1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include "ice.h"
9 #include "ice_dcb_lib.h"
10 
11 #define ICE_RX_HDR_SIZE		256
12 
13 /**
14  * ice_unmap_and_free_tx_buf - Release a Tx buffer
15  * @ring: the ring that owns the buffer
16  * @tx_buf: the buffer to free
17  */
18 static void
ice_unmap_and_free_tx_buf(struct ice_ring * ring,struct ice_tx_buf * tx_buf)19 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
20 {
21 	if (tx_buf->skb) {
22 		dev_kfree_skb_any(tx_buf->skb);
23 		if (dma_unmap_len(tx_buf, len))
24 			dma_unmap_single(ring->dev,
25 					 dma_unmap_addr(tx_buf, dma),
26 					 dma_unmap_len(tx_buf, len),
27 					 DMA_TO_DEVICE);
28 	} else if (dma_unmap_len(tx_buf, len)) {
29 		dma_unmap_page(ring->dev,
30 			       dma_unmap_addr(tx_buf, dma),
31 			       dma_unmap_len(tx_buf, len),
32 			       DMA_TO_DEVICE);
33 	}
34 
35 	tx_buf->next_to_watch = NULL;
36 	tx_buf->skb = NULL;
37 	dma_unmap_len_set(tx_buf, len, 0);
38 	/* tx_buf must be completely set up in the transmit path */
39 }
40 
txring_txq(const struct ice_ring * ring)41 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
42 {
43 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
44 }
45 
46 /**
47  * ice_clean_tx_ring - Free any empty Tx buffers
48  * @tx_ring: ring to be cleaned
49  */
ice_clean_tx_ring(struct ice_ring * tx_ring)50 void ice_clean_tx_ring(struct ice_ring *tx_ring)
51 {
52 	u16 i;
53 
54 	/* ring already cleared, nothing to do */
55 	if (!tx_ring->tx_buf)
56 		return;
57 
58 	/* Free all the Tx ring sk_buffs */
59 	for (i = 0; i < tx_ring->count; i++)
60 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
61 
62 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
63 
64 	/* Zero out the descriptor ring */
65 	memset(tx_ring->desc, 0, tx_ring->size);
66 
67 	tx_ring->next_to_use = 0;
68 	tx_ring->next_to_clean = 0;
69 
70 	if (!tx_ring->netdev)
71 		return;
72 
73 	/* cleanup Tx queue statistics */
74 	netdev_tx_reset_queue(txring_txq(tx_ring));
75 }
76 
77 /**
78  * ice_free_tx_ring - Free Tx resources per queue
79  * @tx_ring: Tx descriptor ring for a specific queue
80  *
81  * Free all transmit software resources
82  */
ice_free_tx_ring(struct ice_ring * tx_ring)83 void ice_free_tx_ring(struct ice_ring *tx_ring)
84 {
85 	ice_clean_tx_ring(tx_ring);
86 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
87 	tx_ring->tx_buf = NULL;
88 
89 	if (tx_ring->desc) {
90 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
91 				   tx_ring->desc, tx_ring->dma);
92 		tx_ring->desc = NULL;
93 	}
94 }
95 
96 /**
97  * ice_clean_tx_irq - Reclaim resources after transmit completes
98  * @tx_ring: Tx ring to clean
99  * @napi_budget: Used to determine if we are in netpoll
100  *
101  * Returns true if there's any budget left (e.g. the clean is finished)
102  */
ice_clean_tx_irq(struct ice_ring * tx_ring,int napi_budget)103 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
104 {
105 	unsigned int total_bytes = 0, total_pkts = 0;
106 	unsigned int budget = ICE_DFLT_IRQ_WORK;
107 	struct ice_vsi *vsi = tx_ring->vsi;
108 	s16 i = tx_ring->next_to_clean;
109 	struct ice_tx_desc *tx_desc;
110 	struct ice_tx_buf *tx_buf;
111 
112 	tx_buf = &tx_ring->tx_buf[i];
113 	tx_desc = ICE_TX_DESC(tx_ring, i);
114 	i -= tx_ring->count;
115 
116 	prefetch(&vsi->state);
117 
118 	do {
119 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
120 
121 		/* if next_to_watch is not set then there is no work pending */
122 		if (!eop_desc)
123 			break;
124 
125 		smp_rmb();	/* prevent any other reads prior to eop_desc */
126 
127 		/* if the descriptor isn't done, no work yet to do */
128 		if (!(eop_desc->cmd_type_offset_bsz &
129 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
130 			break;
131 
132 		/* clear next_to_watch to prevent false hangs */
133 		tx_buf->next_to_watch = NULL;
134 
135 		/* update the statistics for this packet */
136 		total_bytes += tx_buf->bytecount;
137 		total_pkts += tx_buf->gso_segs;
138 
139 		/* free the skb */
140 		napi_consume_skb(tx_buf->skb, napi_budget);
141 
142 		/* unmap skb header data */
143 		dma_unmap_single(tx_ring->dev,
144 				 dma_unmap_addr(tx_buf, dma),
145 				 dma_unmap_len(tx_buf, len),
146 				 DMA_TO_DEVICE);
147 
148 		/* clear tx_buf data */
149 		tx_buf->skb = NULL;
150 		dma_unmap_len_set(tx_buf, len, 0);
151 
152 		/* unmap remaining buffers */
153 		while (tx_desc != eop_desc) {
154 			tx_buf++;
155 			tx_desc++;
156 			i++;
157 			if (unlikely(!i)) {
158 				i -= tx_ring->count;
159 				tx_buf = tx_ring->tx_buf;
160 				tx_desc = ICE_TX_DESC(tx_ring, 0);
161 			}
162 
163 			/* unmap any remaining paged data */
164 			if (dma_unmap_len(tx_buf, len)) {
165 				dma_unmap_page(tx_ring->dev,
166 					       dma_unmap_addr(tx_buf, dma),
167 					       dma_unmap_len(tx_buf, len),
168 					       DMA_TO_DEVICE);
169 				dma_unmap_len_set(tx_buf, len, 0);
170 			}
171 		}
172 
173 		/* move us one more past the eop_desc for start of next pkt */
174 		tx_buf++;
175 		tx_desc++;
176 		i++;
177 		if (unlikely(!i)) {
178 			i -= tx_ring->count;
179 			tx_buf = tx_ring->tx_buf;
180 			tx_desc = ICE_TX_DESC(tx_ring, 0);
181 		}
182 
183 		prefetch(tx_desc);
184 
185 		/* update budget accounting */
186 		budget--;
187 	} while (likely(budget));
188 
189 	i += tx_ring->count;
190 	tx_ring->next_to_clean = i;
191 	u64_stats_update_begin(&tx_ring->syncp);
192 	tx_ring->stats.bytes += total_bytes;
193 	tx_ring->stats.pkts += total_pkts;
194 	u64_stats_update_end(&tx_ring->syncp);
195 	tx_ring->q_vector->tx.total_bytes += total_bytes;
196 	tx_ring->q_vector->tx.total_pkts += total_pkts;
197 
198 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
199 				  total_bytes);
200 
201 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
202 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
203 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
204 		/* Make sure that anybody stopping the queue after this
205 		 * sees the new next_to_clean.
206 		 */
207 		smp_mb();
208 		if (__netif_subqueue_stopped(tx_ring->netdev,
209 					     tx_ring->q_index) &&
210 		    !test_bit(__ICE_DOWN, vsi->state)) {
211 			netif_wake_subqueue(tx_ring->netdev,
212 					    tx_ring->q_index);
213 			++tx_ring->tx_stats.restart_q;
214 		}
215 	}
216 
217 	return !!budget;
218 }
219 
220 /**
221  * ice_setup_tx_ring - Allocate the Tx descriptors
222  * @tx_ring: the Tx ring to set up
223  *
224  * Return 0 on success, negative on error
225  */
ice_setup_tx_ring(struct ice_ring * tx_ring)226 int ice_setup_tx_ring(struct ice_ring *tx_ring)
227 {
228 	struct device *dev = tx_ring->dev;
229 
230 	if (!dev)
231 		return -ENOMEM;
232 
233 	/* warn if we are about to overwrite the pointer */
234 	WARN_ON(tx_ring->tx_buf);
235 	tx_ring->tx_buf =
236 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
237 			     GFP_KERNEL);
238 	if (!tx_ring->tx_buf)
239 		return -ENOMEM;
240 
241 	/* round up to nearest page */
242 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
243 			      PAGE_SIZE);
244 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
245 					    GFP_KERNEL);
246 	if (!tx_ring->desc) {
247 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
248 			tx_ring->size);
249 		goto err;
250 	}
251 
252 	tx_ring->next_to_use = 0;
253 	tx_ring->next_to_clean = 0;
254 	tx_ring->tx_stats.prev_pkt = -1;
255 	return 0;
256 
257 err:
258 	devm_kfree(dev, tx_ring->tx_buf);
259 	tx_ring->tx_buf = NULL;
260 	return -ENOMEM;
261 }
262 
263 /**
264  * ice_clean_rx_ring - Free Rx buffers
265  * @rx_ring: ring to be cleaned
266  */
ice_clean_rx_ring(struct ice_ring * rx_ring)267 void ice_clean_rx_ring(struct ice_ring *rx_ring)
268 {
269 	struct device *dev = rx_ring->dev;
270 	u16 i;
271 
272 	/* ring already cleared, nothing to do */
273 	if (!rx_ring->rx_buf)
274 		return;
275 
276 	/* Free all the Rx ring sk_buffs */
277 	for (i = 0; i < rx_ring->count; i++) {
278 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
279 
280 		if (rx_buf->skb) {
281 			dev_kfree_skb(rx_buf->skb);
282 			rx_buf->skb = NULL;
283 		}
284 		if (!rx_buf->page)
285 			continue;
286 
287 		/* Invalidate cache lines that may have been written to by
288 		 * device so that we avoid corrupting memory.
