1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5  * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
6  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10  */
11 
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14 
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45 
46 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
47 
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 struct ib_port;
54 struct hw_stats_device_data;
55 
56 extern struct workqueue_struct *ib_wq;
57 extern struct workqueue_struct *ib_comp_wq;
58 extern struct workqueue_struct *ib_comp_unbound_wq;
59 
60 struct ib_ucq_object;
61 
62 __printf(3, 4) __cold
63 void ibdev_printk(const char *level, const struct ib_device *ibdev,
64 		  const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77 __printf(2, 3) __cold
78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79 
80 #if defined(CONFIG_DYNAMIC_DEBUG) || \
81 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82 #define ibdev_dbg(__dev, format, args...)                       \
83 	dynamic_ibdev_dbg(__dev, format, ##args)
84 #else
85 __printf(2, 3) __cold
86 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88 #endif
89 
90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
91 do {                                                                    \
92 	static DEFINE_RATELIMIT_STATE(_rs,                              \
93 				      DEFAULT_RATELIMIT_INTERVAL,       \
94 				      DEFAULT_RATELIMIT_BURST);         \
95 	if (__ratelimit(&_rs))                                          \
96 		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
97 } while (0)
98 
99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100 	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102 	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104 	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106 	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108 	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110 	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112 	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113 
114 #if defined(CONFIG_DYNAMIC_DEBUG) || \
115 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
118 do {                                                                    \
119 	static DEFINE_RATELIMIT_STATE(_rs,                              \
120 				      DEFAULT_RATELIMIT_INTERVAL,       \
121 				      DEFAULT_RATELIMIT_BURST);         \
122 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
123 	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
124 		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
125 				    ##__VA_ARGS__);                     \
126 } while (0)
127 #else
128 __printf(2, 3) __cold
129 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131 #endif
132 
133 union ib_gid {
134 	u8	raw[16];
135 	struct {
136 		__be64	subnet_prefix;
137 		__be64	interface_id;
138 	} global;
139 };
140 
141 extern union ib_gid zgid;
142 
143 enum ib_gid_type {
144 	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145 	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146 	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147 	IB_GID_TYPE_SIZE
148 };
149 
150 #define ROCE_V2_UDP_DPORT      4791
151 struct ib_gid_attr {
152 	struct net_device __rcu	*ndev;
153 	struct ib_device	*device;
154 	union ib_gid		gid;
155 	enum ib_gid_type	gid_type;
156 	u16			index;
157 	u32			port_num;
158 };
159 
160 enum {
161 	/* set the local administered indication */
162 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
163 };
164 
165 enum rdma_transport_type {
166 	RDMA_TRANSPORT_IB,
167 	RDMA_TRANSPORT_IWARP,
168 	RDMA_TRANSPORT_USNIC,
169 	RDMA_TRANSPORT_USNIC_UDP,
170 	RDMA_TRANSPORT_UNSPECIFIED,
171 };
172 
173 enum rdma_protocol_type {
174 	RDMA_PROTOCOL_IB,
175 	RDMA_PROTOCOL_IBOE,
176 	RDMA_PROTOCOL_IWARP,
177 	RDMA_PROTOCOL_USNIC_UDP
178 };
179 
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(unsigned int node_type);
182 
183 enum rdma_network_type {
184 	RDMA_NETWORK_IB,
185 	RDMA_NETWORK_ROCE_V1,
186 	RDMA_NETWORK_IPV4,
187 	RDMA_NETWORK_IPV6
188 };
189 
ib_network_to_gid_type(enum rdma_network_type network_type)190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191 {
192 	if (network_type == RDMA_NETWORK_IPV4 ||
193 	    network_type == RDMA_NETWORK_IPV6)
194 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
195 	else if (network_type == RDMA_NETWORK_ROCE_V1)
196 		return IB_GID_TYPE_ROCE;
197 	else
198 		return IB_GID_TYPE_IB;
199 }
200 
201 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203 {
204 	if (attr->gid_type == IB_GID_TYPE_IB)
205 		return RDMA_NETWORK_IB;
206 
207 	if (attr->gid_type == IB_GID_TYPE_ROCE)
208 		return RDMA_NETWORK_ROCE_V1;
209 
210 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211 		return RDMA_NETWORK_IPV4;
212 	else
213 		return RDMA_NETWORK_IPV6;
214 }
215 
216 enum rdma_link_layer {
217 	IB_LINK_LAYER_UNSPECIFIED,
218 	IB_LINK_LAYER_INFINIBAND,
219 	IB_LINK_LAYER_ETHERNET,
220 };
221 
222 enum ib_device_cap_flags {
223 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
224 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
225 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
226 	IB_DEVICE_RAW_MULTI			= (1 << 3),
227 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
228 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
229 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
230 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
231 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
232 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
233 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
234 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
235 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
236 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
237 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
238 
239 	/*
240 	 * This device supports a per-device lkey or stag that can be
241 	 * used without performing a memory registration for the local
242 	 * memory.  Note that ULPs should never check this flag, but
243 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
244 	 * which will always contain a usable lkey.
245 	 */
246 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
247 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
248 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
249 	/*
250 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
251 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
252 	 * messages and can verify the validity of checksum for
253 	 * incoming messages.  Setting this flag implies that the
254 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
255 	 */
256 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
257 	IB_DEVICE_UD_TSO			= (1 << 19),
258 	IB_DEVICE_XRC				= (1 << 20),
259 
260 	/*
261 	 * This device supports the IB "base memory management extension",
262 	 * which includes support for fast registrations (IB_WR_REG_MR,
263 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
264 	 * also be set by any iWarp device which must support FRs to comply
265 	 * to the iWarp verbs spec.  iWarp devices also support the
266 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
267 	 * stag.
268 	 */
269 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
270 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
271 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
272 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
273 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
274 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
275 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
276 	/*
277 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
278 	 * support execution of WQEs that involve synchronization
279 	 * of I/O operations with single completion queue managed
280 	 * by hardware.
281 	 */
282 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
283 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
284 	IB_DEVICE_INTEGRITY_HANDOVER		= (1 << 30),
285 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
286 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
287 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
288 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
289 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
290 	IB_DEVICE_RDMA_NETDEV_OPA		= (1ULL << 35),
291 	/* The device supports padding incoming writes to cacheline. */
292 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
293 	IB_DEVICE_ALLOW_USER_UNREG		= (1ULL << 37),
294 };
295 
296 enum ib_atomic_cap {
297 	IB_ATOMIC_NONE,
298 	IB_ATOMIC_HCA,
299 	IB_ATOMIC_GLOB
300 };
301 
302 enum ib_odp_general_cap_bits {
303 	IB_ODP_SUPPORT		= 1 << 0,
304 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
305 };
306 
307 enum ib_odp_transport_cap_bits {
308 	IB_ODP_SUPPORT_SEND	= 1 << 0,
309 	IB_ODP_SUPPORT_RECV	= 1 << 1,
310 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
311 	IB_ODP_SUPPORT_READ	= 1 << 3,
312 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
313 	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
314 };
315 
316 struct ib_odp_caps {
317 	uint64_t general_caps;
318 	struct {
319 		uint32_t  rc_odp_caps;
320 		uint32_t  uc_odp_caps;
321 		uint32_t  ud_odp_caps;
322 		uint32_t  xrc_odp_caps;
323 	} per_transport_caps;
324 };
325 
326 struct ib_rss_caps {
327 	/* Corresponding bit will be set if qp type from
328 	 * 'enum ib_qp_type' is supported, e.g.
329 	 * supported_qpts |= 1 << IB_QPT_UD
330 	 */
331 	u32 supported_qpts;
332 	u32 max_rwq_indirection_tables;
333 	u32 max_rwq_indirection_table_size;
334 };
335 
336 enum ib_tm_cap_flags {
337 	/*  Support tag matching with rendezvous offload for RC transport */
338 	IB_TM_CAP_RNDV_RC = 1 << 0,
339 };
340 
341 struct ib_tm_caps {
342 	/* Max size of RNDV header */
343 	u32 max_rndv_hdr_size;
344 	/* Max number of entries in tag matching list */
345 	u32 max_num_tags;
346 	/* From enum ib_tm_cap_flags */
347 	u32 flags;
348 	/* Max number of outstanding list operations */
349 	u32 max_ops;
350 	/* Max number of SGE in tag matching entry */
351 	u32 max_sge;
352 };
353 
354 struct ib_cq_init_attr {
355 	unsigned int	cqe;
356 	u32		comp_vector;
357 	u32		flags;
358 };
359 
360 enum ib_cq_attr_mask {
361 	IB_CQ_MODERATE = 1 << 0,
362 };
363 
364 struct ib_cq_caps {
365 	u16     max_cq_moderation_count;
366 	u16     max_cq_moderation_period;
367 };
368 
369 struct ib_dm_mr_attr {
370 	u64		length;
371 	u64		offset;
372 	u32		access_flags;
373 };
374 
375 struct ib_dm_alloc_attr {
376 	u64	length;
377 	u32	alignment;
378 	u32	flags;
379 };
380 
381 struct ib_device_attr {
382 	u64			fw_ver;
383 	__be64			sys_image_guid;
384 	u64			max_mr_size;
385 	u64			page_size_cap;
386 	u32			vendor_id;
387 	u32			vendor_part_id;
388 	u32			hw_ver;
389 	int			max_qp;
390 	int			max_qp_wr;
391 	u64			device_cap_flags;
392 	int			max_send_sge;
393 	int			max_recv_sge;
394 	int			max_sge_rd;
395 	int			max_cq;
396 	int			max_cqe;
397 	int			max_mr;
398 	int			max_pd;
399 	int			max_qp_rd_atom;
400 	int			max_ee_rd_atom;
401 	int			max_res_rd_atom;
402 	int			max_qp_init_rd_atom;
403 	int			max_ee_init_rd_atom;
404 	enum ib_atomic_cap	atomic_cap;
405 	enum ib_atomic_cap	masked_atomic_cap;
406 	int			max_ee;
407 	int			max_rdd;
408 	int			max_mw;
409 	int			max_raw_ipv6_qp;
410 	int			max_raw_ethy_qp;
411 	int			max_mcast_grp;
412 	int			max_mcast_qp_attach;
413 	int			max_total_mcast_qp_attach;
414 	int			max_ah;
415 	int			max_srq;
416 	int			max_srq_wr;
417 	int			max_srq_sge;
418 	unsigned int		max_fast_reg_page_list_len;
419 	unsigned int		max_pi_fast_reg_page_list_len;
420 	u16			max_pkeys;
421 	u8			local_ca_ack_delay;
422 	int			sig_prot_cap;
423 	int			sig_guard_cap;
424 	struct ib_odp_caps	odp_caps;
425 	uint64_t		timestamp_mask;
426 	uint64_t		hca_core_clock; /* in KHZ */
427 	struct ib_rss_caps	rss_caps;
428 	u32			max_wq_type_rq;
429 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
430 	struct ib_tm_caps	tm_caps;
431 	struct ib_cq_caps       cq_caps;
432 	u64			max_dm_size;
433 	/* Max entries for sgl for optimized performance per READ */
434 	u32			max_sgl_rd;
435 };
436 
437 enum ib_mtu {
438 	IB_MTU_256  = 1,
439 	IB_MTU_512  = 2,
440 	IB_MTU_1024 = 3,
441 	IB_MTU_2048 = 4,
442 	IB_MTU_4096 = 5
443 };
444 
445 enum opa_mtu {
446 	OPA_MTU_8192 = 6,
447 	OPA_MTU_10240 = 7
448 };
449 
ib_mtu_enum_to_int(enum ib_mtu mtu)450 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
451 {
452 	switch (mtu) {
453 	case IB_MTU_256:  return  256;
454 	case IB_MTU_512:  return  512;
455 	case IB_MTU_1024: return 1024;
456 	case IB_MTU_2048: return 2048;
457 	case IB_MTU_4096: return 4096;
458 	default: 	  return -1;
459 	}
460 }
461 
ib_mtu_int_to_enum(int mtu)462 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
463 {
464 	if (mtu >= 4096)
465 		return IB_MTU_4096;
466 	else if (mtu >= 2048)
467 		return IB_MTU_2048;
468 	else if (mtu >= 1024)
469 		return IB_MTU_1024;
470 	else if (mtu >= 512)
471 		return IB_MTU_512;
472 	else
473 		return IB_MTU_256;
474 }
475 
opa_mtu_enum_to_int(enum opa_mtu mtu)476 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
477 {
478 	switch (mtu) {
479 	case OPA_MTU_8192:
480 		return 8192;
481 	case OPA_MTU_10240:
482 		return 10240;
483 	default:
484 		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
485 	}
486 }
487 
opa_mtu_int_to_enum(int mtu)488 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
489 {
490 	if (mtu >= 10240)
491 		return OPA_MTU_10240;
492 	else if (mtu >= 8192)
493 		return OPA_MTU_8192;
494 	else
495 		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
496 }
497 
498 enum ib_port_state {
499 	IB_PORT_NOP		= 0,
500 	IB_PORT_DOWN		= 1,
501 	IB_PORT_INIT		= 2,
502 	IB_PORT_ARMED		= 3,
503 	IB_PORT_ACTIVE		= 4,
504 	IB_PORT_ACTIVE_DEFER	= 5
505 };
506 
507 enum ib_port_phys_state {
508 	IB_PORT_PHYS_STATE_SLEEP = 1,
509 	IB_PORT_PHYS_STATE_POLLING = 2,
510 	IB_PORT_PHYS_STATE_DISABLED = 3,
511 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
512 	IB_PORT_PHYS_STATE_LINK_UP = 5,
513 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
514 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
515 };
516 
517 enum ib_port_width {
518 	IB_WIDTH_1X	= 1,
519 	IB_WIDTH_2X	= 16,
520 	IB_WIDTH_4X	= 2,
521 	IB_WIDTH_8X	= 4,
522 	IB_WIDTH_12X	= 8
523 };
524 
ib_width_enum_to_int(enum ib_port_width width)525 static inline int ib_width_enum_to_int(enum ib_port_width width)
526 {
527 	switch (width) {
528 	case IB_WIDTH_1X:  return  1;
529 	case IB_WIDTH_2X:  return  2;
530 	case IB_WIDTH_4X:  return  4;
531 	case IB_WIDTH_8X:  return  8;
532 	case IB_WIDTH_12X: return 12;
533 	default: 	  return -1;
534 	}
535 }
536 
537 enum ib_port_speed {
538 	IB_SPEED_SDR	= 1,
539 	IB_SPEED_DDR	= 2,
540 	IB_SPEED_QDR	= 4,
541 	IB_SPEED_FDR10	= 8,
542 	IB_SPEED_FDR	= 16,
543 	IB_SPEED_EDR	= 32,
544 	IB_SPEED_HDR	= 64,
545 	IB_SPEED_NDR	= 128,
546 };
547 
548 /**
549  * struct rdma_hw_stats
550  * @lock - Mutex to protect parallel write access to lifespan and values
551  *    of counters, which are 64bits and not guaranteeed to be written
552  *    atomicaly on 32bits systems.
553  * @timestamp - Used by the core code to track when the last update was
554  * @lifespan - Used by the core code to determine how old the counters
555  *   should be before being updated again.  Stored in jiffies, defaults
556  *   to 10 milliseconds, drivers can override the default be specifying
557  *   their own value during their allocation routine.
558  * @name - Array of pointers to static names used for the counters in
559  *   directory.
560  * @num_counters - How many hardware counters there are.  If name is
561  *   shorter than this number, a kernel oops will result.  Driver authors
562  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
563  *   in their code to prevent this.
564  * @value - Array of u64 counters that are accessed by the sysfs code and
565  *   filled in by the drivers get_stats routine
566  */
567 struct rdma_hw_stats {
568 	struct mutex	lock; /* Protect lifespan and values[] */
569 	unsigned long	timestamp;
570 	unsigned long	lifespan;
571 	const char * const *names;
572 	int		num_counters;
573 	u64		value[];
574 };
575 
576 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
577 /**
578  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
579  *   for drivers.
580  * @names - Array of static const char *
581  * @num_counters - How many elements in array
582  * @lifespan - How many milliseconds between updates
583  */
rdma_alloc_hw_stats_struct(const char * const * names,int num_counters,unsigned long lifespan)584 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
585 		const char * const *names, int num_counters,
586 		unsigned long lifespan)
587 {
588 	struct rdma_hw_stats *stats;
589 
590 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
591 			GFP_KERNEL);
592 	if (!stats)
593 		return NULL;
594 	stats->names = names;
595 	stats->num_counters = num_counters;
596 	stats->lifespan = msecs_to_jiffies(lifespan);
597 
598 	return stats;
599 }
600 
601 
602 /* Define bits for the various functionality this port needs to be supported by
603  * the core.
