1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48 
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 
54 #include "core_priv.h"
55 
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57 			       struct rdma_ah_attr *ah_attr);
58 
59 static const char * const ib_events[] = {
60 	[IB_EVENT_CQ_ERR]		= "CQ error",
61 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
62 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
63 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
64 	[IB_EVENT_COMM_EST]		= "communication established",
65 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
66 	[IB_EVENT_PATH_MIG]		= "path migration successful",
67 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
68 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
69 	[IB_EVENT_PORT_ACTIVE]		= "port active",
70 	[IB_EVENT_PORT_ERR]		= "port error",
71 	[IB_EVENT_LID_CHANGE]		= "LID change",
72 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
73 	[IB_EVENT_SM_CHANGE]		= "SM change",
74 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
75 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
76 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
77 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
78 	[IB_EVENT_GID_CHANGE]		= "GID changed",
79 };
80 
ib_event_msg(enum ib_event_type event)81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83 	size_t index = event;
84 
85 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86 			ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89 
90 static const char * const wc_statuses[] = {
91 	[IB_WC_SUCCESS]			= "success",
92 	[IB_WC_LOC_LEN_ERR]		= "local length error",
93 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
94 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
95 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
96 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
97 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
98 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
99 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
100 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
101 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
102 	[IB_WC_REM_OP_ERR]		= "remote operation error",
103 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
104 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
105 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
106 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
107 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
108 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
109 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
110 	[IB_WC_FATAL_ERR]		= "fatal error",
111 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
112 	[IB_WC_GENERAL_ERR]		= "general error",
113 };
114 
ib_wc_status_msg(enum ib_wc_status status)115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117 	size_t index = status;
118 
119 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120 			wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123 
ib_rate_to_mult(enum ib_rate rate)124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126 	switch (rate) {
127 	case IB_RATE_2_5_GBPS: return   1;
128 	case IB_RATE_5_GBPS:   return   2;
129 	case IB_RATE_10_GBPS:  return   4;
130 	case IB_RATE_20_GBPS:  return   8;
131 	case IB_RATE_30_GBPS:  return  12;
132 	case IB_RATE_40_GBPS:  return  16;
133 	case IB_RATE_60_GBPS:  return  24;
134 	case IB_RATE_80_GBPS:  return  32;
135 	case IB_RATE_120_GBPS: return  48;
136 	case IB_RATE_14_GBPS:  return   6;
137 	case IB_RATE_56_GBPS:  return  22;
138 	case IB_RATE_112_GBPS: return  45;
139 	case IB_RATE_168_GBPS: return  67;
140 	case IB_RATE_25_GBPS:  return  10;
141 	case IB_RATE_100_GBPS: return  40;
142 	case IB_RATE_200_GBPS: return  80;
143 	case IB_RATE_300_GBPS: return 120;
144 	case IB_RATE_28_GBPS:  return  11;
145 	case IB_RATE_50_GBPS:  return  20;
146 	case IB_RATE_400_GBPS: return 160;
147 	case IB_RATE_600_GBPS: return 240;
148 	default:	       return  -1;
149 	}
150 }
151 EXPORT_SYMBOL(ib_rate_to_mult);
152 
mult_to_ib_rate(int mult)153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
154 {
155 	switch (mult) {
156 	case 1:   return IB_RATE_2_5_GBPS;
157 	case 2:   return IB_RATE_5_GBPS;
158 	case 4:   return IB_RATE_10_GBPS;
159 	case 8:   return IB_RATE_20_GBPS;
160 	case 12:  return IB_RATE_30_GBPS;
161 	case 16:  return IB_RATE_40_GBPS;
162 	case 24:  return IB_RATE_60_GBPS;
163 	case 32:  return IB_RATE_80_GBPS;
164 	case 48:  return IB_RATE_120_GBPS;
165 	case 6:   return IB_RATE_14_GBPS;
166 	case 22:  return IB_RATE_56_GBPS;
167 	case 45:  return IB_RATE_112_GBPS;
168 	case 67:  return IB_RATE_168_GBPS;
169 	case 10:  return IB_RATE_25_GBPS;
170 	case 40:  return IB_RATE_100_GBPS;
171 	case 80:  return IB_RATE_200_GBPS;
172 	case 120: return IB_RATE_300_GBPS;
173 	case 11:  return IB_RATE_28_GBPS;
174 	case 20:  return IB_RATE_50_GBPS;
175 	case 160: return IB_RATE_400_GBPS;
176 	case 240: return IB_RATE_600_GBPS;
177 	default:  return IB_RATE_PORT_CURRENT;
178 	}
179 }
180 EXPORT_SYMBOL(mult_to_ib_rate);
181 
ib_rate_to_mbps(enum ib_rate rate)182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
183 {
184 	switch (rate) {
185 	case IB_RATE_2_5_GBPS: return 2500;
186 	case IB_RATE_5_GBPS:   return 5000;
187 	case IB_RATE_10_GBPS:  return 10000;
188 	case IB_RATE_20_GBPS:  return 20000;
189 	case IB_RATE_30_GBPS:  return 30000;
190 	case IB_RATE_40_GBPS:  return 40000;
191 	case IB_RATE_60_GBPS:  return 60000;
192 	case IB_RATE_80_GBPS:  return 80000;
193 	case IB_RATE_120_GBPS: return 120000;
194 	case IB_RATE_14_GBPS:  return 14062;
195 	case IB_RATE_56_GBPS:  return 56250;
196 	case IB_RATE_112_GBPS: return 112500;
197 	case IB_RATE_168_GBPS: return 168750;
198 	case IB_RATE_25_GBPS:  return 25781;
199 	case IB_RATE_100_GBPS: return 103125;
200 	case IB_RATE_200_GBPS: return 206250;
201 	case IB_RATE_300_GBPS: return 309375;
202 	case IB_RATE_28_GBPS:  return 28125;
203 	case IB_RATE_50_GBPS:  return 53125;
204 	case IB_RATE_400_GBPS: return 425000;
205 	case IB_RATE_600_GBPS: return 637500;
206 	default:	       return -1;
207 	}
208 }
209 EXPORT_SYMBOL(ib_rate_to_mbps);
210 
211 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(unsigned int node_type)212 rdma_node_get_transport(unsigned int node_type)
213 {
214 
215 	if (node_type == RDMA_NODE_USNIC)
216 		return RDMA_TRANSPORT_USNIC;
217 	if (node_type == RDMA_NODE_USNIC_UDP)
218 		return RDMA_TRANSPORT_USNIC_UDP;
219 	if (node_type == RDMA_NODE_RNIC)
220 		return RDMA_TRANSPORT_IWARP;
221 	if (node_type == RDMA_NODE_UNSPECIFIED)
222 		return RDMA_TRANSPORT_UNSPECIFIED;
223 
224 	return RDMA_TRANSPORT_IB;
225 }
226 EXPORT_SYMBOL(rdma_node_get_transport);
227 
rdma_port_get_link_layer(struct ib_device * device,u8 port_num)228 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
229 {
230 	enum rdma_transport_type lt;
231 	if (device->ops.get_link_layer)
232 		return device->ops.get_link_layer(device, port_num);
233 
234 	lt = rdma_node_get_transport(device->node_type);
235 	if (lt == RDMA_TRANSPORT_IB)
236 		return IB_LINK_LAYER_INFINIBAND;
237 
238 	return IB_LINK_LAYER_ETHERNET;
239 }
240 EXPORT_SYMBOL(rdma_port_get_link_layer);
241 
242 /* Protection domains */
243 
244 /**
245  * ib_alloc_pd - Allocates an unused protection domain.
246  * @device: The device on which to allocate the protection domain.
247  *
248  * A protection domain object provides an association between QPs, shared
249  * receive queues, address handles, memory regions, and memory windows.
250  *
251  * Every PD has a local_dma_lkey which can be used as the lkey value for local
252  * memory operations.
253  */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)254 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
255 		const char *caller)
256 {
257 	struct ib_pd *pd;
258 	int mr_access_flags = 0;
259 	int ret;
260 
261 	pd = rdma_zalloc_drv_obj(device, ib_pd);
262 	if (!pd)
263 		return ERR_PTR(-ENOMEM);
264 
265 	pd->device = device;
266 	pd->uobject = NULL;
267 	pd->__internal_mr = NULL;
268 	atomic_set(&pd->usecnt, 0);
269 	pd->flags = flags;
270 
271 	pd->res.type = RDMA_RESTRACK_PD;
272 	rdma_restrack_set_task(&pd->res, caller);
273 
274 	ret = device->ops.alloc_pd(pd, NULL);
275 	if (ret) {
276 		kfree(pd);
277 		return ERR_PTR(ret);
278 	}
279 	rdma_restrack_kadd(&pd->res);
280 
281 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
282 		pd->local_dma_lkey = device->local_dma_lkey;
283 	else
284 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
285 
286 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
287 		pr_warn("%s: enabling unsafe global rkey\n", caller);
288 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
289 	}
290 
291 	if (mr_access_flags) {
292 		struct ib_mr *mr;
293 
294 		mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
295 		if (IS_ERR(mr)) {
296 			ib_dealloc_pd(pd);
297 			return ERR_CAST(mr);
298 		}
299 
300 		mr->device	= pd->device;
301 		mr->pd		= pd;
302 		mr->type        = IB_MR_TYPE_DMA;
303 		mr->uobject	= NULL;
304 		mr->need_inval	= false;
305 
306 		pd->__internal_mr = mr;
307 
308 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
309 			pd->local_dma_lkey = pd->__internal_mr->lkey;
310 
311 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
312 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
313 	}
314 
315 	return pd;
316 }
317 EXPORT_SYMBOL(__ib_alloc_pd);
318 
319 /**
320  * ib_dealloc_pd_user - Deallocates a protection domain.
321  * @pd: The protection domain to deallocate.
322  * @udata: Valid user data or NULL for kernel object
323  *
324  * It is an error to call this function while any resources in the pd still
325  * exist.  The caller is responsible to synchronously destroy them and
326  * guarantee no new allocations will happen.
327  */
ib_dealloc_pd_user(struct ib_pd * pd,struct ib_udata * udata)328 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
329 {
330 	int ret;
331 
332 	if (pd->__internal_mr) {
333 		ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
334 		WARN_ON(ret);
335 		pd->__internal_mr = NULL;
336 	}
337 
338 	/* uverbs manipulates usecnt with proper locking, while the kabi
339 	   requires the caller to guarantee we can't race here. */
340 	WARN_ON(atomic_read(&pd->usecnt));
341 
342 	rdma_restrack_del(&pd->res);
343 	pd->device->ops.dealloc_pd(pd, udata);
344 	kfree(pd);
345 }
346 EXPORT_SYMBOL(ib_dealloc_pd_user);
347 
348 /* Address handles */
349 
350 /**
351  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
352  * @dest:       Pointer to destination ah_attr. Contents of the destination
353  *              pointer is assumed to be invalid and attribute are overwritten.
354  * @src:        Pointer to source ah_attr.
355  */
rdma_copy_ah_attr(struct rdma_ah_attr * dest,const struct rdma_ah_attr * src)356 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
357 		       const struct rdma_ah_attr *src)
358 {
359 	*dest = *src;
360 	if (dest->grh.sgid_attr)
361 		rdma_hold_gid_attr(dest->grh.sgid_attr);
362 }
363 EXPORT_SYMBOL(rdma_copy_ah_attr);
364 
365 /**
366  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
367  * @old:        Pointer to existing ah_attr which needs to be replaced.
368  *              old is assumed to be valid or zero'd
369  * @new:        Pointer to the new ah_attr.
370  *
371  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
372  * old the ah_attr is valid; after that it copies the new attribute and holds
373  * the reference to the replaced ah_attr.
374  */
rdma_replace_ah_attr(struct rdma_ah_attr * old,const struct rdma_ah_attr * new)375 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
376 			  const struct rdma_ah_attr *new)
377 {
378 	rdma_destroy_ah_attr(old);
379 	*old = *new;
380 	if (old->grh.sgid_attr)
381 		rdma_hold_gid_attr(old->grh.sgid_attr);
382 }
383 EXPORT_SYMBOL(rdma_replace_ah_attr);
384 
385 /**
386  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
387  * @dest:       Pointer to destination ah_attr to copy to.