289 		 */
290 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
291 					      rx_buf->page_offset,
292 					      ICE_RXBUF_2048, DMA_FROM_DEVICE);
293 
294 		/* free resources associated with mapping */
295 		dma_unmap_page_attrs(dev, rx_buf->dma, PAGE_SIZE,
296 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
297 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
298 
299 		rx_buf->page = NULL;
300 		rx_buf->page_offset = 0;
301 	}
302 
303 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
304 
305 	/* Zero out the descriptor ring */
306 	memset(rx_ring->desc, 0, rx_ring->size);
307 
308 	rx_ring->next_to_alloc = 0;
309 	rx_ring->next_to_clean = 0;
310 	rx_ring->next_to_use = 0;
311 }
312 
313 /**
314  * ice_free_rx_ring - Free Rx resources
315  * @rx_ring: ring to clean the resources from
316  *
317  * Free all receive software resources
318  */
ice_free_rx_ring(struct ice_ring * rx_ring)319 void ice_free_rx_ring(struct ice_ring *rx_ring)
320 {
321 	ice_clean_rx_ring(rx_ring);
322 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
323 	rx_ring->rx_buf = NULL;
324 
325 	if (rx_ring->desc) {
326 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
327 				   rx_ring->desc, rx_ring->dma);
328 		rx_ring->desc = NULL;
329 	}
330 }
331 
332 /**
333  * ice_setup_rx_ring - Allocate the Rx descriptors
334  * @rx_ring: the Rx ring to set up
335  *
336  * Return 0 on success, negative on error
337  */
ice_setup_rx_ring(struct ice_ring * rx_ring)338 int ice_setup_rx_ring(struct ice_ring *rx_ring)
339 {
340 	struct device *dev = rx_ring->dev;
341 
342 	if (!dev)
343 		return -ENOMEM;
344 
345 	/* warn if we are about to overwrite the pointer */
346 	WARN_ON(rx_ring->rx_buf);
347 	rx_ring->rx_buf =
348 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
349 			     GFP_KERNEL);
350 	if (!rx_ring->rx_buf)
351 		return -ENOMEM;
352 
353 	/* round up to nearest page */
354 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
355 			      PAGE_SIZE);
356 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
357 					    GFP_KERNEL);
358 	if (!rx_ring->desc) {
359 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
360 			rx_ring->size);
361 		goto err;
362 	}
363 
364 	rx_ring->next_to_use = 0;
365 	rx_ring->next_to_clean = 0;
366 	return 0;
367 
368 err:
369 	devm_kfree(dev, rx_ring->rx_buf);
370 	rx_ring->rx_buf = NULL;
371 	return -ENOMEM;
372 }
373 
374 /**
375  * ice_release_rx_desc - Store the new tail and head values
376  * @rx_ring: ring to bump
377  * @val: new head index
378  */
ice_release_rx_desc(struct ice_ring * rx_ring,u32 val)379 static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
380 {
381 	u16 prev_ntu = rx_ring->next_to_use;
382 
383 	rx_ring->next_to_use = val;
384 
385 	/* update next to alloc since we have filled the ring */
386 	rx_ring->next_to_alloc = val;
387 
388 	/* QRX_TAIL will be updated with any tail value, but hardware ignores
389 	 * the lower 3 bits. This makes it so we only bump tail on meaningful
390 	 * boundaries. Also, this allows us to bump tail on intervals of 8 up to
391 	 * the budget depending on the current traffic load.
392 	 */
393 	val &= ~0x7;
394 	if (prev_ntu != val) {
395 		/* Force memory writes to complete before letting h/w
396 		 * know there are new descriptors to fetch. (Only
397 		 * applicable for weak-ordered memory model archs,
398 		 * such as IA-64).
399 		 */
400 		wmb();
401 		writel(val, rx_ring->tail);
402 	}
403 }
404 
405 /**
406  * ice_alloc_mapped_page - recycle or make a new page
407  * @rx_ring: ring to use
408  * @bi: rx_buf struct to modify
409  *
410  * Returns true if the page was successfully allocated or
411  * reused.
412  */
413 static bool
ice_alloc_mapped_page(struct ice_ring * rx_ring,struct ice_rx_buf * bi)414 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
415 {
416 	struct page *page = bi->page;
417 	dma_addr_t dma;
418 
419 	/* since we are recycling buffers we should seldom need to alloc */
420 	if (likely(page)) {
421 		rx_ring->rx_stats.page_reuse_count++;
422 		return true;
423 	}
424 
425 	/* alloc new page for storage */
426 	page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
427 	if (unlikely(!page)) {
428 		rx_ring->rx_stats.alloc_page_failed++;
429 		return false;
430 	}
431 
432 	/* map page for use */
433 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE,
434 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
435 
436 	/* if mapping failed free memory back to system since
437 	 * there isn't much point in holding memory we can't use
438 	 */
439 	if (dma_mapping_error(rx_ring->dev, dma)) {
440 		__free_pages(page, 0);
441 		rx_ring->rx_stats.alloc_page_failed++;
442 		return false;
443 	}
444 
445 	bi->dma = dma;
446 	bi->page = page;
447 	bi->page_offset = 0;
448 	page_ref_add(page, USHRT_MAX - 1);
449 	bi->pagecnt_bias = USHRT_MAX;
450 
451 	return true;
452 }
453 
454 /**
455  * ice_alloc_rx_bufs - Replace used receive buffers
456  * @rx_ring: ring to place buffers on
457  * @cleaned_count: number of buffers to replace
458  *
459  * Returns false if all allocations were successful, true if any fail. Returning
460  * true signals to the caller that we didn't replace cleaned_count buffers and
461  * there is more work to do.
462  *
463  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
464  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
465  * multiple tail writes per call.
466  */
ice_alloc_rx_bufs(struct ice_ring * rx_ring,u16 cleaned_count)467 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
468 {
469 	union ice_32b_rx_flex_desc *rx_desc;
470 	u16 ntu = rx_ring->next_to_use;
471 	struct ice_rx_buf *bi;
472 
473 	/* do nothing if no valid netdev defined */
474 	if (!rx_ring->netdev || !cleaned_count)
475 		return false;
476 
477 	/* get the Rx descriptor and buffer based on next_to_use */
478 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
479 	bi = &rx_ring->rx_buf[ntu];
480 
481 	do {
482 		/* if we fail here, we have work remaining */
483 		if (!ice_alloc_mapped_page(rx_ring, bi))
484 			break;
485 
486 		/* sync the buffer for use by the device */
487 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
488 						 bi->page_offset,
489 						 ICE_RXBUF_2048,
490 						 DMA_FROM_DEVICE);
491 
492 		/* Refresh the desc even if buffer_addrs didn't change
493 		 * because each write-back erases this info.
494 		 */
495 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
496 
497 		rx_desc++;
498 		bi++;
499 		ntu++;
500 		if (unlikely(ntu == rx_ring->count)) {
501 			rx_desc = ICE_RX_DESC(rx_ring, 0);
502 			bi = rx_ring->rx_buf;
503 			ntu = 0;
504 		}
505 
506 		/* clear the status bits for the next_to_use descriptor */
507 		rx_desc->wb.status_error0 = 0;
508 
509 		cleaned_count--;
510 	} while (cleaned_count);
511 
512 	if (rx_ring->next_to_use != ntu)
513 		ice_release_rx_desc(rx_ring, ntu);
514 
515 	return !!cleaned_count;
516 }
517 
518 /**
519  * ice_page_is_reserved - check if reuse is possible
520  * @page: page struct to check
521  */
ice_page_is_reserved(struct page * page)522 static bool ice_page_is_reserved(struct page *page)
523 {
524 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
525 }
526 
527 /**
528  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
529  * @rx_buf: Rx buffer to adjust
530  * @size: Size of adjustment
531  *
532  * Update the offset within page so that Rx buf will be ready to be reused.
533  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
534  * so the second half of page assigned to Rx buffer will be used, otherwise
535  * the offset is moved by the @size bytes
536  */
537 static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf * rx_buf,unsigned int size)538 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
539 {
540 #if (PAGE_SIZE < 8192)
541 	/* flip page offset to other buffer */
542 	rx_buf->page_offset ^= size;
543 #else
544 	/* move offset up to the next cache line */
545 	rx_buf->page_offset += size;
546 #endif
547 }
548 
549 /**
550  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
551  * @rx_buf: buffer containing the page
552  *
553  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
554  * which will assign the current buffer to the buffer that next_to_alloc is
555  * pointing to; otherwise, the DMA mapping needs to be destroyed and
556  * page freed
557  */
ice_can_reuse_rx_page(struct ice_rx_buf * rx_buf)558 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
559 {
560 #if (PAGE_SIZE >= 8192)
561 	unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
562 #endif
563 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
564 	struct page *page = rx_buf->page;
565 
566 	/* avoid re-using remote pages */
567 	if (unlikely(ice_page_is_reserved(page)))
568 		return false;
569 
570 #if (PAGE_SIZE < 8192)
571 	/* if we are only owner of page we can reuse it */
572 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
573 		return false;
574 #else
575 	if (rx_buf->page_offset > last_offset)
576 		return false;
577 #endif /* PAGE_SIZE < 8192) */
578 
579 	/* If we have drained the page fragment pool we need to update
580 	 * the pagecnt_bias and page count so that we fully restock the
581 	 * number of references the driver holds.