604  */
605 /* Management                           0x00000FFF */
606 #define RDMA_CORE_CAP_IB_MAD            0x00000001
607 #define RDMA_CORE_CAP_IB_SMI            0x00000002
608 #define RDMA_CORE_CAP_IB_CM             0x00000004
609 #define RDMA_CORE_CAP_IW_CM             0x00000008
610 #define RDMA_CORE_CAP_IB_SA             0x00000010
611 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
612 
613 /* Address format                       0x000FF000 */
614 #define RDMA_CORE_CAP_AF_IB             0x00001000
615 #define RDMA_CORE_CAP_ETH_AH            0x00002000
616 #define RDMA_CORE_CAP_OPA_AH            0x00004000
617 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
618 
619 /* Protocol                             0xFFF00000 */
620 #define RDMA_CORE_CAP_PROT_IB           0x00100000
621 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
622 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
623 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
624 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
625 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
626 
627 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
628 					| RDMA_CORE_CAP_PROT_ROCE     \
629 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
630 
631 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
632 					| RDMA_CORE_CAP_IB_MAD \
633 					| RDMA_CORE_CAP_IB_SMI \
634 					| RDMA_CORE_CAP_IB_CM  \
635 					| RDMA_CORE_CAP_IB_SA  \
636 					| RDMA_CORE_CAP_AF_IB)
637 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
638 					| RDMA_CORE_CAP_IB_MAD  \
639 					| RDMA_CORE_CAP_IB_CM   \
640 					| RDMA_CORE_CAP_AF_IB   \
641 					| RDMA_CORE_CAP_ETH_AH)
642 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
643 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
644 					| RDMA_CORE_CAP_IB_MAD  \
645 					| RDMA_CORE_CAP_IB_CM   \
646 					| RDMA_CORE_CAP_AF_IB   \
647 					| RDMA_CORE_CAP_ETH_AH)
648 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
649 					| RDMA_CORE_CAP_IW_CM)
650 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
651 					| RDMA_CORE_CAP_OPA_MAD)
652 
653 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
654 
655 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
656 
657 struct ib_port_attr {
658 	u64			subnet_prefix;
659 	enum ib_port_state	state;
660 	enum ib_mtu		max_mtu;
661 	enum ib_mtu		active_mtu;
662 	u32                     phys_mtu;
663 	int			gid_tbl_len;
664 	unsigned int		ip_gids:1;
665 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
666 	u32			port_cap_flags;
667 	u32			max_msg_sz;
668 	u32			bad_pkey_cntr;
669 	u32			qkey_viol_cntr;
670 	u16			pkey_tbl_len;
671 	u32			sm_lid;
672 	u32			lid;
673 	u8			lmc;
674 	u8			max_vl_num;
675 	u8			sm_sl;
676 	u8			subnet_timeout;
677 	u8			init_type_reply;
678 	u8			active_width;
679 	u16			active_speed;
680 	u8                      phys_state;
681 	u16			port_cap_flags2;
682 };
683 
684 enum ib_device_modify_flags {
685 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
686 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
687 };
688 
689 #define IB_DEVICE_NODE_DESC_MAX 64
690 
691 struct ib_device_modify {
692 	u64	sys_image_guid;
693 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
694 };
695 
696 enum ib_port_modify_flags {
697 	IB_PORT_SHUTDOWN		= 1,
698 	IB_PORT_INIT_TYPE		= (1<<2),
699 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
700 	IB_PORT_OPA_MASK_CHG		= (1<<4)
701 };
702 
703 struct ib_port_modify {
704 	u32	set_port_cap_mask;
705 	u32	clr_port_cap_mask;
706 	u8	init_type;
707 };
708 
709 enum ib_event_type {
710 	IB_EVENT_CQ_ERR,
711 	IB_EVENT_QP_FATAL,
712 	IB_EVENT_QP_REQ_ERR,
713 	IB_EVENT_QP_ACCESS_ERR,
714 	IB_EVENT_COMM_EST,
715 	IB_EVENT_SQ_DRAINED,
716 	IB_EVENT_PATH_MIG,
717 	IB_EVENT_PATH_MIG_ERR,
718 	IB_EVENT_DEVICE_FATAL,
719 	IB_EVENT_PORT_ACTIVE,
720 	IB_EVENT_PORT_ERR,
721 	IB_EVENT_LID_CHANGE,
722 	IB_EVENT_PKEY_CHANGE,
723 	IB_EVENT_SM_CHANGE,
724 	IB_EVENT_SRQ_ERR,
725 	IB_EVENT_SRQ_LIMIT_REACHED,
726 	IB_EVENT_QP_LAST_WQE_REACHED,
727 	IB_EVENT_CLIENT_REREGISTER,
728 	IB_EVENT_GID_CHANGE,
729 	IB_EVENT_WQ_FATAL,
730 };
731 
732 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
733 
734 struct ib_event {
735 	struct ib_device	*device;
736 	union {
737 		struct ib_cq	*cq;
738 		struct ib_qp	*qp;
739 		struct ib_srq	*srq;
740 		struct ib_wq	*wq;
741 		u32		port_num;
742 	} element;
743 	enum ib_event_type	event;
744 };
745 
746 struct ib_event_handler {
747 	struct ib_device *device;
748 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
749 	struct list_head  list;
750 };
751 
752 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
753 	do {							\
754 		(_ptr)->device  = _device;			\
755 		(_ptr)->handler = _handler;			\
756 		INIT_LIST_HEAD(&(_ptr)->list);			\
757 	} while (0)
758 
759 struct ib_global_route {
760 	const struct ib_gid_attr *sgid_attr;
761 	union ib_gid	dgid;
762 	u32		flow_label;
763 	u8		sgid_index;
764 	u8		hop_limit;
765 	u8		traffic_class;
766 };
767 
768 struct ib_grh {
769 	__be32		version_tclass_flow;
770 	__be16		paylen;
771 	u8		next_hdr;
772 	u8		hop_limit;
773 	union ib_gid	sgid;
774 	union ib_gid	dgid;
775 };
776 
777 union rdma_network_hdr {
778 	struct ib_grh ibgrh;
779 	struct {
780 		/* The IB spec states that if it's IPv4, the header
781 		 * is located in the last 20 bytes of the header.
782 		 */
783 		u8		reserved[20];
784 		struct iphdr	roce4grh;
785 	};
786 };
787 
788 #define IB_QPN_MASK		0xFFFFFF
789 
790 enum {
791 	IB_MULTICAST_QPN = 0xffffff
792 };
793 
794 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
795 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
796 
797 enum ib_ah_flags {
798 	IB_AH_GRH	= 1
799 };
800 
801 enum ib_rate {
802 	IB_RATE_PORT_CURRENT = 0,
803 	IB_RATE_2_5_GBPS = 2,
804 	IB_RATE_5_GBPS   = 5,
805 	IB_RATE_10_GBPS  = 3,
806 	IB_RATE_20_GBPS  = 6,
807 	IB_RATE_30_GBPS  = 4,
808 	IB_RATE_40_GBPS  = 7,
809 	IB_RATE_60_GBPS  = 8,
810 	IB_RATE_80_GBPS  = 9,
811 	IB_RATE_120_GBPS = 10,
812 	IB_RATE_14_GBPS  = 11,
813 	IB_RATE_56_GBPS  = 12,
814 	IB_RATE_112_GBPS = 13,
815 	IB_RATE_168_GBPS = 14,
816 	IB_RATE_25_GBPS  = 15,
817 	IB_RATE_100_GBPS = 16,
818 	IB_RATE_200_GBPS = 17,
819 	IB_RATE_300_GBPS = 18,
820 	IB_RATE_28_GBPS  = 19,
821 	IB_RATE_50_GBPS  = 20,
822 	IB_RATE_400_GBPS = 21,
823 	IB_RATE_600_GBPS = 22,
824 };
825 
826 /**
827  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
828  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
829  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
830  * @rate: rate to convert.
831  */
832 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
833 
834 /**
835  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
836  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
837  * @rate: rate to convert.
838  */
839 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
840 
841 
842 /**
843  * enum ib_mr_type - memory region type
844  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
845  *                            normal registration
846  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
847  *                            register any arbitrary sg lists (without
848  *                            the normal mr constraints - see
849  *                            ib_map_mr_sg)
850  * @IB_MR_TYPE_DM:            memory region that is used for device
851  *                            memory registration
852  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
853  *                            application
854  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
855  *                            without address translations (VA=PA)
856  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
857  *                            data integrity operations
858  */
859 enum ib_mr_type {
860 	IB_MR_TYPE_MEM_REG,
861 	IB_MR_TYPE_SG_GAPS,
862 	IB_MR_TYPE_DM,
863 	IB_MR_TYPE_USER,
864 	IB_MR_TYPE_DMA,
865 	IB_MR_TYPE_INTEGRITY,
866 };
867 
868 enum ib_mr_status_check {
869 	IB_MR_CHECK_SIG_STATUS = 1,
870 };
871 
872 /**
873  * struct ib_mr_status - Memory region status container
874  *
875  * @fail_status: Bitmask of MR checks status. For each
876  *     failed check a corresponding status bit is set.
877  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
878  *     failure.
879  */
880 struct ib_mr_status {
881 	u32		    fail_status;
882 	struct ib_sig_err   sig_err;
883 };
884 
885 /**
886  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
887  * enum.
888  * @mult: multiple to convert.
889  */
890 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
891 
892 struct rdma_ah_init_attr {
893 	struct rdma_ah_attr *ah_attr;
894 	u32 flags;
895 	struct net_device *xmit_slave;
896 };
897 
898 enum rdma_ah_attr_type {
899 	RDMA_AH_ATTR_TYPE_UNDEFINED,
900 	RDMA_AH_ATTR_TYPE_IB,
901 	RDMA_AH_ATTR_TYPE_ROCE,
902 	RDMA_AH_ATTR_TYPE_OPA,
903 };
904 
905 struct ib_ah_attr {
906 	u16			dlid;
907 	u8			src_path_bits;
908 };
909 
910 struct roce_ah_attr {
911 	u8			dmac[ETH_ALEN];
912 };
913 
914 struct opa_ah_attr {
915 	u32			dlid;
916 	u8			src_path_bits;
917 	bool			make_grd;
918 };
919 
920 struct rdma_ah_attr {
921 	struct ib_global_route	grh;
922 	u8			sl;
923 	u8			static_rate;
924 	u32			port_num;
925 	u8			ah_flags;
926 	enum rdma_ah_attr_type type;
927 	union {
928 		struct ib_ah_attr ib;
929 		struct roce_ah_attr roce;
930 		struct opa_ah_attr opa;
931 	};
932 };
933 
934 enum ib_wc_status {
935 	IB_WC_SUCCESS,
936 	IB_WC_LOC_LEN_ERR,
937 	IB_WC_LOC_QP_OP_ERR,
938 	IB_WC_LOC_EEC_OP_ERR,
939 	IB_WC_LOC_PROT_ERR,
940 	IB_WC_WR_FLUSH_ERR,
941 	IB_WC_MW_BIND_ERR,
942 	IB_WC_BAD_RESP_ERR,
943 	IB_WC_LOC_ACCESS_ERR,
944 	IB_WC_REM_INV_REQ_ERR,
945 	IB_WC_REM_ACCESS_ERR,
946 	IB_WC_REM_OP_ERR,
947 	IB_WC_RETRY_EXC_ERR,
948 	IB_WC_RNR_RETRY_EXC_ERR,
949 	IB_WC_LOC_RDD_VIOL_ERR,
950 	IB_WC_REM_INV_RD_REQ_ERR,
951 	IB_WC_REM_ABORT_ERR,
952 	IB_WC_INV_EECN_ERR,
953 	IB_WC_INV_EEC_STATE_ERR,
954 	IB_WC_FATAL_ERR,
955 	IB_WC_RESP_TIMEOUT_ERR,
956 	IB_WC_GENERAL_ERR
957 };
958 
959 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
960 
961 enum ib_wc_opcode {
962 	IB_WC_SEND = IB_UVERBS_WC_SEND,
963 	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
964 	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
965 	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
966 	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
967 	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
968 	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
969 	IB_WC_LSO = IB_UVERBS_WC_TSO,
970 	IB_WC_REG_MR,
971 	IB_WC_MASKED_COMP_SWAP,
972 	IB_WC_MASKED_FETCH_ADD,
973 /*
974  * Set value of IB_WC_RECV so consumers can test if a completion is a
975  * receive by testing (opcode & IB_WC_RECV).
976  */
977 	IB_WC_RECV			= 1 << 7,
978 	IB_WC_RECV_RDMA_WITH_IMM
979 };
980 
981 enum ib_wc_flags {
982 	IB_WC_GRH		= 1,
983 	IB_WC_WITH_IMM		= (1<<1),
984 	IB_WC_WITH_INVALIDATE	= (1<<2),
985 	IB_WC_IP_CSUM_OK	= (1<<3),
986 	IB_WC_WITH_SMAC		= (1<<4),
987 	IB_WC_WITH_VLAN		= (1<<5),
988 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
989 };
990 
991 struct ib_wc {
992 	union {
993 		u64		wr_id;
994 		struct ib_cqe	*wr_cqe;
995 	};
996 	enum ib_wc_status	status;
997 	enum ib_wc_opcode	opcode;
998 	u32			vendor_err;
999 	u32			byte_len;
1000 	struct ib_qp	       *qp;
1001 	union {
1002 		__be32		imm_data;
1003 		u32		invalidate_rkey;
1004 	} ex;
1005 	u32			src_qp;
1006 	u32			slid;
1007 	int			wc_flags;
1008 	u16			pkey_index;
1009 	u8			sl;
1010 	u8			dlid_path_bits;
1011 	u32 port_num; /* valid only for DR SMPs on switches */
1012 	u8			smac[ETH_ALEN];
1013 	u16			vlan_id;
1014 	u8			network_hdr_type;
1015 };
1016 
1017 enum ib_cq_notify_flags {
1018 	IB_CQ_SOLICITED			= 1 << 0,
1019 	IB_CQ_NEXT_COMP			= 1 << 1,
1020 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1021 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1022 };
1023 
1024 enum ib_srq_type {
1025 	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1026 	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1027 	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1028 };
1029 
ib_srq_has_cq(enum ib_srq_type srq_type)1030 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1031 {
1032 	return srq_type == IB_SRQT_XRC ||
1033 	       srq_type == IB_SRQT_TM;
1034 }
1035 
1036 enum ib_srq_attr_mask {
1037 	IB_SRQ_MAX_WR	= 1 << 0,
1038 	IB_SRQ_LIMIT	= 1 << 1,
1039 };
1040 
1041 struct ib_srq_attr {
1042 	u32	max_wr;
1043 	u32	max_sge;
1044 	u32	srq_limit;
1045 };
1046 
1047 struct ib_srq_init_attr {
1048 	void		      (*event_handler)(struct ib_event *, void *);
1049 	void		       *srq_context;
1050 	struct ib_srq_attr	attr;
1051 	enum ib_srq_type	srq_type;
1052 
1053 	struct {
1054 		struct ib_cq   *cq;
1055 		union {
1056 			struct {
1057 				struct ib_xrcd *xrcd;
1058 			} xrc;
1059 
1060 			struct {
1061 				u32		max_num_tags;
1062 			} tag_matching;
1063 		};
1064 	} ext;
1065 };
1066 
1067 struct ib_qp_cap {
1068 	u32	max_send_wr;
1069 	u32	max_recv_wr;
1070 	u32	max_send_sge;
1071 	u32	max_recv_sge;
1072 	u32	max_inline_data;
1073 
1074 	/*
1075 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1076 	 * ib_create_qp() will calculate the right amount of neededed WRs
1077 	 * and MRs based on this.
1078 	 */
1079 	u32	max_rdma_ctxs;
1080 };
1081 
1082 enum ib_sig_type {
1083 	IB_SIGNAL_ALL_WR,
1084 	IB_SIGNAL_REQ_WR
1085 };
1086 
1087 enum ib_qp_type {
1088 	/*
1089 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1090 	 * here (and in that order) since the MAD layer uses them as
1091 	 * indices into a 2-entry table.
1092 	 */
1093 	IB_QPT_SMI,
1094 	IB_QPT_GSI,
1095 
1096 	IB_QPT_RC = IB_UVERBS_QPT_RC,
1097 	IB_QPT_UC = IB_UVERBS_QPT_UC,
1098 	IB_QPT_UD = IB_UVERBS_QPT_UD,
1099 	IB_QPT_RAW_IPV6,
1100 	IB_QPT_RAW_ETHERTYPE,
1101 	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1102 	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1103 	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1104 	IB_QPT_MAX,
1105 	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1106 	/* Reserve a range for qp types internal to the low level driver.
1107 	 * These qp types will not be visible at the IB core layer, so the
1108 	 * IB_QPT_MAX usages should not be affected in the core layer
1109 	 */
1110 	IB_QPT_RESERVED1 = 0x1000,
1111 	IB_QPT_RESERVED2,
1112 	IB_QPT_RESERVED3,
1113 	IB_QPT_RESERVED4,
1114 	IB_QPT_RESERVED5,
1115 	IB_QPT_RESERVED6,
1116 	IB_QPT_RESERVED7,
1117 	IB_QPT_RESERVED8,
1118 	IB_QPT_RESERVED9,
1119 	IB_QPT_RESERVED10,
1120 };
1121 
1122 enum ib_qp_create_flags {
1123 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1124 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1125 		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1126 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1127 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1128 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1129 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1130 	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1131 	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1132 	IB_QP_CREATE_SCATTER_FCS		=
1133 		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1134 	IB_QP_CREATE_CVLAN_STRIPPING		=
1135 		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1136 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1137 	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1138 		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1139 	/* reserve bits 26-31 for low level drivers' internal use */
1140 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1141 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1142 };
1143 
1144 /*
1145  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1146  * callback to destroy the passed in QP.
1147  */
1148 
1149 struct ib_qp_init_attr {
1150 	/* Consumer's event_handler callback must not block */
1151 	void                  (*event_handler)(struct ib_event *, void *);
1152 
1153 	void		       *qp_context;
1154 	struct ib_cq	       *send_cq;
1155 	struct ib_cq	       *recv_cq;
1156 	struct ib_srq	       *srq;
1157 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1158 	struct ib_qp_cap	cap;
1159 	enum ib_sig_type	sq_sig_type;
1160 	enum ib_qp_type		qp_type;
1161 	u32			create_flags;
1162 
1163 	/*
1164 	 * Only needed for special QP types, or when using the RW API.
