1 /*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57 #include <linux/nospec.h>
58
59 #include "hfi.h"
60 #include "common.h"
61 #include "device.h"
62 #include "trace.h"
63 #include "qp.h"
64 #include "verbs_txreq.h"
65 #include "debugfs.h"
66 #include "vnic.h"
67 #include "fault.h"
68 #include "affinity.h"
69
70 static unsigned int hfi1_lkey_table_size = 16;
71 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
72 S_IRUGO);
73 MODULE_PARM_DESC(lkey_table_size,
74 "LKEY table size in bits (2^n, 1 <= n <= 23)");
75
76 static unsigned int hfi1_max_pds = 0xFFFF;
77 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
78 MODULE_PARM_DESC(max_pds,
79 "Maximum number of protection domains to support");
80
81 static unsigned int hfi1_max_ahs = 0xFFFF;
82 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
83 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
84
85 unsigned int hfi1_max_cqes = 0x2FFFFF;
86 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
87 MODULE_PARM_DESC(max_cqes,
88 "Maximum number of completion queue entries to support");
89
90 unsigned int hfi1_max_cqs = 0x1FFFF;
91 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
92 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
93
94 unsigned int hfi1_max_qp_wrs = 0x3FFF;
95 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
96 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
97
98 unsigned int hfi1_max_qps = 32768;
99 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
100 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
101
102 unsigned int hfi1_max_sges = 0x60;
103 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
104 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
105
106 unsigned int hfi1_max_mcast_grps = 16384;
107 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_grps,
109 "Maximum number of multicast groups to support");
110
111 unsigned int hfi1_max_mcast_qp_attached = 16;
112 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
113 uint, S_IRUGO);
114 MODULE_PARM_DESC(max_mcast_qp_attached,
115 "Maximum number of attached QPs to support");
116
117 unsigned int hfi1_max_srqs = 1024;
118 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
119 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
120
121 unsigned int hfi1_max_srq_sges = 128;
122 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
123 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
124
125 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
126 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
127 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
128
129 unsigned short piothreshold = 256;
130 module_param(piothreshold, ushort, S_IRUGO);
131 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
132
133 static unsigned int sge_copy_mode;
134 module_param(sge_copy_mode, uint, S_IRUGO);
135 MODULE_PARM_DESC(sge_copy_mode,
136 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
137
138 static void verbs_sdma_complete(
139 struct sdma_txreq *cookie,
140 int status);
141
142 static int pio_wait(struct rvt_qp *qp,
143 struct send_context *sc,
144 struct hfi1_pkt_state *ps,
145 u32 flag);
146
147 /* Length of buffer to create verbs txreq cache name */
148 #define TXREQ_NAME_LEN 24
149
150 static uint wss_threshold = 80;
151 module_param(wss_threshold, uint, S_IRUGO);
152 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
153 static uint wss_clean_period = 256;
154 module_param(wss_clean_period, uint, S_IRUGO);
155 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
156
157 /*
158 * Translate ib_wr_opcode into ib_wc_opcode.
159 */
160 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
161 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
162 [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
163 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
164 [IB_WR_SEND] = IB_WC_SEND,
165 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
166 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
167 [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
168 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
169 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
170 [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
171 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
172 [IB_WR_REG_MR] = IB_WC_REG_MR
173 };
174
175 /*
176 * Length of header by opcode, 0 --> not supported
177 */
178 const u8 hdr_len_by_opcode[256] = {
179 /* RC */
180 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
181 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
182 [IB_OPCODE_RC_SEND_LAST] = 12 + 8,
183 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
184 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
185 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
186 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
187 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
188 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
189 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
190 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
191 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
192 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
193 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
194 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
195 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
196 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
197 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
198 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8,
199 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
200 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
201 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4,
202 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4,
203 [IB_OPCODE_TID_RDMA_READ_REQ] = 12 + 8 + 36,
204 [IB_OPCODE_TID_RDMA_READ_RESP] = 12 + 8 + 36,
205 [IB_OPCODE_TID_RDMA_WRITE_REQ] = 12 + 8 + 36,
206 [IB_OPCODE_TID_RDMA_WRITE_RESP] = 12 + 8 + 36,
207 [IB_OPCODE_TID_RDMA_WRITE_DATA] = 12 + 8 + 36,
208 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = 12 + 8 + 36,
209 [IB_OPCODE_TID_RDMA_ACK] = 12 + 8 + 36,
210 [IB_OPCODE_TID_RDMA_RESYNC] = 12 + 8 + 36,
211 /* UC */
212 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
213 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
214 [IB_OPCODE_UC_SEND_LAST] = 12 + 8,
215 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
216 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
217 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
218 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
219 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
220 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
221 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
222 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
223 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
224 /* UD */
225 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
226 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
227 };
228
229 static const opcode_handler opcode_handler_tbl[256] = {
230 /* RC */
231 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
232 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
233 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
234 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
235 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
236 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
237 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
238 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
239 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
240 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
241 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
242 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
243 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
244 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
245 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
246 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
247 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
248 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
249 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
250 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
251 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
252 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv,
253 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv,
254
255 /* TID RDMA has separate handlers for different opcodes.*/
256 [IB_OPCODE_TID_RDMA_WRITE_REQ] = &hfi1_rc_rcv_tid_rdma_write_req,
257 [IB_OPCODE_TID_RDMA_WRITE_RESP] = &hfi1_rc_rcv_tid_rdma_write_resp,
258 [IB_OPCODE_TID_RDMA_WRITE_DATA] = &hfi1_rc_rcv_tid_rdma_write_data,
259 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
260 [IB_OPCODE_TID_RDMA_READ_REQ] = &hfi1_rc_rcv_tid_rdma_read_req,
261 [IB_OPCODE_TID_RDMA_READ_RESP] = &hfi1_rc_rcv_tid_rdma_read_resp,
262 [IB_OPCODE_TID_RDMA_RESYNC] = &hfi1_rc_rcv_tid_rdma_resync,
263 [IB_OPCODE_TID_RDMA_ACK] = &hfi1_rc_rcv_tid_rdma_ack,
264
265 /* UC */
266 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
267 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
268 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
269 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
270 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
271 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
272 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
273 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
274 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
275 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
276 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
277 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
278 /* UD */
279 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
280 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
281 /* CNP */
282 [IB_OPCODE_CNP] = &hfi1_cnp_rcv
283 };
284
285 #define OPMASK 0x1f
286
287 static const u32 pio_opmask[BIT(3)] = {
288 /* RC */
289 [IB_OPCODE_RC >> 5] =
290 BIT(RC_OP(SEND_ONLY) & OPMASK) |
291 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
292 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
293 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
294 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
295 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
296 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
297 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
298 BIT(RC_OP(FETCH_ADD) & OPMASK),
299 /* UC */
300 [IB_OPCODE_UC >> 5] =
301 BIT(UC_OP(SEND_ONLY) & OPMASK) |
302 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
303 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
304 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
305 };
306
307 /*
308 * System image GUID.
309 */
310 __be64 ib_hfi1_sys_image_guid;
311
312 /*
313 * Make sure the QP is ready and able to accept the given opcode.
314 */
qp_ok(struct hfi1_packet * packet)315 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
316 {
317 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
318 return NULL;
319 if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
320 packet->qp->allowed_ops) ||
321 (packet->opcode == IB_OPCODE_CNP))
322 return opcode_handler_tbl[packet->opcode];
323
324 return NULL;
325 }
326
hfi1_fault_tx(struct rvt_qp * qp,u8 opcode,u64 pbc)327 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
328 {
329 #ifdef CONFIG_FAULT_INJECTION
330 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
331 /*
332 * In order to drop non-IB traffic we
333 * set PbcInsertHrc to NONE (0x2).
