1 /*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49
50 #include "core_priv.h"
51 #include "restrack.h"
52
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61
62 /*
63 * Each of the three rwsem locks (devices, clients, client_data) protects the
64 * xarray of the same name. Specifically it allows the caller to assert that
65 * the MARK will/will not be changing under the lock, and for devices and
66 * clients, that the value in the xarray is still a valid pointer. Change of
67 * the MARK is linked to the object state, so holding the lock and testing the
68 * MARK also asserts that the contained object is in a certain state.
69 *
70 * This is used to build a two stage register/unregister flow where objects
71 * can continue to be in the xarray even though they are still in progress to
72 * register/unregister.
73 *
74 * The xarray itself provides additional locking, and restartable iteration,
75 * which is also relied on.
76 *
77 * Locks should not be nested, with the exception of client_data, which is
78 * allowed to nest under the read side of the other two locks.
79 *
80 * The devices_rwsem also protects the device name list, any change or
81 * assignment of device name must also hold the write side to guarantee unique
82 * names.
83 */
84
85 /*
86 * devices contains devices that have had their names assigned. The
87 * devices may not be registered. Users that care about the registration
88 * status need to call ib_device_try_get() on the device to ensure it is
89 * registered, and keep it registered, for the required duration.
90 *
91 */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100
ib_client_put(struct ib_client * client)101 static void ib_client_put(struct ib_client *client)
102 {
103 if (refcount_dec_and_test(&client->uses))
104 complete(&client->uses_zero);
105 }
106
107 /*
108 * If client_data is registered then the corresponding client must also still
109 * be registered.
110 */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112
113 unsigned int rdma_dev_net_id;
114
115 /*
116 * A list of net namespaces is maintained in an xarray. This is necessary
117 * because we can't get the locking right using the existing net ns list. We
118 * would require a init_net callback after the list is updated.
119 */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122 * rwsem to protect accessing the rdma_nets xarray entries.
123 */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 "Share device among net namespaces; default=1 (shared)");
130 /**
131 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132 * from a specified net namespace or not.
133 * @dev: Pointer to rdma device which needs to be checked
134 * @net: Pointer to net namesapce for which access to be checked
135 *
136 * When the rdma device is in shared mode, it ignores the net namespace.
137 * When the rdma device is exclusive to a net namespace, rdma device net
138 * namespace is checked against the specified one.
139 */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 return (ib_devices_shared_netns ||
143 net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146
147 /*
148 * xarray has this behavior where it won't iterate over NULL values stored in
149 * allocated arrays. So we need our own iterator to see all values stored in
150 * the array. This does the same thing as xa_for_each except that it also
151 * returns NULL valued entries if the array is allocating. Simplified to only
152 * work on simple xarrays.
153 */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 xa_mark_t filter)
156 {
157 XA_STATE(xas, xa, *indexp);
158 void *entry;
159
160 rcu_read_lock();
161 do {
162 entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 if (xa_is_zero(entry))
164 break;
165 } while (xas_retry(&xas, entry));
166 rcu_read_unlock();
167
168 if (entry) {
169 *indexp = xas.xa_index;
170 if (xa_is_zero(entry))
171 return NULL;
172 return entry;
173 }
174 return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter) \
177 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
178 !xa_is_err(entry); \
179 (index)++, entry = xan_find_marked(xa, &(index), filter))
180
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 struct va_format *vaf)
195 {
196 if (ibdev && ibdev->dev.parent)
197 dev_printk_emit(level[1] - '0',
198 ibdev->dev.parent,
199 "%s %s %s: %pV",
200 dev_driver_string(ibdev->dev.parent),
201 dev_name(ibdev->dev.parent),
202 dev_name(&ibdev->dev),
203 vaf);
204 else if (ibdev)
205 printk("%s%s: %pV",
206 level, dev_name(&ibdev->dev), vaf);
207 else
208 printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210
ibdev_printk(const char * level,const struct ib_device * ibdev,const char * format,...)211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 const char *format, ...)
213 {
214 struct va_format vaf;
215 va_list args;
216
217 va_start(args, format);
218
219 vaf.fmt = format;
220 vaf.va = &args;
221
222 __ibdev_printk(level, ibdev, &vaf);
223
224 va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227
228 #define define_ibdev_printk_level(func, level) \
229 void func(const struct ib_device *ibdev, const char *fmt, ...) \
230 { \
231 struct va_format vaf; \
232 va_list args; \
233 \
234 va_start(args, fmt); \
235 \
236 vaf.fmt = fmt; \
237 vaf.va = &args; \
238 \
239 __ibdev_printk(level, ibdev, &vaf); \
240 \
241 va_end(args); \
242 } \
243 EXPORT_SYMBOL(func);
244
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252
253 static struct notifier_block ibdev_lsm_nb = {
254 .notifier_call = ib_security_change,
255 };
256
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 struct net *net);
259
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 struct rcu_head rcu_head;
263 struct ib_port_data pdata[];
264 };
265
ib_device_check_mandatory(struct ib_device * device)266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 static const struct {
270 size_t offset;
271 char *name;
272 } mandatory_table[] = {
273 IB_MANDATORY_FUNC(query_device),
274 IB_MANDATORY_FUNC(query_port),
275 IB_MANDATORY_FUNC(alloc_pd),
276 IB_MANDATORY_FUNC(dealloc_pd),
277 IB_MANDATORY_FUNC(create_qp),
278 IB_MANDATORY_FUNC(modify_qp),
279 IB_MANDATORY_FUNC(destroy_qp),
280 IB_MANDATORY_FUNC(post_send),
281 IB_MANDATORY_FUNC(post_recv),
282 IB_MANDATORY_FUNC(create_cq),
283 IB_MANDATORY_FUNC(destroy_cq),
284 IB_MANDATORY_FUNC(poll_cq),
285 IB_MANDATORY_FUNC(req_notify_cq),
286 IB_MANDATORY_FUNC(get_dma_mr),
287 IB_MANDATORY_FUNC(reg_user_mr),
288 IB_MANDATORY_FUNC(dereg_mr),
289 IB_MANDATORY_FUNC(get_port_immutable)
290 };
291 int i;
292
293 device->kverbs_provider = true;
294 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 if (!*(void **) ((void *) &device->ops +
296 mandatory_table[i].offset)) {
297 device->kverbs_provider = false;
298 break;
299 }
300 }
301 }
302
303 /*
304 * Caller must perform ib_device_put() to return the device reference count
305 * when ib_device_get_by_index() returns valid device pointer.
306 */
ib_device_get_by_index(const struct net * net,u32 index)307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308 {
309 struct ib_device *device;
310
311 down_read(&devices_rwsem);
312 device = xa_load(&devices, index);
313 if (device) {
314 if (!rdma_dev_access_netns(device, net)) {
315 device = NULL;
316 goto out;
317 }
318
319 if (!ib_device_try_get(device))
320 device = NULL;
321 }
322 out:
323 up_read(&devices_rwsem);
324 return device;
325 }
326
327 /**
328 * ib_device_put - Release IB device reference
329 * @device: device whose reference to be released
330 *
331 * ib_device_put() releases reference to the IB device to allow it to be
332 * unregistered and eventually free.
333 */
ib_device_put(struct ib_device * device)334 void ib_device_put(struct ib_device *device)
335 {
336 if (refcount_dec_and_test(&device->refcount))
337 complete(&device->unreg_completion);
338 }
339 EXPORT_SYMBOL(ib_device_put);
340
__ib_device_get_by_name(const char * name)341 static struct ib_device *__ib_device_get_by_name(const char *name)
342 {
343 struct ib_device *device;
344 unsigned long index;
345
346 xa_for_each (&devices, index, device)
347 if (!strcmp(name, dev_name(&device->dev)))
348 return device;
349
350 return NULL;
351 }
352
353 /**
354 * ib_device_get_by_name - Find an IB device by name
355 * @name: The name to look for
356 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357 *
358 * Find and hold an ib_device by its name. The caller must call
359 * ib_device_put() on the returned pointer.
360 */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)361 struct ib_device *ib_device_get_by_name(const char *name,
362 enum rdma_driver_id driver_id)
363 {
364 struct ib_device *device;
365
366 down_read(&devices_rwsem);
367 device = __ib_device_get_by_name(name);
368 if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 device->ops.driver_id != driver_id)
370 device = NULL;
371
372 if (device) {
373 if (!ib_device_try_get(device))
374 device = NULL;
375 }
376 up_read(&devices_rwsem);
377 return device;
378 }
379 EXPORT_SYMBOL(ib_device_get_by_name);
380
rename_compat_devs(struct ib_device * device)381 static int rename_compat_devs(struct ib_device *device)
382 {
383 struct ib_core_device *cdev;
384 unsigned long index;
385 int ret = 0;
386
387 mutex_lock(&device->compat_devs_mutex);
388 xa_for_each (&device->compat_devs, index, cdev) {
389 ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 if (ret) {
391 dev_warn(&cdev->dev,
392 "Fail to rename compatdev to new name %s\n",
393 dev_name(&device->dev));
394 break;
395 }
396 }
397 mutex_unlock(&device->compat_devs_mutex);
398 return ret;
399 }
400
ib_device_rename(struct ib_device * ibdev,const char * name)401 int ib_device_rename(struct ib_device *ibdev, const char *name)
402 {
403 unsigned long index;
404 void *client_data;
405 int ret;
406
407 down_write(&devices_rwsem);
408 if (!strcmp(name, dev_name(&ibdev->dev))) {
409 up_write(&devices_rwsem);
410 return 0;
411 }
412
413 if (__ib_device_get_by_name(name)) {
414 up_write(&devices_rwsem);
415 return -EEXIST;
416 }
417
418 ret = device_rename(&ibdev->dev, name);
419 if (ret) {
420 up_write(&devices_rwsem);
421 return ret;
422 }
423
424 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 ret = rename_compat_devs(ibdev);
426
427 downgrade_write(&devices_rwsem);
428 down_read(&ibdev->client_data_rwsem);
429 xan_for_each_marked(&ibdev->client_data, index, client_data,
430 CLIENT_DATA_REGISTERED) {
431 struct ib_client *client = xa_load(&clients, index);
432
433 if (!client || !client->rename)
434 continue;
435
436 client->rename(ibdev, client_data);
437 }
438 up_read(&ibdev->client_data_rwsem);
439 up_read(&devices_rwsem);
440 return 0;
441 }
442
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444 {
445 if (use_dim > 1)
446 return -EINVAL;
447 ibdev->use_cq_dim = use_dim;
448
449 return 0;
450 }
451
alloc_name(struct ib_device * ibdev,const char * name)452 static int alloc_name(struct ib_device *ibdev, const char *name)
453 {
454 struct ib_device *device;
455 unsigned long index;
456 struct ida inuse;
457 int rc;
458 int i;
459
460 lockdep_assert_held_write(&devices_rwsem);
461 ida_init(&inuse);
462 xa_for_each (&devices, index, device) {
463 char buf[IB_DEVICE_NAME_MAX];
464
465 if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 continue;
467 if (i < 0 || i >= INT_MAX)
468 continue;
469 snprintf(buf, sizeof buf, name, i);
470 if (strcmp(buf, dev_name(&device->dev)) != 0)
471 continue;
472
473 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 if (rc < 0)
475 goto out;
476 }
477
478 rc = ida_alloc(&inuse, GFP_KERNEL);
479 if (rc < 0)
480 goto out;
481
482 rc = dev_set_name(&ibdev->dev, name, rc);
483 out:
484 ida_destroy(&inuse);
485 return rc;
486 }
487
ib_device_release(struct device * device)488 static void ib_device_release(struct device *device)
489 {
490 struct ib_device *dev = container_of(device, struct ib_device, dev);
491
492 free_netdevs(dev);
493 WARN_ON(refcount_read(&dev->refcount));
494 if (dev->hw_stats_data)
495 ib_device_release_hw_stats(dev->hw_stats_data);
496 if (dev->port_data) {
497 ib_cache_release_one(dev);
498 ib_security_release_port_pkey_list(dev);
499 rdma_counter_release(dev);
500 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
501 pdata[0]),
502 rcu_head);
503 }
504
505 mutex_destroy(&dev->unregistration_lock);
506 mutex_destroy(&dev->compat_devs_mutex);
507
508 xa_destroy(&dev->compat_devs);
509 xa_destroy(&dev->client_data);
510 kfree_rcu(dev, rcu_head);
511 }
512
ib_device_uevent(struct device * device,struct kobj_uevent_env * env)513 static int ib_device_uevent(struct device *device,
514 struct kobj_uevent_env *env)
515 {
516 if (add_uevent_var(env, "NAME=%s", dev_name(device)))
517 return -ENOMEM;
518
519 /*
520 * It would be nice to pass the node GUID with the event...
