1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_flow.h"
6 
7 /* Describe properties of a protocol header field */
8 struct ice_flow_field_info {
9 	enum ice_flow_seg_hdr hdr;
10 	s16 off;	/* Offset from start of a protocol header, in bits */
11 	u16 size;	/* Size of fields in bits */
12 	u16 mask;	/* 16-bit mask for field */
13 };
14 
15 #define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
16 	.hdr = _hdr, \
17 	.off = (_offset_bytes) * BITS_PER_BYTE, \
18 	.size = (_size_bytes) * BITS_PER_BYTE, \
19 	.mask = 0, \
20 }
21 
22 #define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
23 	.hdr = _hdr, \
24 	.off = (_offset_bytes) * BITS_PER_BYTE, \
25 	.size = (_size_bytes) * BITS_PER_BYTE, \
26 	.mask = _mask, \
27 }
28 
29 /* Table containing properties of supported protocol header fields */
30 static const
31 struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
32 	/* Ether */
33 	/* ICE_FLOW_FIELD_IDX_ETH_DA */
34 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
35 	/* ICE_FLOW_FIELD_IDX_ETH_SA */
36 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
37 	/* ICE_FLOW_FIELD_IDX_S_VLAN */
38 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)),
39 	/* ICE_FLOW_FIELD_IDX_C_VLAN */
40 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)),
41 	/* ICE_FLOW_FIELD_IDX_ETH_TYPE */
42 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)),
43 	/* IPv4 / IPv6 */
44 	/* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
45 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc),
46 	/* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
47 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0),
48 	/* ICE_FLOW_FIELD_IDX_IPV4_TTL */
49 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00),
50 	/* ICE_FLOW_FIELD_IDX_IPV4_PROT */
51 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff),
52 	/* ICE_FLOW_FIELD_IDX_IPV6_TTL */
53 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff),
54 	/* ICE_FLOW_FIELD_IDX_IPV6_PROT */
55 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00),
56 	/* ICE_FLOW_FIELD_IDX_IPV4_SA */
57 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
58 	/* ICE_FLOW_FIELD_IDX_IPV4_DA */
59 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
60 	/* ICE_FLOW_FIELD_IDX_IPV6_SA */
61 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
62 	/* ICE_FLOW_FIELD_IDX_IPV6_DA */
63 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
64 	/* Transport */
65 	/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
66 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
67 	/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
68 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
69 	/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
70 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
71 	/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
72 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
73 	/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
74 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
75 	/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
76 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
77 	/* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
78 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1),
79 	/* ARP */
80 	/* ICE_FLOW_FIELD_IDX_ARP_SIP */
81 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)),
82 	/* ICE_FLOW_FIELD_IDX_ARP_DIP */
83 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)),
84 	/* ICE_FLOW_FIELD_IDX_ARP_SHA */
85 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
86 	/* ICE_FLOW_FIELD_IDX_ARP_DHA */
87 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
88 	/* ICE_FLOW_FIELD_IDX_ARP_OP */
89 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)),
90 	/* ICMP */
91 	/* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
92 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1),
93 	/* ICE_FLOW_FIELD_IDX_ICMP_CODE */
94 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1),
95 	/* GRE */
96 	/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
97 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
98 			  sizeof_field(struct gre_full_hdr, key)),
99 	/* GTP */
100 	/* ICE_FLOW_FIELD_IDX_GTPC_TEID */
101 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)),
102 	/* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
103 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)),
104 	/* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
105 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)),
106 	/* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
107 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16),
108 			      0x3f00),
109 	/* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
110 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)),
111 	/* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
112 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)),
113 	/* PPPoE */
114 	/* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
115 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)),
116 	/* PFCP */
117 	/* ICE_FLOW_FIELD_IDX_PFCP_SEID */
118 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)),
119 	/* L2TPv3 */
120 	/* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
121 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)),
122 	/* ESP */
123 	/* ICE_FLOW_FIELD_IDX_ESP_SPI */
124 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)),
125 	/* AH */
126 	/* ICE_FLOW_FIELD_IDX_AH_SPI */
127 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)),
128 	/* NAT_T_ESP */
129 	/* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
130 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)),
131 };
132 
133 /* Bitmaps indicating relevant packet types for a particular protocol header
134  *
135  * Packet types for packets with an Outer/First/Single MAC header
136  */
137 static const u32 ice_ptypes_mac_ofos[] = {
138 	0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
139 	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
140 	0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000,
141 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
142 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
143 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
144 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
145 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
146 };
147 
148 /* Packet types for packets with an Innermost/Last MAC VLAN header */
149 static const u32 ice_ptypes_macvlan_il[] = {
150 	0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
151 	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
152 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
153 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
154 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
155 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
156 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
157 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
158 };
159 
160 /* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
161  * include IPv4 other PTYPEs
162  */
163 static const u32 ice_ptypes_ipv4_ofos[] = {
164 	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
165 	0x00000000, 0x00000155, 0x00000000, 0x00000000,
166 	0x00000000, 0x000FC000, 0x00000000, 0x00000000,
167 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
168 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
169 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
170 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
171 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
172 };
173 
174 /* Packet types for packets with an Outer/First/Single IPv4 header, includes
175  * IPv4 other PTYPEs
176  */
177 static const u32 ice_ptypes_ipv4_ofos_all[] = {
178 	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
179 	0x00000000, 0x00000155, 0x00000000, 0x00000000,
180 	0x00000000, 0x000FC000, 0x83E0F800, 0x00000101,
181 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
182 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
183 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
184 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
185 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
186 };
187 
188 /* Packet types for packets with an Innermost/Last IPv4 header */
189 static const u32 ice_ptypes_ipv4_il[] = {
190 	0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
191 	0x0000000E, 0x00000000, 0x00000000, 0x00000000,
192 	0x00000000, 0x00000000, 0x001FF800, 0x00000000,
193 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
194 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
195 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
196 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
197 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
198 };
199 
200 /* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
201  * include IPv6 other PTYPEs
202  */
203 static const u32 ice_ptypes_ipv6_ofos[] = {
204 	0x00000000, 0x00000000, 0x77000000, 0x10002000,
205 	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
206 	0x00000000, 0x03F00000, 0x00000000, 0x00000000,
207 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
208 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
209 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
210 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
211 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
212 };
213 
214 /* Packet types for packets with an Outer/First/Single IPv6 header, includes
215  * IPv6 other PTYPEs
216  */
217 static const u32 ice_ptypes_ipv6_ofos_all[] = {
218 	0x00000000, 0x00000000, 0x77000000, 0x10002000,
219 	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
220 	0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206,
221 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
222 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
223 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
224 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
225 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
226 };
227 
228 /* Packet types for packets with an Innermost/Last IPv6 header */
229 static const u32 ice_ptypes_ipv6_il[] = {
230 	0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
231 	0x00000770, 0x00000000, 0x00000000, 0x00000000,
232 	0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
233 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
234 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
235 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
236 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
237 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
238 };
239 
240 /* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
241 static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
242 	0x10C00000, 0x04000800, 0x00000000, 0x00000000,
243 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
244 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
245 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
246 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
247 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
248 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
249 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
250 };
251 
252 /* Packet types for packets with an Outermost/First ARP header */
253 static const u32 ice_ptypes_arp_of[] = {
254 	0x00000800, 0x00000000, 0x00000000, 0x00000000,
255 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
256 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
257 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
258 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
259 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
260 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
261 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
262 };
263 
264 /* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
265 static const u32 ice_ptypes_ipv4_il_no_l4[] = {
266 	0x60000000, 0x18043008, 0x80000002, 0x6010c021,
267 	0x00000008, 0x00000000, 0x00000000, 0x00000000,
268 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
269 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
270 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
271 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
272 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
273 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
274 };
275 
276 /* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
277 static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
278 	0x00000000, 0x00000000, 0x43000000, 0x10002000,
279 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
280 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
281 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
282 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
283 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
284 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
285 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
286 };
287 
288 /* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
289 static const u32 ice_ptypes_ipv6_il_no_l4[] = {
290 	0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
291 	0x00000430, 0x00000000, 0x00000000, 0x00000000,
292 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
293 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
294 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
295 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
296 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
297 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
298 };
299 
300 /* UDP Packet types for non-tunneled packets or tunneled
301  * packets with inner UDP.
