring->vsi->type == ICE_VSI_PF)
455 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
456 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
457 rx_ring->xdp_prog = NULL;
458 if (rx_ring->xsk_pool) {
459 kfree(rx_ring->xdp_buf);
460 rx_ring->xdp_buf = NULL;
461 } else {
462 kfree(rx_ring->rx_buf);
463 rx_ring->rx_buf = NULL;
464 }
465
466 if (rx_ring->desc) {
467 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
468 PAGE_SIZE);
469 dmam_free_coherent(rx_ring->dev, size,
470 rx_ring->desc, rx_ring->dma);
471 rx_ring->desc = NULL;
472 }
473 }
474
475 /**
476 * ice_setup_rx_ring - Allocate the Rx descriptors
477 * @rx_ring: the Rx ring to set up
478 *
479 * Return 0 on success, negative on error
480 */
ice_setup_rx_ring(struct ice_rx_ring * rx_ring)481 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
482 {
483 struct device *dev = rx_ring->dev;
484 u32 size;
485
486 if (!dev)
487 return -ENOMEM;
488
489 /* warn if we are about to overwrite the pointer */
490 WARN_ON(rx_ring->rx_buf);
491 rx_ring->rx_buf =
492 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
493 if (!rx_ring->rx_buf)
494 return -ENOMEM;
495
496 /* round up to nearest page */
497 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
498 PAGE_SIZE);
499 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
500 GFP_KERNEL);
501 if (!rx_ring->desc) {
502 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
503 size);
504 goto err;
505 }
506
507 rx_ring->next_to_use = 0;
508 rx_ring->next_to_clean = 0;
509
510 if (ice_is_xdp_ena_vsi(rx_ring->vsi))
511 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
512
513 if (rx_ring->vsi->type == ICE_VSI_PF &&
514 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
515 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
516 rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
517 goto err;
518 return 0;
519
520 err:
521 kfree(rx_ring->rx_buf);
522 rx_ring->rx_buf = NULL;
523 return -ENOMEM;
524 }
525
526 static unsigned int
ice_rx_frame_truesize(struct ice_rx_ring * rx_ring,unsigned int __maybe_unused size)527 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size)
528 {
529 unsigned int truesize;
530
531 #if (PAGE_SIZE < 8192)
532 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
533 #else
534 truesize = rx_ring->rx_offset ?
535 SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
536 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
537 SKB_DATA_ALIGN(size);
538 #endif
539 return truesize;
540 }
541
542 /**
543 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
544 * @rx_ring: Rx ring
545 * @xdp: xdp_buff used as input to the XDP program
546 * @xdp_prog: XDP program to run
547 * @xdp_ring: ring to be used for XDP_TX action
548 *
549 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
550 */
551 static int
ice_run_xdp(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct ice_tx_ring * xdp_ring)552 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
553 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
554 {
555 int err;
556 u32 act;
557
558 act = bpf_prog_run_xdp(xdp_prog, xdp);
559 switch (act) {
560 case XDP_PASS:
561 return ICE_XDP_PASS;
562 case XDP_TX:
563 if (static_branch_unlikely(&ice_xdp_locking_key))
564 spin_lock(&xdp_ring->tx_lock);
565 err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring);
566 if (static_branch_unlikely(&ice_xdp_locking_key))
567 spin_unlock(&xdp_ring->tx_lock);
568 if (err == ICE_XDP_CONSUMED)
569 goto out_failure;
570 return err;
571 case XDP_REDIRECT:
572 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
573 if (err)
574 goto out_failure;
575 return ICE_XDP_REDIR;
576 default:
577 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
578 fallthrough;
579 case XDP_ABORTED:
580 out_failure:
581 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
582 fallthrough;
583 case XDP_DROP:
584 return ICE_XDP_CONSUMED;
585 }
586 }
587
588 /**
589 * ice_xdp_xmit - submit packets to XDP ring for transmission
590 * @dev: netdev
591 * @n: number of XDP frames to be transmitted
592 * @frames: XDP frames to be transmitted
593 * @flags: transmit flags
594 *
595 * Returns number of frames successfully sent. Failed frames
596 * will be free'ed by XDP core.
597 * For error cases, a negative errno code is returned and no-frames
598 * are transmitted (caller must handle freeing frames).
599 */
600 int
ice_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)601 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
602 u32 flags)
603 {
604 struct ice_netdev_priv *np = netdev_priv(dev);
605 unsigned int queue_index = smp_processor_id();
606 struct ice_vsi *vsi = np->vsi;
607 struct ice_tx_ring *xdp_ring;
608 int nxmit = 0, i;
609
610 if (test_bit(ICE_VSI_DOWN, vsi->state))
611 return -ENETDOWN;
612
613 if (!ice_is_xdp_ena_vsi(vsi))
614 return -ENXIO;
615
616 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
617 return -EINVAL;
618
619 if (static_branch_unlikely(&ice_xdp_locking_key)) {
620 queue_index %= vsi->num_xdp_txq;
621 xdp_ring = vsi->xdp_rings[queue_index];
622 spin_lock(&xdp_ring->tx_lock);
623 } else {
624 /* Generally, should not happen */
625 if (unlikely(queue_index >= vsi->num_xdp_txq))
626 return -ENXIO;
627 xdp_ring = vsi->xdp_rings[queue_index];
628 }
629
630 for (i = 0; i < n; i++) {
631 struct xdp_frame *xdpf = frames[i];
632 int err;
633
634 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
635 if (err != ICE_XDP_TX)
636 break;
637 nxmit++;
638 }
639
640 if (unlikely(flags & XDP_XMIT_FLUSH))
641 ice_xdp_ring_update_tail(xdp_ring);
642
643 if (static_branch_unlikely(&ice_xdp_locking_key))
644 spin_unlock(&xdp_ring->tx_lock);
645
646 return nxmit;
647 }
648
649 /**
650 * ice_alloc_mapped_page - recycle or make a new page
651 * @rx_ring: ring to use
652 * @bi: rx_buf struct to modify
653 *
654 * Returns true if the page was successfully allocated or
655 * reused.
656 */
657 static bool
ice_alloc_mapped_page(struct ice_rx_ring * rx_ring,struct ice_rx_buf * bi)658 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
659 {
660 struct page *page = bi->page;
661 dma_addr_t dma;
662
663 /* since we are recycling buffers we should seldom need to alloc */
664 if (likely(page))
665 return true;
666
667 /* alloc new page for storage */
668 page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
669 if (unlikely(!page)) {
670 rx_ring->rx_stats.alloc_page_failed++;
671 return false;
672 }
673
674 /* map page for use */
675 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
676 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
677
678 /* if mapping failed free memory back to system since
679 * there isn't much point in holding memory we can't use
680 */
681 if (dma_mapping_error(rx_ring->dev, dma)) {
682 __free_pages(page, ice_rx_pg_order(rx_ring));
683 rx_ring->rx_stats.alloc_page_failed++;
684 return false;
685 }
686
687 bi->dma = dma;
688 bi->page = page;
689 bi->page_offset = rx_ring->rx_offset;
690 page_ref_add(page, USHRT_MAX - 1);
691 bi->pagecnt_bias = USHRT_MAX;
692
693 return true;
694 }
695
696 /**
697 * ice_alloc_rx_bufs - Replace used receive buffers
698 * @rx_ring: ring to place buffers on
699 * @cleaned_count: number of buffers to replace
700 *
701 * Returns false if all allocations were successful, true if any fail. Returning
702 * true signals to the caller that we didn't replace cleaned_count buffers and
703 * there is more work to do.
704 *
705 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
706 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
707 * multiple tail writes per call.
708 */
ice_alloc_rx_bufs(struct ice_rx_ring * rx_ring,u16 cleaned_count)709 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count)
710 {
711 union ice_32b_rx_flex_desc *rx_desc;
712 u16 ntu = rx_ring->next_to_use;
713 struct ice_rx_buf *bi;
714
715 /* do nothing if no valid netdev defined */
716 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
717 !cleaned_count)
718 return false;
719
720 /* get the Rx descriptor and buffer based on next_to_use */
721 rx_desc = ICE_RX_DESC(rx_ring, ntu);
722 bi = &rx_ring->rx_buf[ntu];
723
724 do {
725 /* if we fail here, we have work remaining */
726 if (!ice_alloc_mapped_page(rx_ring, bi))
727 break;
728
729 /* sync the buffer for use by the device */
730 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
731 bi->page_offset,
732 rx_ring->rx_buf_len,
733 DMA_FROM_DEVICE);
734
735 /* Refresh the desc even if buffer_addrs didn't change
736 * because each write-back erases this info.
