1 /*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49
50 #include "core_priv.h"
51 #include "restrack.h"
52
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61
62 /*
63 * Each of the three rwsem locks (devices, clients, client_data) protects the
64 * xarray of the same name. Specifically it allows the caller to assert that
65 * the MARK will/will not be changing under the lock, and for devices and
66 * clients, that the value in the xarray is still a valid pointer. Change of
67 * the MARK is linked to the object state, so holding the lock and testing the
68 * MARK also asserts that the contained object is in a certain state.
69 *
70 * This is used to build a two stage register/unregister flow where objects
71 * can continue to be in the xarray even though they are still in progress to
72 * register/unregister.
73 *
74 * The xarray itself provides additional locking, and restartable iteration,
75 * which is also relied on.
76 *
77 * Locks should not be nested, with the exception of client_data, which is
78 * allowed to nest under the read side of the other two locks.
79 *
80 * The devices_rwsem also protects the device name list, any change or
81 * assignment of device name must also hold the write side to guarantee unique
82 * names.
83 */
84
85 /*
86 * devices contains devices that have had their names assigned. The
87 * devices may not be registered. Users that care about the registration
88 * status need to call ib_device_try_get() on the device to ensure it is
89 * registered, and keep it registered, for the required duration.
90 *
91 */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100
ib_client_put(struct ib_client * client)101 static void ib_client_put(struct ib_client *client)
102 {
103 if (refcount_dec_and_test(&client->uses))
104 complete(&client->uses_zero);
105 }
106
107 /*
108 * If client_data is registered then the corresponding client must also still
109 * be registered.
110 */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112
113 unsigned int rdma_dev_net_id;
114
115 /*
116 * A list of net namespaces is maintained in an xarray. This is necessary
117 * because we can't get the locking right using the existing net ns list. We
118 * would require a init_net callback after the list is updated.
119 */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122 * rwsem to protect accessing the rdma_nets xarray entries.
123 */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 "Share device among net namespaces; default=1 (shared)");
130 /**
131 * rdma_dev_access_netns() - Return whether a rdma device can be accessed
132 * from a specified net namespace or not.
133 * @device: Pointer to rdma device which needs to be checked
134 * @net: Pointer to net namesapce for which access to be checked
135 *
136 * rdma_dev_access_netns() - Return whether a rdma device can be accessed
137 * from a specified net namespace or not. When
138 * rdma device is in shared mode, it ignores the
139 * net namespace. When rdma device is exclusive
140 * to a net namespace, rdma device net namespace is
141 * checked against the specified one.
142 */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)143 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
144 {
145 return (ib_devices_shared_netns ||
146 net_eq(read_pnet(&dev->coredev.rdma_net), net));
147 }
148 EXPORT_SYMBOL(rdma_dev_access_netns);
149
150 /*
151 * xarray has this behavior where it won't iterate over NULL values stored in
152 * allocated arrays. So we need our own iterator to see all values stored in
153 * the array. This does the same thing as xa_for_each except that it also
154 * returns NULL valued entries if the array is allocating. Simplified to only
155 * work on simple xarrays.
156 */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)157 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
158 xa_mark_t filter)
159 {
160 XA_STATE(xas, xa, *indexp);
161 void *entry;
162
163 rcu_read_lock();
164 do {
165 entry = xas_find_marked(&xas, ULONG_MAX, filter);
166 if (xa_is_zero(entry))
167 break;
168 } while (xas_retry(&xas, entry));
169 rcu_read_unlock();
170
171 if (entry) {
172 *indexp = xas.xa_index;
173 if (xa_is_zero(entry))
174 return NULL;
175 return entry;
176 }
177 return XA_ERROR(-ENOENT);
178 }
179 #define xan_for_each_marked(xa, index, entry, filter) \
180 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
181 !xa_is_err(entry); \
182 (index)++, entry = xan_find_marked(xa, &(index), filter))
183
184 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
185 static DEFINE_SPINLOCK(ndev_hash_lock);
186 static DECLARE_HASHTABLE(ndev_hash, 5);
187
188 static void free_netdevs(struct ib_device *ib_dev);
189 static void ib_unregister_work(struct work_struct *work);
190 static void __ib_unregister_device(struct ib_device *device);
191 static int ib_security_change(struct notifier_block *nb, unsigned long event,
192 void *lsm_data);
193 static void ib_policy_change_task(struct work_struct *work);
194 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
195
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)196 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
197 struct va_format *vaf)
198 {
199 if (ibdev && ibdev->dev.parent)
200 dev_printk_emit(level[1] - '0',
201 ibdev->dev.parent,
202 "%s %s %s: %pV",
203 dev_driver_string(ibdev->dev.parent),
204 dev_name(ibdev->dev.parent),
205 dev_name(&ibdev->dev),
206 vaf);
207 else if (ibdev)
208 printk("%s%s: %pV",
209 level, dev_name(&ibdev->dev), vaf);
210 else
211 printk("%s(NULL ib_device): %pV", level, vaf);
212 }
213
ibdev_printk(const char * level,const struct ib_device * ibdev,const char * format,...)214 void ibdev_printk(const char *level, const struct ib_device *ibdev,
215 const char *format, ...)
216 {
217 struct va_format vaf;
218 va_list args;
219
220 va_start(args, format);
221
222 vaf.fmt = format;
223 vaf.va = &args;
224
225 __ibdev_printk(level, ibdev, &vaf);
226
227 va_end(args);
228 }
229 EXPORT_SYMBOL(ibdev_printk);
230
231 #define define_ibdev_printk_level(func, level) \
232 void func(const struct ib_device *ibdev, const char *fmt, ...) \
233 { \
234 struct va_format vaf; \
235 va_list args; \
236 \
237 va_start(args, fmt); \
238 \
239 vaf.fmt = fmt; \
240 vaf.va = &args; \
241 \
242 __ibdev_printk(level, ibdev, &vaf); \
243 \
244 va_end(args); \
245 } \
246 EXPORT_SYMBOL(func);
247
248 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
249 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
250 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
251 define_ibdev_printk_level(ibdev_err, KERN_ERR);
252 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
253 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
254 define_ibdev_printk_level(ibdev_info, KERN_INFO);
255
256 static struct notifier_block ibdev_lsm_nb = {
257 .notifier_call = ib_security_change,
258 };
259
260 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
261 struct net *net);
262
263 /* Pointer to the RCU head at the start of the ib_port_data array */
264 struct ib_port_data_rcu {
265 struct rcu_head rcu_head;
266 struct ib_port_data pdata[];
267 };
268
ib_device_check_mandatory(struct ib_device * device)269 static void ib_device_check_mandatory(struct ib_device *device)
270 {
271 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
272 static const struct {
273 size_t offset;
274 char *name;
275 } mandatory_table[] = {
276 IB_MANDATORY_FUNC(query_device),
277 IB_MANDATORY_FUNC(query_port),
278 IB_MANDATORY_FUNC(query_pkey),
279 IB_MANDATORY_FUNC(alloc_pd),
280 IB_MANDATORY_FUNC(dealloc_pd),
281 IB_MANDATORY_FUNC(create_qp),
282 IB_MANDATORY_FUNC(modify_qp),
283 IB_MANDATORY_FUNC(destroy_qp),
284 IB_MANDATORY_FUNC(post_send),
285 IB_MANDATORY_FUNC(post_recv),
286 IB_MANDATORY_FUNC(create_cq),
287 IB_MANDATORY_FUNC(destroy_cq),
288 IB_MANDATORY_FUNC(poll_cq),
289 IB_MANDATORY_FUNC(req_notify_cq),
290 IB_MANDATORY_FUNC(get_dma_mr),
291 IB_MANDATORY_FUNC(dereg_mr),
292 IB_MANDATORY_FUNC(get_port_immutable)
293 };
294 int i;
295
296 device->kverbs_provider = true;
297 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
298 if (!*(void **) ((void *) &device->ops +
299 mandatory_table[i].offset)) {
300 device->kverbs_provider = false;
301 break;
302 }
303 }
304 }
305
306 /*
307 * Caller must perform ib_device_put() to return the device reference count
308 * when ib_device_get_by_index() returns valid device pointer.