582 	 */
583 	if (unlikely(pagecnt_bias == 1)) {
584 		page_ref_add(page, USHRT_MAX - 1);
585 		rx_buf->pagecnt_bias = USHRT_MAX;
586 	}
587 
588 	return true;
589 }
590 
591 /**
592  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
593  * @rx_buf: buffer containing page to add
594  * @skb: sk_buff to place the data into
595  * @size: packet length from rx_desc
596  *
597  * This function will add the data contained in rx_buf->page to the skb.
598  * It will just attach the page as a frag to the skb.
599  * The function will then update the page offset.
600  */
601 static void
ice_add_rx_frag(struct ice_rx_buf * rx_buf,struct sk_buff * skb,unsigned int size)602 ice_add_rx_frag(struct ice_rx_buf *rx_buf, struct sk_buff *skb,
603 		unsigned int size)
604 {
605 #if (PAGE_SIZE >= 8192)
606 	unsigned int truesize = SKB_DATA_ALIGN(size);
607 #else
608 	unsigned int truesize = ICE_RXBUF_2048;
609 #endif
610 
611 	if (!size)
612 		return;
613 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
614 			rx_buf->page_offset, size, truesize);
615 
616 	/* page is being used so we must update the page offset */
617 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
618 }
619 
620 /**
621  * ice_reuse_rx_page - page flip buffer and store it back on the ring
622  * @rx_ring: Rx descriptor ring to store buffers on
623  * @old_buf: donor buffer to have page reused
624  *
625  * Synchronizes page for reuse by the adapter
626  */
627 static void
ice_reuse_rx_page(struct ice_ring * rx_ring,struct ice_rx_buf * old_buf)628 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
629 {
630 	u16 nta = rx_ring->next_to_alloc;
631 	struct ice_rx_buf *new_buf;
632 
633 	new_buf = &rx_ring->rx_buf[nta];
634 
635 	/* update, and store next to alloc */
636 	nta++;
637 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
638 
639 	/* Transfer page from old buffer to new buffer.
640 	 * Move each member individually to avoid possible store
641 	 * forwarding stalls and unnecessary copy of skb.
642 	 */
643 	new_buf->dma = old_buf->dma;
644 	new_buf->page = old_buf->page;
645 	new_buf->page_offset = old_buf->page_offset;
646 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
647 }
648 
649 /**
650  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
651  * @rx_ring: Rx descriptor ring to transact packets on
652  * @skb: skb to be used
653  * @size: size of buffer to add to skb
654  *
655  * This function will pull an Rx buffer from the ring and synchronize it
656  * for use by the CPU.
657  */
658 static struct ice_rx_buf *
ice_get_rx_buf(struct ice_ring * rx_ring,struct sk_buff ** skb,const unsigned int size)659 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
660 	       const unsigned int size)
661 {
662 	struct ice_rx_buf *rx_buf;
663 
664 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
665 	prefetchw(rx_buf->page);
666 	*skb = rx_buf->skb;
667 
668 	if (!size)
669 		return rx_buf;
670 	/* we are reusing so sync this buffer for CPU use */
671 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
672 				      rx_buf->page_offset, size,
673 				      DMA_FROM_DEVICE);
674 
675 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
676 	rx_buf->pagecnt_bias--;
677 
678 	return rx_buf;
679 }
680 
681 /**
682  * ice_construct_skb - Allocate skb and populate it
683  * @rx_ring: Rx descriptor ring to transact packets on
684  * @rx_buf: Rx buffer to pull data from
685  * @size: the length of the packet
686  *
687  * This function allocates an skb. It then populates it with the page
688  * data from the current receive descriptor, taking care to set up the
689  * skb correctly.
690  */
691 static struct sk_buff *
ice_construct_skb(struct ice_ring * rx_ring,struct ice_rx_buf * rx_buf,unsigned int size)692 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
693 		  unsigned int size)
694 {
695 	void *va = page_address(rx_buf->page) + rx_buf->page_offset;
696 	unsigned int headlen;
697 	struct sk_buff *skb;
698 
699 	/* prefetch first cache line of first page */
700 	prefetch(va);
701 #if L1_CACHE_BYTES < 128
702 	prefetch((u8 *)va + L1_CACHE_BYTES);
703 #endif /* L1_CACHE_BYTES */
704 
705 	/* allocate a skb to store the frags */
706 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
707 			       GFP_ATOMIC | __GFP_NOWARN);
708 	if (unlikely(!skb))
709 		return NULL;
710 
711 	skb_record_rx_queue(skb, rx_ring->q_index);
712 	/* Determine available headroom for copy */
713 	headlen = size;
714 	if (headlen > ICE_RX_HDR_SIZE)
715 		headlen = eth_get_headlen(skb->dev, va, ICE_RX_HDR_SIZE);
716 
717 	/* align pull length to size of long to optimize memcpy performance */
718 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
719 
720 	/* if we exhaust the linear part then add what is left as a frag */
721 	size -= headlen;
722 	if (size) {
723 #if (PAGE_SIZE >= 8192)
724 		unsigned int truesize = SKB_DATA_ALIGN(size);
725 #else
726 		unsigned int truesize = ICE_RXBUF_2048;
727 #endif
728 		skb_add_rx_frag(skb, 0, rx_buf->page,
729 				rx_buf->page_offset + headlen, size, truesize);
730 		/* buffer is used by skb, update page_offset */
731 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
732 	} else {
733 		/* buffer is unused, reset bias back to rx_buf; data was copied
734 		 * onto skb's linear part so there's no need for adjusting
735 		 * page offset and we can reuse this buffer as-is
736 		 */
737 		rx_buf->pagecnt_bias++;
738 	}
739 
740 	return skb;
741 }
742 
743 /**
744  * ice_put_rx_buf - Clean up used buffer and either recycle or free
745  * @rx_ring: Rx descriptor ring to transact packets on
746  * @rx_buf: Rx buffer to pull data from
747  *
748  * This function will  clean up the contents of the rx_buf. It will
749  * either recycle the buffer or unmap it and free the associated resources.
750  */
ice_put_rx_buf(struct ice_ring * rx_ring,struct ice_rx_buf * rx_buf)751 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
752 {
753 	if (!rx_buf)
754 		return;
755 
756 	if (ice_can_reuse_rx_page(rx_buf)) {
757 		/* hand second half of page back to the ring */
758 		ice_reuse_rx_page(rx_ring, rx_buf);
759 		rx_ring->rx_stats.page_reuse_count++;
760 	} else {
761 		/* we are not reusing the buffer so unmap it */
762 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
763 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
764 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
765 	}
766 
767 	/* clear contents of buffer_info */
768 	rx_buf->page = NULL;
769 	rx_buf->skb = NULL;
770 }
771 
772 /**
773  * ice_cleanup_headers - Correct empty headers
774  * @skb: pointer to current skb being fixed
775  *
776  * Also address the case where we are pulling data in on pages only
777  * and as such no data is present in the skb header.
778  *
779  * In addition if skb is not at least 60 bytes we need to pad it so that
780  * it is large enough to qualify as a valid Ethernet frame.
781  *
782  * Returns true if an error was encountered and skb was freed.
783  */
ice_cleanup_headers(struct sk_buff * skb)784 static bool ice_cleanup_headers(struct sk_buff *skb)
785 {
786 	/* if eth_skb_pad returns an error the skb was freed */
787 	if (eth_skb_pad(skb))
788 		return true;
789 
790 	return false;
791 }
792 
793 /**
794  * ice_test_staterr - tests bits in Rx descriptor status and error fields
795  * @rx_desc: pointer to receive descriptor (in le64 format)
796  * @stat_err_bits: value to mask
797  *
798  * This function does some fast chicanery in order to return the
799  * value of the mask which is really only used for boolean tests.
800  * The status_error_len doesn't need to be shifted because it begins
801  * at offset zero.
802  */
803 static bool
ice_test_staterr(union ice_32b_rx_flex_desc * rx_desc,const u16 stat_err_bits)804 ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc, const u16 stat_err_bits)
805 {
806 	return !!(rx_desc->wb.status_error0 &
807 		  cpu_to_le16(stat_err_bits));
808 }
809 
810 /**
811  * ice_is_non_eop - process handling of non-EOP buffers
812  * @rx_ring: Rx ring being processed
813  * @rx_desc: Rx descriptor for current buffer
814  * @skb: Current socket buffer containing buffer in progress
815  *
816  * This function updates next to clean. If the buffer is an EOP buffer
817  * this function exits returning false, otherwise it will place the
818  * sk_buff in the next buffer to be chained and return true indicating
819  * that this is in fact a non-EOP buffer.