737 */
738 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
739
740 rx_desc++;
741 bi++;
742 ntu++;
743 if (unlikely(ntu == rx_ring->count)) {
744 rx_desc = ICE_RX_DESC(rx_ring, 0);
745 bi = rx_ring->rx_buf;
746 ntu = 0;
747 }
748
749 /* clear the status bits for the next_to_use descriptor */
750 rx_desc->wb.status_error0 = 0;
751
752 cleaned_count--;
753 } while (cleaned_count);
754
755 if (rx_ring->next_to_use != ntu)
756 ice_release_rx_desc(rx_ring, ntu);
757
758 return !!cleaned_count;
759 }
760
761 /**
762 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
763 * @rx_buf: Rx buffer to adjust
764 * @size: Size of adjustment
765 *
766 * Update the offset within page so that Rx buf will be ready to be reused.
767 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
768 * so the second half of page assigned to Rx buffer will be used, otherwise
769 * the offset is moved by "size" bytes
770 */
771 static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf * rx_buf,unsigned int size)772 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
773 {
774 #if (PAGE_SIZE < 8192)
775 /* flip page offset to other buffer */
776 rx_buf->page_offset ^= size;
777 #else
778 /* move offset up to the next cache line */
779 rx_buf->page_offset += size;
780 #endif
781 }
782
783 /**
784 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
785 * @rx_buf: buffer containing the page
786 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
787 *
788 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
789 * which will assign the current buffer to the buffer that next_to_alloc is
790 * pointing to; otherwise, the DMA mapping needs to be destroyed and
791 * page freed
792 */
793 static bool
ice_can_reuse_rx_page(struct ice_rx_buf * rx_buf,int rx_buf_pgcnt)794 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
795 {
796 unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
797 struct page *page = rx_buf->page;
798
799 /* avoid re-using remote and pfmemalloc pages */
800 if (!dev_page_is_reusable(page))
801 return false;
802
803 #if (PAGE_SIZE < 8192)
804 /* if we are only owner of page we can reuse it */
805 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
806 return false;
807 #else
808 #define ICE_LAST_OFFSET \
809 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
810 if (rx_buf->page_offset > ICE_LAST_OFFSET)
811 return false;
812 #endif /* PAGE_SIZE < 8192) */
813
814 /* If we have drained the page fragment pool we need to update
815 * the pagecnt_bias and page count so that we fully restock the
816 * number of references the driver holds.
817 */
818 if (unlikely(pagecnt_bias == 1)) {
819 page_ref_add(page, USHRT_MAX - 1);
820 rx_buf->pagecnt_bias = USHRT_MAX;
821 }
822
823 return true;
824 }
825
826 /**
827 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
828 * @rx_ring: Rx descriptor ring to transact packets on
829 * @rx_buf: buffer containing page to add
830 * @skb: sk_buff to place the data into
831 * @size: packet length from rx_desc
832 *
833 * This function will add the data contained in rx_buf->page to the skb.
834 * It will just attach the page as a frag to the skb.
835 * The function will then update the page offset.
836 */
837 static void
ice_add_rx_frag(struct ice_rx_ring * rx_ring,struct ice_rx_buf * rx_buf,struct sk_buff * skb,unsigned int size)838 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
839 struct sk_buff *skb, unsigned int size)
840 {
841 #if (PAGE_SIZE >= 8192)
842 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
843 #else
844 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
845 #endif
846
847 if (!size)
848 return;
849 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
850 rx_buf->page_offset, size, truesize);
851
852 /* page is being used so we must update the page offset */
853 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
854 }
855
856 /**
857 * ice_reuse_rx_page - page flip buffer and store it back on the ring
858 * @rx_ring: Rx descriptor ring to store buffers on
859 * @old_buf: donor buffer to have page reused
860 *
861 * Synchronizes page for reuse by the adapter
862 */
863 static void
ice_reuse_rx_page(struct ice_rx_ring * rx_ring,struct ice_rx_buf * old_buf)864 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
865 {
866 u16 nta = rx_ring->next_to_alloc;
867 struct ice_rx_buf *new_buf;
868
869 new_buf = &rx_ring->rx_buf[nta];
870
871 /* update, and store next to alloc */
872 nta++;
873 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
874
875 /* Transfer page from old buffer to new buffer.
876 * Move each member individually to avoid possible store
877 * forwarding stalls and unnecessary copy of skb.
878 */
879 new_buf->dma = old_buf->dma;
880 new_buf->page = old_buf->page;
881 new_buf->page_offset = old_buf->page_offset;
882 new_buf->pagecnt_bias = old_buf->pagecnt_bias;
883 }
884
885 /**
886 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
887 * @rx_ring: Rx descriptor ring to transact packets on
888 * @size: size of buffer to add to skb
889 * @rx_buf_pgcnt: rx_buf page refcount
890 *
891 * This function will pull an Rx buffer from the ring and synchronize it
892 * for use by the CPU.
893 */
894 static struct ice_rx_buf *
ice_get_rx_buf(struct ice_rx_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)895 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
896 int *rx_buf_pgcnt)
897 {
898 struct ice_rx_buf *rx_buf;
899
900 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
901 *rx_buf_pgcnt =
902 #if (PAGE_SIZE < 8192)
903 page_count(rx_buf->page);
904 #else
905 0;
906 #endif
907 prefetchw(rx_buf->page);
908
909 if (!size)
910 return rx_buf;
911 /* we are reusing so sync this buffer for CPU use */
912 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
913 rx_buf->page_offset, size,
914 DMA_FROM_DEVICE);
915
916 /* We have pulled a buffer for use, so decrement pagecnt_bias */
917 rx_buf->pagecnt_bias--;
918
919 return rx_buf;
920 }
921
922 /**
923 * ice_build_skb - Build skb around an existing buffer
924 * @rx_ring: Rx descriptor ring to transact packets on
925 * @rx_buf: Rx buffer to pull data from
926 * @xdp: xdp_buff pointing to the data
927 *
928 * This function builds an skb around an existing Rx buffer, taking care
929 * to set up the skb correctly and avoid any memcpy overhead.
930 */
931 static struct sk_buff *
ice_build_skb(struct ice_rx_ring * rx_ring,struct ice_rx_buf * rx_buf,struct xdp_buff * xdp)932 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
933 struct xdp_buff *xdp)
934 {
935 u8 metasize = xdp->data - xdp->data_meta;
936 #if (PAGE_SIZE < 8192)
937 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
938 #else
939 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
940 SKB_DATA_ALIGN(xdp->data_end -
941 xdp->data_hard_start);
942 #endif
943 struct sk_buff *skb;
944
945 /* Prefetch first cache line of first page. If xdp->data_meta
946 * is unused, this points exactly as xdp->data, otherwise we
947 * likely have a consumer accessing first few bytes of meta
948 * data, and then actual data.
949 */
950 net_prefetch(xdp->data_meta);
951 /* build an skb around the page buffer */
952 skb = napi_build_skb(xdp->data_hard_start, truesize);
953 if (unlikely(!skb))
954 return NULL;
955
956 /* must to record Rx queue, otherwise OS features such as
957 * symmetric queue won't work
958 */
959 skb_record_rx_queue(skb, rx_ring->q_index);
960
961 /* update pointers within the skb to store the data */
962 skb_reserve(skb, xdp->data - xdp->data_hard_start);
963 __skb_put(skb, xdp->data_end - xdp->data);
964 if (metasize)
965 skb_metadata_set(skb, metasize);
966
967 /* buffer is used by skb, update page_offset */
968 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
969
970 return skb;
971 }
972
973 /**
974 * ice_construct_skb - Allocate skb and populate it
975 * @rx_ring: Rx descriptor ring to transact packets on
976 * @rx_buf: Rx buffer to pull data from
977 * @xdp: xdp_buff pointing to the data
978 *
979 * This function allocates an skb. It then populates it with the page
980 * data from the current receive descriptor, taking care to set up the
981 * skb correctly.