309 */
ib_device_get_by_index(const struct net * net,u32 index)310 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
311 {
312 struct ib_device *device;
313
314 down_read(&devices_rwsem);
315 device = xa_load(&devices, index);
316 if (device) {
317 if (!rdma_dev_access_netns(device, net)) {
318 device = NULL;
319 goto out;
320 }
321
322 if (!ib_device_try_get(device))
323 device = NULL;
324 }
325 out:
326 up_read(&devices_rwsem);
327 return device;
328 }
329
330 /**
331 * ib_device_put - Release IB device reference
332 * @device: device whose reference to be released
333 *
334 * ib_device_put() releases reference to the IB device to allow it to be
335 * unregistered and eventually free.
336 */
ib_device_put(struct ib_device * device)337 void ib_device_put(struct ib_device *device)
338 {
339 if (refcount_dec_and_test(&device->refcount))
340 complete(&device->unreg_completion);
341 }
342 EXPORT_SYMBOL(ib_device_put);
343
__ib_device_get_by_name(const char * name)344 static struct ib_device *__ib_device_get_by_name(const char *name)
345 {
346 struct ib_device *device;
347 unsigned long index;
348
349 xa_for_each (&devices, index, device)
350 if (!strcmp(name, dev_name(&device->dev)))
351 return device;
352
353 return NULL;
354 }
355
356 /**
357 * ib_device_get_by_name - Find an IB device by name
358 * @name: The name to look for
359 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
360 *
361 * Find and hold an ib_device by its name. The caller must call
362 * ib_device_put() on the returned pointer.
363 */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)364 struct ib_device *ib_device_get_by_name(const char *name,
365 enum rdma_driver_id driver_id)
366 {
367 struct ib_device *device;
368
369 down_read(&devices_rwsem);
370 device = __ib_device_get_by_name(name);
371 if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
372 device->ops.driver_id != driver_id)
373 device = NULL;
374
375 if (device) {
376 if (!ib_device_try_get(device))
377 device = NULL;
378 }
379 up_read(&devices_rwsem);
380 return device;
381 }
382 EXPORT_SYMBOL(ib_device_get_by_name);
383
rename_compat_devs(struct ib_device * device)384 static int rename_compat_devs(struct ib_device *device)
385 {
386 struct ib_core_device *cdev;
387 unsigned long index;
388 int ret = 0;
389
390 mutex_lock(&device->compat_devs_mutex);
391 xa_for_each (&device->compat_devs, index, cdev) {
392 ret = device_rename(&cdev->dev, dev_name(&device->dev));
393 if (ret) {
394 dev_warn(&cdev->dev,
395 "Fail to rename compatdev to new name %s\n",
396 dev_name(&device->dev));
397 break;
398 }
399 }
400 mutex_unlock(&device->compat_devs_mutex);
401 return ret;
402 }
403
ib_device_rename(struct ib_device * ibdev,const char * name)404 int ib_device_rename(struct ib_device *ibdev, const char *name)
405 {
406 unsigned long index;
407 void *client_data;
408 int ret;
409
410 down_write(&devices_rwsem);
411 if (!strcmp(name, dev_name(&ibdev->dev))) {
412 up_write(&devices_rwsem);
413 return 0;
414 }
415
416 if (__ib_device_get_by_name(name)) {
417 up_write(&devices_rwsem);
418 return -EEXIST;
419 }
420
421 ret = device_rename(&ibdev->dev, name);
422 if (ret) {
423 up_write(&devices_rwsem);
424 return ret;
425 }
426
427 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
428 ret = rename_compat_devs(ibdev);
429
430 downgrade_write(&devices_rwsem);
431 down_read(&ibdev->client_data_rwsem);
432 xan_for_each_marked(&ibdev->client_data, index, client_data,
433 CLIENT_DATA_REGISTERED) {
434 struct ib_client *client = xa_load(&clients, index);
435
436 if (!client || !client->rename)
437 continue;
438
439 client->rename(ibdev, client_data);
440 }
441 up_read(&ibdev->client_data_rwsem);
442 up_read(&devices_rwsem);
443 return 0;
444 }
445
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)446 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
447 {
448 if (use_dim > 1)
449 return -EINVAL;
450 ibdev->use_cq_dim = use_dim;
451
452 return 0;
453 }
454
alloc_name(struct ib_device * ibdev,const char * name)455 static int alloc_name(struct ib_device *ibdev, const char *name)
456 {
457 struct ib_device *device;
458 unsigned long index;
459 struct ida inuse;
460 int rc;
461 int i;
462
463 lockdep_assert_held_write(&devices_rwsem);
464 ida_init(&inuse);
465 xa_for_each (&devices, index, device) {
466 char buf[IB_DEVICE_NAME_MAX];
467
468 if (sscanf(dev_name(&device->dev), name, &i) != 1)
469 continue;
470 if (i < 0 || i >= INT_MAX)
471 continue;
472 snprintf(buf, sizeof buf, name, i);
473 if (strcmp(buf, dev_name(&device->dev)) != 0)
474 continue;
475
476 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
477 if (rc < 0)
478 goto out;
479 }
480
481 rc = ida_alloc(&inuse, GFP_KERNEL);
482 if (rc < 0)
483 goto out;
484
485 rc = dev_set_name(&ibdev->dev, name, rc);
486 out:
487 ida_destroy(&inuse);
488 return rc;
489 }
490
ib_device_release(struct device * device)491 static void ib_device_release(struct device *device)
492 {
493 struct ib_device *dev = container_of(device, struct ib_device, dev);
494
495 free_netdevs(dev);
496 WARN_ON(refcount_read(&dev->refcount));
497 if (dev->port_data) {
498 ib_cache_release_one(dev);
499 ib_security_release_port_pkey_list(dev);
500 rdma_counter_release(dev);
501 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502 pdata[0]),
503 rcu_head);
504 }
505
506 mutex_destroy(&dev->unregistration_lock);
507 mutex_destroy(&dev->compat_devs_mutex);
508
509 xa_destroy(&dev->compat_devs);
510 xa_destroy(&dev->client_data);
511 kfree_rcu(dev, rcu_head);
512 }
513
ib_device_uevent(struct device * device,struct kobj_uevent_env * env)514 static int ib_device_uevent(struct device *device,
515 struct kobj_uevent_env *env)
516 {
517 if (add_uevent_var(env, "NAME=%s", dev_name(device)))
518 return -ENOMEM;
519
520 /*
521 * It would be nice to pass the node GUID with the event...
