1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 
6 /**
7  * ice_aq_read_nvm
8  * @hw: pointer to the HW struct
9  * @module_typeid: module pointer location in words from the NVM beginning
10  * @offset: byte offset from the module beginning
11  * @length: length of the section to be read (in bytes from the offset)
12  * @data: command buffer (size [bytes] = length)
13  * @last_command: tells if this is the last command in a series
14  * @read_shadow_ram: tell if this is a shadow RAM read
15  * @cd: pointer to command details structure or NULL
16  *
17  * Read the NVM using the admin queue commands (0x0701)
18  */
19 static enum ice_status
ice_aq_read_nvm(struct ice_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,bool read_shadow_ram,struct ice_sq_cd * cd)20 ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
21 		void *data, bool last_command, bool read_shadow_ram,
22 		struct ice_sq_cd *cd)
23 {
24 	struct ice_aq_desc desc;
25 	struct ice_aqc_nvm *cmd;
26 
27 	cmd = &desc.params.nvm;
28 
29 	if (offset > ICE_AQC_NVM_MAX_OFFSET)
30 		return ICE_ERR_PARAM;
31 
32 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
33 
34 	if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
35 		cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
36 
37 	/* If this is the last command in a series, set the proper flag. */
38 	if (last_command)
39 		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
40 	cmd->module_typeid = cpu_to_le16(module_typeid);
41 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
42 	cmd->offset_high = (offset >> 16) & 0xFF;
43 	cmd->length = cpu_to_le16(length);
44 
45 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
46 }
47 
48 /**
49  * ice_read_flat_nvm - Read portion of NVM by flat offset
50  * @hw: pointer to the HW struct
51  * @offset: offset from beginning of NVM
52  * @length: (in) number of bytes to read; (out) number of bytes actually read
53  * @data: buffer to return data in (sized to fit the specified length)
54  * @read_shadow_ram: if true, read from shadow RAM instead of NVM
55  *
56  * Reads a portion of the NVM, as a flat memory space. This function correctly
57  * breaks read requests across Shadow RAM sectors and ensures that no single
58  * read request exceeds the maximum 4Kb read for a single AdminQ command.
59  *
60  * Returns a status code on failure. Note that the data pointer may be
61  * partially updated if some reads succeed before a failure.
62  */
63 enum ice_status
ice_read_flat_nvm(struct ice_hw * hw,u32 offset,u32 * length,u8 * data,bool read_shadow_ram)64 ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
65 		  bool read_shadow_ram)
66 {
67 	enum ice_status status;
68 	u32 inlen = *length;
69 	u32 bytes_read = 0;
70 	bool last_cmd;
71 
72 	*length = 0;
73 
74 	/* Verify the length of the read if this is for the Shadow RAM */
75 	if (read_shadow_ram && ((offset + inlen) > (hw->nvm.sr_words * 2u))) {
76 		ice_debug(hw, ICE_DBG_NVM,
77 			  "NVM error: requested offset is beyond Shadow RAM limit\n");
78 		return ICE_ERR_PARAM;
79 	}
80 
81 	do {
82 		u32 read_size, sector_offset;
83 
84 		/* ice_aq_read_nvm cannot read more than 4Kb at a time.
85 		 * Additionally, a read from the Shadow RAM may not cross over
86 		 * a sector boundary. Conveniently, the sector size is also
87 		 * 4Kb.