334 * The packet will still be delivered
335 * to the receiving node but a
336 * KHdrHCRCErr (KDETH packet with a bad
337 * HCRC) will be triggered and the
338 * packet will not be delivered to the
339 * correct context.
340 */
341 pbc &= ~PBC_INSERT_HCRC_SMASK;
342 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
343 } else {
344 /*
345 * In order to drop regular verbs
346 * traffic we set the PbcTestEbp
347 * flag. The packet will still be
348 * delivered to the receiving node but
349 * a 'late ebp error' will be
350 * triggered and will be dropped.
351 */
352 pbc |= PBC_TEST_EBP;
353 }
354 #endif
355 return pbc;
356 }
357
tid_qp_ok(int opcode,struct hfi1_packet * packet)358 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
359 {
360 if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
361 !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
362 return NULL;
363 if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
364 return opcode_handler_tbl[opcode];
365 return NULL;
366 }
367
hfi1_kdeth_eager_rcv(struct hfi1_packet * packet)368 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
369 {
370 struct hfi1_ctxtdata *rcd = packet->rcd;
371 struct ib_header *hdr = packet->hdr;
372 u32 tlen = packet->tlen;
373 struct hfi1_pportdata *ppd = rcd->ppd;
374 struct hfi1_ibport *ibp = &ppd->ibport_data;
375 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
376 opcode_handler opcode_handler;
377 unsigned long flags;
378 u32 qp_num;
379 int lnh;
380 u8 opcode;
381
382 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
383 if (unlikely(tlen < 15 * sizeof(u32)))
384 goto drop;
385
386 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
387 if (lnh != HFI1_LRH_BTH)
388 goto drop;
389
390 packet->ohdr = &hdr->u.oth;
391 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
392
393 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
394 inc_opstats(tlen, &rcd->opstats->stats[opcode]);
395
396 /* verbs_qp can be picked up from any tid_rdma header struct */
397 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
398 RVT_QPN_MASK;
399
400 rcu_read_lock();
401 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
402 if (!packet->qp)
403 goto drop_rcu;
404 spin_lock_irqsave(&packet->qp->r_lock, flags);
405 opcode_handler = tid_qp_ok(opcode, packet);
406 if (likely(opcode_handler))
407 opcode_handler(packet);
408 else
409 goto drop_unlock;
410 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
411 rcu_read_unlock();
412
413 return;
414 drop_unlock:
415 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
416 drop_rcu:
417 rcu_read_unlock();
418 drop:
419 ibp->rvp.n_pkt_drops++;
420 }
421
hfi1_kdeth_expected_rcv(struct hfi1_packet * packet)422 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
423 {
424 struct hfi1_ctxtdata *rcd = packet->rcd;
425 struct ib_header *hdr = packet->hdr;
426 u32 tlen = packet->tlen;
427 struct hfi1_pportdata *ppd = rcd->ppd;
428 struct hfi1_ibport *ibp = &ppd->ibport_data;
429 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
430 opcode_handler opcode_handler;
431 unsigned long flags;
432 u32 qp_num;
433 int lnh;
434 u8 opcode;
435
436 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
437 if (unlikely(tlen < 15 * sizeof(u32)))
438 goto drop;
439
440 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
441 if (lnh != HFI1_LRH_BTH)
442 goto drop;
443
444 packet->ohdr = &hdr->u.oth;
445 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
446
447 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
448 inc_opstats(tlen, &rcd->opstats->stats[opcode]);
449
450 /* verbs_qp can be picked up from any tid_rdma header struct */
451 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
452 RVT_QPN_MASK;
453
454 rcu_read_lock();
455 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
456 if (!packet->qp)
457 goto drop_rcu;
458 spin_lock_irqsave(&packet->qp->r_lock, flags);
459 opcode_handler = tid_qp_ok(opcode, packet);
460 if (likely(opcode_handler))
461 opcode_handler(packet);
462 else
463 goto drop_unlock;
464 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
465 rcu_read_unlock();
466
467 return;
468 drop_unlock:
469 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
470 drop_rcu:
471 rcu_read_unlock();
472 drop:
473 ibp->rvp.n_pkt_drops++;
474 }
475
hfi1_do_pkey_check(struct hfi1_packet * packet)476 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
477 {
478 struct hfi1_ctxtdata *rcd = packet->rcd;
479 struct hfi1_pportdata *ppd = rcd->ppd;
480 struct hfi1_16b_header *hdr = packet->hdr;
481 u16 pkey;
482
483 /* Pkey check needed only for bypass packets */
484 if (packet->etype != RHF_RCV_TYPE_BYPASS)
485 return 0;
486
487 /* Perform pkey check */
488 pkey = hfi1_16B_get_pkey(hdr);
489 return ingress_pkey_check(ppd, pkey, packet->sc,
490 packet->qp->s_pkey_index,
491 packet->slid, true);
492 }
493
hfi1_handle_packet(struct hfi1_packet * packet,bool is_mcast)494 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
495 bool is_mcast)
496 {
497 u32 qp_num;
498 struct hfi1_ctxtdata *rcd = packet->rcd;
499 struct hfi1_pportdata *ppd = rcd->ppd;
500 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
501 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
502 opcode_handler packet_handler;
503 unsigned long flags;
504
505 inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
506
507 if (unlikely(is_mcast)) {
508 struct rvt_mcast *mcast;
509 struct rvt_mcast_qp *p;
510
511 if (!packet->grh)
512 goto drop;
513 mcast = rvt_mcast_find(&ibp->rvp,
514 &packet->grh->dgid,
515 opa_get_lid(packet->dlid, 9B));
516 if (!mcast)
517 goto drop;
518 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
519 packet->qp = p->qp;
520 if (hfi1_do_pkey_check(packet))
521 goto drop;
522 spin_lock_irqsave(&packet->qp->r_lock, flags);
523 packet_handler = qp_ok(packet);
524 if (likely(packet_handler))
525 packet_handler(packet);
526 else
527 ibp->rvp.n_pkt_drops++;
528 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
529 }
530 /*
531 * Notify rvt_multicast_detach() if it is waiting for us
532 * to finish.
533 */
534 if (atomic_dec_return(&mcast->refcount) <= 1)
535 wake_up(&mcast->wait);
536 } else {
537 /* Get the destination QP number. */
538 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
539 hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
540 qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
541 else
542 qp_num = ib_bth_get_qpn(packet->ohdr);
543
544 rcu_read_lock();
545 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
546 if (!packet->qp)
547 goto unlock_drop;
548
549 if (hfi1_do_pkey_check(packet))
550 goto unlock_drop;
551
552 spin_lock_irqsave(&packet->qp->r_lock, flags);
553 packet_handler = qp_ok(packet);
554 if (likely(packet_handler))
555 packet_handler(packet);
556 else
557 ibp->rvp.n_pkt_drops++;
558 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
559 rcu_read_unlock();
560 }
561 return;
562 unlock_drop:
563 rcu_read_unlock();
564 drop:
565 ibp->rvp.n_pkt_drops++;
566 }
567
568 /**
569 * hfi1_ib_rcv - process an incoming packet
570 * @packet: data packet information
571 *
572 * This is called to process an incoming packet at interrupt level.
573 */
hfi1_ib_rcv(struct hfi1_packet * packet)574 void hfi1_ib_rcv(struct hfi1_packet *packet)
575 {
576 struct hfi1_ctxtdata *rcd = packet->rcd;
577
578 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
579 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
580 }
581
hfi1_16B_rcv(struct hfi1_packet * packet)582 void hfi1_16B_rcv(struct hfi1_packet *packet)
583 {
584 struct hfi1_ctxtdata *rcd = packet->rcd;
585
586 trace_input_ibhdr(rcd->dd, packet, false);
587 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
588 }
589
590 /*
591 * This is called from a timer to check for QPs
592 * which need kernel memory in order to send a packet.