982 */
983 static struct sk_buff *
ice_construct_skb(struct ice_rx_ring * rx_ring,struct ice_rx_buf * rx_buf,struct xdp_buff * xdp)984 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
985 struct xdp_buff *xdp)
986 {
987 unsigned int metasize = xdp->data - xdp->data_meta;
988 unsigned int size = xdp->data_end - xdp->data;
989 unsigned int headlen;
990 struct sk_buff *skb;
991
992 /* prefetch first cache line of first page */
993 net_prefetch(xdp->data_meta);
994
995 /* allocate a skb to store the frags */
996 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
997 ICE_RX_HDR_SIZE + metasize,
998 GFP_ATOMIC | __GFP_NOWARN);
999 if (unlikely(!skb))
1000 return NULL;
1001
1002 skb_record_rx_queue(skb, rx_ring->q_index);
1003 /* Determine available headroom for copy */
1004 headlen = size;
1005 if (headlen > ICE_RX_HDR_SIZE)
1006 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1007
1008 /* align pull length to size of long to optimize memcpy performance */
1009 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1010 ALIGN(headlen + metasize, sizeof(long)));
1011
1012 if (metasize) {
1013 skb_metadata_set(skb, metasize);
1014 __skb_pull(skb, metasize);
1015 }
1016
1017 /* if we exhaust the linear part then add what is left as a frag */
1018 size -= headlen;
1019 if (size) {
1020 #if (PAGE_SIZE >= 8192)
1021 unsigned int truesize = SKB_DATA_ALIGN(size);
1022 #else
1023 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
1024 #endif
1025 skb_add_rx_frag(skb, 0, rx_buf->page,
1026 rx_buf->page_offset + headlen, size, truesize);
1027 /* buffer is used by skb, update page_offset */
1028 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1029 } else {
1030 /* buffer is unused, reset bias back to rx_buf; data was copied
1031 * onto skb's linear part so there's no need for adjusting
1032 * page offset and we can reuse this buffer as-is
1033 */
1034 rx_buf->pagecnt_bias++;
1035 }
1036
1037 return skb;
1038 }
1039
1040 /**
1041 * ice_put_rx_buf - Clean up used buffer and either recycle or free
1042 * @rx_ring: Rx descriptor ring to transact packets on
1043 * @rx_buf: Rx buffer to pull data from
1044 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
1045 *
1046 * This function will update next_to_clean and then clean up the contents
1047 * of the rx_buf. It will either recycle the buffer or unmap it and free
1048 * the associated resources.
1049 */
1050 static void
ice_put_rx_buf(struct ice_rx_ring * rx_ring,struct ice_rx_buf * rx_buf,int rx_buf_pgcnt)1051 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
1052 int rx_buf_pgcnt)
1053 {
1054 u16 ntc = rx_ring->next_to_clean + 1;
1055
1056 /* fetch, update, and store next to clean */
1057 ntc = (ntc < rx_ring->count) ? ntc : 0;
1058 rx_ring->next_to_clean = ntc;
1059
1060 if (!rx_buf)
1061 return;
1062
1063 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1064 /* hand second half of page back to the ring */
1065 ice_reuse_rx_page(rx_ring, rx_buf);
1066 } else {
1067 /* we are not reusing the buffer so unmap it */
1068 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1069 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1070 ICE_RX_DMA_ATTR);
1071 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1072 }
1073
1074 /* clear contents of buffer_info */
1075 rx_buf->page = NULL;
1076 }
1077
1078 /**
1079 * ice_is_non_eop - process handling of non-EOP buffers
1080 * @rx_ring: Rx ring being processed
1081 * @rx_desc: Rx descriptor for current buffer
1082 *
1083 * If the buffer is an EOP buffer, this function exits returning false,
1084 * otherwise return true indicating that this is in fact a non-EOP buffer.
1085 */
1086 static bool
ice_is_non_eop(struct ice_rx_ring * rx_ring,union ice_32b_rx_flex_desc * rx_desc)1087 ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
1088 {
1089 /* if we are the last buffer then there is nothing else to do */
1090 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1091 if (likely(ice_test_staterr(rx_desc->wb.status_error0, ICE_RXD_EOF)))
1092 return false;
1093
1094 rx_ring->rx_stats.non_eop_descs++;
1095
1096 return true;
1097 }
1098
1099 /**
1100 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1101 * @rx_ring: Rx descriptor ring to transact packets on
1102 * @budget: Total limit on number of packets to process
1103 *
1104 * This function provides a "bounce buffer" approach to Rx interrupt
1105 * processing. The advantage to this is that on systems that have
1106 * expensive overhead for IOMMU access this provides a means of avoiding
1107 * it by maintaining the mapping of the page to the system.
1108 *
1109 * Returns amount of work completed
1110 */
ice_clean_rx_irq(struct ice_rx_ring * rx_ring,int budget)1111 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1112 {
1113 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
1114 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1115 unsigned int offset = rx_ring->rx_offset;
1116 struct ice_tx_ring *xdp_ring = NULL;
1117 unsigned int xdp_res, xdp_xmit = 0;
1118 struct sk_buff *skb = rx_ring->skb;
1119 struct bpf_prog *xdp_prog = NULL;
1120 struct xdp_buff xdp;
1121 bool failure;
1122
1123 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1124 #if (PAGE_SIZE < 8192)
1125 frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1126 #endif
1127 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1128
1129 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1130 if (xdp_prog)
1131 xdp_ring = rx_ring->xdp_ring;
1132
1133 /* start the loop to process Rx packets bounded by 'budget' */
1134 while (likely(total_rx_pkts < (unsigned int)budget)) {
1135 union ice_32b_rx_flex_desc *rx_desc;
1136 struct ice_rx_buf *rx_buf;
1137 unsigned char *hard_start;
1138 unsigned int size;
1139 u16 stat_err_bits;
1140 int rx_buf_pgcnt;
1141 u16 vlan_tag = 0;
1142 u16 rx_ptype;
1143
1144 /* get the Rx desc from Rx ring based on 'next_to_clean' */
1145 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1146
1147 /* status_error_len will always be zero for unused descriptors
1148 * because it's cleared in cleanup, and overlaps with hdr_addr
1149 * which is always zero because packet split isn't used, if the
1150 * hardware wrote DD then it will be non-zero
1151 */
1152 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1153 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1154 break;
1155
1156 /* This memory barrier is needed to keep us from reading
1157 * any other fields out of the rx_desc until we know the
1158 * DD bit is set.