522 */
523
524 return 0;
525 }
526
net_namespace(struct device * d)527 static const void *net_namespace(struct device *d)
528 {
529 struct ib_core_device *coredev =
530 container_of(d, struct ib_core_device, dev);
531
532 return read_pnet(&coredev->rdma_net);
533 }
534
535 static struct class ib_class = {
536 .name = "infiniband",
537 .dev_release = ib_device_release,
538 .dev_uevent = ib_device_uevent,
539 .ns_type = &net_ns_type_operations,
540 .namespace = net_namespace,
541 };
542
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)543 static void rdma_init_coredev(struct ib_core_device *coredev,
544 struct ib_device *dev, struct net *net)
545 {
546 /* This BUILD_BUG_ON is intended to catch layout change
547 * of union of ib_core_device and device.
548 * dev must be the first element as ib_core and providers
549 * driver uses it. Adding anything in ib_core_device before
550 * device will break this assumption.
551 */
552 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
553 offsetof(struct ib_device, dev));
554
555 coredev->dev.class = &ib_class;
556 coredev->dev.groups = dev->groups;
557 device_initialize(&coredev->dev);
558 coredev->owner = dev;
559 INIT_LIST_HEAD(&coredev->port_list);
560 write_pnet(&coredev->rdma_net, net);
561 }
562
563 /**
564 * _ib_alloc_device - allocate an IB device struct
565 * @size:size of structure to allocate
566 *
567 * Low-level drivers should use ib_alloc_device() to allocate &struct
568 * ib_device. @size is the size of the structure to be allocated,
569 * including any private data used by the low-level driver.
570 * ib_dealloc_device() must be used to free structures allocated with
571 * ib_alloc_device().
572 */
_ib_alloc_device(size_t size)573 struct ib_device *_ib_alloc_device(size_t size)
574 {
575 struct ib_device *device;
576
577 if (WARN_ON(size < sizeof(struct ib_device)))
578 return NULL;
579
580 device = kzalloc(size, GFP_KERNEL);
581 if (!device)
582 return NULL;
583
584 if (rdma_restrack_init(device)) {
585 kfree(device);
586 return NULL;
587 }
588
589 device->groups[0] = &ib_dev_attr_group;
590 rdma_init_coredev(&device->coredev, device, &init_net);
591
592 INIT_LIST_HEAD(&device->event_handler_list);
593 spin_lock_init(&device->event_handler_lock);
594 mutex_init(&device->unregistration_lock);
595 /*
596 * client_data needs to be alloc because we don't want our mark to be
597 * destroyed if the user stores NULL in the client data.
598 */
599 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
600 init_rwsem(&device->client_data_rwsem);
601 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
602 mutex_init(&device->compat_devs_mutex);
603 init_completion(&device->unreg_completion);
604 INIT_WORK(&device->unregistration_work, ib_unregister_work);
605
606 return device;
607 }
608 EXPORT_SYMBOL(_ib_alloc_device);
609
610 /**
611 * ib_dealloc_device - free an IB device struct
612 * @device:structure to free
613 *
614 * Free a structure allocated with ib_alloc_device().
615 */
ib_dealloc_device(struct ib_device * device)616 void ib_dealloc_device(struct ib_device *device)
617 {
618 if (device->ops.dealloc_driver)
619 device->ops.dealloc_driver(device);
620
621 /*
622 * ib_unregister_driver() requires all devices to remain in the xarray
623 * while their ops are callable. The last op we call is dealloc_driver
624 * above. This is needed to create a fence on op callbacks prior to
625 * allowing the driver module to unload.
626 */
627 down_write(&devices_rwsem);
628 if (xa_load(&devices, device->index) == device)
629 xa_erase(&devices, device->index);
630 up_write(&devices_rwsem);
631
632 /* Expedite releasing netdev references */
633 free_netdevs(device);
634
635 WARN_ON(!xa_empty(&device->compat_devs));
636 WARN_ON(!xa_empty(&device->client_data));
637 WARN_ON(refcount_read(&device->refcount));
638 rdma_restrack_clean(device);
639 /* Balances with device_initialize */
640 put_device(&device->dev);
641 }
642 EXPORT_SYMBOL(ib_dealloc_device);
643
644 /*
645 * add_client_context() and remove_client_context() must be safe against
646 * parallel calls on the same device - registration/unregistration of both the
647 * device and client can be occurring in parallel.
648 *
649 * The routines need to be a fence, any caller must not return until the add
650 * or remove is fully completed.
651 */
add_client_context(struct ib_device * device,struct ib_client * client)652 static int add_client_context(struct ib_device *device,
653 struct ib_client *client)
654 {
655 int ret = 0;
656
657 if (!device->kverbs_provider && !client->no_kverbs_req)
658 return 0;
659
660 down_write(&device->client_data_rwsem);
661 /*
662 * So long as the client is registered hold both the client and device
663 * unregistration locks.
664 */
665 if (!refcount_inc_not_zero(&client->uses))
666 goto out_unlock;
667 refcount_inc(&device->refcount);
668
669 /*
670 * Another caller to add_client_context got here first and has already
671 * completely initialized context.
672 */
673 if (xa_get_mark(&device->client_data, client->client_id,
674 CLIENT_DATA_REGISTERED))
675 goto out;
676
677 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
678 GFP_KERNEL));
679 if (ret)
680 goto out;
681 downgrade_write(&device->client_data_rwsem);
682 if (client->add)
683 client->add(device);
684
685 /* Readers shall not see a client until add has been completed */
686 xa_set_mark(&device->client_data, client->client_id,
687 CLIENT_DATA_REGISTERED);
688 up_read(&device->client_data_rwsem);
689 return 0;
690
691 out:
692 ib_device_put(device);
693 ib_client_put(client);
694 out_unlock:
695 up_write(&device->client_data_rwsem);
696 return ret;
697 }
698
remove_client_context(struct ib_device * device,unsigned int client_id)699 static void remove_client_context(struct ib_device *device,
700 unsigned int client_id)
701 {
702 struct ib_client *client;
703 void *client_data;
704
705 down_write(&device->client_data_rwsem);
706 if (!xa_get_mark(&device->client_data, client_id,
707 CLIENT_DATA_REGISTERED)) {
708 up_write(&device->client_data_rwsem);
709 return;
710 }
711 client_data = xa_load(&device->client_data, client_id);
712 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
713 client = xa_load(&clients, client_id);
714 up_write(&device->client_data_rwsem);
715
716 /*
717 * Notice we cannot be holding any exclusive locks when calling the
718 * remove callback as the remove callback can recurse back into any
719 * public functions in this module and thus try for any locks those
720 * functions take.
721 *
722 * For this reason clients and drivers should not call the
723 * unregistration functions will holdling any locks.
724 */
725 if (client->remove)
726 client->remove(device, client_data);
727
728 xa_erase(&device->client_data, client_id);
729 ib_device_put(device);
730 ib_client_put(client);
731 }
732
alloc_port_data(struct ib_device * device)733 static int alloc_port_data(struct ib_device *device)
734 {
735 struct ib_port_data_rcu *pdata_rcu;
736 unsigned int port;
737
738 if (device->port_data)
739 return 0;
740
741 /* This can only be called once the physical port range is defined */
742 if (WARN_ON(!device->phys_port_cnt))
743 return -EINVAL;
744
745 /*
746 * device->port_data is indexed directly by the port number to make
747 * access to this data as efficient as possible.
748 *
749 * Therefore port_data is declared as a 1 based array with potential
750 * empty slots at the beginning.
751 */
752 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
753 rdma_end_port(device) + 1),
754 GFP_KERNEL);
755 if (!pdata_rcu)
756 return -ENOMEM;
757 /*
758 * The rcu_head is put in front of the port data array and the stored
759 * pointer is adjusted since we never need to see that member until
760 * kfree_rcu.