593 */
mem_timer(struct timer_list * t)594 static void mem_timer(struct timer_list *t)
595 {
596 struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
597 struct list_head *list = &dev->memwait;
598 struct rvt_qp *qp = NULL;
599 struct iowait *wait;
600 unsigned long flags;
601 struct hfi1_qp_priv *priv;
602
603 write_seqlock_irqsave(&dev->iowait_lock, flags);
604 if (!list_empty(list)) {
605 wait = list_first_entry(list, struct iowait, list);
606 qp = iowait_to_qp(wait);
607 priv = qp->priv;
608 list_del_init(&priv->s_iowait.list);
609 priv->s_iowait.lock = NULL;
610 /* refcount held until actual wake up */
611 if (!list_empty(list))
612 mod_timer(&dev->mem_timer, jiffies + 1);
613 }
614 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
615
616 if (qp)
617 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
618 }
619
620 /*
621 * This is called with progress side lock held.
622 */
623 /* New API */
verbs_sdma_complete(struct sdma_txreq * cookie,int status)624 static void verbs_sdma_complete(
625 struct sdma_txreq *cookie,
626 int status)
627 {
628 struct verbs_txreq *tx =
629 container_of(cookie, struct verbs_txreq, txreq);
630 struct rvt_qp *qp = tx->qp;
631
632 spin_lock(&qp->s_lock);
633 if (tx->wqe) {
634 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
635 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
636 struct hfi1_opa_header *hdr;
637
638 hdr = &tx->phdr.hdr;
639 if (unlikely(status == SDMA_TXREQ_S_ABORTED))
640 hfi1_rc_verbs_aborted(qp, hdr);
641 hfi1_rc_send_complete(qp, hdr);
642 }
643 spin_unlock(&qp->s_lock);
644
645 hfi1_put_txreq(tx);
646 }
647
hfi1_wait_kmem(struct rvt_qp * qp)648 void hfi1_wait_kmem(struct rvt_qp *qp)
649 {
650 struct hfi1_qp_priv *priv = qp->priv;
651 struct ib_qp *ibqp = &qp->ibqp;
652 struct ib_device *ibdev = ibqp->device;
653 struct hfi1_ibdev *dev = to_idev(ibdev);
654
655 if (list_empty(&priv->s_iowait.list)) {
656 if (list_empty(&dev->memwait))
657 mod_timer(&dev->mem_timer, jiffies + 1);
658 qp->s_flags |= RVT_S_WAIT_KMEM;
659 list_add_tail(&priv->s_iowait.list, &dev->memwait);
660 priv->s_iowait.lock = &dev->iowait_lock;
661 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
662 rvt_get_qp(qp);
663 }
664 }
665
wait_kmem(struct hfi1_ibdev * dev,struct rvt_qp * qp,struct hfi1_pkt_state * ps)666 static int wait_kmem(struct hfi1_ibdev *dev,
667 struct rvt_qp *qp,
668 struct hfi1_pkt_state *ps)
669 {
670 unsigned long flags;
671 int ret = 0;
672
673 spin_lock_irqsave(&qp->s_lock, flags);
674 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
675 write_seqlock(&dev->iowait_lock);
676 list_add_tail(&ps->s_txreq->txreq.list,
677 &ps->wait->tx_head);
678 hfi1_wait_kmem(qp);
679 write_sequnlock(&dev->iowait_lock);
680 hfi1_qp_unbusy(qp, ps->wait);
681 ret = -EBUSY;
682 }
683 spin_unlock_irqrestore(&qp->s_lock, flags);
684
685 return ret;
686 }
687
688 /*
689 * This routine calls txadds for each sg entry.
690 *
691 * Add failures will revert the sge cursor
692 */
build_verbs_ulp_payload(struct sdma_engine * sde,u32 length,struct verbs_txreq * tx)693 static noinline int build_verbs_ulp_payload(
694 struct sdma_engine *sde,
695 u32 length,
696 struct verbs_txreq *tx)
697 {
698 struct rvt_sge_state *ss = tx->ss;
699 struct rvt_sge *sg_list = ss->sg_list;
700 struct rvt_sge sge = ss->sge;
701 u8 num_sge = ss->num_sge;
702 u32 len;
703 int ret = 0;
704
705 while (length) {
706 len = rvt_get_sge_length(&ss->sge, length);
707 WARN_ON_ONCE(len == 0);
708 ret = sdma_txadd_kvaddr(
709 sde->dd,
710 &tx->txreq,
711 ss->sge.vaddr,
712 len);
713 if (ret)
714 goto bail_txadd;
715 rvt_update_sge(ss, len, false);
716 length -= len;
717 }
718 return ret;
719 bail_txadd:
720 /* unwind cursor */
721 ss->sge = sge;
722 ss->num_sge = num_sge;
723 ss->sg_list = sg_list;
724 return ret;
725 }
726
727 /**
728 * update_tx_opstats - record stats by opcode
729 * @qp; the qp
730 * @ps: transmit packet state
731 * @plen: the plen in dwords
732 *
733 * This is a routine to record the tx opstats after a
734 * packet has been presented to the egress mechanism.
735 */
update_tx_opstats(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u32 plen)736 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
737 u32 plen)
738 {
739 #ifdef CONFIG_DEBUG_FS
740 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
741 struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
742
743 inc_opstats(plen * 4, &s->stats[ps->opcode]);
744 put_cpu_ptr(s);
745 #endif
746 }
747
748 /*
749 * Build the number of DMA descriptors needed to send length bytes of data.
750 *
751 * NOTE: DMA mapping is held in the tx until completed in the ring or
752 * the tx desc is freed without having been submitted to the ring
753 *
754 * This routine ensures all the helper routine calls succeed.
755 */
756 /* New API */
build_verbs_tx_desc(struct sdma_engine * sde,u32 length,struct verbs_txreq * tx,struct hfi1_ahg_info * ahg_info,u64 pbc)757 static int build_verbs_tx_desc(
758 struct sdma_engine *sde,
759 u32 length,
760 struct verbs_txreq *tx,
761 struct hfi1_ahg_info *ahg_info,
762 u64 pbc)
763 {
764 int ret = 0;
765 struct hfi1_sdma_header *phdr = &tx->phdr;
766 u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
767 u8 extra_bytes = 0;
768
769 if (tx->phdr.hdr.hdr_type) {
770 /*
771 * hdrbytes accounts for PBC. Need to subtract 8 bytes
772 * before calculating padding.