302  */
303 static const u32 ice_ptypes_udp_il[] = {
304 	0x81000000, 0x20204040, 0x04000010, 0x80810102,
305 	0x00000040, 0x00000000, 0x00000000, 0x00000000,
306 	0x00000000, 0x00410000, 0x90842000, 0x00000007,
307 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
308 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
309 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
310 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
311 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
312 };
313 
314 /* Packet types for packets with an Innermost/Last TCP header */
315 static const u32 ice_ptypes_tcp_il[] = {
316 	0x04000000, 0x80810102, 0x10000040, 0x02040408,
317 	0x00000102, 0x00000000, 0x00000000, 0x00000000,
318 	0x00000000, 0x00820000, 0x21084000, 0x00000000,
319 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
320 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
321 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
322 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
323 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
324 };
325 
326 /* Packet types for packets with an Innermost/Last SCTP header */
327 static const u32 ice_ptypes_sctp_il[] = {
328 	0x08000000, 0x01020204, 0x20000081, 0x04080810,
329 	0x00000204, 0x00000000, 0x00000000, 0x00000000,
330 	0x00000000, 0x01040000, 0x00000000, 0x00000000,
331 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
332 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
333 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
334 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
335 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
336 };
337 
338 /* Packet types for packets with an Outermost/First ICMP header */
339 static const u32 ice_ptypes_icmp_of[] = {
340 	0x10000000, 0x00000000, 0x00000000, 0x00000000,
341 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
342 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
343 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
344 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
345 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
346 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
347 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
348 };
349 
350 /* Packet types for packets with an Innermost/Last ICMP header */
351 static const u32 ice_ptypes_icmp_il[] = {
352 	0x00000000, 0x02040408, 0x40000102, 0x08101020,
353 	0x00000408, 0x00000000, 0x00000000, 0x00000000,
354 	0x00000000, 0x00000000, 0x42108000, 0x00000000,
355 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
356 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
357 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
358 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
359 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
360 };
361 
362 /* Packet types for packets with an Outermost/First GRE header */
363 static const u32 ice_ptypes_gre_of[] = {
364 	0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
365 	0x0000017E, 0x00000000, 0x00000000, 0x00000000,
366 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
367 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
368 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
369 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
370 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
371 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
372 };
373 
374 /* Packet types for packets with an Innermost/Last MAC header */
375 static const u32 ice_ptypes_mac_il[] = {
376 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
377 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
378 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
379 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
380 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
381 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
382 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
383 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
384 };
385 
386 /* Packet types for GTPC */
387 static const u32 ice_ptypes_gtpc[] = {
388 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
389 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
390 	0x00000000, 0x00000000, 0x00000180, 0x00000000,
391 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
392 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
393 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
394 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
395 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
396 };
397 
398 /* Packet types for GTPC with TEID */
399 static const u32 ice_ptypes_gtpc_tid[] = {
400 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
401 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
402 	0x00000000, 0x00000000, 0x00000060, 0x00000000,
403 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
404 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
405 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
406 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
407 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
408 };
409 
410 /* Packet types for GTPU */
411 static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
412 	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
413 	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
414 	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
415 	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
416 	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
417 	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
418 	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
419 	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
420 	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
421 	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
422 	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
423 	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
424 	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
425 	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
426 	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
427 	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
428 	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
429 	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
430 	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
431 	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
432 };
433 
434 static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
435 	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
436 	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
437 	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
438 	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
439 	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
440 	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
441 	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
442 	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
443 	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
444 	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
445 	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
446 	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
447 	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
448 	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
449 	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
450 	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
451 	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
452 	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
453 	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
454 	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
455 };
456 
457 static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
458 	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
459 	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
460 	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
461 	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
462 	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
463 	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
464 	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
465 	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
466 	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
467 	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
468 	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
469 	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
470 	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
471 	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
472 	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
473 	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
474 	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
475 	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
476 	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
477 	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
478 };
479 
480 static const u32 ice_ptypes_gtpu[] = {
481 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
482 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
483 	0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
484 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
485 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
486 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
487 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
488 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
489 };
490 
491 /* Packet types for PPPoE */
492 static const u32 ice_ptypes_pppoe[] = {
493 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
494 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
495 	0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
496 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
497 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
498 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
499 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
500 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
501 };
502 
503 /* Packet types for packets with PFCP NODE header */
504 static const u32 ice_ptypes_pfcp_node[] = {
505 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
506 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
507 	0x00000000, 0x00000000, 0x80000000, 0x00000002,
508 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
509 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
510 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
511 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
512 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
513 };
514 
515 /* Packet types for packets with PFCP SESSION header */
516 static const u32 ice_ptypes_pfcp_session[] = {
517 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
518 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
519 	0x00000000, 0x00000000, 0x00000000, 0x00000005,
520 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
521 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
522 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
523 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
524 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
525 };
526 
527 /* Packet types for L2TPv3 */
528 static const u32 ice_ptypes_l2tpv3[] = {
529 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
530 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
531 	0x00000000, 0x00000000, 0x00000000, 0x00000300,
532 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
533 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
534 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
535 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
536 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
537 };
538 
539 /* Packet types for ESP */
540 static const u32 ice_ptypes_esp[] = {
541 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
542 	0x00000000, 0x00000003, 0x00000000, 0x00000000,
543 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
544 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
545 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
546 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
547 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
548 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
549 };
550 
551 /* Packet types for AH */
552 static const u32 ice_ptypes_ah[] = {
553 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
554 	0x00000000, 0x0000000C, 0x00000000, 0x00000000,
555 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
556 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
557 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
558 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
559 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
560 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
561 };
562 
563 /* Packet types for packets with NAT_T ESP header */
564 static const u32 ice_ptypes_nat_t_esp[] = {
565 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
566 	0x00000000, 0x00000030, 0x00000000, 0x00000000,
567 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
568 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
569 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
570 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
571 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
572 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
573 };
574 
575 static const u32 ice_ptypes_mac_non_ip_ofos[] = {
576 	0x00000846, 0x00000000, 0x00000000, 0x00000000,
577 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
578 	0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
579 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
580 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
581 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
582 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
583 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
584 };
585 
586 /* Manage parameters and info. used during the creation of a flow profile */
587 struct ice_flow_prof_params {
588 	enum ice_block blk;
589 	u16 entry_length; /* # of bytes formatted entry will require */
590 	u8 es_cnt;
591 	struct ice_flow_prof *prof;
592 
593 	/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
594 	 * This will give us the direction flags.
595 	 */
596 	struct ice_fv_word es[ICE_MAX_FV_WORDS];
597 	/* attributes can be used to add attributes to a particular PTYPE */
598 	const struct ice_ptype_attributes *attr;
599 	u16 attr_cnt;
600 
601 	u16 mask[ICE_MAX_FV_WORDS];
602 	DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
603 };
604 
605 #define ICE_FLOW_RSS_HDRS_INNER_MASK \
606 	(ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
607 	ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
608 	ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
609 	ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
610 	ICE_FLOW_SEG_HDR_NAT_T_ESP)
611 
612 #define ICE_FLOW_SEG_HDRS_L2_MASK	\
613 	(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
614 #define ICE_FLOW_SEG_HDRS_L3_MASK	\
615 	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
616 #define ICE_FLOW_SEG_HDRS_L4_MASK	\
617 	(ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
618 	 ICE_FLOW_SEG_HDR_SCTP)
619 /* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */
620 #define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER	\
621 	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
622 
623 /**
624  * ice_flow_val_hdrs - validates packet segments for valid protocol headers
625  * @segs: array of one or more packet segments that describe the flow
626  * @segs_cnt: number of packet segments provided
627  */
628 static enum ice_status
ice_flow_val_hdrs(struct ice_flow_seg_info * segs,u8 segs_cnt)629 ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
630 {
631 	u8 i;
632 
633 	for (i = 0; i < segs_cnt; i++) {
634 		/* Multiple L3 headers */
635 		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
636 		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
637 			return ICE_ERR_PARAM;
638 
639 		/* Multiple L4 headers */
640 		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
641 		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
642 			return ICE_ERR_PARAM;
643 	}
644 
645 	return 0;
646 }
647 
648 /* Sizes of fixed known protocol headers without header options */
649 #define ICE_FLOW_PROT_HDR_SZ_MAC	14
650 #define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN	(ICE_FLOW_PROT_HDR_SZ_MAC + 2)
651 #define ICE_FLOW_PROT_HDR_SZ_IPV4	20
652 #define ICE_FLOW_PROT_HDR_SZ_IPV6	40
653 #define ICE_FLOW_PROT_HDR_SZ_ARP	28
654 #define ICE_FLOW_PROT_HDR_SZ_ICMP	8
655 #define ICE_FLOW_PROT_HDR_SZ_TCP	20
656 #define ICE_FLOW_PROT_HDR_SZ_UDP	8
657 #define ICE_FLOW_PROT_HDR_SZ_SCTP	12
658 
659 /**
660  * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
661  * @params: information about the flow to be processed
662  * @seg: index of packet segment whose header size is to be determined
663  */
ice_flow_calc_seg_sz(struct ice_flow_prof_params * params,u8 seg)664 static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
665 {
666 	u16 sz;
667 
668 	/* L2 headers */
669 	sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
670 		ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
671 
672 	/* L3 headers */
673 	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
674 		sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
675 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
676 		sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
677 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
678 		sz += ICE_FLOW_PROT_HDR_SZ_ARP;
679 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
680 		/* An L3 header is required if L4 is specified */
681 		return 0;
682 
683 	/* L4 headers */
684 	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
685 		sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
686 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
687 		sz += ICE_FLOW_PROT_HDR_SZ_TCP;
688 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
689 		sz += ICE_FLOW_PROT_HDR_SZ_UDP;
690 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
691 		sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
692 
693 	return sz;
694 }
695 
696 /**
697  * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
698  * @params: information about the flow to be processed
699  *
700  * This function identifies the packet types associated with the protocol
701  * headers being present in packet segments of the specified flow profile.