88 		 */
89 		sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
90 		read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
91 				  inlen - bytes_read);
92 
93 		last_cmd = !(bytes_read + read_size < inlen);
94 
95 		status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
96 					 offset, read_size,
97 					 data + bytes_read, last_cmd,
98 					 read_shadow_ram, NULL);
99 		if (status)
100 			break;
101 
102 		bytes_read += read_size;
103 		offset += read_size;
104 	} while (!last_cmd);
105 
106 	*length = bytes_read;
107 	return status;
108 }
109 
110 /**
111  * ice_aq_update_nvm
112  * @hw: pointer to the HW struct
113  * @module_typeid: module pointer location in words from the NVM beginning
114  * @offset: byte offset from the module beginning
115  * @length: length of the section to be written (in bytes from the offset)
116  * @data: command buffer (size [bytes] = length)
117  * @last_command: tells if this is the last command in a series
118  * @command_flags: command parameters
119  * @cd: pointer to command details structure or NULL
120  *
121  * Update the NVM using the admin queue commands (0x0703)
122  */
123 enum ice_status
ice_aq_update_nvm(struct ice_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,u8 command_flags,struct ice_sq_cd * cd)124 ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
125 		  u16 length, void *data, bool last_command, u8 command_flags,
126 		  struct ice_sq_cd *cd)
127 {
128 	struct ice_aq_desc desc;
129 	struct ice_aqc_nvm *cmd;
130 
131 	cmd = &desc.params.nvm;
132 
133 	/* In offset the highest byte must be zeroed. */
134 	if (offset & 0xFF000000)
135 		return ICE_ERR_PARAM;
136 
137 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
138 
139 	cmd->cmd_flags |= command_flags;
140 
141 	/* If this is the last command in a series, set the proper flag. */
142 	if (last_command)
143 		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
144 	cmd->module_typeid = cpu_to_le16(module_typeid);
145 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
146 	cmd->offset_high = (offset >> 16) & 0xFF;
147 	cmd->length = cpu_to_le16(length);
148 
149 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
150 
151 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
152 }
153 
154 /**
155  * ice_aq_erase_nvm
156  * @hw: pointer to the HW struct
157  * @module_typeid: module pointer location in words from the NVM beginning
158  * @cd: pointer to command details structure or NULL
159  *
160  * Erase the NVM sector using the admin queue commands (0x0702)
161  */
162 enum ice_status
ice_aq_erase_nvm(struct ice_hw * hw,u16 module_typeid,struct ice_sq_cd * cd)163 ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
164 {
165 	struct ice_aq_desc desc;
166 	struct ice_aqc_nvm *cmd;
167 
168 	cmd = &desc.params.nvm;
169 
170 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
171 
172 	cmd->module_typeid = cpu_to_le16(module_typeid);
173 	cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN);
174 	cmd->offset_low = 0;
175 	cmd->offset_high = 0;
176 
177 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
178 }
179 
180 /**
181  * ice_read_sr_word_aq - Reads Shadow RAM via AQ
182  * @hw: pointer to the HW structure
183  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
184  * @data: word read from the Shadow RAM
185  *
186  * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
187  */
188 static enum ice_status
ice_read_sr_word_aq(struct ice_hw * hw,u16 offset,u16 * data)189 ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
190 {
191 	u32 bytes = sizeof(u16);
192 	enum ice_status status;
193 	__le16 data_local;
194 
195 	/* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and
196 	 * Shadow RAM sector restrictions necessary when reading from the NVM.
197 	 */
198 	status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
199 				   (u8 *)&data_local, true);
200 	if (status)
201 		return status;
202 
203 	*data = le16_to_cpu(data_local);
204 	return 0;
205 }
206 
207 /**
208  * ice_acquire_nvm - Generic request for acquiring the NVM ownership
209  * @hw: pointer to the HW structure
210  * @access: NVM access type (read or write)
211  *
212  * This function will request NVM ownership.
213  */
214 enum ice_status
ice_acquire_nvm(struct ice_hw * hw,enum ice_aq_res_access_type access)215 ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
216 {
217 	if (hw->nvm.blank_nvm_mode)
218 		return 0;
219 
220 	return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
221 }
222 
223 /**
224  * ice_release_nvm - Generic request for releasing the NVM ownership
225  * @hw: pointer to the HW structure
226  *
227  * This function will release NVM ownership.