773 */
774 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
775 (SIZE_OF_CRC << 2) + SIZE_OF_LT;
776 }
777 if (!ahg_info->ahgcount) {
778 ret = sdma_txinit_ahg(
779 &tx->txreq,
780 ahg_info->tx_flags,
781 hdrbytes + length +
782 extra_bytes,
783 ahg_info->ahgidx,
784 0,
785 NULL,
786 0,
787 verbs_sdma_complete);
788 if (ret)
789 goto bail_txadd;
790 phdr->pbc = cpu_to_le64(pbc);
791 ret = sdma_txadd_kvaddr(
792 sde->dd,
793 &tx->txreq,
794 phdr,
795 hdrbytes);
796 if (ret)
797 goto bail_txadd;
798 } else {
799 ret = sdma_txinit_ahg(
800 &tx->txreq,
801 ahg_info->tx_flags,
802 length,
803 ahg_info->ahgidx,
804 ahg_info->ahgcount,
805 ahg_info->ahgdesc,
806 hdrbytes,
807 verbs_sdma_complete);
808 if (ret)
809 goto bail_txadd;
810 }
811 /* add the ulp payload - if any. tx->ss can be NULL for acks */
812 if (tx->ss) {
813 ret = build_verbs_ulp_payload(sde, length, tx);
814 if (ret)
815 goto bail_txadd;
816 }
817
818 /* add icrc, lt byte, and padding to flit */
819 if (extra_bytes)
820 ret = sdma_txadd_daddr(sde->dd, &tx->txreq,
821 sde->dd->sdma_pad_phys, extra_bytes);
822
823 bail_txadd:
824 return ret;
825 }
826
update_hcrc(u8 opcode,u64 pbc)827 static u64 update_hcrc(u8 opcode, u64 pbc)
828 {
829 if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
830 pbc &= ~PBC_INSERT_HCRC_SMASK;
831 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
832 }
833 return pbc;
834 }
835
hfi1_verbs_send_dma(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u64 pbc)836 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
837 u64 pbc)
838 {
839 struct hfi1_qp_priv *priv = qp->priv;
840 struct hfi1_ahg_info *ahg_info = priv->s_ahg;
841 u32 hdrwords = ps->s_txreq->hdr_dwords;
842 u32 len = ps->s_txreq->s_cur_size;
843 u32 plen;
844 struct hfi1_ibdev *dev = ps->dev;
845 struct hfi1_pportdata *ppd = ps->ppd;
846 struct verbs_txreq *tx;
847 u8 sc5 = priv->s_sc;
848 int ret;
849 u32 dwords;
850
851 if (ps->s_txreq->phdr.hdr.hdr_type) {
852 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
853
854 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
855 SIZE_OF_LT) >> 2;
856 } else {
857 dwords = (len + 3) >> 2;
858 }
859 plen = hdrwords + dwords + sizeof(pbc) / 4;
860
861 tx = ps->s_txreq;
862 if (!sdma_txreq_built(&tx->txreq)) {
863 if (likely(pbc == 0)) {
864 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
865
866 /* No vl15 here */
867 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
868 if (ps->s_txreq->phdr.hdr.hdr_type)
869 pbc |= PBC_PACKET_BYPASS |
870 PBC_INSERT_BYPASS_ICRC;
871 else
872 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
873
874 pbc = create_pbc(ppd,
875 pbc,
876 qp->srate_mbps,
877 vl,
878 plen);
879
880 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
881 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
882 else
883 /* Update HCRC based on packet opcode */
884 pbc = update_hcrc(ps->opcode, pbc);
885 }
886 tx->wqe = qp->s_wqe;
887 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
888 if (unlikely(ret))
889 goto bail_build;
890 }
891 ret = sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
892 if (unlikely(ret < 0)) {
893 if (ret == -ECOMM)
894 goto bail_ecomm;
895 return ret;
896 }
897
898 update_tx_opstats(qp, ps, plen);
899 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
900 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
901 return ret;
902
903 bail_ecomm:
904 /* The current one got "sent" */
905 return 0;
906 bail_build:
907 ret = wait_kmem(dev, qp, ps);
908 if (!ret) {
909 /* free txreq - bad state */
910 hfi1_put_txreq(ps->s_txreq);
911 ps->s_txreq = NULL;
912 }
913 return ret;
914 }
915
916 /*
917 * If we are now in the error state, return zero to flush the
918 * send work request.
919 */
pio_wait(struct rvt_qp * qp,struct send_context * sc,struct hfi1_pkt_state * ps,u32 flag)920 static int pio_wait(struct rvt_qp *qp,
921 struct send_context *sc,
922 struct hfi1_pkt_state *ps,
923 u32 flag)
924 {
925 struct hfi1_qp_priv *priv = qp->priv;
926 struct hfi1_devdata *dd = sc->dd;
927 unsigned long flags;
928 int ret = 0;
929
930 /*
931 * Note that as soon as want_buffer() is called and
932 * possibly before it returns, sc_piobufavail()
933 * could be called. Therefore, put QP on the I/O wait list before
934 * enabling the PIO avail interrupt.
935 */
936 spin_lock_irqsave(&qp->s_lock, flags);
937 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
938 write_seqlock(&sc->waitlock);
939 list_add_tail(&ps->s_txreq->txreq.list,
940 &ps->wait->tx_head);
941 if (list_empty(&priv->s_iowait.list)) {
942 struct hfi1_ibdev *dev = &dd->verbs_dev;
943 int was_empty;
944
945 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
946 dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
947 qp->s_flags |= flag;
948 was_empty = list_empty(&sc->piowait);
949 iowait_get_priority(&priv->s_iowait);
950 iowait_queue(ps->pkts_sent, &priv->s_iowait,
951 &sc->piowait);
952 priv->s_iowait.lock = &sc->waitlock;
953 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
954 rvt_get_qp(qp);
955 /* counting: only call wantpiobuf_intr if first user */
956 if (was_empty)
957 hfi1_sc_wantpiobuf_intr(sc, 1);
958 }
959 write_sequnlock(&sc->waitlock);
960 hfi1_qp_unbusy(qp, ps->wait);
961 ret = -EBUSY;
962 }
963 spin_unlock_irqrestore(&qp->s_lock, flags);
964 return ret;
965 }
966
verbs_pio_complete(void * arg,int code)967 static void verbs_pio_complete(void *arg, int code)
968 {
969 struct rvt_qp *qp = (struct rvt_qp *)arg;
970 struct hfi1_qp_priv *priv = qp->priv;
971
972 if (iowait_pio_dec(&priv->s_iowait))
973 iowait_drain_wakeup(&priv->s_iowait);
974 }
975
hfi1_verbs_send_pio(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u64 pbc)976 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
977 u64 pbc)
978 {
979 struct hfi1_qp_priv *priv = qp->priv;
980 u32 hdrwords = ps->s_txreq->hdr_dwords;
981 struct rvt_sge_state *ss = ps->s_txreq->ss;
982 u32 len = ps->s_txreq->s_cur_size;
983 u32 dwords;
984 u32 plen;
985 struct hfi1_pportdata *ppd = ps->ppd;
986 u32 *hdr;
987 u8 sc5;
988 unsigned long flags = 0;
989 struct send_context *sc;
990 struct pio_buf *pbuf;
991 int wc_status = IB_WC_SUCCESS;
992 int ret = 0;
993 pio_release_cb cb = NULL;
994 u8 extra_bytes = 0;
995
996 if (ps->s_txreq->phdr.hdr.hdr_type) {
997 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
998
999 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1000 dwords = (len + extra_bytes) >> 2;
1001 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1002 } else {
1003 dwords = (len + 3) >> 2;
1004 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1005 }
1006 plen = hdrwords + dwords + sizeof(pbc) / 4;
1007
1008 /* only RC/UC use complete */
1009 switch (qp->ibqp.qp_type) {
1010 case IB_QPT_RC:
1011 case IB_QPT_UC:
1012 cb = verbs_pio_complete;
1013 break;
1014 default:
1015 break;
1016 }
1017
1018 /* vl15 special case taken care of in ud.c */
1019 sc5 = priv->s_sc;
1020 sc = ps->s_txreq->psc;
1021
1022 if (likely(pbc == 0)) {
1023 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1024
1025 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1026 if (ps->s_txreq->phdr.hdr.hdr_type)
1027 pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1028 else
1029 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1030
1031 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1032 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
1033 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1034 else
1035 /* Update HCRC based on packet opcode */
1036 pbc = update_hcrc(ps->opcode, pbc);
1037 }
1038 if (cb)
1039 iowait_pio_inc(&priv->s_iowait);
1040 pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1041 if (IS_ERR_OR_NULL(pbuf)) {
1042 if (cb)
1043 verbs_pio_complete(qp, 0);
1044 if (IS_ERR(pbuf)) {
1045 /*
1046 * If we have filled the PIO buffers to capacity and are
1047 * not in an active state this request is not going to
1048 * go out to so just complete it with an error or else a
1049 * ULP or the core may be stuck waiting.