702  */
703 static enum ice_status
ice_flow_proc_seg_hdrs(struct ice_flow_prof_params * params)704 ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
705 {
706 	struct ice_flow_prof *prof;
707 	u8 i;
708 
709 	memset(params->ptypes, 0xff, sizeof(params->ptypes));
710 
711 	prof = params->prof;
712 
713 	for (i = 0; i < params->prof->segs_cnt; i++) {
714 		const unsigned long *src;
715 		u32 hdrs;
716 
717 		hdrs = prof->segs[i].hdrs;
718 
719 		if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
720 			src = !i ? (const unsigned long *)ice_ptypes_mac_ofos :
721 				(const unsigned long *)ice_ptypes_mac_il;
722 			bitmap_and(params->ptypes, params->ptypes, src,
723 				   ICE_FLOW_PTYPE_MAX);
724 		}
725 
726 		if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
727 			src = (const unsigned long *)ice_ptypes_macvlan_il;
728 			bitmap_and(params->ptypes, params->ptypes, src,
729 				   ICE_FLOW_PTYPE_MAX);
730 		}
731 
732 		if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
733 			bitmap_and(params->ptypes, params->ptypes,
734 				   (const unsigned long *)ice_ptypes_arp_of,
735 				   ICE_FLOW_PTYPE_MAX);
736 		}
737 
738 		if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
739 		    (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
740 			src = i ? (const unsigned long *)ice_ptypes_ipv4_il :
741 				(const unsigned long *)ice_ptypes_ipv4_ofos_all;
742 			bitmap_and(params->ptypes, params->ptypes, src,
743 				   ICE_FLOW_PTYPE_MAX);
744 		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
745 			   (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
746 			src = i ? (const unsigned long *)ice_ptypes_ipv6_il :
747 				(const unsigned long *)ice_ptypes_ipv6_ofos_all;
748 			bitmap_and(params->ptypes, params->ptypes, src,
749 				   ICE_FLOW_PTYPE_MAX);
750 		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
751 			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
752 			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 :
753 				(const unsigned long *)ice_ptypes_ipv4_il_no_l4;
754 			bitmap_and(params->ptypes, params->ptypes, src,
755 				   ICE_FLOW_PTYPE_MAX);
756 		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
757 			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
758 				(const unsigned long *)ice_ptypes_ipv4_il;
759 			bitmap_and(params->ptypes, params->ptypes, src,
760 				   ICE_FLOW_PTYPE_MAX);
761 		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
762 			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
763 			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 :
764 				(const unsigned long *)ice_ptypes_ipv6_il_no_l4;
765 			bitmap_and(params->ptypes, params->ptypes, src,
766 				   ICE_FLOW_PTYPE_MAX);
767 		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
768 			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
769 				(const unsigned long *)ice_ptypes_ipv6_il;
770 			bitmap_and(params->ptypes, params->ptypes, src,
771 				   ICE_FLOW_PTYPE_MAX);
772 		}
773 
774 		if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
775 			src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos;
776 			bitmap_and(params->ptypes, params->ptypes, src,
777 				   ICE_FLOW_PTYPE_MAX);
778 		} else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
779 			src = (const unsigned long *)ice_ptypes_pppoe;
780 			bitmap_and(params->ptypes, params->ptypes, src,
781 				   ICE_FLOW_PTYPE_MAX);
782 		} else {
783 			src = (const unsigned long *)ice_ptypes_pppoe;
784 			bitmap_andnot(params->ptypes, params->ptypes, src,
785 				      ICE_FLOW_PTYPE_MAX);
786 		}
787 
788 		if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
789 			src = (const unsigned long *)ice_ptypes_udp_il;
790 			bitmap_and(params->ptypes, params->ptypes, src,
791 				   ICE_FLOW_PTYPE_MAX);
792 		} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
793 			bitmap_and(params->ptypes, params->ptypes,
794 				   (const unsigned long *)ice_ptypes_tcp_il,
795 				   ICE_FLOW_PTYPE_MAX);
796 		} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
797 			src = (const unsigned long *)ice_ptypes_sctp_il;
798 			bitmap_and(params->ptypes, params->ptypes, src,
799 				   ICE_FLOW_PTYPE_MAX);
800 		}
801 
802 		if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
803 			src = !i ? (const unsigned long *)ice_ptypes_icmp_of :
804 				(const unsigned long *)ice_ptypes_icmp_il;
805 			bitmap_and(params->ptypes, params->ptypes, src,
806 				   ICE_FLOW_PTYPE_MAX);
807 		} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
808 			if (!i) {
809 				src = (const unsigned long *)ice_ptypes_gre_of;
810 				bitmap_and(params->ptypes, params->ptypes,
811 					   src, ICE_FLOW_PTYPE_MAX);
812 			}
813 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
814 			src = (const unsigned long *)ice_ptypes_gtpc;
815 			bitmap_and(params->ptypes, params->ptypes, src,
816 				   ICE_FLOW_PTYPE_MAX);
817 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
818 			src = (const unsigned long *)ice_ptypes_gtpc_tid;
819 			bitmap_and(params->ptypes, params->ptypes, src,
820 				   ICE_FLOW_PTYPE_MAX);
821 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
822 			src = (const unsigned long *)ice_ptypes_gtpu;
823 			bitmap_and(params->ptypes, params->ptypes, src,
824 				   ICE_FLOW_PTYPE_MAX);
825 
826 			/* Attributes for GTP packet with downlink */
827 			params->attr = ice_attr_gtpu_down;
828 			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
829 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
830 			src = (const unsigned long *)ice_ptypes_gtpu;
831 			bitmap_and(params->ptypes, params->ptypes, src,
832 				   ICE_FLOW_PTYPE_MAX);
833 
834 			/* Attributes for GTP packet with uplink */
835 			params->attr = ice_attr_gtpu_up;
836 			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
837 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
838 			src = (const unsigned long *)ice_ptypes_gtpu;
839 			bitmap_and(params->ptypes, params->ptypes, src,
840 				   ICE_FLOW_PTYPE_MAX);
841 
842 			/* Attributes for GTP packet with Extension Header */
843 			params->attr = ice_attr_gtpu_eh;
844 			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
845 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
846 			src = (const unsigned long *)ice_ptypes_gtpu;
847 			bitmap_and(params->ptypes, params->ptypes, src,
848 				   ICE_FLOW_PTYPE_MAX);
849 		} else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
850 			src = (const unsigned long *)ice_ptypes_l2tpv3;
851 			bitmap_and(params->ptypes, params->ptypes, src,
852 				   ICE_FLOW_PTYPE_MAX);
853 		} else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
854 			src = (const unsigned long *)ice_ptypes_esp;
855 			bitmap_and(params->ptypes, params->ptypes, src,
856 				   ICE_FLOW_PTYPE_MAX);
857 		} else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
858 			src = (const unsigned long *)ice_ptypes_ah;
859 			bitmap_and(params->ptypes, params->ptypes, src,
860 				   ICE_FLOW_PTYPE_MAX);
861 		} else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
862 			src = (const unsigned long *)ice_ptypes_nat_t_esp;
863 			bitmap_and(params->ptypes, params->ptypes, src,
864 				   ICE_FLOW_PTYPE_MAX);
865 		}
866 
867 		if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
868 			if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
869 				src = (const unsigned long *)ice_ptypes_pfcp_node;
870 			else
871 				src = (const unsigned long *)ice_ptypes_pfcp_session;
872 
873 			bitmap_and(params->ptypes, params->ptypes, src,
874 				   ICE_FLOW_PTYPE_MAX);
875 		} else {
876 			src = (const unsigned long *)ice_ptypes_pfcp_node;
877 			bitmap_andnot(params->ptypes, params->ptypes, src,
878 				      ICE_FLOW_PTYPE_MAX);
879 
880 			src = (const unsigned long *)ice_ptypes_pfcp_session;
881 			bitmap_andnot(params->ptypes, params->ptypes, src,
882 				      ICE_FLOW_PTYPE_MAX);
883 		}
884 	}
885 
886 	return 0;
887 }
888 
889 /**
890  * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
891  * @hw: pointer to the HW struct
892  * @params: information about the flow to be processed
893  * @seg: packet segment index of the field to be extracted
894  * @fld: ID of field to be extracted
895  * @match: bit field of all fields
896  *
897  * This function determines the protocol ID, offset, and size of the given
898  * field. It then allocates one or more extraction sequence entries for the
899  * given field, and fill the entries with protocol ID and offset information.
900  */
901 static enum ice_status
ice_flow_xtract_fld(struct ice_hw * hw,struct ice_flow_prof_params * params,u8 seg,enum ice_flow_field fld,u64 match)902 ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
903 		    u8 seg, enum ice_flow_field fld, u64 match)
904 {
905 	enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
906 	enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
907 	u8 fv_words = hw->blk[params->blk].es.fvw;
908 	struct ice_flow_fld_info *flds;
909 	u16 cnt, ese_bits, i;
910 	u16 sib_mask = 0;
911 	u16 mask;
912 	u16 off;
913 
914 	flds = params->prof->segs[seg].fields;
915 
916 	switch (fld) {
917 	case ICE_FLOW_FIELD_IDX_ETH_DA:
918 	case ICE_FLOW_FIELD_IDX_ETH_SA:
919 	case ICE_FLOW_FIELD_IDX_S_VLAN:
920 	case ICE_FLOW_FIELD_IDX_C_VLAN:
921 		prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
922 		break;
923 	case ICE_FLOW_FIELD_IDX_ETH_TYPE:
924 		prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
925 		break;
926 	case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
927 		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
928 		break;
929 	case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
930 		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
931 		break;
932 	case ICE_FLOW_FIELD_IDX_IPV4_TTL:
933 	case ICE_FLOW_FIELD_IDX_IPV4_PROT:
934 		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
935 
936 		/* TTL and PROT share the same extraction seq. entry.
937 		 * Each is considered a sibling to the other in terms of sharing
938 		 * the same extraction sequence entry.
939 		 */
940 		if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
941 			sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
942 		else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT)
943 			sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
944 
945 		/* If the sibling field is also included, that field's
946 		 * mask needs to be included.
947 		 */
948 		if (match & BIT(sib))
949 			sib_mask = ice_flds_info[sib].mask;
950 		break;
951 	case ICE_FLOW_FIELD_IDX_IPV6_TTL:
952 	case ICE_FLOW_FIELD_IDX_IPV6_PROT:
953 		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
954 
955 		/* TTL and PROT share the same extraction seq. entry.
956 		 * Each is considered a sibling to the other in terms of sharing
957 		 * the same extraction sequence entry.
958 		 */
959 		if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
960 			sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
961 		else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT)
962 			sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
963 
964 		/* If the sibling field is also included, that field's
965 		 * mask needs to be included.
966 		 */
967 		if (match & BIT(sib))
968 			sib_mask = ice_flds_info[sib].mask;
969 		break;
970 	case ICE_FLOW_FIELD_IDX_IPV4_SA:
971 	case ICE_FLOW_FIELD_IDX_IPV4_DA:
972 		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
973 		break;
974 	case ICE_FLOW_FIELD_IDX_IPV6_SA:
975 	case ICE_FLOW_FIELD_IDX_IPV6_DA:
976 		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
977 		break;
978 	case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
979 	case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
980 	case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
981 		prot_id = ICE_PROT_TCP_IL;
982 		break;
983 	case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
984 	case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
985 		prot_id = ICE_PROT_UDP_IL_OR_S;
986 		break;
987 	case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
988 	case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
989 		prot_id = ICE_PROT_SCTP_IL;
990 		break;
991 	case ICE_FLOW_FIELD_IDX_GTPC_TEID:
992 	case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
993 	case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
994 	case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
995 	case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
996 	case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
997 		/* GTP is accessed through UDP OF protocol */
998 		prot_id = ICE_PROT_UDP_OF;
999 		break;
1000 	case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
1001 		prot_id = ICE_PROT_PPPOE;
1002 		break;
1003 	case ICE_FLOW_FIELD_IDX_PFCP_SEID:
1004 		prot_id = ICE_PROT_UDP_IL_OR_S;
1005 		break;
1006 	case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
1007 		prot_id = ICE_PROT_L2TPV3;
1008 		break;
1009 	case ICE_FLOW_FIELD_IDX_ESP_SPI:
1010 		prot_id = ICE_PROT_ESP_F;
1011 		break;
1012 	case ICE_FLOW_FIELD_IDX_AH_SPI:
1013 		prot_id = ICE_PROT_ESP_2;
1014 		break;
1015 	case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
1016 		prot_id = ICE_PROT_UDP_IL_OR_S;
1017 		break;
1018 	case ICE_FLOW_FIELD_IDX_ARP_SIP:
1019 	case ICE_FLOW_FIELD_IDX_ARP_DIP:
1020 	case ICE_FLOW_FIELD_IDX_ARP_SHA:
1021 	case ICE_FLOW_FIELD_IDX_ARP_DHA:
1022 	case ICE_FLOW_FIELD_IDX_ARP_OP:
1023 		prot_id = ICE_PROT_ARP_OF;
1024 		break;
1025 	case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
1026 	case ICE_FLOW_FIELD_IDX_ICMP_CODE:
1027 		/* ICMP type and code share the same extraction seq. entry */
1028 		prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ?