228  */
ice_release_nvm(struct ice_hw * hw)229 void ice_release_nvm(struct ice_hw *hw)
230 {
231 	if (hw->nvm.blank_nvm_mode)
232 		return;
233 
234 	ice_release_res(hw, ICE_NVM_RES_ID);
235 }
236 
237 /**
238  * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
239  * @hw: pointer to the HW structure
240  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
241  * @data: word read from the Shadow RAM
242  *
243  * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
244  */
ice_read_sr_word(struct ice_hw * hw,u16 offset,u16 * data)245 enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
246 {
247 	enum ice_status status;
248 
249 	status = ice_acquire_nvm(hw, ICE_RES_READ);
250 	if (!status) {
251 		status = ice_read_sr_word_aq(hw, offset, data);
252 		ice_release_nvm(hw);
253 	}
254 
255 	return status;
256 }
257 
258 /**
259  * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
260  * @hw: pointer to hardware structure
261  * @module_tlv: pointer to module TLV to return
262  * @module_tlv_len: pointer to module TLV length to return
263  * @module_type: module type requested
264  *
265  * Finds the requested sub module TLV type from the Preserved Field
266  * Area (PFA) and returns the TLV pointer and length. The caller can
267  * use these to read the variable length TLV value.
268  */
269 enum ice_status
ice_get_pfa_module_tlv(struct ice_hw * hw,u16 * module_tlv,u16 * module_tlv_len,u16 module_type)270 ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
271 		       u16 module_type)
272 {
273 	enum ice_status status;
274 	u16 pfa_len, pfa_ptr;
275 	u16 next_tlv;
276 
277 	status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
278 	if (status) {
279 		ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
280 		return status;
281 	}
282 	status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
283 	if (status) {
284 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
285 		return status;
286 	}
287 	/* Starting with first TLV after PFA length, iterate through the list
288 	 * of TLVs to find the requested one.
289 	 */
290 	next_tlv = pfa_ptr + 1;
291 	while (next_tlv < pfa_ptr + pfa_len) {
292 		u16 tlv_sub_module_type;
293 		u16 tlv_len;
294 
295 		/* Read TLV type */
296 		status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
297 		if (status) {
298 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
299 			break;
300 		}
301 		/* Read TLV length */
302 		status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
303 		if (status) {
304 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
305 			break;
306 		}
307 		if (tlv_sub_module_type == module_type) {
308 			if (tlv_len) {
309 				*module_tlv = next_tlv;
310 				*module_tlv_len = tlv_len;
311 				return 0;
312 			}
313 			return ICE_ERR_INVAL_SIZE;
314 		}
315 		/* Check next TLV, i.e. current TLV pointer + length + 2 words
316 		 * (for current TLV's type and length)
317 		 */
318 		next_tlv = next_tlv + tlv_len + 2;
319 	}
320 	/* Module does not exist */
321 	return ICE_ERR_DOES_NOT_EXIST;
322 }
323 
324 /**
325  * ice_read_pba_string - Reads part number string from NVM
326  * @hw: pointer to hardware structure
327  * @pba_num: stores the part number string from the NVM
328  * @pba_num_size: part number string buffer length
329  *
330  * Reads the part number string from the NVM.
331  */
332 enum ice_status
ice_read_pba_string(struct ice_hw * hw,u8 * pba_num,u32 pba_num_size)333 ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
334 {
335 	u16 pba_tlv, pba_tlv_len;
336 	enum ice_status status;
337 	u16 pba_word, pba_size;
338 	u16 i;
339 
340 	status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
341 					ICE_SR_PBA_BLOCK_PTR);
342 	if (status) {
343 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
344 		return status;
345 	}
346 
347 	/* pba_size is the next word */
348 	status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
349 	if (status) {
350 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
351 		return status;
352 	}
353 
354 	if (pba_tlv_len < pba_size) {
355 		ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
356 		return ICE_ERR_INVAL_SIZE;
357 	}
358 
359 	/* Subtract one to get PBA word count (PBA Size word is included in
360 	 * total size)
361 	 */
362 	pba_size--;
363 	if (pba_num_size < (((u32)pba_size * 2) + 1)) {
364 		ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
365 		return ICE_ERR_PARAM;
366 	}
367 
368 	for (i = 0; i < pba_size; i++) {
369 		status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
370 		if (status) {
371 			ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
372 			return status;
373 		}
374 
375 		pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
376 		pba_num[(i * 2) + 1] = pba_word & 0xFF;
377 	}
378 	pba_num[(pba_size * 2)] = '\0';
379 
380 	return status;
381 }
382 
383 /**
384  * ice_get_orom_ver_info - Read Option ROM version information
385  * @hw: pointer to the HW struct
386  *
387  * Read the Combo Image version data from the Boot Configuration TLV and fill
388  * in the option ROM version data.