521 */
522
523 return 0;
524 }
525
net_namespace(struct device * d)526 static const void *net_namespace(struct device *d)
527 {
528 struct ib_core_device *coredev =
529 container_of(d, struct ib_core_device, dev);
530
531 return read_pnet(&coredev->rdma_net);
532 }
533
534 static struct class ib_class = {
535 .name = "infiniband",
536 .dev_release = ib_device_release,
537 .dev_uevent = ib_device_uevent,
538 .ns_type = &net_ns_type_operations,
539 .namespace = net_namespace,
540 };
541
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)542 static void rdma_init_coredev(struct ib_core_device *coredev,
543 struct ib_device *dev, struct net *net)
544 {
545 /* This BUILD_BUG_ON is intended to catch layout change
546 * of union of ib_core_device and device.
547 * dev must be the first element as ib_core and providers
548 * driver uses it. Adding anything in ib_core_device before
549 * device will break this assumption.
550 */
551 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
552 offsetof(struct ib_device, dev));
553
554 coredev->dev.class = &ib_class;
555 coredev->dev.groups = dev->groups;
556 device_initialize(&coredev->dev);
557 coredev->owner = dev;
558 INIT_LIST_HEAD(&coredev->port_list);
559 write_pnet(&coredev->rdma_net, net);
560 }
561
562 /**
563 * _ib_alloc_device - allocate an IB device struct
564 * @size:size of structure to allocate
565 *
566 * Low-level drivers should use ib_alloc_device() to allocate &struct
567 * ib_device. @size is the size of the structure to be allocated,
568 * including any private data used by the low-level driver.
569 * ib_dealloc_device() must be used to free structures allocated with
570 * ib_alloc_device().
571 */
_ib_alloc_device(size_t size)572 struct ib_device *_ib_alloc_device(size_t size)
573 {
574 struct ib_device *device;
575 unsigned int i;
576
577 if (WARN_ON(size < sizeof(struct ib_device)))
578 return NULL;
579
580 device = kzalloc(size, GFP_KERNEL);
581 if (!device)
582 return NULL;
583
584 if (rdma_restrack_init(device)) {
585 kfree(device);
586 return NULL;
587 }
588
589 rdma_init_coredev(&device->coredev, device, &init_net);
590
591 INIT_LIST_HEAD(&device->event_handler_list);
592 spin_lock_init(&device->qp_open_list_lock);
593 init_rwsem(&device->event_handler_rwsem);
594 mutex_init(&device->unregistration_lock);
595 /*
596 * client_data needs to be alloc because we don't want our mark to be
597 * destroyed if the user stores NULL in the client data.
598 */
599 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
600 init_rwsem(&device->client_data_rwsem);
601 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
602 mutex_init(&device->compat_devs_mutex);
603 init_completion(&device->unreg_completion);
604 INIT_WORK(&device->unregistration_work, ib_unregister_work);
605
606 spin_lock_init(&device->cq_pools_lock);
607 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
608 INIT_LIST_HEAD(&device->cq_pools[i]);
609
610 rwlock_init(&device->cache_lock);
611
612 device->uverbs_cmd_mask =
613 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
614 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
615 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
616 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
617 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
618 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
619 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
620 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
621 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
622 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
623 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
624 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
625 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
626 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
627 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
628 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
629 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
630 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
631 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
632 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
633 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
634 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
635 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
636 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
637 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
638 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
639 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
640 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
641 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
642 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
643 return device;
644 }
645 EXPORT_SYMBOL(_ib_alloc_device);
646
647 /**
648 * ib_dealloc_device - free an IB device struct
649 * @device:structure to free
650 *
651 * Free a structure allocated with ib_alloc_device().
652 */
ib_dealloc_device(struct ib_device * device)653 void ib_dealloc_device(struct ib_device *device)
654 {
655 if (device->ops.dealloc_driver)
656 device->ops.dealloc_driver(device);
657
658 /*
659 * ib_unregister_driver() requires all devices to remain in the xarray
660 * while their ops are callable. The last op we call is dealloc_driver
661 * above. This is needed to create a fence on op callbacks prior to
662 * allowing the driver module to unload.
663 */
664 down_write(&devices_rwsem);
665 if (xa_load(&devices, device->index) == device)
666 xa_erase(&devices, device->index);
667 up_write(&devices_rwsem);
668
669 /* Expedite releasing netdev references */
670 free_netdevs(device);
671
672 WARN_ON(!xa_empty(&device->compat_devs));
673 WARN_ON(!xa_empty(&device->client_data));
674 WARN_ON(refcount_read(&device->refcount));
675 rdma_restrack_clean(device);
676 /* Balances with device_initialize */
677 put_device(&device->dev);
678 }
679 EXPORT_SYMBOL(ib_dealloc_device);
680
681 /*
682 * add_client_context() and remove_client_context() must be safe against
683 * parallel calls on the same device - registration/unregistration of both the
684 * device and client can be occurring in parallel.
685 *
686 * The routines need to be a fence, any caller must not return until the add
687 * or remove is fully completed.
688 */
add_client_context(struct ib_device * device,struct ib_client * client)689 static int add_client_context(struct ib_device *device,
690 struct ib_client *client)
691 {
692 int ret = 0;
693
694 if (!device->kverbs_provider && !client->no_kverbs_req)
695 return 0;
696
697 down_write(&device->client_data_rwsem);
698 /*
699 * So long as the client is registered hold both the client and device
700 * unregistration locks.
701 */
702 if (!refcount_inc_not_zero(&client->uses))
703 goto out_unlock;
704 refcount_inc(&device->refcount);
705
706 /*
707 * Another caller to add_client_context got here first and has already
708 * completely initialized context.
709 */
710 if (xa_get_mark(&device->client_data, client->client_id,
711 CLIENT_DATA_REGISTERED))
712 goto out;
713
714 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
715 GFP_KERNEL));
716 if (ret)
717 goto out;
718 downgrade_write(&device->client_data_rwsem);
719 if (client->add) {
720 if (client->add(device)) {
721 /*
722 * If a client fails to add then the error code is
723 * ignored, but we won't call any more ops on this
724 * client.
725 */
726 xa_erase(&device->client_data, client->client_id);
727 up_read(&device->client_data_rwsem);
728 ib_device_put(device);
729 ib_client_put(client);
730 return 0;
731 }
732 }
733
734 /* Readers shall not see a client until add has been completed */
735 xa_set_mark(&device->client_data, client->client_id,
736 CLIENT_DATA_REGISTERED);
737 up_read(&device->client_data_rwsem);
738 return 0;
739
740 out:
741 ib_device_put(device);
742 ib_client_put(client);
743 out_unlock:
744 up_write(&device->client_data_rwsem);
745 return ret;
746 }
747
remove_client_context(struct ib_device * device,unsigned int client_id)748 static void remove_client_context(struct ib_device *device,
749 unsigned int client_id)
750 {
751 struct ib_client *client;
752 void *client_data;
753
754 down_write(&device->client_data_rwsem);
755 if (!xa_get_mark(&device->client_data, client_id,
756 CLIENT_DATA_REGISTERED)) {
757 up_write(&device->client_data_rwsem);
758 return;
759 }
760 client_data = xa_load(&device->client_data, client_id);
761 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
762 client = xa_load(&clients, client_id);
763 up_write(&device->client_data_rwsem);
764
765 /*
766 * Notice we cannot be holding any exclusive locks when calling the
767 * remove callback as the remove callback can recurse back into any
768 * public functions in this module and thus try for any locks those
769 * functions take.
770 *
771 * For this reason clients and drivers should not call the
772 * unregistration functions will holdling any locks.
773 */
774 if (client->remove)
775 client->remove(device, client_data);
776
777 xa_erase(&device->client_data, client_id);
778 ib_device_put(device);
779 ib_client_put(client);
780 }
781
alloc_port_data(struct ib_device * device)782 static int alloc_port_data(struct ib_device *device)
783 {
784 struct ib_port_data_rcu *pdata_rcu;
785 u32 port;
786
787 if (device->port_data)
788 return 0;
789
790 /* This can only be called once the physical port range is defined */
791 if (WARN_ON(!device->phys_port_cnt))
792 return -EINVAL;
793
794 /* Reserve U32_MAX so the logic to go over all the ports is sane */
795 if (WARN_ON(device->phys_port_cnt == U32_MAX))
796 return -EINVAL;
797
798 /*
799 * device->port_data is indexed directly by the port number to make
800 * access to this data as efficient as possible.
801 *
802 * Therefore port_data is declared as a 1 based array with potential
803 * empty slots at the beginning.
804 */
805 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
806 rdma_end_port(device) + 1),
807 GFP_KERNEL);
808 if (!pdata_rcu)
809 return -ENOMEM;
810 /*
811 * The rcu_head is put in front of the port data array and the stored
812 * pointer is adjusted since we never need to see that member until
813 * kfree_rcu.
814 */
815 device->port_data = pdata_rcu->pdata;
816
817 rdma_for_each_port (device, port) {
818 struct ib_port_data *pdata = &device->port_data[port];
819
820 pdata->ib_dev = device;
821 spin_lock_init(&pdata->pkey_list_lock);
822 INIT_LIST_HEAD(&pdata->pkey_list);
823 spin_lock_init(&pdata->netdev_lock);
824 INIT_HLIST_NODE(&pdata->ndev_hash_link);
825 }
826 return 0;
827 }
828
verify_immutable(const struct ib_device * dev,u32 port)829 static int verify_immutable(const struct ib_device *dev, u32 port)
830 {
831 return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
832 rdma_max_mad_size(dev, port) != 0);
833 }
834
setup_port_data(struct ib_device * device)835 static int setup_port_data(struct ib_device *device)
836 {
837 u32 port;
838 int ret;
839
840 ret = alloc_port_data(device);
841 if (ret)
842 return ret;
843
844 rdma_for_each_port (device, port) {
845 struct ib_port_data *pdata = &device->port_data[port];
846
847 ret = device->ops.get_port_immutable(device, port,
848 &pdata->immutable);
849 if (ret)
850 return ret;
851
852 if (verify_immutable(device, port))
853 return -EINVAL;
854 }
855 return 0;
856 }
857
858 /**
859 * ib_port_immutable_read() - Read rdma port's immutable data
860 * @dev: IB device
861 * @port: port number whose immutable data to read. It starts with index 1 and
862 * valid upto including rdma_end_port().