1029 				ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
1030 		sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
1031 			ICE_FLOW_FIELD_IDX_ICMP_CODE :
1032 			ICE_FLOW_FIELD_IDX_ICMP_TYPE;
1033 		break;
1034 	case ICE_FLOW_FIELD_IDX_GRE_KEYID:
1035 		prot_id = ICE_PROT_GRE_OF;
1036 		break;
1037 	default:
1038 		return ICE_ERR_NOT_IMPL;
1039 	}
1040 
1041 	/* Each extraction sequence entry is a word in size, and extracts a
1042 	 * word-aligned offset from a protocol header.
1043 	 */
1044 	ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
1045 
1046 	flds[fld].xtrct.prot_id = prot_id;
1047 	flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
1048 		ICE_FLOW_FV_EXTRACT_SZ;
1049 	flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
1050 	flds[fld].xtrct.idx = params->es_cnt;
1051 	flds[fld].xtrct.mask = ice_flds_info[fld].mask;
1052 
1053 	/* Adjust the next field-entry index after accommodating the number of
1054 	 * entries this field consumes
1055 	 */
1056 	cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
1057 			   ese_bits);
1058 
1059 	/* Fill in the extraction sequence entries needed for this field */
1060 	off = flds[fld].xtrct.off;
1061 	mask = flds[fld].xtrct.mask;
1062 	for (i = 0; i < cnt; i++) {
1063 		/* Only consume an extraction sequence entry if there is no
1064 		 * sibling field associated with this field or the sibling entry
1065 		 * already extracts the word shared with this field.
1066 		 */
1067 		if (sib == ICE_FLOW_FIELD_IDX_MAX ||
1068 		    flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
1069 		    flds[sib].xtrct.off != off) {
1070 			u8 idx;
1071 
1072 			/* Make sure the number of extraction sequence required
1073 			 * does not exceed the block's capability
1074 			 */
1075 			if (params->es_cnt >= fv_words)
1076 				return ICE_ERR_MAX_LIMIT;
1077 
1078 			/* some blocks require a reversed field vector layout */
1079 			if (hw->blk[params->blk].es.reverse)
1080 				idx = fv_words - params->es_cnt - 1;
1081 			else
1082 				idx = params->es_cnt;
1083 
1084 			params->es[idx].prot_id = prot_id;
1085 			params->es[idx].off = off;
1086 			params->mask[idx] = mask | sib_mask;
1087 			params->es_cnt++;
1088 		}
1089 
1090 		off += ICE_FLOW_FV_EXTRACT_SZ;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 /**
1097  * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
1098  * @hw: pointer to the HW struct
1099  * @params: information about the flow to be processed
1100  * @seg: index of packet segment whose raw fields are to be extracted
1101  */
1102 static enum ice_status
ice_flow_xtract_raws(struct ice_hw * hw,struct ice_flow_prof_params * params,u8 seg)1103 ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
1104 		     u8 seg)
1105 {
1106 	u16 fv_words;
1107 	u16 hdrs_sz;
1108 	u8 i;
1109 
1110 	if (!params->prof->segs[seg].raws_cnt)
1111 		return 0;
1112 
1113 	if (params->prof->segs[seg].raws_cnt >
1114 	    ARRAY_SIZE(params->prof->segs[seg].raws))
1115 		return ICE_ERR_MAX_LIMIT;
1116 
1117 	/* Offsets within the segment headers are not supported */
1118 	hdrs_sz = ice_flow_calc_seg_sz(params, seg);
1119 	if (!hdrs_sz)
1120 		return ICE_ERR_PARAM;
1121 
1122 	fv_words = hw->blk[params->blk].es.fvw;
1123 
1124 	for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
1125 		struct ice_flow_seg_fld_raw *raw;
1126 		u16 off, cnt, j;
1127 
1128 		raw = &params->prof->segs[seg].raws[i];
1129 
1130 		/* Storing extraction information */
1131 		raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
1132 		raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
1133 			ICE_FLOW_FV_EXTRACT_SZ;
1134 		raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
1135 			BITS_PER_BYTE;
1136 		raw->info.xtrct.idx = params->es_cnt;
1137 
1138 		/* Determine the number of field vector entries this raw field
1139 		 * consumes.
1140 		 */
1141 		cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
1142 				   (raw->info.src.last * BITS_PER_BYTE),
1143 				   (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
1144 		off = raw->info.xtrct.off;
1145 		for (j = 0; j < cnt; j++) {
1146 			u16 idx;
1147 
1148 			/* Make sure the number of extraction sequence required
1149 			 * does not exceed the block's capability
1150 			 */
1151 			if (params->es_cnt >= hw->blk[params->blk].es.count ||
1152 			    params->es_cnt >= ICE_MAX_FV_WORDS)
1153 				return ICE_ERR_MAX_LIMIT;
1154 
1155 			/* some blocks require a reversed field vector layout */
1156 			if (hw->blk[params->blk].es.reverse)
1157 				idx = fv_words - params->es_cnt - 1;
1158 			else
1159 				idx = params->es_cnt;
1160 
1161 			params->es[idx].prot_id = raw->info.xtrct.prot_id;
1162 			params->es[idx].off = off;
1163 			params->es_cnt++;
1164 			off += ICE_FLOW_FV_EXTRACT_SZ;
1165 		}
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 /**
1172  * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
1173  * @hw: pointer to the HW struct
1174  * @params: information about the flow to be processed
1175  *
1176  * This function iterates through all matched fields in the given segments, and
1177  * creates an extraction sequence for the fields.
1178  */
1179 static enum ice_status
ice_flow_create_xtrct_seq(struct ice_hw * hw,struct ice_flow_prof_params * params)1180 ice_flow_create_xtrct_seq(struct ice_hw *hw,
1181 			  struct ice_flow_prof_params *params)
1182 {
1183 	struct ice_flow_prof *prof = params->prof;
1184 	enum ice_status status = 0;
1185 	u8 i;
1186 
1187 	for (i = 0; i < prof->segs_cnt; i++) {
1188 		u64 match = params->prof->segs[i].match;
1189 		enum ice_flow_field j;
1190 
1191 		for_each_set_bit(j, (unsigned long *)&match,
1192 				 ICE_FLOW_FIELD_IDX_MAX) {
1193 			status = ice_flow_xtract_fld(hw, params, i, j, match);
1194 			if (status)
1195 				return status;
1196 			clear_bit(j, (unsigned long *)&match);
1197 		}
1198 
1199 		/* Process raw matching bytes */
1200 		status = ice_flow_xtract_raws(hw, params, i);
1201 		if (status)
1202 			return status;
1203 	}
1204 
1205 	return status;
1206 }
1207 
1208 /**
1209  * ice_flow_proc_segs - process all packet segments associated with a profile
1210  * @hw: pointer to the HW struct
1211  * @params: information about the flow to be processed
1212  */
1213 static enum ice_status
ice_flow_proc_segs(struct ice_hw * hw,struct ice_flow_prof_params * params)1214 ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
1215 {
1216 	enum ice_status status;
1217 
1218 	status = ice_flow_proc_seg_hdrs(params);
1219 	if (status)
1220 		return status;
1221 
1222 	status = ice_flow_create_xtrct_seq(hw, params);
1223 	if (status)
1224 		return status;
1225 
1226 	switch (params->blk) {
1227 	case ICE_BLK_FD:
1228 	case ICE_BLK_RSS:
1229 		status = 0;
1230 		break;
1231 	default:
1232 		return ICE_ERR_NOT_IMPL;
1233 	}
1234 
1235 	return status;
1236 }
1237 
1238 #define ICE_FLOW_FIND_PROF_CHK_FLDS	0x00000001
1239 #define ICE_FLOW_FIND_PROF_CHK_VSI	0x00000002
1240 #define ICE_FLOW_FIND_PROF_NOT_CHK_DIR	0x00000004
1241 
1242 /**
1243  * ice_flow_find_prof_conds - Find a profile matching headers and conditions
1244  * @hw: pointer to the HW struct
1245  * @blk: classification stage
1246  * @dir: flow direction
1247  * @segs: array of one or more packet segments that describe the flow
1248  * @segs_cnt: number of packet segments provided
1249  * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
1250  * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
1251  */
1252 static struct ice_flow_prof *
ice_flow_find_prof_conds(struct ice_hw * hw,enum ice_block blk,enum ice_flow_dir dir,struct ice_flow_seg_info * segs,u8 segs_cnt,u16 vsi_handle,u32 conds)1253 ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
1254 			 enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
1255 			 u8 segs_cnt, u16 vsi_handle, u32 conds)
1256 {
1257 	struct ice_flow_prof *p, *prof = NULL;
1258 
1259 	mutex_lock(&hw->fl_profs_locks[blk]);
1260 	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1261 		if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
1262 		    segs_cnt && segs_cnt == p->segs_cnt) {
1263 			u8 i;
1264 
1265 			/* Check for profile-VSI association if specified */
1266 			if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
1267 			    ice_is_vsi_valid(hw, vsi_handle) &&
1268 			    !test_bit(vsi_handle, p->vsis))
1269 				continue;
1270 
1271 			/* Protocol headers must be checked. Matched fields are
1272 			 * checked if specified.