1050 */
1051 hfi1_cdbg(
1052 PIO,
1053 "alloc failed. state not active, completing");
1054 wc_status = IB_WC_GENERAL_ERR;
1055 goto pio_bail;
1056 } else {
1057 /*
1058 * This is a normal occurrence. The PIO buffs are full
1059 * up but we are still happily sending, well we could be
1060 * so lets continue to queue the request.
1061 */
1062 hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1063 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1064 if (!ret)
1065 /* txreq not queued - free */
1066 goto bail;
1067 /* tx consumed in wait */
1068 return ret;
1069 }
1070 }
1071
1072 if (dwords == 0) {
1073 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1074 } else {
1075 seg_pio_copy_start(pbuf, pbc,
1076 hdr, hdrwords * 4);
1077 if (ss) {
1078 while (len) {
1079 void *addr = ss->sge.vaddr;
1080 u32 slen = rvt_get_sge_length(&ss->sge, len);
1081
1082 rvt_update_sge(ss, slen, false);
1083 seg_pio_copy_mid(pbuf, addr, slen);
1084 len -= slen;
1085 }
1086 }
1087 /* add icrc, lt byte, and padding to flit */
1088 if (extra_bytes)
1089 seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma,
1090 extra_bytes);
1091
1092 seg_pio_copy_end(pbuf);
1093 }
1094
1095 update_tx_opstats(qp, ps, plen);
1096 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1097 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1098
1099 pio_bail:
1100 spin_lock_irqsave(&qp->s_lock, flags);
1101 if (qp->s_wqe) {
1102 rvt_send_complete(qp, qp->s_wqe, wc_status);
1103 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1104 if (unlikely(wc_status == IB_WC_GENERAL_ERR))
1105 hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr);
1106 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1107 }
1108 spin_unlock_irqrestore(&qp->s_lock, flags);
1109
1110 ret = 0;
1111
1112 bail:
1113 hfi1_put_txreq(ps->s_txreq);
1114 return ret;
1115 }
1116
1117 /*
1118 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1119 * being an entry from the partition key table), return 0
1120 * otherwise. Use the matching criteria for egress partition keys
1121 * specified in the OPAv1 spec., section 9.1l.7.
1122 */
egress_pkey_matches_entry(u16 pkey,u16 ent)1123 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1124 {
1125 u16 mkey = pkey & PKEY_LOW_15_MASK;
1126 u16 mentry = ent & PKEY_LOW_15_MASK;
1127
1128 if (mkey == mentry) {
1129 /*
1130 * If pkey[15] is set (full partition member),
1131 * is bit 15 in the corresponding table element
1132 * clear (limited member)?
1133 */
1134 if (pkey & PKEY_MEMBER_MASK)
1135 return !!(ent & PKEY_MEMBER_MASK);
1136 return 1;
1137 }
1138 return 0;
1139 }
1140
1141 /**
1142 * egress_pkey_check - check P_KEY of a packet
1143 * @ppd: Physical IB port data
1144 * @slid: SLID for packet
1145 * @bkey: PKEY for header
1146 * @sc5: SC for packet
1147 * @s_pkey_index: It will be used for look up optimization for kernel contexts
1148 * only. If it is negative value, then it means user contexts is calling this
1149 * function.
1150 *
1151 * It checks if hdr's pkey is valid.
1152 *
1153 * Return: 0 on success, otherwise, 1
1154 */
egress_pkey_check(struct hfi1_pportdata * ppd,u32 slid,u16 pkey,u8 sc5,int8_t s_pkey_index)1155 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1156 u8 sc5, int8_t s_pkey_index)
1157 {
1158 struct hfi1_devdata *dd;
1159 int i;
1160 int is_user_ctxt_mechanism = (s_pkey_index < 0);
1161
1162 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1163 return 0;
1164
1165 /* If SC15, pkey[0:14] must be 0x7fff */
1166 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1167 goto bad;
1168
1169 /* Is the pkey = 0x0, or 0x8000? */
1170 if ((pkey & PKEY_LOW_15_MASK) == 0)
1171 goto bad;
1172
1173 /*
1174 * For the kernel contexts only, if a qp is passed into the function,
1175 * the most likely matching pkey has index qp->s_pkey_index
1176 */
1177 if (!is_user_ctxt_mechanism &&
1178 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1179 return 0;
1180 }
1181
1182 for (i = 0; i < MAX_PKEY_VALUES; i++) {
1183 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1184 return 0;
1185 }
1186 bad:
1187 /*
1188 * For the user-context mechanism, the P_KEY check would only happen
1189 * once per SDMA request, not once per packet. Therefore, there's no
1190 * need to increment the counter for the user-context mechanism.
1191 */
1192 if (!is_user_ctxt_mechanism) {
1193 incr_cntr64(&ppd->port_xmit_constraint_errors);
1194 dd = ppd->dd;
1195 if (!(dd->err_info_xmit_constraint.status &
1196 OPA_EI_STATUS_SMASK)) {
1197 dd->err_info_xmit_constraint.status |=
1198 OPA_EI_STATUS_SMASK;
1199 dd->err_info_xmit_constraint.slid = slid;
1200 dd->err_info_xmit_constraint.pkey = pkey;
1201 }
1202 }
1203 return 1;
1204 }
1205
1206 /**
1207 * get_send_routine - choose an egress routine
1208 *
1209 * Choose an egress routine based on QP type
1210 * and size
1211 */
get_send_routine(struct rvt_qp * qp,struct hfi1_pkt_state * ps)1212 static inline send_routine get_send_routine(struct rvt_qp *qp,
1213 struct hfi1_pkt_state *ps)
1214 {
1215 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1216 struct hfi1_qp_priv *priv = qp->priv;
1217 struct verbs_txreq *tx = ps->s_txreq;
1218
1219 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1220 return dd->process_pio_send;
1221 switch (qp->ibqp.qp_type) {
1222 case IB_QPT_SMI:
1223 return dd->process_pio_send;
1224 case IB_QPT_GSI:
1225 case IB_QPT_UD:
1226 break;
1227 case IB_QPT_UC:
1228 case IB_QPT_RC:
1229 priv->s_running_pkt_size =
1230 (tx->s_cur_size + priv->s_running_pkt_size) / 2;
1231 if (piothreshold &&
1232 priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1233 (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1234 iowait_sdma_pending(&priv->s_iowait) == 0 &&
1235 !sdma_txreq_built(&tx->txreq))
1236 return dd->process_pio_send;
1237 break;
1238 default:
1239 break;
1240 }
1241 return dd->process_dma_send;
1242 }
1243
1244 /**
1245 * hfi1_verbs_send - send a packet
1246 * @qp: the QP to send on
1247 * @ps: the state of the packet to send
1248 *
1249 * Return zero if packet is sent or queued OK.
1250 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1251 */
hfi1_verbs_send(struct rvt_qp * qp,struct hfi1_pkt_state * ps)1252 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1253 {
1254 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1255 struct hfi1_qp_priv *priv = qp->priv;
1256 struct ib_other_headers *ohdr = NULL;
1257 send_routine sr;
1258 int ret;
1259 u16 pkey;
1260 u32 slid;
1261 u8 l4 = 0;
1262
1263 /* locate the pkey within the headers */
1264 if (ps->s_txreq->phdr.hdr.hdr_type) {
1265 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1266
1267 l4 = hfi1_16B_get_l4(hdr);
1268 if (l4 == OPA_16B_L4_IB_LOCAL)
1269 ohdr = &hdr->u.oth;
1270 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1271 ohdr = &hdr->u.l.oth;
1272
1273 slid = hfi1_16B_get_slid(hdr);
1274 pkey = hfi1_16B_get_pkey(hdr);
1275 } else {
1276 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1277 u8 lnh = ib_get_lnh(hdr);
1278
1279 if (lnh == HFI1_LRH_GRH)
1280 ohdr = &hdr->u.l.oth;
1281 else
1282 ohdr = &hdr->u.oth;
1283 slid = ib_get_slid(hdr);
1284 pkey = ib_bth_get_pkey(ohdr);
1285 }
1286
1287 if (likely(l4 != OPA_16B_L4_FM))
1288 ps->opcode = ib_bth_get_opcode(ohdr);
1289 else
1290 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1291
1292 sr = get_send_routine(qp, ps);
1293 ret = egress_pkey_check(dd->pport, slid, pkey,
1294 priv->s_sc, qp->s_pkey_index);
1295 if (unlikely(ret)) {
1296 /*
1297 * The value we are returning here does not get propagated to
1298 * the verbs caller. Thus we need to complete the request with
1299 * error otherwise the caller could be sitting waiting on the
1300 * completion event. Only do this for PIO. SDMA has its own
1301 * mechanism for handling the errors. So for SDMA we can just
1302 * return.