761 */
762 device->port_data = pdata_rcu->pdata;
763
764 rdma_for_each_port (device, port) {
765 struct ib_port_data *pdata = &device->port_data[port];
766
767 pdata->ib_dev = device;
768 spin_lock_init(&pdata->pkey_list_lock);
769 INIT_LIST_HEAD(&pdata->pkey_list);
770 spin_lock_init(&pdata->netdev_lock);
771 INIT_HLIST_NODE(&pdata->ndev_hash_link);
772 }
773 return 0;
774 }
775
verify_immutable(const struct ib_device * dev,u8 port)776 static int verify_immutable(const struct ib_device *dev, u8 port)
777 {
778 return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
779 rdma_max_mad_size(dev, port) != 0);
780 }
781
setup_port_data(struct ib_device * device)782 static int setup_port_data(struct ib_device *device)
783 {
784 unsigned int port;
785 int ret;
786
787 ret = alloc_port_data(device);
788 if (ret)
789 return ret;
790
791 rdma_for_each_port (device, port) {
792 struct ib_port_data *pdata = &device->port_data[port];
793
794 ret = device->ops.get_port_immutable(device, port,
795 &pdata->immutable);
796 if (ret)
797 return ret;
798
799 if (verify_immutable(device, port))
800 return -EINVAL;
801 }
802 return 0;
803 }
804
ib_get_device_fw_str(struct ib_device * dev,char * str)805 void ib_get_device_fw_str(struct ib_device *dev, char *str)
806 {
807 if (dev->ops.get_dev_fw_str)
808 dev->ops.get_dev_fw_str(dev, str);
809 else
810 str[0] = '\0';
811 }
812 EXPORT_SYMBOL(ib_get_device_fw_str);
813
ib_policy_change_task(struct work_struct * work)814 static void ib_policy_change_task(struct work_struct *work)
815 {
816 struct ib_device *dev;
817 unsigned long index;
818
819 down_read(&devices_rwsem);
820 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
821 unsigned int i;
822
823 rdma_for_each_port (dev, i) {
824 u64 sp;
825 int ret = ib_get_cached_subnet_prefix(dev,
826 i,
827 &sp);
828
829 WARN_ONCE(ret,
830 "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
831 ret);
832 if (!ret)
833 ib_security_cache_change(dev, i, sp);
834 }
835 }
836 up_read(&devices_rwsem);
837 }
838
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)839 static int ib_security_change(struct notifier_block *nb, unsigned long event,
840 void *lsm_data)
841 {
842 if (event != LSM_POLICY_CHANGE)
843 return NOTIFY_DONE;
844
845 schedule_work(&ib_policy_change_work);
846 ib_mad_agent_security_change();
847
848 return NOTIFY_OK;
849 }
850
compatdev_release(struct device * dev)851 static void compatdev_release(struct device *dev)
852 {
853 struct ib_core_device *cdev =
854 container_of(dev, struct ib_core_device, dev);
855
856 kfree(cdev);
857 }
858
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)859 static int add_one_compat_dev(struct ib_device *device,
860 struct rdma_dev_net *rnet)
861 {
862 struct ib_core_device *cdev;
863 int ret;
864
865 lockdep_assert_held(&rdma_nets_rwsem);
866 if (!ib_devices_shared_netns)
867 return 0;
868
869 /*
870 * Create and add compat device in all namespaces other than where it
871 * is currently bound to.
872 */
873 if (net_eq(read_pnet(&rnet->net),
874 read_pnet(&device->coredev.rdma_net)))
875 return 0;
876
877 /*
878 * The first of init_net() or ib_register_device() to take the
879 * compat_devs_mutex wins and gets to add the device. Others will wait
880 * for completion here.
881 */
882 mutex_lock(&device->compat_devs_mutex);
883 cdev = xa_load(&device->compat_devs, rnet->id);
884 if (cdev) {
885 ret = 0;
886 goto done;
887 }
888 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
889 if (ret)
890 goto done;
891
892 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
893 if (!cdev) {
894 ret = -ENOMEM;
895 goto cdev_err;
896 }
897
898 cdev->dev.parent = device->dev.parent;
899 rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
900 cdev->dev.release = compatdev_release;
901 dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
902
903 ret = device_add(&cdev->dev);
904 if (ret)
905 goto add_err;
906 ret = ib_setup_port_attrs(cdev);
907 if (ret)
908 goto port_err;
909
910 ret = xa_err(xa_store(&device->compat_devs, rnet->id,
911 cdev, GFP_KERNEL));
912 if (ret)
913 goto insert_err;
914
915 mutex_unlock(&device->compat_devs_mutex);
916 return 0;
917
918 insert_err:
919 ib_free_port_attrs(cdev);
920 port_err:
921 device_del(&cdev->dev);
922 add_err:
923 put_device(&cdev->dev);
924 cdev_err:
925 xa_release(&device->compat_devs, rnet->id);
926 done:
927 mutex_unlock(&device->compat_devs_mutex);
928 return ret;
929 }
930
remove_one_compat_dev(struct ib_device * device,u32 id)931 static void remove_one_compat_dev(struct ib_device *device, u32 id)
932 {
933 struct ib_core_device *cdev;
934
935 mutex_lock(&device->compat_devs_mutex);
936 cdev = xa_erase(&device->compat_devs, id);
937 mutex_unlock(&device->compat_devs_mutex);
938 if (cdev) {
939 ib_free_port_attrs(cdev);
940 device_del(&cdev->dev);
941 put_device(&cdev->dev);
942 }
943 }
944
remove_compat_devs(struct ib_device * device)945 static void remove_compat_devs(struct ib_device *device)
946 {
947 struct ib_core_device *cdev;
948 unsigned long index;
949
950 xa_for_each (&device->compat_devs, index, cdev)
951 remove_one_compat_dev(device, index);
952 }
953
add_compat_devs(struct ib_device * device)954 static int add_compat_devs(struct ib_device *device)
955 {
956 struct rdma_dev_net *rnet;
957 unsigned long index;
958 int ret = 0;
959
960 lockdep_assert_held(&devices_rwsem);
961
962 down_read(&rdma_nets_rwsem);
963 xa_for_each (&rdma_nets, index, rnet) {
964 ret = add_one_compat_dev(device, rnet);
965 if (ret)
966 break;
967 }
968 up_read(&rdma_nets_rwsem);
969 return ret;
970 }
971
remove_all_compat_devs(void)972 static void remove_all_compat_devs(void)
973 {
974 struct ib_compat_device *cdev;
975 struct ib_device *dev;
976 unsigned long index;
977
978 down_read(&devices_rwsem);
979 xa_for_each (&devices, index, dev) {
980 unsigned long c_index = 0;
981
982 /* Hold nets_rwsem so that any other thread modifying this
983 * system param can sync with this thread.
984 */
985 down_read(&rdma_nets_rwsem);
986 xa_for_each (&dev->compat_devs, c_index, cdev)
987 remove_one_compat_dev(dev, c_index);
988 up_read(&rdma_nets_rwsem);
989 }
990 up_read(&devices_rwsem);
991 }
992
add_all_compat_devs(void)993 static int add_all_compat_devs(void)
994 {
995 struct rdma_dev_net *rnet;
996 struct ib_device *dev;
997 unsigned long index;
998 int ret = 0;
999
1000 down_read(&devices_rwsem);
1001 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1002 unsigned long net_index = 0;
1003
1004 /* Hold nets_rwsem so that any other thread modifying this
1005 * system param can sync with this thread.