389  */
ice_get_orom_ver_info(struct ice_hw * hw)390 static enum ice_status ice_get_orom_ver_info(struct ice_hw *hw)
391 {
392 	u16 combo_hi, combo_lo, boot_cfg_tlv, boot_cfg_tlv_len;
393 	struct ice_orom_info *orom = &hw->nvm.orom;
394 	enum ice_status status;
395 	u32 combo_ver;
396 
397 	status = ice_get_pfa_module_tlv(hw, &boot_cfg_tlv, &boot_cfg_tlv_len,
398 					ICE_SR_BOOT_CFG_PTR);
399 	if (status) {
400 		ice_debug(hw, ICE_DBG_INIT,
401 			  "Failed to read Boot Configuration Block TLV.\n");
402 		return status;
403 	}
404 
405 	/* Boot Configuration Block must have length at least 2 words
406 	 * (Combo Image Version High and Combo Image Version Low)
407 	 */
408 	if (boot_cfg_tlv_len < 2) {
409 		ice_debug(hw, ICE_DBG_INIT,
410 			  "Invalid Boot Configuration Block TLV size.\n");
411 		return ICE_ERR_INVAL_SIZE;
412 	}
413 
414 	status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF),
415 				  &combo_hi);
416 	if (status) {
417 		ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER hi.\n");
418 		return status;
419 	}
420 
421 	status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF + 1),
422 				  &combo_lo);
423 	if (status) {
424 		ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER lo.\n");
425 		return status;
426 	}
427 
428 	combo_ver = ((u32)combo_hi << 16) | combo_lo;
429 
430 	orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >>
431 			   ICE_OROM_VER_SHIFT);
432 	orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
433 	orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >>
434 			    ICE_OROM_VER_BUILD_SHIFT);
435 
436 	return 0;
437 }
438 
439 /**
440  * ice_get_netlist_ver_info
441  * @hw: pointer to the HW struct
442  *
443  * Get the netlist version information
444  */
ice_get_netlist_ver_info(struct ice_hw * hw)445 static enum ice_status ice_get_netlist_ver_info(struct ice_hw *hw)
446 {
447 	struct ice_netlist_ver_info *ver = &hw->netlist_ver;
448 	enum ice_status ret;
449 	u32 id_blk_start;
450 	__le16 raw_data;
451 	u16 data, i;
452 	u16 *buff;
453 
454 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
455 	if (ret)
456 		return ret;
457 	buff = kcalloc(ICE_AQC_NVM_NETLIST_ID_BLK_LEN, sizeof(*buff),
458 		       GFP_KERNEL);
459 	if (!buff) {
460 		ret = ICE_ERR_NO_MEMORY;
461 		goto exit_no_mem;
462 	}
463 
464 	/* read module length */
465 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
466 			      ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN_OFFSET * 2,
467 			      ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN, &raw_data,
468 			      false, false, NULL);
469 	if (ret)
470 		goto exit_error;
471 
472 	data = le16_to_cpu(raw_data);
473 	/* exit if length is = 0 */
474 	if (!data)
475 		goto exit_error;
476 
477 	/* read node count */
478 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
479 			      ICE_AQC_NVM_NETLIST_NODE_COUNT_OFFSET * 2,
480 			      ICE_AQC_NVM_NETLIST_NODE_COUNT_LEN, &raw_data,
481 			      false, false, NULL);
482 	if (ret)
483 		goto exit_error;
484 	data = le16_to_cpu(raw_data) & ICE_AQC_NVM_NETLIST_NODE_COUNT_M;
485 
486 	/* netlist ID block starts from offset 4 + node count * 2 */
487 	id_blk_start = ICE_AQC_NVM_NETLIST_ID_BLK_START_OFFSET + data * 2;
488 
489 	/* read the entire netlist ID block */
490 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
491 			      id_blk_start * 2,