820  */
821 static bool
ice_is_non_eop(struct ice_ring * rx_ring,union ice_32b_rx_flex_desc * rx_desc,struct sk_buff * skb)822 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
823 	       struct sk_buff *skb)
824 {
825 	u32 ntc = rx_ring->next_to_clean + 1;
826 
827 	/* fetch, update, and store next to clean */
828 	ntc = (ntc < rx_ring->count) ? ntc : 0;
829 	rx_ring->next_to_clean = ntc;
830 
831 	prefetch(ICE_RX_DESC(rx_ring, ntc));
832 
833 	/* if we are the last buffer then there is nothing else to do */
834 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
835 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
836 		return false;
837 
838 	/* place skb in next buffer to be received */
839 	rx_ring->rx_buf[ntc].skb = skb;
840 	rx_ring->rx_stats.non_eop_descs++;
841 
842 	return true;
843 }
844 
845 /**
846  * ice_ptype_to_htype - get a hash type
847  * @ptype: the ptype value from the descriptor
848  *
849  * Returns a hash type to be used by skb_set_hash
850  */
ice_ptype_to_htype(u8 __always_unused ptype)851 static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
852 {
853 	return PKT_HASH_TYPE_NONE;
854 }
855 
856 /**
857  * ice_rx_hash - set the hash value in the skb
858  * @rx_ring: descriptor ring
859  * @rx_desc: specific descriptor
860  * @skb: pointer to current skb
861  * @rx_ptype: the ptype value from the descriptor
862  */
863 static void
ice_rx_hash(struct ice_ring * rx_ring,union ice_32b_rx_flex_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)864 ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
865 	    struct sk_buff *skb, u8 rx_ptype)
866 {
867 	struct ice_32b_rx_flex_desc_nic *nic_mdid;
868 	u32 hash;
869 
870 	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
871 		return;
872 
873 	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
874 		return;
875 
876 	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
877 	hash = le32_to_cpu(nic_mdid->rss_hash);
878 	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
879 }
880 
881 /**
882  * ice_rx_csum - Indicate in skb if checksum is good
883  * @ring: the ring we care about
884  * @skb: skb currently being received and modified
885  * @rx_desc: the receive descriptor
886  * @ptype: the packet type decoded by hardware
887  *
888  * skb->protocol must be set before this function is called
889  */
890 static void
ice_rx_csum(struct ice_ring * ring,struct sk_buff * skb,union ice_32b_rx_flex_desc * rx_desc,u8 ptype)891 ice_rx_csum(struct ice_ring *ring, struct sk_buff *skb,
892 	    union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
893 {
894 	struct ice_rx_ptype_decoded decoded;
895 	u32 rx_error, rx_status;
896 	bool ipv4, ipv6;
897 
898 	rx_status = le16_to_cpu(rx_desc->wb.status_error0);
899 	rx_error = rx_status;
900 
901 	decoded = ice_decode_rx_desc_ptype(ptype);
902 
903 	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
904 	skb->ip_summed = CHECKSUM_NONE;
905 	skb_checksum_none_assert(skb);
906 
907 	/* check if Rx checksum is enabled */
908 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
909 		return;
910 
911 	/* check if HW has decoded the packet and checksum */
912 	if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
913 		return;
914 
915 	if (!(decoded.known && decoded.outer_ip))
916 		return;
917 
918 	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
919 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
920 	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
921 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
922 
923 	if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
924 				 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
925 		goto checksum_fail;
926 	else if (ipv6 && (rx_status &
927 		 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
928 		goto checksum_fail;
929 
930 	/* check for L4 errors and handle packets that were not able to be
931 	 * checksummed due to arrival speed
932 	 */
933 	if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
934 		goto checksum_fail;
935 
936 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
937 	switch (decoded.inner_prot) {
938 	case ICE_RX_PTYPE_INNER_PROT_TCP:
939 	case ICE_RX_PTYPE_INNER_PROT_UDP:
940 	case ICE_RX_PTYPE_INNER_PROT_SCTP:
941 		skb->ip_summed = CHECKSUM_UNNECESSARY;
942 	default:
943 		break;
944 	}
945 	return;
946 
947 checksum_fail:
948 	ring->vsi->back->hw_csum_rx_error++;
949 }
950 
951 /**
952  * ice_process_skb_fields - Populate skb header fields from Rx descriptor
953  * @rx_ring: Rx descriptor ring packet is being transacted on
954  * @rx_desc: pointer to the EOP Rx descriptor
955  * @skb: pointer to current skb being populated
956  * @ptype: the packet type decoded by hardware
957  *
958  * This function checks the ring, descriptor, and packet information in
959  * order to populate the hash, checksum, VLAN, protocol, and
960  * other fields within the skb.
961  */
962 static void
ice_process_skb_fields(struct ice_ring * rx_ring,union ice_32b_rx_flex_desc * rx_desc,struct sk_buff * skb,u8 ptype)963 ice_process_skb_fields(struct ice_ring *rx_ring,
964 		       union ice_32b_rx_flex_desc *rx_desc,
965 		       struct sk_buff *skb, u8 ptype)
966 {
967 	ice_rx_hash(rx_ring, rx_desc, skb, ptype);
968 
969 	/* modifies the skb - consumes the enet header */
970 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
971 
972 	ice_rx_csum(rx_ring, skb, rx_desc, ptype);
973 }
974 
975 /**
976  * ice_receive_skb - Send a completed packet up the stack
977  * @rx_ring: Rx ring in play
978  * @skb: packet to send up
979  * @vlan_tag: VLAN tag for packet
980  *
981  * This function sends the completed packet (via. skb) up the stack using
982  * gro receive functions (with/without VLAN tag)
983  */
984 static void
ice_receive_skb(struct ice_ring * rx_ring,struct sk_buff * skb,u16 vlan_tag)985 ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag)
986 {
987 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
988 	    (vlan_tag & VLAN_VID_MASK))
989 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
990 	napi_gro_receive(&rx_ring->q_vector->napi, skb);
991 }
992 
993 /**
994  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
995  * @rx_ring: Rx descriptor ring to transact packets on
996  * @budget: Total limit on number of packets to process
997  *
998  * This function provides a "bounce buffer" approach to Rx interrupt
999  * processing. The advantage to this is that on systems that have
1000  * expensive overhead for IOMMU access this provides a means of avoiding
1001  * it by maintaining the mapping of the page to the system.
1002  *
1003  * Returns amount of work completed
1004  */
ice_clean_rx_irq(struct ice_ring * rx_ring,int budget)1005 static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1006 {
1007 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1008 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1009 	bool failure;
1010 
1011 	/* start the loop to process Rx packets bounded by 'budget' */
1012 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1013 		union ice_32b_rx_flex_desc *rx_desc;
1014 		struct ice_rx_buf *rx_buf;
1015 		struct sk_buff *skb;
1016 		unsigned int size;
1017 		u16 stat_err_bits;
1018 		u16 vlan_tag = 0;
1019 		u8 rx_ptype;
1020 
1021 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1022 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1023 
1024 		/* status_error_len will always be zero for unused descriptors
1025 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1026 		 * which is always zero because packet split isn't used, if the
1027 		 * hardware wrote DD then it will be non-zero
1028 		 */
1029 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1030 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1031 			break;
1032 
1033 		/* This memory barrier is needed to keep us from reading
1034 		 * any other fields out of the rx_desc until we know the
1035 		 * DD bit is set.
1036 		 */
1037 		dma_rmb();
1038 
1039 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1040 			ICE_RX_FLX_DESC_PKT_LEN_M;
1041 
1042 		/* retrieve a buffer from the ring */
1043 		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1044 
1045 		if (skb)
1046 			ice_add_rx_frag(rx_buf, skb, size);
1047 		else
1048 			skb = ice_construct_skb(rx_ring, rx_buf, size);
1049 
1050 		/* exit if we failed to retrieve a buffer */
1051 		if (!skb) {
1052 			rx_ring->rx_stats.alloc_buf_failed++;
1053 			if (rx_buf)
1054 				rx_buf->pagecnt_bias++;
1055 			break;
1056 		}
1057 
1058 		ice_put_rx_buf(rx_ring, rx_buf);
1059 		cleaned_count++;
1060 
1061 		/* skip if it is NOP desc */
1062 		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1063 			continue;
1064 
1065 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1066 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1067 			dev_kfree_skb_any(skb);
1068 			continue;
1069 		}
1070 
1071 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1072 		if (ice_test_staterr(rx_desc, stat_err_bits))
1073 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1074 
1075 		/* correct empty headers and pad skb if needed (to make valid
1076 		 * ethernet frame
1077 		 */
1078 		if (ice_cleanup_headers(skb)) {
1079 			skb = NULL;
1080 			continue;
1081 		}
1082 
1083 		/* probably a little skewed due to removing CRC */
1084 		total_rx_bytes += skb->len;
1085 
1086 		/* populate checksum, VLAN, and protocol */
1087 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1088 			ICE_RX_FLEX_DESC_PTYPE_M;
1089 
1090 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1091 
1092 		/* send completed skb up the stack */
1093 		ice_receive_skb(rx_ring, skb, vlan_tag);
1094 
1095 		/* update budget accounting */
1096 		total_rx_pkts++;
1097 	}
1098 
1099 	/* return up to cleaned_count buffers to hardware */
1100 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1101 
1102 	/* update queue and vector specific stats */
1103 	u64_stats_update_begin(&rx_ring->syncp);
1104 	rx_ring->stats.pkts += total_rx_pkts;
1105 	rx_ring->stats.bytes += total_rx_bytes;
1106 	u64_stats_update_end(&rx_ring->syncp);
1107 	rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
1108 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1109 
1110 	/* guarantee a trip back through this routine if there was a failure */
1111 	return failure ? budget : (int)total_rx_pkts;
1112 }
1113 
1114 /**
1115  * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1116  * @port_info: port_info structure containing the current link speed
1117  * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1118  * @itr: ITR value to update
1119  *
1120  * Calculate how big of an increment should be applied to the ITR value passed
1121  * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
1122  * link speed.