388  *              dest is assumed to be valid or zero'd
389  * @src:        Pointer to the new ah_attr.
390  *
391  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
392  * if it is valid. This also transfers ownership of internal references from
393  * src to dest, making src invalid in the process. No new reference of the src
394  * ah_attr is taken.
395  */
rdma_move_ah_attr(struct rdma_ah_attr * dest,struct rdma_ah_attr * src)396 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
397 {
398 	rdma_destroy_ah_attr(dest);
399 	*dest = *src;
400 	src->grh.sgid_attr = NULL;
401 }
402 EXPORT_SYMBOL(rdma_move_ah_attr);
403 
404 /*
405  * Validate that the rdma_ah_attr is valid for the device before passing it
406  * off to the driver.
407  */
rdma_check_ah_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr)408 static int rdma_check_ah_attr(struct ib_device *device,
409 			      struct rdma_ah_attr *ah_attr)
410 {
411 	if (!rdma_is_port_valid(device, ah_attr->port_num))
412 		return -EINVAL;
413 
414 	if ((rdma_is_grh_required(device, ah_attr->port_num) ||
415 	     ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
416 	    !(ah_attr->ah_flags & IB_AH_GRH))
417 		return -EINVAL;
418 
419 	if (ah_attr->grh.sgid_attr) {
420 		/*
421 		 * Make sure the passed sgid_attr is consistent with the
422 		 * parameters
423 		 */
424 		if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
425 		    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
426 			return -EINVAL;
427 	}
428 	return 0;
429 }
430 
431 /*
432  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
433  * On success the caller is responsible to call rdma_unfill_sgid_attr().
434  */
rdma_fill_sgid_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr,const struct ib_gid_attr ** old_sgid_attr)435 static int rdma_fill_sgid_attr(struct ib_device *device,
436 			       struct rdma_ah_attr *ah_attr,
437 			       const struct ib_gid_attr **old_sgid_attr)
438 {
439 	const struct ib_gid_attr *sgid_attr;
440 	struct ib_global_route *grh;
441 	int ret;
442 
443 	*old_sgid_attr = ah_attr->grh.sgid_attr;
444 
445 	ret = rdma_check_ah_attr(device, ah_attr);
446 	if (ret)
447 		return ret;
448 
449 	if (!(ah_attr->ah_flags & IB_AH_GRH))
450 		return 0;
451 
452 	grh = rdma_ah_retrieve_grh(ah_attr);
453 	if (grh->sgid_attr)
454 		return 0;
455 
456 	sgid_attr =
457 		rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
458 	if (IS_ERR(sgid_attr))
459 		return PTR_ERR(sgid_attr);
460 
461 	/* Move ownerhip of the kref into the ah_attr */
462 	grh->sgid_attr = sgid_attr;
463 	return 0;
464 }
465 
rdma_unfill_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_sgid_attr)466 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
467 				  const struct ib_gid_attr *old_sgid_attr)
468 {
469 	/*
470 	 * Fill didn't change anything, the caller retains ownership of
471 	 * whatever it passed
472 	 */
473 	if (ah_attr->grh.sgid_attr == old_sgid_attr)
474 		return;
475 
476 	/*
477 	 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
478 	 * doesn't see any change in the rdma_ah_attr. If we get here
479 	 * old_sgid_attr is NULL.
480 	 */
481 	rdma_destroy_ah_attr(ah_attr);
482 }
483 
484 static const struct ib_gid_attr *
rdma_update_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_attr)485 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
486 		      const struct ib_gid_attr *old_attr)
487 {
488 	if (old_attr)
489 		rdma_put_gid_attr(old_attr);
490 	if (ah_attr->ah_flags & IB_AH_GRH) {
491 		rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
492 		return ah_attr->grh.sgid_attr;
493 	}
494 	return NULL;
495 }
496 
_rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags,struct ib_udata * udata)497 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
498 				     struct rdma_ah_attr *ah_attr,
499 				     u32 flags,
500 				     struct ib_udata *udata)
501 {
502 	struct ib_device *device = pd->device;
503 	struct ib_ah *ah;
504 	int ret;
505 
506 	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
507 
508 	if (!device->ops.create_ah)
509 		return ERR_PTR(-EOPNOTSUPP);
510 
511 	ah = rdma_zalloc_drv_obj_gfp(
512 		device, ib_ah,
513 		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
514 	if (!ah)
515 		return ERR_PTR(-ENOMEM);
516 
517 	ah->device = device;
518 	ah->pd = pd;
519 	ah->type = ah_attr->type;
520 	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
521 
522 	ret = device->ops.create_ah(ah, ah_attr, flags, udata);
523 	if (ret) {
524 		kfree(ah);
525 		return ERR_PTR(ret);
526 	}
527 
528 	atomic_inc(&pd->usecnt);
529 	return ah;
530 }
531 
532 /**
533  * rdma_create_ah - Creates an address handle for the
534  * given address vector.
535  * @pd: The protection domain associated with the address handle.
536  * @ah_attr: The attributes of the address vector.
537  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
538  *
539  * It returns 0 on success and returns appropriate error code on error.
540  * The address handle is used to reference a local or global destination
541  * in all UD QP post sends.
542  */
rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags)543 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
544 			     u32 flags)
545 {
546 	const struct ib_gid_attr *old_sgid_attr;
547 	struct ib_ah *ah;
548 	int ret;
549 
550 	ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
551 	if (ret)
552 		return ERR_PTR(ret);
553 
554 	ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
555 
556 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
557 	return ah;
558 }
559 EXPORT_SYMBOL(rdma_create_ah);
560 
561 /**
562  * rdma_create_user_ah - Creates an address handle for the
563  * given address vector.
564  * It resolves destination mac address for ah attribute of RoCE type.
565  * @pd: The protection domain associated with the address handle.
566  * @ah_attr: The attributes of the address vector.
567  * @udata: pointer to user's input output buffer information need by
568  *         provider driver.
569  *
570  * It returns 0 on success and returns appropriate error code on error.
571  * The address handle is used to reference a local or global destination
572  * in all UD QP post sends.
573  */
rdma_create_user_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,struct ib_udata * udata)574 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
575 				  struct rdma_ah_attr *ah_attr,
576 				  struct ib_udata *udata)
577 {
578 	const struct ib_gid_attr *old_sgid_attr;
579 	struct ib_ah *ah;
580 	int err;
581 
582 	err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
583 	if (err)
584 		return ERR_PTR(err);
585 
586 	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
587 		err = ib_resolve_eth_dmac(pd->device, ah_attr);
588 		if (err) {
589 			ah = ERR_PTR(err);
590 			goto out;
591 		}
592 	}
593 
594 	ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
595 
596 out:
597 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
598 	return ah;
599 }
600 EXPORT_SYMBOL(rdma_create_user_ah);
601 
ib_get_rdma_header_version(const union rdma_network_hdr * hdr)602 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
603 {
604 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
605 	struct iphdr ip4h_checked;
606 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
607 
608 	/* If it's IPv6, the version must be 6, otherwise, the first
609 	 * 20 bytes (before the IPv4 header) are garbled.
610 	 */
611 	if (ip6h->version != 6)
612 		return (ip4h->version == 4) ? 4 : 0;
613 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
614 
615 	/* RoCE v2 requires no options, thus header length
616 	 * must be 5 words
617 	 */
618 	if (ip4h->ihl != 5)
619 		return 6;
620 
621 	/* Verify checksum.
622 	 * We can't write on scattered buffers so we need to copy to
623 	 * temp buffer.
624 	 */
625 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
626 	ip4h_checked.check = 0;
627 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
628 	/* if IPv4 header checksum is OK, believe it */
629 	if (ip4h->check == ip4h_checked.check)
630 		return 4;
631 	return 6;
632 }
633 EXPORT_SYMBOL(ib_get_rdma_header_version);
634 
ib_get_net_type_by_grh(struct ib_device * device,u8 port_num,const struct ib_grh * grh)635 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
636 						     u8 port_num,
637 						     const struct ib_grh *grh)
638 {
639 	int grh_version;
640 
641 	if (rdma_protocol_ib(device, port_num))
642 		return RDMA_NETWORK_IB;
643 
644 	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
645 
646 	if (grh_version == 4)
647 		return RDMA_NETWORK_IPV4;
648 
649 	if (grh->next_hdr == IPPROTO_UDP)
650 		return RDMA_NETWORK_IPV6;
651 
652 	return RDMA_NETWORK_ROCE_V1;
653 }
654 
655 struct find_gid_index_context {
656 	u16 vlan_id;
657 	enum ib_gid_type gid_type;
658 };
659 
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)660 static bool find_gid_index(const union ib_gid *gid,
661 			   const struct ib_gid_attr *gid_attr,
662 			   void *context)
663 {
664 	struct find_gid_index_context *ctx = context;
665 	u16 vlan_id = 0xffff;
666 	int ret;
667 
668 	if (ctx->gid_type != gid_attr->gid_type)
669 		return false;
670 
671 	ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
672 	if (ret)
673 		return false;
674 
675 	return ctx->vlan_id == vlan_id;
676 }
677 
678 static const struct ib_gid_attr *
get_sgid_attr_from_eth(struct ib_device * device,u8 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type)679 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
680 		       u16 vlan_id, const union ib_gid *sgid,
681 		       enum ib_gid_type gid_type)
682 {
683 	struct find_gid_index_context context = {.vlan_id = vlan_id,
684 						 .gid_type = gid_type};
685 
686 	return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
687 				       &context);
688 }
689 
ib_get_gids_from_rdma_hdr(const union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)690 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
691 			      enum rdma_network_type net_type,
692 			      union ib_gid *sgid, union ib_gid *dgid)
693 {
694 	struct sockaddr_in  src_in;
695 	struct sockaddr_in  dst_in;
696 	__be32 src_saddr, dst_saddr;
697 
698 	if (!sgid || !dgid)
699 		return -EINVAL;
700 
701 	if (net_type == RDMA_NETWORK_IPV4) {
702 		memcpy(&src_in.sin_addr.s_addr,
703 		       &hdr->roce4grh.saddr, 4);
704 		memcpy(&dst_in.sin_addr.s_addr,
705 		       &hdr->roce4grh.daddr, 4);
706 		src_saddr = src_in.sin_addr.s_addr;
707 		dst_saddr = dst_in.sin_addr.s_addr;
708 		ipv6_addr_set_v4mapped(src_saddr,
709 				       (struct in6_addr *)sgid);
710 		ipv6_addr_set_v4mapped(dst_saddr,
711 				       (struct in6_addr *)dgid);
712 		return 0;
713 	} else if (net_type == RDMA_NETWORK_IPV6 ||
714 		   net_type == RDMA_NETWORK_IB) {
715 		*dgid = hdr->ibgrh.dgid;
716 		*sgid = hdr->ibgrh.sgid;
717 		return 0;
718 	} else {
719 		return -EINVAL;
720 	}
721 }
722 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
723 
724 /* Resolve destination mac address and hop limit for unicast destination
725  * GID entry, considering the source GID entry as well.
726  * ah_attribute must have have valid port_num, sgid_index.
727  */
ib_resolve_unicast_gid_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)728 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
729 				       struct rdma_ah_attr *ah_attr)
730 {
731 	struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
732 	const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
733 	int hop_limit = 0xff;
734 	int ret = 0;
735 
736 	/* If destination is link local and source GID is RoCEv1,
737 	 * IP stack is not used.
738 	 */
739 	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
740 	    sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
741 		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
742 				ah_attr->roce.dmac);
743 		return ret;
744 	}
745 
746 	ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
747 					   ah_attr->roce.dmac,
748 					   sgid_attr, &hop_limit);
749 
750 	grh->hop_limit = hop_limit;
751 	return ret;
752 }
753 
754 /*
755  * This function initializes address handle attributes from the incoming packet.
756  * Incoming packet has dgid of the receiver node on which this code is
757  * getting executed and, sgid contains the GID of the sender.
758  *
759  * When resolving mac address of destination, the arrived dgid is used
760  * as sgid and, sgid is used as dgid because sgid contains destinations
761  * GID whom to respond to.
762  *
763  * On success the caller is responsible to call rdma_destroy_ah_attr on the
764  * attr.