863 */
864 const struct ib_port_immutable*
ib_port_immutable_read(struct ib_device * dev,unsigned int port)865 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
866 {
867 WARN_ON(!rdma_is_port_valid(dev, port));
868 return &dev->port_data[port].immutable;
869 }
870 EXPORT_SYMBOL(ib_port_immutable_read);
871
ib_get_device_fw_str(struct ib_device * dev,char * str)872 void ib_get_device_fw_str(struct ib_device *dev, char *str)
873 {
874 if (dev->ops.get_dev_fw_str)
875 dev->ops.get_dev_fw_str(dev, str);
876 else
877 str[0] = '\0';
878 }
879 EXPORT_SYMBOL(ib_get_device_fw_str);
880
ib_policy_change_task(struct work_struct * work)881 static void ib_policy_change_task(struct work_struct *work)
882 {
883 struct ib_device *dev;
884 unsigned long index;
885
886 down_read(&devices_rwsem);
887 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
888 unsigned int i;
889
890 rdma_for_each_port (dev, i) {
891 u64 sp;
892 ib_get_cached_subnet_prefix(dev, i, &sp);
893 ib_security_cache_change(dev, i, sp);
894 }
895 }
896 up_read(&devices_rwsem);
897 }
898
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)899 static int ib_security_change(struct notifier_block *nb, unsigned long event,
900 void *lsm_data)
901 {
902 if (event != LSM_POLICY_CHANGE)
903 return NOTIFY_DONE;
904
905 schedule_work(&ib_policy_change_work);
906 ib_mad_agent_security_change();
907
908 return NOTIFY_OK;
909 }
910
compatdev_release(struct device * dev)911 static void compatdev_release(struct device *dev)
912 {
913 struct ib_core_device *cdev =
914 container_of(dev, struct ib_core_device, dev);
915
916 kfree(cdev);
917 }
918
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)919 static int add_one_compat_dev(struct ib_device *device,
920 struct rdma_dev_net *rnet)
921 {
922 struct ib_core_device *cdev;
923 int ret;
924
925 lockdep_assert_held(&rdma_nets_rwsem);
926 if (!ib_devices_shared_netns)
927 return 0;
928
929 /*
930 * Create and add compat device in all namespaces other than where it
931 * is currently bound to.
932 */
933 if (net_eq(read_pnet(&rnet->net),
934 read_pnet(&device->coredev.rdma_net)))
935 return 0;
936
937 /*
938 * The first of init_net() or ib_register_device() to take the
939 * compat_devs_mutex wins and gets to add the device. Others will wait
940 * for completion here.
941 */
942 mutex_lock(&device->compat_devs_mutex);
943 cdev = xa_load(&device->compat_devs, rnet->id);
944 if (cdev) {
945 ret = 0;
946 goto done;
947 }
948 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
949 if (ret)
950 goto done;
951
952 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
953 if (!cdev) {
954 ret = -ENOMEM;
955 goto cdev_err;
956 }
957
958 cdev->dev.parent = device->dev.parent;
959 rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
960 cdev->dev.release = compatdev_release;
961 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
962 if (ret)
963 goto add_err;
964
965 ret = device_add(&cdev->dev);
966 if (ret)
967 goto add_err;
968 ret = ib_setup_port_attrs(cdev);
969 if (ret)
970 goto port_err;
971
972 ret = xa_err(xa_store(&device->compat_devs, rnet->id,
973 cdev, GFP_KERNEL));
974 if (ret)
975 goto insert_err;
976
977 mutex_unlock(&device->compat_devs_mutex);
978 return 0;
979
980 insert_err:
981 ib_free_port_attrs(cdev);
982 port_err:
983 device_del(&cdev->dev);
984 add_err:
985 put_device(&cdev->dev);
986 cdev_err:
987 xa_release(&device->compat_devs, rnet->id);
988 done:
989 mutex_unlock(&device->compat_devs_mutex);
990 return ret;
991 }
992
remove_one_compat_dev(struct ib_device * device,u32 id)993 static void remove_one_compat_dev(struct ib_device *device, u32 id)
994 {
995 struct ib_core_device *cdev;
996
997 mutex_lock(&device->compat_devs_mutex);
998 cdev = xa_erase(&device->compat_devs, id);
999 mutex_unlock(&device->compat_devs_mutex);
1000 if (cdev) {
1001 ib_free_port_attrs(cdev);
1002 device_del(&cdev->dev);
1003 put_device(&cdev->dev);
1004 }
1005 }
1006
remove_compat_devs(struct ib_device * device)1007 static void remove_compat_devs(struct ib_device *device)
1008 {
1009 struct ib_core_device *cdev;
1010 unsigned long index;
1011
1012 xa_for_each (&device->compat_devs, index, cdev)
1013 remove_one_compat_dev(device, index);
1014 }
1015
add_compat_devs(struct ib_device * device)1016 static int add_compat_devs(struct ib_device *device)
1017 {
1018 struct rdma_dev_net *rnet;
1019 unsigned long index;
1020 int ret = 0;
1021
1022 lockdep_assert_held(&devices_rwsem);
1023
1024 down_read(&rdma_nets_rwsem);
1025 xa_for_each (&rdma_nets, index, rnet) {
1026 ret = add_one_compat_dev(device, rnet);
1027 if (ret)
1028 break;
1029 }
1030 up_read(&rdma_nets_rwsem);
1031 return ret;
1032 }
1033
remove_all_compat_devs(void)1034 static void remove_all_compat_devs(void)
1035 {
1036 struct ib_compat_device *cdev;
1037 struct ib_device *dev;
1038 unsigned long index;
1039
1040 down_read(&devices_rwsem);
1041 xa_for_each (&devices, index, dev) {
1042 unsigned long c_index = 0;
1043
1044 /* Hold nets_rwsem so that any other thread modifying this
1045 * system param can sync with this thread.
1046 */
1047 down_read(&rdma_nets_rwsem);
1048 xa_for_each (&dev->compat_devs, c_index, cdev)
1049 remove_one_compat_dev(dev, c_index);
1050 up_read(&rdma_nets_rwsem);
1051 }
1052 up_read(&devices_rwsem);
1053 }
1054
add_all_compat_devs(void)1055 static int add_all_compat_devs(void)
1056 {
1057 struct rdma_dev_net *rnet;
1058 struct ib_device *dev;
1059 unsigned long index;
1060 int ret = 0;
1061
1062 down_read(&devices_rwsem);
1063 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1064 unsigned long net_index = 0;
1065
1066 /* Hold nets_rwsem so that any other thread modifying this
1067 * system param can sync with this thread.
1068 */
1069 down_read(&rdma_nets_rwsem);
1070 xa_for_each (&rdma_nets, net_index, rnet) {
1071 ret = add_one_compat_dev(dev, rnet);
1072 if (ret)
1073 break;
1074 }
1075 up_read(&rdma_nets_rwsem);
1076 }
1077 up_read(&devices_rwsem);
1078 if (ret)
1079 remove_all_compat_devs();
1080 return ret;
1081 }
1082
rdma_compatdev_set(u8 enable)1083 int rdma_compatdev_set(u8 enable)
1084 {
1085 struct rdma_dev_net *rnet;
1086 unsigned long index;
1087 int ret = 0;
1088
1089 down_write(&rdma_nets_rwsem);
1090 if (ib_devices_shared_netns == enable) {
1091 up_write(&rdma_nets_rwsem);
1092 return 0;
1093 }
1094
1095 /* enable/disable of compat devices is not supported
1096 * when more than default init_net exists.
1097 */
1098 xa_for_each (&rdma_nets, index, rnet) {
1099 ret++;
1100 break;
1101 }
1102 if (!ret)
1103 ib_devices_shared_netns = enable;
1104 up_write(&rdma_nets_rwsem);
1105 if (ret)
1106 return -EBUSY;
1107
1108 if (enable)
1109 ret = add_all_compat_devs();
1110 else
1111 remove_all_compat_devs();
1112 return ret;
1113 }
1114
rdma_dev_exit_net(struct net * net)1115 static void rdma_dev_exit_net(struct net *net)
1116 {
1117 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1118 struct ib_device *dev;
1119 unsigned long index;
1120 int ret;
1121
1122 down_write(&rdma_nets_rwsem);
1123 /*
1124 * Prevent the ID from being re-used and hide the id from xa_for_each.
1125 */
1126 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1127 WARN_ON(ret);
1128 up_write(&rdma_nets_rwsem);
1129
1130 down_read(&devices_rwsem);
1131 xa_for_each (&devices, index, dev) {
1132 get_device(&dev->dev);
1133 /*
1134 * Release the devices_rwsem so that pontentially blocking
1135 * device_del, doesn't hold the devices_rwsem for too long.
1136 */
1137 up_read(&devices_rwsem);
1138
1139 remove_one_compat_dev(dev, rnet->id);
1140
1141 /*
1142 * If the real device is in the NS then move it back to init.
1143 */
1144 rdma_dev_change_netns(dev, net, &init_net);
1145
1146 put_device(&dev->dev);
1147 down_read(&devices_rwsem);
1148 }
1149 up_read(&devices_rwsem);
1150
1151 rdma_nl_net_exit(rnet);
1152 xa_erase(&rdma_nets, rnet->id);
1153 }
1154
rdma_dev_init_net(struct net * net)1155 static __net_init int rdma_dev_init_net(struct net *net)
1156 {
1157 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1158 unsigned long index;
1159 struct ib_device *dev;
1160 int ret;
1161
1162 write_pnet(&rnet->net, net);
1163
1164 ret = rdma_nl_net_init(rnet);
1165 if (ret)
1166 return ret;
1167
1168 /* No need to create any compat devices in default init_net. */
1169 if (net_eq(net, &init_net))
1170 return 0;
1171
1172 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1173 if (ret) {
1174 rdma_nl_net_exit(rnet);
1175 return ret;
1176 }
1177
1178 down_read(&devices_rwsem);
1179 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1180 /* Hold nets_rwsem so that netlink command cannot change
1181 * system configuration for device sharing mode.
1182 */
1183 down_read(&rdma_nets_rwsem);
1184 ret = add_one_compat_dev(dev, rnet);
1185 up_read(&rdma_nets_rwsem);
1186 if (ret)
1187 break;
1188 }
1189 up_read(&devices_rwsem);
1190
1191 if (ret)
1192 rdma_dev_exit_net(net);
1193
1194 return ret;
1195 }
1196
1197 /*
1198 * Assign the unique string device name and the unique device index. This is
1199 * undone by ib_dealloc_device.