492 			      ICE_AQC_NVM_NETLIST_ID_BLK_LEN * 2, buff, false,
493 			      false, NULL);
494 	if (ret)
495 		goto exit_error;
496 
497 	for (i = 0; i < ICE_AQC_NVM_NETLIST_ID_BLK_LEN; i++)
498 		buff[i] = le16_to_cpu(((__force __le16 *)buff)[i]);
499 
500 	ver->major = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16) |
501 		buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_LOW];
502 	ver->minor = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16) |
503 		buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_LOW];
504 	ver->type = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_HIGH] << 16) |
505 		buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_LOW];
506 	ver->rev = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_HIGH] << 16) |
507 		buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_LOW];
508 	ver->cust_ver = buff[ICE_AQC_NVM_NETLIST_ID_BLK_CUST_VER];
509 	/* Read the left most 4 bytes of SHA */
510 	ver->hash = buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 15] << 16 |
511 		buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 14];
512 
513 exit_error:
514 	kfree(buff);
515 exit_no_mem:
516 	ice_release_nvm(hw);
517 	return ret;
518 }
519 
520 /**
521  * ice_discover_flash_size - Discover the available flash size.
522  * @hw: pointer to the HW struct
523  *
524  * The device flash could be up to 16MB in size. However, it is possible that
525  * the actual size is smaller. Use bisection to determine the accessible size
526  * of flash memory.
527  */
ice_discover_flash_size(struct ice_hw * hw)528 static enum ice_status ice_discover_flash_size(struct ice_hw *hw)
529 {
530 	u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
531 	enum ice_status status;
532 
533 	status = ice_acquire_nvm(hw, ICE_RES_READ);
534 	if (status)
535 		return status;
536 
537 	while ((max_size - min_size) > 1) {
538 		u32 offset = (max_size + min_size) / 2;
539 		u32 len = 1;
540 		u8 data;
541 
542 		status = ice_read_flat_nvm(hw, offset, &len, &data, false);
543 		if (status == ICE_ERR_AQ_ERROR &&
544 		    hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
545 			ice_debug(hw, ICE_DBG_NVM,
546 				  "%s: New upper bound of %u bytes\n",
547 				  __func__, offset);
548 			status = 0;
549 			max_size = offset;
550 		} else if (!status) {
551 			ice_debug(hw, ICE_DBG_NVM,
552 				  "%s: New lower bound of %u bytes\n",
553 				  __func__, offset);
554 			min_size = offset;
555 		} else {
556 			/* an unexpected error occurred */
557 			goto err_read_flat_nvm;
558 		}
559 	}
560 
561 	ice_debug(hw, ICE_DBG_NVM,
562 		  "Predicted flash size is %u bytes\n", max_size);
563 
564 	hw->nvm.flash_size = max_size;
565 
566 err_read_flat_nvm:
567 	ice_release_nvm(hw);
568 
569 	return status;
570 }
571 
572 /**
573  * ice_init_nvm - initializes NVM setting
574  * @hw: pointer to the HW struct
575  *
576  * This function reads and populates NVM settings such as Shadow RAM size,
577  * max_timeout, and blank_nvm_mode
578  */
ice_init_nvm(struct ice_hw * hw)579 enum ice_status ice_init_nvm(struct ice_hw *hw)
580 {
581 	struct ice_nvm_info *nvm = &hw->nvm;
582 	u16 eetrack_lo, eetrack_hi, ver;
583 	enum ice_status status;
584 	u32 fla, gens_stat;
585 	u8 sr_size;
586 
587 	/* The SR size is stored regardless of the NVM programming mode
588 	 * as the blank mode may be used in the factory line.