765  */
ib_init_ah_attr_from_wc(struct ib_device * device,u8 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct rdma_ah_attr * ah_attr)766 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
767 			    const struct ib_wc *wc, const struct ib_grh *grh,
768 			    struct rdma_ah_attr *ah_attr)
769 {
770 	u32 flow_class;
771 	int ret;
772 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
773 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
774 	const struct ib_gid_attr *sgid_attr;
775 	int hoplimit = 0xff;
776 	union ib_gid dgid;
777 	union ib_gid sgid;
778 
779 	might_sleep();
780 
781 	memset(ah_attr, 0, sizeof *ah_attr);
782 	ah_attr->type = rdma_ah_find_type(device, port_num);
783 	if (rdma_cap_eth_ah(device, port_num)) {
784 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
785 			net_type = wc->network_hdr_type;
786 		else
787 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
788 		gid_type = ib_network_to_gid_type(net_type);
789 	}
790 	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
791 					&sgid, &dgid);
792 	if (ret)
793 		return ret;
794 
795 	rdma_ah_set_sl(ah_attr, wc->sl);
796 	rdma_ah_set_port_num(ah_attr, port_num);
797 
798 	if (rdma_protocol_roce(device, port_num)) {
799 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
800 				wc->vlan_id : 0xffff;
801 
802 		if (!(wc->wc_flags & IB_WC_GRH))
803 			return -EPROTOTYPE;
804 
805 		sgid_attr = get_sgid_attr_from_eth(device, port_num,
806 						   vlan_id, &dgid,
807 						   gid_type);
808 		if (IS_ERR(sgid_attr))
809 			return PTR_ERR(sgid_attr);
810 
811 		flow_class = be32_to_cpu(grh->version_tclass_flow);
812 		rdma_move_grh_sgid_attr(ah_attr,
813 					&sgid,
814 					flow_class & 0xFFFFF,
815 					hoplimit,
816 					(flow_class >> 20) & 0xFF,
817 					sgid_attr);
818 
819 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
820 		if (ret)
821 			rdma_destroy_ah_attr(ah_attr);
822 
823 		return ret;
824 	} else {
825 		rdma_ah_set_dlid(ah_attr, wc->slid);
826 		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
827 
828 		if ((wc->wc_flags & IB_WC_GRH) == 0)
829 			return 0;
830 
831 		if (dgid.global.interface_id !=
832 					cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
833 			sgid_attr = rdma_find_gid_by_port(
834 				device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
835 		} else
836 			sgid_attr = rdma_get_gid_attr(device, port_num, 0);
837 
838 		if (IS_ERR(sgid_attr))
839 			return PTR_ERR(sgid_attr);
840 		flow_class = be32_to_cpu(grh->version_tclass_flow);
841 		rdma_move_grh_sgid_attr(ah_attr,
842 					&sgid,
843 					flow_class & 0xFFFFF,
844 					hoplimit,
845 					(flow_class >> 20) & 0xFF,
846 					sgid_attr);
847 
848 		return 0;
849 	}
850 }
851 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
852 
853 /**
854  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
855  * of the reference
856  *
857  * @attr:	Pointer to AH attribute structure
858  * @dgid:	Destination GID
859  * @flow_label:	Flow label
860  * @hop_limit:	Hop limit
861  * @traffic_class: traffic class
862  * @sgid_attr:	Pointer to SGID attribute
863  *
864  * This takes ownership of the sgid_attr reference. The caller must ensure
865  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
866  * calling this function.
867  */
rdma_move_grh_sgid_attr(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 hop_limit,u8 traffic_class,const struct ib_gid_attr * sgid_attr)868 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
869 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
870 			     const struct ib_gid_attr *sgid_attr)
871 {
872 	rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
873 			traffic_class);
874 	attr->grh.sgid_attr = sgid_attr;
875 }
876 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
877 
878 /**
879  * rdma_destroy_ah_attr - Release reference to SGID attribute of
880  * ah attribute.
881  * @ah_attr: Pointer to ah attribute
882  *
883  * Release reference to the SGID attribute of the ah attribute if it is
884  * non NULL. It is safe to call this multiple times, and safe to call it on
885  * a zero initialized ah_attr.
886  */
rdma_destroy_ah_attr(struct rdma_ah_attr * ah_attr)887 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
888 {
889 	if (ah_attr->grh.sgid_attr) {
890 		rdma_put_gid_attr(ah_attr->grh.sgid_attr);
891 		ah_attr->grh.sgid_attr = NULL;
892 	}
893 }
894 EXPORT_SYMBOL(rdma_destroy_ah_attr);
895 
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u8 port_num)896 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
897 				   const struct ib_grh *grh, u8 port_num)
898 {
899 	struct rdma_ah_attr ah_attr;
900 	struct ib_ah *ah;
901 	int ret;
902 
903 	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
904 	if (ret)
905 		return ERR_PTR(ret);
906 
907 	ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
908 
909 	rdma_destroy_ah_attr(&ah_attr);
910 	return ah;
911 }
912 EXPORT_SYMBOL(ib_create_ah_from_wc);
913 
rdma_modify_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)914 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
915 {
916 	const struct ib_gid_attr *old_sgid_attr;
917 	int ret;
918 
919 	if (ah->type != ah_attr->type)
920 		return -EINVAL;
921 
922 	ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
923 	if (ret)
924 		return ret;
925 
926 	ret = ah->device->ops.modify_ah ?
927 		ah->device->ops.modify_ah(ah, ah_attr) :
928 		-EOPNOTSUPP;
929 
930 	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
931 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
932 	return ret;
933 }
934 EXPORT_SYMBOL(rdma_modify_ah);
935 
rdma_query_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)936 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
937 {
938 	ah_attr->grh.sgid_attr = NULL;
939 
940 	return ah->device->ops.query_ah ?
941 		ah->device->ops.query_ah(ah, ah_attr) :
942 		-EOPNOTSUPP;
943 }
944 EXPORT_SYMBOL(rdma_query_ah);
945 
rdma_destroy_ah_user(struct ib_ah * ah,u32 flags,struct ib_udata * udata)946 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
947 {
948 	const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
949 	struct ib_pd *pd;
950 
951 	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
952 
953 	pd = ah->pd;
954 
955 	ah->device->ops.destroy_ah(ah, flags);
956 	atomic_dec(&pd->usecnt);
957 	if (sgid_attr)
958 		rdma_put_gid_attr(sgid_attr);
959 
960 	kfree(ah);
961 	return 0;
962 }
963 EXPORT_SYMBOL(rdma_destroy_ah_user);
964 
965 /* Shared receive queues */
966 
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)967 struct ib_srq *ib_create_srq(struct ib_pd *pd,
968 			     struct ib_srq_init_attr *srq_init_attr)
969 {
970 	struct ib_srq *srq;
971 	int ret;
972 
973 	if (!pd->device->ops.create_srq)
974 		return ERR_PTR(-EOPNOTSUPP);
975 
976 	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
977 	if (!srq)
978 		return ERR_PTR(-ENOMEM);
979 
980 	srq->device = pd->device;
981 	srq->pd = pd;
982 	srq->event_handler = srq_init_attr->event_handler;
983 	srq->srq_context = srq_init_attr->srq_context;
984 	srq->srq_type = srq_init_attr->srq_type;
985 
986 	if (ib_srq_has_cq(srq->srq_type)) {
987 		srq->ext.cq = srq_init_attr->ext.cq;
988 		atomic_inc(&srq->ext.cq->usecnt);
989 	}
990 	if (srq->srq_type == IB_SRQT_XRC) {
991 		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
992 		atomic_inc(&srq->ext.xrc.xrcd->usecnt);
993 	}
994 	atomic_inc(&pd->usecnt);
995 
996 	ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL);
997 	if (ret) {
998 		atomic_dec(&srq->pd->usecnt);
999 		if (srq->srq_type == IB_SRQT_XRC)
1000 			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1001 		if (ib_srq_has_cq(srq->srq_type))
1002 			atomic_dec(&srq->ext.cq->usecnt);
1003 		kfree(srq);
1004 		return ERR_PTR(ret);
1005 	}
1006 
1007 	return srq;
1008 }
1009 EXPORT_SYMBOL(ib_create_srq);
1010 
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)1011 int ib_modify_srq(struct ib_srq *srq,
1012 		  struct ib_srq_attr *srq_attr,
1013 		  enum ib_srq_attr_mask srq_attr_mask)
1014 {
1015 	return srq->device->ops.modify_srq ?
1016 		srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1017 					    NULL) : -EOPNOTSUPP;
1018 }
1019 EXPORT_SYMBOL(ib_modify_srq);
1020 
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)1021 int ib_query_srq(struct ib_srq *srq,
1022 		 struct ib_srq_attr *srq_attr)
1023 {
1024 	return srq->device->ops.query_srq ?
1025 		srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1026 }
1027 EXPORT_SYMBOL(ib_query_srq);
1028 
ib_destroy_srq_user(struct ib_srq * srq,struct ib_udata * udata)1029 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1030 {
1031 	if (atomic_read(&srq->usecnt))
1032 		return -EBUSY;
1033 
1034 	srq->device->ops.destroy_srq(srq, udata);
1035 
1036 	atomic_dec(&srq->pd->usecnt);
1037 	if (srq->srq_type == IB_SRQT_XRC)
1038 		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1039 	if (ib_srq_has_cq(srq->srq_type))
1040 		atomic_dec(&srq->ext.cq->usecnt);
1041 	kfree(srq);
1042 
1043 	return 0;
1044 }
1045 EXPORT_SYMBOL(ib_destroy_srq_user);
1046 
1047 /* Queue pairs */
1048 
__ib_shared_qp_event_handler(struct ib_event * event,void * context)1049 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1050 {
1051 	struct ib_qp *qp = context;
1052 	unsigned long flags;
1053 
1054 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1055 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1056 		if (event->element.qp->event_handler)
1057 			event->element.qp->event_handler(event, event->element.qp->qp_context);
1058 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1059 }
1060 
__ib_insert_xrcd_qp(struct ib_xrcd * xrcd,struct ib_qp * qp)1061 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1062 {
1063 	mutex_lock(&xrcd->tgt_qp_mutex);
1064 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1065 	mutex_unlock(&xrcd->tgt_qp_mutex);
1066 }
1067 
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)1068 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1069 				  void (*event_handler)(struct ib_event *, void *),
1070 				  void *qp_context)
1071 {
1072 	struct ib_qp *qp;
1073 	unsigned long flags;
1074 	int err;
1075 
1076 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
1077 	if (!qp)
1078 		return ERR_PTR(-ENOMEM);
1079 
1080 	qp->real_qp = real_qp;
1081 	err = ib_open_shared_qp_security(qp, real_qp->device);
1082 	if (err) {
1083 		kfree(qp);
1084 		return ERR_PTR(err);
1085 	}
1086 
1087 	qp->real_qp = real_qp;
1088 	atomic_inc(&real_qp->usecnt);
1089 	qp->device = real_qp->device;
1090 	qp->event_handler = event_handler;
1091 	qp->qp_context = qp_context;
1092 	qp->qp_num = real_qp->qp_num;
1093 	qp->qp_type = real_qp->qp_type;
1094 
1095 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1096 	list_add(&qp->open_list, &real_qp->open_list);
1097 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1098 
1099 	return qp;
1100 }
1101 
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)1102 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1103 			 struct ib_qp_open_attr *qp_open_attr)
1104 {
1105 	struct ib_qp *qp, *real_qp;
1106 
1107 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1108 		return ERR_PTR(-EINVAL);
1109 
1110 	qp = ERR_PTR(-EINVAL);
1111 	mutex_lock(&xrcd->tgt_qp_mutex);
1112 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1113 		if (real_qp->qp_num == qp_open_attr->qp_num) {
1114 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1115 					  qp_open_attr->qp_context);
1116 			break;
1117 		}
1118 	}
1119 	mutex_unlock(&xrcd->tgt_qp_mutex);
1120 	return qp;
1121 }
1122 EXPORT_SYMBOL(ib_open_qp);
1123 
create_xrc_qp_user(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr,struct ib_udata * udata)1124 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1125 					struct ib_qp_init_attr *qp_init_attr,
1126 					struct ib_udata *udata)
1127 {
1128 	struct ib_qp *real_qp = qp;
1129 
1130 	qp->event_handler = __ib_shared_qp_event_handler;
1131 	qp->qp_context = qp;
1132 	qp->pd = NULL;
1133 	qp->send_cq = qp->recv_cq = NULL;
1134 	qp->srq = NULL;
1135 	qp->xrcd = qp_init_attr->xrcd;
1136 	atomic_inc(&qp_init_attr->xrcd->usecnt);
1137 	INIT_LIST_HEAD(&qp->open_list);
1138 
1139 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1140 			  qp_init_attr->qp_context);
1141 	if (IS_ERR(qp))
1142 		return qp;
1143 
1144 	__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1145 	return qp;
1146 }
1147 
ib_create_qp_user(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr,struct ib_udata * udata)1148 struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
1149 				struct ib_qp_init_attr *qp_init_attr,
1150 				struct ib_udata *udata)
1151 {
1152 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1153 	struct ib_qp *qp;
1154 	int ret;
1155 
1156 	if (qp_init_attr->rwq_ind_tbl &&
1157 	    (qp_init_attr->recv_cq ||
1158 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1159 	    qp_init_attr->cap.max_recv_sge))
1160 		return ERR_PTR(-EINVAL);
1161 
1162 	if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1163 	    !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1164 		return ERR_PTR(-EINVAL);
1165 
1166 	/*
1167 	 * If the callers is using the RDMA API calculate the resources
1168 	 * needed for the RDMA READ/WRITE operations.