1159 */
1160 dma_rmb();
1161
1162 ice_trace(clean_rx_irq, rx_ring, rx_desc);
1163 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1164 struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1165
1166 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1167 ctrl_vsi->vf)
1168 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1169 ice_put_rx_buf(rx_ring, NULL, 0);
1170 cleaned_count++;
1171 continue;
1172 }
1173
1174 size = le16_to_cpu(rx_desc->wb.pkt_len) &
1175 ICE_RX_FLX_DESC_PKT_LEN_M;
1176
1177 /* retrieve a buffer from the ring */
1178 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
1179
1180 if (!size) {
1181 xdp.data = NULL;
1182 xdp.data_end = NULL;
1183 xdp.data_hard_start = NULL;
1184 xdp.data_meta = NULL;
1185 goto construct_skb;
1186 }
1187
1188 hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1189 offset;
1190 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1191 #if (PAGE_SIZE > 4096)
1192 /* At larger PAGE_SIZE, frame_sz depend on len size */
1193 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1194 #endif
1195
1196 if (!xdp_prog)
1197 goto construct_skb;
1198
1199 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring);
1200 if (!xdp_res)
1201 goto construct_skb;
1202 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1203 xdp_xmit |= xdp_res;
1204 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1205 } else {
1206 rx_buf->pagecnt_bias++;
1207 }
1208 total_rx_bytes += size;
1209 total_rx_pkts++;
1210
1211 cleaned_count++;
1212 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1213 continue;
1214 construct_skb:
1215 if (skb) {
1216 ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1217 } else if (likely(xdp.data)) {
1218 if (ice_ring_uses_build_skb(rx_ring))
1219 skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1220 else
1221 skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1222 }
1223 /* exit if we failed to retrieve a buffer */
1224 if (!skb) {
1225 rx_ring->rx_stats.alloc_buf_failed++;
1226 if (rx_buf)
1227 rx_buf->pagecnt_bias++;
1228 break;
1229 }
1230
1231 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1232 cleaned_count++;
1233
1234 /* skip if it is NOP desc */
1235 if (ice_is_non_eop(rx_ring, rx_desc))
1236 continue;
1237
1238 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1239 if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1240 stat_err_bits))) {
1241 dev_kfree_skb_any(skb);
1242 continue;
1243 }
1244
1245 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
1246
1247 /* pad the skb if needed, to make a valid ethernet frame */
1248 if (eth_skb_pad(skb)) {
1249 skb = NULL;
1250 continue;
1251 }
1252
1253 /* probably a little skewed due to removing CRC */
1254 total_rx_bytes += skb->len;
1255
1256 /* populate checksum, VLAN, and protocol */
1257 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1258 ICE_RX_FLEX_DESC_PTYPE_M;
1259
1260 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1261
1262 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1263 /* send completed skb up the stack */
1264 ice_receive_skb(rx_ring, skb, vlan_tag);
1265 skb = NULL;
1266
1267 /* update budget accounting */
1268 total_rx_pkts++;
1269 }
1270
1271 /* return up to cleaned_count buffers to hardware */
1272 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1273
1274 if (xdp_prog)
1275 ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
1276 rx_ring->skb = skb;
1277
1278 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1279
1280 /* guarantee a trip back through this routine if there was a failure */
1281 return failure ? budget : (int)total_rx_pkts;
1282 }
1283
__ice_update_sample(struct ice_q_vector * q_vector,struct ice_ring_container * rc,struct dim_sample * sample,bool is_tx)1284 static void __ice_update_sample(struct ice_q_vector *q_vector,
1285 struct ice_ring_container *rc,
1286 struct dim_sample *sample,
1287 bool is_tx)
1288 {
1289 u64 packets = 0, bytes = 0;
1290
1291 if (is_tx) {
1292 struct ice_tx_ring *tx_ring;
1293
1294 ice_for_each_tx_ring(tx_ring, *rc) {
1295 packets += tx_ring->stats.pkts;
1296 bytes += tx_ring->stats.bytes;
1297 }
1298 } else {
1299 struct ice_rx_ring *rx_ring;
1300
1301 ice_for_each_rx_ring(rx_ring, *rc) {
1302 packets += rx_ring->stats.pkts;
1303 bytes += rx_ring->stats.bytes;
1304 }
1305 }
1306
1307 dim_update_sample(q_vector->total_events, packets, bytes, sample);
1308 sample->comp_ctr = 0;
1309
1310 /* if dim settings get stale, like when not updated for 1
1311 * second or longer, force it to start again. This addresses the
1312 * frequent case of an idle queue being switched to by the
1313 * scheduler. The 1,000 here means 1,000 milliseconds.
1314 */
1315 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1316 rc->dim.state = DIM_START_MEASURE;
1317 }
1318
1319 /**
1320 * ice_net_dim - Update net DIM algorithm
1321 * @q_vector: the vector associated with the interrupt
1322 *
1323 * Create a DIM sample and notify net_dim() so that it can possibly decide
1324 * a new ITR value based on incoming packets, bytes, and interrupts.
1325 *
1326 * This function is a no-op if the ring is not configured to dynamic ITR.
1327 */
ice_net_dim(struct ice_q_vector * q_vector)1328 static void ice_net_dim(struct ice_q_vector *q_vector)
1329 {
1330 struct ice_ring_container *tx = &q_vector->tx;
1331 struct ice_ring_container *rx = &q_vector->rx;
1332
1333 if (ITR_IS_DYNAMIC(tx)) {
1334 struct dim_sample dim_sample;
1335
1336 __ice_update_sample(q_vector, tx, &dim_sample, true);
1337 net_dim(&tx->dim, dim_sample);
1338 }
1339
1340 if (ITR_IS_DYNAMIC(rx)) {
1341 struct dim_sample dim_sample;
1342
1343 __ice_update_sample(q_vector, rx, &dim_sample, false);
1344 net_dim(&rx->dim, dim_sample);
1345 }
1346 }
1347
1348 /**
1349 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1350 * @itr_idx: interrupt throttling index
1351 * @itr: interrupt throttling value in usecs
1352 */
ice_buildreg_itr(u16 itr_idx,u16 itr)1353 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1354 {
1355 /* The ITR value is reported in microseconds, and the register value is
1356 * recorded in 2 microsecond units. For this reason we only need to
1357 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1358 * granularity as a shift instead of division. The mask makes sure the
1359 * ITR value is never odd so we don't accidentally write into the field
1360 * prior to the ITR field.
1361 */
1362 itr &= ICE_ITR_MASK;
1363
1364 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1365 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1366 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1367 }
1368
1369 /**
1370 * ice_enable_interrupt - re-enable MSI-X interrupt
1371 * @q_vector: the vector associated with the interrupt to enable
1372 *
1373 * If the VSI is down, the interrupt will not be re-enabled. Also,
1374 * when enabling the interrupt always reset the wb_on_itr to false
1375 * and trigger a software interrupt to clean out internal state.
1376 */
ice_enable_interrupt(struct ice_q_vector * q_vector)1377 static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1378 {
1379 struct ice_vsi *vsi = q_vector->vsi;
1380 bool wb_en = q_vector->wb_on_itr;
1381 u32 itr_val;
1382
1383 if (test_bit(ICE_DOWN, vsi->state))
1384 return;
1385
1386 /* trigger an ITR delayed software interrupt when exiting busy poll, to
1387 * make sure to catch any pending cleanups that might have been missed
1388 * due to interrupt state transition. If busy poll or poll isn't
1389 * enabled, then don't update ITR, and just enable the interrupt.
1390 */
1391 if (!wb_en) {
1392 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1393 } else {
1394 q_vector->wb_on_itr = false;
1395
1396 /* do two things here with a single write. Set up the third ITR
1397 * index to be used for software interrupt moderation, and then
1398 * trigger a software interrupt with a rate limit of 20K on
1399 * software interrupts, this will help avoid high interrupt
1400 * loads due to frequently polling and exiting polling.
1401 */
1402 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1403 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1404 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1405 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1406 }
1407 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1408 }
1409
1410 /**
1411 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1412 * @q_vector: q_vector to set WB_ON_ITR on
1413 *
1414 * We need to tell hardware to write-back completed descriptors even when
1415 * interrupts are disabled. Descriptors will be written back on cache line
1416 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1417 * descriptors may not be written back if they don't fill a cache line until
1418 * the next interrupt.
1419 *
1420 * This sets the write-back frequency to whatever was set previously for the
1421 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1422 * aren't meddling with the INTENA_M bit.
1423 */
ice_set_wb_on_itr(struct ice_q_vector * q_vector)1424 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1425 {
1426 struct ice_vsi *vsi = q_vector->vsi;
1427
1428 /* already in wb_on_itr mode no need to change it */
1429 if (q_vector->wb_on_itr)
1430 return;
1431
1432 /* use previously set ITR values for all of the ITR indices by
1433 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1434 * be static in non-adaptive mode (user configured)
1435 */
1436 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1437 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1438 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1439 GLINT_DYN_CTL_WB_ON_ITR_M);
1440
1441 q_vector->wb_on_itr = true;
1442 }
1443
1444 /**
1445 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1446 * @napi: napi struct with our devices info in it
1447 * @budget: amount of work driver is allowed to do this pass, in packets
1448 *
1449 * This function will clean all queues associated with a q_vector.
1450 *
1451 * Returns the amount of work done
1452 */
ice_napi_poll(struct napi_struct * napi,int budget)1453 int ice_napi_poll(struct napi_struct *napi, int budget)
1454 {
1455 struct ice_q_vector *q_vector =
1456 container_of(napi, struct ice_q_vector, napi);
1457 struct ice_tx_ring *tx_ring;
1458 struct ice_rx_ring *rx_ring;
1459 bool clean_complete = true;
1460 int budget_per_ring;
1461 int work_done = 0;
1462
1463 /* Since the actual Tx work is minimal, we can give the Tx a larger
1464 * budget and be more aggressive about cleaning up the Tx descriptors.