1006 */
1007 down_read(&rdma_nets_rwsem);
1008 xa_for_each (&rdma_nets, net_index, rnet) {
1009 ret = add_one_compat_dev(dev, rnet);
1010 if (ret)
1011 break;
1012 }
1013 up_read(&rdma_nets_rwsem);
1014 }
1015 up_read(&devices_rwsem);
1016 if (ret)
1017 remove_all_compat_devs();
1018 return ret;
1019 }
1020
rdma_compatdev_set(u8 enable)1021 int rdma_compatdev_set(u8 enable)
1022 {
1023 struct rdma_dev_net *rnet;
1024 unsigned long index;
1025 int ret = 0;
1026
1027 down_write(&rdma_nets_rwsem);
1028 if (ib_devices_shared_netns == enable) {
1029 up_write(&rdma_nets_rwsem);
1030 return 0;
1031 }
1032
1033 /* enable/disable of compat devices is not supported
1034 * when more than default init_net exists.
1035 */
1036 xa_for_each (&rdma_nets, index, rnet) {
1037 ret++;
1038 break;
1039 }
1040 if (!ret)
1041 ib_devices_shared_netns = enable;
1042 up_write(&rdma_nets_rwsem);
1043 if (ret)
1044 return -EBUSY;
1045
1046 if (enable)
1047 ret = add_all_compat_devs();
1048 else
1049 remove_all_compat_devs();
1050 return ret;
1051 }
1052
rdma_dev_exit_net(struct net * net)1053 static void rdma_dev_exit_net(struct net *net)
1054 {
1055 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1056 struct ib_device *dev;
1057 unsigned long index;
1058 int ret;
1059
1060 down_write(&rdma_nets_rwsem);
1061 /*
1062 * Prevent the ID from being re-used and hide the id from xa_for_each.
1063 */
1064 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1065 WARN_ON(ret);
1066 up_write(&rdma_nets_rwsem);
1067
1068 down_read(&devices_rwsem);
1069 xa_for_each (&devices, index, dev) {
1070 get_device(&dev->dev);
1071 /*
1072 * Release the devices_rwsem so that pontentially blocking
1073 * device_del, doesn't hold the devices_rwsem for too long.
1074 */
1075 up_read(&devices_rwsem);
1076
1077 remove_one_compat_dev(dev, rnet->id);
1078
1079 /*
1080 * If the real device is in the NS then move it back to init.
1081 */
1082 rdma_dev_change_netns(dev, net, &init_net);
1083
1084 put_device(&dev->dev);
1085 down_read(&devices_rwsem);
1086 }
1087 up_read(&devices_rwsem);
1088
1089 rdma_nl_net_exit(rnet);
1090 xa_erase(&rdma_nets, rnet->id);
1091 }
1092
rdma_dev_init_net(struct net * net)1093 static __net_init int rdma_dev_init_net(struct net *net)
1094 {
1095 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1096 unsigned long index;
1097 struct ib_device *dev;
1098 int ret;
1099
1100 write_pnet(&rnet->net, net);
1101
1102 ret = rdma_nl_net_init(rnet);
1103 if (ret)
1104 return ret;
1105
1106 /* No need to create any compat devices in default init_net. */
1107 if (net_eq(net, &init_net))
1108 return 0;
1109
1110 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1111 if (ret) {
1112 rdma_nl_net_exit(rnet);
1113 return ret;
1114 }
1115
1116 down_read(&devices_rwsem);
1117 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1118 /* Hold nets_rwsem so that netlink command cannot change
1119 * system configuration for device sharing mode.
1120 */
1121 down_read(&rdma_nets_rwsem);
1122 ret = add_one_compat_dev(dev, rnet);
1123 up_read(&rdma_nets_rwsem);
1124 if (ret)
1125 break;
1126 }
1127 up_read(&devices_rwsem);
1128
1129 if (ret)
1130 rdma_dev_exit_net(net);
1131
1132 return ret;
1133 }
1134
1135 /*
1136 * Assign the unique string device name and the unique device index. This is
1137 * undone by ib_dealloc_device.
1138 */
assign_name(struct ib_device * device,const char * name)1139 static int assign_name(struct ib_device *device, const char *name)
1140 {
1141 static u32 last_id;
1142 int ret;
1143
1144 down_write(&devices_rwsem);
1145 /* Assign a unique name to the device */
1146 if (strchr(name, '%'))
1147 ret = alloc_name(device, name);
1148 else
1149 ret = dev_set_name(&device->dev, name);
1150 if (ret)
1151 goto out;
1152
1153 if (__ib_device_get_by_name(dev_name(&device->dev))) {
1154 ret = -ENFILE;
1155 goto out;
1156 }
1157 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1158
1159 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1160 &last_id, GFP_KERNEL);
1161 if (ret > 0)
1162 ret = 0;
1163
1164 out:
1165 up_write(&devices_rwsem);
1166 return ret;
1167 }
1168
setup_dma_device(struct ib_device * device)1169 static void setup_dma_device(struct ib_device *device)
1170 {
1171 struct device *parent = device->dev.parent;
1172
1173 WARN_ON_ONCE(device->dma_device);
1174 if (device->dev.dma_ops) {
1175 /*
1176 * The caller provided custom DMA operations. Copy the
1177 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1178 * into device->dev.
1179 */
1180 device->dma_device = &device->dev;
1181 if (!device->dev.dma_mask) {
1182 if (parent)
1183 device->dev.dma_mask = parent->dma_mask;
1184 else
1185 WARN_ON_ONCE(true);
1186 }
1187 if (!device->dev.coherent_dma_mask) {
1188 if (parent)
1189 device->dev.coherent_dma_mask =
1190 parent->coherent_dma_mask;
1191 else
1192 WARN_ON_ONCE(true);
1193 }
1194 } else {
1195 /*
1196 * The caller did not provide custom DMA operations. Use the
1197 * DMA mapping operations of the parent device.
1198 */
1199 WARN_ON_ONCE(!parent);
1200 device->dma_device = parent;
1201 }
1202 /* Setup default max segment size for all IB devices */
1203 dma_set_max_seg_size(device->dma_device, SZ_2G);
1204
1205 }
1206
1207 /*
1208 * setup_device() allocates memory and sets up data that requires calling the
1209 * device ops, this is the only reason these actions are not done during
1210 * ib_alloc_device. It is undone by ib_dealloc_device().
1211 */
setup_device(struct ib_device * device)1212 static int setup_device(struct ib_device *device)
1213 {
1214 struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1215 int ret;
1216
1217 setup_dma_device(device);
1218 ib_device_check_mandatory(device);
1219
1220 ret = setup_port_data(device);
1221 if (ret) {
1222 dev_warn(&device->dev, "Couldn't create per-port data\n");
1223 return ret;
1224 }
1225
1226 memset(&device->attrs, 0, sizeof(device->attrs));
1227 ret = device->ops.query_device(device, &device->attrs, &uhw);
1228 if (ret) {
1229 dev_warn(&device->dev,
1230 "Couldn't query the device attributes\n");
1231 return ret;
1232 }
1233
1234 return 0;
1235 }
1236
disable_device(struct ib_device * device)1237 static void disable_device(struct ib_device *device)
1238 {
1239 u32 cid;
1240
1241 WARN_ON(!refcount_read(&device->refcount));
1242
1243 down_write(&devices_rwsem);
1244 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1245 up_write(&devices_rwsem);
1246
1247 /*
1248 * Remove clients in LIFO order, see assign_client_id. This could be
1249 * more efficient if xarray learns to reverse iterate. Since no new
1250 * clients can be added to this ib_device past this point we only need
1251 * the maximum possible client_id value here.