1169 	 *
1170 	 * Note that these callers need to pass in a port number.
1171 	 */
1172 	if (qp_init_attr->cap.max_rdma_ctxs)
1173 		rdma_rw_init_qp(device, qp_init_attr);
1174 
1175 	qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1176 	if (IS_ERR(qp))
1177 		return qp;
1178 
1179 	ret = ib_create_qp_security(qp, device);
1180 	if (ret)
1181 		goto err;
1182 
1183 	qp->qp_type    = qp_init_attr->qp_type;
1184 	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1185 
1186 	atomic_set(&qp->usecnt, 0);
1187 	qp->mrs_used = 0;
1188 	spin_lock_init(&qp->mr_lock);
1189 	INIT_LIST_HEAD(&qp->rdma_mrs);
1190 	INIT_LIST_HEAD(&qp->sig_mrs);
1191 	qp->port = 0;
1192 
1193 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1194 		struct ib_qp *xrc_qp =
1195 			create_xrc_qp_user(qp, qp_init_attr, udata);
1196 
1197 		if (IS_ERR(xrc_qp)) {
1198 			ret = PTR_ERR(xrc_qp);
1199 			goto err;
1200 		}
1201 		return xrc_qp;
1202 	}
1203 
1204 	qp->event_handler = qp_init_attr->event_handler;
1205 	qp->qp_context = qp_init_attr->qp_context;
1206 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1207 		qp->recv_cq = NULL;
1208 		qp->srq = NULL;
1209 	} else {
1210 		qp->recv_cq = qp_init_attr->recv_cq;
1211 		if (qp_init_attr->recv_cq)
1212 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
1213 		qp->srq = qp_init_attr->srq;
1214 		if (qp->srq)
1215 			atomic_inc(&qp_init_attr->srq->usecnt);
1216 	}
1217 
1218 	qp->send_cq = qp_init_attr->send_cq;
1219 	qp->xrcd    = NULL;
1220 
1221 	atomic_inc(&pd->usecnt);
1222 	if (qp_init_attr->send_cq)
1223 		atomic_inc(&qp_init_attr->send_cq->usecnt);
1224 	if (qp_init_attr->rwq_ind_tbl)
1225 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
1226 
1227 	if (qp_init_attr->cap.max_rdma_ctxs) {
1228 		ret = rdma_rw_init_mrs(qp, qp_init_attr);
1229 		if (ret)
1230 			goto err;
1231 	}
1232 
1233 	/*
1234 	 * Note: all hw drivers guarantee that max_send_sge is lower than
1235 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1236 	 * max_send_sge <= max_sge_rd.
1237 	 */
1238 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1239 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1240 				 device->attrs.max_sge_rd);
1241 	if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1242 		qp->integrity_en = true;
1243 
1244 	return qp;
1245 
1246 err:
1247 	ib_destroy_qp(qp);
1248 	return ERR_PTR(ret);
1249 
1250 }
1251 EXPORT_SYMBOL(ib_create_qp_user);
1252 
1253 static const struct {
1254 	int			valid;
1255 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
1256 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
1257 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1258 	[IB_QPS_RESET] = {
1259 		[IB_QPS_RESET] = { .valid = 1 },
1260 		[IB_QPS_INIT]  = {
1261 			.valid = 1,
1262 			.req_param = {
1263 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1264 						IB_QP_PORT			|
1265 						IB_QP_QKEY),
1266 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
1267 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1268 						IB_QP_PORT			|
1269 						IB_QP_ACCESS_FLAGS),
1270 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1271 						IB_QP_PORT			|
1272 						IB_QP_ACCESS_FLAGS),
1273 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1274 						IB_QP_PORT			|
1275 						IB_QP_ACCESS_FLAGS),
1276 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1277 						IB_QP_PORT			|
1278 						IB_QP_ACCESS_FLAGS),
1279 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1280 						IB_QP_QKEY),
1281 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1282 						IB_QP_QKEY),
1283 			}
1284 		},
1285 	},
1286 	[IB_QPS_INIT]  = {
1287 		[IB_QPS_RESET] = { .valid = 1 },
1288 		[IB_QPS_ERR] =   { .valid = 1 },
1289 		[IB_QPS_INIT]  = {
1290 			.valid = 1,
1291 			.opt_param = {
1292 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1293 						IB_QP_PORT			|
1294 						IB_QP_QKEY),
1295 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1296 						IB_QP_PORT			|
1297 						IB_QP_ACCESS_FLAGS),
1298 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1299 						IB_QP_PORT			|
1300 						IB_QP_ACCESS_FLAGS),
1301 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1302 						IB_QP_PORT			|
1303 						IB_QP_ACCESS_FLAGS),
1304 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1305 						IB_QP_PORT			|
1306 						IB_QP_ACCESS_FLAGS),
1307 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1308 						IB_QP_QKEY),
1309 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1310 						IB_QP_QKEY),
1311 			}
1312 		},
1313 		[IB_QPS_RTR]   = {
1314 			.valid = 1,
1315 			.req_param = {
1316 				[IB_QPT_UC]  = (IB_QP_AV			|
1317 						IB_QP_PATH_MTU			|
1318 						IB_QP_DEST_QPN			|
1319 						IB_QP_RQ_PSN),
1320 				[IB_QPT_RC]  = (IB_QP_AV			|
1321 						IB_QP_PATH_MTU			|
1322 						IB_QP_DEST_QPN			|
1323 						IB_QP_RQ_PSN			|
1324 						IB_QP_MAX_DEST_RD_ATOMIC	|
1325 						IB_QP_MIN_RNR_TIMER),
1326 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1327 						IB_QP_PATH_MTU			|
1328 						IB_QP_DEST_QPN			|
1329 						IB_QP_RQ_PSN),
1330 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1331 						IB_QP_PATH_MTU			|
1332 						IB_QP_DEST_QPN			|
1333 						IB_QP_RQ_PSN			|
1334 						IB_QP_MAX_DEST_RD_ATOMIC	|
1335 						IB_QP_MIN_RNR_TIMER),
1336 			},
1337 			.opt_param = {
1338 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1339 						 IB_QP_QKEY),
1340 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1341 						 IB_QP_ACCESS_FLAGS		|
1342 						 IB_QP_PKEY_INDEX),
1343 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1344 						 IB_QP_ACCESS_FLAGS		|
1345 						 IB_QP_PKEY_INDEX),
1346 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1347 						 IB_QP_ACCESS_FLAGS		|
1348 						 IB_QP_PKEY_INDEX),
1349 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1350 						 IB_QP_ACCESS_FLAGS		|
1351 						 IB_QP_PKEY_INDEX),
1352 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1353 						 IB_QP_QKEY),
1354 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1355 						 IB_QP_QKEY),
1356 			 },
1357 		},
1358 	},
1359 	[IB_QPS_RTR]   = {
1360 		[IB_QPS_RESET] = { .valid = 1 },
1361 		[IB_QPS_ERR] =   { .valid = 1 },
1362 		[IB_QPS_RTS]   = {
1363 			.valid = 1,
1364 			.req_param = {
1365 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1366 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1367 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1368 						IB_QP_RETRY_CNT			|
1369 						IB_QP_RNR_RETRY			|
1370 						IB_QP_SQ_PSN			|
1371 						IB_QP_MAX_QP_RD_ATOMIC),
1372 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1373 						IB_QP_RETRY_CNT			|
1374 						IB_QP_RNR_RETRY			|
1375 						IB_QP_SQ_PSN			|
1376 						IB_QP_MAX_QP_RD_ATOMIC),
1377 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1378 						IB_QP_SQ_PSN),
1379 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1380 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1381 			},
1382 			.opt_param = {
1383 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1384 						 IB_QP_QKEY),
1385 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1386 						 IB_QP_ALT_PATH			|
1387 						 IB_QP_ACCESS_FLAGS		|
1388 						 IB_QP_PATH_MIG_STATE),
1389 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1390 						 IB_QP_ALT_PATH			|
1391 						 IB_QP_ACCESS_FLAGS		|
1392 						 IB_QP_MIN_RNR_TIMER		|
1393 						 IB_QP_PATH_MIG_STATE),
1394 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1395 						 IB_QP_ALT_PATH			|
1396 						 IB_QP_ACCESS_FLAGS		|
1397 						 IB_QP_PATH_MIG_STATE),
1398 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1399 						 IB_QP_ALT_PATH			|
1400 						 IB_QP_ACCESS_FLAGS		|
1401 						 IB_QP_MIN_RNR_TIMER		|
1402 						 IB_QP_PATH_MIG_STATE),
1403 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1404 						 IB_QP_QKEY),
1405 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1406 						 IB_QP_QKEY),
1407 				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1408 			 }
1409 		}
1410 	},
1411 	[IB_QPS_RTS]   = {
1412 		[IB_QPS_RESET] = { .valid = 1 },
1413 		[IB_QPS_ERR] =   { .valid = 1 },
1414 		[IB_QPS_RTS]   = {
1415 			.valid = 1,
1416 			.opt_param = {
1417 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1418 						IB_QP_QKEY),
1419 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1420 						IB_QP_ACCESS_FLAGS		|
1421 						IB_QP_ALT_PATH			|
1422 						IB_QP_PATH_MIG_STATE),
1423 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1424 						IB_QP_ACCESS_FLAGS		|
1425 						IB_QP_ALT_PATH			|
1426 						IB_QP_PATH_MIG_STATE		|
1427 						IB_QP_MIN_RNR_TIMER),
1428 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1429 						IB_QP_ACCESS_FLAGS		|
1430 						IB_QP_ALT_PATH			|
1431 						IB_QP_PATH_MIG_STATE),
1432 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1433 						IB_QP_ACCESS_FLAGS		|
1434 						IB_QP_ALT_PATH			|
1435 						IB_QP_PATH_MIG_STATE		|
1436 						IB_QP_MIN_RNR_TIMER),
1437 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1438 						IB_QP_QKEY),
1439 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1440 						IB_QP_QKEY),
1441 				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1442 			}
1443 		},
1444 		[IB_QPS_SQD]   = {
1445 			.valid = 1,
1446 			.opt_param = {
1447 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1448 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1449 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1450 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1451 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1452 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1453 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1454 			}
1455 		},
1456 	},
1457 	[IB_QPS_SQD]   = {
1458 		[IB_QPS_RESET] = { .valid = 1 },
1459 		[IB_QPS_ERR] =   { .valid = 1 },
1460 		[IB_QPS_RTS]   = {
1461 			.valid = 1,
1462 			.opt_param = {
1463 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1464 						IB_QP_QKEY),
1465 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1466 						IB_QP_ALT_PATH			|
1467 						IB_QP_ACCESS_FLAGS		|
1468 						IB_QP_PATH_MIG_STATE),
1469 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1470 						IB_QP_ALT_PATH			|
1471 						IB_QP_ACCESS_FLAGS		|
1472 						IB_QP_MIN_RNR_TIMER		|
1473 						IB_QP_PATH_MIG_STATE),
1474 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1475 						IB_QP_ALT_PATH			|
1476 						IB_QP_ACCESS_FLAGS		|
1477 						IB_QP_PATH_MIG_STATE),
1478 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1479 						IB_QP_ALT_PATH			|
1480 						IB_QP_ACCESS_FLAGS		|
1481 						IB_QP_MIN_RNR_TIMER		|
1482 						IB_QP_PATH_MIG_STATE),
1483 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1484 						IB_QP_QKEY),
1485 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1486 						IB_QP_QKEY),
1487 			}
1488 		},