1123  *
1124  * The following is a calculation derived from:
1125  *  wmem_default / (size + overhead) = desired_pkts_per_int
1126  *  rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
1127  *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1128  *
1129  * Assuming wmem_default is 212992 and overhead is 640 bytes per
1130  * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1131  * formula down to:
1132  *
1133  *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1134  * ITR = -------------------------------------------- * --------------
1135  *			     rate			pkt_size + 640
1136  */
1137 static unsigned int
ice_adjust_itr_by_size_and_speed(struct ice_port_info * port_info,unsigned int avg_pkt_size,unsigned int itr)1138 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1139 				 unsigned int avg_pkt_size,
1140 				 unsigned int itr)
1141 {
1142 	switch (port_info->phy.link_info.link_speed) {
1143 	case ICE_AQ_LINK_SPEED_100GB:
1144 		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1145 				    avg_pkt_size + 640);
1146 		break;
1147 	case ICE_AQ_LINK_SPEED_50GB:
1148 		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1149 				    avg_pkt_size + 640);
1150 		break;
1151 	case ICE_AQ_LINK_SPEED_40GB:
1152 		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1153 				    avg_pkt_size + 640);
1154 		break;
1155 	case ICE_AQ_LINK_SPEED_25GB:
1156 		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1157 				    avg_pkt_size + 640);
1158 		break;
1159 	case ICE_AQ_LINK_SPEED_20GB:
1160 		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1161 				    avg_pkt_size + 640);
1162 		break;
1163 	case ICE_AQ_LINK_SPEED_10GB:
1164 		/* fall through */
1165 	default:
1166 		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1167 				    avg_pkt_size + 640);
1168 		break;
1169 	}
1170 
1171 	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1172 		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1173 		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1174 	}
1175 
1176 	return itr;
1177 }
1178 
1179 /**
1180  * ice_update_itr - update the adaptive ITR value based on statistics
1181  * @q_vector: structure containing interrupt and ring information
1182  * @rc: structure containing ring performance data
1183  *
1184  * Stores a new ITR value based on packets and byte
1185  * counts during the last interrupt.  The advantage of per interrupt
1186  * computation is faster updates and more accurate ITR for the current
1187  * traffic pattern.  Constants in this function were computed
1188  * based on theoretical maximum wire speed and thresholds were set based
1189  * on testing data as well as attempting to minimize response time
1190  * while increasing bulk throughput.
1191  */
1192 static void
ice_update_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc)1193 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1194 {
1195 	unsigned long next_update = jiffies;
1196 	unsigned int packets, bytes, itr;
1197 	bool container_is_rx;
1198 
1199 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1200 		return;
1201 
1202 	/* If itr_countdown is set it means we programmed an ITR within
1203 	 * the last 4 interrupt cycles. This has a side effect of us
1204 	 * potentially firing an early interrupt. In order to work around
1205 	 * this we need to throw out any data received for a few
1206 	 * interrupts following the update.
1207 	 */
1208 	if (q_vector->itr_countdown) {
1209 		itr = rc->target_itr;
1210 		goto clear_counts;
1211 	}
1212 
1213 	container_is_rx = (&q_vector->rx == rc);
1214 	/* For Rx we want to push the delay up and default to low latency.
1215 	 * for Tx we want to pull the delay down and default to high latency.
1216 	 */
1217 	itr = container_is_rx ?
1218 		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1219 		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1220 
1221 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1222 	 * that either packets are coming in so slow there hasn't been
1223 	 * any work, or that there is so much work that NAPI is dealing
1224 	 * with interrupt moderation and we don't need to do anything.
1225 	 */
1226 	if (time_after(next_update, rc->next_update))
1227 		goto clear_counts;
1228 
1229 	prefetch(q_vector->vsi->port_info);
1230 
1231 	packets = rc->total_pkts;
1232 	bytes = rc->total_bytes;
1233 
1234 	if (container_is_rx) {
1235 		/* If Rx there are 1 to 4 packets and bytes are less than
1236 		 * 9000 assume insufficient data to use bulk rate limiting
1237 		 * approach unless Tx is already in bulk rate limiting. We
1238 		 * are likely latency driven.
1239 		 */
1240 		if (packets && packets < 4 && bytes < 9000 &&
1241 		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1242 			itr = ICE_ITR_ADAPTIVE_LATENCY;
1243 			goto adjust_by_size_and_speed;
1244 		}
1245 	} else if (packets < 4) {
1246 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1247 		 * bulk mode and we are receiving 4 or fewer packets just
1248 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1249 		 * that the Rx can relax.
1250 		 */
1251 		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1252 		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1253 		    ICE_ITR_ADAPTIVE_MAX_USECS)
1254 			goto clear_counts;
1255 	} else if (packets > 32) {
1256 		/* If we have processed over 32 packets in a single interrupt
1257 		 * for Tx assume we need to switch over to "bulk" mode.
1258 		 */
1259 		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1260 	}
1261 
1262 	/* We have no packets to actually measure against. This means
1263 	 * either one of the other queues on this vector is active or
1264 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1265 	 *
1266 	 * Between 4 and 56 we can assume that our current interrupt delay
1267 	 * is only slightly too low. As such we should increase it by a small
1268 	 * fixed amount.
1269 	 */
1270 	if (packets < 56) {
1271 		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1272 		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1273 			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1274 			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1275 		}
1276 		goto clear_counts;
1277 	}
1278 
1279 	if (packets <= 256) {
1280 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1281 		itr &= ICE_ITR_MASK;
1282 
1283 		/* Between 56 and 112 is our "goldilocks" zone where we are
1284 		 * working out "just right". Just report that our current
1285 		 * ITR is good for us.
1286 		 */
1287 		if (packets <= 112)
1288 			goto clear_counts;
1289 
1290 		/* If packet count is 128 or greater we are likely looking
1291 		 * at a slight overrun of the delay we want. Try halving
1292 		 * our delay to see if that will cut the number of packets
1293 		 * in half per interrupt.
1294 		 */
1295 		itr >>= 1;
1296 		itr &= ICE_ITR_MASK;
1297 		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1298 			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1299 
1300 		goto clear_counts;
1301 	}
1302 
1303 	/* The paths below assume we are dealing with a bulk ITR since
1304 	 * number of packets is greater than 256. We are just going to have
1305 	 * to compute a value and try to bring the count under control,
1306 	 * though for smaller packet sizes there isn't much we can do as
1307 	 * NAPI polling will likely be kicking in sooner rather than later.
1308 	 */
1309 	itr = ICE_ITR_ADAPTIVE_BULK;
1310 
1311 adjust_by_size_and_speed:
1312 
1313 	/* based on checks above packets cannot be 0 so division is safe */
1314 	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1315 					       bytes / packets, itr);
1316 
1317 clear_counts:
1318 	/* write back value */
1319 	rc->target_itr = itr;
1320 
1321 	/* next update should occur within next jiffy */
1322 	rc->next_update = next_update + 1;
1323 
1324 	rc->total_bytes = 0;
1325 	rc->total_pkts = 0;
1326 }
1327 
1328 /**
1329  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1330  * @itr_idx: interrupt throttling index
1331  * @itr: interrupt throttling value in usecs
1332  */
ice_buildreg_itr(u16 itr_idx,u16 itr)1333 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1334 {
1335 	/* The ITR value is reported in microseconds, and the register value is
1336 	 * recorded in 2 microsecond units. For this reason we only need to
1337 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1338 	 * granularity as a shift instead of division. The mask makes sure the
1339 	 * ITR value is never odd so we don't accidentally write into the field
1340 	 * prior to the ITR field.
1341 	 */
1342 	itr &= ICE_ITR_MASK;
1343 
1344 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1345 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1346 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1347 }
1348 
1349 /* The act of updating the ITR will cause it to immediately trigger. In order
1350  * to prevent this from throwing off adaptive update statistics we defer the
1351  * update so that it can only happen so often. So after either Tx or Rx are
1352  * updated we make the adaptive scheme wait until either the ITR completely
1353  * expires via the next_update expiration or we have been through at least
1354  * 3 interrupts.