1200 */
assign_name(struct ib_device * device,const char * name)1201 static int assign_name(struct ib_device *device, const char *name)
1202 {
1203 static u32 last_id;
1204 int ret;
1205
1206 down_write(&devices_rwsem);
1207 /* Assign a unique name to the device */
1208 if (strchr(name, '%'))
1209 ret = alloc_name(device, name);
1210 else
1211 ret = dev_set_name(&device->dev, name);
1212 if (ret)
1213 goto out;
1214
1215 if (__ib_device_get_by_name(dev_name(&device->dev))) {
1216 ret = -ENFILE;
1217 goto out;
1218 }
1219 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1220
1221 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1222 &last_id, GFP_KERNEL);
1223 if (ret > 0)
1224 ret = 0;
1225
1226 out:
1227 up_write(&devices_rwsem);
1228 return ret;
1229 }
1230
1231 /*
1232 * setup_device() allocates memory and sets up data that requires calling the
1233 * device ops, this is the only reason these actions are not done during
1234 * ib_alloc_device. It is undone by ib_dealloc_device().
1235 */
setup_device(struct ib_device * device)1236 static int setup_device(struct ib_device *device)
1237 {
1238 struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1239 int ret;
1240
1241 ib_device_check_mandatory(device);
1242
1243 ret = setup_port_data(device);
1244 if (ret) {
1245 dev_warn(&device->dev, "Couldn't create per-port data\n");
1246 return ret;
1247 }
1248
1249 memset(&device->attrs, 0, sizeof(device->attrs));
1250 ret = device->ops.query_device(device, &device->attrs, &uhw);
1251 if (ret) {
1252 dev_warn(&device->dev,
1253 "Couldn't query the device attributes\n");
1254 return ret;
1255 }
1256
1257 return 0;
1258 }
1259
disable_device(struct ib_device * device)1260 static void disable_device(struct ib_device *device)
1261 {
1262 u32 cid;
1263
1264 WARN_ON(!refcount_read(&device->refcount));
1265
1266 down_write(&devices_rwsem);
1267 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1268 up_write(&devices_rwsem);
1269
1270 /*
1271 * Remove clients in LIFO order, see assign_client_id. This could be
1272 * more efficient if xarray learns to reverse iterate. Since no new
1273 * clients can be added to this ib_device past this point we only need
1274 * the maximum possible client_id value here.
1275 */
1276 down_read(&clients_rwsem);
1277 cid = highest_client_id;
1278 up_read(&clients_rwsem);
1279 while (cid) {
1280 cid--;
1281 remove_client_context(device, cid);
1282 }
1283
1284 ib_cq_pool_cleanup(device);
1285
1286 /* Pairs with refcount_set in enable_device */
1287 ib_device_put(device);
1288 wait_for_completion(&device->unreg_completion);
1289
1290 /*
1291 * compat devices must be removed after device refcount drops to zero.
1292 * Otherwise init_net() may add more compatdevs after removing compat
1293 * devices and before device is disabled.
1294 */
1295 remove_compat_devs(device);
1296 }
1297
1298 /*
1299 * An enabled device is visible to all clients and to all the public facing
1300 * APIs that return a device pointer. This always returns with a new get, even
1301 * if it fails.
1302 */
enable_device_and_get(struct ib_device * device)1303 static int enable_device_and_get(struct ib_device *device)
1304 {
1305 struct ib_client *client;
1306 unsigned long index;
1307 int ret = 0;
1308
1309 /*
1310 * One ref belongs to the xa and the other belongs to this
1311 * thread. This is needed to guard against parallel unregistration.
1312 */
1313 refcount_set(&device->refcount, 2);
1314 down_write(&devices_rwsem);
1315 xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1316
1317 /*
1318 * By using downgrade_write() we ensure that no other thread can clear
1319 * DEVICE_REGISTERED while we are completing the client setup.
1320 */
1321 downgrade_write(&devices_rwsem);
1322
1323 if (device->ops.enable_driver) {
1324 ret = device->ops.enable_driver(device);
1325 if (ret)
1326 goto out;
1327 }
1328
1329 down_read(&clients_rwsem);
1330 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1331 ret = add_client_context(device, client);
1332 if (ret)
1333 break;
1334 }
1335 up_read(&clients_rwsem);
1336 if (!ret)
1337 ret = add_compat_devs(device);
1338 out:
1339 up_read(&devices_rwsem);
1340 return ret;
1341 }
1342
prevent_dealloc_device(struct ib_device * ib_dev)1343 static void prevent_dealloc_device(struct ib_device *ib_dev)
1344 {
1345 }
1346
1347 /**
1348 * ib_register_device - Register an IB device with IB core
1349 * @device: Device to register
1350 * @name: unique string device name. This may include a '%' which will
1351 * cause a unique index to be added to the passed device name.
1352 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1353 * device will be used. In this case the caller should fully
1354 * setup the ibdev for DMA. This usually means using dma_virt_ops.
1355 *
1356 * Low-level drivers use ib_register_device() to register their
1357 * devices with the IB core. All registered clients will receive a
1358 * callback for each device that is added. @device must be allocated
1359 * with ib_alloc_device().
1360 *
1361 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1362 * asynchronously then the device pointer may become freed as soon as this
1363 * function returns.
1364 */
ib_register_device(struct ib_device * device,const char * name,struct device * dma_device)1365 int ib_register_device(struct ib_device *device, const char *name,
1366 struct device *dma_device)
1367 {
1368 int ret;
1369
1370 ret = assign_name(device, name);
1371 if (ret)
1372 return ret;
1373
1374 /*
1375 * If the caller does not provide a DMA capable device then the IB core
1376 * will set up ib_sge and scatterlist structures that stash the kernel
1377 * virtual address into the address field.
1378 */
1379 WARN_ON(dma_device && !dma_device->dma_parms);
1380 device->dma_device = dma_device;
1381
1382 ret = setup_device(device);
1383 if (ret)
1384 return ret;
1385
1386 ret = ib_cache_setup_one(device);
1387 if (ret) {
1388 dev_warn(&device->dev,
1389 "Couldn't set up InfiniBand P_Key/GID cache\n");
1390 return ret;
1391 }
1392
1393 device->groups[0] = &ib_dev_attr_group;
1394 device->groups[1] = device->ops.device_group;
1395 ret = ib_setup_device_attrs(device);
1396 if (ret)
1397 goto cache_cleanup;
1398
1399 ib_device_register_rdmacg(device);
1400
1401 rdma_counter_init(device);
1402
1403 /*
1404 * Ensure that ADD uevent is not fired because it
1405 * is too early amd device is not initialized yet.
1406 */
1407 dev_set_uevent_suppress(&device->dev, true);
1408 ret = device_add(&device->dev);
1409 if (ret)
1410 goto cg_cleanup;
1411
1412 ret = ib_setup_port_attrs(&device->coredev);
1413 if (ret) {
1414 dev_warn(&device->dev,
1415 "Couldn't register device with driver model\n");
1416 goto dev_cleanup;
1417 }
1418
1419 ret = enable_device_and_get(device);
1420 if (ret) {
1421 void (*dealloc_fn)(struct ib_device *);
1422
1423 /*
1424 * If we hit this error flow then we don't want to
1425 * automatically dealloc the device since the caller is
1426 * expected to call ib_dealloc_device() after
1427 * ib_register_device() fails. This is tricky due to the
1428 * possibility for a parallel unregistration along with this
1429 * error flow. Since we have a refcount here we know any
1430 * parallel flow is stopped in disable_device and will see the
1431 * special dealloc_driver pointer, causing the responsibility to
1432 * ib_dealloc_device() to revert back to this thread.
1433 */
1434 dealloc_fn = device->ops.dealloc_driver;
1435 device->ops.dealloc_driver = prevent_dealloc_device;
1436 ib_device_put(device);
1437 __ib_unregister_device(device);
1438 device->ops.dealloc_driver = dealloc_fn;
1439 dev_set_uevent_suppress(&device->dev, false);
1440 return ret;
1441 }
1442 dev_set_uevent_suppress(&device->dev, false);
1443 /* Mark for userspace that device is ready */
1444 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1445 ib_device_put(device);
1446
1447 return 0;
1448
1449 dev_cleanup:
1450 device_del(&device->dev);
1451 cg_cleanup:
1452 dev_set_uevent_suppress(&device->dev, false);
1453 ib_device_unregister_rdmacg(device);
1454 cache_cleanup:
1455 ib_cache_cleanup_one(device);
1456 return ret;
1457 }
1458 EXPORT_SYMBOL(ib_register_device);
1459
1460 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1461 static void __ib_unregister_device(struct ib_device *ib_dev)
1462 {
1463 /*
1464 * We have a registration lock so that all the calls to unregister are
1465 * fully fenced, once any unregister returns the device is truely
1466 * unregistered even if multiple callers are unregistering it at the
1467 * same time. This also interacts with the registration flow and
1468 * provides sane semantics if register and unregister are racing.
1469 */
1470 mutex_lock(&ib_dev->unregistration_lock);
1471 if (!refcount_read(&ib_dev->refcount))
1472 goto out;
1473
1474 disable_device(ib_dev);
1475
1476 /* Expedite removing unregistered pointers from the hash table */
1477 free_netdevs(ib_dev);
1478
1479 ib_free_port_attrs(&ib_dev->coredev);
1480 device_del(&ib_dev->dev);
1481 ib_device_unregister_rdmacg(ib_dev);
1482 ib_cache_cleanup_one(ib_dev);
1483
1484 /*
1485 * Drivers using the new flow may not call ib_dealloc_device except
1486 * in error unwind prior to registration success.
1487 */
1488 if (ib_dev->ops.dealloc_driver &&
1489 ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1490 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1491 ib_dealloc_device(ib_dev);
1492 }
1493 out:
1494 mutex_unlock(&ib_dev->unregistration_lock);
1495 }
1496
1497 /**
1498 * ib_unregister_device - Unregister an IB device
1499 * @ib_dev: The device to unregister
1500 *
1501 * Unregister an IB device. All clients will receive a remove callback.
1502 *
1503 * Callers should call this routine only once, and protect against races with
1504 * registration. Typically it should only be called as part of a remove
1505 * callback in an implementation of driver core's struct device_driver and
1506 * related.
1507 *
1508 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1509 * this function.
1510 */
ib_unregister_device(struct ib_device * ib_dev)1511 void ib_unregister_device(struct ib_device *ib_dev)
1512 {
1513 get_device(&ib_dev->dev);
1514 __ib_unregister_device(ib_dev);
1515 put_device(&ib_dev->dev);
1516 }
1517 EXPORT_SYMBOL(ib_unregister_device);
1518
1519 /**
1520 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1521 * @ib_dev: The device to unregister
1522 *
1523 * This is the same as ib_unregister_device(), except it includes an internal
1524 * ib_device_put() that should match a 'get' obtained by the caller.
1525 *
1526 * It is safe to call this routine concurrently from multiple threads while
1527 * holding the 'get'. When the function returns the device is fully
1528 * unregistered.
1529 *
1530 * Drivers using this flow MUST use the driver_unregister callback to clean up
1531 * their resources associated with the device and dealloc it.
1532 */
ib_unregister_device_and_put(struct ib_device * ib_dev)1533 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1534 {
1535 WARN_ON(!ib_dev->ops.dealloc_driver);
1536 get_device(&ib_dev->dev);
1537 ib_device_put(ib_dev);
1538 __ib_unregister_device(ib_dev);
1539 put_device(&ib_dev->dev);
1540 }
1541 EXPORT_SYMBOL(ib_unregister_device_and_put);
1542
1543 /**
1544 * ib_unregister_driver - Unregister all IB devices for a driver
1545 * @driver_id: The driver to unregister
1546 *
1547 * This implements a fence for device unregistration. It only returns once all
1548 * devices associated with the driver_id have fully completed their
1549 * unregistration and returned from ib_unregister_device*().