1165 	 */
1166 	u32			port_num;
1167 	struct ib_rwq_ind_table *rwq_ind_tbl;
1168 	u32			source_qpn;
1169 };
1170 
1171 struct ib_qp_open_attr {
1172 	void                  (*event_handler)(struct ib_event *, void *);
1173 	void		       *qp_context;
1174 	u32			qp_num;
1175 	enum ib_qp_type		qp_type;
1176 };
1177 
1178 enum ib_rnr_timeout {
1179 	IB_RNR_TIMER_655_36 =  0,
1180 	IB_RNR_TIMER_000_01 =  1,
1181 	IB_RNR_TIMER_000_02 =  2,
1182 	IB_RNR_TIMER_000_03 =  3,
1183 	IB_RNR_TIMER_000_04 =  4,
1184 	IB_RNR_TIMER_000_06 =  5,
1185 	IB_RNR_TIMER_000_08 =  6,
1186 	IB_RNR_TIMER_000_12 =  7,
1187 	IB_RNR_TIMER_000_16 =  8,
1188 	IB_RNR_TIMER_000_24 =  9,
1189 	IB_RNR_TIMER_000_32 = 10,
1190 	IB_RNR_TIMER_000_48 = 11,
1191 	IB_RNR_TIMER_000_64 = 12,
1192 	IB_RNR_TIMER_000_96 = 13,
1193 	IB_RNR_TIMER_001_28 = 14,
1194 	IB_RNR_TIMER_001_92 = 15,
1195 	IB_RNR_TIMER_002_56 = 16,
1196 	IB_RNR_TIMER_003_84 = 17,
1197 	IB_RNR_TIMER_005_12 = 18,
1198 	IB_RNR_TIMER_007_68 = 19,
1199 	IB_RNR_TIMER_010_24 = 20,
1200 	IB_RNR_TIMER_015_36 = 21,
1201 	IB_RNR_TIMER_020_48 = 22,
1202 	IB_RNR_TIMER_030_72 = 23,
1203 	IB_RNR_TIMER_040_96 = 24,
1204 	IB_RNR_TIMER_061_44 = 25,
1205 	IB_RNR_TIMER_081_92 = 26,
1206 	IB_RNR_TIMER_122_88 = 27,
1207 	IB_RNR_TIMER_163_84 = 28,
1208 	IB_RNR_TIMER_245_76 = 29,
1209 	IB_RNR_TIMER_327_68 = 30,
1210 	IB_RNR_TIMER_491_52 = 31
1211 };
1212 
1213 enum ib_qp_attr_mask {
1214 	IB_QP_STATE			= 1,
1215 	IB_QP_CUR_STATE			= (1<<1),
1216 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1217 	IB_QP_ACCESS_FLAGS		= (1<<3),
1218 	IB_QP_PKEY_INDEX		= (1<<4),
1219 	IB_QP_PORT			= (1<<5),
1220 	IB_QP_QKEY			= (1<<6),
1221 	IB_QP_AV			= (1<<7),
1222 	IB_QP_PATH_MTU			= (1<<8),
1223 	IB_QP_TIMEOUT			= (1<<9),
1224 	IB_QP_RETRY_CNT			= (1<<10),
1225 	IB_QP_RNR_RETRY			= (1<<11),
1226 	IB_QP_RQ_PSN			= (1<<12),
1227 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1228 	IB_QP_ALT_PATH			= (1<<14),
1229 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1230 	IB_QP_SQ_PSN			= (1<<16),
1231 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1232 	IB_QP_PATH_MIG_STATE		= (1<<18),
1233 	IB_QP_CAP			= (1<<19),
1234 	IB_QP_DEST_QPN			= (1<<20),
1235 	IB_QP_RESERVED1			= (1<<21),
1236 	IB_QP_RESERVED2			= (1<<22),
1237 	IB_QP_RESERVED3			= (1<<23),
1238 	IB_QP_RESERVED4			= (1<<24),
1239 	IB_QP_RATE_LIMIT		= (1<<25),
1240 
1241 	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1242 };
1243 
1244 enum ib_qp_state {
1245 	IB_QPS_RESET,
1246 	IB_QPS_INIT,
1247 	IB_QPS_RTR,
1248 	IB_QPS_RTS,
1249 	IB_QPS_SQD,
1250 	IB_QPS_SQE,
1251 	IB_QPS_ERR
1252 };
1253 
1254 enum ib_mig_state {
1255 	IB_MIG_MIGRATED,
1256 	IB_MIG_REARM,
1257 	IB_MIG_ARMED
1258 };
1259 
1260 enum ib_mw_type {
1261 	IB_MW_TYPE_1 = 1,
1262 	IB_MW_TYPE_2 = 2
1263 };
1264 
1265 struct ib_qp_attr {
1266 	enum ib_qp_state	qp_state;
1267 	enum ib_qp_state	cur_qp_state;
1268 	enum ib_mtu		path_mtu;
1269 	enum ib_mig_state	path_mig_state;
1270 	u32			qkey;
1271 	u32			rq_psn;
1272 	u32			sq_psn;
1273 	u32			dest_qp_num;
1274 	int			qp_access_flags;
1275 	struct ib_qp_cap	cap;
1276 	struct rdma_ah_attr	ah_attr;
1277 	struct rdma_ah_attr	alt_ah_attr;
1278 	u16			pkey_index;
1279 	u16			alt_pkey_index;
1280 	u8			en_sqd_async_notify;
1281 	u8			sq_draining;
1282 	u8			max_rd_atomic;
1283 	u8			max_dest_rd_atomic;
1284 	u8			min_rnr_timer;
1285 	u32			port_num;
1286 	u8			timeout;
1287 	u8			retry_cnt;
1288 	u8			rnr_retry;
1289 	u32			alt_port_num;
1290 	u8			alt_timeout;
1291 	u32			rate_limit;
1292 	struct net_device	*xmit_slave;
1293 };
1294 
1295 enum ib_wr_opcode {
1296 	/* These are shared with userspace */
1297 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1298 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1299 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1300 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1301 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1302 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1303 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1304 	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1305 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1306 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1307 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1308 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1309 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1310 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1311 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1312 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1313 
1314 	/* These are kernel only and can not be issued by userspace */
1315 	IB_WR_REG_MR = 0x20,
1316 	IB_WR_REG_MR_INTEGRITY,
1317 
1318 	/* reserve values for low level drivers' internal use.
1319 	 * These values will not be used at all in the ib core layer.
1320 	 */
1321 	IB_WR_RESERVED1 = 0xf0,
1322 	IB_WR_RESERVED2,
1323 	IB_WR_RESERVED3,
1324 	IB_WR_RESERVED4,
1325 	IB_WR_RESERVED5,
1326 	IB_WR_RESERVED6,
1327 	IB_WR_RESERVED7,
1328 	IB_WR_RESERVED8,
1329 	IB_WR_RESERVED9,
1330 	IB_WR_RESERVED10,
1331 };
1332 
1333 enum ib_send_flags {
1334 	IB_SEND_FENCE		= 1,
1335 	IB_SEND_SIGNALED	= (1<<1),
1336 	IB_SEND_SOLICITED	= (1<<2),
1337 	IB_SEND_INLINE		= (1<<3),
1338 	IB_SEND_IP_CSUM		= (1<<4),
1339 
1340 	/* reserve bits 26-31 for low level drivers' internal use */
1341 	IB_SEND_RESERVED_START	= (1 << 26),
1342 	IB_SEND_RESERVED_END	= (1 << 31),
1343 };
1344 
1345 struct ib_sge {
1346 	u64	addr;
1347 	u32	length;
1348 	u32	lkey;
1349 };
1350 
1351 struct ib_cqe {
1352 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1353 };
1354 
1355 struct ib_send_wr {
1356 	struct ib_send_wr      *next;
1357 	union {
1358 		u64		wr_id;
1359 		struct ib_cqe	*wr_cqe;
1360 	};
1361 	struct ib_sge	       *sg_list;
1362 	int			num_sge;
1363 	enum ib_wr_opcode	opcode;
1364 	int			send_flags;
1365 	union {
1366 		__be32		imm_data;
1367 		u32		invalidate_rkey;
1368 	} ex;
1369 };
1370 
1371 struct ib_rdma_wr {
1372 	struct ib_send_wr	wr;
1373 	u64			remote_addr;
1374 	u32			rkey;
1375 };
1376 
rdma_wr(const struct ib_send_wr * wr)1377 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1378 {
1379 	return container_of(wr, struct ib_rdma_wr, wr);
1380 }
1381 
1382 struct ib_atomic_wr {
1383 	struct ib_send_wr	wr;
1384 	u64			remote_addr;
1385 	u64			compare_add;
1386 	u64			swap;
1387 	u64			compare_add_mask;
1388 	u64			swap_mask;
1389 	u32			rkey;
1390 };
1391 
atomic_wr(const struct ib_send_wr * wr)1392 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1393 {
1394 	return container_of(wr, struct ib_atomic_wr, wr);
1395 }
1396 
1397 struct ib_ud_wr {
1398 	struct ib_send_wr	wr;
1399 	struct ib_ah		*ah;
1400 	void			*header;
1401 	int			hlen;
1402 	int			mss;
1403 	u32			remote_qpn;
1404 	u32			remote_qkey;
1405 	u16			pkey_index; /* valid for GSI only */
1406 	u32			port_num; /* valid for DR SMPs on switch only */
1407 };
1408 
ud_wr(const struct ib_send_wr * wr)1409 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1410 {
1411 	return container_of(wr, struct ib_ud_wr, wr);
1412 }
1413 
1414 struct ib_reg_wr {
1415 	struct ib_send_wr	wr;
1416 	struct ib_mr		*mr;
1417 	u32			key;
1418 	int			access;
1419 };
1420 
reg_wr(const struct ib_send_wr * wr)1421 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1422 {
1423 	return container_of(wr, struct ib_reg_wr, wr);
1424 }
1425 
1426 struct ib_recv_wr {
1427 	struct ib_recv_wr      *next;
1428 	union {
1429 		u64		wr_id;
1430 		struct ib_cqe	*wr_cqe;
1431 	};
1432 	struct ib_sge	       *sg_list;
1433 	int			num_sge;
1434 };
1435 
1436 enum ib_access_flags {
1437 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1438 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1439 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1440 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1441 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1442 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1443 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1444 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1445 	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1446 
1447 	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1448 	IB_ACCESS_SUPPORTED =
1449 		((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1450 };
1451 
1452 /*
1453  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1454  * are hidden here instead of a uapi header!
1455  */
1456 enum ib_mr_rereg_flags {
1457 	IB_MR_REREG_TRANS	= 1,
1458 	IB_MR_REREG_PD		= (1<<1),
1459 	IB_MR_REREG_ACCESS	= (1<<2),
1460 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1461 };
1462 
1463 struct ib_umem;
1464 
1465 enum rdma_remove_reason {
1466 	/*
1467 	 * Userspace requested uobject deletion or initial try
1468 	 * to remove uobject via cleanup. Call could fail
1469 	 */
1470 	RDMA_REMOVE_DESTROY,
1471 	/* Context deletion. This call should delete the actual object itself */
1472 	RDMA_REMOVE_CLOSE,
1473 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1474 	RDMA_REMOVE_DRIVER_REMOVE,
1475 	/* uobj is being cleaned-up before being committed */
1476 	RDMA_REMOVE_ABORT,
1477 	/* The driver failed to destroy the uobject and is being disconnected */
1478 	RDMA_REMOVE_DRIVER_FAILURE,
1479 };
1480 
1481 struct ib_rdmacg_object {
1482 #ifdef CONFIG_CGROUP_RDMA
1483 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1484 #endif
1485 };
1486 
1487 struct ib_ucontext {
1488 	struct ib_device       *device;
1489 	struct ib_uverbs_file  *ufile;
1490 
1491 	struct ib_rdmacg_object	cg_obj;
1492 	/*
1493 	 * Implementation details of the RDMA core, don't use in drivers:
1494 	 */
1495 	struct rdma_restrack_entry res;
1496 	struct xarray mmap_xa;
1497 };
1498 
1499 struct ib_uobject {
1500 	u64			user_handle;	/* handle given to us by userspace */
1501 	/* ufile & ucontext owning this object */
1502 	struct ib_uverbs_file  *ufile;
1503 	/* FIXME, save memory: ufile->context == context */
1504 	struct ib_ucontext     *context;	/* associated user context */
1505 	void		       *object;		/* containing object */
1506 	struct list_head	list;		/* link to context's list */
1507 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1508 	int			id;		/* index into kernel idr */
1509 	struct kref		ref;
1510 	atomic_t		usecnt;		/* protects exclusive access */
1511 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1512 
1513 	const struct uverbs_api_object *uapi_object;
1514 };
1515 
1516 struct ib_udata {
1517 	const void __user *inbuf;
1518 	void __user *outbuf;
1519 	size_t       inlen;
1520 	size_t       outlen;
1521 };
1522 
1523 struct ib_pd {
1524 	u32			local_dma_lkey;
1525 	u32			flags;
1526 	struct ib_device       *device;
1527 	struct ib_uobject      *uobject;
1528 	atomic_t          	usecnt; /* count all resources */
1529 
1530 	u32			unsafe_global_rkey;
1531 
1532 	/*
1533 	 * Implementation details of the RDMA core, don't use in drivers:
1534 	 */
1535 	struct ib_mr	       *__internal_mr;
1536 	struct rdma_restrack_entry res;
1537 };
1538 
1539 struct ib_xrcd {
1540 	struct ib_device       *device;
1541 	atomic_t		usecnt; /* count all exposed resources */
1542 	struct inode	       *inode;
1543 	struct rw_semaphore	tgt_qps_rwsem;
1544 	struct xarray		tgt_qps;
1545 };
1546 
1547 struct ib_ah {
1548 	struct ib_device	*device;
1549 	struct ib_pd		*pd;
1550 	struct ib_uobject	*uobject;
1551 	const struct ib_gid_attr *sgid_attr;
1552 	enum rdma_ah_attr_type	type;
1553 };
1554 
1555 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1556 
1557 enum ib_poll_context {
1558 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1559 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1560 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1561 	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1562 
1563 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1564 };
1565 
1566 struct ib_cq {
1567 	struct ib_device       *device;
1568 	struct ib_ucq_object   *uobject;
1569 	ib_comp_handler   	comp_handler;
1570 	void                  (*event_handler)(struct ib_event *, void *);
1571 	void                   *cq_context;
1572 	int               	cqe;
1573 	unsigned int		cqe_used;
1574 	atomic_t          	usecnt; /* count number of work queues */
1575 	enum ib_poll_context	poll_ctx;
1576 	struct ib_wc		*wc;
1577 	struct list_head        pool_entry;
1578 	union {
1579 		struct irq_poll		iop;
1580 		struct work_struct	work;
1581 	};
1582 	struct workqueue_struct *comp_wq;
1583 	struct dim *dim;
1584 
1585 	/* updated only by trace points */
1586 	ktime_t timestamp;
1587 	u8 interrupt:1;
1588 	u8 shared:1;
1589 	unsigned int comp_vector;
1590 
1591 	/*
1592 	 * Implementation details of the RDMA core, don't use in drivers:
1593 	 */
1594 	struct rdma_restrack_entry res;
1595 };
1596 
1597 struct ib_srq {
1598 	struct ib_device       *device;
1599 	struct ib_pd	       *pd;
1600 	struct ib_usrq_object  *uobject;
1601 	void		      (*event_handler)(struct ib_event *, void *);
1602 	void		       *srq_context;
1603 	enum ib_srq_type	srq_type;
1604 	atomic_t		usecnt;
1605 
1606 	struct {
1607 		struct ib_cq   *cq;
1608 		union {
1609 			struct {
1610 				struct ib_xrcd *xrcd;
1611 				u32		srq_num;
1612 			} xrc;
1613 		};
1614 	} ext;
1615 
1616 	/*
1617 	 * Implementation details of the RDMA core, don't use in drivers:
1618 	 */
1619 	struct rdma_restrack_entry res;
1620 };
1621 
1622 enum ib_raw_packet_caps {
1623 	/* Strip cvlan from incoming packet and report it in the matching work
1624 	 * completion is supported.
1625 	 */
1626 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1627 	/* Scatter FCS field of an incoming packet to host memory is supported.
1628 	 */
1629 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1630 	/* Checksum offloads are supported (for both send and receive). */
1631 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1632 	/* When a packet is received for an RQ with no receive WQEs, the
1633 	 * packet processing is delayed.
1634 	 */
1635 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1636 };
1637 
1638 enum ib_wq_type {
1639 	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1640 };
1641 
1642 enum ib_wq_state {
1643 	IB_WQS_RESET,
1644 	IB_WQS_RDY,
1645 	IB_WQS_ERR
1646 };
1647 
1648 struct ib_wq {
1649 	struct ib_device       *device;
1650 	struct ib_uwq_object   *uobject;
1651 	void		    *wq_context;
1652 	void		    (*event_handler)(struct ib_event *, void *);
1653 	struct ib_pd	       *pd;
1654 	struct ib_cq	       *cq;
1655 	u32		wq_num;
1656 	enum ib_wq_state       state;
1657 	enum ib_wq_type	wq_type;
1658 	atomic_t		usecnt;
1659 };
1660 
1661 enum ib_wq_flags {
1662 	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1663 	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1664 	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1665 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1666 				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1667 };
1668 
1669 struct ib_wq_init_attr {
1670 	void		       *wq_context;
1671 	enum ib_wq_type	wq_type;
1672 	u32		max_wr;
1673 	u32		max_sge;
1674 	struct	ib_cq	       *cq;
1675 	void		    (*event_handler)(struct ib_event *, void *);
1676 	u32		create_flags; /* Use enum ib_wq_flags */
1677 };
1678 
1679 enum ib_wq_attr_mask {
1680 	IB_WQ_STATE		= 1 << 0,
1681 	IB_WQ_CUR_STATE		= 1 << 1,
1682 	IB_WQ_FLAGS		= 1 << 2,
1683 };
1684 
1685 struct ib_wq_attr {
1686 	enum	ib_wq_state	wq_state;
1687 	enum	ib_wq_state	curr_wq_state;
1688 	u32			flags; /* Use enum ib_wq_flags */
1689 	u32			flags_mask; /* Use enum ib_wq_flags */
1690 };
1691 
1692 struct ib_rwq_ind_table {
1693 	struct ib_device	*device;
1694 	struct ib_uobject      *uobject;
1695 	atomic_t		usecnt;
1696 	u32		ind_tbl_num;
1697 	u32		log_ind_tbl_size;
1698 	struct ib_wq	**ind_tbl;
1699 };
1700 
1701 struct ib_rwq_ind_table_init_attr {
1702 	u32		log_ind_tbl_size;
1703 	/* Each entry is a pointer to Receive Work Queue */
1704 	struct ib_wq	**ind_tbl;
1705 };
1706 
1707 enum port_pkey_state {
1708 	IB_PORT_PKEY_NOT_VALID = 0,
1709 	IB_PORT_PKEY_VALID = 1,
1710 	IB_PORT_PKEY_LISTED = 2,
1711 };
1712 
1713 struct ib_qp_security;
1714 
1715 struct ib_port_pkey {
1716 	enum port_pkey_state	state;
1717 	u16			pkey_index;
1718 	u32			port_num;
1719 	struct list_head	qp_list;
1720 	struct list_head	to_error_list;
1721 	struct ib_qp_security  *sec;
1722 };
1723 
1724 struct ib_ports_pkeys {
1725 	struct ib_port_pkey	main;
1726 	struct ib_port_pkey	alt;
1727 };
1728 
1729 struct ib_qp_security {
1730 	struct ib_qp	       *qp;
1731 	struct ib_device       *dev;
1732 	/* Hold this mutex when changing port and pkey settings. */
1733 	struct mutex		mutex;
1734 	struct ib_ports_pkeys  *ports_pkeys;
1735 	/* A list of all open shared QP handles.  Required to enforce security
1736 	 * properly for all users of a shared QP.