1252 */
1253 down_read(&clients_rwsem);
1254 cid = highest_client_id;
1255 up_read(&clients_rwsem);
1256 while (cid) {
1257 cid--;
1258 remove_client_context(device, cid);
1259 }
1260
1261 /* Pairs with refcount_set in enable_device */
1262 ib_device_put(device);
1263 wait_for_completion(&device->unreg_completion);
1264
1265 /*
1266 * compat devices must be removed after device refcount drops to zero.
1267 * Otherwise init_net() may add more compatdevs after removing compat
1268 * devices and before device is disabled.
1269 */
1270 remove_compat_devs(device);
1271 }
1272
1273 /*
1274 * An enabled device is visible to all clients and to all the public facing
1275 * APIs that return a device pointer. This always returns with a new get, even
1276 * if it fails.
1277 */
enable_device_and_get(struct ib_device * device)1278 static int enable_device_and_get(struct ib_device *device)
1279 {
1280 struct ib_client *client;
1281 unsigned long index;
1282 int ret = 0;
1283
1284 /*
1285 * One ref belongs to the xa and the other belongs to this
1286 * thread. This is needed to guard against parallel unregistration.
1287 */
1288 refcount_set(&device->refcount, 2);
1289 down_write(&devices_rwsem);
1290 xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1291
1292 /*
1293 * By using downgrade_write() we ensure that no other thread can clear
1294 * DEVICE_REGISTERED while we are completing the client setup.
1295 */
1296 downgrade_write(&devices_rwsem);
1297
1298 if (device->ops.enable_driver) {
1299 ret = device->ops.enable_driver(device);
1300 if (ret)
1301 goto out;
1302 }
1303
1304 down_read(&clients_rwsem);
1305 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1306 ret = add_client_context(device, client);
1307 if (ret)
1308 break;
1309 }
1310 up_read(&clients_rwsem);
1311 if (!ret)
1312 ret = add_compat_devs(device);
1313 out:
1314 up_read(&devices_rwsem);
1315 return ret;
1316 }
1317
1318 /**
1319 * ib_register_device - Register an IB device with IB core
1320 * @device:Device to register
1321 *
1322 * Low-level drivers use ib_register_device() to register their
1323 * devices with the IB core. All registered clients will receive a
1324 * callback for each device that is added. @device must be allocated
1325 * with ib_alloc_device().
1326 *
1327 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1328 * asynchronously then the device pointer may become freed as soon as this
1329 * function returns.
1330 */
ib_register_device(struct ib_device * device,const char * name)1331 int ib_register_device(struct ib_device *device, const char *name)
1332 {
1333 int ret;
1334
1335 ret = assign_name(device, name);
1336 if (ret)
1337 return ret;
1338
1339 ret = setup_device(device);
1340 if (ret)
1341 return ret;
1342
1343 ret = ib_cache_setup_one(device);
1344 if (ret) {
1345 dev_warn(&device->dev,
1346 "Couldn't set up InfiniBand P_Key/GID cache\n");
1347 return ret;
1348 }
1349
1350 ib_device_register_rdmacg(device);
1351
1352 rdma_counter_init(device);
1353
1354 /*
1355 * Ensure that ADD uevent is not fired because it
1356 * is too early amd device is not initialized yet.
1357 */
1358 dev_set_uevent_suppress(&device->dev, true);
1359 ret = device_add(&device->dev);
1360 if (ret)
1361 goto cg_cleanup;
1362
1363 ret = ib_device_register_sysfs(device);
1364 if (ret) {
1365 dev_warn(&device->dev,
1366 "Couldn't register device with driver model\n");
1367 goto dev_cleanup;
1368 }
1369
1370 ret = enable_device_and_get(device);
1371 dev_set_uevent_suppress(&device->dev, false);
1372 /* Mark for userspace that device is ready */
1373 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1374 if (ret) {
1375 void (*dealloc_fn)(struct ib_device *);
1376
1377 /*
1378 * If we hit this error flow then we don't want to
1379 * automatically dealloc the device since the caller is
1380 * expected to call ib_dealloc_device() after
1381 * ib_register_device() fails. This is tricky due to the
1382 * possibility for a parallel unregistration along with this
1383 * error flow. Since we have a refcount here we know any
1384 * parallel flow is stopped in disable_device and will see the
1385 * NULL pointers, causing the responsibility to
1386 * ib_dealloc_device() to revert back to this thread.
1387 */
1388 dealloc_fn = device->ops.dealloc_driver;
1389 device->ops.dealloc_driver = NULL;
1390 ib_device_put(device);
1391 __ib_unregister_device(device);
1392 device->ops.dealloc_driver = dealloc_fn;
1393 return ret;
1394 }
1395 ib_device_put(device);
1396
1397 return 0;
1398
1399 dev_cleanup:
1400 device_del(&device->dev);
1401 cg_cleanup:
1402 dev_set_uevent_suppress(&device->dev, false);
1403 ib_device_unregister_rdmacg(device);
1404 ib_cache_cleanup_one(device);
1405 return ret;
1406 }
1407 EXPORT_SYMBOL(ib_register_device);
1408
1409 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1410 static void __ib_unregister_device(struct ib_device *ib_dev)
1411 {
1412 /*
1413 * We have a registration lock so that all the calls to unregister are
1414 * fully fenced, once any unregister returns the device is truely
1415 * unregistered even if multiple callers are unregistering it at the
1416 * same time. This also interacts with the registration flow and
1417 * provides sane semantics if register and unregister are racing.
1418 */
1419 mutex_lock(&ib_dev->unregistration_lock);
1420 if (!refcount_read(&ib_dev->refcount))
1421 goto out;
1422
1423 disable_device(ib_dev);
1424
1425 /* Expedite removing unregistered pointers from the hash table */
1426 free_netdevs(ib_dev);
1427
1428 ib_device_unregister_sysfs(ib_dev);
1429 device_del(&ib_dev->dev);
1430 ib_device_unregister_rdmacg(ib_dev);
1431 ib_cache_cleanup_one(ib_dev);
1432
1433 /*
1434 * Drivers using the new flow may not call ib_dealloc_device except
1435 * in error unwind prior to registration success.
1436 */
1437 if (ib_dev->ops.dealloc_driver) {
1438 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1439 ib_dealloc_device(ib_dev);
1440 }
1441 out:
1442 mutex_unlock(&ib_dev->unregistration_lock);
1443 }
1444
1445 /**
1446 * ib_unregister_device - Unregister an IB device
1447 * @device: The device to unregister
1448 *
1449 * Unregister an IB device. All clients will receive a remove callback.
1450 *
1451 * Callers should call this routine only once, and protect against races with
1452 * registration. Typically it should only be called as part of a remove
1453 * callback in an implementation of driver core's struct device_driver and
1454 * related.
1455 *
1456 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1457 * this function.
1458 */
ib_unregister_device(struct ib_device * ib_dev)1459 void ib_unregister_device(struct ib_device *ib_dev)
1460 {
1461 get_device(&ib_dev->dev);
1462 __ib_unregister_device(ib_dev);
1463 put_device(&ib_dev->dev);
1464 }
1465 EXPORT_SYMBOL(ib_unregister_device);
1466
1467 /**
1468 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1469 * device: The device to unregister
1470 *
1471 * This is the same as ib_unregister_device(), except it includes an internal
1472 * ib_device_put() that should match a 'get' obtained by the caller.