1550 *
1551 * If device's are not yet unregistered it goes ahead and starts unregistering
1552 * them.
1553 *
1554 * This does not block creation of new devices with the given driver_id, that
1555 * is the responsibility of the caller.
1556 */
ib_unregister_driver(enum rdma_driver_id driver_id)1557 void ib_unregister_driver(enum rdma_driver_id driver_id)
1558 {
1559 struct ib_device *ib_dev;
1560 unsigned long index;
1561
1562 down_read(&devices_rwsem);
1563 xa_for_each (&devices, index, ib_dev) {
1564 if (ib_dev->ops.driver_id != driver_id)
1565 continue;
1566
1567 get_device(&ib_dev->dev);
1568 up_read(&devices_rwsem);
1569
1570 WARN_ON(!ib_dev->ops.dealloc_driver);
1571 __ib_unregister_device(ib_dev);
1572
1573 put_device(&ib_dev->dev);
1574 down_read(&devices_rwsem);
1575 }
1576 up_read(&devices_rwsem);
1577 }
1578 EXPORT_SYMBOL(ib_unregister_driver);
1579
ib_unregister_work(struct work_struct * work)1580 static void ib_unregister_work(struct work_struct *work)
1581 {
1582 struct ib_device *ib_dev =
1583 container_of(work, struct ib_device, unregistration_work);
1584
1585 __ib_unregister_device(ib_dev);
1586 put_device(&ib_dev->dev);
1587 }
1588
1589 /**
1590 * ib_unregister_device_queued - Unregister a device using a work queue
1591 * @ib_dev: The device to unregister
1592 *
1593 * This schedules an asynchronous unregistration using a WQ for the device. A
1594 * driver should use this to avoid holding locks while doing unregistration,
1595 * such as holding the RTNL lock.
1596 *
1597 * Drivers using this API must use ib_unregister_driver before module unload
1598 * to ensure that all scheduled unregistrations have completed.
1599 */
ib_unregister_device_queued(struct ib_device * ib_dev)1600 void ib_unregister_device_queued(struct ib_device *ib_dev)
1601 {
1602 WARN_ON(!refcount_read(&ib_dev->refcount));
1603 WARN_ON(!ib_dev->ops.dealloc_driver);
1604 get_device(&ib_dev->dev);
1605 if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1606 put_device(&ib_dev->dev);
1607 }
1608 EXPORT_SYMBOL(ib_unregister_device_queued);
1609
1610 /*
1611 * The caller must pass in a device that has the kref held and the refcount
1612 * released. If the device is in cur_net and still registered then it is moved
1613 * into net.
1614 */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1615 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1616 struct net *net)
1617 {
1618 int ret2 = -EINVAL;
1619 int ret;
1620
1621 mutex_lock(&device->unregistration_lock);
1622
1623 /*
1624 * If a device not under ib_device_get() or if the unregistration_lock
1625 * is not held, the namespace can be changed, or it can be unregistered.
1626 * Check again under the lock.
1627 */
1628 if (refcount_read(&device->refcount) == 0 ||
1629 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1630 ret = -ENODEV;
1631 goto out;
1632 }
1633
1634 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1635 disable_device(device);
1636
1637 /*
1638 * At this point no one can be using the device, so it is safe to
1639 * change the namespace.
1640 */
1641 write_pnet(&device->coredev.rdma_net, net);
1642
1643 down_read(&devices_rwsem);
1644 /*
1645 * Currently rdma devices are system wide unique. So the device name
1646 * is guaranteed free in the new namespace. Publish the new namespace
1647 * at the sysfs level.
1648 */
1649 ret = device_rename(&device->dev, dev_name(&device->dev));
1650 up_read(&devices_rwsem);
1651 if (ret) {
1652 dev_warn(&device->dev,
1653 "%s: Couldn't rename device after namespace change\n",
1654 __func__);
1655 /* Try and put things back and re-enable the device */
1656 write_pnet(&device->coredev.rdma_net, cur_net);
1657 }
1658
1659 ret2 = enable_device_and_get(device);
1660 if (ret2) {
1661 /*
1662 * This shouldn't really happen, but if it does, let the user
1663 * retry at later point. So don't disable the device.
1664 */
1665 dev_warn(&device->dev,
1666 "%s: Couldn't re-enable device after namespace change\n",
1667 __func__);
1668 }
1669 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1670
1671 ib_device_put(device);
1672 out:
1673 mutex_unlock(&device->unregistration_lock);
1674 if (ret)
1675 return ret;
1676 return ret2;
1677 }
1678
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1679 int ib_device_set_netns_put(struct sk_buff *skb,
1680 struct ib_device *dev, u32 ns_fd)
1681 {
1682 struct net *net;
1683 int ret;
1684
1685 net = get_net_ns_by_fd(ns_fd);
1686 if (IS_ERR(net)) {
1687 ret = PTR_ERR(net);
1688 goto net_err;
1689 }
1690
1691 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1692 ret = -EPERM;
1693 goto ns_err;
1694 }
1695
1696 /*
1697 * All the ib_clients, including uverbs, are reset when the namespace is
1698 * changed and this cannot be blocked waiting for userspace to do
1699 * something, so disassociation is mandatory.
1700 */
1701 if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1702 ret = -EOPNOTSUPP;
1703 goto ns_err;
1704 }
1705
1706 get_device(&dev->dev);
1707 ib_device_put(dev);
1708 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1709 put_device(&dev->dev);
1710
1711 put_net(net);
1712 return ret;
1713
1714 ns_err:
1715 put_net(net);
1716 net_err:
1717 ib_device_put(dev);
1718 return ret;
1719 }
1720
1721 static struct pernet_operations rdma_dev_net_ops = {
1722 .init = rdma_dev_init_net,
1723 .exit = rdma_dev_exit_net,
1724 .id = &rdma_dev_net_id,
1725 .size = sizeof(struct rdma_dev_net),
1726 };
1727
assign_client_id(struct ib_client * client)1728 static int assign_client_id(struct ib_client *client)
1729 {
1730 int ret;
1731
1732 down_write(&clients_rwsem);
1733 /*
1734 * The add/remove callbacks must be called in FIFO/LIFO order. To
1735 * achieve this we assign client_ids so they are sorted in
1736 * registration order.
1737 */
1738 client->client_id = highest_client_id;
1739 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1740 if (ret)
1741 goto out;
1742
1743 highest_client_id++;
1744 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1745
1746 out:
1747 up_write(&clients_rwsem);
1748 return ret;
1749 }
1750
remove_client_id(struct ib_client * client)1751 static void remove_client_id(struct ib_client *client)
1752 {
1753 down_write(&clients_rwsem);
1754 xa_erase(&clients, client->client_id);
1755 for (; highest_client_id; highest_client_id--)
1756 if (xa_load(&clients, highest_client_id - 1))
1757 break;
1758 up_write(&clients_rwsem);
1759 }
1760
1761 /**
1762 * ib_register_client - Register an IB client
1763 * @client:Client to register
1764 *
1765 * Upper level users of the IB drivers can use ib_register_client() to
1766 * register callbacks for IB device addition and removal. When an IB
1767 * device is added, each registered client's add method will be called
1768 * (in the order the clients were registered), and when a device is
1769 * removed, each client's remove method will be called (in the reverse
1770 * order that clients were registered). In addition, when
1771 * ib_register_client() is called, the client will receive an add
1772 * callback for all devices already registered.
1773 */
ib_register_client(struct ib_client * client)1774 int ib_register_client(struct ib_client *client)
1775 {
1776 struct ib_device *device;
1777 unsigned long index;
1778 int ret;
1779
1780 refcount_set(&client->uses, 1);
1781 init_completion(&client->uses_zero);
1782 ret = assign_client_id(client);
1783 if (ret)
1784 return ret;
1785
1786 down_read(&devices_rwsem);
1787 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1788 ret = add_client_context(device, client);
1789 if (ret) {
1790 up_read(&devices_rwsem);
1791 ib_unregister_client(client);
1792 return ret;
1793 }
1794 }
1795 up_read(&devices_rwsem);
1796 return 0;
1797 }
1798 EXPORT_SYMBOL(ib_register_client);
1799
1800 /**
1801 * ib_unregister_client - Unregister an IB client
1802 * @client:Client to unregister
1803 *
1804 * Upper level users use ib_unregister_client() to remove their client
1805 * registration. When ib_unregister_client() is called, the client
1806 * will receive a remove callback for each IB device still registered.
1807 *
1808 * This is a full fence, once it returns no client callbacks will be called,
1809 * or are running in another thread.
1810 */
ib_unregister_client(struct ib_client * client)1811 void ib_unregister_client(struct ib_client *client)
1812 {
1813 struct ib_device *device;
1814 unsigned long index;
1815
1816 down_write(&clients_rwsem);
1817 ib_client_put(client);
1818 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1819 up_write(&clients_rwsem);
1820
1821 /* We do not want to have locks while calling client->remove() */
1822 rcu_read_lock();
1823 xa_for_each (&devices, index, device) {
1824 if (!ib_device_try_get(device))
1825 continue;
1826 rcu_read_unlock();
1827
1828 remove_client_context(device, client->client_id);
1829
1830 ib_device_put(device);
1831 rcu_read_lock();
1832 }
1833 rcu_read_unlock();
1834
1835 /*
1836 * remove_client_context() is not a fence, it can return even though a
1837 * removal is ongoing. Wait until all removals are completed.
1838 */
1839 wait_for_completion(&client->uses_zero);
1840 remove_client_id(client);
1841 }
1842 EXPORT_SYMBOL(ib_unregister_client);
1843
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1844 static int __ib_get_global_client_nl_info(const char *client_name,
1845 struct ib_client_nl_info *res)
1846 {
1847 struct ib_client *client;
1848 unsigned long index;
1849 int ret = -ENOENT;
1850
1851 down_read(&clients_rwsem);
1852 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1853 if (strcmp(client->name, client_name) != 0)
1854 continue;
1855 if (!client->get_global_nl_info) {
1856 ret = -EOPNOTSUPP;
1857 break;
1858 }
1859 ret = client->get_global_nl_info(res);
1860 if (WARN_ON(ret == -ENOENT))
1861 ret = -EINVAL;
1862 if (!ret && res->cdev)
1863 get_device(res->cdev);
1864 break;
1865 }
1866 up_read(&clients_rwsem);
1867 return ret;
1868 }
1869
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1870 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1871 const char *client_name,
1872 struct ib_client_nl_info *res)
1873 {
1874 unsigned long index;
1875 void *client_data;
1876 int ret = -ENOENT;
1877
1878 down_read(&ibdev->client_data_rwsem);
1879 xan_for_each_marked (&ibdev->client_data, index, client_data,
1880 CLIENT_DATA_REGISTERED) {
1881 struct ib_client *client = xa_load(&clients, index);
1882
1883 if (!client || strcmp(client->name, client_name) != 0)
1884 continue;
1885 if (!client->get_nl_info) {
1886 ret = -EOPNOTSUPP;
1887 break;
1888 }
1889 ret = client->get_nl_info(ibdev, client_data, res);
1890 if (WARN_ON(ret == -ENOENT))
1891 ret = -EINVAL;
1892
1893 /*
1894 * The cdev is guaranteed valid as long as we are inside the
1895 * client_data_rwsem as remove_one can't be called. Keep it
1896 * valid for the caller.