1737 	 */
1738 	struct list_head        shared_qp_list;
1739 	void                   *security;
1740 	bool			destroying;
1741 	atomic_t		error_list_count;
1742 	struct completion	error_complete;
1743 	int			error_comps_pending;
1744 };
1745 
1746 /*
1747  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1748  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1749  */
1750 struct ib_qp {
1751 	struct ib_device       *device;
1752 	struct ib_pd	       *pd;
1753 	struct ib_cq	       *send_cq;
1754 	struct ib_cq	       *recv_cq;
1755 	spinlock_t		mr_lock;
1756 	int			mrs_used;
1757 	struct list_head	rdma_mrs;
1758 	struct list_head	sig_mrs;
1759 	struct ib_srq	       *srq;
1760 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1761 	struct list_head	xrcd_list;
1762 
1763 	/* count times opened, mcast attaches, flow attaches */
1764 	atomic_t		usecnt;
1765 	struct list_head	open_list;
1766 	struct ib_qp           *real_qp;
1767 	struct ib_uqp_object   *uobject;
1768 	void                  (*event_handler)(struct ib_event *, void *);
1769 	void		       *qp_context;
1770 	/* sgid_attrs associated with the AV's */
1771 	const struct ib_gid_attr *av_sgid_attr;
1772 	const struct ib_gid_attr *alt_path_sgid_attr;
1773 	u32			qp_num;
1774 	u32			max_write_sge;
1775 	u32			max_read_sge;
1776 	enum ib_qp_type		qp_type;
1777 	struct ib_rwq_ind_table *rwq_ind_tbl;
1778 	struct ib_qp_security  *qp_sec;
1779 	u32			port;
1780 
1781 	bool			integrity_en;
1782 	/*
1783 	 * Implementation details of the RDMA core, don't use in drivers:
1784 	 */
1785 	struct rdma_restrack_entry     res;
1786 
1787 	/* The counter the qp is bind to */
1788 	struct rdma_counter    *counter;
1789 };
1790 
1791 struct ib_dm {
1792 	struct ib_device  *device;
1793 	u32		   length;
1794 	u32		   flags;
1795 	struct ib_uobject *uobject;
1796 	atomic_t	   usecnt;
1797 };
1798 
1799 struct ib_mr {
1800 	struct ib_device  *device;
1801 	struct ib_pd	  *pd;
1802 	u32		   lkey;
1803 	u32		   rkey;
1804 	u64		   iova;
1805 	u64		   length;
1806 	unsigned int	   page_size;
1807 	enum ib_mr_type	   type;
1808 	bool		   need_inval;
1809 	union {
1810 		struct ib_uobject	*uobject;	/* user */
1811 		struct list_head	qp_entry;	/* FR */
1812 	};
1813 
1814 	struct ib_dm      *dm;
1815 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1816 	/*
1817 	 * Implementation details of the RDMA core, don't use in drivers:
1818 	 */
1819 	struct rdma_restrack_entry res;
1820 };
1821 
1822 struct ib_mw {
1823 	struct ib_device	*device;
1824 	struct ib_pd		*pd;
1825 	struct ib_uobject	*uobject;
1826 	u32			rkey;
1827 	enum ib_mw_type         type;
1828 };
1829 
1830 /* Supported steering options */
1831 enum ib_flow_attr_type {
1832 	/* steering according to rule specifications */
1833 	IB_FLOW_ATTR_NORMAL		= 0x0,
1834 	/* default unicast and multicast rule -
1835 	 * receive all Eth traffic which isn't steered to any QP
1836 	 */
1837 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1838 	/* default multicast rule -
1839 	 * receive all Eth multicast traffic which isn't steered to any QP
1840 	 */
1841 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1842 	/* sniffer rule - receive all port traffic */
1843 	IB_FLOW_ATTR_SNIFFER		= 0x3
1844 };
1845 
1846 /* Supported steering header types */
1847 enum ib_flow_spec_type {
1848 	/* L2 headers*/
1849 	IB_FLOW_SPEC_ETH		= 0x20,
1850 	IB_FLOW_SPEC_IB			= 0x22,
1851 	/* L3 header*/
1852 	IB_FLOW_SPEC_IPV4		= 0x30,
1853 	IB_FLOW_SPEC_IPV6		= 0x31,
1854 	IB_FLOW_SPEC_ESP                = 0x34,
1855 	/* L4 headers*/
1856 	IB_FLOW_SPEC_TCP		= 0x40,
1857 	IB_FLOW_SPEC_UDP		= 0x41,
1858 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1859 	IB_FLOW_SPEC_GRE		= 0x51,
1860 	IB_FLOW_SPEC_MPLS		= 0x60,
1861 	IB_FLOW_SPEC_INNER		= 0x100,
1862 	/* Actions */
1863 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1864 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1865 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1866 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1867 };
1868 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1869 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1870 
1871 enum ib_flow_flags {
1872 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1873 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1874 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1875 };
1876 
1877 struct ib_flow_eth_filter {
1878 	u8	dst_mac[6];
1879 	u8	src_mac[6];
1880 	__be16	ether_type;
1881 	__be16	vlan_tag;
1882 	/* Must be last */
1883 	u8	real_sz[];
1884 };
1885 
1886 struct ib_flow_spec_eth {
1887 	u32			  type;
1888 	u16			  size;
1889 	struct ib_flow_eth_filter val;
1890 	struct ib_flow_eth_filter mask;
1891 };
1892 
1893 struct ib_flow_ib_filter {
1894 	__be16 dlid;
1895 	__u8   sl;
1896 	/* Must be last */
1897 	u8	real_sz[];
1898 };
1899 
1900 struct ib_flow_spec_ib {
1901 	u32			 type;
1902 	u16			 size;
1903 	struct ib_flow_ib_filter val;
1904 	struct ib_flow_ib_filter mask;
1905 };
1906 
1907 /* IPv4 header flags */
1908 enum ib_ipv4_flags {
1909 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1910 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1911 				    last have this flag set */
1912 };
1913 
1914 struct ib_flow_ipv4_filter {
1915 	__be32	src_ip;
1916 	__be32	dst_ip;
1917 	u8	proto;
1918 	u8	tos;
1919 	u8	ttl;
1920 	u8	flags;
1921 	/* Must be last */
1922 	u8	real_sz[];
1923 };
1924 
1925 struct ib_flow_spec_ipv4 {
1926 	u32			   type;
1927 	u16			   size;
1928 	struct ib_flow_ipv4_filter val;
1929 	struct ib_flow_ipv4_filter mask;
1930 };
1931 
1932 struct ib_flow_ipv6_filter {
1933 	u8	src_ip[16];
1934 	u8	dst_ip[16];
1935 	__be32	flow_label;
1936 	u8	next_hdr;
1937 	u8	traffic_class;
1938 	u8	hop_limit;
1939 	/* Must be last */
1940 	u8	real_sz[];
1941 };
1942 
1943 struct ib_flow_spec_ipv6 {
1944 	u32			   type;
1945 	u16			   size;
1946 	struct ib_flow_ipv6_filter val;
1947 	struct ib_flow_ipv6_filter mask;
1948 };
1949 
1950 struct ib_flow_tcp_udp_filter {
1951 	__be16	dst_port;
1952 	__be16	src_port;
1953 	/* Must be last */
1954 	u8	real_sz[];
1955 };
1956 
1957 struct ib_flow_spec_tcp_udp {
1958 	u32			      type;
1959 	u16			      size;
1960 	struct ib_flow_tcp_udp_filter val;
1961 	struct ib_flow_tcp_udp_filter mask;
1962 };
1963 
1964 struct ib_flow_tunnel_filter {
1965 	__be32	tunnel_id;
1966 	u8	real_sz[];
1967 };
1968 
1969 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1970  * the tunnel_id from val has the vni value
1971  */
1972 struct ib_flow_spec_tunnel {
1973 	u32			      type;
1974 	u16			      size;
1975 	struct ib_flow_tunnel_filter  val;
1976 	struct ib_flow_tunnel_filter  mask;
1977 };
1978 
1979 struct ib_flow_esp_filter {
1980 	__be32	spi;
1981 	__be32  seq;
1982 	/* Must be last */
1983 	u8	real_sz[];
1984 };
1985 
1986 struct ib_flow_spec_esp {
1987 	u32                           type;
1988 	u16			      size;
1989 	struct ib_flow_esp_filter     val;
1990 	struct ib_flow_esp_filter     mask;
1991 };
1992 
1993 struct ib_flow_gre_filter {
1994 	__be16 c_ks_res0_ver;
1995 	__be16 protocol;
1996 	__be32 key;
1997 	/* Must be last */
1998 	u8	real_sz[];
1999 };
2000 
2001 struct ib_flow_spec_gre {
2002 	u32                           type;
2003 	u16			      size;
2004 	struct ib_flow_gre_filter     val;
2005 	struct ib_flow_gre_filter     mask;
2006 };
2007 
2008 struct ib_flow_mpls_filter {
2009 	__be32 tag;
2010 	/* Must be last */
2011 	u8	real_sz[];
2012 };
2013 
2014 struct ib_flow_spec_mpls {
2015 	u32                           type;
2016 	u16			      size;
2017 	struct ib_flow_mpls_filter     val;
2018 	struct ib_flow_mpls_filter     mask;
2019 };
2020 
2021 struct ib_flow_spec_action_tag {
2022 	enum ib_flow_spec_type	      type;
2023 	u16			      size;
2024 	u32                           tag_id;
2025 };
2026 
2027 struct ib_flow_spec_action_drop {
2028 	enum ib_flow_spec_type	      type;
2029 	u16			      size;
2030 };
2031 
2032 struct ib_flow_spec_action_handle {
2033 	enum ib_flow_spec_type	      type;
2034 	u16			      size;
2035 	struct ib_flow_action	     *act;
2036 };
2037 
2038 enum ib_counters_description {
2039 	IB_COUNTER_PACKETS,
2040 	IB_COUNTER_BYTES,
2041 };
2042 
2043 struct ib_flow_spec_action_count {
2044 	enum ib_flow_spec_type type;
2045 	u16 size;
2046 	struct ib_counters *counters;
2047 };
2048 
2049 union ib_flow_spec {
2050 	struct {
2051 		u32			type;
2052 		u16			size;
2053 	};
2054 	struct ib_flow_spec_eth		eth;
2055 	struct ib_flow_spec_ib		ib;
2056 	struct ib_flow_spec_ipv4        ipv4;
2057 	struct ib_flow_spec_tcp_udp	tcp_udp;
2058 	struct ib_flow_spec_ipv6        ipv6;
2059 	struct ib_flow_spec_tunnel      tunnel;
2060 	struct ib_flow_spec_esp		esp;
2061 	struct ib_flow_spec_gre		gre;
2062 	struct ib_flow_spec_mpls	mpls;
2063 	struct ib_flow_spec_action_tag  flow_tag;
2064 	struct ib_flow_spec_action_drop drop;
2065 	struct ib_flow_spec_action_handle action;
2066 	struct ib_flow_spec_action_count flow_count;
2067 };
2068 
2069 struct ib_flow_attr {
2070 	enum ib_flow_attr_type type;
2071 	u16	     size;
2072 	u16	     priority;
2073 	u32	     flags;
2074 	u8	     num_of_specs;
2075 	u32	     port;
2076 	union ib_flow_spec flows[];
2077 };
2078 
2079 struct ib_flow {
2080 	struct ib_qp		*qp;
2081 	struct ib_device	*device;
2082 	struct ib_uobject	*uobject;
2083 };
2084 
2085 enum ib_flow_action_type {
2086 	IB_FLOW_ACTION_UNSPECIFIED,
2087 	IB_FLOW_ACTION_ESP = 1,
2088 };
2089 
2090 struct ib_flow_action_attrs_esp_keymats {
2091 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2092 	union {
2093 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2094 	} keymat;
2095 };
2096 
2097 struct ib_flow_action_attrs_esp_replays {
2098 	enum ib_uverbs_flow_action_esp_replay			protocol;
2099 	union {
2100 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2101 	} replay;
2102 };
2103 
2104 enum ib_flow_action_attrs_esp_flags {
2105 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2106 	 * This is done in order to share the same flags between user-space and
2107 	 * kernel and spare an unnecessary translation.
2108 	 */
2109 
2110 	/* Kernel flags */
2111 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2112 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2113 };
2114 
2115 struct ib_flow_spec_list {
2116 	struct ib_flow_spec_list	*next;
2117 	union ib_flow_spec		spec;
2118 };
2119 
2120 struct ib_flow_action_attrs_esp {
2121 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2122 	struct ib_flow_action_attrs_esp_replays		*replay;
2123 	struct ib_flow_spec_list			*encap;
2124 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2125 	 * Value of 0 is a valid value.
2126 	 */
2127 	u32						esn;
2128 	u32						spi;
2129 	u32						seq;
2130 	u32						tfc_pad;
2131 	/* Use enum ib_flow_action_attrs_esp_flags */
2132 	u64						flags;
2133 	u64						hard_limit_pkts;
2134 };
2135 
2136 struct ib_flow_action {
2137 	struct ib_device		*device;
2138 	struct ib_uobject		*uobject;
2139 	enum ib_flow_action_type	type;
2140 	atomic_t			usecnt;
2141 };
2142 
2143 struct ib_mad;
2144 
2145 enum ib_process_mad_flags {
2146 	IB_MAD_IGNORE_MKEY	= 1,
2147 	IB_MAD_IGNORE_BKEY	= 2,
2148 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2149 };
2150 
2151 enum ib_mad_result {
2152 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2153 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2154 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2155 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2156 };
2157 
2158 struct ib_port_cache {
2159 	u64		      subnet_prefix;
2160 	struct ib_pkey_cache  *pkey;
2161 	struct ib_gid_table   *gid;
2162 	u8                     lmc;
2163 	enum ib_port_state     port_state;
2164 };
2165 
2166 struct ib_port_immutable {
2167 	int                           pkey_tbl_len;
2168 	int                           gid_tbl_len;
2169 	u32                           core_cap_flags;
2170 	u32                           max_mad_size;
2171 };
2172 
2173 struct ib_port_data {
2174 	struct ib_device *ib_dev;
2175 
2176 	struct ib_port_immutable immutable;
2177 
2178 	spinlock_t pkey_list_lock;
2179 
2180 	spinlock_t netdev_lock;
2181 
2182 	struct list_head pkey_list;
2183 
2184 	struct ib_port_cache cache;
2185 
2186 	struct net_device __rcu *netdev;
2187 	struct hlist_node ndev_hash_link;
2188 	struct rdma_port_counter port_counter;
2189 	struct ib_port *sysfs;
2190 };
2191 
2192 /* rdma netdev type - specifies protocol type */
2193 enum rdma_netdev_t {
2194 	RDMA_NETDEV_OPA_VNIC,
2195 	RDMA_NETDEV_IPOIB,
2196 };
2197 
2198 /**
2199  * struct rdma_netdev - rdma netdev
2200  * For cases where netstack interfacing is required.
2201  */
2202 struct rdma_netdev {
2203 	void              *clnt_priv;
2204 	struct ib_device  *hca;
2205 	u32		   port_num;
2206 	int                mtu;
2207 
2208 	/*
2209 	 * cleanup function must be specified.
2210 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2211 	 * removed too.
2212 	 */
2213 	void (*free_rdma_netdev)(struct net_device *netdev);
2214 
2215 	/* control functions */
2216 	void (*set_id)(struct net_device *netdev, int id);
2217 	/* send packet */
2218 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2219 		    struct ib_ah *address, u32 dqpn);
2220 	/* multicast */
2221 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2222 			    union ib_gid *gid, u16 mlid,
2223 			    int set_qkey, u32 qkey);
2224 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2225 			    union ib_gid *gid, u16 mlid);
2226 	/* timeout */
2227 	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2228 };
2229 
2230 struct rdma_netdev_alloc_params {
2231 	size_t sizeof_priv;
2232 	unsigned int txqs;
2233 	unsigned int rxqs;
2234 	void *param;
2235 
2236 	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2237 				      struct net_device *netdev, void *param);
2238 };
2239 
2240 struct ib_odp_counters {
2241 	atomic64_t faults;
2242 	atomic64_t invalidations;
2243 	atomic64_t prefetch;
2244 };
2245 
2246 struct ib_counters {
2247 	struct ib_device	*device;
2248 	struct ib_uobject	*uobject;
2249 	/* num of objects attached */
2250 	atomic_t	usecnt;
2251 };
2252 
2253 struct ib_counters_read_attr {
2254 	u64	*counters_buff;
2255 	u32	ncounters;
2256 	u32	flags; /* use enum ib_read_counters_flags */
2257 };
2258 
2259 struct uverbs_attr_bundle;
2260 struct iw_cm_id;
2261 struct iw_cm_conn_param;
2262 
2263 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2264 	.size_##ib_struct =                                                    \
2265 		(sizeof(struct drv_struct) +                                   \
2266 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2267 		 BUILD_BUG_ON_ZERO(                                            \
2268 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2269 				      struct ib_struct)))
2270 
2271 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2272 	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2273 					   gfp, false))
2274 
2275 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2276 	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2277 					   GFP_KERNEL, true))
2278 
2279 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2280 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2281 
2282 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2283 
2284 struct rdma_user_mmap_entry {
2285 	struct kref ref;
2286 	struct ib_ucontext *ucontext;
2287 	unsigned long start_pgoff;
2288 	size_t npages;
2289 	bool driver_removed;
2290 };
2291 
2292 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2293 static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2294 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2295 {
2296 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2297 }
2298 
2299 /**
2300  * struct ib_device_ops - InfiniBand device operations
2301  * This structure defines all the InfiniBand device operations, providers will
2302  * need to define the supported operations, otherwise they will be set to null.
2303  */
2304 struct ib_device_ops {
2305 	struct module *owner;
2306 	enum rdma_driver_id driver_id;
2307 	u32 uverbs_abi_ver;
2308 	unsigned int uverbs_no_driver_id_binding:1;
2309 
2310 	/*
2311 	 * NOTE: New drivers should not make use of device_group; instead new
2312 	 * device parameter should be exposed via netlink command. This
2313 	 * mechanism exists only for existing drivers.
2314 	 */
2315 	const struct attribute_group *device_group;
2316 	const struct attribute_group **port_groups;
2317 
2318 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2319 			 const struct ib_send_wr **bad_send_wr);
2320 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2321 			 const struct ib_recv_wr **bad_recv_wr);
2322 	void (*drain_rq)(struct ib_qp *qp);
2323 	void (*drain_sq)(struct ib_qp *qp);
2324 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2325 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2326 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2327 	int (*post_srq_recv)(struct ib_srq *srq,
2328 			     const struct ib_recv_wr *recv_wr,
2329 			     const struct ib_recv_wr **bad_recv_wr);
2330 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2331 			   u32 port_num, const struct ib_wc *in_wc,
2332 			   const struct ib_grh *in_grh,
2333 			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2334 			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2335 	int (*query_device)(struct ib_device *device,
2336 			    struct ib_device_attr *device_attr,
2337 			    struct ib_udata *udata);
2338 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2339 			     struct ib_device_modify *device_modify);
2340 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2341 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2342 						     int comp_vector);
2343 	int (*query_port)(struct ib_device *device, u32 port_num,
2344 			  struct ib_port_attr *port_attr);
2345 	int (*modify_port)(struct ib_device *device, u32 port_num,
2346 			   int port_modify_mask,
2347 			   struct ib_port_modify *port_modify);
2348 	/**
2349 	 * The following mandatory functions are used only at device
2350 	 * registration.  Keep functions such as these at the end of this
2351 	 * structure to avoid cache line misses when accessing struct ib_device
2352 	 * in fast paths.
2353 	 */
2354 	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2355 				  struct ib_port_immutable *immutable);
2356 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2357 					       u32 port_num);
2358 	/**
2359 	 * When calling get_netdev, the HW vendor's driver should return the
2360 	 * net device of device @device at port @port_num or NULL if such
2361 	 * a net device doesn't exist. The vendor driver should call dev_hold
2362 	 * on this net device. The HW vendor's device driver must guarantee
2363 	 * that this function returns NULL before the net device has finished
2364 	 * NETDEV_UNREGISTER state.