1355  */
1356 #define ITR_COUNTDOWN_START 3
1357 
1358 /**
1359  * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1360  * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1361  */
ice_update_ena_itr(struct ice_q_vector * q_vector)1362 static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1363 {
1364 	struct ice_ring_container *tx = &q_vector->tx;
1365 	struct ice_ring_container *rx = &q_vector->rx;
1366 	struct ice_vsi *vsi = q_vector->vsi;
1367 	u32 itr_val;
1368 
1369 	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
1370 	 * interrupts to expire right away in case we have more work ready to go
1371 	 * already
1372 	 */
1373 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1374 		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1375 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1376 		/* set target back to last user set value */
1377 		rx->target_itr = rx->itr_setting;
1378 		/* set current to what we just wrote and dynamic if needed */
1379 		rx->current_itr = ICE_WB_ON_ITR_USECS |
1380 			(rx->itr_setting & ICE_ITR_DYNAMIC);
1381 		/* allow normal interrupt flow to start */
1382 		q_vector->itr_countdown = 0;
1383 		return;
1384 	}
1385 
1386 	/* This will do nothing if dynamic updates are not enabled */
1387 	ice_update_itr(q_vector, tx);
1388 	ice_update_itr(q_vector, rx);
1389 
1390 	/* This block of logic allows us to get away with only updating
1391 	 * one ITR value with each interrupt. The idea is to perform a
1392 	 * pseudo-lazy update with the following criteria.
1393 	 *
1394 	 * 1. Rx is given higher priority than Tx if both are in same state
1395 	 * 2. If we must reduce an ITR that is given highest priority.
1396 	 * 3. We then give priority to increasing ITR based on amount.
1397 	 */
1398 	if (rx->target_itr < rx->current_itr) {
1399 		/* Rx ITR needs to be reduced, this is highest priority */
1400 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1401 		rx->current_itr = rx->target_itr;
1402 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1403 	} else if ((tx->target_itr < tx->current_itr) ||
1404 		   ((rx->target_itr - rx->current_itr) <
1405 		    (tx->target_itr - tx->current_itr))) {
1406 		/* Tx ITR needs to be reduced, this is second priority
1407 		 * Tx ITR needs to be increased more than Rx, fourth priority
1408 		 */
1409 		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1410 		tx->current_itr = tx->target_itr;
1411 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1412 	} else if (rx->current_itr != rx->target_itr) {
1413 		/* Rx ITR needs to be increased, third priority */
1414 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1415 		rx->current_itr = rx->target_itr;
1416 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1417 	} else {
1418 		/* Still have to re-enable the interrupts */
1419 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1420 		if (q_vector->itr_countdown)
1421 			q_vector->itr_countdown--;
1422 	}
1423 
1424 	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1425 		wr32(&q_vector->vsi->back->hw,
1426 		     GLINT_DYN_CTL(q_vector->reg_idx),
1427 		     itr_val);
1428 }
1429 
1430 /**
1431  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1432  * @q_vector: q_vector to set WB_ON_ITR on
1433  *
1434  * We need to tell hardware to write-back completed descriptors even when
1435  * interrupts are disabled. Descriptors will be written back on cache line
1436  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1437  * descriptors may not be written back if they don't fill a cache line until the
1438  * next interrupt.
1439  *
1440  * This sets the write-back frequency to 2 microseconds as that is the minimum
1441  * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1442  * make sure hardware knows we aren't meddling with the INTENA_M bit.
1443  */
ice_set_wb_on_itr(struct ice_q_vector * q_vector)1444 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1445 {
1446 	struct ice_vsi *vsi = q_vector->vsi;
1447 
1448 	/* already in WB_ON_ITR mode no need to change it */
1449 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1450 		return;
1451 
1452 	if (q_vector->num_ring_rx)
1453 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1454 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1455 						 ICE_RX_ITR));
1456 
1457 	if (q_vector->num_ring_tx)
1458 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1459 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1460 						 ICE_TX_ITR));
1461 
1462 	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1463 }
1464 
1465 /**
1466  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1467  * @napi: napi struct with our devices info in it
1468  * @budget: amount of work driver is allowed to do this pass, in packets
1469  *
1470  * This function will clean all queues associated with a q_vector.
1471  *
1472  * Returns the amount of work done
1473  */
ice_napi_poll(struct napi_struct * napi,int budget)1474 int ice_napi_poll(struct napi_struct *napi, int budget)
1475 {
1476 	struct ice_q_vector *q_vector =
1477 				container_of(napi, struct ice_q_vector, napi);
1478 	bool clean_complete = true;
1479 	struct ice_ring *ring;
1480 	int budget_per_ring;
1481 	int work_done = 0;
1482 
1483 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1484 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1485 	 */
1486 	ice_for_each_ring(ring, q_vector->tx)
1487 		if (!ice_clean_tx_irq(ring, budget))
1488 			clean_complete = false;
1489 
1490 	/* Handle case where we are called by netpoll with a budget of 0 */
1491 	if (unlikely(budget <= 0))
1492 		return budget;
1493 
1494 	/* normally we have 1 Rx ring per q_vector */
1495 	if (unlikely(q_vector->num_ring_rx > 1))
1496 		/* We attempt to distribute budget to each Rx queue fairly, but
1497 		 * don't allow the budget to go below 1 because that would exit
1498 		 * polling early.
1499 		 */
1500 		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1501 	else
1502 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1503 		budget_per_ring = budget;
1504 
1505 	ice_for_each_ring(ring, q_vector->rx) {
1506 		int cleaned;
1507 
1508 		cleaned = ice_clean_rx_irq(ring, budget_per_ring);
1509 		work_done += cleaned;
1510 		/* if we clean as many as budgeted, we must not be done */
1511 		if (cleaned >= budget_per_ring)
1512 			clean_complete = false;
1513 	}
1514 
1515 	/* If work not completed, return budget and polling will return */
1516 	if (!clean_complete)
1517 		return budget;
1518 
1519 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1520 	 * poll us due to busy-polling
1521 	 */
1522 	if (likely(napi_complete_done(napi, work_done)))
1523 		ice_update_ena_itr(q_vector);
1524 	else
1525 		ice_set_wb_on_itr(q_vector);
1526 
1527 	return min_t(int, work_done, budget - 1);
1528 }
1529 
1530 /* helper function for building cmd/type/offset */
1531 static __le64
build_ctob(u64 td_cmd,u64 td_offset,unsigned int size,u64 td_tag)1532 build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
1533 {
1534 	return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1535 			   (td_cmd    << ICE_TXD_QW1_CMD_S) |
1536 			   (td_offset << ICE_TXD_QW1_OFFSET_S) |
1537 			   ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1538 			   (td_tag    << ICE_TXD_QW1_L2TAG1_S));
1539 }
1540 
1541 /**
1542  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1543  * @tx_ring: the ring to be checked
1544  * @size: the size buffer we want to assure is available
1545  *
1546  * Returns -EBUSY if a stop is needed, else 0
1547  */
__ice_maybe_stop_tx(struct ice_ring * tx_ring,unsigned int size)1548 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1549 {
1550 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1551 	/* Memory barrier before checking head and tail */
1552 	smp_mb();
1553 
1554 	/* Check again in a case another CPU has just made room available. */
1555 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1556 		return -EBUSY;
1557 
1558 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1559 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1560 	++tx_ring->tx_stats.restart_q;
1561 	return 0;
1562 }
1563 
1564 /**
1565  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1566  * @tx_ring: the ring to be checked
1567  * @size:    the size buffer we want to assure is available
1568  *
1569  * Returns 0 if stop is not needed
1570  */
ice_maybe_stop_tx(struct ice_ring * tx_ring,unsigned int size)1571 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1572 {
1573 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1574 		return 0;
1575 
1576 	return __ice_maybe_stop_tx(tx_ring, size);
1577 }
1578 
1579 /**
1580  * ice_tx_map - Build the Tx descriptor
1581  * @tx_ring: ring to send buffer on
1582  * @first: first buffer info buffer to use
1583  * @off: pointer to struct that holds offload parameters
1584  *
1585  * This function loops over the skb data pointed to by *first
1586  * and gets a physical address for each memory location and programs
1587  * it and the length into the transmit descriptor.