1897 */
1898 if (!ret && res->cdev)
1899 get_device(res->cdev);
1900 break;
1901 }
1902 up_read(&ibdev->client_data_rwsem);
1903
1904 return ret;
1905 }
1906
1907 /**
1908 * ib_get_client_nl_info - Fetch the nl_info from a client
1909 * @ibdev: IB device
1910 * @client_name: Name of the client
1911 * @res: Result of the query
1912 */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1913 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1914 struct ib_client_nl_info *res)
1915 {
1916 int ret;
1917
1918 if (ibdev)
1919 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1920 else
1921 ret = __ib_get_global_client_nl_info(client_name, res);
1922 #ifdef CONFIG_MODULES
1923 if (ret == -ENOENT) {
1924 request_module("rdma-client-%s", client_name);
1925 if (ibdev)
1926 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1927 else
1928 ret = __ib_get_global_client_nl_info(client_name, res);
1929 }
1930 #endif
1931 if (ret) {
1932 if (ret == -ENOENT)
1933 return -EOPNOTSUPP;
1934 return ret;
1935 }
1936
1937 if (WARN_ON(!res->cdev))
1938 return -EINVAL;
1939 return 0;
1940 }
1941
1942 /**
1943 * ib_set_client_data - Set IB client context
1944 * @device:Device to set context for
1945 * @client:Client to set context for
1946 * @data:Context to set
1947 *
1948 * ib_set_client_data() sets client context data that can be retrieved with
1949 * ib_get_client_data(). This can only be called while the client is
1950 * registered to the device, once the ib_client remove() callback returns this
1951 * cannot be called.
1952 */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)1953 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1954 void *data)
1955 {
1956 void *rc;
1957
1958 if (WARN_ON(IS_ERR(data)))
1959 data = NULL;
1960
1961 rc = xa_store(&device->client_data, client->client_id, data,
1962 GFP_KERNEL);
1963 WARN_ON(xa_is_err(rc));
1964 }
1965 EXPORT_SYMBOL(ib_set_client_data);
1966
1967 /**
1968 * ib_register_event_handler - Register an IB event handler
1969 * @event_handler:Handler to register
1970 *
1971 * ib_register_event_handler() registers an event handler that will be
1972 * called back when asynchronous IB events occur (as defined in
1973 * chapter 11 of the InfiniBand Architecture Specification). This
1974 * callback occurs in workqueue context.
1975 */
ib_register_event_handler(struct ib_event_handler * event_handler)1976 void ib_register_event_handler(struct ib_event_handler *event_handler)
1977 {
1978 down_write(&event_handler->device->event_handler_rwsem);
1979 list_add_tail(&event_handler->list,
1980 &event_handler->device->event_handler_list);
1981 up_write(&event_handler->device->event_handler_rwsem);
1982 }
1983 EXPORT_SYMBOL(ib_register_event_handler);
1984
1985 /**
1986 * ib_unregister_event_handler - Unregister an event handler
1987 * @event_handler:Handler to unregister
1988 *
1989 * Unregister an event handler registered with
1990 * ib_register_event_handler().
1991 */
ib_unregister_event_handler(struct ib_event_handler * event_handler)1992 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1993 {
1994 down_write(&event_handler->device->event_handler_rwsem);
1995 list_del(&event_handler->list);
1996 up_write(&event_handler->device->event_handler_rwsem);
1997 }
1998 EXPORT_SYMBOL(ib_unregister_event_handler);
1999
ib_dispatch_event_clients(struct ib_event * event)2000 void ib_dispatch_event_clients(struct ib_event *event)
2001 {
2002 struct ib_event_handler *handler;
2003
2004 down_read(&event->device->event_handler_rwsem);
2005
2006 list_for_each_entry(handler, &event->device->event_handler_list, list)
2007 handler->handler(handler, event);
2008
2009 up_read(&event->device->event_handler_rwsem);
2010 }
2011
iw_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2012 static int iw_query_port(struct ib_device *device,
2013 u32 port_num,
2014 struct ib_port_attr *port_attr)
2015 {
2016 struct in_device *inetdev;
2017 struct net_device *netdev;
2018
2019 memset(port_attr, 0, sizeof(*port_attr));
2020
2021 netdev = ib_device_get_netdev(device, port_num);
2022 if (!netdev)
2023 return -ENODEV;
2024
2025 port_attr->max_mtu = IB_MTU_4096;
2026 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2027
2028 if (!netif_carrier_ok(netdev)) {
2029 port_attr->state = IB_PORT_DOWN;
2030 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2031 } else {
2032 rcu_read_lock();
2033 inetdev = __in_dev_get_rcu(netdev);
2034
2035 if (inetdev && inetdev->ifa_list) {
2036 port_attr->state = IB_PORT_ACTIVE;
2037 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2038 } else {
2039 port_attr->state = IB_PORT_INIT;
2040 port_attr->phys_state =
2041 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2042 }
2043
2044 rcu_read_unlock();
2045 }
2046
2047 dev_put(netdev);
2048 return device->ops.query_port(device, port_num, port_attr);
2049 }
2050
__ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2051 static int __ib_query_port(struct ib_device *device,
2052 u32 port_num,
2053 struct ib_port_attr *port_attr)
2054 {
2055 int err;
2056
2057 memset(port_attr, 0, sizeof(*port_attr));
2058
2059 err = device->ops.query_port(device, port_num, port_attr);
2060 if (err || port_attr->subnet_prefix)
2061 return err;
2062
2063 if (rdma_port_get_link_layer(device, port_num) !=
2064 IB_LINK_LAYER_INFINIBAND)
2065 return 0;
2066
2067 ib_get_cached_subnet_prefix(device, port_num,
2068 &port_attr->subnet_prefix);
2069 return 0;
2070 }
2071
2072 /**
2073 * ib_query_port - Query IB port attributes
2074 * @device:Device to query
2075 * @port_num:Port number to query
2076 * @port_attr:Port attributes
2077 *
2078 * ib_query_port() returns the attributes of a port through the
2079 * @port_attr pointer.
2080 */
ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2081 int ib_query_port(struct ib_device *device,
2082 u32 port_num,
2083 struct ib_port_attr *port_attr)
2084 {
2085 if (!rdma_is_port_valid(device, port_num))
2086 return -EINVAL;
2087
2088 if (rdma_protocol_iwarp(device, port_num))
2089 return iw_query_port(device, port_num, port_attr);
2090 else
2091 return __ib_query_port(device, port_num, port_attr);
2092 }
2093 EXPORT_SYMBOL(ib_query_port);
2094
add_ndev_hash(struct ib_port_data * pdata)2095 static void add_ndev_hash(struct ib_port_data *pdata)
2096 {
2097 unsigned long flags;
2098
2099 might_sleep();
2100
2101 spin_lock_irqsave(&ndev_hash_lock, flags);
2102 if (hash_hashed(&pdata->ndev_hash_link)) {
2103 hash_del_rcu(&pdata->ndev_hash_link);
2104 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2105 /*
2106 * We cannot do hash_add_rcu after a hash_del_rcu until the
2107 * grace period
2108 */
2109 synchronize_rcu();
2110 spin_lock_irqsave(&ndev_hash_lock, flags);
2111 }
2112 if (pdata->netdev)
2113 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2114 (uintptr_t)pdata->netdev);
2115 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2116 }
2117
2118 /**
2119 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2120 * @ib_dev: Device to modify
2121 * @ndev: net_device to affiliate, may be NULL
2122 * @port: IB port the net_device is connected to
2123 *
2124 * Drivers should use this to link the ib_device to a netdev so the netdev
2125 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2126 * affiliated with any port.
2127 *
2128 * The caller must ensure that the given ndev is not unregistered or
2129 * unregistering, and that either the ib_device is unregistered or
2130 * ib_device_set_netdev() is called with NULL when the ndev sends a
2131 * NETDEV_UNREGISTER event.
2132 */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,u32 port)2133 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2134 u32 port)
2135 {
2136 struct net_device *old_ndev;
2137 struct ib_port_data *pdata;
2138 unsigned long flags;
2139 int ret;
2140
2141 /*
2142 * Drivers wish to call this before ib_register_driver, so we have to
2143 * setup the port data early.
2144 */
2145 ret = alloc_port_data(ib_dev);
2146 if (ret)
2147 return ret;
2148
2149 if (!rdma_is_port_valid(ib_dev, port))
2150 return -EINVAL;
2151
2152 pdata = &ib_dev->port_data[port];
2153 spin_lock_irqsave(&pdata->netdev_lock, flags);
2154 old_ndev = rcu_dereference_protected(
2155 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2156 if (old_ndev == ndev) {
2157 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2158 return 0;
2159 }
2160
2161 if (ndev)
2162 dev_hold(ndev);
2163 rcu_assign_pointer(pdata->netdev, ndev);
2164 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2165
2166 add_ndev_hash(pdata);
2167 if (old_ndev)
2168 dev_put(old_ndev);
2169
2170 return 0;
2171 }
2172 EXPORT_SYMBOL(ib_device_set_netdev);
2173
free_netdevs(struct ib_device * ib_dev)2174 static void free_netdevs(struct ib_device *ib_dev)
2175 {
2176 unsigned long flags;
2177 u32 port;
2178
2179 if (!ib_dev->port_data)
2180 return;
2181
2182 rdma_for_each_port (ib_dev, port) {
2183 struct ib_port_data *pdata = &ib_dev->port_data[port];
2184 struct net_device *ndev;
2185
2186 spin_lock_irqsave(&pdata->netdev_lock, flags);
2187 ndev = rcu_dereference_protected(
2188 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2189 if (ndev) {
2190 spin_lock(&ndev_hash_lock);
2191 hash_del_rcu(&pdata->ndev_hash_link);
2192 spin_unlock(&ndev_hash_lock);
2193
2194 /*
2195 * If this is the last dev_put there is still a
2196 * synchronize_rcu before the netdev is kfreed, so we
2197 * can continue to rely on unlocked pointer
2198 * comparisons after the put
2199 */
2200 rcu_assign_pointer(pdata->netdev, NULL);
2201 dev_put(ndev);
2202 }
2203 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2204 }
2205 }
2206
ib_device_get_netdev(struct ib_device * ib_dev,u32 port)2207 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2208 u32 port)
2209 {
2210 struct ib_port_data *pdata;
2211 struct net_device *res;
2212
2213 if (!rdma_is_port_valid(ib_dev, port))
2214 return NULL;
2215
2216 pdata = &ib_dev->port_data[port];
2217
2218 /*
2219 * New drivers should use ib_device_set_netdev() not the legacy
2220 * get_netdev().
2221 */
2222 if (ib_dev->ops.get_netdev)
2223 res = ib_dev->ops.get_netdev(ib_dev, port);
2224 else {
2225 spin_lock(&pdata->netdev_lock);
2226 res = rcu_dereference_protected(
2227 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2228 if (res)
2229 dev_hold(res);
2230 spin_unlock(&pdata->netdev_lock);
2231 }
2232
2233 /*
2234 * If we are starting to unregister expedite things by preventing
2235 * propagation of an unregistering netdev.
2236 */
2237 if (res && res->reg_state != NETREG_REGISTERED) {
2238 dev_put(res);
2239 return NULL;
2240 }
2241
2242 return res;
2243 }
2244
2245 /**
2246 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2247 * @ndev: netdev to locate
2248 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2249 *
2250 * Find and hold an ib_device that is associated with a netdev via
2251 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2252 * returned pointer.