2365 	 */
2366 	struct net_device *(*get_netdev)(struct ib_device *device,
2367 					 u32 port_num);
2368 	/**
2369 	 * rdma netdev operation
2370 	 *
2371 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2372 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2373 	 */
2374 	struct net_device *(*alloc_rdma_netdev)(
2375 		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2376 		const char *name, unsigned char name_assign_type,
2377 		void (*setup)(struct net_device *));
2378 
2379 	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2380 				      enum rdma_netdev_t type,
2381 				      struct rdma_netdev_alloc_params *params);
2382 	/**
2383 	 * query_gid should be return GID value for @device, when @port_num
2384 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2385 	 * is RoCE link layer.
2386 	 */
2387 	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2388 			 union ib_gid *gid);
2389 	/**
2390 	 * When calling add_gid, the HW vendor's driver should add the gid
2391 	 * of device of port at gid index available at @attr. Meta-info of
2392 	 * that gid (for example, the network device related to this gid) is
2393 	 * available at @attr. @context allows the HW vendor driver to store
2394 	 * extra information together with a GID entry. The HW vendor driver may
2395 	 * allocate memory to contain this information and store it in @context
2396 	 * when a new GID entry is written to. Params are consistent until the
2397 	 * next call of add_gid or delete_gid. The function should return 0 on
2398 	 * success or error otherwise. The function could be called
2399 	 * concurrently for different ports. This function is only called when
2400 	 * roce_gid_table is used.
2401 	 */
2402 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2403 	/**
2404 	 * When calling del_gid, the HW vendor's driver should delete the
2405 	 * gid of device @device at gid index gid_index of port port_num
2406 	 * available in @attr.
2407 	 * Upon the deletion of a GID entry, the HW vendor must free any
2408 	 * allocated memory. The caller will clear @context afterwards.
2409 	 * This function is only called when roce_gid_table is used.
2410 	 */
2411 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2412 	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2413 			  u16 *pkey);
2414 	int (*alloc_ucontext)(struct ib_ucontext *context,
2415 			      struct ib_udata *udata);
2416 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2417 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2418 	/**
2419 	 * This will be called once refcount of an entry in mmap_xa reaches
2420 	 * zero. The type of the memory that was mapped may differ between
2421 	 * entries and is opaque to the rdma_user_mmap interface.
2422 	 * Therefore needs to be implemented by the driver in mmap_free.
2423 	 */
2424 	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2425 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2426 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2427 	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2428 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2429 			 struct ib_udata *udata);
2430 	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2431 			      struct ib_udata *udata);
2432 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2433 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2434 	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2435 	int (*create_srq)(struct ib_srq *srq,
2436 			  struct ib_srq_init_attr *srq_init_attr,
2437 			  struct ib_udata *udata);
2438 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2439 			  enum ib_srq_attr_mask srq_attr_mask,
2440 			  struct ib_udata *udata);
2441 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2442 	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2443 	int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2444 			 struct ib_udata *udata);
2445 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2446 			 int qp_attr_mask, struct ib_udata *udata);
2447 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2448 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2449 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2450 	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2451 			 struct ib_udata *udata);
2452 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2453 	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2454 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2455 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2456 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2457 				     u64 virt_addr, int mr_access_flags,
2458 				     struct ib_udata *udata);
2459 	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2460 					    u64 length, u64 virt_addr, int fd,
2461 					    int mr_access_flags,
2462 					    struct ib_udata *udata);
2463 	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2464 				       u64 length, u64 virt_addr,
2465 				       int mr_access_flags, struct ib_pd *pd,
2466 				       struct ib_udata *udata);
2467 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2468 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2469 				  u32 max_num_sg);
2470 	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2471 					    u32 max_num_data_sg,
2472 					    u32 max_num_meta_sg);
2473 	int (*advise_mr)(struct ib_pd *pd,
2474 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2475 			 struct ib_sge *sg_list, u32 num_sge,
2476 			 struct uverbs_attr_bundle *attrs);
2477 
2478 	/*
2479 	 * Kernel users should universally support relaxed ordering (RO), as
2480 	 * they are designed to read data only after observing the CQE and use
2481 	 * the DMA API correctly.
2482 	 *
2483 	 * Some drivers implicitly enable RO if platform supports it.
2484 	 */
2485 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2486 			 unsigned int *sg_offset);
2487 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2488 			       struct ib_mr_status *mr_status);
2489 	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2490 	int (*dealloc_mw)(struct ib_mw *mw);
2491 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2492 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2493 	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2494 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2495 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2496 				       struct ib_flow_attr *flow_attr,
2497 				       struct ib_udata *udata);
2498 	int (*destroy_flow)(struct ib_flow *flow_id);
2499 	struct ib_flow_action *(*create_flow_action_esp)(
2500 		struct ib_device *device,
2501 		const struct ib_flow_action_attrs_esp *attr,
2502 		struct uverbs_attr_bundle *attrs);
2503 	int (*destroy_flow_action)(struct ib_flow_action *action);
2504 	int (*modify_flow_action_esp)(
2505 		struct ib_flow_action *action,
2506 		const struct ib_flow_action_attrs_esp *attr,
2507 		struct uverbs_attr_bundle *attrs);
2508 	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2509 				 int state);
2510 	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2511 			     struct ifla_vf_info *ivf);
2512 	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2513 			    struct ifla_vf_stats *stats);
2514 	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2515 			    struct ifla_vf_guid *node_guid,
2516 			    struct ifla_vf_guid *port_guid);
2517 	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2518 			   int type);
2519 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2520 				   struct ib_wq_init_attr *init_attr,
2521 				   struct ib_udata *udata);
2522 	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2523 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2524 			 u32 wq_attr_mask, struct ib_udata *udata);
2525 	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2526 				    struct ib_rwq_ind_table_init_attr *init_attr,
2527 				    struct ib_udata *udata);
2528 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2529 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2530 				  struct ib_ucontext *context,
2531 				  struct ib_dm_alloc_attr *attr,
2532 				  struct uverbs_attr_bundle *attrs);
2533 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2534 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2535 				   struct ib_dm_mr_attr *attr,
2536 				   struct uverbs_attr_bundle *attrs);
2537 	int (*create_counters)(struct ib_counters *counters,
2538 			       struct uverbs_attr_bundle *attrs);
2539 	int (*destroy_counters)(struct ib_counters *counters);
2540 	int (*read_counters)(struct ib_counters *counters,
2541 			     struct ib_counters_read_attr *counters_read_attr,
2542 			     struct uverbs_attr_bundle *attrs);
2543 	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2544 			    int data_sg_nents, unsigned int *data_sg_offset,
2545 			    struct scatterlist *meta_sg, int meta_sg_nents,
2546 			    unsigned int *meta_sg_offset);
2547 
2548 	/**
2549 	 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2550 	 *   fill in the driver initialized data.  The struct is kfree()'ed by
2551 	 *   the sysfs core when the device is removed.  A lifespan of -1 in the
2552 	 *   return struct tells the core to set a default lifespan.
2553 	 */
2554 	struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2555 	struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2556 						     u32 port_num);
2557 	/**
2558 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2559 	 * @index - The index in the value array we wish to have updated, or
2560 	 *   num_counters if we want all stats updated
2561 	 * Return codes -
2562 	 *   < 0 - Error, no counters updated
2563 	 *   index - Updated the single counter pointed to by index
2564 	 *   num_counters - Updated all counters (will reset the timestamp
2565 	 *     and prevent further calls for lifespan milliseconds)
2566 	 * Drivers are allowed to update all counters in leiu of just the
2567 	 *   one given in index at their option
2568 	 */
2569 	int (*get_hw_stats)(struct ib_device *device,
2570 			    struct rdma_hw_stats *stats, u32 port, int index);
2571 
2572 	/**
2573 	 * Allows rdma drivers to add their own restrack attributes.
2574 	 */
2575 	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2576 	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2577 	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2578 	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2579 	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2580 	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2581 	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2582 
2583 	/* Device lifecycle callbacks */
2584 	/*
2585 	 * Called after the device becomes registered, before clients are
2586 	 * attached
2587 	 */
2588 	int (*enable_driver)(struct ib_device *dev);
2589 	/*
2590 	 * This is called as part of ib_dealloc_device().
2591 	 */
2592 	void (*dealloc_driver)(struct ib_device *dev);
2593 
2594 	/* iWarp CM callbacks */
2595 	void (*iw_add_ref)(struct ib_qp *qp);
2596 	void (*iw_rem_ref)(struct ib_qp *qp);
2597 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2598 	int (*iw_connect)(struct iw_cm_id *cm_id,
2599 			  struct iw_cm_conn_param *conn_param);
2600 	int (*iw_accept)(struct iw_cm_id *cm_id,
2601 			 struct iw_cm_conn_param *conn_param);
2602 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2603 			 u8 pdata_len);
2604 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2605 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2606 	/**
2607 	 * counter_bind_qp - Bind a QP to a counter.
2608 	 * @counter - The counter to be bound. If counter->id is zero then
2609 	 *   the driver needs to allocate a new counter and set counter->id
2610 	 */
2611 	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2612 	/**
2613 	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2614 	 *   counter and bind it onto the default one
2615 	 */
2616 	int (*counter_unbind_qp)(struct ib_qp *qp);
2617 	/**
2618 	 * counter_dealloc -De-allocate the hw counter
2619 	 */
2620 	int (*counter_dealloc)(struct rdma_counter *counter);
2621 	/**
2622 	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2623 	 * the driver initialized data.
2624 	 */
2625 	struct rdma_hw_stats *(*counter_alloc_stats)(
2626 		struct rdma_counter *counter);
2627 	/**
2628 	 * counter_update_stats - Query the stats value of this counter
2629 	 */
2630 	int (*counter_update_stats)(struct rdma_counter *counter);
2631 
2632 	/**
2633 	 * Allows rdma drivers to add their own restrack attributes
2634 	 * dumped via 'rdma stat' iproute2 command.
2635 	 */
2636 	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2637 
2638 	/* query driver for its ucontext properties */
2639 	int (*query_ucontext)(struct ib_ucontext *context,
2640 			      struct uverbs_attr_bundle *attrs);
2641 
2642 	/*
2643 	 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2644 	 * Everyone else relies on Linux memory management model.
2645 	 */
2646 	int (*get_numa_node)(struct ib_device *dev);
2647 
2648 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2649 	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2650 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2651 	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2652 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2653 	DECLARE_RDMA_OBJ_SIZE(ib_qp);
2654 	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2655 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2656 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2657 	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2658 };
2659 
2660 struct ib_core_device {
2661 	/* device must be the first element in structure until,
2662 	 * union of ib_core_device and device exists in ib_device.
2663 	 */
2664 	struct device dev;
2665 	possible_net_t rdma_net;
2666 	struct kobject *ports_kobj;
2667 	struct list_head port_list;
2668 	struct ib_device *owner; /* reach back to owner ib_device */
2669 };
2670 
2671 struct rdma_restrack_root;
2672 struct ib_device {
2673 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2674 	struct device                *dma_device;
2675 	struct ib_device_ops	     ops;
2676 	char                          name[IB_DEVICE_NAME_MAX];
2677 	struct rcu_head rcu_head;
2678 
2679 	struct list_head              event_handler_list;
2680 	/* Protects event_handler_list */
2681 	struct rw_semaphore event_handler_rwsem;
2682 
2683 	/* Protects QP's event_handler calls and open_qp list */
2684 	spinlock_t qp_open_list_lock;
2685 
2686 	struct rw_semaphore	      client_data_rwsem;
2687 	struct xarray                 client_data;
2688 	struct mutex                  unregistration_lock;
2689 
2690 	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2691 	rwlock_t cache_lock;
2692 	/**
2693 	 * port_data is indexed by port number
2694 	 */
2695 	struct ib_port_data *port_data;
2696 
2697 	int			      num_comp_vectors;
2698 
2699 	union {
2700 		struct device		dev;
2701 		struct ib_core_device	coredev;
2702 	};
2703 
2704 	/* First group is for device attributes,
2705 	 * Second group is for driver provided attributes (optional).
2706 	 * Third group is for the hw_stats
2707 	 * It is a NULL terminated array.
2708 	 */
2709 	const struct attribute_group	*groups[4];
2710 
2711 	u64			     uverbs_cmd_mask;
2712 
2713 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2714 	__be64			     node_guid;
2715 	u32			     local_dma_lkey;
2716 	u16                          is_switch:1;
2717 	/* Indicates kernel verbs support, should not be used in drivers */
2718 	u16                          kverbs_provider:1;
2719 	/* CQ adaptive moderation (RDMA DIM) */
2720 	u16                          use_cq_dim:1;
2721 	u8                           node_type;
2722 	u32			     phys_port_cnt;
2723 	struct ib_device_attr        attrs;
2724 	struct hw_stats_device_data *hw_stats_data;
2725 
2726 #ifdef CONFIG_CGROUP_RDMA
2727 	struct rdmacg_device         cg_device;
2728 #endif
2729 
2730 	u32                          index;
2731 
2732 	spinlock_t                   cq_pools_lock;
2733 	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2734 
2735 	struct rdma_restrack_root *res;
2736 
2737 	const struct uapi_definition   *driver_def;
2738 
2739 	/*
2740 	 * Positive refcount indicates that the device is currently
2741 	 * registered and cannot be unregistered.
2742 	 */
2743 	refcount_t refcount;
2744 	struct completion unreg_completion;
2745 	struct work_struct unregistration_work;
2746 
2747 	const struct rdma_link_ops *link_ops;
2748 
2749 	/* Protects compat_devs xarray modifications */
2750 	struct mutex compat_devs_mutex;
2751 	/* Maintains compat devices for each net namespace */
2752 	struct xarray compat_devs;
2753 
2754 	/* Used by iWarp CM */
2755 	char iw_ifname[IFNAMSIZ];
2756 	u32 iw_driver_flags;
2757 	u32 lag_flags;
2758 };
2759 
rdma_zalloc_obj(struct ib_device * dev,size_t size,gfp_t gfp,bool is_numa_aware)2760 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2761 				    gfp_t gfp, bool is_numa_aware)
2762 {
2763 	if (is_numa_aware && dev->ops.get_numa_node)
2764 		return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2765 
2766 	return kzalloc(size, gfp);
2767 }
2768 
2769 struct ib_client_nl_info;
2770 struct ib_client {
2771 	const char *name;
2772 	int (*add)(struct ib_device *ibdev);
2773 	void (*remove)(struct ib_device *, void *client_data);
2774 	void (*rename)(struct ib_device *dev, void *client_data);
2775 	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2776 			   struct ib_client_nl_info *res);
2777 	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2778 
2779 	/* Returns the net_dev belonging to this ib_client and matching the
2780 	 * given parameters.
2781 	 * @dev:	 An RDMA device that the net_dev use for communication.
2782 	 * @port:	 A physical port number on the RDMA device.
2783 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2784 	 * @gid:	 A GID that the net_dev uses to communicate.
2785 	 * @addr:	 An IP address the net_dev is configured with.
2786 	 * @client_data: The device's client data set by ib_set_client_data().
2787 	 *
2788 	 * An ib_client that implements a net_dev on top of RDMA devices
2789 	 * (such as IP over IB) should implement this callback, allowing the
2790 	 * rdma_cm module to find the right net_dev for a given request.
2791 	 *
2792 	 * The caller is responsible for calling dev_put on the returned
2793 	 * netdev. */
2794 	struct net_device *(*get_net_dev_by_params)(
2795 			struct ib_device *dev,
2796 			u32 port,
2797 			u16 pkey,
2798 			const union ib_gid *gid,
2799 			const struct sockaddr *addr,
2800 			void *client_data);
2801 
2802 	refcount_t uses;
2803 	struct completion uses_zero;
2804 	u32 client_id;
2805 
2806 	/* kverbs are not required by the client */
2807 	u8 no_kverbs_req:1;
2808 };
2809 
2810 /*
2811  * IB block DMA iterator
2812  *
2813  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2814  * to a HW supported page size.
2815  */
2816 struct ib_block_iter {
2817 	/* internal states */
2818 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2819 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2820 	unsigned int __sg_nents;	/* number of SG entries */
2821 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2822 	unsigned int __pg_bit;		/* alignment of current block */
2823 };
2824 
2825 struct ib_device *_ib_alloc_device(size_t size);
2826 #define ib_alloc_device(drv_struct, member)                                    \
2827 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2828 				      BUILD_BUG_ON_ZERO(offsetof(              \
2829 					      struct drv_struct, member))),    \
2830 		     struct drv_struct, member)
2831 
2832 void ib_dealloc_device(struct ib_device *device);
2833 
2834 void ib_get_device_fw_str(struct ib_device *device, char *str);
2835 
2836 int ib_register_device(struct ib_device *device, const char *name,
2837 		       struct device *dma_device);
2838 void ib_unregister_device(struct ib_device *device);
2839 void ib_unregister_driver(enum rdma_driver_id driver_id);
2840 void ib_unregister_device_and_put(struct ib_device *device);
2841 void ib_unregister_device_queued(struct ib_device *ib_dev);
2842 
2843 int ib_register_client   (struct ib_client *client);
2844 void ib_unregister_client(struct ib_client *client);
2845 
2846 void __rdma_block_iter_start(struct ib_block_iter *biter,
2847 			     struct scatterlist *sglist,
2848 			     unsigned int nents,
2849 			     unsigned long pgsz);
2850 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2851 
2852 /**
2853  * rdma_block_iter_dma_address - get the aligned dma address of the current
2854  * block held by the block iterator.
2855  * @biter: block iterator holding the memory block
2856  */
2857 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2858 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2859 {
2860 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2861 }
2862 
2863 /**
2864  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2865  * @sglist: sglist to iterate over
2866  * @biter: block iterator holding the memory block
2867  * @nents: maximum number of sg entries to iterate over
2868  * @pgsz: best HW supported page size to use
2869  *
2870  * Callers may use rdma_block_iter_dma_address() to get each
2871  * blocks aligned DMA address.
2872  */
2873 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2874 	for (__rdma_block_iter_start(biter, sglist, nents,	\
2875 				     pgsz);			\
2876 	     __rdma_block_iter_next(biter);)
2877 
2878 /**
2879  * ib_get_client_data - Get IB client context
2880  * @device:Device to get context for
2881  * @client:Client to get context for
2882  *
2883  * ib_get_client_data() returns the client context data set with
2884  * ib_set_client_data(). This can only be called while the client is
2885  * registered to the device, once the ib_client remove() callback returns this
2886  * cannot be called.