1465 */
1466 ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1467 bool wd;
1468
1469 if (tx_ring->xsk_pool)
1470 wd = ice_xmit_zc(tx_ring);
1471 else if (ice_ring_is_xdp(tx_ring))
1472 wd = true;
1473 else
1474 wd = ice_clean_tx_irq(tx_ring, budget);
1475
1476 if (!wd)
1477 clean_complete = false;
1478 }
1479
1480 /* Handle case where we are called by netpoll with a budget of 0 */
1481 if (unlikely(budget <= 0))
1482 return budget;
1483
1484 /* normally we have 1 Rx ring per q_vector */
1485 if (unlikely(q_vector->num_ring_rx > 1))
1486 /* We attempt to distribute budget to each Rx queue fairly, but
1487 * don't allow the budget to go below 1 because that would exit
1488 * polling early.
1489 */
1490 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1491 else
1492 /* Max of 1 Rx ring in this q_vector so give it the budget */
1493 budget_per_ring = budget;
1494
1495 ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1496 int cleaned;
1497
1498 /* A dedicated path for zero-copy allows making a single
1499 * comparison in the irq context instead of many inside the
1500 * ice_clean_rx_irq function and makes the codebase cleaner.
1501 */
1502 cleaned = rx_ring->xsk_pool ?
1503 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) :
1504 ice_clean_rx_irq(rx_ring, budget_per_ring);
1505 work_done += cleaned;
1506 /* if we clean as many as budgeted, we must not be done */
1507 if (cleaned >= budget_per_ring)
1508 clean_complete = false;
1509 }
1510
1511 /* If work not completed, return budget and polling will return */
1512 if (!clean_complete) {
1513 /* Set the writeback on ITR so partial completions of
1514 * cache-lines will still continue even if we're polling.
1515 */
1516 ice_set_wb_on_itr(q_vector);
1517 return budget;
1518 }
1519
1520 /* Exit the polling mode, but don't re-enable interrupts if stack might
1521 * poll us due to busy-polling
1522 */
1523 if (napi_complete_done(napi, work_done)) {
1524 ice_net_dim(q_vector);
1525 ice_enable_interrupt(q_vector);
1526 } else {
1527 ice_set_wb_on_itr(q_vector);
1528 }
1529
1530 return min_t(int, work_done, budget - 1);
1531 }
1532
1533 /**
1534 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1535 * @tx_ring: the ring to be checked
1536 * @size: the size buffer we want to assure is available
1537 *
1538 * Returns -EBUSY if a stop is needed, else 0
1539 */
__ice_maybe_stop_tx(struct ice_tx_ring * tx_ring,unsigned int size)1540 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1541 {
1542 netif_tx_stop_queue(txring_txq(tx_ring));
1543 /* Memory barrier before checking head and tail */
1544 smp_mb();
1545
1546 /* Check again in a case another CPU has just made room available. */
1547 if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1548 return -EBUSY;
1549
1550 /* A reprieve! - use start_queue because it doesn't call schedule */
1551 netif_tx_start_queue(txring_txq(tx_ring));
1552 ++tx_ring->tx_stats.restart_q;
1553 return 0;
1554 }
1555
1556 /**
1557 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1558 * @tx_ring: the ring to be checked
1559 * @size: the size buffer we want to assure is available
1560 *
1561 * Returns 0 if stop is not needed
1562 */
ice_maybe_stop_tx(struct ice_tx_ring * tx_ring,unsigned int size)1563 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1564 {
1565 if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1566 return 0;
1567
1568 return __ice_maybe_stop_tx(tx_ring, size);
1569 }
1570
1571 /**
1572 * ice_tx_map - Build the Tx descriptor
1573 * @tx_ring: ring to send buffer on
1574 * @first: first buffer info buffer to use
1575 * @off: pointer to struct that holds offload parameters
1576 *
1577 * This function loops over the skb data pointed to by *first
1578 * and gets a physical address for each memory location and programs
1579 * it and the length into the transmit descriptor.
1580 */
1581 static void
ice_tx_map(struct ice_tx_ring * tx_ring,struct ice_tx_buf * first,struct ice_tx_offload_params * off)1582 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1583 struct ice_tx_offload_params *off)
1584 {
1585 u64 td_offset, td_tag, td_cmd;
1586 u16 i = tx_ring->next_to_use;
1587 unsigned int data_len, size;
1588 struct ice_tx_desc *tx_desc;
1589 struct ice_tx_buf *tx_buf;
1590 struct sk_buff *skb;
1591 skb_frag_t *frag;
1592 dma_addr_t dma;
1593 bool kick;
1594
1595 td_tag = off->td_l2tag1;
1596 td_cmd = off->td_cmd;
1597 td_offset = off->td_offset;
1598 skb = first->skb;
1599
1600 data_len = skb->data_len;
1601 size = skb_headlen(skb);
1602
1603 tx_desc = ICE_TX_DESC(tx_ring, i);
1604
1605 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1606 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1607 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1608 ICE_TX_FLAGS_VLAN_S;
1609 }
1610
1611 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1612
1613 tx_buf = first;
1614
1615 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1616 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1617
1618 if (dma_mapping_error(tx_ring->dev, dma))
1619 goto dma_error;
1620
1621 /* record length, and DMA address */
1622 dma_unmap_len_set(tx_buf, len, size);
1623 dma_unmap_addr_set(tx_buf, dma, dma);
1624
1625 /* align size to end of page */
1626 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1627 tx_desc->buf_addr = cpu_to_le64(dma);
1628
1629 /* account for data chunks larger than the hardware
1630 * can handle
1631 */
1632 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1633 tx_desc->cmd_type_offset_bsz =
1634 ice_build_ctob(td_cmd, td_offset, max_data,
1635 td_tag);
1636
1637 tx_desc++;
1638 i++;
1639
1640 if (i == tx_ring->count) {
1641 tx_desc = ICE_TX_DESC(tx_ring, 0);
1642 i = 0;
1643 }
1644
1645 dma += max_data;
1646 size -= max_data;
1647
1648 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1649 tx_desc->buf_addr = cpu_to_le64(dma);
1650 }
1651
1652 if (likely(!data_len))
1653 break;
1654
1655 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1656 size, td_tag);
1657
1658 tx_desc++;
1659 i++;
1660
1661 if (i == tx_ring->count) {
1662 tx_desc = ICE_TX_DESC(tx_ring, 0);
1663 i = 0;
1664 }
1665
1666 size = skb_frag_size(frag);
1667 data_len -= size;
1668
1669 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1670 DMA_TO_DEVICE);
1671
1672 tx_buf = &tx_ring->tx_buf[i];
1673 }
1674
1675 /* record SW timestamp if HW timestamp is not available */
1676 skb_tx_timestamp(first->skb);
1677
1678 i++;
1679 if (i == tx_ring->count)
1680 i = 0;
1681
1682 /* write last descriptor with RS and EOP bits */
1683 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1684 tx_desc->cmd_type_offset_bsz =
1685 ice_build_ctob(td_cmd, td_offset, size, td_tag);
1686
1687 /* Force memory writes to complete before letting h/w know there
1688 * are new descriptors to fetch.
1689 *
1690 * We also use this memory barrier to make certain all of the
1691 * status bits have been updated before next_to_watch is written.
1692 */
1693 wmb();
1694
1695 /* set next_to_watch value indicating a packet is present */
1696 first->next_to_watch = tx_desc;
1697
1698 tx_ring->next_to_use = i;
1699
1700 ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1701
1702 /* notify HW of packet */
1703 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1704 netdev_xmit_more());
1705 if (kick)
1706 /* notify HW of packet */
1707 writel(i, tx_ring->tail);
1708
1709 return;
1710
1711 dma_error:
1712 /* clear DMA mappings for failed tx_buf map */
1713 for (;;) {
1714 tx_buf = &tx_ring->tx_buf[i];
1715 ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1716 if (tx_buf == first)
1717 break;
1718 if (i == 0)
1719 i = tx_ring->count;
1720 i--;
1721 }
1722
1723 tx_ring->next_to_use = i;
1724 }
1725
1726 /**
1727 * ice_tx_csum - Enable Tx checksum offloads
1728 * @first: pointer to the first descriptor
1729 * @off: pointer to struct that holds offload parameters
1730 *
1731 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1732 */
1733 static
ice_tx_csum(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1734 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1735 {
1736 u32 l4_len = 0, l3_len = 0, l2_len = 0;
1737 struct sk_buff *skb = first->skb;
1738 union {
1739 struct iphdr *v4;
1740 struct ipv6hdr *v6;
1741 unsigned char *hdr;
1742 } ip;
1743 union {
1744 struct tcphdr *tcp;
1745 unsigned char *hdr;
1746 } l4;
1747 __be16 frag_off, protocol;
1748 unsigned char *exthdr;
1749 u32 offset, cmd = 0;
1750 u8 l4_proto = 0;
1751
1752 if (skb->ip_summed != CHECKSUM_PARTIAL)
1753 return 0;
1754
1755 protocol = vlan_get_protocol(skb);
1756
1757 if (eth_p_mpls(protocol)) {
1758 ip.hdr = skb_inner_network_header(skb);
1759 l4.hdr = skb_checksum_start(skb);
1760 } else {
1761 ip.hdr = skb_network_header(skb);
1762 l4.hdr = skb_transport_header(skb);
1763 }
1764
1765 /* compute outer L2 header size */
1766 l2_len = ip.hdr - skb->data;
1767 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1768
1769 /* set the tx_flags to indicate the IP protocol type. this is
1770 * required so that checksum header computation below is accurate.