1473 *
1474 * It is safe to call this routine concurrently from multiple threads while
1475 * holding the 'get'. When the function returns the device is fully
1476 * unregistered.
1477 *
1478 * Drivers using this flow MUST use the driver_unregister callback to clean up
1479 * their resources associated with the device and dealloc it.
1480 */
ib_unregister_device_and_put(struct ib_device * ib_dev)1481 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1482 {
1483 WARN_ON(!ib_dev->ops.dealloc_driver);
1484 get_device(&ib_dev->dev);
1485 ib_device_put(ib_dev);
1486 __ib_unregister_device(ib_dev);
1487 put_device(&ib_dev->dev);
1488 }
1489 EXPORT_SYMBOL(ib_unregister_device_and_put);
1490
1491 /**
1492 * ib_unregister_driver - Unregister all IB devices for a driver
1493 * @driver_id: The driver to unregister
1494 *
1495 * This implements a fence for device unregistration. It only returns once all
1496 * devices associated with the driver_id have fully completed their
1497 * unregistration and returned from ib_unregister_device*().
1498 *
1499 * If device's are not yet unregistered it goes ahead and starts unregistering
1500 * them.
1501 *
1502 * This does not block creation of new devices with the given driver_id, that
1503 * is the responsibility of the caller.
1504 */
ib_unregister_driver(enum rdma_driver_id driver_id)1505 void ib_unregister_driver(enum rdma_driver_id driver_id)
1506 {
1507 struct ib_device *ib_dev;
1508 unsigned long index;
1509
1510 down_read(&devices_rwsem);
1511 xa_for_each (&devices, index, ib_dev) {
1512 if (ib_dev->ops.driver_id != driver_id)
1513 continue;
1514
1515 get_device(&ib_dev->dev);
1516 up_read(&devices_rwsem);
1517
1518 WARN_ON(!ib_dev->ops.dealloc_driver);
1519 __ib_unregister_device(ib_dev);
1520
1521 put_device(&ib_dev->dev);
1522 down_read(&devices_rwsem);
1523 }
1524 up_read(&devices_rwsem);
1525 }
1526 EXPORT_SYMBOL(ib_unregister_driver);
1527
ib_unregister_work(struct work_struct * work)1528 static void ib_unregister_work(struct work_struct *work)
1529 {
1530 struct ib_device *ib_dev =
1531 container_of(work, struct ib_device, unregistration_work);
1532
1533 __ib_unregister_device(ib_dev);
1534 put_device(&ib_dev->dev);
1535 }
1536
1537 /**
1538 * ib_unregister_device_queued - Unregister a device using a work queue
1539 * device: The device to unregister
1540 *
1541 * This schedules an asynchronous unregistration using a WQ for the device. A
1542 * driver should use this to avoid holding locks while doing unregistration,
1543 * such as holding the RTNL lock.
1544 *
1545 * Drivers using this API must use ib_unregister_driver before module unload
1546 * to ensure that all scheduled unregistrations have completed.
1547 */
ib_unregister_device_queued(struct ib_device * ib_dev)1548 void ib_unregister_device_queued(struct ib_device *ib_dev)
1549 {
1550 WARN_ON(!refcount_read(&ib_dev->refcount));
1551 WARN_ON(!ib_dev->ops.dealloc_driver);
1552 get_device(&ib_dev->dev);
1553 if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1554 put_device(&ib_dev->dev);
1555 }
1556 EXPORT_SYMBOL(ib_unregister_device_queued);
1557
1558 /*
1559 * The caller must pass in a device that has the kref held and the refcount
1560 * released. If the device is in cur_net and still registered then it is moved
1561 * into net.
1562 */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1563 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1564 struct net *net)
1565 {
1566 int ret2 = -EINVAL;
1567 int ret;
1568
1569 mutex_lock(&device->unregistration_lock);
1570
1571 /*
1572 * If a device not under ib_device_get() or if the unregistration_lock
1573 * is not held, the namespace can be changed, or it can be unregistered.
1574 * Check again under the lock.
1575 */
1576 if (refcount_read(&device->refcount) == 0 ||
1577 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1578 ret = -ENODEV;
1579 goto out;
1580 }
1581
1582 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1583 disable_device(device);
1584
1585 /*
1586 * At this point no one can be using the device, so it is safe to
1587 * change the namespace.
1588 */
1589 write_pnet(&device->coredev.rdma_net, net);
1590
1591 down_read(&devices_rwsem);
1592 /*
1593 * Currently rdma devices are system wide unique. So the device name
1594 * is guaranteed free in the new namespace. Publish the new namespace
1595 * at the sysfs level.
1596 */
1597 ret = device_rename(&device->dev, dev_name(&device->dev));
1598 up_read(&devices_rwsem);
1599 if (ret) {
1600 dev_warn(&device->dev,
1601 "%s: Couldn't rename device after namespace change\n",
1602 __func__);
1603 /* Try and put things back and re-enable the device */
1604 write_pnet(&device->coredev.rdma_net, cur_net);
1605 }
1606
1607 ret2 = enable_device_and_get(device);
1608 if (ret2) {
1609 /*
1610 * This shouldn't really happen, but if it does, let the user
1611 * retry at later point. So don't disable the device.
1612 */
1613 dev_warn(&device->dev,
1614 "%s: Couldn't re-enable device after namespace change\n",
1615 __func__);
1616 }
1617 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1618
1619 ib_device_put(device);
1620 out:
1621 mutex_unlock(&device->unregistration_lock);
1622 if (ret)
1623 return ret;
1624 return ret2;
1625 }
1626
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1627 int ib_device_set_netns_put(struct sk_buff *skb,
1628 struct ib_device *dev, u32 ns_fd)
1629 {
1630 struct net *net;
1631 int ret;
1632
1633 net = get_net_ns_by_fd(ns_fd);
1634 if (IS_ERR(net)) {
1635 ret = PTR_ERR(net);
1636 goto net_err;
1637 }
1638
1639 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1640 ret = -EPERM;
1641 goto ns_err;
1642 }
1643
1644 /*
1645 * Currently supported only for those providers which support
1646 * disassociation and don't do port specific sysfs init. Once a
1647 * port_cleanup infrastructure is implemented, this limitation will be
1648 * removed.
1649 */
1650 if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1651 ib_devices_shared_netns) {
1652 ret = -EOPNOTSUPP;
1653 goto ns_err;
1654 }
1655
1656 get_device(&dev->dev);
1657 ib_device_put(dev);
1658 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1659 put_device(&dev->dev);
1660
1661 put_net(net);
1662 return ret;
1663
1664 ns_err:
1665 put_net(net);
1666 net_err:
1667 ib_device_put(dev);
1668 return ret;
1669 }
1670
1671 static struct pernet_operations rdma_dev_net_ops = {
1672 .init = rdma_dev_init_net,
1673 .exit = rdma_dev_exit_net,
1674 .id = &rdma_dev_net_id,
1675 .size = sizeof(struct rdma_dev_net),
1676 };
1677
assign_client_id(struct ib_client * client)1678 static int assign_client_id(struct ib_client *client)
1679 {
1680 int ret;
1681
1682 down_write(&clients_rwsem);
1683 /*
1684 * The add/remove callbacks must be called in FIFO/LIFO order. To
1685 * achieve this we assign client_ids so they are sorted in
1686 * registration order.