2887  */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2888 static inline void *ib_get_client_data(struct ib_device *device,
2889 				       struct ib_client *client)
2890 {
2891 	return xa_load(&device->client_data, client->client_id);
2892 }
2893 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2894 			 void *data);
2895 void ib_set_device_ops(struct ib_device *device,
2896 		       const struct ib_device_ops *ops);
2897 
2898 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2899 		      unsigned long pfn, unsigned long size, pgprot_t prot,
2900 		      struct rdma_user_mmap_entry *entry);
2901 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2902 				struct rdma_user_mmap_entry *entry,
2903 				size_t length);
2904 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2905 				      struct rdma_user_mmap_entry *entry,
2906 				      size_t length, u32 min_pgoff,
2907 				      u32 max_pgoff);
2908 
2909 struct rdma_user_mmap_entry *
2910 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2911 			       unsigned long pgoff);
2912 struct rdma_user_mmap_entry *
2913 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2914 			 struct vm_area_struct *vma);
2915 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2916 
2917 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2918 
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2919 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2920 {
2921 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2922 }
2923 
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2924 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2925 {
2926 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2927 }
2928 
ib_is_buffer_cleared(const void __user * p,size_t len)2929 static inline bool ib_is_buffer_cleared(const void __user *p,
2930 					size_t len)
2931 {
2932 	bool ret;
2933 	u8 *buf;
2934 
2935 	if (len > USHRT_MAX)
2936 		return false;
2937 
2938 	buf = memdup_user(p, len);
2939 	if (IS_ERR(buf))
2940 		return false;
2941 
2942 	ret = !memchr_inv(buf, 0, len);
2943 	kfree(buf);
2944 	return ret;
2945 }
2946 
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2947 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2948 				       size_t offset,
2949 				       size_t len)
2950 {
2951 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2952 }
2953 
2954 /**
2955  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2956  * contains all required attributes and no attributes not allowed for
2957  * the given QP state transition.
2958  * @cur_state: Current QP state
2959  * @next_state: Next QP state
2960  * @type: QP type
2961  * @mask: Mask of supplied QP attributes
2962  *
2963  * This function is a helper function that a low-level driver's
2964  * modify_qp method can use to validate the consumer's input.  It
2965  * checks that cur_state and next_state are valid QP states, that a
2966  * transition from cur_state to next_state is allowed by the IB spec,
2967  * and that the attribute mask supplied is allowed for the transition.
2968  */
2969 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2970 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2971 
2972 void ib_register_event_handler(struct ib_event_handler *event_handler);
2973 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2974 void ib_dispatch_event(const struct ib_event *event);
2975 
2976 int ib_query_port(struct ib_device *device,
2977 		  u32 port_num, struct ib_port_attr *port_attr);
2978 
2979 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2980 					       u32 port_num);
2981 
2982 /**
2983  * rdma_cap_ib_switch - Check if the device is IB switch
2984  * @device: Device to check
2985  *
2986  * Device driver is responsible for setting is_switch bit on
2987  * in ib_device structure at init time.
2988  *
2989  * Return: true if the device is IB switch.
2990  */
rdma_cap_ib_switch(const struct ib_device * device)2991 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2992 {
2993 	return device->is_switch;
2994 }
2995 
2996 /**
2997  * rdma_start_port - Return the first valid port number for the device
2998  * specified
2999  *
3000  * @device: Device to be checked
3001  *
3002  * Return start port number
3003  */
rdma_start_port(const struct ib_device * device)3004 static inline u32 rdma_start_port(const struct ib_device *device)
3005 {
3006 	return rdma_cap_ib_switch(device) ? 0 : 1;
3007 }
3008 
3009 /**
3010  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3011  * @device - The struct ib_device * to iterate over
3012  * @iter - The unsigned int to store the port number
3013  */
3014 #define rdma_for_each_port(device, iter)                                       \
3015 	for (iter = rdma_start_port(device +				       \
3016 				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
3017 								   iter)));    \
3018 	     iter <= rdma_end_port(device); iter++)
3019 
3020 /**
3021  * rdma_end_port - Return the last valid port number for the device
3022  * specified
3023  *
3024  * @device: Device to be checked
3025  *
3026  * Return last port number
3027  */
rdma_end_port(const struct ib_device * device)3028 static inline u32 rdma_end_port(const struct ib_device *device)
3029 {
3030 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3031 }
3032 
rdma_is_port_valid(const struct ib_device * device,unsigned int port)3033 static inline int rdma_is_port_valid(const struct ib_device *device,
3034 				     unsigned int port)
3035 {
3036 	return (port >= rdma_start_port(device) &&
3037 		port <= rdma_end_port(device));
3038 }
3039 
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3040 static inline bool rdma_is_grh_required(const struct ib_device *device,
3041 					u32 port_num)
3042 {
3043 	return device->port_data[port_num].immutable.core_cap_flags &
3044 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3045 }
3046 
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3047 static inline bool rdma_protocol_ib(const struct ib_device *device,
3048 				    u32 port_num)
3049 {
3050 	return device->port_data[port_num].immutable.core_cap_flags &
3051 	       RDMA_CORE_CAP_PROT_IB;
3052 }
3053 
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3054 static inline bool rdma_protocol_roce(const struct ib_device *device,
3055 				      u32 port_num)
3056 {
3057 	return device->port_data[port_num].immutable.core_cap_flags &
3058 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3059 }
3060 
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3061 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3062 						u32 port_num)
3063 {
3064 	return device->port_data[port_num].immutable.core_cap_flags &
3065 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3066 }
3067 
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3068 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3069 						u32 port_num)
3070 {
3071 	return device->port_data[port_num].immutable.core_cap_flags &
3072 	       RDMA_CORE_CAP_PROT_ROCE;
3073 }
3074 
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3075 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3076 				       u32 port_num)
3077 {
3078 	return device->port_data[port_num].immutable.core_cap_flags &
3079 	       RDMA_CORE_CAP_PROT_IWARP;
3080 }
3081 
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3082 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3083 				   u32 port_num)
3084 {
3085 	return rdma_protocol_ib(device, port_num) ||
3086 		rdma_protocol_roce(device, port_num);
3087 }
3088 
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3089 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3090 					    u32 port_num)
3091 {
3092 	return device->port_data[port_num].immutable.core_cap_flags &
3093 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3094 }
3095 
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3096 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3097 				       u32 port_num)
3098 {
3099 	return device->port_data[port_num].immutable.core_cap_flags &
3100 	       RDMA_CORE_CAP_PROT_USNIC;
3101 }
3102 
3103 /**
3104  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3105  * Management Datagrams.
3106  * @device: Device to check
3107  * @port_num: Port number to check
3108  *
3109  * Management Datagrams (MAD) are a required part of the InfiniBand
3110  * specification and are supported on all InfiniBand devices.  A slightly
3111  * extended version are also supported on OPA interfaces.
3112  *
3113  * Return: true if the port supports sending/receiving of MAD packets.
3114  */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3115 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3116 {
3117 	return device->port_data[port_num].immutable.core_cap_flags &
3118 	       RDMA_CORE_CAP_IB_MAD;
3119 }
3120 
3121 /**
3122  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3123  * Management Datagrams.
3124  * @device: Device to check
3125  * @port_num: Port number to check
3126  *
3127  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3128  * datagrams with their own versions.  These OPA MADs share many but not all of
3129  * the characteristics of InfiniBand MADs.
3130  *
3131  * OPA MADs differ in the following ways:
3132  *
3133  *    1) MADs are variable size up to 2K
3134  *       IBTA defined MADs remain fixed at 256 bytes
3135  *    2) OPA SMPs must carry valid PKeys
3136  *    3) OPA SMP packets are a different format
3137  *
3138  * Return: true if the port supports OPA MAD packet formats.
3139  */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3140 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3141 {
3142 	return device->port_data[port_num].immutable.core_cap_flags &
3143 		RDMA_CORE_CAP_OPA_MAD;
3144 }
3145 
3146 /**
3147  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3148  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3149  * @device: Device to check
3150  * @port_num: Port number to check
3151  *
3152  * Each InfiniBand node is required to provide a Subnet Management Agent
3153  * that the subnet manager can access.  Prior to the fabric being fully
3154  * configured by the subnet manager, the SMA is accessed via a well known
3155  * interface called the Subnet Management Interface (SMI).  This interface
3156  * uses directed route packets to communicate with the SM to get around the
3157  * chicken and egg problem of the SM needing to know what's on the fabric
3158  * in order to configure the fabric, and needing to configure the fabric in
3159  * order to send packets to the devices on the fabric.  These directed
3160  * route packets do not need the fabric fully configured in order to reach
3161  * their destination.  The SMI is the only method allowed to send
3162  * directed route packets on an InfiniBand fabric.
3163  *
3164  * Return: true if the port provides an SMI.
3165  */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3166 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3167 {
3168 	return device->port_data[port_num].immutable.core_cap_flags &
3169 	       RDMA_CORE_CAP_IB_SMI;
3170 }
3171 
3172 /**
3173  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3174  * Communication Manager.
3175  * @device: Device to check
3176  * @port_num: Port number to check
3177  *
3178  * The InfiniBand Communication Manager is one of many pre-defined General
3179  * Service Agents (GSA) that are accessed via the General Service
3180  * Interface (GSI).  It's role is to facilitate establishment of connections
3181  * between nodes as well as other management related tasks for established
3182  * connections.
3183  *
3184  * Return: true if the port supports an IB CM (this does not guarantee that
3185  * a CM is actually running however).
3186  */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3187 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3188 {
3189 	return device->port_data[port_num].immutable.core_cap_flags &
3190 	       RDMA_CORE_CAP_IB_CM;
3191 }
3192 
3193 /**
3194  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3195  * Communication Manager.
3196  * @device: Device to check
3197  * @port_num: Port number to check
3198  *
3199  * Similar to above, but specific to iWARP connections which have a different
3200  * managment protocol than InfiniBand.
3201  *
3202  * Return: true if the port supports an iWARP CM (this does not guarantee that
3203  * a CM is actually running however).
3204  */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3205 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3206 {
3207 	return device->port_data[port_num].immutable.core_cap_flags &
3208 	       RDMA_CORE_CAP_IW_CM;
3209 }
3210 
3211 /**
3212  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3213  * Subnet Administration.
3214  * @device: Device to check
3215  * @port_num: Port number to check
3216  *
3217  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3218  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3219  * fabrics, devices should resolve routes to other hosts by contacting the
3220  * SA to query the proper route.
3221  *
3222  * Return: true if the port should act as a client to the fabric Subnet
3223  * Administration interface.  This does not imply that the SA service is
3224  * running locally.
3225  */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3226 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3227 {
3228 	return device->port_data[port_num].immutable.core_cap_flags &
3229 	       RDMA_CORE_CAP_IB_SA;
3230 }
3231 
3232 /**
3233  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3234  * Multicast.
3235  * @device: Device to check
3236  * @port_num: Port number to check
3237  *
3238  * InfiniBand multicast registration is more complex than normal IPv4 or
3239  * IPv6 multicast registration.  Each Host Channel Adapter must register
3240  * with the Subnet Manager when it wishes to join a multicast group.  It
3241  * should do so only once regardless of how many queue pairs it subscribes
3242  * to this group.  And it should leave the group only after all queue pairs
3243  * attached to the group have been detached.
3244  *
3245  * Return: true if the port must undertake the additional adminstrative
3246  * overhead of registering/unregistering with the SM and tracking of the
3247  * total number of queue pairs attached to the multicast group.
3248  */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3249 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3250 				     u32 port_num)
3251 {
3252 	return rdma_cap_ib_sa(device, port_num);
3253 }
3254 
3255 /**
3256  * rdma_cap_af_ib - Check if the port of device has the capability
3257  * Native Infiniband Address.
3258  * @device: Device to check
3259  * @port_num: Port number to check
3260  *
3261  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3262  * GID.  RoCE uses a different mechanism, but still generates a GID via
3263  * a prescribed mechanism and port specific data.
3264  *
3265  * Return: true if the port uses a GID address to identify devices on the
3266  * network.
3267  */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3268 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3269 {
3270 	return device->port_data[port_num].immutable.core_cap_flags &
3271 	       RDMA_CORE_CAP_AF_IB;
3272 }
3273 
3274 /**
3275  * rdma_cap_eth_ah - Check if the port of device has the capability
3276  * Ethernet Address Handle.
3277  * @device: Device to check
3278  * @port_num: Port number to check
3279  *
3280  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3281  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3282  * port.  Normally, packet headers are generated by the sending host
3283  * adapter, but when sending connectionless datagrams, we must manually
3284  * inject the proper headers for the fabric we are communicating over.
3285  *
3286  * Return: true if we are running as a RoCE port and must force the
3287  * addition of a Global Route Header built from our Ethernet Address
3288  * Handle into our header list for connectionless packets.
3289  */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3290 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3291 {
3292 	return device->port_data[port_num].immutable.core_cap_flags &
3293 	       RDMA_CORE_CAP_ETH_AH;
3294 }
3295 
3296 /**
3297  * rdma_cap_opa_ah - Check if the port of device supports
3298  * OPA Address handles
3299  * @device: Device to check
3300  * @port_num: Port number to check
3301  *
3302  * Return: true if we are running on an OPA device which supports
3303  * the extended OPA addressing.
3304  */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3305 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3306 {
3307 	return (device->port_data[port_num].immutable.core_cap_flags &
3308 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3309 }
3310 
3311 /**
3312  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3313  *
3314  * @device: Device
3315  * @port_num: Port number
3316  *
3317  * This MAD size includes the MAD headers and MAD payload.  No other headers
3318  * are included.
3319  *
3320  * Return the max MAD size required by the Port.  Will return 0 if the port
3321  * does not support MADs
3322  */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3323 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3324 				       u32 port_num)
3325 {
3326 	return device->port_data[port_num].immutable.max_mad_size;
3327 }
3328 
3329 /**
3330  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3331  * @device: Device to check
3332  * @port_num: Port number to check
3333  *
3334  * RoCE GID table mechanism manages the various GIDs for a device.
3335  *
3336  * NOTE: if allocating the port's GID table has failed, this call will still
3337  * return true, but any RoCE GID table API will fail.
3338  *
3339  * Return: true if the port uses RoCE GID table mechanism in order to manage
3340  * its GIDs.
3341  */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3342 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3343 					   u32 port_num)
3344 {
3345 	return rdma_protocol_roce(device, port_num) &&
3346 		device->ops.add_gid && device->ops.del_gid;
3347 }
3348 
3349 /*
3350  * Check if the device supports READ W/ INVALIDATE.
3351  */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3352 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3353 {
3354 	/*
3355 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3356 	 * has support for it yet.
3357 	 */
3358 	return rdma_protocol_iwarp(dev, port_num);
3359 }
3360 
3361 /**
3362  * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3363  * @device: Device
3364  * @port_num: 1 based Port number
3365  *
3366  * Return true if port is an Intel OPA port , false if not
3367  */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3368 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3369 					  u32 port_num)
3370 {
3371 	return (device->port_data[port_num].immutable.core_cap_flags &
3372 		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3373 }
3374 
3375 /**
3376  * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3377  * @device: Device
3378  * @port_num: Port number
3379  * @mtu: enum value of MTU
3380  *
3381  * Return the MTU size supported by the port as an integer value. Will return
3382  * -1 if enum value of mtu is not supported.
3383  */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3384 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3385 				       int mtu)
3386 {
3387 	if (rdma_core_cap_opa_port(device, port))
3388 		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3389 	else
3390 		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3391 }
3392 
3393 /**
3394  * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3395  * @device: Device
3396  * @port_num: Port number
3397  * @attr: port attribute
3398  *
3399  * Return the MTU size supported by the port as an integer value.
3400  */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3401 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3402 				     struct ib_port_attr *attr)
3403 {
3404 	if (rdma_core_cap_opa_port(device, port))
3405 		return attr->phys_mtu;
3406 	else
3407 		return ib_mtu_enum_to_int(attr->max_mtu);
3408 }
3409 
3410 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3411 			 int state);
3412 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3413 		     struct ifla_vf_info *info);
3414 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3415 		    struct ifla_vf_stats *stats);
3416 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3417 		    struct ifla_vf_guid *node_guid,
3418 		    struct ifla_vf_guid *port_guid);
3419 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3420 		   int type);
3421 
3422 int ib_query_pkey(struct ib_device *device,
3423 		  u32 port_num, u16 index, u16 *pkey);
3424 
3425 int ib_modify_device(struct ib_device *device,
3426 		     int device_modify_mask,
3427 		     struct ib_device_modify *device_modify);
3428 
3429 int ib_modify_port(struct ib_device *device,
3430 		   u32 port_num, int port_modify_mask,
3431 		   struct ib_port_modify *port_modify);
3432 
3433 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3434 		u32 *port_num, u16 *index);
3435 
3436 int ib_find_pkey(struct ib_device *device,
3437 		 u32 port_num, u16 pkey, u16 *index);
3438 
3439 enum ib_pd_flags {
3440 	/*
3441 	 * Create a memory registration for all memory in the system and place
3442 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3443 	 * ULPs to avoid the overhead of dynamic MRs.
3444 	 *
3445 	 * This flag is generally considered unsafe and must only be used in
3446 	 * extremly trusted environments.  Every use of it will log a warning
3447 	 * in the kernel log.
3448 	 */
3449 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3450 };
3451 
3452 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3453 		const char *caller);
3454 
3455 /**
3456  * ib_alloc_pd - Allocates an unused protection domain.
3457  * @device: The device on which to allocate the protection domain.
3458  * @flags: protection domain flags
3459  *
3460  * A protection domain object provides an association between QPs, shared
3461  * receive queues, address handles, memory regions, and memory windows.
3462  *
3463  * Every PD has a local_dma_lkey which can be used as the lkey value for local
3464  * memory operations.
3465  */
3466 #define ib_alloc_pd(device, flags) \
3467 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3468 
3469 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3470 
3471 /**
3472  * ib_dealloc_pd - Deallocate kernel PD
3473  * @pd: The protection domain
3474  *
3475  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3476  */
ib_dealloc_pd(struct ib_pd * pd)3477 static inline void ib_dealloc_pd(struct ib_pd *pd)
3478 {
3479 	int ret = ib_dealloc_pd_user(pd, NULL);
3480 
3481 	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3482 }
3483 
3484 enum rdma_create_ah_flags {
3485 	/* In a sleepable context */
3486 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3487 };
3488 
3489 /**
3490  * rdma_create_ah - Creates an address handle for the given address vector.
3491  * @pd: The protection domain associated with the address handle.
3492  * @ah_attr: The attributes of the address vector.
3493  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3494  *
3495  * The address handle is used to reference a local or global destination
3496  * in all UD QP post sends.
3497  */
3498 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3499 			     u32 flags);
3500 
3501 /**
3502  * rdma_create_user_ah - Creates an address handle for the given address vector.
3503  * It resolves destination mac address for ah attribute of RoCE type.
3504  * @pd: The protection domain associated with the address handle.