1273 			 */
1274 			for (i = 0; i < segs_cnt; i++)
1275 				if (segs[i].hdrs != p->segs[i].hdrs ||
1276 				    ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
1277 				     segs[i].match != p->segs[i].match))
1278 					break;
1279 
1280 			/* A match is found if all segments are matched */
1281 			if (i == segs_cnt) {
1282 				prof = p;
1283 				break;
1284 			}
1285 		}
1286 	mutex_unlock(&hw->fl_profs_locks[blk]);
1287 
1288 	return prof;
1289 }
1290 
1291 /**
1292  * ice_flow_find_prof_id - Look up a profile with given profile ID
1293  * @hw: pointer to the HW struct
1294  * @blk: classification stage
1295  * @prof_id: unique ID to identify this flow profile
1296  */
1297 static struct ice_flow_prof *
ice_flow_find_prof_id(struct ice_hw * hw,enum ice_block blk,u64 prof_id)1298 ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1299 {
1300 	struct ice_flow_prof *p;
1301 
1302 	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1303 		if (p->id == prof_id)
1304 			return p;
1305 
1306 	return NULL;
1307 }
1308 
1309 /**
1310  * ice_dealloc_flow_entry - Deallocate flow entry memory
1311  * @hw: pointer to the HW struct
1312  * @entry: flow entry to be removed
1313  */
1314 static void
ice_dealloc_flow_entry(struct ice_hw * hw,struct ice_flow_entry * entry)1315 ice_dealloc_flow_entry(struct ice_hw *hw, struct ice_flow_entry *entry)
1316 {
1317 	if (!entry)
1318 		return;
1319 
1320 	if (entry->entry)
1321 		devm_kfree(ice_hw_to_dev(hw), entry->entry);
1322 
1323 	devm_kfree(ice_hw_to_dev(hw), entry);
1324 }
1325 
1326 /**
1327  * ice_flow_rem_entry_sync - Remove a flow entry
1328  * @hw: pointer to the HW struct
1329  * @blk: classification stage
1330  * @entry: flow entry to be removed
1331  */
1332 static enum ice_status
ice_flow_rem_entry_sync(struct ice_hw * hw,enum ice_block __always_unused blk,struct ice_flow_entry * entry)1333 ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
1334 			struct ice_flow_entry *entry)
1335 {
1336 	if (!entry)
1337 		return ICE_ERR_BAD_PTR;
1338 
1339 	list_del(&entry->l_entry);
1340 
1341 	ice_dealloc_flow_entry(hw, entry);
1342 
1343 	return 0;
1344 }
1345 
1346 /**
1347  * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
1348  * @hw: pointer to the HW struct
1349  * @blk: classification stage
1350  * @dir: flow direction
1351  * @prof_id: unique ID to identify this flow profile
1352  * @segs: array of one or more packet segments that describe the flow
1353  * @segs_cnt: number of packet segments provided
1354  * @prof: stores the returned flow profile added
1355  *
1356  * Assumption: the caller has acquired the lock to the profile list
1357  */
1358 static enum ice_status
ice_flow_add_prof_sync(struct ice_hw * hw,enum ice_block blk,enum ice_flow_dir dir,u64 prof_id,struct ice_flow_seg_info * segs,u8 segs_cnt,struct ice_flow_prof ** prof)1359 ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
1360 		       enum ice_flow_dir dir, u64 prof_id,
1361 		       struct ice_flow_seg_info *segs, u8 segs_cnt,
1362 		       struct ice_flow_prof **prof)
1363 {
1364 	struct ice_flow_prof_params *params;
1365 	enum ice_status status;
1366 	u8 i;
1367 
1368 	if (!prof)
1369 		return ICE_ERR_BAD_PTR;
1370 
1371 	params = kzalloc(sizeof(*params), GFP_KERNEL);
1372 	if (!params)
1373 		return ICE_ERR_NO_MEMORY;
1374 
1375 	params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof),
1376 				    GFP_KERNEL);
1377 	if (!params->prof) {
1378 		status = ICE_ERR_NO_MEMORY;
1379 		goto free_params;
1380 	}
1381 
1382 	/* initialize extraction sequence to all invalid (0xff) */
1383 	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1384 		params->es[i].prot_id = ICE_PROT_INVALID;
1385 		params->es[i].off = ICE_FV_OFFSET_INVAL;
1386 	}
1387 
1388 	params->blk = blk;
1389 	params->prof->id = prof_id;
1390 	params->prof->dir = dir;
1391 	params->prof->segs_cnt = segs_cnt;
1392 
1393 	/* Make a copy of the segments that need to be persistent in the flow
1394 	 * profile instance
1395 	 */
1396 	for (i = 0; i < segs_cnt; i++)
1397 		memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs));
1398 
1399 	status = ice_flow_proc_segs(hw, params);
1400 	if (status) {
1401 		ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
1402 		goto out;
1403 	}
1404 
1405 	/* Add a HW profile for this flow profile */
1406 	status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
1407 			      params->attr, params->attr_cnt, params->es,
1408 			      params->mask);
1409 	if (status) {
1410 		ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
1411 		goto out;
1412 	}
1413 
1414 	INIT_LIST_HEAD(&params->prof->entries);
1415 	mutex_init(&params->prof->entries_lock);
1416 	*prof = params->prof;
1417 
1418 out:
1419 	if (status)
1420 		devm_kfree(ice_hw_to_dev(hw), params->prof);
1421 free_params:
1422 	kfree(params);
1423 
1424 	return status;
1425 }
1426 
1427 /**
1428  * ice_flow_rem_prof_sync - remove a flow profile
1429  * @hw: pointer to the hardware structure
1430  * @blk: classification stage
1431  * @prof: pointer to flow profile to remove
1432  *
1433  * Assumption: the caller has acquired the lock to the profile list
1434  */
1435 static enum ice_status
ice_flow_rem_prof_sync(struct ice_hw * hw,enum ice_block blk,struct ice_flow_prof * prof)1436 ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
1437 		       struct ice_flow_prof *prof)
1438 {
1439 	enum ice_status status;
1440 
1441 	/* Remove all remaining flow entries before removing the flow profile */
1442 	if (!list_empty(&prof->entries)) {
1443 		struct ice_flow_entry *e, *t;
1444 
1445 		mutex_lock(&prof->entries_lock);
1446 
1447 		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1448 			status = ice_flow_rem_entry_sync(hw, blk, e);
1449 			if (status)
1450 				break;
1451 		}
1452 
1453 		mutex_unlock(&prof->entries_lock);
1454 	}
1455 
1456 	/* Remove all hardware profiles associated with this flow profile */
1457 	status = ice_rem_prof(hw, blk, prof->id);
1458 	if (!status) {
1459 		list_del(&prof->l_entry);
1460 		mutex_destroy(&prof->entries_lock);
1461 		devm_kfree(ice_hw_to_dev(hw), prof);
1462 	}
1463 
1464 	return status;
1465 }
1466 
1467 /**
1468  * ice_flow_assoc_prof - associate a VSI with a flow profile
1469  * @hw: pointer to the hardware structure
1470  * @blk: classification stage
1471  * @prof: pointer to flow profile
1472  * @vsi_handle: software VSI handle
1473  *
1474  * Assumption: the caller has acquired the lock to the profile list
1475  * and the software VSI handle has been validated
1476  */
1477 static enum ice_status
ice_flow_assoc_prof(struct ice_hw * hw,enum ice_block blk,struct ice_flow_prof * prof,u16 vsi_handle)1478 ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
1479 		    struct ice_flow_prof *prof, u16 vsi_handle)
1480 {
1481 	enum ice_status status = 0;
1482 
1483 	if (!test_bit(vsi_handle, prof->vsis)) {
1484 		status = ice_add_prof_id_flow(hw, blk,
1485 					      ice_get_hw_vsi_num(hw,
1486 								 vsi_handle),
1487 					      prof->id);
1488 		if (!status)
1489 			set_bit(vsi_handle, prof->vsis);
1490 		else
1491 			ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
1492 				  status);
1493 	}
1494 
1495 	return status;
1496 }
1497 
1498 /**
1499  * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
1500  * @hw: pointer to the hardware structure
1501  * @blk: classification stage
1502  * @prof: pointer to flow profile
1503  * @vsi_handle: software VSI handle
1504  *
1505  * Assumption: the caller has acquired the lock to the profile list
1506  * and the software VSI handle has been validated
1507  */
1508 static enum ice_status
ice_flow_disassoc_prof(struct ice_hw * hw,enum ice_block blk,struct ice_flow_prof * prof,u16 vsi_handle)1509 ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
1510 		       struct ice_flow_prof *prof, u16 vsi_handle)
1511 {
1512 	enum ice_status status = 0;
1513 
1514 	if (test_bit(vsi_handle, prof->vsis)) {
1515 		status = ice_rem_prof_id_flow(hw, blk,
1516 					      ice_get_hw_vsi_num(hw,
1517 								 vsi_handle),
1518 					      prof->id);
1519 		if (!status)
1520 			clear_bit(vsi_handle, prof->vsis);
1521 		else
1522 			ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
1523 				  status);
1524 	}
1525 
1526 	return status;
1527 }
1528 
1529 /**
1530  * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
1531  * @hw: pointer to the HW struct
1532  * @blk: classification stage
1533  * @dir: flow direction
1534  * @prof_id: unique ID to identify this flow profile
1535  * @segs: array of one or more packet segments that describe the flow
1536  * @segs_cnt: number of packet segments provided
1537  * @prof: stores the returned flow profile added
1538  */
1539 enum ice_status
ice_flow_add_prof(struct ice_hw * hw,enum ice_block blk,enum ice_flow_dir dir,u64 prof_id,struct ice_flow_seg_info * segs,u8 segs_cnt,struct ice_flow_prof ** prof)1540 ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
1541 		  u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
1542 		  struct ice_flow_prof **prof)
1543 {
1544 	enum ice_status status;
1545 
1546 	if (segs_cnt > ICE_FLOW_SEG_MAX)
1547 		return ICE_ERR_MAX_LIMIT;
1548 
1549 	if (!segs_cnt)
1550 		return ICE_ERR_PARAM;
1551 
1552 	if (!segs)
1553 		return ICE_ERR_BAD_PTR;
1554 
1555 	status = ice_flow_val_hdrs(segs, segs_cnt);
1556 	if (status)
1557 		return status;
1558 
1559 	mutex_lock(&hw->fl_profs_locks[blk]);
1560 
1561 	status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
1562 					prof);
1563 	if (!status)
1564 		list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
1565 
1566 	mutex_unlock(&hw->fl_profs_locks[blk]);
1567 
1568 	return status;
1569 }
1570 
1571 /**
1572  * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
1573  * @hw: pointer to the HW struct
1574  * @blk: the block for which the flow profile is to be removed
1575  * @prof_id: unique ID of the flow profile to be removed
1576  */
1577 enum ice_status
ice_flow_rem_prof(struct ice_hw * hw,enum ice_block blk,u64 prof_id)1578 ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1579 {
1580 	struct ice_flow_prof *prof;
1581 	enum ice_status status;
1582 