1588  */
1589 static void
ice_tx_map(struct ice_ring * tx_ring,struct ice_tx_buf * first,struct ice_tx_offload_params * off)1590 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1591 	   struct ice_tx_offload_params *off)
1592 {
1593 	u64 td_offset, td_tag, td_cmd;
1594 	u16 i = tx_ring->next_to_use;
1595 	skb_frag_t *frag;
1596 	unsigned int data_len, size;
1597 	struct ice_tx_desc *tx_desc;
1598 	struct ice_tx_buf *tx_buf;
1599 	struct sk_buff *skb;
1600 	dma_addr_t dma;
1601 
1602 	td_tag = off->td_l2tag1;
1603 	td_cmd = off->td_cmd;
1604 	td_offset = off->td_offset;
1605 	skb = first->skb;
1606 
1607 	data_len = skb->data_len;
1608 	size = skb_headlen(skb);
1609 
1610 	tx_desc = ICE_TX_DESC(tx_ring, i);
1611 
1612 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1613 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1614 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1615 			  ICE_TX_FLAGS_VLAN_S;
1616 	}
1617 
1618 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1619 
1620 	tx_buf = first;
1621 
1622 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1623 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1624 
1625 		if (dma_mapping_error(tx_ring->dev, dma))
1626 			goto dma_error;
1627 
1628 		/* record length, and DMA address */
1629 		dma_unmap_len_set(tx_buf, len, size);
1630 		dma_unmap_addr_set(tx_buf, dma, dma);
1631 
1632 		/* align size to end of page */
1633 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1634 		tx_desc->buf_addr = cpu_to_le64(dma);
1635 
1636 		/* account for data chunks larger than the hardware
1637 		 * can handle
1638 		 */
1639 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1640 			tx_desc->cmd_type_offset_bsz =
1641 				build_ctob(td_cmd, td_offset, max_data, td_tag);
1642 
1643 			tx_desc++;
1644 			i++;
1645 
1646 			if (i == tx_ring->count) {
1647 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1648 				i = 0;
1649 			}
1650 
1651 			dma += max_data;
1652 			size -= max_data;
1653 
1654 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1655 			tx_desc->buf_addr = cpu_to_le64(dma);
1656 		}
1657 
1658 		if (likely(!data_len))
1659 			break;
1660 
1661 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1662 							  size, td_tag);
1663 
1664 		tx_desc++;
1665 		i++;
1666 
1667 		if (i == tx_ring->count) {
1668 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1669 			i = 0;
1670 		}
1671 
1672 		size = skb_frag_size(frag);
1673 		data_len -= size;
1674 
1675 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1676 				       DMA_TO_DEVICE);
1677 
1678 		tx_buf = &tx_ring->tx_buf[i];
1679 	}
1680 
1681 	/* record bytecount for BQL */
1682 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1683 
1684 	/* record SW timestamp if HW timestamp is not available */
1685 	skb_tx_timestamp(first->skb);
1686 
1687 	i++;
1688 	if (i == tx_ring->count)
1689 		i = 0;
1690 
1691 	/* write last descriptor with RS and EOP bits */
1692 	td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1693 	tx_desc->cmd_type_offset_bsz =
1694 			build_ctob(td_cmd, td_offset, size, td_tag);
1695 
1696 	/* Force memory writes to complete before letting h/w know there
1697 	 * are new descriptors to fetch.
1698 	 *
1699 	 * We also use this memory barrier to make certain all of the
1700 	 * status bits have been updated before next_to_watch is written.
1701 	 */
1702 	wmb();
1703 
1704 	/* set next_to_watch value indicating a packet is present */
1705 	first->next_to_watch = tx_desc;
1706 
1707 	tx_ring->next_to_use = i;
1708 
1709 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1710 
1711 	/* notify HW of packet */
1712 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1713 		writel(i, tx_ring->tail);
1714 	}
1715 
1716 	return;
1717 
1718 dma_error:
1719 	/* clear DMA mappings for failed tx_buf map */
1720 	for (;;) {
1721 		tx_buf = &tx_ring->tx_buf[i];
1722 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1723 		if (tx_buf == first)
1724 			break;
1725 		if (i == 0)
1726 			i = tx_ring->count;
1727 		i--;
1728 	}
1729 
1730 	tx_ring->next_to_use = i;
1731 }
1732 
1733 /**
1734  * ice_tx_csum - Enable Tx checksum offloads
1735  * @first: pointer to the first descriptor
1736  * @off: pointer to struct that holds offload parameters
1737  *
1738  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1739  */
1740 static
ice_tx_csum(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1741 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1742 {
1743 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1744 	struct sk_buff *skb = first->skb;
1745 	union {
1746 		struct iphdr *v4;
1747 		struct ipv6hdr *v6;
1748 		unsigned char *hdr;
1749 	} ip;
1750 	union {
1751 		struct tcphdr *tcp;
1752 		unsigned char *hdr;
1753 	} l4;
1754 	__be16 frag_off, protocol;
1755 	unsigned char *exthdr;
1756 	u32 offset, cmd = 0;
1757 	u8 l4_proto = 0;
1758 
1759 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1760 		return 0;
1761 
1762 	ip.hdr = skb_network_header(skb);
1763 	l4.hdr = skb_transport_header(skb);
1764 
1765 	/* compute outer L2 header size */
1766 	l2_len = ip.hdr - skb->data;
1767 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1768 
1769 	if (skb->encapsulation)
1770 		return -1;
1771 
1772 	/* Enable IP checksum offloads */
1773 	protocol = vlan_get_protocol(skb);
1774 	if (protocol == htons(ETH_P_IP)) {
1775 		l4_proto = ip.v4->protocol;
1776 		/* the stack computes the IP header already, the only time we
1777 		 * need the hardware to recompute it is in the case of TSO.
1778 		 */
1779 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1780 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1781 		else
1782 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1783 
1784 	} else if (protocol == htons(ETH_P_IPV6)) {
1785 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1786 		exthdr = ip.hdr + sizeof(*ip.v6);
1787 		l4_proto = ip.v6->nexthdr;
1788 		if (l4.hdr != exthdr)
1789 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1790 					 &frag_off);
1791 	} else {
1792 		return -1;
1793 	}
1794 
1795 	/* compute inner L3 header size */
1796 	l3_len = l4.hdr - ip.hdr;
1797 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1798 
1799 	/* Enable L4 checksum offloads */
1800 	switch (l4_proto) {
1801 	case IPPROTO_TCP:
1802 		/* enable checksum offloads */
1803 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1804 		l4_len = l4.tcp->doff;
1805 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1806 		break;
1807 	case IPPROTO_UDP:
1808 		/* enable UDP checksum offload */
1809 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1810 		l4_len = (sizeof(struct udphdr) >> 2);
1811 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1812 		break;
1813 	case IPPROTO_SCTP:
1814 		/* enable SCTP checksum offload */
1815 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1816 		l4_len = sizeof(struct sctphdr) >> 2;
1817 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1818 		break;
1819 
1820 	default:
1821 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1822 			return -1;
1823 		skb_checksum_help(skb);
1824 		return 0;
1825 	}
1826 
1827 	off->td_cmd |= cmd;
1828 	off->td_offset |= offset;
1829 	return 1;
1830 }
1831 
1832 /**
1833  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1834  * @tx_ring: ring to send buffer on
1835  * @first: pointer to struct ice_tx_buf
1836  *
1837  * Checks the skb and set up correspondingly several generic transmit flags
1838  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1839  *
1840  * Returns error code indicate the frame should be dropped upon error and the
1841  * otherwise returns 0 to indicate the flags has been set properly.
1842  */
1843 static int
ice_tx_prepare_vlan_flags(struct ice_ring * tx_ring,struct ice_tx_buf * first)1844 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1845 {
1846 	struct sk_buff *skb = first->skb;
1847 	__be16 protocol = skb->protocol;
1848 
1849 	if (protocol == htons(ETH_P_8021Q) &&
1850 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1851 		/* when HW VLAN acceleration is turned off by the user the
1852 		 * stack sets the protocol to 8021q so that the driver
1853 		 * can take any steps required to support the SW only
1854 		 * VLAN handling. In our case the driver doesn't need
1855 		 * to take any further steps so just set the protocol
1856 		 * to the encapsulated ethertype.
1857 		 */
1858 		skb->protocol = vlan_get_protocol(skb);
1859 		return 0;
1860 	}
1861 
1862 	/* if we have a HW VLAN tag being added, default to the HW one */
1863 	if (skb_vlan_tag_present(skb)) {
1864 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1865 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1866 	} else if (protocol == htons(ETH_P_8021Q)) {
1867 		struct vlan_hdr *vhdr, _vhdr;
1868 
1869 		/* for SW VLAN, check the next protocol and store the tag */
1870 		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1871 							     sizeof(_vhdr),
1872 							     &_vhdr);
1873 		if (!vhdr)
1874 			return -EINVAL;
1875 
1876 		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1877 				   ICE_TX_FLAGS_VLAN_S;
1878 		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1879 	}
1880 
1881 	return ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1882 }
1883 
1884 /**
1885  * ice_tso - computes mss and TSO length to prepare for TSO
1886  * @first: pointer to struct ice_tx_buf
1887  * @off: pointer to struct that holds offload parameters
1888  *
1889  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1890  */
1891 static
ice_tso(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1892 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1893 {
1894 	struct sk_buff *skb = first->skb;
1895 	union {
1896 		struct iphdr *v4;
1897 		struct ipv6hdr *v6;
1898 		unsigned char *hdr;
1899 	} ip;
1900 	union {
1901 		struct tcphdr *tcp;
1902 		unsigned char *hdr;
1903 	} l4;
1904 	u64 cd_mss, cd_tso_len;
1905 	u32 paylen, l4_start;
1906 	int err;
1907 
1908 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1909 		return 0;
1910 
1911 	if (!skb_is_gso(skb))
1912 		return 0;
1913 
1914 	err = skb_cow_head(skb, 0);
1915 	if (err < 0)
1916 		return err;
1917 
1918 	/* cppcheck-suppress unreadVariable */
1919 	ip.hdr = skb_network_header(skb);
1920 	l4.hdr = skb_transport_header(skb);
1921 
1922 	/* initialize outer IP header fields */
1923 	if (ip.v4->version == 4) {
1924 		ip.v4->tot_len = 0;
1925 		ip.v4->check = 0;
1926 	} else {
1927 		ip.v6->payload_len = 0;
1928 	}
1929 
1930 	/* determine offset of transport header */
1931 	l4_start = l4.hdr - skb->data;
1932 
1933 	/* remove payload length from checksum */
1934 	paylen = skb->len - l4_start;
1935 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1936 
1937 	/* compute length of segmentation header */
1938 	off->header_len = (l4.tcp->doff * 4) + l4_start;
1939 
1940 	/* update gso_segs and bytecount */
1941 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1942 	first->bytecount += (first->gso_segs - 1) * off->header_len;
1943 
1944 	cd_tso_len = skb->len - off->header_len;
1945 	cd_mss = skb_shinfo(skb)->gso_size;
1946 
1947 	/* record cdesc_qw1 with TSO parameters */
1948 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1949 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1950 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1951 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1952 	first->tx_flags |= ICE_TX_FLAGS_TSO;
1953 	return 1;
1954 }
1955 
1956 /**
1957  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1958  * @size: transmit request size in bytes
1959  *
1960  * Due to hardware alignment restrictions (4K alignment), we need to
1961  * assume that we can have no more than 12K of data per descriptor, even
1962  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1963  * Thus, we need to divide by 12K. But division is slow! Instead,
1964  * we decompose the operation into shifts and one relatively cheap
1965  * multiply operation.