3505  * @ah_attr: The attributes of the address vector.
3506  * @udata: pointer to user's input output buffer information need by
3507  *         provider driver.
3508  *
3509  * It returns 0 on success and returns appropriate error code on error.
3510  * The address handle is used to reference a local or global destination
3511  * in all UD QP post sends.
3512  */
3513 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3514 				  struct rdma_ah_attr *ah_attr,
3515 				  struct ib_udata *udata);
3516 /**
3517  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3518  *   work completion.
3519  * @hdr: the L3 header to parse
3520  * @net_type: type of header to parse
3521  * @sgid: place to store source gid
3522  * @dgid: place to store destination gid
3523  */
3524 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3525 			      enum rdma_network_type net_type,
3526 			      union ib_gid *sgid, union ib_gid *dgid);
3527 
3528 /**
3529  * ib_get_rdma_header_version - Get the header version
3530  * @hdr: the L3 header to parse
3531  */
3532 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3533 
3534 /**
3535  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3536  *   work completion.
3537  * @device: Device on which the received message arrived.
3538  * @port_num: Port on which the received message arrived.
3539  * @wc: Work completion associated with the received message.
3540  * @grh: References the received global route header.  This parameter is
3541  *   ignored unless the work completion indicates that the GRH is valid.
3542  * @ah_attr: Returned attributes that can be used when creating an address
3543  *   handle for replying to the message.
3544  * When ib_init_ah_attr_from_wc() returns success,
3545  * (a) for IB link layer it optionally contains a reference to SGID attribute
3546  * when GRH is present for IB link layer.
3547  * (b) for RoCE link layer it contains a reference to SGID attribute.
3548  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3549  * attributes which are initialized using ib_init_ah_attr_from_wc().
3550  *
3551  */
3552 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3553 			    const struct ib_wc *wc, const struct ib_grh *grh,
3554 			    struct rdma_ah_attr *ah_attr);
3555 
3556 /**
3557  * ib_create_ah_from_wc - Creates an address handle associated with the
3558  *   sender of the specified work completion.
3559  * @pd: The protection domain associated with the address handle.
3560  * @wc: Work completion information associated with a received message.
3561  * @grh: References the received global route header.  This parameter is
3562  *   ignored unless the work completion indicates that the GRH is valid.
3563  * @port_num: The outbound port number to associate with the address.
3564  *
3565  * The address handle is used to reference a local or global destination
3566  * in all UD QP post sends.
3567  */
3568 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3569 				   const struct ib_grh *grh, u32 port_num);
3570 
3571 /**
3572  * rdma_modify_ah - Modifies the address vector associated with an address
3573  *   handle.
3574  * @ah: The address handle to modify.
3575  * @ah_attr: The new address vector attributes to associate with the
3576  *   address handle.
3577  */
3578 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3579 
3580 /**
3581  * rdma_query_ah - Queries the address vector associated with an address
3582  *   handle.
3583  * @ah: The address handle to query.
3584  * @ah_attr: The address vector attributes associated with the address
3585  *   handle.
3586  */
3587 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3588 
3589 enum rdma_destroy_ah_flags {
3590 	/* In a sleepable context */
3591 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3592 };
3593 
3594 /**
3595  * rdma_destroy_ah_user - Destroys an address handle.
3596  * @ah: The address handle to destroy.
3597  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3598  * @udata: Valid user data or NULL for kernel objects
3599  */
3600 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3601 
3602 /**
3603  * rdma_destroy_ah - Destroys an kernel address handle.
3604  * @ah: The address handle to destroy.
3605  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3606  *
3607  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3608  */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3609 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3610 {
3611 	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3612 
3613 	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3614 }
3615 
3616 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3617 				  struct ib_srq_init_attr *srq_init_attr,
3618 				  struct ib_usrq_object *uobject,
3619 				  struct ib_udata *udata);
3620 static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3621 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3622 {
3623 	if (!pd->device->ops.create_srq)
3624 		return ERR_PTR(-EOPNOTSUPP);
3625 
3626 	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3627 }
3628 
3629 /**
3630  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3631  * @srq: The SRQ to modify.
3632  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3633  *   the current values of selected SRQ attributes are returned.
3634  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3635  *   are being modified.
3636  *
3637  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3638  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3639  * the number of receives queued drops below the limit.
3640  */
3641 int ib_modify_srq(struct ib_srq *srq,
3642 		  struct ib_srq_attr *srq_attr,
3643 		  enum ib_srq_attr_mask srq_attr_mask);
3644 
3645 /**
3646  * ib_query_srq - Returns the attribute list and current values for the
3647  *   specified SRQ.
3648  * @srq: The SRQ to query.
3649  * @srq_attr: The attributes of the specified SRQ.
3650  */
3651 int ib_query_srq(struct ib_srq *srq,
3652 		 struct ib_srq_attr *srq_attr);
3653 
3654 /**
3655  * ib_destroy_srq_user - Destroys the specified SRQ.
3656  * @srq: The SRQ to destroy.
3657  * @udata: Valid user data or NULL for kernel objects
3658  */
3659 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3660 
3661 /**
3662  * ib_destroy_srq - Destroys the specified kernel SRQ.
3663  * @srq: The SRQ to destroy.
3664  *
3665  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3666  */
ib_destroy_srq(struct ib_srq * srq)3667 static inline void ib_destroy_srq(struct ib_srq *srq)
3668 {
3669 	int ret = ib_destroy_srq_user(srq, NULL);
3670 
3671 	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3672 }
3673 
3674 /**
3675  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3676  * @srq: The SRQ to post the work request on.
3677  * @recv_wr: A list of work requests to post on the receive queue.
3678  * @bad_recv_wr: On an immediate failure, this parameter will reference
3679  *   the work request that failed to be posted on the QP.
3680  */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3681 static inline int ib_post_srq_recv(struct ib_srq *srq,
3682 				   const struct ib_recv_wr *recv_wr,
3683 				   const struct ib_recv_wr **bad_recv_wr)
3684 {
3685 	const struct ib_recv_wr *dummy;
3686 
3687 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3688 					      bad_recv_wr ? : &dummy);
3689 }
3690 
3691 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3692 				  struct ib_qp_init_attr *qp_init_attr,
3693 				  const char *caller);
3694 /**
3695  * ib_create_qp - Creates a kernel QP associated with the specific protection
3696  * domain.
3697  * @pd: The protection domain associated with the QP.
3698  * @init_attr: A list of initial attributes required to create the
3699  *   QP.  If QP creation succeeds, then the attributes are updated to
3700  *   the actual capabilities of the created QP.
3701  */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3702 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3703 					 struct ib_qp_init_attr *init_attr)
3704 {
3705 	return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3706 }
3707 
3708 /**
3709  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3710  * @qp: The QP to modify.
3711  * @attr: On input, specifies the QP attributes to modify.  On output,
3712  *   the current values of selected QP attributes are returned.
3713  * @attr_mask: A bit-mask used to specify which attributes of the QP
3714  *   are being modified.
3715  * @udata: pointer to user's input output buffer information
3716  *   are being modified.
3717  * It returns 0 on success and returns appropriate error code on error.
3718  */
3719 int ib_modify_qp_with_udata(struct ib_qp *qp,
3720 			    struct ib_qp_attr *attr,
3721 			    int attr_mask,
3722 			    struct ib_udata *udata);
3723 
3724 /**
3725  * ib_modify_qp - Modifies the attributes for the specified QP and then
3726  *   transitions the QP to the given state.
3727  * @qp: The QP to modify.
3728  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3729  *   the current values of selected QP attributes are returned.
3730  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3731  *   are being modified.
3732  */
3733 int ib_modify_qp(struct ib_qp *qp,
3734 		 struct ib_qp_attr *qp_attr,
3735 		 int qp_attr_mask);
3736 
3737 /**
3738  * ib_query_qp - Returns the attribute list and current values for the
3739  *   specified QP.
3740  * @qp: The QP to query.
3741  * @qp_attr: The attributes of the specified QP.
3742  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3743  * @qp_init_attr: Additional attributes of the selected QP.
3744  *
3745  * The qp_attr_mask may be used to limit the query to gathering only the
3746  * selected attributes.
3747  */
3748 int ib_query_qp(struct ib_qp *qp,
3749 		struct ib_qp_attr *qp_attr,
3750 		int qp_attr_mask,
3751 		struct ib_qp_init_attr *qp_init_attr);
3752 
3753 /**
3754  * ib_destroy_qp - Destroys the specified QP.
3755  * @qp: The QP to destroy.
3756  * @udata: Valid udata or NULL for kernel objects
3757  */
3758 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3759 
3760 /**
3761  * ib_destroy_qp - Destroys the specified kernel QP.
3762  * @qp: The QP to destroy.
3763  *
3764  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3765  */
ib_destroy_qp(struct ib_qp * qp)3766 static inline int ib_destroy_qp(struct ib_qp *qp)
3767 {
3768 	return ib_destroy_qp_user(qp, NULL);
3769 }
3770 
3771 /**
3772  * ib_open_qp - Obtain a reference to an existing sharable QP.
3773  * @xrcd - XRC domain
3774  * @qp_open_attr: Attributes identifying the QP to open.
3775  *
3776  * Returns a reference to a sharable QP.
3777  */
3778 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3779 			 struct ib_qp_open_attr *qp_open_attr);
3780 
3781 /**
3782  * ib_close_qp - Release an external reference to a QP.
3783  * @qp: The QP handle to release
3784  *
3785  * The opened QP handle is released by the caller.  The underlying
3786  * shared QP is not destroyed until all internal references are released.
3787  */
3788 int ib_close_qp(struct ib_qp *qp);
3789 
3790 /**
3791  * ib_post_send - Posts a list of work requests to the send queue of
3792  *   the specified QP.
3793  * @qp: The QP to post the work request on.
3794  * @send_wr: A list of work requests to post on the send queue.
3795  * @bad_send_wr: On an immediate failure, this parameter will reference
3796  *   the work request that failed to be posted on the QP.
3797  *
3798  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3799  * error is returned, the QP state shall not be affected,
3800  * ib_post_send() will return an immediate error after queueing any
3801  * earlier work requests in the list.
3802  */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3803 static inline int ib_post_send(struct ib_qp *qp,
3804 			       const struct ib_send_wr *send_wr,
3805 			       const struct ib_send_wr **bad_send_wr)
3806 {
3807 	const struct ib_send_wr *dummy;
3808 
3809 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3810 }
3811 
3812 /**
3813  * ib_post_recv - Posts a list of work requests to the receive queue of
3814  *   the specified QP.
3815  * @qp: The QP to post the work request on.
3816  * @recv_wr: A list of work requests to post on the receive queue.
3817  * @bad_recv_wr: On an immediate failure, this parameter will reference
3818  *   the work request that failed to be posted on the QP.
3819  */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3820 static inline int ib_post_recv(struct ib_qp *qp,
3821 			       const struct ib_recv_wr *recv_wr,
3822 			       const struct ib_recv_wr **bad_recv_wr)
3823 {
3824 	const struct ib_recv_wr *dummy;
3825 
3826 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3827 }
3828 
3829 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3830 			    int comp_vector, enum ib_poll_context poll_ctx,
3831 			    const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3832 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3833 					int nr_cqe, int comp_vector,
3834 					enum ib_poll_context poll_ctx)
3835 {
3836 	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3837 			     KBUILD_MODNAME);
3838 }
3839 
3840 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3841 				int nr_cqe, enum ib_poll_context poll_ctx,
3842 				const char *caller);
3843 
3844 /**
3845  * ib_alloc_cq_any: Allocate kernel CQ
3846  * @dev: The IB device
3847  * @private: Private data attached to the CQE
3848  * @nr_cqe: Number of CQEs in the CQ
3849  * @poll_ctx: Context used for polling the CQ
3850  */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3851 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3852 					    void *private, int nr_cqe,
3853 					    enum ib_poll_context poll_ctx)
3854 {
3855 	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3856 				 KBUILD_MODNAME);
3857 }
3858 
3859 void ib_free_cq(struct ib_cq *cq);
3860 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3861 
3862 /**
3863  * ib_create_cq - Creates a CQ on the specified device.
3864  * @device: The device on which to create the CQ.
3865  * @comp_handler: A user-specified callback that is invoked when a
3866  *   completion event occurs on the CQ.
3867  * @event_handler: A user-specified callback that is invoked when an
3868  *   asynchronous event not associated with a completion occurs on the CQ.
3869  * @cq_context: Context associated with the CQ returned to the user via
3870  *   the associated completion and event handlers.
3871  * @cq_attr: The attributes the CQ should be created upon.
3872  *
3873  * Users can examine the cq structure to determine the actual CQ size.
3874  */
3875 struct ib_cq *__ib_create_cq(struct ib_device *device,
3876 			     ib_comp_handler comp_handler,
3877 			     void (*event_handler)(struct ib_event *, void *),
3878 			     void *cq_context,
3879 			     const struct ib_cq_init_attr *cq_attr,
3880 			     const char *caller);
3881 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3882 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3883 
3884 /**
3885  * ib_resize_cq - Modifies the capacity of the CQ.
3886  * @cq: The CQ to resize.
3887  * @cqe: The minimum size of the CQ.
3888  *
3889  * Users can examine the cq structure to determine the actual CQ size.
3890  */
3891 int ib_resize_cq(struct ib_cq *cq, int cqe);
3892 
3893 /**
3894  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3895  * @cq: The CQ to modify.
3896  * @cq_count: number of CQEs that will trigger an event
3897  * @cq_period: max period of time in usec before triggering an event
3898  *
3899  */
3900 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3901 
3902 /**
3903  * ib_destroy_cq_user - Destroys the specified CQ.
3904  * @cq: The CQ to destroy.
3905  * @udata: Valid user data or NULL for kernel objects
3906  */
3907 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3908 
3909 /**
3910  * ib_destroy_cq - Destroys the specified kernel CQ.
3911  * @cq: The CQ to destroy.
3912  *
3913  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3914  */
ib_destroy_cq(struct ib_cq * cq)3915 static inline void ib_destroy_cq(struct ib_cq *cq)
3916 {
3917 	int ret = ib_destroy_cq_user(cq, NULL);
3918 
3919 	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3920 }
3921 
3922 /**
3923  * ib_poll_cq - poll a CQ for completion(s)
3924  * @cq:the CQ being polled
3925  * @num_entries:maximum number of completions to return
3926  * @wc:array of at least @num_entries &struct ib_wc where completions
3927  *   will be returned
3928  *
3929  * Poll a CQ for (possibly multiple) completions.  If the return value
3930  * is < 0, an error occurred.  If the return value is >= 0, it is the
3931  * number of completions returned.  If the return value is
3932  * non-negative and < num_entries, then the CQ was emptied.
3933  */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3934 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3935 			     struct ib_wc *wc)
3936 {
3937 	return cq->device->ops.poll_cq(cq, num_entries, wc);
3938 }
3939 
3940 /**
3941  * ib_req_notify_cq - Request completion notification on a CQ.
3942  * @cq: The CQ to generate an event for.
3943  * @flags:
3944  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3945  *   to request an event on the next solicited event or next work
3946  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3947  *   may also be |ed in to request a hint about missed events, as
3948  *   described below.
3949  *
3950  * Return Value:
3951  *    < 0 means an error occurred while requesting notification
3952  *   == 0 means notification was requested successfully, and if
3953  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3954  *        were missed and it is safe to wait for another event.  In
3955  *        this case is it guaranteed that any work completions added
3956  *        to the CQ since the last CQ poll will trigger a completion
3957  *        notification event.
3958  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3959  *        in.  It means that the consumer must poll the CQ again to
3960  *        make sure it is empty to avoid missing an event because of a
3961  *        race between requesting notification and an entry being
3962  *        added to the CQ.  This return value means it is possible
3963  *        (but not guaranteed) that a work completion has been added
3964  *        to the CQ since the last poll without triggering a
3965  *        completion notification event.
3966  */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)3967 static inline int ib_req_notify_cq(struct ib_cq *cq,
3968 				   enum ib_cq_notify_flags flags)
3969 {
3970 	return cq->device->ops.req_notify_cq(cq, flags);
3971 }
3972 
3973 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
3974 			     int comp_vector_hint,
3975 			     enum ib_poll_context poll_ctx);
3976 
3977 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
3978 
3979 /*
3980  * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
3981  * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
3982  * address into the dma address.