1583 	mutex_lock(&hw->fl_profs_locks[blk]);
1584 
1585 	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1586 	if (!prof) {
1587 		status = ICE_ERR_DOES_NOT_EXIST;
1588 		goto out;
1589 	}
1590 
1591 	/* prof becomes invalid after the call */
1592 	status = ice_flow_rem_prof_sync(hw, blk, prof);
1593 
1594 out:
1595 	mutex_unlock(&hw->fl_profs_locks[blk]);
1596 
1597 	return status;
1598 }
1599 
1600 /**
1601  * ice_flow_add_entry - Add a flow entry
1602  * @hw: pointer to the HW struct
1603  * @blk: classification stage
1604  * @prof_id: ID of the profile to add a new flow entry to
1605  * @entry_id: unique ID to identify this flow entry
1606  * @vsi_handle: software VSI handle for the flow entry
1607  * @prio: priority of the flow entry
1608  * @data: pointer to a data buffer containing flow entry's match values/masks
1609  * @entry_h: pointer to buffer that receives the new flow entry's handle
1610  */
1611 enum ice_status
ice_flow_add_entry(struct ice_hw * hw,enum ice_block blk,u64 prof_id,u64 entry_id,u16 vsi_handle,enum ice_flow_priority prio,void * data,u64 * entry_h)1612 ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1613 		   u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
1614 		   void *data, u64 *entry_h)
1615 {
1616 	struct ice_flow_entry *e = NULL;
1617 	struct ice_flow_prof *prof;
1618 	enum ice_status status;
1619 
1620 	/* No flow entry data is expected for RSS */
1621 	if (!entry_h || (!data && blk != ICE_BLK_RSS))
1622 		return ICE_ERR_BAD_PTR;
1623 
1624 	if (!ice_is_vsi_valid(hw, vsi_handle))
1625 		return ICE_ERR_PARAM;
1626 
1627 	mutex_lock(&hw->fl_profs_locks[blk]);
1628 
1629 	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1630 	if (!prof) {
1631 		status = ICE_ERR_DOES_NOT_EXIST;
1632 	} else {
1633 		/* Allocate memory for the entry being added and associate
1634 		 * the VSI to the found flow profile
1635 		 */
1636 		e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
1637 		if (!e)
1638 			status = ICE_ERR_NO_MEMORY;
1639 		else
1640 			status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1641 	}
1642 
1643 	mutex_unlock(&hw->fl_profs_locks[blk]);
1644 	if (status)
1645 		goto out;
1646 
1647 	e->id = entry_id;
1648 	e->vsi_handle = vsi_handle;
1649 	e->prof = prof;
1650 	e->priority = prio;
1651 
1652 	switch (blk) {
1653 	case ICE_BLK_FD:
1654 	case ICE_BLK_RSS:
1655 		break;
1656 	default:
1657 		status = ICE_ERR_NOT_IMPL;
1658 		goto out;
1659 	}
1660 
1661 	mutex_lock(&prof->entries_lock);
1662 	list_add(&e->l_entry, &prof->entries);
1663 	mutex_unlock(&prof->entries_lock);
1664 
1665 	*entry_h = ICE_FLOW_ENTRY_HNDL(e);
1666 
1667 out:
1668 	if (status && e) {
1669 		if (e->entry)
1670 			devm_kfree(ice_hw_to_dev(hw), e->entry);
1671 		devm_kfree(ice_hw_to_dev(hw), e);
1672 	}
1673 
1674 	return status;
1675 }
1676 
1677 /**
1678  * ice_flow_rem_entry - Remove a flow entry
1679  * @hw: pointer to the HW struct
1680  * @blk: classification stage
1681  * @entry_h: handle to the flow entry to be removed
1682  */
ice_flow_rem_entry(struct ice_hw * hw,enum ice_block blk,u64 entry_h)1683 enum ice_status ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk,
1684 				   u64 entry_h)
1685 {
1686 	struct ice_flow_entry *entry;
1687 	struct ice_flow_prof *prof;
1688 	enum ice_status status = 0;
1689 
1690 	if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
1691 		return ICE_ERR_PARAM;
1692 
1693 	entry = ICE_FLOW_ENTRY_PTR(entry_h);
1694 
1695 	/* Retain the pointer to the flow profile as the entry will be freed */
1696 	prof = entry->prof;
1697 
1698 	if (prof) {
1699 		mutex_lock(&prof->entries_lock);
1700 		status = ice_flow_rem_entry_sync(hw, blk, entry);
1701 		mutex_unlock(&prof->entries_lock);
1702 	}
1703 
1704 	return status;
1705 }
1706 
1707 /**
1708  * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
1709  * @seg: packet segment the field being set belongs to
1710  * @fld: field to be set
1711  * @field_type: type of the field
1712  * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1713  *           entry's input buffer
1714  * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1715  *            input buffer
1716  * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1717  *            entry's input buffer
1718  *
1719  * This helper function stores information of a field being matched, including
1720  * the type of the field and the locations of the value to match, the mask, and
1721  * the upper-bound value in the start of the input buffer for a flow entry.
1722  * This function should only be used for fixed-size data structures.
1723  *
1724  * This function also opportunistically determines the protocol headers to be
1725  * present based on the fields being set. Some fields cannot be used alone to
1726  * determine the protocol headers present. Sometimes, fields for particular
1727  * protocol headers are not matched. In those cases, the protocol headers
1728  * must be explicitly set.
1729  */
1730 static void
ice_flow_set_fld_ext(struct ice_flow_seg_info * seg,enum ice_flow_field fld,enum ice_flow_fld_match_type field_type,u16 val_loc,u16 mask_loc,u16 last_loc)1731 ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1732 		     enum ice_flow_fld_match_type field_type, u16 val_loc,
1733 		     u16 mask_loc, u16 last_loc)
1734 {
1735 	u64 bit = BIT_ULL(fld);
1736 
1737 	seg->match |= bit;
1738 	if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1739 		seg->range |= bit;
1740 
1741 	seg->fields[fld].type = field_type;
1742 	seg->fields[fld].src.val = val_loc;
1743 	seg->fields[fld].src.mask = mask_loc;
1744 	seg->fields[fld].src.last = last_loc;
1745 
1746 	ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1747 }
1748 
1749 /**
1750  * ice_flow_set_fld - specifies locations of field from entry's input buffer
1751  * @seg: packet segment the field being set belongs to
1752  * @fld: field to be set
1753  * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1754  *           entry's input buffer
1755  * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1756  *            input buffer
1757  * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1758  *            entry's input buffer
1759  * @range: indicate if field being matched is to be in a range
1760  *
1761  * This function specifies the locations, in the form of byte offsets from the
1762  * start of the input buffer for a flow entry, from where the value to match,
1763  * the mask value, and upper value can be extracted. These locations are then
1764  * stored in the flow profile. When adding a flow entry associated with the
1765  * flow profile, these locations will be used to quickly extract the values and
1766  * create the content of a match entry. This function should only be used for
1767  * fixed-size data structures.
1768  */
1769 void
ice_flow_set_fld(struct ice_flow_seg_info * seg,enum ice_flow_field fld,u16 val_loc,u16 mask_loc,u16 last_loc,bool range)1770 ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1771 		 u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1772 {
1773 	enum ice_flow_fld_match_type t = range ?
1774 		ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1775 
1776 	ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1777 }
1778 
1779 /**
1780  * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1781  * @seg: packet segment the field being set belongs to
1782  * @off: offset of the raw field from the beginning of the segment in bytes
1783  * @len: length of the raw pattern to be matched
1784  * @val_loc: location of the value to match from entry's input buffer
1785  * @mask_loc: location of mask value from entry's input buffer
1786  *
1787  * This function specifies the offset of the raw field to be match from the
1788  * beginning of the specified packet segment, and the locations, in the form of
1789  * byte offsets from the start of the input buffer for a flow entry, from where
1790  * the value to match and the mask value to be extracted. These locations are
1791  * then stored in the flow profile. When adding flow entries to the associated
1792  * flow profile, these locations can be used to quickly extract the values to
1793  * create the content of a match entry. This function should only be used for
1794  * fixed-size data structures.
1795  */
1796 void
ice_flow_add_fld_raw(struct ice_flow_seg_info * seg,u16 off,u8 len,u16 val_loc,u16 mask_loc)1797 ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1798 		     u16 val_loc, u16 mask_loc)
1799 {
1800 	if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1801 		seg->raws[seg->raws_cnt].off = off;
1802 		seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1803 		seg->raws[seg->raws_cnt].info.src.val = val_loc;
1804 		seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1805 		/* The "last" field is used to store the length of the field */
1806 		seg->raws[seg->raws_cnt].info.src.last = len;
1807 	}
1808 
1809 	/* Overflows of "raws" will be handled as an error condition later in
1810 	 * the flow when this information is processed.
1811 	 */
1812 	seg->raws_cnt++;
1813 }
1814 
1815 #define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
1816 	(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
1817 
1818 #define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1819 	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1820 
1821 #define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1822 	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1823 
1824 #define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1825 	(ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
1826 	 ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
1827 	 ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1828 
1829 /**
1830  * ice_flow_set_rss_seg_info - setup packet segments for RSS
1831  * @segs: pointer to the flow field segment(s)
1832  * @hash_fields: fields to be hashed on for the segment(s)
1833  * @flow_hdr: protocol header fields within a packet segment
1834  *
1835  * Helper function to extract fields from hash bitmap and use flow
1836  * header value to set flow field segment for further use in flow
1837  * profile entry or removal.