2253 */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2254 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2255 enum rdma_driver_id driver_id)
2256 {
2257 struct ib_device *res = NULL;
2258 struct ib_port_data *cur;
2259
2260 rcu_read_lock();
2261 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2262 (uintptr_t)ndev) {
2263 if (rcu_access_pointer(cur->netdev) == ndev &&
2264 (driver_id == RDMA_DRIVER_UNKNOWN ||
2265 cur->ib_dev->ops.driver_id == driver_id) &&
2266 ib_device_try_get(cur->ib_dev)) {
2267 res = cur->ib_dev;
2268 break;
2269 }
2270 }
2271 rcu_read_unlock();
2272
2273 return res;
2274 }
2275 EXPORT_SYMBOL(ib_device_get_by_netdev);
2276
2277 /**
2278 * ib_enum_roce_netdev - enumerate all RoCE ports
2279 * @ib_dev : IB device we want to query
2280 * @filter: Should we call the callback?
2281 * @filter_cookie: Cookie passed to filter
2282 * @cb: Callback to call for each found RoCE ports
2283 * @cookie: Cookie passed back to the callback
2284 *
2285 * Enumerates all of the physical RoCE ports of ib_dev
2286 * which are related to netdevice and calls callback() on each
2287 * device for which filter() function returns non zero.
2288 */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2289 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2290 roce_netdev_filter filter,
2291 void *filter_cookie,
2292 roce_netdev_callback cb,
2293 void *cookie)
2294 {
2295 u32 port;
2296
2297 rdma_for_each_port (ib_dev, port)
2298 if (rdma_protocol_roce(ib_dev, port)) {
2299 struct net_device *idev =
2300 ib_device_get_netdev(ib_dev, port);
2301
2302 if (filter(ib_dev, port, idev, filter_cookie))
2303 cb(ib_dev, port, idev, cookie);
2304
2305 if (idev)
2306 dev_put(idev);
2307 }
2308 }
2309
2310 /**
2311 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2312 * @filter: Should we call the callback?
2313 * @filter_cookie: Cookie passed to filter
2314 * @cb: Callback to call for each found RoCE ports
2315 * @cookie: Cookie passed back to the callback
2316 *
2317 * Enumerates all RoCE devices' physical ports which are related
2318 * to netdevices and calls callback() on each device for which
2319 * filter() function returns non zero.
2320 */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2321 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2322 void *filter_cookie,
2323 roce_netdev_callback cb,
2324 void *cookie)
2325 {
2326 struct ib_device *dev;
2327 unsigned long index;
2328
2329 down_read(&devices_rwsem);
2330 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2331 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2332 up_read(&devices_rwsem);
2333 }
2334
2335 /*
2336 * ib_enum_all_devs - enumerate all ib_devices
2337 * @cb: Callback to call for each found ib_device
2338 *
2339 * Enumerates all ib_devices and calls callback() on each device.
2340 */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2341 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2342 struct netlink_callback *cb)
2343 {
2344 unsigned long index;
2345 struct ib_device *dev;
2346 unsigned int idx = 0;
2347 int ret = 0;
2348
2349 down_read(&devices_rwsem);
2350 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2351 if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2352 continue;
2353
2354 ret = nldev_cb(dev, skb, cb, idx);
2355 if (ret)
2356 break;
2357 idx++;
2358 }
2359 up_read(&devices_rwsem);
2360 return ret;
2361 }
2362
2363 /**
2364 * ib_query_pkey - Get P_Key table entry
2365 * @device:Device to query
2366 * @port_num:Port number to query
2367 * @index:P_Key table index to query
2368 * @pkey:Returned P_Key
2369 *
2370 * ib_query_pkey() fetches the specified P_Key table entry.
2371 */
ib_query_pkey(struct ib_device * device,u32 port_num,u16 index,u16 * pkey)2372 int ib_query_pkey(struct ib_device *device,
2373 u32 port_num, u16 index, u16 *pkey)
2374 {
2375 if (!rdma_is_port_valid(device, port_num))
2376 return -EINVAL;
2377
2378 if (!device->ops.query_pkey)
2379 return -EOPNOTSUPP;
2380
2381 return device->ops.query_pkey(device, port_num, index, pkey);
2382 }
2383 EXPORT_SYMBOL(ib_query_pkey);
2384
2385 /**
2386 * ib_modify_device - Change IB device attributes
2387 * @device:Device to modify
2388 * @device_modify_mask:Mask of attributes to change
2389 * @device_modify:New attribute values
2390 *
2391 * ib_modify_device() changes a device's attributes as specified by
2392 * the @device_modify_mask and @device_modify structure.
2393 */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2394 int ib_modify_device(struct ib_device *device,
2395 int device_modify_mask,
2396 struct ib_device_modify *device_modify)
2397 {
2398 if (!device->ops.modify_device)
2399 return -EOPNOTSUPP;
2400
2401 return device->ops.modify_device(device, device_modify_mask,
2402 device_modify);
2403 }
2404 EXPORT_SYMBOL(ib_modify_device);
2405
2406 /**
2407 * ib_modify_port - Modifies the attributes for the specified port.
2408 * @device: The device to modify.
2409 * @port_num: The number of the port to modify.
2410 * @port_modify_mask: Mask used to specify which attributes of the port
2411 * to change.
2412 * @port_modify: New attribute values for the port.
2413 *
2414 * ib_modify_port() changes a port's attributes as specified by the
2415 * @port_modify_mask and @port_modify structure.
2416 */
ib_modify_port(struct ib_device * device,u32 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2417 int ib_modify_port(struct ib_device *device,
2418 u32 port_num, int port_modify_mask,
2419 struct ib_port_modify *port_modify)
2420 {
2421 int rc;
2422
2423 if (!rdma_is_port_valid(device, port_num))
2424 return -EINVAL;
2425
2426 if (device->ops.modify_port)
2427 rc = device->ops.modify_port(device, port_num,
2428 port_modify_mask,
2429 port_modify);
2430 else if (rdma_protocol_roce(device, port_num) &&
2431 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2432 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2433 rc = 0;
2434 else
2435 rc = -EOPNOTSUPP;
2436 return rc;
2437 }
2438 EXPORT_SYMBOL(ib_modify_port);
2439
2440 /**
2441 * ib_find_gid - Returns the port number and GID table index where
2442 * a specified GID value occurs. Its searches only for IB link layer.
2443 * @device: The device to query.
2444 * @gid: The GID value to search for.
2445 * @port_num: The port number of the device where the GID value was found.
2446 * @index: The index into the GID table where the GID was found. This
2447 * parameter may be NULL.
2448 */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u32 * port_num,u16 * index)2449 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2450 u32 *port_num, u16 *index)
2451 {
2452 union ib_gid tmp_gid;
2453 u32 port;
2454 int ret, i;
2455
2456 rdma_for_each_port (device, port) {
2457 if (!rdma_protocol_ib(device, port))
2458 continue;
2459
2460 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2461 ++i) {
2462 ret = rdma_query_gid(device, port, i, &tmp_gid);
2463 if (ret)
2464 return ret;
2465 if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2466 *port_num = port;
2467 if (index)
2468 *index = i;
2469 return 0;
2470 }
2471 }
2472 }
2473
2474 return -ENOENT;
2475 }
2476 EXPORT_SYMBOL(ib_find_gid);
2477
2478 /**
2479 * ib_find_pkey - Returns the PKey table index where a specified
2480 * PKey value occurs.
2481 * @device: The device to query.
2482 * @port_num: The port number of the device to search for the PKey.
2483 * @pkey: The PKey value to search for.
2484 * @index: The index into the PKey table where the PKey was found.
2485 */
ib_find_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)2486 int ib_find_pkey(struct ib_device *device,
2487 u32 port_num, u16 pkey, u16 *index)
2488 {
2489 int ret, i;
2490 u16 tmp_pkey;
2491 int partial_ix = -1;
2492
2493 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2494 ++i) {
2495 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2496 if (ret)
2497 return ret;
2498 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2499 /* if there is full-member pkey take it.*/
2500 if (tmp_pkey & 0x8000) {
2501 *index = i;
2502 return 0;
2503 }
2504 if (partial_ix < 0)
2505 partial_ix = i;
2506 }
2507 }
2508
2509 /*no full-member, if exists take the limited*/
2510 if (partial_ix >= 0) {
2511 *index = partial_ix;
2512 return 0;
2513 }
2514 return -ENOENT;
2515 }
2516 EXPORT_SYMBOL(ib_find_pkey);
2517
2518 /**
2519 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2520 * for a received CM request
2521 * @dev: An RDMA device on which the request has been received.
2522 * @port: Port number on the RDMA device.
2523 * @pkey: The Pkey the request came on.
2524 * @gid: A GID that the net_dev uses to communicate.
2525 * @addr: Contains the IP address that the request specified as its
2526 * destination.