1303 */
1304 if (sr == dd->process_pio_send) {
1305 unsigned long flags;
1306
1307 hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1308 __func__);
1309 spin_lock_irqsave(&qp->s_lock, flags);
1310 rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1311 spin_unlock_irqrestore(&qp->s_lock, flags);
1312 }
1313 return -EINVAL;
1314 }
1315 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1316 return pio_wait(qp,
1317 ps->s_txreq->psc,
1318 ps,
1319 HFI1_S_WAIT_PIO_DRAIN);
1320 return sr(qp, ps, 0);
1321 }
1322
1323 /**
1324 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1325 * @dd: the device data structure
1326 */
hfi1_fill_device_attr(struct hfi1_devdata * dd)1327 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1328 {
1329 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1330 u32 ver = dd->dc8051_ver;
1331
1332 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1333
1334 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1335 ((u64)(dc8051_ver_min(ver)) << 16) |
1336 (u64)dc8051_ver_patch(ver);
1337
1338 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1339 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1340 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1341 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1342 IB_DEVICE_MEM_MGT_EXTENSIONS |
1343 IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1344 rdi->dparms.props.page_size_cap = PAGE_SIZE;
1345 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1346 rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1347 rdi->dparms.props.hw_ver = dd->minrev;
1348 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1349 rdi->dparms.props.max_mr_size = U64_MAX;
1350 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1351 rdi->dparms.props.max_qp = hfi1_max_qps;
1352 rdi->dparms.props.max_qp_wr =
1353 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1354 HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1355 rdi->dparms.props.max_send_sge = hfi1_max_sges;
1356 rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1357 rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1358 rdi->dparms.props.max_cq = hfi1_max_cqs;
1359 rdi->dparms.props.max_ah = hfi1_max_ahs;
1360 rdi->dparms.props.max_cqe = hfi1_max_cqes;
1361 rdi->dparms.props.max_map_per_fmr = 32767;
1362 rdi->dparms.props.max_pd = hfi1_max_pds;
1363 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1364 rdi->dparms.props.max_qp_init_rd_atom = 255;
1365 rdi->dparms.props.max_srq = hfi1_max_srqs;
1366 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1367 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1368 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1369 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1370 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1371 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1372 rdi->dparms.props.max_total_mcast_qp_attach =
1373 rdi->dparms.props.max_mcast_qp_attach *
1374 rdi->dparms.props.max_mcast_grp;
1375 }
1376
opa_speed_to_ib(u16 in)1377 static inline u16 opa_speed_to_ib(u16 in)
1378 {
1379 u16 out = 0;
1380
1381 if (in & OPA_LINK_SPEED_25G)
1382 out |= IB_SPEED_EDR;
1383 if (in & OPA_LINK_SPEED_12_5G)
1384 out |= IB_SPEED_FDR;
1385
1386 return out;
1387 }
1388
1389 /*
1390 * Convert a single OPA link width (no multiple flags) to an IB value.
1391 * A zero OPA link width means link down, which means the IB width value
1392 * is a don't care.
1393 */
opa_width_to_ib(u16 in)1394 static inline u16 opa_width_to_ib(u16 in)
1395 {
1396 switch (in) {
1397 case OPA_LINK_WIDTH_1X:
1398 /* map 2x and 3x to 1x as they don't exist in IB */
1399 case OPA_LINK_WIDTH_2X:
1400 case OPA_LINK_WIDTH_3X:
1401 return IB_WIDTH_1X;
1402 default: /* link down or unknown, return our largest width */
1403 case OPA_LINK_WIDTH_4X:
1404 return IB_WIDTH_4X;
1405 }
1406 }
1407
query_port(struct rvt_dev_info * rdi,u8 port_num,struct ib_port_attr * props)1408 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1409 struct ib_port_attr *props)
1410 {
1411 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1412 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1413 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1414 u32 lid = ppd->lid;
1415
1416 /* props being zeroed by the caller, avoid zeroing it here */
1417 props->lid = lid ? lid : 0;
1418 props->lmc = ppd->lmc;
1419 /* OPA logical states match IB logical states */
1420 props->state = driver_lstate(ppd);
1421 props->phys_state = driver_pstate(ppd);
1422 props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1423 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1424 /* see rate_show() in ib core/sysfs.c */
1425 props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1426 props->max_vl_num = ppd->vls_supported;
1427
1428 /* Once we are a "first class" citizen and have added the OPA MTUs to
1429 * the core we can advertise the larger MTU enum to the ULPs, for now
1430 * advertise only 4K.
1431 *
1432 * Those applications which are either OPA aware or pass the MTU enum
1433 * from the Path Records to us will get the new 8k MTU. Those that
1434 * attempt to process the MTU enum may fail in various ways.
1435 */
1436 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1437 4096 : hfi1_max_mtu), IB_MTU_4096);
1438 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1439 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1440
1441 return 0;
1442 }
1443
modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)1444 static int modify_device(struct ib_device *device,
1445 int device_modify_mask,
1446 struct ib_device_modify *device_modify)
1447 {
1448 struct hfi1_devdata *dd = dd_from_ibdev(device);
1449 unsigned i;
1450 int ret;
1451
1452 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1453 IB_DEVICE_MODIFY_NODE_DESC)) {
1454 ret = -EOPNOTSUPP;
1455 goto bail;
1456 }
1457
1458 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1459 memcpy(device->node_desc, device_modify->node_desc,
1460 IB_DEVICE_NODE_DESC_MAX);
1461 for (i = 0; i < dd->num_pports; i++) {
1462 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1463
1464 hfi1_node_desc_chg(ibp);
1465 }
1466 }
1467
1468 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1469 ib_hfi1_sys_image_guid =
1470 cpu_to_be64(device_modify->sys_image_guid);
1471 for (i = 0; i < dd->num_pports; i++) {
1472 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1473
1474 hfi1_sys_guid_chg(ibp);
1475 }
1476 }
1477
1478 ret = 0;
1479
1480 bail:
1481 return ret;
1482 }
1483
shut_down_port(struct rvt_dev_info * rdi,u8 port_num)1484 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1485 {
1486 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1487 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1488 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1489 int ret;
1490
1491 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1492 OPA_LINKDOWN_REASON_UNKNOWN);
1493 ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1494 return ret;
1495 }
1496
hfi1_get_guid_be(struct rvt_dev_info * rdi,struct rvt_ibport * rvp,int guid_index,__be64 * guid)1497 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1498 int guid_index, __be64 *guid)
1499 {
1500 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1501
1502 if (guid_index >= HFI1_GUIDS_PER_PORT)
1503 return -EINVAL;
1504
1505 *guid = get_sguid(ibp, guid_index);
1506 return 0;
1507 }
1508
1509 /*
1510 * convert ah port,sl to sc
1511 */
ah_to_sc(struct ib_device * ibdev,struct rdma_ah_attr * ah)1512 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1513 {
1514 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1515
1516 return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1517 }
1518
hfi1_check_ah(struct ib_device * ibdev,struct rdma_ah_attr * ah_attr)1519 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1520 {
1521 struct hfi1_ibport *ibp;
1522 struct hfi1_pportdata *ppd;
1523 struct hfi1_devdata *dd;
1524 u8 sc5;
1525 u8 sl;
1526
1527 if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1528 !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1529 return -EINVAL;
1530
1531 /* test the mapping for validity */
1532 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1533 ppd = ppd_from_ibp(ibp);
1534 dd = dd_from_ppd(ppd);
1535
1536 sl = rdma_ah_get_sl(ah_attr);
1537 if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1538 return -EINVAL;
1539 sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1540
1541 sc5 = ibp->sl_to_sc[sl];
1542 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1543 return -EINVAL;
1544 return 0;
1545 }
1546
hfi1_notify_new_ah(struct ib_device * ibdev,struct rdma_ah_attr * ah_attr,struct rvt_ah * ah)1547 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1548 struct rdma_ah_attr *ah_attr,
1549 struct rvt_ah *ah)
1550 {
1551 struct hfi1_ibport *ibp;
1552 struct hfi1_pportdata *ppd;
1553 struct hfi1_devdata *dd;
1554 u8 sc5;
1555 struct rdma_ah_attr *attr = &ah->attr;
1556
1557 /*
1558 * Do not trust reading anything from rvt_ah at this point as it is not
1559 * done being setup. We can however modify things which we need to set.