589 	 */
590 	gens_stat = rd32(hw, GLNVM_GENS);
591 	sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
592 
593 	/* Switching to words (sr_size contains power of 2) */
594 	nvm->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
595 
596 	/* Check if we are in the normal or blank NVM programming mode */
597 	fla = rd32(hw, GLNVM_FLA);
598 	if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
599 		nvm->blank_nvm_mode = false;
600 	} else {
601 		/* Blank programming mode */
602 		nvm->blank_nvm_mode = true;
603 		ice_debug(hw, ICE_DBG_NVM,
604 			  "NVM init error: unsupported blank mode.\n");
605 		return ICE_ERR_NVM_BLANK_MODE;
606 	}
607 
608 	status = ice_read_sr_word(hw, ICE_SR_NVM_DEV_STARTER_VER, &ver);
609 	if (status) {
610 		ice_debug(hw, ICE_DBG_INIT,
611 			  "Failed to read DEV starter version.\n");
612 		return status;
613 	}
614 	nvm->major_ver = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
615 	nvm->minor_ver = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
616 
617 	status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
618 	if (status) {
619 		ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK lo.\n");
620 		return status;
621 	}
622 	status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
623 	if (status) {
624 		ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK hi.\n");
625 		return status;
626 	}
627 
628 	nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
629 
630 	status = ice_discover_flash_size(hw);
631 	if (status) {
632 		ice_debug(hw, ICE_DBG_NVM,
633 			  "NVM init error: failed to discover flash size.\n");
634 		return status;
635 	}
636 
637 	switch (hw->device_id) {
638 	/* the following devices do not have boot_cfg_tlv yet */
639 	case ICE_DEV_ID_E823C_BACKPLANE:
640 	case ICE_DEV_ID_E823C_QSFP:
641 	case ICE_DEV_ID_E823C_SFP:
642 	case ICE_DEV_ID_E823C_10G_BASE_T:
643 	case ICE_DEV_ID_E823C_SGMII:
644 	case ICE_DEV_ID_E822C_BACKPLANE:
645 	case ICE_DEV_ID_E822C_QSFP:
646 	case ICE_DEV_ID_E822C_10G_BASE_T:
647 	case ICE_DEV_ID_E822C_SGMII:
648 	case ICE_DEV_ID_E822C_SFP:
649 	case ICE_DEV_ID_E822L_BACKPLANE:
650 	case ICE_DEV_ID_E822L_SFP:
651 	case ICE_DEV_ID_E822L_10G_BASE_T:
652 	case ICE_DEV_ID_E822L_SGMII:
653 	case ICE_DEV_ID_E823L_BACKPLANE:
654 	case ICE_DEV_ID_E823L_SFP:
655 	case ICE_DEV_ID_E823L_10G_BASE_T:
656 	case ICE_DEV_ID_E823L_1GBE:
657 	case ICE_DEV_ID_E823L_QSFP:
658 		return status;
659 	default:
660 		break;
661 	}
662 
663 	status = ice_get_orom_ver_info(hw);
664 	if (status) {
665 		ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
666 		return status;
667 	}
668 
669 	/* read the netlist version information */
670 	status = ice_get_netlist_ver_info(hw);
671 	if (status)
672 		ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
673 
674 	return 0;
675 }
676 
677 /**
678  * ice_nvm_validate_checksum
679  * @hw: pointer to the HW struct
680  *
681  * Verify NVM PFA checksum validity (0x0706)
682  */
ice_nvm_validate_checksum(struct ice_hw * hw)683 enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw)
684 {
685 	struct ice_aqc_nvm_checksum *cmd;
686 	struct ice_aq_desc desc;
687 	enum ice_status status;
688 
689 	status = ice_acquire_nvm(hw, ICE_RES_READ);
690 	if (status)
691 		return status;
692 
693 	cmd = &desc.params.nvm_checksum;
694 
695 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
696 	cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
697 
698 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
699 	ice_release_nvm(hw);
700 
701 	if (!status)
702 		if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
703 			status = ICE_ERR_NVM_CHECKSUM;
704 
705 	return status;
706 }
707 
708 /**
709  * ice_nvm_write_activate
710  * @hw: pointer to the HW struct
711  * @cmd_flags: NVM activate admin command bits (banks to be validated)
712  *
713  * Update the control word with the required banks' validity bits
714  * and dumps the Shadow RAM to flash (0x0707)
715  */
ice_nvm_write_activate(struct ice_hw * hw,u8 cmd_flags)716 enum ice_status ice_nvm_write_activate(struct ice_hw *hw, u8 cmd_flags)
717 {
718 	struct ice_aqc_nvm *cmd;
719 	struct ice_aq_desc desc;
720 
721 	cmd = &desc.params.nvm;
722 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
723 
724 	cmd->cmd_flags = cmd_flags;
725 
726 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
727 }
728 
729 /**
730  * ice_aq_nvm_update_empr
731  * @hw: pointer to the HW struct
732  *
733  * Update empr (0x0709). This command allows SW to
734  * request an EMPR to activate new FW.