1771 */
1772 if (ip.v4->version == 4)
1773 first->tx_flags |= ICE_TX_FLAGS_IPV4;
1774 else if (ip.v6->version == 6)
1775 first->tx_flags |= ICE_TX_FLAGS_IPV6;
1776
1777 if (skb->encapsulation) {
1778 bool gso_ena = false;
1779 u32 tunnel = 0;
1780
1781 /* define outer network header type */
1782 if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1783 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1784 ICE_TX_CTX_EIPT_IPV4 :
1785 ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1786 l4_proto = ip.v4->protocol;
1787 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1788 int ret;
1789
1790 tunnel |= ICE_TX_CTX_EIPT_IPV6;
1791 exthdr = ip.hdr + sizeof(*ip.v6);
1792 l4_proto = ip.v6->nexthdr;
1793 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1794 &l4_proto, &frag_off);
1795 if (ret < 0)
1796 return -1;
1797 }
1798
1799 /* define outer transport */
1800 switch (l4_proto) {
1801 case IPPROTO_UDP:
1802 tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1803 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1804 break;
1805 case IPPROTO_GRE:
1806 tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1807 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1808 break;
1809 case IPPROTO_IPIP:
1810 case IPPROTO_IPV6:
1811 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1812 l4.hdr = skb_inner_network_header(skb);
1813 break;
1814 default:
1815 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1816 return -1;
1817
1818 skb_checksum_help(skb);
1819 return 0;
1820 }
1821
1822 /* compute outer L3 header size */
1823 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1824 ICE_TXD_CTX_QW0_EIPLEN_S;
1825
1826 /* switch IP header pointer from outer to inner header */
1827 ip.hdr = skb_inner_network_header(skb);
1828
1829 /* compute tunnel header size */
1830 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1831 ICE_TXD_CTX_QW0_NATLEN_S;
1832
1833 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1834 /* indicate if we need to offload outer UDP header */
1835 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1836 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1837 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1838
1839 /* record tunnel offload values */
1840 off->cd_tunnel_params |= tunnel;
1841
1842 /* set DTYP=1 to indicate that it's an Tx context descriptor
1843 * in IPsec tunnel mode with Tx offloads in Quad word 1
1844 */
1845 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1846
1847 /* switch L4 header pointer from outer to inner */
1848 l4.hdr = skb_inner_transport_header(skb);
1849 l4_proto = 0;
1850
1851 /* reset type as we transition from outer to inner headers */
1852 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1853 if (ip.v4->version == 4)
1854 first->tx_flags |= ICE_TX_FLAGS_IPV4;
1855 if (ip.v6->version == 6)
1856 first->tx_flags |= ICE_TX_FLAGS_IPV6;
1857 }
1858
1859 /* Enable IP checksum offloads */
1860 if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1861 l4_proto = ip.v4->protocol;
1862 /* the stack computes the IP header already, the only time we
1863 * need the hardware to recompute it is in the case of TSO.
1864 */
1865 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1866 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1867 else
1868 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1869
1870 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1871 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1872 exthdr = ip.hdr + sizeof(*ip.v6);
1873 l4_proto = ip.v6->nexthdr;
1874 if (l4.hdr != exthdr)
1875 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1876 &frag_off);
1877 } else {
1878 return -1;
1879 }
1880
1881 /* compute inner L3 header size */
1882 l3_len = l4.hdr - ip.hdr;
1883 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1884
1885 /* Enable L4 checksum offloads */
1886 switch (l4_proto) {
1887 case IPPROTO_TCP:
1888 /* enable checksum offloads */
1889 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1890 l4_len = l4.tcp->doff;
1891 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1892 break;
1893 case IPPROTO_UDP:
1894 /* enable UDP checksum offload */
1895 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1896 l4_len = (sizeof(struct udphdr) >> 2);
1897 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1898 break;
1899 case IPPROTO_SCTP:
1900 /* enable SCTP checksum offload */
1901 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1902 l4_len = sizeof(struct sctphdr) >> 2;
1903 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1904 break;
1905
1906 default:
1907 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1908 return -1;
1909 skb_checksum_help(skb);
1910 return 0;
1911 }
1912
1913 off->td_cmd |= cmd;
1914 off->td_offset |= offset;
1915 return 1;
1916 }
1917
1918 /**
1919 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1920 * @tx_ring: ring to send buffer on
1921 * @first: pointer to struct ice_tx_buf
1922 *
1923 * Checks the skb and set up correspondingly several generic transmit flags
1924 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1925 */
1926 static void
ice_tx_prepare_vlan_flags(struct ice_tx_ring * tx_ring,struct ice_tx_buf * first)1927 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
1928 {
1929 struct sk_buff *skb = first->skb;
1930
1931 /* nothing left to do, software offloaded VLAN */
1932 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1933 return;
1934
1935 /* the VLAN ethertype/tpid is determined by VSI configuration and netdev
1936 * feature flags, which the driver only allows either 802.1Q or 802.1ad
1937 * VLAN offloads exclusively so we only care about the VLAN ID here
1938 */
1939 if (skb_vlan_tag_present(skb)) {
1940 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1941 if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
1942 first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1943 else
1944 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1945 }
1946
1947 ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1948 }
1949
1950 /**
1951 * ice_tso - computes mss and TSO length to prepare for TSO
1952 * @first: pointer to struct ice_tx_buf
1953 * @off: pointer to struct that holds offload parameters
1954 *
1955 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1956 */
1957 static
ice_tso(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1958 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1959 {
1960 struct sk_buff *skb = first->skb;
1961 union {
1962 struct iphdr *v4;
1963 struct ipv6hdr *v6;
1964 unsigned char *hdr;
1965 } ip;
1966 union {
1967 struct tcphdr *tcp;
1968 struct udphdr *udp;
1969 unsigned char *hdr;
1970 } l4;
1971 u64 cd_mss, cd_tso_len;
1972 __be16 protocol;
1973 u32 paylen;
1974 u8 l4_start;
1975 int err;
1976
1977 if (skb->ip_summed != CHECKSUM_PARTIAL)
1978 return 0;
1979
1980 if (!skb_is_gso(skb))
1981 return 0;
1982
1983 err = skb_cow_head(skb, 0);
1984 if (err < 0)
1985 return err;
1986
1987 /* cppcheck-suppress unreadVariable */
1988 protocol = vlan_get_protocol(skb);
1989
1990 if (eth_p_mpls(protocol))
1991 ip.hdr = skb_inner_network_header(skb);
1992 else
1993 ip.hdr = skb_network_header(skb);
1994 l4.hdr = skb_checksum_start(skb);
1995
1996 /* initialize outer IP header fields */
1997 if (ip.v4->version == 4) {
1998 ip.v4->tot_len = 0;
1999 ip.v4->check = 0;
2000 } else {
2001 ip.v6->payload_len = 0;
2002 }
2003
2004 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2005 SKB_GSO_GRE_CSUM |
2006 SKB_GSO_IPXIP4 |
2007 SKB_GSO_IPXIP6 |
2008 SKB_GSO_UDP_TUNNEL |
2009 SKB_GSO_UDP_TUNNEL_CSUM)) {
2010 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2011 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2012 l4.udp->len = 0;
2013
2014 /* determine offset of outer transport header */
2015 l4_start = (u8)(l4.hdr - skb->data);
2016
2017 /* remove payload length from outer checksum */
2018 paylen = skb->len - l4_start;
2019 csum_replace_by_diff(&l4.udp->check,
2020 (__force __wsum)htonl(paylen));
2021 }
2022
2023 /* reset pointers to inner headers */
2024
2025 /* cppcheck-suppress unreadVariable */
2026 ip.hdr = skb_inner_network_header(skb);
2027 l4.hdr = skb_inner_transport_header(skb);
2028
2029 /* initialize inner IP header fields */
2030 if (ip.v4->version == 4) {
2031 ip.v4->tot_len = 0;
2032 ip.v4->check = 0;
2033 } else {
2034 ip.v6->payload_len = 0;
2035 }
2036 }
2037
2038 /* determine offset of transport header */
2039 l4_start = (u8)(l4.hdr - skb->data);
2040
2041 /* remove payload length from checksum */
2042 paylen = skb->len - l4_start;
2043
2044 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2045 csum_replace_by_diff(&l4.udp->check,
2046 (__force __wsum)htonl(paylen));
2047 /* compute length of UDP segmentation header */
2048 off->header_len = (u8)sizeof(l4.udp) + l4_start;
2049 } else {
2050 csum_replace_by_diff(&l4.tcp->check,
2051 (__force __wsum)htonl(paylen));
2052 /* compute length of TCP segmentation header */
2053 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2054 }
2055
2056 /* update gso_segs and bytecount */
2057 first->gso_segs = skb_shinfo(skb)->gso_segs;
2058 first->bytecount += (first->gso_segs - 1) * off->header_len;
2059
2060 cd_tso_len = skb->len - off->header_len;
2061 cd_mss = skb_shinfo(skb)->gso_size;
2062
2063 /* record cdesc_qw1 with TSO parameters */
2064 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2065 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2066 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2067 (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2068 first->tx_flags |= ICE_TX_FLAGS_TSO;
2069 return 1;
2070 }
2071
2072 /**
2073 * ice_txd_use_count - estimate the number of descriptors needed for Tx
2074 * @size: transmit request size in bytes
2075 *
2076 * Due to hardware alignment restrictions (4K alignment), we need to
2077 * assume that we can have no more than 12K of data per descriptor, even
2078 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2079 * Thus, we need to divide by 12K. But division is slow! Instead,
2080 * we decompose the operation into shifts and one relatively cheap
2081 * multiply operation.