1838  */
1839 static enum ice_status
ice_flow_set_rss_seg_info(struct ice_flow_seg_info * segs,u64 hash_fields,u32 flow_hdr)1840 ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields,
1841 			  u32 flow_hdr)
1842 {
1843 	u64 val;
1844 	u8 i;
1845 
1846 	for_each_set_bit(i, (unsigned long *)&hash_fields,
1847 			 ICE_FLOW_FIELD_IDX_MAX)
1848 		ice_flow_set_fld(segs, (enum ice_flow_field)i,
1849 				 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
1850 				 ICE_FLOW_FLD_OFF_INVAL, false);
1851 
1852 	ICE_FLOW_SET_HDRS(segs, flow_hdr);
1853 
1854 	if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
1855 	    ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
1856 		return ICE_ERR_PARAM;
1857 
1858 	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1859 	if (val && !is_power_of_2(val))
1860 		return ICE_ERR_CFG;
1861 
1862 	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1863 	if (val && !is_power_of_2(val))
1864 		return ICE_ERR_CFG;
1865 
1866 	return 0;
1867 }
1868 
1869 /**
1870  * ice_rem_vsi_rss_list - remove VSI from RSS list
1871  * @hw: pointer to the hardware structure
1872  * @vsi_handle: software VSI handle
1873  *
1874  * Remove the VSI from all RSS configurations in the list.
1875  */
ice_rem_vsi_rss_list(struct ice_hw * hw,u16 vsi_handle)1876 void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1877 {
1878 	struct ice_rss_cfg *r, *tmp;
1879 
1880 	if (list_empty(&hw->rss_list_head))
1881 		return;
1882 
1883 	mutex_lock(&hw->rss_locks);
1884 	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1885 		if (test_and_clear_bit(vsi_handle, r->vsis))
1886 			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1887 				list_del(&r->l_entry);
1888 				devm_kfree(ice_hw_to_dev(hw), r);
1889 			}
1890 	mutex_unlock(&hw->rss_locks);
1891 }
1892 
1893 /**
1894  * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1895  * @hw: pointer to the hardware structure
1896  * @vsi_handle: software VSI handle
1897  *
1898  * This function will iterate through all flow profiles and disassociate
1899  * the VSI from that profile. If the flow profile has no VSIs it will
1900  * be removed.
1901  */
ice_rem_vsi_rss_cfg(struct ice_hw * hw,u16 vsi_handle)1902 enum ice_status ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1903 {
1904 	const enum ice_block blk = ICE_BLK_RSS;
1905 	struct ice_flow_prof *p, *t;
1906 	enum ice_status status = 0;
1907 
1908 	if (!ice_is_vsi_valid(hw, vsi_handle))
1909 		return ICE_ERR_PARAM;
1910 
1911 	if (list_empty(&hw->fl_profs[blk]))
1912 		return 0;
1913 
1914 	mutex_lock(&hw->rss_locks);
1915 	list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
1916 		if (test_bit(vsi_handle, p->vsis)) {
1917 			status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1918 			if (status)
1919 				break;
1920 
1921 			if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
1922 				status = ice_flow_rem_prof(hw, blk, p->id);
1923 				if (status)
1924 					break;
1925 			}
1926 		}
1927 	mutex_unlock(&hw->rss_locks);
1928 
1929 	return status;
1930 }
1931 
1932 /**
1933  * ice_rem_rss_list - remove RSS configuration from list
1934  * @hw: pointer to the hardware structure
1935  * @vsi_handle: software VSI handle
1936  * @prof: pointer to flow profile
1937  *
1938  * Assumption: lock has already been acquired for RSS list
1939  */
1940 static void
ice_rem_rss_list(struct ice_hw * hw,u16 vsi_handle,struct ice_flow_prof * prof)1941 ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1942 {
1943 	struct ice_rss_cfg *r, *tmp;
1944 
1945 	/* Search for RSS hash fields associated to the VSI that match the
1946 	 * hash configurations associated to the flow profile. If found
1947 	 * remove from the RSS entry list of the VSI context and delete entry.
1948 	 */
1949 	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1950 		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1951 		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1952 			clear_bit(vsi_handle, r->vsis);
1953 			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1954 				list_del(&r->l_entry);
1955 				devm_kfree(ice_hw_to_dev(hw), r);
1956 			}
1957 			return;
1958 		}
1959 }
1960 
1961 /**
1962  * ice_add_rss_list - add RSS configuration to list
1963  * @hw: pointer to the hardware structure
1964  * @vsi_handle: software VSI handle
1965  * @prof: pointer to flow profile
1966  *
1967  * Assumption: lock has already been acquired for RSS list
1968  */
1969 static enum ice_status
ice_add_rss_list(struct ice_hw * hw,u16 vsi_handle,struct ice_flow_prof * prof)1970 ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1971 {
1972 	struct ice_rss_cfg *r, *rss_cfg;
1973 
1974 	list_for_each_entry(r, &hw->rss_list_head, l_entry)
1975 		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1976 		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1977 			set_bit(vsi_handle, r->vsis);
1978 			return 0;
1979 		}
1980 
1981 	rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
1982 			       GFP_KERNEL);
1983 	if (!rss_cfg)
1984 		return ICE_ERR_NO_MEMORY;
1985 
1986 	rss_cfg->hashed_flds = prof->segs[prof->segs_cnt - 1].match;
1987 	rss_cfg->packet_hdr = prof->segs[prof->segs_cnt - 1].hdrs;
1988 	set_bit(vsi_handle, rss_cfg->vsis);
1989 
1990 	list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
1991 
1992 	return 0;
1993 }
1994 
1995 #define ICE_FLOW_PROF_HASH_S	0
1996 #define ICE_FLOW_PROF_HASH_M	(0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
1997 #define ICE_FLOW_PROF_HDR_S	32
1998 #define ICE_FLOW_PROF_HDR_M	(0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S)
1999 #define ICE_FLOW_PROF_ENCAP_S	63
2000 #define ICE_FLOW_PROF_ENCAP_M	(BIT_ULL(ICE_FLOW_PROF_ENCAP_S))
2001 
2002 #define ICE_RSS_OUTER_HEADERS	1
2003 #define ICE_RSS_INNER_HEADERS	2
2004 
2005 /* Flow profile ID format:
2006  * [0:31] - Packet match fields
2007  * [32:62] - Protocol header
2008  * [63] - Encapsulation flag, 0 if non-tunneled, 1 if tunneled
2009  */
2010 #define ICE_FLOW_GEN_PROFID(hash, hdr, segs_cnt) \
2011 	((u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
2012 	       (((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \
2013 	       ((u8)((segs_cnt) - 1) ? ICE_FLOW_PROF_ENCAP_M : 0)))
2014 
2015 /**
2016  * ice_add_rss_cfg_sync - add an RSS configuration
2017  * @hw: pointer to the hardware structure
2018  * @vsi_handle: software VSI handle
2019  * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2020  * @addl_hdrs: protocol header fields
2021  * @segs_cnt: packet segment count
2022  *
2023  * Assumption: lock has already been acquired for RSS list
2024  */
2025 static enum ice_status
ice_add_rss_cfg_sync(struct ice_hw * hw,u16 vsi_handle,u64 hashed_flds,u32 addl_hdrs,u8 segs_cnt)2026 ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2027 		     u32 addl_hdrs, u8 segs_cnt)
2028 {
2029 	const enum ice_block blk = ICE_BLK_RSS;
2030 	struct ice_flow_prof *prof = NULL;
2031 	struct ice_flow_seg_info *segs;
2032 	enum ice_status status;
2033 
2034 	if (!segs_cnt || segs_cnt > ICE_FLOW_SEG_MAX)
2035 		return ICE_ERR_PARAM;
2036 
2037 	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2038 	if (!segs)
2039 		return ICE_ERR_NO_MEMORY;
2040 
2041 	/* Construct the packet segment info from the hashed fields */
2042 	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2043 					   addl_hdrs);
2044 	if (status)
2045 		goto exit;
2046 
2047 	/* Search for a flow profile that has matching headers, hash fields
2048 	 * and has the input VSI associated to it. If found, no further
2049 	 * operations required and exit.
2050 	 */
2051 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2052 					vsi_handle,
2053 					ICE_FLOW_FIND_PROF_CHK_FLDS |
2054 					ICE_FLOW_FIND_PROF_CHK_VSI);
2055 	if (prof)
2056 		goto exit;
2057 
2058 	/* Check if a flow profile exists with the same protocol headers and
2059 	 * associated with the input VSI. If so disassociate the VSI from
2060 	 * this profile. The VSI will be added to a new profile created with
2061 	 * the protocol header and new hash field configuration.
2062 	 */
2063 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2064 					vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI);
2065 	if (prof) {
2066 		status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2067 		if (!status)
2068 			ice_rem_rss_list(hw, vsi_handle, prof);
2069 		else
2070 			goto exit;
2071 
2072 		/* Remove profile if it has no VSIs associated */
2073 		if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
2074 			status = ice_flow_rem_prof(hw, blk, prof->id);
2075 			if (status)
2076 				goto exit;
2077 		}
2078 	}
2079 
2080 	/* Search for a profile that has same match fields only. If this
2081 	 * exists then associate the VSI to this profile.
2082 	 */
2083 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2084 					vsi_handle,
2085 					ICE_FLOW_FIND_PROF_CHK_FLDS);
2086 	if (prof) {
2087 		status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2088 		if (!status)
2089 			status = ice_add_rss_list(hw, vsi_handle, prof);
2090 		goto exit;
2091 	}
2092 
2093 	/* Create a new flow profile with generated profile and packet
2094 	 * segment information.
2095 	 */
2096 	status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
2097 				   ICE_FLOW_GEN_PROFID(hashed_flds,
2098 						       segs[segs_cnt - 1].hdrs,
2099 						       segs_cnt),
2100 				   segs, segs_cnt, &prof);
2101 	if (status)
2102 		goto exit;
2103 
2104 	status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2105 	/* If association to a new flow profile failed then this profile can
2106 	 * be removed.
2107 	 */
2108 	if (status) {
2109 		ice_flow_rem_prof(hw, blk, prof->id);
2110 		goto exit;
2111 	}
2112 
2113 	status = ice_add_rss_list(hw, vsi_handle, prof);
2114 
2115 exit:
2116 	kfree(segs);
2117 	return status;
2118 }
2119 
2120 /**
2121  * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
2122  * @hw: pointer to the hardware structure
2123  * @vsi_handle: software VSI handle
2124  * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2125  * @addl_hdrs: protocol header fields
2126  *
2127  * This function will generate a flow profile based on fields associated with
2128  * the input fields to hash on, the flow type and use the VSI number to add
2129  * a flow entry to the profile.