735  */
ice_aq_nvm_update_empr(struct ice_hw * hw)736 enum ice_status ice_aq_nvm_update_empr(struct ice_hw *hw)
737 {
738 	struct ice_aq_desc desc;
739 
740 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr);
741 
742 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
743 }
744 
745 /* ice_nvm_set_pkg_data
746  * @hw: pointer to the HW struct
747  * @del_pkg_data_flag: If is set then the current pkg_data store by FW
748  *		       is deleted.
749  *		       If bit is set to 1, then buffer should be size 0.
750  * @data: pointer to buffer
751  * @length: length of the buffer
752  * @cd: pointer to command details structure or NULL
753  *
754  * Set package data (0x070A). This command is equivalent to the reception
755  * of a PLDM FW Update GetPackageData cmd. This command should be sent
756  * as part of the NVM update as the first cmd in the flow.
757  */
758 
759 enum ice_status
ice_nvm_set_pkg_data(struct ice_hw * hw,bool del_pkg_data_flag,u8 * data,u16 length,struct ice_sq_cd * cd)760 ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data,
761 		     u16 length, struct ice_sq_cd *cd)
762 {
763 	struct ice_aqc_nvm_pkg_data *cmd;
764 	struct ice_aq_desc desc;
765 
766 	if (length != 0 && !data)
767 		return ICE_ERR_PARAM;
768 
769 	cmd = &desc.params.pkg_data;
770 
771 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data);
772 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
773 
774 	if (del_pkg_data_flag)
775 		cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE;
776 
777 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
778 }
779 
780 /* ice_nvm_pass_component_tbl
781  * @hw: pointer to the HW struct
782  * @data: pointer to buffer
783  * @length: length of the buffer
784  * @transfer_flag: parameter for determining stage of the update
785  * @comp_response: a pointer to the response from the 0x070B AQC.
786  * @comp_response_code: a pointer to the response code from the 0x070B AQC.
787  * @cd: pointer to command details structure or NULL
788  *
789  * Pass component table (0x070B). This command is equivalent to the reception
790  * of a PLDM FW Update PassComponentTable cmd. This command should be sent once
791  * per component. It can be only sent after Set Package Data cmd and before
792  * actual update. FW will assume these commands are going to be sent until
793  * the TransferFlag is set to End or StartAndEnd.
794  */
795 
796 enum ice_status
ice_nvm_pass_component_tbl(struct ice_hw * hw,u8 * data,u16 length,u8 transfer_flag,u8 * comp_response,u8 * comp_response_code,struct ice_sq_cd * cd)797 ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length,
798 			   u8 transfer_flag, u8 *comp_response,
799 			   u8 *comp_response_code, struct ice_sq_cd *cd)
800 {
801 	struct ice_aqc_nvm_pass_comp_tbl *cmd;
802 	struct ice_aq_desc desc;
803 	enum ice_status status;
804 
805 	if (!data || !comp_response || !comp_response_code)
806 		return ICE_ERR_PARAM;
807 
808 	cmd = &desc.params.pass_comp_tbl;
809 
810 	ice_fill_dflt_direct_cmd_desc(&desc,
811 				      ice_aqc_opc_nvm_pass_component_tbl);
812 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
813 
814 	cmd->transfer_flag = transfer_flag;
815 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
816 
817 	if (!status) {
818 		*comp_response = cmd->component_response;
819 		*comp_response_code = cmd->component_response_code;
820 	}
821 	return status;
822 }
823