2527 *
2528 */
ib_get_net_dev_by_params(struct ib_device * dev,u32 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2529 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2530 u32 port,
2531 u16 pkey,
2532 const union ib_gid *gid,
2533 const struct sockaddr *addr)
2534 {
2535 struct net_device *net_dev = NULL;
2536 unsigned long index;
2537 void *client_data;
2538
2539 if (!rdma_protocol_ib(dev, port))
2540 return NULL;
2541
2542 /*
2543 * Holding the read side guarantees that the client will not become
2544 * unregistered while we are calling get_net_dev_by_params()
2545 */
2546 down_read(&dev->client_data_rwsem);
2547 xan_for_each_marked (&dev->client_data, index, client_data,
2548 CLIENT_DATA_REGISTERED) {
2549 struct ib_client *client = xa_load(&clients, index);
2550
2551 if (!client || !client->get_net_dev_by_params)
2552 continue;
2553
2554 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2555 addr, client_data);
2556 if (net_dev)
2557 break;
2558 }
2559 up_read(&dev->client_data_rwsem);
2560
2561 return net_dev;
2562 }
2563 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2564
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2565 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2566 {
2567 struct ib_device_ops *dev_ops = &dev->ops;
2568 #define SET_DEVICE_OP(ptr, name) \
2569 do { \
2570 if (ops->name) \
2571 if (!((ptr)->name)) \
2572 (ptr)->name = ops->name; \
2573 } while (0)
2574
2575 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2576
2577 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2578 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2579 dev_ops->driver_id != ops->driver_id);
2580 dev_ops->driver_id = ops->driver_id;
2581 }
2582 if (ops->owner) {
2583 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2584 dev_ops->owner = ops->owner;
2585 }
2586 if (ops->uverbs_abi_ver)
2587 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2588
2589 dev_ops->uverbs_no_driver_id_binding |=
2590 ops->uverbs_no_driver_id_binding;
2591
2592 SET_DEVICE_OP(dev_ops, add_gid);
2593 SET_DEVICE_OP(dev_ops, advise_mr);
2594 SET_DEVICE_OP(dev_ops, alloc_dm);
2595 SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2596 SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2597 SET_DEVICE_OP(dev_ops, alloc_mr);
2598 SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2599 SET_DEVICE_OP(dev_ops, alloc_mw);
2600 SET_DEVICE_OP(dev_ops, alloc_pd);
2601 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2602 SET_DEVICE_OP(dev_ops, alloc_ucontext);
2603 SET_DEVICE_OP(dev_ops, alloc_xrcd);
2604 SET_DEVICE_OP(dev_ops, attach_mcast);
2605 SET_DEVICE_OP(dev_ops, check_mr_status);
2606 SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2607 SET_DEVICE_OP(dev_ops, counter_bind_qp);
2608 SET_DEVICE_OP(dev_ops, counter_dealloc);
2609 SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2610 SET_DEVICE_OP(dev_ops, counter_update_stats);
2611 SET_DEVICE_OP(dev_ops, create_ah);
2612 SET_DEVICE_OP(dev_ops, create_counters);
2613 SET_DEVICE_OP(dev_ops, create_cq);
2614 SET_DEVICE_OP(dev_ops, create_flow);
2615 SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2616 SET_DEVICE_OP(dev_ops, create_qp);
2617 SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2618 SET_DEVICE_OP(dev_ops, create_srq);
2619 SET_DEVICE_OP(dev_ops, create_user_ah);
2620 SET_DEVICE_OP(dev_ops, create_wq);
2621 SET_DEVICE_OP(dev_ops, dealloc_dm);
2622 SET_DEVICE_OP(dev_ops, dealloc_driver);
2623 SET_DEVICE_OP(dev_ops, dealloc_mw);
2624 SET_DEVICE_OP(dev_ops, dealloc_pd);
2625 SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2626 SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2627 SET_DEVICE_OP(dev_ops, del_gid);
2628 SET_DEVICE_OP(dev_ops, dereg_mr);
2629 SET_DEVICE_OP(dev_ops, destroy_ah);
2630 SET_DEVICE_OP(dev_ops, destroy_counters);
2631 SET_DEVICE_OP(dev_ops, destroy_cq);
2632 SET_DEVICE_OP(dev_ops, destroy_flow);
2633 SET_DEVICE_OP(dev_ops, destroy_flow_action);
2634 SET_DEVICE_OP(dev_ops, destroy_qp);
2635 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2636 SET_DEVICE_OP(dev_ops, destroy_srq);
2637 SET_DEVICE_OP(dev_ops, destroy_wq);
2638 SET_DEVICE_OP(dev_ops, device_group);
2639 SET_DEVICE_OP(dev_ops, detach_mcast);
2640 SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2641 SET_DEVICE_OP(dev_ops, drain_rq);
2642 SET_DEVICE_OP(dev_ops, drain_sq);
2643 SET_DEVICE_OP(dev_ops, enable_driver);
2644 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2645 SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2646 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2647 SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2648 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2649 SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2650 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2651 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2652 SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2653 SET_DEVICE_OP(dev_ops, get_dma_mr);
2654 SET_DEVICE_OP(dev_ops, get_hw_stats);
2655 SET_DEVICE_OP(dev_ops, get_link_layer);
2656 SET_DEVICE_OP(dev_ops, get_netdev);
2657 SET_DEVICE_OP(dev_ops, get_numa_node);
2658 SET_DEVICE_OP(dev_ops, get_port_immutable);
2659 SET_DEVICE_OP(dev_ops, get_vector_affinity);
2660 SET_DEVICE_OP(dev_ops, get_vf_config);
2661 SET_DEVICE_OP(dev_ops, get_vf_guid);
2662 SET_DEVICE_OP(dev_ops, get_vf_stats);
2663 SET_DEVICE_OP(dev_ops, iw_accept);
2664 SET_DEVICE_OP(dev_ops, iw_add_ref);
2665 SET_DEVICE_OP(dev_ops, iw_connect);
2666 SET_DEVICE_OP(dev_ops, iw_create_listen);
2667 SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2668 SET_DEVICE_OP(dev_ops, iw_get_qp);
2669 SET_DEVICE_OP(dev_ops, iw_reject);
2670 SET_DEVICE_OP(dev_ops, iw_rem_ref);
2671 SET_DEVICE_OP(dev_ops, map_mr_sg);
2672 SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2673 SET_DEVICE_OP(dev_ops, mmap);
2674 SET_DEVICE_OP(dev_ops, mmap_free);
2675 SET_DEVICE_OP(dev_ops, modify_ah);
2676 SET_DEVICE_OP(dev_ops, modify_cq);
2677 SET_DEVICE_OP(dev_ops, modify_device);
2678 SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2679 SET_DEVICE_OP(dev_ops, modify_port);
2680 SET_DEVICE_OP(dev_ops, modify_qp);
2681 SET_DEVICE_OP(dev_ops, modify_srq);
2682 SET_DEVICE_OP(dev_ops, modify_wq);
2683 SET_DEVICE_OP(dev_ops, peek_cq);
2684 SET_DEVICE_OP(dev_ops, poll_cq);
2685 SET_DEVICE_OP(dev_ops, port_groups);
2686 SET_DEVICE_OP(dev_ops, post_recv);
2687 SET_DEVICE_OP(dev_ops, post_send);
2688 SET_DEVICE_OP(dev_ops, post_srq_recv);
2689 SET_DEVICE_OP(dev_ops, process_mad);
2690 SET_DEVICE_OP(dev_ops, query_ah);
2691 SET_DEVICE_OP(dev_ops, query_device);
2692 SET_DEVICE_OP(dev_ops, query_gid);
2693 SET_DEVICE_OP(dev_ops, query_pkey);
2694 SET_DEVICE_OP(dev_ops, query_port);
2695 SET_DEVICE_OP(dev_ops, query_qp);
2696 SET_DEVICE_OP(dev_ops, query_srq);
2697 SET_DEVICE_OP(dev_ops, query_ucontext);
2698 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2699 SET_DEVICE_OP(dev_ops, read_counters);
2700 SET_DEVICE_OP(dev_ops, reg_dm_mr);
2701 SET_DEVICE_OP(dev_ops, reg_user_mr);
2702 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2703 SET_DEVICE_OP(dev_ops, req_notify_cq);
2704 SET_DEVICE_OP(dev_ops, rereg_user_mr);
2705 SET_DEVICE_OP(dev_ops, resize_cq);
2706 SET_DEVICE_OP(dev_ops, set_vf_guid);
2707 SET_DEVICE_OP(dev_ops, set_vf_link_state);
2708
2709 SET_OBJ_SIZE(dev_ops, ib_ah);
2710 SET_OBJ_SIZE(dev_ops, ib_counters);
2711 SET_OBJ_SIZE(dev_ops, ib_cq);
2712 SET_OBJ_SIZE(dev_ops, ib_mw);
2713 SET_OBJ_SIZE(dev_ops, ib_pd);
2714 SET_OBJ_SIZE(dev_ops, ib_qp);
2715 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2716 SET_OBJ_SIZE(dev_ops, ib_srq);
2717 SET_OBJ_SIZE(dev_ops, ib_ucontext);
2718 SET_OBJ_SIZE(dev_ops, ib_xrcd);
2719 }
2720 EXPORT_SYMBOL(ib_set_device_ops);
2721
2722 #ifdef CONFIG_INFINIBAND_VIRT_DMA
ib_dma_virt_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents)2723 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2724 {
2725 struct scatterlist *s;
2726 int i;
2727
2728 for_each_sg(sg, s, nents, i) {
2729 sg_dma_address(s) = (uintptr_t)sg_virt(s);
2730 sg_dma_len(s) = s->length;
2731 }
2732 return nents;
2733 }
2734 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2735 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2736
2737 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2738 [RDMA_NL_LS_OP_RESOLVE] = {
2739 .doit = ib_nl_handle_resolve_resp,
2740 .flags = RDMA_NL_ADMIN_PERM,
2741 },
2742 [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2743 .doit = ib_nl_handle_set_timeout,
2744 .flags = RDMA_NL_ADMIN_PERM,
2745 },
2746 [RDMA_NL_LS_OP_IP_RESOLVE] = {
2747 .doit = ib_nl_handle_ip_res_resp,
2748 .flags = RDMA_NL_ADMIN_PERM,
2749 },
2750 };
2751
ib_core_init(void)2752 static int __init ib_core_init(void)
2753 {
2754 int ret;
2755
2756 ib_wq = alloc_workqueue("infiniband", 0, 0);
2757 if (!ib_wq)
2758 return -ENOMEM;
2759
2760 ib_comp_wq = alloc_workqueue("ib-comp-wq",
2761 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2762 if (!ib_comp_wq) {
2763 ret = -ENOMEM;
2764 goto err;
2765 }
2766
2767 ib_comp_unbound_wq =
2768 alloc_workqueue("ib-comp-unb-wq",
2769 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2770 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2771 if (!ib_comp_unbound_wq) {
2772 ret = -ENOMEM;
2773 goto err_comp;
2774 }
2775
2776 ret = class_register(&ib_class);
2777 if (ret) {
2778 pr_warn("Couldn't create InfiniBand device class\n");
2779 goto err_comp_unbound;
2780 }
2781
2782 rdma_nl_init();
2783
2784 ret = addr_init();
2785 if (ret) {
2786 pr_warn("Couldn't init IB address resolution\n");
2787 goto err_ibnl;
2788 }
2789
2790 ret = ib_mad_init();
2791 if (ret) {
2792 pr_warn("Couldn't init IB MAD\n");
2793 goto err_addr;
2794 }
2795
2796 ret = ib_sa_init();
2797 if (ret) {
2798 pr_warn("Couldn't init SA\n");
2799 goto err_mad;
2800 }
2801
2802 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2803 if (ret) {
2804 pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2805 goto err_sa;
2806 }
2807
2808 ret = register_pernet_device(&rdma_dev_net_ops);
2809 if (ret) {
2810 pr_warn("Couldn't init compat dev. ret %d\n", ret);
2811 goto err_compat;
2812 }
2813
2814 nldev_init();
2815 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2816 roce_gid_mgmt_init();
2817
2818 return 0;
2819
2820 err_compat:
2821 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2822 err_sa:
2823 ib_sa_cleanup();
2824 err_mad:
2825 ib_mad_cleanup();
2826 err_addr:
2827 addr_cleanup();
2828 err_ibnl:
2829 class_unregister(&ib_class);
2830 err_comp_unbound:
2831 destroy_workqueue(ib_comp_unbound_wq);
2832 err_comp:
2833 destroy_workqueue(ib_comp_wq);
2834 err:
2835 destroy_workqueue(ib_wq);
2836 return ret;
2837 }
2838
ib_core_cleanup(void)2839 static void __exit ib_core_cleanup(void)
2840 {
2841 roce_gid_mgmt_cleanup();
2842 nldev_exit();
2843 rdma_nl_unregister(RDMA_NL_LS);
2844 unregister_pernet_device(&rdma_dev_net_ops);
2845 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2846 ib_sa_cleanup();
2847 ib_mad_cleanup();
2848 addr_cleanup();
2849 rdma_nl_exit();
2850 class_unregister(&ib_class);
2851 destroy_workqueue(ib_comp_unbound_wq);
2852 destroy_workqueue(ib_comp_wq);
2853 /* Make sure that any pending umem accounting work is done. */
2854 destroy_workqueue(ib_wq);
2855 flush_workqueue(system_unbound_wq);
2856 WARN_ON(!xa_empty(&clients));
2857 WARN_ON(!xa_empty(&devices));
2858 }
2859
2860 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2861
2862 /* ib core relies on netdev stack to first register net_ns_type_operations
2863 * ns kobject type before ib_core initialization.
2864 */
2865 fs_initcall(ib_core_init);
2866 module_exit(ib_core_cleanup);
2867