2130  */
2131 enum ice_status
ice_add_rss_cfg(struct ice_hw * hw,u16 vsi_handle,u64 hashed_flds,u32 addl_hdrs)2132 ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2133 		u32 addl_hdrs)
2134 {
2135 	enum ice_status status;
2136 
2137 	if (hashed_flds == ICE_HASH_INVALID ||
2138 	    !ice_is_vsi_valid(hw, vsi_handle))
2139 		return ICE_ERR_PARAM;
2140 
2141 	mutex_lock(&hw->rss_locks);
2142 	status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2143 				      ICE_RSS_OUTER_HEADERS);
2144 	if (!status)
2145 		status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2146 					      addl_hdrs, ICE_RSS_INNER_HEADERS);
2147 	mutex_unlock(&hw->rss_locks);
2148 
2149 	return status;
2150 }
2151 
2152 /**
2153  * ice_rem_rss_cfg_sync - remove an existing RSS configuration
2154  * @hw: pointer to the hardware structure
2155  * @vsi_handle: software VSI handle
2156  * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2157  * @addl_hdrs: Protocol header fields within a packet segment
2158  * @segs_cnt: packet segment count
2159  *
2160  * Assumption: lock has already been acquired for RSS list
2161  */
2162 static enum ice_status
ice_rem_rss_cfg_sync(struct ice_hw * hw,u16 vsi_handle,u64 hashed_flds,u32 addl_hdrs,u8 segs_cnt)2163 ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2164 		     u32 addl_hdrs, u8 segs_cnt)
2165 {
2166 	const enum ice_block blk = ICE_BLK_RSS;
2167 	struct ice_flow_seg_info *segs;
2168 	struct ice_flow_prof *prof;
2169 	enum ice_status status;
2170 
2171 	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2172 	if (!segs)
2173 		return ICE_ERR_NO_MEMORY;
2174 
2175 	/* Construct the packet segment info from the hashed fields */
2176 	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2177 					   addl_hdrs);
2178 	if (status)
2179 		goto out;
2180 
2181 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2182 					vsi_handle,
2183 					ICE_FLOW_FIND_PROF_CHK_FLDS);
2184 	if (!prof) {
2185 		status = ICE_ERR_DOES_NOT_EXIST;
2186 		goto out;
2187 	}
2188 
2189 	status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2190 	if (status)
2191 		goto out;
2192 
2193 	/* Remove RSS configuration from VSI context before deleting
2194 	 * the flow profile.
2195 	 */
2196 	ice_rem_rss_list(hw, vsi_handle, prof);
2197 
2198 	if (bitmap_empty(prof->vsis, ICE_MAX_VSI))
2199 		status = ice_flow_rem_prof(hw, blk, prof->id);
2200 
2201 out:
2202 	kfree(segs);
2203 	return status;
2204 }
2205 
2206 /**
2207  * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
2208  * @hw: pointer to the hardware structure
2209  * @vsi_handle: software VSI handle
2210  * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2211  * @addl_hdrs: Protocol header fields within a packet segment
2212  *
2213  * This function will lookup the flow profile based on the input
2214  * hash field bitmap, iterate through the profile entry list of
2215  * that profile and find entry associated with input VSI to be
2216  * removed. Calls are made to underlying flow s which will APIs
2217  * turn build or update buffers for RSS XLT1 section.
2218  */
2219 enum ice_status __maybe_unused
ice_rem_rss_cfg(struct ice_hw * hw,u16 vsi_handle,u64 hashed_flds,u32 addl_hdrs)2220 ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2221 		u32 addl_hdrs)
2222 {
2223 	enum ice_status status;
2224 
2225 	if (hashed_flds == ICE_HASH_INVALID ||
2226 	    !ice_is_vsi_valid(hw, vsi_handle))
2227 		return ICE_ERR_PARAM;
2228 
2229 	mutex_lock(&hw->rss_locks);
2230 	status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2231 				      ICE_RSS_OUTER_HEADERS);
2232 	if (!status)
2233 		status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2234 					      addl_hdrs, ICE_RSS_INNER_HEADERS);
2235 	mutex_unlock(&hw->rss_locks);
2236 
2237 	return status;
2238 }
2239 
2240 /* Mapping of AVF hash bit fields to an L3-L4 hash combination.
2241  * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
2242  * convert its values to their appropriate flow L3, L4 values.
2243  */
2244 #define ICE_FLOW_AVF_RSS_IPV4_MASKS \
2245 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
2246 	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
2247 #define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
2248 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
2249 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
2250 #define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
2251 	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
2252 	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
2253 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
2254 #define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
2255 	(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
2256 	 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
2257 
2258 #define ICE_FLOW_AVF_RSS_IPV6_MASKS \
2259 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
2260 	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
2261 #define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
2262 	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
2263 	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
2264 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
2265 #define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
2266 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
2267 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
2268 #define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
2269 	(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
2270 	 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
2271 
2272 /**
2273  * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
2274  * @hw: pointer to the hardware structure
2275  * @vsi_handle: software VSI handle
2276  * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
2277  *
2278  * This function will take the hash bitmap provided by the AVF driver via a
2279  * message, convert it to ICE-compatible values, and configure RSS flow
2280  * profiles.
2281  */
2282 enum ice_status
ice_add_avf_rss_cfg(struct ice_hw * hw,u16 vsi_handle,u64 avf_hash)2283 ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash)
2284 {
2285 	enum ice_status status = 0;
2286 	u64 hash_flds;
2287 
2288 	if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
2289 	    !ice_is_vsi_valid(hw, vsi_handle))
2290 		return ICE_ERR_PARAM;
2291 
2292 	/* Make sure no unsupported bits are specified */
2293 	if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
2294 			 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
2295 		return ICE_ERR_CFG;
2296 
2297 	hash_flds = avf_hash;
2298 
2299 	/* Always create an L3 RSS configuration for any L4 RSS configuration */
2300 	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
2301 		hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
2302 
2303 	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
2304 		hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
2305 
2306 	/* Create the corresponding RSS configuration for each valid hash bit */
2307 	while (hash_flds) {
2308 		u64 rss_hash = ICE_HASH_INVALID;
2309 
2310 		if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
2311 			if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
2312 				rss_hash = ICE_FLOW_HASH_IPV4;
2313 				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
2314 			} else if (hash_flds &
2315 				   ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
2316 				rss_hash = ICE_FLOW_HASH_IPV4 |
2317 					ICE_FLOW_HASH_TCP_PORT;
2318 				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
2319 			} else if (hash_flds &
2320 				   ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
2321 				rss_hash = ICE_FLOW_HASH_IPV4 |
2322 					ICE_FLOW_HASH_UDP_PORT;
2323 				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
2324 			} else if (hash_flds &
2325 				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
2326 				rss_hash = ICE_FLOW_HASH_IPV4 |
2327 					ICE_FLOW_HASH_SCTP_PORT;
2328 				hash_flds &=
2329 					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
2330 			}
2331 		} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
2332 			if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
2333 				rss_hash = ICE_FLOW_HASH_IPV6;
2334 				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
2335 			} else if (hash_flds &
2336 				   ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
2337 				rss_hash = ICE_FLOW_HASH_IPV6 |
2338 					ICE_FLOW_HASH_TCP_PORT;
2339 				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
2340 			} else if (hash_flds &
2341 				   ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
2342 				rss_hash = ICE_FLOW_HASH_IPV6 |
2343 					ICE_FLOW_HASH_UDP_PORT;
2344 				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
2345 			} else if (hash_flds &
2346 				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
2347 				rss_hash = ICE_FLOW_HASH_IPV6 |
2348 					ICE_FLOW_HASH_SCTP_PORT;
2349 				hash_flds &=
2350 					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
2351 			}
2352 		}
2353 
2354 		if (rss_hash == ICE_HASH_INVALID)
2355 			return ICE_ERR_OUT_OF_RANGE;
2356 
2357 		status = ice_add_rss_cfg(hw, vsi_handle, rss_hash,
2358 					 ICE_FLOW_SEG_HDR_NONE);
2359 		if (status)
2360 			break;
2361 	}
2362 
2363 	return status;
2364 }
2365 
2366 /**
2367  * ice_replay_rss_cfg - replay RSS configurations associated with VSI
2368  * @hw: pointer to the hardware structure
2369  * @vsi_handle: software VSI handle
2370  */
ice_replay_rss_cfg(struct ice_hw * hw,u16 vsi_handle)2371 enum ice_status ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2372 {
2373 	enum ice_status status = 0;
2374 	struct ice_rss_cfg *r;
2375 
2376 	if (!ice_is_vsi_valid(hw, vsi_handle))
2377 		return ICE_ERR_PARAM;
2378 
2379 	mutex_lock(&hw->rss_locks);
2380 	list_for_each_entry(r, &hw->rss_list_head, l_entry) {
2381 		if (test_bit(vsi_handle, r->vsis)) {
2382 			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2383 						      r->hashed_flds,
2384 						      r->packet_hdr,
2385 						      ICE_RSS_OUTER_HEADERS);
2386 			if (status)
2387 				break;
2388 			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2389 						      r->hashed_flds,
2390 						      r->packet_hdr,
2391 						      ICE_RSS_INNER_HEADERS);
2392 			if (status)
2393 				break;
2394 		}
2395 	}
2396 	mutex_unlock(&hw->rss_locks);
2397 
2398 	return status;
2399 }
2400 
2401 /**
2402  * ice_get_rss_cfg - returns hashed fields for the given header types
2403  * @hw: pointer to the hardware structure
2404  * @vsi_handle: software VSI handle
2405  * @hdrs: protocol header type
2406  *
2407  * This function will return the match fields of the first instance of flow
2408  * profile having the given header types and containing input VSI
2409  */
ice_get_rss_cfg(struct ice_hw * hw,u16 vsi_handle,u32 hdrs)2410 u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs)
2411 {
2412 	u64 rss_hash = ICE_HASH_INVALID;
2413 	struct ice_rss_cfg *r;
2414 
2415 	/* verify if the protocol header is non zero and VSI is valid */
2416 	if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
2417 		return ICE_HASH_INVALID;
2418 
2419 	mutex_lock(&hw->rss_locks);
2420 	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2421 		if (test_bit(vsi_handle, r->vsis) &&
2422 		    r->packet_hdr == hdrs) {
2423 			rss_hash = r->hashed_flds;
2424 			break;
2425 		}
2426 	mutex_unlock(&hw->rss_locks);
2427 
2428 	return rss_hash;
2429 }
2430