3983  */
ib_uses_virt_dma(struct ib_device * dev)3984 static inline bool ib_uses_virt_dma(struct ib_device *dev)
3985 {
3986 	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
3987 }
3988 
3989 /**
3990  * ib_dma_mapping_error - check a DMA addr for error
3991  * @dev: The device for which the dma_addr was created
3992  * @dma_addr: The DMA address to check
3993  */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)3994 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3995 {
3996 	if (ib_uses_virt_dma(dev))
3997 		return 0;
3998 	return dma_mapping_error(dev->dma_device, dma_addr);
3999 }
4000 
4001 /**
4002  * ib_dma_map_single - Map a kernel virtual address to DMA address
4003  * @dev: The device for which the dma_addr is to be created
4004  * @cpu_addr: The kernel virtual address
4005  * @size: The size of the region in bytes
4006  * @direction: The direction of the DMA
4007  */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)4008 static inline u64 ib_dma_map_single(struct ib_device *dev,
4009 				    void *cpu_addr, size_t size,
4010 				    enum dma_data_direction direction)
4011 {
4012 	if (ib_uses_virt_dma(dev))
4013 		return (uintptr_t)cpu_addr;
4014 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4015 }
4016 
4017 /**
4018  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4019  * @dev: The device for which the DMA address was created
4020  * @addr: The DMA address
4021  * @size: The size of the region in bytes
4022  * @direction: The direction of the DMA
4023  */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4024 static inline void ib_dma_unmap_single(struct ib_device *dev,
4025 				       u64 addr, size_t size,
4026 				       enum dma_data_direction direction)
4027 {
4028 	if (!ib_uses_virt_dma(dev))
4029 		dma_unmap_single(dev->dma_device, addr, size, direction);
4030 }
4031 
4032 /**
4033  * ib_dma_map_page - Map a physical page to DMA address
4034  * @dev: The device for which the dma_addr is to be created
4035  * @page: The page to be mapped
4036  * @offset: The offset within the page
4037  * @size: The size of the region in bytes
4038  * @direction: The direction of the DMA
4039  */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)4040 static inline u64 ib_dma_map_page(struct ib_device *dev,
4041 				  struct page *page,
4042 				  unsigned long offset,
4043 				  size_t size,
4044 					 enum dma_data_direction direction)
4045 {
4046 	if (ib_uses_virt_dma(dev))
4047 		return (uintptr_t)(page_address(page) + offset);
4048 	return dma_map_page(dev->dma_device, page, offset, size, direction);
4049 }
4050 
4051 /**
4052  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4053  * @dev: The device for which the DMA address was created
4054  * @addr: The DMA address
4055  * @size: The size of the region in bytes
4056  * @direction: The direction of the DMA
4057  */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4058 static inline void ib_dma_unmap_page(struct ib_device *dev,
4059 				     u64 addr, size_t size,
4060 				     enum dma_data_direction direction)
4061 {
4062 	if (!ib_uses_virt_dma(dev))
4063 		dma_unmap_page(dev->dma_device, addr, size, direction);
4064 }
4065 
4066 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4067 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4068 				      struct scatterlist *sg, int nents,
4069 				      enum dma_data_direction direction,
4070 				      unsigned long dma_attrs)
4071 {
4072 	if (ib_uses_virt_dma(dev))
4073 		return ib_dma_virt_map_sg(dev, sg, nents);
4074 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4075 				dma_attrs);
4076 }
4077 
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4078 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4079 					 struct scatterlist *sg, int nents,
4080 					 enum dma_data_direction direction,
4081 					 unsigned long dma_attrs)
4082 {
4083 	if (!ib_uses_virt_dma(dev))
4084 		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4085 				   dma_attrs);
4086 }
4087 
4088 /**
4089  * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4090  * @dev: The device for which the DMA addresses are to be created
4091  * @sg: The sg_table object describing the buffer
4092  * @direction: The direction of the DMA
4093  * @attrs: Optional DMA attributes for the map operation
4094  */
ib_dma_map_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4095 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4096 					   struct sg_table *sgt,
4097 					   enum dma_data_direction direction,
4098 					   unsigned long dma_attrs)
4099 {
4100 	if (ib_uses_virt_dma(dev)) {
4101 		ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4102 		return 0;
4103 	}
4104 	return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4105 }
4106 
ib_dma_unmap_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4107 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4108 					      struct sg_table *sgt,
4109 					      enum dma_data_direction direction,
4110 					      unsigned long dma_attrs)
4111 {
4112 	if (!ib_uses_virt_dma(dev))
4113 		dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4114 }
4115 
4116 /**
4117  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4118  * @dev: The device for which the DMA addresses are to be created
4119  * @sg: The array of scatter/gather entries
4120  * @nents: The number of scatter/gather entries
4121  * @direction: The direction of the DMA
4122  */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4123 static inline int ib_dma_map_sg(struct ib_device *dev,
4124 				struct scatterlist *sg, int nents,
4125 				enum dma_data_direction direction)
4126 {
4127 	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4128 }
4129 
4130 /**
4131  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4132  * @dev: The device for which the DMA addresses were created
4133  * @sg: The array of scatter/gather entries
4134  * @nents: The number of scatter/gather entries
4135  * @direction: The direction of the DMA
4136  */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4137 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4138 				   struct scatterlist *sg, int nents,
4139 				   enum dma_data_direction direction)
4140 {
4141 	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4142 }
4143 
4144 /**
4145  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4146  * @dev: The device to query
4147  *
4148  * The returned value represents a size in bytes.
4149  */
ib_dma_max_seg_size(struct ib_device * dev)4150 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4151 {
4152 	if (ib_uses_virt_dma(dev))
4153 		return UINT_MAX;
4154 	return dma_get_max_seg_size(dev->dma_device);
4155 }
4156 
4157 /**
4158  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4159  * @dev: The device for which the DMA address was created
4160  * @addr: The DMA address
4161  * @size: The size of the region in bytes
4162  * @dir: The direction of the DMA
4163  */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4164 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4165 					      u64 addr,
4166 					      size_t size,
4167 					      enum dma_data_direction dir)
4168 {
4169 	if (!ib_uses_virt_dma(dev))
4170 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4171 }
4172 
4173 /**
4174  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4175  * @dev: The device for which the DMA address was created
4176  * @addr: The DMA address
4177  * @size: The size of the region in bytes
4178  * @dir: The direction of the DMA
4179  */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4180 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4181 						 u64 addr,
4182 						 size_t size,
4183 						 enum dma_data_direction dir)
4184 {
4185 	if (!ib_uses_virt_dma(dev))
4186 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4187 }
4188 
4189 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4190  * space. This function should be called when 'current' is the owning MM.
4191  */
4192 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4193 			     u64 virt_addr, int mr_access_flags);
4194 
4195 /* ib_advise_mr -  give an advice about an address range in a memory region */
4196 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4197 		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4198 /**
4199  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4200  *   HCA translation table.
4201  * @mr: The memory region to deregister.
4202  * @udata: Valid user data or NULL for kernel object
4203  *
4204  * This function can fail, if the memory region has memory windows bound to it.
4205  */
4206 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4207 
4208 /**
4209  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4210  *   HCA translation table.
4211  * @mr: The memory region to deregister.
4212  *
4213  * This function can fail, if the memory region has memory windows bound to it.
4214  *
4215  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4216  */
ib_dereg_mr(struct ib_mr * mr)4217 static inline int ib_dereg_mr(struct ib_mr *mr)
4218 {
4219 	return ib_dereg_mr_user(mr, NULL);
4220 }
4221 
4222 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4223 			  u32 max_num_sg);
4224 
4225 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4226 				    u32 max_num_data_sg,
4227 				    u32 max_num_meta_sg);
4228 
4229 /**
4230  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4231  *   R_Key and L_Key.
4232  * @mr - struct ib_mr pointer to be updated.
4233  * @newkey - new key to be used.
4234  */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4235 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4236 {
4237 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4238 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4239 }
4240 
4241 /**
4242  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4243  * for calculating a new rkey for type 2 memory windows.
4244  * @rkey - the rkey to increment.
4245  */
ib_inc_rkey(u32 rkey)4246 static inline u32 ib_inc_rkey(u32 rkey)
4247 {
4248 	const u32 mask = 0x000000ff;
4249 	return ((rkey + 1) & mask) | (rkey & ~mask);
4250 }
4251 
4252 /**
4253  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4254  * @qp: QP to attach to the multicast group.  The QP must be type
4255  *   IB_QPT_UD.
4256  * @gid: Multicast group GID.
4257  * @lid: Multicast group LID in host byte order.
4258  *
4259  * In order to send and receive multicast packets, subnet
4260  * administration must have created the multicast group and configured
4261  * the fabric appropriately.  The port associated with the specified
4262  * QP must also be a member of the multicast group.
4263  */
4264 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4265 
4266 /**
4267  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4268  * @qp: QP to detach from the multicast group.
4269  * @gid: Multicast group GID.
4270  * @lid: Multicast group LID in host byte order.
4271  */
4272 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4273 
4274 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4275 				   struct inode *inode, struct ib_udata *udata);
4276 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4277 
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4278 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4279 				     unsigned int flags)
4280 {
4281 	/*
4282 	 * Local write permission is required if remote write or
4283 	 * remote atomic permission is also requested.
4284 	 */
4285 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4286 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4287 		return -EINVAL;
4288 
4289 	if (flags & ~IB_ACCESS_SUPPORTED)
4290 		return -EINVAL;
4291 
4292 	if (flags & IB_ACCESS_ON_DEMAND &&
4293 	    !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING))
4294 		return -EINVAL;
4295 	return 0;
4296 }
4297 
ib_access_writable(int access_flags)4298 static inline bool ib_access_writable(int access_flags)
4299 {
4300 	/*
4301 	 * We have writable memory backing the MR if any of the following
4302 	 * access flags are set.  "Local write" and "remote write" obviously
4303 	 * require write access.  "Remote atomic" can do things like fetch and
4304 	 * add, which will modify memory, and "MW bind" can change permissions
4305 	 * by binding a window.
4306 	 */
4307 	return access_flags &
4308 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4309 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4310 }
4311 
4312 /**
4313  * ib_check_mr_status: lightweight check of MR status.
4314  *     This routine may provide status checks on a selected
4315  *     ib_mr. first use is for signature status check.
4316  *
4317  * @mr: A memory region.
4318  * @check_mask: Bitmask of which checks to perform from
4319  *     ib_mr_status_check enumeration.
4320  * @mr_status: The container of relevant status checks.
4321  *     failed checks will be indicated in the status bitmask
4322  *     and the relevant info shall be in the error item.
4323  */
4324 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4325 		       struct ib_mr_status *mr_status);
4326 
4327 /**
4328  * ib_device_try_get: Hold a registration lock
4329  * device: The device to lock
4330  *
4331  * A device under an active registration lock cannot become unregistered. It
4332  * is only possible to obtain a registration lock on a device that is fully
4333  * registered, otherwise this function returns false.
4334  *
4335  * The registration lock is only necessary for actions which require the
4336  * device to still be registered. Uses that only require the device pointer to
4337  * be valid should use get_device(&ibdev->dev) to hold the memory.
4338  *
4339  */
ib_device_try_get(struct ib_device * dev)4340 static inline bool ib_device_try_get(struct ib_device *dev)
4341 {
4342 	return refcount_inc_not_zero(&dev->refcount);
4343 }
4344 
4345 void ib_device_put(struct ib_device *device);
4346 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4347 					  enum rdma_driver_id driver_id);
4348 struct ib_device *ib_device_get_by_name(const char *name,
4349 					enum rdma_driver_id driver_id);
4350 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4351 					    u16 pkey, const union ib_gid *gid,
4352 					    const struct sockaddr *addr);
4353 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4354 			 unsigned int port);
4355 struct net_device *ib_device_netdev(struct ib_device *dev, u32 port);
4356 
4357 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4358 			   struct ib_wq_init_attr *init_attr);
4359 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4360 
4361 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4362 		 unsigned int *sg_offset, unsigned int page_size);
4363 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4364 		    int data_sg_nents, unsigned int *data_sg_offset,
4365 		    struct scatterlist *meta_sg, int meta_sg_nents,
4366 		    unsigned int *meta_sg_offset, unsigned int page_size);
4367 
4368 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4369 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4370 		  unsigned int *sg_offset, unsigned int page_size)
4371 {
4372 	int n;
4373 
4374 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4375 	mr->iova = 0;
4376 
4377 	return n;
4378 }
4379 
4380 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4381 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4382 
4383 void ib_drain_rq(struct ib_qp *qp);
4384 void ib_drain_sq(struct ib_qp *qp);
4385 void ib_drain_qp(struct ib_qp *qp);
4386 
4387 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4388 		     u8 *width);
4389 
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4390 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4391 {
4392 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4393 		return attr->roce.dmac;
4394 	return NULL;
4395 }
4396 
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4397 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4398 {
4399 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4400 		attr->ib.dlid = (u16)dlid;
4401 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4402 		attr->opa.dlid = dlid;
4403 }
4404 
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4405 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4406 {
4407 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4408 		return attr->ib.dlid;
4409 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4410 		return attr->opa.dlid;
4411 	return 0;
4412 }
4413 
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4414 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4415 {
4416 	attr->sl = sl;
4417 }
4418 
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4419 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4420 {
4421 	return attr->sl;
4422 }
4423 
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4424 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4425 					 u8 src_path_bits)
4426 {
4427 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4428 		attr->ib.src_path_bits = src_path_bits;
4429 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4430 		attr->opa.src_path_bits = src_path_bits;
4431 }
4432 
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4433 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4434 {
4435 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4436 		return attr->ib.src_path_bits;
4437 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4438 		return attr->opa.src_path_bits;
4439 	return 0;
4440 }
4441 
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4442 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4443 					bool make_grd)
4444 {
4445 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4446 		attr->opa.make_grd = make_grd;
4447 }
4448 
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4449 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4450 {
4451 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4452 		return attr->opa.make_grd;
4453 	return false;
4454 }
4455 
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4456 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4457 {
4458 	attr->port_num = port_num;
4459 }
4460 
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4461 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4462 {
4463 	return attr->port_num;
4464 }
4465 
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4466 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4467 					   u8 static_rate)
4468 {
4469 	attr->static_rate = static_rate;
4470 }
4471 
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4472 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4473 {
4474 	return attr->static_rate;
4475 }
4476 
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4477 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4478 					enum ib_ah_flags flag)
4479 {
4480 	attr->ah_flags = flag;
4481 }
4482 
4483 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4484 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4485 {
4486 	return attr->ah_flags;
4487 }
4488 
4489 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4490 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4491 {
4492 	return &attr->grh;
4493 }
4494 
4495 /*To retrieve and modify the grh */
4496 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4497 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4498 {
4499 	return &attr->grh;
4500 }
4501 
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4502 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4503 {
4504 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4505 
4506 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4507 }
4508 
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4509 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4510 					     __be64 prefix)
4511 {
4512 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4513 
4514 	grh->dgid.global.subnet_prefix = prefix;
4515 }
4516 
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4517 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4518 					    __be64 if_id)
4519 {
4520 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4521 
4522 	grh->dgid.global.interface_id = if_id;
4523 }
4524 
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4525 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4526 				   union ib_gid *dgid, u32 flow_label,
4527 				   u8 sgid_index, u8 hop_limit,
4528 				   u8 traffic_class)
4529 {
4530 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4531 
4532 	attr->ah_flags = IB_AH_GRH;
4533 	if (dgid)
4534 		grh->dgid = *dgid;
4535 	grh->flow_label = flow_label;
4536 	grh->sgid_index = sgid_index;
4537 	grh->hop_limit = hop_limit;
4538 	grh->traffic_class = traffic_class;
4539 	grh->sgid_attr = NULL;
4540 }
4541 
4542 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4543 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4544 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4545 			     const struct ib_gid_attr *sgid_attr);
4546 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4547 		       const struct rdma_ah_attr *src);
4548 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4549 			  const struct rdma_ah_attr *new);
4550 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4551 
4552 /**
4553  * rdma_ah_find_type - Return address handle type.
4554  *
4555  * @dev: Device to be checked
4556  * @port_num: Port number
4557  */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4558 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4559 						       u32 port_num)
4560 {
4561 	if (rdma_protocol_roce(dev, port_num))
4562 		return RDMA_AH_ATTR_TYPE_ROCE;
4563 	if (rdma_protocol_ib(dev, port_num)) {
4564 		if (rdma_cap_opa_ah(dev, port_num))
4565 			return RDMA_AH_ATTR_TYPE_OPA;
4566 		return RDMA_AH_ATTR_TYPE_IB;
4567 	}
4568 
4569 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4570 }
4571 
4572 /**
4573  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4574  *     In the current implementation the only way to get
4575  *     get the 32bit lid is from other sources for OPA.
4576  *     For IB, lids will always be 16bits so cast the
4577  *     value accordingly.
4578  *
4579  * @lid: A 32bit LID
4580  */
ib_lid_cpu16(u32 lid)4581 static inline u16 ib_lid_cpu16(u32 lid)
4582 {
4583 	WARN_ON_ONCE(lid & 0xFFFF0000);
4584 	return (u16)lid;
4585 }
4586 
4587 /**
4588  * ib_lid_be16 - Return lid in 16bit BE encoding.
4589  *
4590  * @lid: A 32bit LID
4591  */
ib_lid_be16(u32 lid)4592 static inline __be16 ib_lid_be16(u32 lid)
4593 {
4594 	WARN_ON_ONCE(lid & 0xFFFF0000);
4595 	return cpu_to_be16((u16)lid);
4596 }
4597 
4598 /**
4599  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4600  *   vector
4601  * @device:         the rdma device
4602  * @comp_vector:    index of completion vector
4603  *
4604  * Returns NULL on failure, otherwise a corresponding cpu map of the
4605  * completion vector (returns all-cpus map if the device driver doesn't
4606  * implement get_vector_affinity).
4607  */
4608 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4609 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4610 {
4611 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4612 	    !device->ops.get_vector_affinity)
4613 		return NULL;
4614 
4615 	return device->ops.get_vector_affinity(device, comp_vector);
4616 
4617 }
4618 
4619 /**
4620  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4621  * and add their gids, as needed, to the relevant RoCE devices.
4622  *
4623  * @device:         the rdma device
4624  */
4625 void rdma_roce_rescan_device(struct ib_device *ibdev);
4626 
4627 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4628 
4629 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4630 
4631 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4632 				     enum rdma_netdev_t type, const char *name,
4633 				     unsigned char name_assign_type,
4634 				     void (*setup)(struct net_device *));
4635 
4636 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4637 		     enum rdma_netdev_t type, const char *name,
4638 		     unsigned char name_assign_type,
4639 		     void (*setup)(struct net_device *),
4640 		     struct net_device *netdev);
4641 
4642 /**
4643  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4644  *
4645  * @device:	device pointer for which ib_device pointer to retrieve
4646  *
4647  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4648  *
4649  */
rdma_device_to_ibdev(struct device * device)4650 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4651 {
4652 	struct ib_core_device *coredev =
4653 		container_of(device, struct ib_core_device, dev);
4654 
4655 	return coredev->owner;
4656 }
4657 
4658 /**
4659  * ibdev_to_node - return the NUMA node for a given ib_device
4660  * @dev:	device to get the NUMA node for.
4661  */
ibdev_to_node(struct ib_device * ibdev)4662 static inline int ibdev_to_node(struct ib_device *ibdev)
4663 {
4664 	struct device *parent = ibdev->dev.parent;
4665 
4666 	if (!parent)
4667 		return NUMA_NO_NODE;
4668 	return dev_to_node(parent);
4669 }
4670 
4671 /**
4672  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4673  *			       ib_device holder structure from device pointer.
4674  *
4675  * NOTE: New drivers should not make use of this API; This API is only for
4676  * existing drivers who have exposed sysfs entries using
4677  * ops->device_group.
4678  */
4679 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4680 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4681 
4682 bool rdma_dev_access_netns(const struct ib_device *device,
4683 			   const struct net *net);
4684 
4685 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4686 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4687 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4688 
4689 /**
4690  * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4691  *                               on the flow_label
4692  *
4693  * This function will convert the 20 bit flow_label input to a valid RoCE v2
4694  * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4695  * convention.
4696  */
rdma_flow_label_to_udp_sport(u32 fl)4697 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4698 {
4699 	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4700 
4701 	fl_low ^= fl_high >> 14;
4702 	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4703 }
4704 
4705 /**
4706  * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4707  *                        local and remote qpn values
4708  *
4709  * This function folded the multiplication results of two qpns, 24 bit each,
4710  * fields, and converts it to a 20 bit results.
4711  *
4712  * This function will create symmetric flow_label value based on the local
4713  * and remote qpn values. this will allow both the requester and responder
4714  * to calculate the same flow_label for a given connection.
4715  *
4716  * This helper function should be used by driver in case the upper layer
4717  * provide a zero flow_label value. This is to improve entropy of RDMA
4718  * traffic in the network.
4719  */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4720 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4721 {
4722 	u64 v = (u64)lqpn * rqpn;
4723 
4724 	v ^= v >> 20;
4725 	v ^= v >> 40;
4726 
4727 	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4728 }
4729 
4730 const struct ib_port_immutable*
4731 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4732 #endif /* IB_VERBS_H */
4733