1489 		[IB_QPS_SQD]   = {
1490 			.valid = 1,
1491 			.opt_param = {
1492 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1493 						IB_QP_QKEY),
1494 				[IB_QPT_UC]  = (IB_QP_AV			|
1495 						IB_QP_ALT_PATH			|
1496 						IB_QP_ACCESS_FLAGS		|
1497 						IB_QP_PKEY_INDEX		|
1498 						IB_QP_PATH_MIG_STATE),
1499 				[IB_QPT_RC]  = (IB_QP_PORT			|
1500 						IB_QP_AV			|
1501 						IB_QP_TIMEOUT			|
1502 						IB_QP_RETRY_CNT			|
1503 						IB_QP_RNR_RETRY			|
1504 						IB_QP_MAX_QP_RD_ATOMIC		|
1505 						IB_QP_MAX_DEST_RD_ATOMIC	|
1506 						IB_QP_ALT_PATH			|
1507 						IB_QP_ACCESS_FLAGS		|
1508 						IB_QP_PKEY_INDEX		|
1509 						IB_QP_MIN_RNR_TIMER		|
1510 						IB_QP_PATH_MIG_STATE),
1511 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1512 						IB_QP_AV			|
1513 						IB_QP_TIMEOUT			|
1514 						IB_QP_RETRY_CNT			|
1515 						IB_QP_RNR_RETRY			|
1516 						IB_QP_MAX_QP_RD_ATOMIC		|
1517 						IB_QP_ALT_PATH			|
1518 						IB_QP_ACCESS_FLAGS		|
1519 						IB_QP_PKEY_INDEX		|
1520 						IB_QP_PATH_MIG_STATE),
1521 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1522 						IB_QP_AV			|
1523 						IB_QP_TIMEOUT			|
1524 						IB_QP_MAX_DEST_RD_ATOMIC	|
1525 						IB_QP_ALT_PATH			|
1526 						IB_QP_ACCESS_FLAGS		|
1527 						IB_QP_PKEY_INDEX		|
1528 						IB_QP_MIN_RNR_TIMER		|
1529 						IB_QP_PATH_MIG_STATE),
1530 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1531 						IB_QP_QKEY),
1532 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1533 						IB_QP_QKEY),
1534 			}
1535 		}
1536 	},
1537 	[IB_QPS_SQE]   = {
1538 		[IB_QPS_RESET] = { .valid = 1 },
1539 		[IB_QPS_ERR] =   { .valid = 1 },
1540 		[IB_QPS_RTS]   = {
1541 			.valid = 1,
1542 			.opt_param = {
1543 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1544 						IB_QP_QKEY),
1545 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1546 						IB_QP_ACCESS_FLAGS),
1547 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1548 						IB_QP_QKEY),
1549 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1550 						IB_QP_QKEY),
1551 			}
1552 		}
1553 	},
1554 	[IB_QPS_ERR] = {
1555 		[IB_QPS_RESET] = { .valid = 1 },
1556 		[IB_QPS_ERR] =   { .valid = 1 }
1557 	}
1558 };
1559 
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask)1560 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1561 			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1562 {
1563 	enum ib_qp_attr_mask req_param, opt_param;
1564 
1565 	if (mask & IB_QP_CUR_STATE  &&
1566 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1567 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1568 		return false;
1569 
1570 	if (!qp_state_table[cur_state][next_state].valid)
1571 		return false;
1572 
1573 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1574 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1575 
1576 	if ((mask & req_param) != req_param)
1577 		return false;
1578 
1579 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1580 		return false;
1581 
1582 	return true;
1583 }
1584 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1585 
1586 /**
1587  * ib_resolve_eth_dmac - Resolve destination mac address
1588  * @device:		Device to consider
1589  * @ah_attr:		address handle attribute which describes the
1590  *			source and destination parameters
1591  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1592  * returns 0 on success or appropriate error code. It initializes the
1593  * necessary ah_attr fields when call is successful.
1594  */
ib_resolve_eth_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)1595 static int ib_resolve_eth_dmac(struct ib_device *device,
1596 			       struct rdma_ah_attr *ah_attr)
1597 {
1598 	int ret = 0;
1599 
1600 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1601 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1602 			__be32 addr = 0;
1603 
1604 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1605 			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1606 		} else {
1607 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1608 					(char *)ah_attr->roce.dmac);
1609 		}
1610 	} else {
1611 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1612 	}
1613 	return ret;
1614 }
1615 
is_qp_type_connected(const struct ib_qp * qp)1616 static bool is_qp_type_connected(const struct ib_qp *qp)
1617 {
1618 	return (qp->qp_type == IB_QPT_UC ||
1619 		qp->qp_type == IB_QPT_RC ||
1620 		qp->qp_type == IB_QPT_XRC_INI ||
1621 		qp->qp_type == IB_QPT_XRC_TGT);
1622 }
1623 
1624 /**
1625  * IB core internal function to perform QP attributes modification.
1626  */
_ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1627 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1628 			 int attr_mask, struct ib_udata *udata)
1629 {
1630 	u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1631 	const struct ib_gid_attr *old_sgid_attr_av;
1632 	const struct ib_gid_attr *old_sgid_attr_alt_av;
1633 	int ret;
1634 
1635 	if (attr_mask & IB_QP_AV) {
1636 		ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1637 					  &old_sgid_attr_av);
1638 		if (ret)
1639 			return ret;
1640 	}
1641 	if (attr_mask & IB_QP_ALT_PATH) {
1642 		/*
1643 		 * FIXME: This does not track the migration state, so if the
1644 		 * user loads a new alternate path after the HW has migrated
1645 		 * from primary->alternate we will keep the wrong
1646 		 * references. This is OK for IB because the reference
1647 		 * counting does not serve any functional purpose.
1648 		 */
1649 		ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1650 					  &old_sgid_attr_alt_av);
1651 		if (ret)
1652 			goto out_av;
1653 
1654 		/*
1655 		 * Today the core code can only handle alternate paths and APM
1656 		 * for IB. Ban them in roce mode.
1657 		 */
1658 		if (!(rdma_protocol_ib(qp->device,
1659 				       attr->alt_ah_attr.port_num) &&
1660 		      rdma_protocol_ib(qp->device, port))) {
1661 			ret = EINVAL;
1662 			goto out;
1663 		}
1664 	}
1665 
1666 	/*
1667 	 * If the user provided the qp_attr then we have to resolve it. Kernel
1668 	 * users have to provide already resolved rdma_ah_attr's
1669 	 */
1670 	if (udata && (attr_mask & IB_QP_AV) &&
1671 	    attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1672 	    is_qp_type_connected(qp)) {
1673 		ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1674 		if (ret)
1675 			goto out;
1676 	}
1677 
1678 	if (rdma_ib_or_roce(qp->device, port)) {
1679 		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1680 			dev_warn(&qp->device->dev,
1681 				 "%s rq_psn overflow, masking to 24 bits\n",
1682 				 __func__);
1683 			attr->rq_psn &= 0xffffff;
1684 		}
1685 
1686 		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1687 			dev_warn(&qp->device->dev,
1688 				 " %s sq_psn overflow, masking to 24 bits\n",
1689 				 __func__);
1690 			attr->sq_psn &= 0xffffff;
1691 		}
1692 	}
1693 
1694 	/*
1695 	 * Bind this qp to a counter automatically based on the rdma counter
1696 	 * rules. This only set in RST2INIT with port specified
1697 	 */
1698 	if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1699 	    ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1700 		rdma_counter_bind_qp_auto(qp, attr->port_num);
1701 
1702 	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1703 	if (ret)
1704 		goto out;
1705 
1706 	if (attr_mask & IB_QP_PORT)
1707 		qp->port = attr->port_num;
1708 	if (attr_mask & IB_QP_AV)
1709 		qp->av_sgid_attr =
1710 			rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1711 	if (attr_mask & IB_QP_ALT_PATH)
1712 		qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1713 			&attr->alt_ah_attr, qp->alt_path_sgid_attr);
1714 
1715 out:
1716 	if (attr_mask & IB_QP_ALT_PATH)
1717 		rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1718 out_av:
1719 	if (attr_mask & IB_QP_AV)
1720 		rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1721 	return ret;
1722 }
1723 
1724 /**
1725  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1726  * @ib_qp: The QP to modify.
1727  * @attr: On input, specifies the QP attributes to modify.  On output,
1728  *   the current values of selected QP attributes are returned.
1729  * @attr_mask: A bit-mask used to specify which attributes of the QP
1730  *   are being modified.
1731  * @udata: pointer to user's input output buffer information
1732  *   are being modified.
1733  * It returns 0 on success and returns appropriate error code on error.
1734  */
ib_modify_qp_with_udata(struct ib_qp * ib_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1735 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1736 			    int attr_mask, struct ib_udata *udata)
1737 {
1738 	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1739 }
1740 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1741 
ib_get_eth_speed(struct ib_device * dev,u8 port_num,u8 * speed,u8 * width)1742 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1743 {
1744 	int rc;
1745 	u32 netdev_speed;
1746 	struct net_device *netdev;
1747 	struct ethtool_link_ksettings lksettings;
1748 
1749 	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1750 		return -EINVAL;
1751 
1752 	netdev = ib_device_get_netdev(dev, port_num);
1753 	if (!netdev)
1754 		return -ENODEV;
1755 
1756 	rtnl_lock();
1757 	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1758 	rtnl_unlock();
1759 
1760 	dev_put(netdev);
1761 
1762 	if (!rc) {
1763 		netdev_speed = lksettings.base.speed;
1764 	} else {
1765 		netdev_speed = SPEED_1000;
1766 		pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1767 			netdev_speed);
1768 	}
1769 
1770 	if (netdev_speed <= SPEED_1000) {
1771 		*width = IB_WIDTH_1X;
1772 		*speed = IB_SPEED_SDR;
1773 	} else if (netdev_speed <= SPEED_10000) {
1774 		*width = IB_WIDTH_1X;
1775 		*speed = IB_SPEED_FDR10;
1776 	} else if (netdev_speed <= SPEED_20000) {
1777 		*width = IB_WIDTH_4X;
1778 		*speed = IB_SPEED_DDR;
1779 	} else if (netdev_speed <= SPEED_25000) {
1780 		*width = IB_WIDTH_1X;
1781 		*speed = IB_SPEED_EDR;
1782 	} else if (netdev_speed <= SPEED_40000) {
1783 		*width = IB_WIDTH_4X;
1784 		*speed = IB_SPEED_FDR10;
1785 	} else {
1786 		*width = IB_WIDTH_4X;
1787 		*speed = IB_SPEED_EDR;
1788 	}
1789 
1790 	return 0;
1791 }
1792 EXPORT_SYMBOL(ib_get_eth_speed);
1793 
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)1794 int ib_modify_qp(struct ib_qp *qp,
1795 		 struct ib_qp_attr *qp_attr,
1796 		 int qp_attr_mask)
1797 {
1798 	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1799 }
1800 EXPORT_SYMBOL(ib_modify_qp);
1801 
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)1802 int ib_query_qp(struct ib_qp *qp,
1803 		struct ib_qp_attr *qp_attr,
1804 		int qp_attr_mask,
1805 		struct ib_qp_init_attr *qp_init_attr)
1806 {
1807 	qp_attr->ah_attr.grh.sgid_attr = NULL;
1808 	qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1809 
1810 	return qp->device->ops.query_qp ?