1560 */
1561
1562 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1563 ppd = ppd_from_ibp(ibp);
1564 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1565 hfi1_update_ah_attr(ibdev, attr);
1566 hfi1_make_opa_lid(attr);
1567 dd = dd_from_ppd(ppd);
1568 ah->vl = sc_to_vlt(dd, sc5);
1569 if (ah->vl < num_vls || ah->vl == 15)
1570 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1571 }
1572
1573 /**
1574 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1575 * @dd: the hfi1_ib device
1576 */
hfi1_get_npkeys(struct hfi1_devdata * dd)1577 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1578 {
1579 return ARRAY_SIZE(dd->pport[0].pkeys);
1580 }
1581
init_ibport(struct hfi1_pportdata * ppd)1582 static void init_ibport(struct hfi1_pportdata *ppd)
1583 {
1584 struct hfi1_ibport *ibp = &ppd->ibport_data;
1585 size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1586 int i;
1587
1588 for (i = 0; i < sz; i++) {
1589 ibp->sl_to_sc[i] = i;
1590 ibp->sc_to_sl[i] = i;
1591 }
1592
1593 for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1594 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1595 timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1596
1597 spin_lock_init(&ibp->rvp.lock);
1598 /* Set the prefix to the default value (see ch. 4.1.1) */
1599 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1600 ibp->rvp.sm_lid = 0;
1601 /*
1602 * Below should only set bits defined in OPA PortInfo.CapabilityMask
1603 * and PortInfo.CapabilityMask3
1604 */
1605 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1606 IB_PORT_CAP_MASK_NOTICE_SUP;
1607 ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1608 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1609 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1610 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1611 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1612 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1613
1614 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1615 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1616 }
1617
hfi1_get_dev_fw_str(struct ib_device * ibdev,char * str)1618 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1619 {
1620 struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1621 struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1622 u32 ver = dd_from_dev(dev)->dc8051_ver;
1623
1624 snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1625 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1626 }
1627
1628 static const char * const driver_cntr_names[] = {
1629 /* must be element 0*/
1630 "DRIVER_KernIntr",
1631 "DRIVER_ErrorIntr",
1632 "DRIVER_Tx_Errs",
1633 "DRIVER_Rcv_Errs",
1634 "DRIVER_HW_Errs",
1635 "DRIVER_NoPIOBufs",
1636 "DRIVER_CtxtsOpen",
1637 "DRIVER_RcvLen_Errs",
1638 "DRIVER_EgrBufFull",
1639 "DRIVER_EgrHdrFull"
1640 };
1641
1642 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1643 static const char **dev_cntr_names;
1644 static const char **port_cntr_names;
1645 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1646 static int num_dev_cntrs;
1647 static int num_port_cntrs;
1648 static int cntr_names_initialized;
1649
1650 /*
1651 * Convert a list of names separated by '\n' into an array of NULL terminated
1652 * strings. Optionally some entries can be reserved in the array to hold extra
1653 * external strings.
1654 */
init_cntr_names(const char * names_in,const size_t names_len,int num_extra_names,int * num_cntrs,const char *** cntr_names)1655 static int init_cntr_names(const char *names_in,
1656 const size_t names_len,
1657 int num_extra_names,
1658 int *num_cntrs,
1659 const char ***cntr_names)
1660 {
1661 char *names_out, *p, **q;
1662 int i, n;
1663
1664 n = 0;
1665 for (i = 0; i < names_len; i++)
1666 if (names_in[i] == '\n')
1667 n++;
1668
1669 names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1670 GFP_KERNEL);
1671 if (!names_out) {
1672 *num_cntrs = 0;
1673 *cntr_names = NULL;
1674 return -ENOMEM;
1675 }
1676
1677 p = names_out + (n + num_extra_names) * sizeof(char *);
1678 memcpy(p, names_in, names_len);
1679
1680 q = (char **)names_out;
1681 for (i = 0; i < n; i++) {
1682 q[i] = p;
1683 p = strchr(p, '\n');
1684 *p++ = '\0';
1685 }
1686
1687 *num_cntrs = n;
1688 *cntr_names = (const char **)names_out;
1689 return 0;
1690 }
1691
alloc_hw_stats(struct ib_device * ibdev,u8 port_num)1692 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1693 u8 port_num)
1694 {
1695 int i, err;
1696
1697 mutex_lock(&cntr_names_lock);
1698 if (!cntr_names_initialized) {
1699 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1700
1701 err = init_cntr_names(dd->cntrnames,
1702 dd->cntrnameslen,
1703 num_driver_cntrs,
1704 &num_dev_cntrs,
1705 &dev_cntr_names);
1706 if (err) {
1707 mutex_unlock(&cntr_names_lock);
1708 return NULL;
1709 }
1710
1711 for (i = 0; i < num_driver_cntrs; i++)
1712 dev_cntr_names[num_dev_cntrs + i] =
1713 driver_cntr_names[i];
1714
1715 err = init_cntr_names(dd->portcntrnames,
1716 dd->portcntrnameslen,
1717 0,
1718 &num_port_cntrs,
1719 &port_cntr_names);
1720 if (err) {
1721 kfree(dev_cntr_names);
1722 dev_cntr_names = NULL;
1723 mutex_unlock(&cntr_names_lock);
1724 return NULL;
1725 }
1726 cntr_names_initialized = 1;
1727 }
1728 mutex_unlock(&cntr_names_lock);
1729
1730 if (!port_num)
1731 return rdma_alloc_hw_stats_struct(
1732 dev_cntr_names,
1733 num_dev_cntrs + num_driver_cntrs,
1734 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1735 else
1736 return rdma_alloc_hw_stats_struct(
1737 port_cntr_names,
1738 num_port_cntrs,
1739 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1740 }
1741
hfi1_sps_ints(void)1742 static u64 hfi1_sps_ints(void)
1743 {
1744 unsigned long index, flags;
1745 struct hfi1_devdata *dd;
1746 u64 sps_ints = 0;
1747
1748 xa_lock_irqsave(&hfi1_dev_table, flags);
1749 xa_for_each(&hfi1_dev_table, index, dd) {
1750 sps_ints += get_all_cpu_total(dd->int_counter);
1751 }
1752 xa_unlock_irqrestore(&hfi1_dev_table, flags);
1753 return sps_ints;
1754 }
1755
get_hw_stats(struct ib_device * ibdev,struct rdma_hw_stats * stats,u8 port,int index)1756 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1757 u8 port, int index)
1758 {
1759 u64 *values;
1760 int count;
1761
1762 if (!port) {
1763 u64 *stats = (u64 *)&hfi1_stats;
1764 int i;
1765
1766 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1767 values[num_dev_cntrs] = hfi1_sps_ints();
1768 for (i = 1; i < num_driver_cntrs; i++)
1769 values[num_dev_cntrs + i] = stats[i];
1770 count = num_dev_cntrs + num_driver_cntrs;
1771 } else {
1772 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1773
1774 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1775 count = num_port_cntrs;
1776 }
1777
1778 memcpy(stats->value, values, count * sizeof(u64));
1779 return count;
1780 }
1781
1782 static const struct ib_device_ops hfi1_dev_ops = {
1783 .owner = THIS_MODULE,
1784 .driver_id = RDMA_DRIVER_HFI1,
1785
1786 .alloc_hw_stats = alloc_hw_stats,
1787 .alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1788 .get_dev_fw_str = hfi1_get_dev_fw_str,
1789 .get_hw_stats = get_hw_stats,
1790 .init_port = hfi1_create_port_files,
1791 .modify_device = modify_device,
1792 /* keep process mad in the driver */
1793 .process_mad = hfi1_process_mad,
1794 };
1795
1796 /**
1797 * hfi1_register_ib_device - register our device with the infiniband core
1798 * @dd: the device data structure
1799 * Return 0 if successful, errno if unsuccessful.