2082 *
2083 * To divide by 12K, we first divide by 4K, then divide by 3:
2084 * To divide by 4K, shift right by 12 bits
2085 * To divide by 3, multiply by 85, then divide by 256
2086 * (Divide by 256 is done by shifting right by 8 bits)
2087 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2088 * 3, we'll underestimate near each multiple of 12K. This is actually more
2089 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2090 * segment. For our purposes this is accurate out to 1M which is orders of
2091 * magnitude greater than our largest possible GSO size.
2092 *
2093 * This would then be implemented as:
2094 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2095 *
2096 * Since multiplication and division are commutative, we can reorder
2097 * operations into:
2098 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2099 */
ice_txd_use_count(unsigned int size)2100 static unsigned int ice_txd_use_count(unsigned int size)
2101 {
2102 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2103 }
2104
2105 /**
2106 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2107 * @skb: send buffer
2108 *
2109 * Returns number of data descriptors needed for this skb.
2110 */
ice_xmit_desc_count(struct sk_buff * skb)2111 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2112 {
2113 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2114 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2115 unsigned int count = 0, size = skb_headlen(skb);
2116
2117 for (;;) {
2118 count += ice_txd_use_count(size);
2119
2120 if (!nr_frags--)
2121 break;
2122
2123 size = skb_frag_size(frag++);
2124 }
2125
2126 return count;
2127 }
2128
2129 /**
2130 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2131 * @skb: send buffer
2132 *
2133 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2134 * and so we need to figure out the cases where we need to linearize the skb.
2135 *
2136 * For TSO we need to count the TSO header and segment payload separately.
2137 * As such we need to check cases where we have 7 fragments or more as we
2138 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2139 * the segment payload in the first descriptor, and another 7 for the
2140 * fragments.
2141 */
__ice_chk_linearize(struct sk_buff * skb)2142 static bool __ice_chk_linearize(struct sk_buff *skb)
2143 {
2144 const skb_frag_t *frag, *stale;
2145 int nr_frags, sum;
2146
2147 /* no need to check if number of frags is less than 7 */
2148 nr_frags = skb_shinfo(skb)->nr_frags;
2149 if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2150 return false;
2151
2152 /* We need to walk through the list and validate that each group
2153 * of 6 fragments totals at least gso_size.
2154 */
2155 nr_frags -= ICE_MAX_BUF_TXD - 2;
2156 frag = &skb_shinfo(skb)->frags[0];
2157
2158 /* Initialize size to the negative value of gso_size minus 1. We
2159 * use this as the worst case scenario in which the frag ahead
2160 * of us only provides one byte which is why we are limited to 6
2161 * descriptors for a single transmit as the header and previous
2162 * fragment are already consuming 2 descriptors.
2163 */
2164 sum = 1 - skb_shinfo(skb)->gso_size;
2165
2166 /* Add size of frags 0 through 4 to create our initial sum */
2167 sum += skb_frag_size(frag++);
2168 sum += skb_frag_size(frag++);
2169 sum += skb_frag_size(frag++);
2170 sum += skb_frag_size(frag++);
2171 sum += skb_frag_size(frag++);
2172
2173 /* Walk through fragments adding latest fragment, testing it, and
2174 * then removing stale fragments from the sum.
2175 */
2176 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2177 int stale_size = skb_frag_size(stale);
2178
2179 sum += skb_frag_size(frag++);
2180
2181 /* The stale fragment may present us with a smaller
2182 * descriptor than the actual fragment size. To account
2183 * for that we need to remove all the data on the front and
2184 * figure out what the remainder would be in the last
2185 * descriptor associated with the fragment.
2186 */
2187 if (stale_size > ICE_MAX_DATA_PER_TXD) {
2188 int align_pad = -(skb_frag_off(stale)) &
2189 (ICE_MAX_READ_REQ_SIZE - 1);
2190
2191 sum -= align_pad;
2192 stale_size -= align_pad;
2193
2194 do {
2195 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2196 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2197 } while (stale_size > ICE_MAX_DATA_PER_TXD);
2198 }
2199
2200 /* if sum is negative we failed to make sufficient progress */
2201 if (sum < 0)
2202 return true;
2203
2204 if (!nr_frags--)
2205 break;
2206
2207 sum -= stale_size;
2208 }
2209
2210 return false;
2211 }
2212
2213 /**
2214 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2215 * @skb: send buffer
2216 * @count: number of buffers used
2217 *
2218 * Note: Our HW can't scatter-gather more than 8 fragments to build
2219 * a packet on the wire and so we need to figure out the cases where we
2220 * need to linearize the skb.