1811 		qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1812 					 qp_init_attr) : -EOPNOTSUPP;
1813 }
1814 EXPORT_SYMBOL(ib_query_qp);
1815 
ib_close_qp(struct ib_qp * qp)1816 int ib_close_qp(struct ib_qp *qp)
1817 {
1818 	struct ib_qp *real_qp;
1819 	unsigned long flags;
1820 
1821 	real_qp = qp->real_qp;
1822 	if (real_qp == qp)
1823 		return -EINVAL;
1824 
1825 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1826 	list_del(&qp->open_list);
1827 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1828 
1829 	atomic_dec(&real_qp->usecnt);
1830 	if (qp->qp_sec)
1831 		ib_close_shared_qp_security(qp->qp_sec);
1832 	kfree(qp);
1833 
1834 	return 0;
1835 }
1836 EXPORT_SYMBOL(ib_close_qp);
1837 
__ib_destroy_shared_qp(struct ib_qp * qp)1838 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1839 {
1840 	struct ib_xrcd *xrcd;
1841 	struct ib_qp *real_qp;
1842 	int ret;
1843 
1844 	real_qp = qp->real_qp;
1845 	xrcd = real_qp->xrcd;
1846 
1847 	mutex_lock(&xrcd->tgt_qp_mutex);
1848 	ib_close_qp(qp);
1849 	if (atomic_read(&real_qp->usecnt) == 0)
1850 		list_del(&real_qp->xrcd_list);
1851 	else
1852 		real_qp = NULL;
1853 	mutex_unlock(&xrcd->tgt_qp_mutex);
1854 
1855 	if (real_qp) {
1856 		ret = ib_destroy_qp(real_qp);
1857 		if (!ret)
1858 			atomic_dec(&xrcd->usecnt);
1859 		else
1860 			__ib_insert_xrcd_qp(xrcd, real_qp);
1861 	}
1862 
1863 	return 0;
1864 }
1865 
ib_destroy_qp_user(struct ib_qp * qp,struct ib_udata * udata)1866 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1867 {
1868 	const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1869 	const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1870 	struct ib_pd *pd;
1871 	struct ib_cq *scq, *rcq;
1872 	struct ib_srq *srq;
1873 	struct ib_rwq_ind_table *ind_tbl;
1874 	struct ib_qp_security *sec;
1875 	int ret;
1876 
1877 	WARN_ON_ONCE(qp->mrs_used > 0);
1878 
1879 	if (atomic_read(&qp->usecnt))
1880 		return -EBUSY;
1881 
1882 	if (qp->real_qp != qp)
1883 		return __ib_destroy_shared_qp(qp);
1884 
1885 	pd   = qp->pd;
1886 	scq  = qp->send_cq;
1887 	rcq  = qp->recv_cq;
1888 	srq  = qp->srq;
1889 	ind_tbl = qp->rwq_ind_tbl;
1890 	sec  = qp->qp_sec;
1891 	if (sec)
1892 		ib_destroy_qp_security_begin(sec);
1893 
1894 	if (!qp->uobject)
1895 		rdma_rw_cleanup_mrs(qp);
1896 
1897 	rdma_counter_unbind_qp(qp, true);
1898 	rdma_restrack_del(&qp->res);
1899 	ret = qp->device->ops.destroy_qp(qp, udata);
1900 	if (!ret) {
1901 		if (alt_path_sgid_attr)
1902 			rdma_put_gid_attr(alt_path_sgid_attr);
1903 		if (av_sgid_attr)
1904 			rdma_put_gid_attr(av_sgid_attr);
1905 		if (pd)
1906 			atomic_dec(&pd->usecnt);
1907 		if (scq)
1908 			atomic_dec(&scq->usecnt);
1909 		if (rcq)
1910 			atomic_dec(&rcq->usecnt);
1911 		if (srq)
1912 			atomic_dec(&srq->usecnt);
1913 		if (ind_tbl)
1914 			atomic_dec(&ind_tbl->usecnt);
1915 		if (sec)
1916 			ib_destroy_qp_security_end(sec);
1917 	} else {
1918 		if (sec)
1919 			ib_destroy_qp_security_abort(sec);
1920 	}
1921 
1922 	return ret;
1923 }
1924 EXPORT_SYMBOL(ib_destroy_qp_user);
1925 
1926 /* Completion queues */
1927 
__ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr,const char * caller)1928 struct ib_cq *__ib_create_cq(struct ib_device *device,
1929 			     ib_comp_handler comp_handler,
1930 			     void (*event_handler)(struct ib_event *, void *),
1931 			     void *cq_context,
1932 			     const struct ib_cq_init_attr *cq_attr,
1933 			     const char *caller)
1934 {
1935 	struct ib_cq *cq;
1936 	int ret;
1937 
1938 	cq = rdma_zalloc_drv_obj(device, ib_cq);
1939 	if (!cq)
1940 		return ERR_PTR(-ENOMEM);
1941 
1942 	cq->device = device;
1943 	cq->uobject = NULL;
1944 	cq->comp_handler = comp_handler;
1945 	cq->event_handler = event_handler;
1946 	cq->cq_context = cq_context;
1947 	atomic_set(&cq->usecnt, 0);
1948 	cq->res.type = RDMA_RESTRACK_CQ;
1949 	rdma_restrack_set_task(&cq->res, caller);
1950 
1951 	ret = device->ops.create_cq(cq, cq_attr, NULL);
1952 	if (ret) {
1953 		kfree(cq);
1954 		return ERR_PTR(ret);
1955 	}
1956 
1957 	rdma_restrack_kadd(&cq->res);
1958 	return cq;
1959 }
1960 EXPORT_SYMBOL(__ib_create_cq);
1961 
rdma_set_cq_moderation(struct ib_cq * cq,u16 cq_count,u16 cq_period)1962 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1963 {
1964 	return cq->device->ops.modify_cq ?
1965 		cq->device->ops.modify_cq(cq, cq_count,
1966 					  cq_period) : -EOPNOTSUPP;
1967 }
1968 EXPORT_SYMBOL(rdma_set_cq_moderation);
1969 
ib_destroy_cq_user(struct ib_cq * cq,struct ib_udata * udata)1970 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1971 {
1972 	if (atomic_read(&cq->usecnt))
1973 		return -EBUSY;
1974 
1975 	rdma_restrack_del(&cq->res);
1976 	cq->device->ops.destroy_cq(cq, udata);
1977 	kfree(cq);
1978 	return 0;
1979 }
1980 EXPORT_SYMBOL(ib_destroy_cq_user);
1981 
ib_resize_cq(struct ib_cq * cq,int cqe)1982 int ib_resize_cq(struct ib_cq *cq, int cqe)
1983 {
1984 	return cq->device->ops.resize_cq ?
1985 		cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1986 }
1987 EXPORT_SYMBOL(ib_resize_cq);
1988 
1989 /* Memory regions */
1990 
ib_dereg_mr_user(struct ib_mr * mr,struct ib_udata * udata)1991 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
1992 {
1993 	struct ib_pd *pd = mr->pd;
1994 	struct ib_dm *dm = mr->dm;
1995 	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
1996 	int ret;
1997 
1998 	rdma_restrack_del(&mr->res);
1999 	ret = mr->device->ops.dereg_mr(mr, udata);
2000 	if (!ret) {
2001 		atomic_dec(&pd->usecnt);
2002 		if (dm)
2003 			atomic_dec(&dm->usecnt);
2004 		kfree(sig_attrs);
2005 	}
2006 
2007 	return ret;
2008 }
2009 EXPORT_SYMBOL(ib_dereg_mr_user);
2010 
2011 /**
2012  * ib_alloc_mr_user() - Allocates a memory region
2013  * @pd:            protection domain associated with the region
2014  * @mr_type:       memory region type
2015  * @max_num_sg:    maximum sg entries available for registration.
2016  * @udata:	   user data or null for kernel objects
2017  *
2018  * Notes:
2019  * Memory registeration page/sg lists must not exceed max_num_sg.
2020  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2021  * max_num_sg * used_page_size.
2022  *
2023  */
ib_alloc_mr_user(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg,struct ib_udata * udata)2024 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
2025 			       u32 max_num_sg, struct ib_udata *udata)
2026 {
2027 	struct ib_mr *mr;
2028 
2029 	if (!pd->device->ops.alloc_mr)
2030 		return ERR_PTR(-EOPNOTSUPP);
2031 
2032 	if (WARN_ON_ONCE(mr_type == IB_MR_TYPE_INTEGRITY))
2033 		return ERR_PTR(-EINVAL);
2034 
2035 	mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata);
2036 	if (!IS_ERR(mr)) {
2037 		mr->device  = pd->device;
2038 		mr->pd      = pd;
2039 		mr->dm      = NULL;
2040 		mr->uobject = NULL;
2041 		atomic_inc(&pd->usecnt);
2042 		mr->need_inval = false;
2043 		mr->res.type = RDMA_RESTRACK_MR;
2044 		rdma_restrack_kadd(&mr->res);
2045 		mr->type = mr_type;
2046 		mr->sig_attrs = NULL;
2047 	}
2048 
2049 	return mr;
2050 }
2051 EXPORT_SYMBOL(ib_alloc_mr_user);
2052 
2053 /**
2054  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2055  * @pd:                      protection domain associated with the region
2056  * @max_num_data_sg:         maximum data sg entries available for registration
2057  * @max_num_meta_sg:         maximum metadata sg entries available for
2058  *                           registration
2059  *
2060  * Notes:
2061  * Memory registration page/sg lists must not exceed max_num_sg,
2062  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2063  *
2064  */
ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_data_sg,u32 max_num_meta_sg)2065 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2066 				    u32 max_num_data_sg,
2067 				    u32 max_num_meta_sg)
2068 {
2069 	struct ib_mr *mr;
2070 	struct ib_sig_attrs *sig_attrs;
2071 
2072 	if (!pd->device->ops.alloc_mr_integrity ||
2073 	    !pd->device->ops.map_mr_sg_pi)
2074 		return ERR_PTR(-EOPNOTSUPP);
2075 
2076 	if (!max_num_meta_sg)
2077 		return ERR_PTR(-EINVAL);
2078 
2079 	sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2080 	if (!sig_attrs)
2081 		return ERR_PTR(-ENOMEM);
2082 
2083 	mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2084 						max_num_meta_sg);
2085 	if (IS_ERR(mr)) {
2086 		kfree(sig_attrs);
2087 		return mr;
2088 	}
2089 
2090 	mr->device = pd->device;
2091 	mr->pd = pd;
2092 	mr->dm = NULL;
2093 	mr->uobject = NULL;
2094 	atomic_inc(&pd->usecnt);
2095 	mr->need_inval = false;
2096 	mr->res.type = RDMA_RESTRACK_MR;
2097 	rdma_restrack_kadd(&mr->res);
2098 	mr->type = IB_MR_TYPE_INTEGRITY;
2099 	mr->sig_attrs = sig_attrs;
2100 
2101 	return mr;
2102 }
2103 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2104 
2105 /* "Fast" memory regions */
2106 
ib_alloc_fmr(struct ib_pd * pd,int mr_access_flags,struct ib_fmr_attr * fmr_attr)2107 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2108 			    int mr_access_flags,
2109 			    struct ib_fmr_attr *fmr_attr)
2110 {
2111 	struct ib_fmr *fmr;
2112 
2113 	if (!pd->device->ops.alloc_fmr)
2114 		return ERR_PTR(-EOPNOTSUPP);
2115 
2116 	fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2117 	if (!IS_ERR(fmr)) {
2118 		fmr->device = pd->device;
2119 		fmr->pd     = pd;
2120 		atomic_inc(&pd->usecnt);
2121 	}
2122 
2123 	return fmr;
2124 }
2125 EXPORT_SYMBOL(ib_alloc_fmr);
2126 
ib_unmap_fmr(struct list_head * fmr_list)2127 int ib_unmap_fmr(struct list_head *fmr_list)
2128 {
2129 	struct ib_fmr *fmr;
2130 
2131 	if (list_empty(fmr_list))
2132 		return 0;
2133 
2134 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2135 	return fmr->device->ops.unmap_fmr(fmr_list);
2136 }
2137 EXPORT_SYMBOL(ib_unmap_fmr);
2138 
ib_dealloc_fmr(struct ib_fmr * fmr)2139 int ib_dealloc_fmr(struct ib_fmr *fmr)
2140 {
2141 	struct ib_pd *pd;
2142 	int ret;
2143 
2144 	pd = fmr->pd;
2145 	ret = fmr->device->ops.dealloc_fmr(fmr);
2146 	if (!ret)
2147 		atomic_dec(&pd->usecnt);
2148 
2149 	return ret;
2150 }
2151 EXPORT_SYMBOL(ib_dealloc_fmr);
2152 
2153 /* Multicast groups */
2154 
is_valid_mcast_lid(struct ib_qp * qp,u16 lid)2155 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2156 {
2157 	struct ib_qp_init_attr init_attr = {};
2158 	struct ib_qp_attr attr = {};
2159 	int num_eth_ports = 0;
2160 	int port;
2161 
2162 	/* If QP state >= init, it is assigned to a port and we can check this
2163 	 * port only.