1966  *
1967  * To divide by 12K, we first divide by 4K, then divide by 3:
1968  *     To divide by 4K, shift right by 12 bits
1969  *     To divide by 3, multiply by 85, then divide by 256
1970  *     (Divide by 256 is done by shifting right by 8 bits)
1971  * Finally, we add one to round up. Because 256 isn't an exact multiple of
1972  * 3, we'll underestimate near each multiple of 12K. This is actually more
1973  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1974  * segment. For our purposes this is accurate out to 1M which is orders of
1975  * magnitude greater than our largest possible GSO size.
1976  *
1977  * This would then be implemented as:
1978  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
1979  *
1980  * Since multiplication and division are commutative, we can reorder
1981  * operations into:
1982  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1983  */
ice_txd_use_count(unsigned int size)1984 static unsigned int ice_txd_use_count(unsigned int size)
1985 {
1986 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1987 }
1988 
1989 /**
1990  * ice_xmit_desc_count - calculate number of Tx descriptors needed
1991  * @skb: send buffer
1992  *
1993  * Returns number of data descriptors needed for this skb.
1994  */
ice_xmit_desc_count(struct sk_buff * skb)1995 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
1996 {
1997 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
1998 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1999 	unsigned int count = 0, size = skb_headlen(skb);
2000 
2001 	for (;;) {
2002 		count += ice_txd_use_count(size);
2003 
2004 		if (!nr_frags--)
2005 			break;
2006 
2007 		size = skb_frag_size(frag++);
2008 	}
2009 
2010 	return count;
2011 }
2012 
2013 /**
2014  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2015  * @skb: send buffer
2016  *
2017  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2018  * and so we need to figure out the cases where we need to linearize the skb.
2019  *
2020  * For TSO we need to count the TSO header and segment payload separately.
2021  * As such we need to check cases where we have 7 fragments or more as we
2022  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2023  * the segment payload in the first descriptor, and another 7 for the
2024  * fragments.
2025  */
__ice_chk_linearize(struct sk_buff * skb)2026 static bool __ice_chk_linearize(struct sk_buff *skb)
2027 {
2028 	const skb_frag_t *frag, *stale;
2029 	int nr_frags, sum;
2030 
2031 	/* no need to check if number of frags is less than 7 */
2032 	nr_frags = skb_shinfo(skb)->nr_frags;
2033 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2034 		return false;
2035 
2036 	/* We need to walk through the list and validate that each group
2037 	 * of 6 fragments totals at least gso_size.
2038 	 */
2039 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2040 	frag = &skb_shinfo(skb)->frags[0];
2041 
2042 	/* Initialize size to the negative value of gso_size minus 1. We
2043 	 * use this as the worst case scenerio in which the frag ahead
2044 	 * of us only provides one byte which is why we are limited to 6
2045 	 * descriptors for a single transmit as the header and previous
2046 	 * fragment are already consuming 2 descriptors.
2047 	 */
2048 	sum = 1 - skb_shinfo(skb)->gso_size;
2049 
2050 	/* Add size of frags 0 through 4 to create our initial sum */
2051 	sum += skb_frag_size(frag++);
2052 	sum += skb_frag_size(frag++);
2053 	sum += skb_frag_size(frag++);
2054 	sum += skb_frag_size(frag++);
2055 	sum += skb_frag_size(frag++);
2056 
2057 	/* Walk through fragments adding latest fragment, testing it, and
2058 	 * then removing stale fragments from the sum.
2059 	 */
2060 	stale = &skb_shinfo(skb)->frags[0];
2061 	for (;;) {
2062 		sum += skb_frag_size(frag++);
2063 
2064 		/* if sum is negative we failed to make sufficient progress */
2065 		if (sum < 0)
2066 			return true;
2067 
2068 		if (!nr_frags--)
2069 			break;
2070 
2071 		sum -= skb_frag_size(stale++);
2072 	}
2073 
2074 	return false;
2075 }
2076 
2077 /**
2078  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2079  * @skb:      send buffer
2080  * @count:    number of buffers used
2081  *
2082  * Note: Our HW can't scatter-gather more than 8 fragments to build
2083  * a packet on the wire and so we need to figure out the cases where we
2084  * need to linearize the skb.
2085  */
ice_chk_linearize(struct sk_buff * skb,unsigned int count)2086 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2087 {
2088 	/* Both TSO and single send will work if count is less than 8 */
2089 	if (likely(count < ICE_MAX_BUF_TXD))
2090 		return false;
2091 
2092 	if (skb_is_gso(skb))
2093 		return __ice_chk_linearize(skb);
2094 
2095 	/* we can support up to 8 data buffers for a single send */
2096 	return count != ICE_MAX_BUF_TXD;
2097 }
2098 
2099 /**
2100  * ice_xmit_frame_ring - Sends buffer on Tx ring
2101  * @skb: send buffer
2102  * @tx_ring: ring to send buffer on
2103  *
2104  * Returns NETDEV_TX_OK if sent, else an error code
2105  */
2106 static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff * skb,struct ice_ring * tx_ring)2107 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2108 {
2109 	struct ice_tx_offload_params offload = { 0 };
2110 	struct ice_vsi *vsi = tx_ring->vsi;
2111 	struct ice_tx_buf *first;
2112 	unsigned int count;
2113 	int tso, csum;
2114 
2115 	count = ice_xmit_desc_count(skb);
2116 	if (ice_chk_linearize(skb, count)) {
2117 		if (__skb_linearize(skb))
2118 			goto out_drop;
2119 		count = ice_txd_use_count(skb->len);
2120 		tx_ring->tx_stats.tx_linearize++;
2121 	}
2122 
2123 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2124 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2125 	 *       + 4 desc gap to avoid the cache line where head is,
2126 	 *       + 1 desc for context descriptor,
2127 	 * otherwise try next time
2128 	 */
2129 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2130 			      ICE_DESCS_FOR_CTX_DESC)) {
2131 		tx_ring->tx_stats.tx_busy++;
2132 		return NETDEV_TX_BUSY;
2133 	}
2134 
2135 	offload.tx_ring = tx_ring;
2136 
2137 	/* record the location of the first descriptor for this packet */
2138 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2139 	first->skb = skb;
2140 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2141 	first->gso_segs = 1;
2142 	first->tx_flags = 0;
2143 
2144 	/* prepare the VLAN tagging flags for Tx */
2145 	if (ice_tx_prepare_vlan_flags(tx_ring, first))
2146 		goto out_drop;
2147 
2148 	/* set up TSO offload */
2149 	tso = ice_tso(first, &offload);
2150 	if (tso < 0)
2151 		goto out_drop;
2152 
2153 	/* always set up Tx checksum offload */
2154 	csum = ice_tx_csum(first, &offload);
2155 	if (csum < 0)
2156 		goto out_drop;
2157 
2158 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2159 	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2160 		     vsi->type == ICE_VSI_PF &&
2161 		     vsi->port_info->is_sw_lldp))
2162 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2163 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2164 					ICE_TXD_CTX_QW1_CMD_S);
2165 
2166 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2167 		struct ice_tx_ctx_desc *cdesc;
2168 		int i = tx_ring->next_to_use;
2169 
2170 		/* grab the next descriptor */
2171 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2172 		i++;
2173 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2174 
2175 		/* setup context descriptor */
2176 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2177 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2178 		cdesc->rsvd = cpu_to_le16(0);
2179 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2180 	}
2181 
2182 	ice_tx_map(tx_ring, first, &offload);
2183 	return NETDEV_TX_OK;
2184 
2185 out_drop:
2186 	dev_kfree_skb_any(skb);
2187 	return NETDEV_TX_OK;
2188 }
2189 
2190 /**
2191  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2192  * @skb: send buffer
2193  * @netdev: network interface device structure
2194  *
2195  * Returns NETDEV_TX_OK if sent, else an error code
2196  */
ice_start_xmit(struct sk_buff * skb,struct net_device * netdev)2197 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2198 {
2199 	struct ice_netdev_priv *np = netdev_priv(netdev);
2200 	struct ice_vsi *vsi = np->vsi;
2201 	struct ice_ring *tx_ring;
2202 
2203 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2204 
2205 	/* hardware can't handle really short frames, hardware padding works
2206 	 * beyond this point
2207 	 */
2208 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2209 		return NETDEV_TX_OK;
2210 
2211 	return ice_xmit_frame_ring(skb, tx_ring);
2212 }
2213