1800 */
hfi1_register_ib_device(struct hfi1_devdata * dd)1801 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1802 {
1803 struct hfi1_ibdev *dev = &dd->verbs_dev;
1804 struct ib_device *ibdev = &dev->rdi.ibdev;
1805 struct hfi1_pportdata *ppd = dd->pport;
1806 struct hfi1_ibport *ibp = &ppd->ibport_data;
1807 unsigned i;
1808 int ret;
1809
1810 for (i = 0; i < dd->num_pports; i++)
1811 init_ibport(ppd + i);
1812
1813 /* Only need to initialize non-zero fields. */
1814
1815 timer_setup(&dev->mem_timer, mem_timer, 0);
1816
1817 seqlock_init(&dev->iowait_lock);
1818 seqlock_init(&dev->txwait_lock);
1819 INIT_LIST_HEAD(&dev->txwait);
1820 INIT_LIST_HEAD(&dev->memwait);
1821
1822 ret = verbs_txreq_init(dev);
1823 if (ret)
1824 goto err_verbs_txreq;
1825
1826 /* Use first-port GUID as node guid */
1827 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1828
1829 /*
1830 * The system image GUID is supposed to be the same for all
1831 * HFIs in a single system but since there can be other
1832 * device types in the system, we can't be sure this is unique.
1833 */
1834 if (!ib_hfi1_sys_image_guid)
1835 ib_hfi1_sys_image_guid = ibdev->node_guid;
1836 ibdev->phys_port_cnt = dd->num_pports;
1837 ibdev->dev.parent = &dd->pcidev->dev;
1838
1839 ib_set_device_ops(ibdev, &hfi1_dev_ops);
1840
1841 strlcpy(ibdev->node_desc, init_utsname()->nodename,
1842 sizeof(ibdev->node_desc));
1843
1844 /*
1845 * Fill in rvt info object.
1846 */
1847 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1848 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1849 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1850 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1851 dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1852 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1853 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1854 /*
1855 * Fill in rvt info device attributes.
1856 */
1857 hfi1_fill_device_attr(dd);
1858
1859 /* queue pair */
1860 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1861 dd->verbs_dev.rdi.dparms.qpn_start = 0;
1862 dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1863 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1864 dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1865 dd->verbs_dev.rdi.dparms.qpn_res_end =
1866 dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1867 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1868 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1869 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1870 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1871 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1872 RDMA_CORE_CAP_OPA_AH;
1873 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1874
1875 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1876 dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1877 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1878 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1879 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1880 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1881 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1882 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1883 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1884 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1885 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1886 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1887 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1888 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1889 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1890 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1891 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1892 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1893 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1894 dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1895 dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1896 hfi1_comp_vect_mappings_lookup;
1897
1898 /* completeion queue */
1899 dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1900 dd->verbs_dev.rdi.dparms.node = dd->node;
1901
1902 /* misc settings */
1903 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1904 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1905 dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1906 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1907 dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1908 dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1909 dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1910 dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1911 dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1912
1913 /* post send table */
1914 dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1915
1916 /* opcode translation table */
1917 dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1918
1919 ppd = dd->pport;
1920 for (i = 0; i < dd->num_pports; i++, ppd++)
1921 rvt_init_port(&dd->verbs_dev.rdi,
1922 &ppd->ibport_data.rvp,
1923 i,
1924 ppd->pkeys);
1925
1926 rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1927 &ib_hfi1_attr_group);
1928
1929 ret = rvt_register_device(&dd->verbs_dev.rdi);
1930 if (ret)
1931 goto err_verbs_txreq;
1932
1933 ret = hfi1_verbs_register_sysfs(dd);
1934 if (ret)
1935 goto err_class;
1936
1937 return ret;
1938
1939 err_class:
1940 rvt_unregister_device(&dd->verbs_dev.rdi);
1941 err_verbs_txreq:
1942 verbs_txreq_exit(dev);
1943 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1944 return ret;
1945 }
1946
hfi1_unregister_ib_device(struct hfi1_devdata * dd)1947 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1948 {
1949 struct hfi1_ibdev *dev = &dd->verbs_dev;
1950
1951 hfi1_verbs_unregister_sysfs(dd);
1952
1953 rvt_unregister_device(&dd->verbs_dev.rdi);
1954
1955 if (!list_empty(&dev->txwait))
1956 dd_dev_err(dd, "txwait list not empty!\n");
1957 if (!list_empty(&dev->memwait))
1958 dd_dev_err(dd, "memwait list not empty!\n");
1959
1960 del_timer_sync(&dev->mem_timer);
1961 verbs_txreq_exit(dev);
1962
1963 mutex_lock(&cntr_names_lock);
1964 kfree(dev_cntr_names);
1965 kfree(port_cntr_names);
1966 dev_cntr_names = NULL;
1967 port_cntr_names = NULL;
1968 cntr_names_initialized = 0;
1969 mutex_unlock(&cntr_names_lock);
1970 }
1971
hfi1_cnp_rcv(struct hfi1_packet * packet)1972 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1973 {
1974 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1975 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1976 struct ib_header *hdr = packet->hdr;
1977 struct rvt_qp *qp = packet->qp;
1978 u32 lqpn, rqpn = 0;
1979 u16 rlid = 0;
1980 u8 sl, sc5, svc_type;
1981
1982 switch (packet->qp->ibqp.qp_type) {
1983 case IB_QPT_UC:
1984 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1985 rqpn = qp->remote_qpn;
1986 svc_type = IB_CC_SVCTYPE_UC;
1987 break;
1988 case IB_QPT_RC:
1989 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1990 rqpn = qp->remote_qpn;
1991 svc_type = IB_CC_SVCTYPE_RC;
1992 break;
1993 case IB_QPT_SMI:
1994 case IB_QPT_GSI:
1995 case IB_QPT_UD:
1996 svc_type = IB_CC_SVCTYPE_UD;
1997 break;
1998 default:
1999 ibp->rvp.n_pkt_drops++;
2000 return;
2001 }
2002
2003 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2004 sl = ibp->sc_to_sl[sc5];
2005 lqpn = qp->ibqp.qp_num;
2006
2007 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2008 }
2009