2164 	 */
2165 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2166 		if (attr.qp_state >= IB_QPS_INIT) {
2167 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2168 			    IB_LINK_LAYER_INFINIBAND)
2169 				return true;
2170 			goto lid_check;
2171 		}
2172 	}
2173 
2174 	/* Can't get a quick answer, iterate over all ports */
2175 	for (port = 0; port < qp->device->phys_port_cnt; port++)
2176 		if (rdma_port_get_link_layer(qp->device, port) !=
2177 		    IB_LINK_LAYER_INFINIBAND)
2178 			num_eth_ports++;
2179 
2180 	/* If we have at lease one Ethernet port, RoCE annex declares that
2181 	 * multicast LID should be ignored. We can't tell at this step if the
2182 	 * QP belongs to an IB or Ethernet port.
2183 	 */
2184 	if (num_eth_ports)
2185 		return true;
2186 
2187 	/* If all the ports are IB, we can check according to IB spec. */
2188 lid_check:
2189 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2190 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2191 }
2192 
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2193 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2194 {
2195 	int ret;
2196 
2197 	if (!qp->device->ops.attach_mcast)
2198 		return -EOPNOTSUPP;
2199 
2200 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2201 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2202 		return -EINVAL;
2203 
2204 	ret = qp->device->ops.attach_mcast(qp, gid, lid);
2205 	if (!ret)
2206 		atomic_inc(&qp->usecnt);
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL(ib_attach_mcast);
2210 
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2211 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2212 {
2213 	int ret;
2214 
2215 	if (!qp->device->ops.detach_mcast)
2216 		return -EOPNOTSUPP;
2217 
2218 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2219 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2220 		return -EINVAL;
2221 
2222 	ret = qp->device->ops.detach_mcast(qp, gid, lid);
2223 	if (!ret)
2224 		atomic_dec(&qp->usecnt);
2225 	return ret;
2226 }
2227 EXPORT_SYMBOL(ib_detach_mcast);
2228 
__ib_alloc_xrcd(struct ib_device * device,const char * caller)2229 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2230 {
2231 	struct ib_xrcd *xrcd;
2232 
2233 	if (!device->ops.alloc_xrcd)
2234 		return ERR_PTR(-EOPNOTSUPP);
2235 
2236 	xrcd = device->ops.alloc_xrcd(device, NULL);
2237 	if (!IS_ERR(xrcd)) {
2238 		xrcd->device = device;
2239 		xrcd->inode = NULL;
2240 		atomic_set(&xrcd->usecnt, 0);
2241 		mutex_init(&xrcd->tgt_qp_mutex);
2242 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2243 	}
2244 
2245 	return xrcd;
2246 }
2247 EXPORT_SYMBOL(__ib_alloc_xrcd);
2248 
ib_dealloc_xrcd(struct ib_xrcd * xrcd,struct ib_udata * udata)2249 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
2250 {
2251 	struct ib_qp *qp;
2252 	int ret;
2253 
2254 	if (atomic_read(&xrcd->usecnt))
2255 		return -EBUSY;
2256 
2257 	while (!list_empty(&xrcd->tgt_qp_list)) {
2258 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2259 		ret = ib_destroy_qp(qp);
2260 		if (ret)
2261 			return ret;
2262 	}
2263 	mutex_destroy(&xrcd->tgt_qp_mutex);
2264 
2265 	return xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2266 }
2267 EXPORT_SYMBOL(ib_dealloc_xrcd);
2268 
2269 /**
2270  * ib_create_wq - Creates a WQ associated with the specified protection
2271  * domain.
2272  * @pd: The protection domain associated with the WQ.
2273  * @wq_attr: A list of initial attributes required to create the
2274  * WQ. If WQ creation succeeds, then the attributes are updated to
2275  * the actual capabilities of the created WQ.
2276  *
2277  * wq_attr->max_wr and wq_attr->max_sge determine
2278  * the requested size of the WQ, and set to the actual values allocated
2279  * on return.
2280  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2281  * at least as large as the requested values.
2282  */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)2283 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2284 			   struct ib_wq_init_attr *wq_attr)
2285 {
2286 	struct ib_wq *wq;
2287 
2288 	if (!pd->device->ops.create_wq)
2289 		return ERR_PTR(-EOPNOTSUPP);
2290 
2291 	wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2292 	if (!IS_ERR(wq)) {
2293 		wq->event_handler = wq_attr->event_handler;
2294 		wq->wq_context = wq_attr->wq_context;
2295 		wq->wq_type = wq_attr->wq_type;
2296 		wq->cq = wq_attr->cq;
2297 		wq->device = pd->device;
2298 		wq->pd = pd;
2299 		wq->uobject = NULL;
2300 		atomic_inc(&pd->usecnt);
2301 		atomic_inc(&wq_attr->cq->usecnt);
2302 		atomic_set(&wq->usecnt, 0);
2303 	}
2304 	return wq;
2305 }
2306 EXPORT_SYMBOL(ib_create_wq);
2307 
2308 /**
2309  * ib_destroy_wq - Destroys the specified user WQ.
2310  * @wq: The WQ to destroy.
2311  * @udata: Valid user data
2312  */
ib_destroy_wq(struct ib_wq * wq,struct ib_udata * udata)2313 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2314 {
2315 	struct ib_cq *cq = wq->cq;
2316 	struct ib_pd *pd = wq->pd;
2317 
2318 	if (atomic_read(&wq->usecnt))
2319 		return -EBUSY;
2320 
2321 	wq->device->ops.destroy_wq(wq, udata);
2322 	atomic_dec(&pd->usecnt);
2323 	atomic_dec(&cq->usecnt);
2324 
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(ib_destroy_wq);
2328 
2329 /**
2330  * ib_modify_wq - Modifies the specified WQ.
2331  * @wq: The WQ to modify.
2332  * @wq_attr: On input, specifies the WQ attributes to modify.
2333  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2334  *   are being modified.
2335  * On output, the current values of selected WQ attributes are returned.
2336  */
ib_modify_wq(struct ib_wq * wq,struct ib_wq_attr * wq_attr,u32 wq_attr_mask)2337 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2338 		 u32 wq_attr_mask)
2339 {
2340 	int err;
2341 
2342 	if (!wq->device->ops.modify_wq)
2343 		return -EOPNOTSUPP;
2344 
2345 	err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2346 	return err;
2347 }
2348 EXPORT_SYMBOL(ib_modify_wq);
2349 
2350 /*
2351  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2352  * @device: The device on which to create the rwq indirection table.
2353  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2354  * create the Indirection Table.
2355  *
2356  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2357  *	than the created ib_rwq_ind_table object and the caller is responsible
2358  *	for its memory allocation/free.
2359  */
ib_create_rwq_ind_table(struct ib_device * device,struct ib_rwq_ind_table_init_attr * init_attr)2360 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2361 						 struct ib_rwq_ind_table_init_attr *init_attr)
2362 {
2363 	struct ib_rwq_ind_table *rwq_ind_table;
2364 	int i;
2365 	u32 table_size;
2366 
2367 	if (!device->ops.create_rwq_ind_table)
2368 		return ERR_PTR(-EOPNOTSUPP);
2369 
2370 	table_size = (1 << init_attr->log_ind_tbl_size);
2371 	rwq_ind_table = device->ops.create_rwq_ind_table(device,
2372 							 init_attr, NULL);
2373 	if (IS_ERR(rwq_ind_table))
2374 		return rwq_ind_table;
2375 
2376 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2377 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2378 	rwq_ind_table->device = device;
2379 	rwq_ind_table->uobject = NULL;
2380 	atomic_set(&rwq_ind_table->usecnt, 0);
2381 
2382 	for (i = 0; i < table_size; i++)
2383 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2384 
2385 	return rwq_ind_table;
2386 }
2387 EXPORT_SYMBOL(ib_create_rwq_ind_table);
2388 
2389 /*
2390  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2391  * @wq_ind_table: The Indirection Table to destroy.
2392 */
ib_destroy_rwq_ind_table(struct ib_rwq_ind_table * rwq_ind_table)2393 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2394 {
2395 	int err, i;
2396 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2397 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2398 
2399 	if (atomic_read(&rwq_ind_table->usecnt))
2400 		return -EBUSY;
2401 
2402 	err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2403 	if (!err) {
2404 		for (i = 0; i < table_size; i++)
2405 			atomic_dec(&ind_tbl[i]->usecnt);
2406 	}
2407 
2408 	return err;
2409 }
2410 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2411 
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)2412 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2413 		       struct ib_mr_status *mr_status)
2414 {
2415 	if (!mr->device->ops.check_mr_status)
2416 		return -EOPNOTSUPP;
2417 
2418 	return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2419 }
2420 EXPORT_SYMBOL(ib_check_mr_status);
2421 
ib_set_vf_link_state(struct ib_device * device,int vf,u8 port,int state)2422 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2423 			 int state)
2424 {
2425 	if (!device->ops.set_vf_link_state)
2426 		return -EOPNOTSUPP;
2427 
2428 	return device->ops.set_vf_link_state(device, vf, port, state);
2429 }
2430 EXPORT_SYMBOL(ib_set_vf_link_state);
2431 
ib_get_vf_config(struct ib_device * device,int vf,u8 port,struct ifla_vf_info * info)2432 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2433 		     struct ifla_vf_info *info)
2434 {
2435 	if (!device->ops.get_vf_config)
2436 		return -EOPNOTSUPP;
2437 
2438 	return device->ops.get_vf_config(device, vf, port, info);
2439 }
2440 EXPORT_SYMBOL(ib_get_vf_config);
2441 
ib_get_vf_stats(struct ib_device * device,int vf,u8 port,struct ifla_vf_stats * stats)2442 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2443 		    struct ifla_vf_stats *stats)
2444 {
2445 	if (!device->ops.get_vf_stats)
2446 		return -EOPNOTSUPP;
2447 
2448 	return device->ops.get_vf_stats(device, vf, port, stats);
2449 }
2450 EXPORT_SYMBOL(ib_get_vf_stats);
2451 
ib_set_vf_guid(struct ib_device * device,int vf,u8 port,u64 guid,int type)2452 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2453 		   int type)
2454 {
2455 	if (!device->ops.set_vf_guid)
2456 		return -EOPNOTSUPP;
2457 
2458 	return device->ops.set_vf_guid(device, vf, port, guid, type);
2459 }
2460 EXPORT_SYMBOL(ib_set_vf_guid);
2461 
2462 /**
2463  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2464  *     information) and set an appropriate memory region for registration.
2465  * @mr:             memory region
2466  * @data_sg:        dma mapped scatterlist for data
2467  * @data_sg_nents:  number of entries in data_sg
2468  * @data_sg_offset: offset in bytes into data_sg
2469  * @meta_sg:        dma mapped scatterlist for metadata
2470  * @meta_sg_nents:  number of entries in meta_sg
2471  * @meta_sg_offset: offset in bytes into meta_sg
2472  * @page_size:      page vector desired page size
2473  *
2474  * Constraints:
2475  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2476  *
2477  * Return: 0 on success.
2478  *
2479  * After this completes successfully, the  memory region
2480  * is ready for registration.
2481  */
ib_map_mr_sg_pi(struct ib_mr * mr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset,unsigned int page_size)2482 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2483 		    int data_sg_nents, unsigned int *data_sg_offset,
2484 		    struct scatterlist *meta_sg, int meta_sg_nents,
2485 		    unsigned int *meta_sg_offset, unsigned int page_size)
2486 {
2487 	if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2488 		     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2489 		return -EOPNOTSUPP;
2490 
2491 	mr->page_size = page_size;
2492 
2493 	return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2494 					    data_sg_offset, meta_sg,
2495 					    meta_sg_nents, meta_sg_offset);
2496 }
2497 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2498 
2499 /**
2500  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2501  *     and set it the memory region.