2221 */
ice_chk_linearize(struct sk_buff * skb,unsigned int count)2222 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2223 {
2224 /* Both TSO and single send will work if count is less than 8 */
2225 if (likely(count < ICE_MAX_BUF_TXD))
2226 return false;
2227
2228 if (skb_is_gso(skb))
2229 return __ice_chk_linearize(skb);
2230
2231 /* we can support up to 8 data buffers for a single send */
2232 return count != ICE_MAX_BUF_TXD;
2233 }
2234
2235 /**
2236 * ice_tstamp - set up context descriptor for hardware timestamp
2237 * @tx_ring: pointer to the Tx ring to send buffer on
2238 * @skb: pointer to the SKB we're sending
2239 * @first: Tx buffer
2240 * @off: Tx offload parameters
2241 */
2242 static void
ice_tstamp(struct ice_tx_ring * tx_ring,struct sk_buff * skb,struct ice_tx_buf * first,struct ice_tx_offload_params * off)2243 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2244 struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2245 {
2246 s8 idx;
2247
2248 /* only timestamp the outbound packet if the user has requested it */
2249 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2250 return;
2251
2252 if (!tx_ring->ptp_tx)
2253 return;
2254
2255 /* Tx timestamps cannot be sampled when doing TSO */
2256 if (first->tx_flags & ICE_TX_FLAGS_TSO)
2257 return;
2258
2259 /* Grab an open timestamp slot */
2260 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2261 if (idx < 0) {
2262 tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
2263 return;
2264 }
2265
2266 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2267 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2268 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2269 first->tx_flags |= ICE_TX_FLAGS_TSYN;
2270 }
2271
2272 /**
2273 * ice_xmit_frame_ring - Sends buffer on Tx ring
2274 * @skb: send buffer
2275 * @tx_ring: ring to send buffer on
2276 *
2277 * Returns NETDEV_TX_OK if sent, else an error code
2278 */
2279 static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff * skb,struct ice_tx_ring * tx_ring)2280 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2281 {
2282 struct ice_tx_offload_params offload = { 0 };
2283 struct ice_vsi *vsi = tx_ring->vsi;
2284 struct ice_tx_buf *first;
2285 struct ethhdr *eth;
2286 unsigned int count;
2287 int tso, csum;
2288
2289 ice_trace(xmit_frame_ring, tx_ring, skb);
2290
2291 count = ice_xmit_desc_count(skb);
2292 if (ice_chk_linearize(skb, count)) {
2293 if (__skb_linearize(skb))
2294 goto out_drop;
2295 count = ice_txd_use_count(skb->len);
2296 tx_ring->tx_stats.tx_linearize++;
2297 }
2298
2299 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2300 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2301 * + 4 desc gap to avoid the cache line where head is,
2302 * + 1 desc for context descriptor,
2303 * otherwise try next time
2304 */
2305 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2306 ICE_DESCS_FOR_CTX_DESC)) {
2307 tx_ring->tx_stats.tx_busy++;
2308 return NETDEV_TX_BUSY;
2309 }
2310
2311 /* prefetch for bql data which is infrequently used */
2312 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2313
2314 offload.tx_ring = tx_ring;
2315
2316 /* record the location of the first descriptor for this packet */
2317 first = &tx_ring->tx_buf[tx_ring->next_to_use];
2318 first->skb = skb;
2319 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2320 first->gso_segs = 1;
2321 first->tx_flags = 0;
2322
2323 /* prepare the VLAN tagging flags for Tx */
2324 ice_tx_prepare_vlan_flags(tx_ring, first);
2325 if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2326 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2327 (ICE_TX_CTX_DESC_IL2TAG2 <<
2328 ICE_TXD_CTX_QW1_CMD_S));
2329 offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
2330 ICE_TX_FLAGS_VLAN_S;
2331 }
2332
2333 /* set up TSO offload */
2334 tso = ice_tso(first, &offload);
2335 if (tso < 0)
2336 goto out_drop;
2337
2338 /* always set up Tx checksum offload */
2339 csum = ice_tx_csum(first, &offload);
2340 if (csum < 0)
2341 goto out_drop;
2342
2343 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2344 eth = (struct ethhdr *)skb_mac_header(skb);
2345 if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2346 eth->h_proto == htons(ETH_P_LLDP)) &&
2347 vsi->type == ICE_VSI_PF &&
2348 vsi->port_info->qos_cfg.is_sw_lldp))
2349 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2350 ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2351 ICE_TXD_CTX_QW1_CMD_S);
2352
2353 ice_tstamp(tx_ring, skb, first, &offload);
2354 if (ice_is_switchdev_running(vsi->back))
2355 ice_eswitch_set_target_vsi(skb, &offload);
2356
2357 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2358 struct ice_tx_ctx_desc *cdesc;
2359 u16 i = tx_ring->next_to_use;
2360
2361 /* grab the next descriptor */
2362 cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2363 i++;
2364 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2365
2366 /* setup context descriptor */
2367 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2368 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2369 cdesc->rsvd = cpu_to_le16(0);
2370 cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2371 }
2372
2373 ice_tx_map(tx_ring, first, &offload);
2374 return NETDEV_TX_OK;
2375
2376 out_drop:
2377 ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2378 dev_kfree_skb_any(skb);
2379 return NETDEV_TX_OK;
2380 }
2381
2382 /**
2383 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2384 * @skb: send buffer
2385 * @netdev: network interface device structure
2386 *
2387 * Returns NETDEV_TX_OK if sent, else an error code
2388 */
ice_start_xmit(struct sk_buff * skb,struct net_device * netdev)2389 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2390 {
2391 struct ice_netdev_priv *np = netdev_priv(netdev);
2392 struct ice_vsi *vsi = np->vsi;
2393 struct ice_tx_ring *tx_ring;
2394
2395 tx_ring = vsi->tx_rings[skb->queue_mapping];
2396
2397 /* hardware can't handle really short frames, hardware padding works
2398 * beyond this point
2399 */
2400 if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2401 return NETDEV_TX_OK;
2402
2403 return ice_xmit_frame_ring(skb, tx_ring);
2404 }
2405
2406 /**
2407 * ice_get_dscp_up - return the UP/TC value for a SKB
2408 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2409 * @skb: SKB to query for info to determine UP/TC
2410 *
2411 * This function is to only be called when the PF is in L3 DSCP PFC mode
2412 */
ice_get_dscp_up(struct ice_dcbx_cfg * dcbcfg,struct sk_buff * skb)2413 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2414 {
2415 u8 dscp = 0;
2416
2417 if (skb->protocol == htons(ETH_P_IP))
2418 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2419 else if (skb->protocol == htons(ETH_P_IPV6))
2420 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2421
2422 return dcbcfg->dscp_map[dscp];
2423 }
2424
2425 u16
ice_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device * sb_dev)2426 ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2427 struct net_device *sb_dev)
2428 {
2429 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2430 struct ice_dcbx_cfg *dcbcfg;
2431
2432 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2433 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2434 skb->priority = ice_get_dscp_up(dcbcfg, skb);
2435
2436 return netdev_pick_tx(netdev, skb, sb_dev);
2437 }
2438
2439 /**
2440 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2441 * @tx_ring: tx_ring to clean
2442 */
ice_clean_ctrl_tx_irq(struct ice_tx_ring * tx_ring)2443 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2444 {
2445 struct ice_vsi *vsi = tx_ring->vsi;
2446 s16 i = tx_ring->next_to_clean;
2447 int budget = ICE_DFLT_IRQ_WORK;
2448 struct ice_tx_desc *tx_desc;
2449 struct ice_tx_buf *tx_buf;
2450
2451 tx_buf = &tx_ring->tx_buf[i];
2452 tx_desc = ICE_TX_DESC(tx_ring, i);
2453 i -= tx_ring->count;
2454
2455 do {
2456 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2457
2458 /* if next_to_watch is not set then there is no pending work */
2459 if (!eop_desc)
2460 break;
2461
2462 /* prevent any other reads prior to eop_desc */
2463 smp_rmb();
2464
2465 /* if the descriptor isn't done, no work to do */
2466 if (!(eop_desc->cmd_type_offset_bsz &
2467 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2468 break;
2469
2470 /* clear next_to_watch to prevent false hangs */
2471 tx_buf->next_to_watch = NULL;
2472 tx_desc->buf_addr = 0;
2473 tx_desc->cmd_type_offset_bsz = 0;
2474
2475 /* move past filter desc */
2476 tx_buf++;
2477 tx_desc++;
2478 i++;
2479 if (unlikely(!i)) {
2480 i -= tx_ring->count;
2481 tx_buf = tx_ring->tx_buf;
2482 tx_desc = ICE_TX_DESC(tx_ring, 0);
2483 }
2484
2485 /* unmap the data header */
2486 if (dma_unmap_len(tx_buf, len))
2487 dma_unmap_single(tx_ring->dev,
2488 dma_unmap_addr(tx_buf, dma),
2489 dma_unmap_len(tx_buf, len),
2490 DMA_TO_DEVICE);
2491 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2492 devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2493
2494 /* clear next_to_watch to prevent false hangs */
2495 tx_buf->raw_buf = NULL;
2496 tx_buf->tx_flags = 0;
2497 tx_buf->next_to_watch = NULL;
2498 dma_unmap_len_set(tx_buf, len, 0);
2499 tx_desc->buf_addr = 0;
2500 tx_desc->cmd_type_offset_bsz = 0;
2501
2502 /* move past eop_desc for start of next FD desc */
2503 tx_buf++;
2504 tx_desc++;
2505 i++;
2506 if (unlikely(!i)) {
2507 i -= tx_ring->count;
2508 tx_buf = tx_ring->tx_buf;
2509 tx_desc = ICE_TX_DESC(tx_ring, 0);
2510 }
2511
2512 budget--;
2513 } while (likely(budget));
2514
2515 i += tx_ring->count;
2516 tx_ring->next_to_clean = i;
2517
2518 /* re-enable interrupt if needed */
2519 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2520 }
2521