2502  * @mr:            memory region
2503  * @sg:            dma mapped scatterlist
2504  * @sg_nents:      number of entries in sg
2505  * @sg_offset:     offset in bytes into sg
2506  * @page_size:     page vector desired page size
2507  *
2508  * Constraints:
2509  * - The first sg element is allowed to have an offset.
2510  * - Each sg element must either be aligned to page_size or virtually
2511  *   contiguous to the previous element. In case an sg element has a
2512  *   non-contiguous offset, the mapping prefix will not include it.
2513  * - The last sg element is allowed to have length less than page_size.
2514  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2515  *   then only max_num_sg entries will be mapped.
2516  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2517  *   constraints holds and the page_size argument is ignored.
2518  *
2519  * Returns the number of sg elements that were mapped to the memory region.
2520  *
2521  * After this completes successfully, the  memory region
2522  * is ready for registration.
2523  */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)2524 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2525 		 unsigned int *sg_offset, unsigned int page_size)
2526 {
2527 	if (unlikely(!mr->device->ops.map_mr_sg))
2528 		return -EOPNOTSUPP;
2529 
2530 	mr->page_size = page_size;
2531 
2532 	return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2533 }
2534 EXPORT_SYMBOL(ib_map_mr_sg);
2535 
2536 /**
2537  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2538  *     to a page vector
2539  * @mr:            memory region
2540  * @sgl:           dma mapped scatterlist
2541  * @sg_nents:      number of entries in sg
2542  * @sg_offset_p:   IN:  start offset in bytes into sg
2543  *                 OUT: offset in bytes for element n of the sg of the first
2544  *                      byte that has not been processed where n is the return
2545  *                      value of this function.
2546  * @set_page:      driver page assignment function pointer
2547  *
2548  * Core service helper for drivers to convert the largest
2549  * prefix of given sg list to a page vector. The sg list
2550  * prefix converted is the prefix that meet the requirements
2551  * of ib_map_mr_sg.
2552  *
2553  * Returns the number of sg elements that were assigned to
2554  * a page vector.
2555  */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))2556 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2557 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2558 {
2559 	struct scatterlist *sg;
2560 	u64 last_end_dma_addr = 0;
2561 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2562 	unsigned int last_page_off = 0;
2563 	u64 page_mask = ~((u64)mr->page_size - 1);
2564 	int i, ret;
2565 
2566 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2567 		return -EINVAL;
2568 
2569 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2570 	mr->length = 0;
2571 
2572 	for_each_sg(sgl, sg, sg_nents, i) {
2573 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2574 		u64 prev_addr = dma_addr;
2575 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2576 		u64 end_dma_addr = dma_addr + dma_len;
2577 		u64 page_addr = dma_addr & page_mask;
2578 
2579 		/*
2580 		 * For the second and later elements, check whether either the
2581 		 * end of element i-1 or the start of element i is not aligned
2582 		 * on a page boundary.
2583 		 */
2584 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2585 			/* Stop mapping if there is a gap. */
2586 			if (last_end_dma_addr != dma_addr)
2587 				break;
2588 
2589 			/*
2590 			 * Coalesce this element with the last. If it is small
2591 			 * enough just update mr->length. Otherwise start
2592 			 * mapping from the next page.
2593 			 */
2594 			goto next_page;
2595 		}
2596 
2597 		do {
2598 			ret = set_page(mr, page_addr);
2599 			if (unlikely(ret < 0)) {
2600 				sg_offset = prev_addr - sg_dma_address(sg);
2601 				mr->length += prev_addr - dma_addr;
2602 				if (sg_offset_p)
2603 					*sg_offset_p = sg_offset;
2604 				return i || sg_offset ? i : ret;
2605 			}
2606 			prev_addr = page_addr;
2607 next_page:
2608 			page_addr += mr->page_size;
2609 		} while (page_addr < end_dma_addr);
2610 
2611 		mr->length += dma_len;
2612 		last_end_dma_addr = end_dma_addr;
2613 		last_page_off = end_dma_addr & ~page_mask;
2614 
2615 		sg_offset = 0;
2616 	}
2617 
2618 	if (sg_offset_p)
2619 		*sg_offset_p = 0;
2620 	return i;
2621 }
2622 EXPORT_SYMBOL(ib_sg_to_pages);
2623 
2624 struct ib_drain_cqe {
2625 	struct ib_cqe cqe;
2626 	struct completion done;
2627 };
2628 
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)2629 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2630 {
2631 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2632 						cqe);
2633 
2634 	complete(&cqe->done);
2635 }
2636 
2637 /*
2638  * Post a WR and block until its completion is reaped for the SQ.
2639  */
__ib_drain_sq(struct ib_qp * qp)2640 static void __ib_drain_sq(struct ib_qp *qp)
2641 {
2642 	struct ib_cq *cq = qp->send_cq;
2643 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2644 	struct ib_drain_cqe sdrain;
2645 	struct ib_rdma_wr swr = {
2646 		.wr = {
2647 			.next = NULL,
2648 			{ .wr_cqe	= &sdrain.cqe, },
2649 			.opcode	= IB_WR_RDMA_WRITE,
2650 		},
2651 	};
2652 	int ret;
2653 
2654 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2655 	if (ret) {
2656 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2657 		return;
2658 	}
2659 
2660 	sdrain.cqe.done = ib_drain_qp_done;
2661 	init_completion(&sdrain.done);
2662 
2663 	ret = ib_post_send(qp, &swr.wr, NULL);
2664 	if (ret) {
2665 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2666 		return;
2667 	}
2668 
2669 	if (cq->poll_ctx == IB_POLL_DIRECT)
2670 		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2671 			ib_process_cq_direct(cq, -1);
2672 	else
2673 		wait_for_completion(&sdrain.done);
2674 }
2675 
2676 /*
2677  * Post a WR and block until its completion is reaped for the RQ.
2678  */
__ib_drain_rq(struct ib_qp * qp)2679 static void __ib_drain_rq(struct ib_qp *qp)
2680 {
2681 	struct ib_cq *cq = qp->recv_cq;
2682 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2683 	struct ib_drain_cqe rdrain;
2684 	struct ib_recv_wr rwr = {};
2685 	int ret;
2686 
2687 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2688 	if (ret) {
2689 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2690 		return;
2691 	}
2692 
2693 	rwr.wr_cqe = &rdrain.cqe;
2694 	rdrain.cqe.done = ib_drain_qp_done;
2695 	init_completion(&rdrain.done);
2696 
2697 	ret = ib_post_recv(qp, &rwr, NULL);
2698 	if (ret) {
2699 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2700 		return;
2701 	}
2702 
2703 	if (cq->poll_ctx == IB_POLL_DIRECT)
2704 		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2705 			ib_process_cq_direct(cq, -1);
2706 	else
2707 		wait_for_completion(&rdrain.done);
2708 }
2709 
2710 /**
2711  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2712  *		   application.
2713  * @qp:            queue pair to drain
2714  *
2715  * If the device has a provider-specific drain function, then
2716  * call that.  Otherwise call the generic drain function
2717  * __ib_drain_sq().
2718  *
2719  * The caller must:
2720  *
2721  * ensure there is room in the CQ and SQ for the drain work request and
2722  * completion.
2723  *
2724  * allocate the CQ using ib_alloc_cq().
2725  *
2726  * ensure that there are no other contexts that are posting WRs concurrently.
2727  * Otherwise the drain is not guaranteed.
2728  */
ib_drain_sq(struct ib_qp * qp)2729 void ib_drain_sq(struct ib_qp *qp)
2730 {
2731 	if (qp->device->ops.drain_sq)
2732 		qp->device->ops.drain_sq(qp);
2733 	else
2734 		__ib_drain_sq(qp);
2735 }
2736 EXPORT_SYMBOL(ib_drain_sq);
2737 
2738 /**
2739  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2740  *		   application.
2741  * @qp:            queue pair to drain
2742  *
2743  * If the device has a provider-specific drain function, then
2744  * call that.  Otherwise call the generic drain function
2745  * __ib_drain_rq().
2746  *
2747  * The caller must:
2748  *
2749  * ensure there is room in the CQ and RQ for the drain work request and
2750  * completion.
2751  *
2752  * allocate the CQ using ib_alloc_cq().
2753  *
2754  * ensure that there are no other contexts that are posting WRs concurrently.
2755  * Otherwise the drain is not guaranteed.
2756  */
ib_drain_rq(struct ib_qp * qp)2757 void ib_drain_rq(struct ib_qp *qp)
2758 {
2759 	if (qp->device->ops.drain_rq)
2760 		qp->device->ops.drain_rq(qp);
2761 	else
2762 		__ib_drain_rq(qp);
2763 }
2764 EXPORT_SYMBOL(ib_drain_rq);
2765 
2766 /**
2767  * ib_drain_qp() - Block until all CQEs have been consumed by the
2768  *		   application on both the RQ and SQ.
2769  * @qp:            queue pair to drain
2770  *
2771  * The caller must:
2772  *
2773  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2774  * and completions.
2775  *
2776  * allocate the CQs using ib_alloc_cq().
2777  *
2778  * ensure that there are no other contexts that are posting WRs concurrently.
2779  * Otherwise the drain is not guaranteed.
2780  */
ib_drain_qp(struct ib_qp * qp)2781 void ib_drain_qp(struct ib_qp *qp)
2782 {
2783 	ib_drain_sq(qp);
2784 	if (!qp->srq)
2785 		ib_drain_rq(qp);
2786 }
2787 EXPORT_SYMBOL(ib_drain_qp);
2788 
rdma_alloc_netdev(struct ib_device * device,u8 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *))2789 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2790 				     enum rdma_netdev_t type, const char *name,
2791 				     unsigned char name_assign_type,
2792 				     void (*setup)(struct net_device *))
2793 {
2794 	struct rdma_netdev_alloc_params params;
2795 	struct net_device *netdev;
2796 	int rc;
2797 
2798 	if (!device->ops.rdma_netdev_get_params)
2799 		return ERR_PTR(-EOPNOTSUPP);
2800 
2801 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2802 						&params);
2803 	if (rc)
2804 		return ERR_PTR(rc);
2805 
2806 	netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2807 				  setup, params.txqs, params.rxqs);
2808 	if (!netdev)
2809 		return ERR_PTR(-ENOMEM);
2810 
2811 	return netdev;
2812 }
2813 EXPORT_SYMBOL(rdma_alloc_netdev);
2814 
rdma_init_netdev(struct ib_device * device,u8 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),struct net_device * netdev)2815 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2816 		     enum rdma_netdev_t type, const char *name,
2817 		     unsigned char name_assign_type,
2818 		     void (*setup)(struct net_device *),
2819 		     struct net_device *netdev)
2820 {
2821 	struct rdma_netdev_alloc_params params;
2822 	int rc;
2823 
2824 	if (!device->ops.rdma_netdev_get_params)
2825 		return -EOPNOTSUPP;
2826 
2827 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2828 						&params);
2829 	if (rc)
2830 		return rc;
2831 
2832 	return params.initialize_rdma_netdev(device, port_num,
2833 					     netdev, params.param);
2834 }
2835 EXPORT_SYMBOL(rdma_init_netdev);
2836 
__rdma_block_iter_start(struct ib_block_iter * biter,struct scatterlist * sglist,unsigned int nents,unsigned long pgsz)2837 void __rdma_block_iter_start(struct ib_block_iter *biter,
2838 			     struct scatterlist *sglist, unsigned int nents,
2839 			     unsigned long pgsz)
2840 {
2841 	memset(biter, 0, sizeof(struct ib_block_iter));
2842 	biter->__sg = sglist;
2843 	biter->__sg_nents = nents;
2844 
2845 	/* Driver provides best block size to use */
2846 	biter->__pg_bit = __fls(pgsz);
2847 }
2848 EXPORT_SYMBOL(__rdma_block_iter_start);
2849 
__rdma_block_iter_next(struct ib_block_iter * biter)2850 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2851 {
2852 	unsigned int block_offset;
2853 
2854 	if (!biter->__sg_nents || !biter->__sg)
2855 		return false;
2856 
2857 	biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2858 	block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2859 	biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2860 
2861 	if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2862 		biter->__sg_advance = 0;
2863 		biter->__sg = sg_next(biter->__sg);
2864 		biter->__sg_nents--;
2865 	}
2866 
2867 	return true;
2868 }
2869 EXPORT_SYMBOL(__rdma_block_iter_next);
2870