1687 */
1688 client->client_id = highest_client_id;
1689 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1690 if (ret)
1691 goto out;
1692
1693 highest_client_id++;
1694 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1695
1696 out:
1697 up_write(&clients_rwsem);
1698 return ret;
1699 }
1700
remove_client_id(struct ib_client * client)1701 static void remove_client_id(struct ib_client *client)
1702 {
1703 down_write(&clients_rwsem);
1704 xa_erase(&clients, client->client_id);
1705 for (; highest_client_id; highest_client_id--)
1706 if (xa_load(&clients, highest_client_id - 1))
1707 break;
1708 up_write(&clients_rwsem);
1709 }
1710
1711 /**
1712 * ib_register_client - Register an IB client
1713 * @client:Client to register
1714 *
1715 * Upper level users of the IB drivers can use ib_register_client() to
1716 * register callbacks for IB device addition and removal. When an IB
1717 * device is added, each registered client's add method will be called
1718 * (in the order the clients were registered), and when a device is
1719 * removed, each client's remove method will be called (in the reverse
1720 * order that clients were registered). In addition, when
1721 * ib_register_client() is called, the client will receive an add
1722 * callback for all devices already registered.
1723 */
ib_register_client(struct ib_client * client)1724 int ib_register_client(struct ib_client *client)
1725 {
1726 struct ib_device *device;
1727 unsigned long index;
1728 int ret;
1729
1730 refcount_set(&client->uses, 1);
1731 init_completion(&client->uses_zero);
1732 ret = assign_client_id(client);
1733 if (ret)
1734 return ret;
1735
1736 down_read(&devices_rwsem);
1737 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1738 ret = add_client_context(device, client);
1739 if (ret) {
1740 up_read(&devices_rwsem);
1741 ib_unregister_client(client);
1742 return ret;
1743 }
1744 }
1745 up_read(&devices_rwsem);
1746 return 0;
1747 }
1748 EXPORT_SYMBOL(ib_register_client);
1749
1750 /**
1751 * ib_unregister_client - Unregister an IB client
1752 * @client:Client to unregister
1753 *
1754 * Upper level users use ib_unregister_client() to remove their client
1755 * registration. When ib_unregister_client() is called, the client
1756 * will receive a remove callback for each IB device still registered.
1757 *
1758 * This is a full fence, once it returns no client callbacks will be called,
1759 * or are running in another thread.
1760 */
ib_unregister_client(struct ib_client * client)1761 void ib_unregister_client(struct ib_client *client)
1762 {
1763 struct ib_device *device;
1764 unsigned long index;
1765
1766 down_write(&clients_rwsem);
1767 ib_client_put(client);
1768 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1769 up_write(&clients_rwsem);
1770
1771 /* We do not want to have locks while calling client->remove() */
1772 rcu_read_lock();
1773 xa_for_each (&devices, index, device) {
1774 if (!ib_device_try_get(device))
1775 continue;
1776 rcu_read_unlock();
1777
1778 remove_client_context(device, client->client_id);
1779
1780 ib_device_put(device);
1781 rcu_read_lock();
1782 }
1783 rcu_read_unlock();
1784
1785 /*
1786 * remove_client_context() is not a fence, it can return even though a
1787 * removal is ongoing. Wait until all removals are completed.
1788 */
1789 wait_for_completion(&client->uses_zero);
1790 remove_client_id(client);
1791 }
1792 EXPORT_SYMBOL(ib_unregister_client);
1793
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1794 static int __ib_get_global_client_nl_info(const char *client_name,
1795 struct ib_client_nl_info *res)
1796 {
1797 struct ib_client *client;
1798 unsigned long index;
1799 int ret = -ENOENT;
1800
1801 down_read(&clients_rwsem);
1802 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1803 if (strcmp(client->name, client_name) != 0)
1804 continue;
1805 if (!client->get_global_nl_info) {
1806 ret = -EOPNOTSUPP;
1807 break;
1808 }
1809 ret = client->get_global_nl_info(res);
1810 if (WARN_ON(ret == -ENOENT))
1811 ret = -EINVAL;
1812 if (!ret && res->cdev)
1813 get_device(res->cdev);
1814 break;
1815 }
1816 up_read(&clients_rwsem);
1817 return ret;
1818 }
1819
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1820 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1821 const char *client_name,
1822 struct ib_client_nl_info *res)
1823 {
1824 unsigned long index;
1825 void *client_data;
1826 int ret = -ENOENT;
1827
1828 down_read(&ibdev->client_data_rwsem);
1829 xan_for_each_marked (&ibdev->client_data, index, client_data,
1830 CLIENT_DATA_REGISTERED) {
1831 struct ib_client *client = xa_load(&clients, index);
1832
1833 if (!client || strcmp(client->name, client_name) != 0)
1834 continue;
1835 if (!client->get_nl_info) {
1836 ret = -EOPNOTSUPP;
1837 break;
1838 }
1839 ret = client->get_nl_info(ibdev, client_data, res);
1840 if (WARN_ON(ret == -ENOENT))
1841 ret = -EINVAL;
1842
1843 /*
1844 * The cdev is guaranteed valid as long as we are inside the
1845 * client_data_rwsem as remove_one can't be called. Keep it
1846 * valid for the caller.
1847 */
1848 if (!ret && res->cdev)
1849 get_device(res->cdev);
1850 break;
1851 }
1852 up_read(&ibdev->client_data_rwsem);
1853
1854 return ret;
1855 }
1856
1857 /**
1858 * ib_get_client_nl_info - Fetch the nl_info from a client
1859 * @device - IB device
1860 * @client_name - Name of the client
1861 * @res - Result of the query
1862 */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1863 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1864 struct ib_client_nl_info *res)
1865 {
1866 int ret;
1867
1868 if (ibdev)
1869 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1870 else
1871 ret = __ib_get_global_client_nl_info(client_name, res);
1872 #ifdef CONFIG_MODULES
1873 if (ret == -ENOENT) {
1874 request_module("rdma-client-%s", client_name);
1875 if (ibdev)
1876 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1877 else
1878 ret = __ib_get_global_client_nl_info(client_name, res);
1879 }
1880 #endif
1881 if (ret) {
1882 if (ret == -ENOENT)
1883 return -EOPNOTSUPP;
1884 return ret;
1885 }
1886
1887 if (WARN_ON(!res->cdev))
1888 return -EINVAL;
1889 return 0;
1890 }
1891
1892 /**
1893 * ib_set_client_data - Set IB client context
1894 * @device:Device to set context for
1895 * @client:Client to set context for
1896 * @data:Context to set
1897 *
1898 * ib_set_client_data() sets client context data that can be retrieved with
1899 * ib_get_client_data(). This can only be called while the client is
1900 * registered to the device, once the ib_client remove() callback returns this
1901 * cannot be called.
1902 */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)1903 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1904 void *data)
1905 {
1906 void *rc;
1907
1908 if (WARN_ON(IS_ERR(data)))
1909 data = NULL;
1910
1911 rc = xa_store(&device->client_data, client->client_id, data,
1912 GFP_KERNEL);
1913 WARN_ON(xa_is_err(rc));
1914 }
1915 EXPORT_SYMBOL(ib_set_client_data);
1916
1917 /**
1918 * ib_register_event_handler - Register an IB event handler
1919 * @event_handler:Handler to register
1920 *
1921 * ib_register_event_handler() registers an event handler that will be
1922 * called back when asynchronous IB events occur (as defined in
1923 * chapter 11 of the InfiniBand Architecture Specification). This
1924 * callback may occur in interrupt context.
1925 */
ib_register_event_handler(struct ib_event_handler * event_handler)1926 void ib_register_event_handler(struct ib_event_handler *event_handler)
1927 {
1928 unsigned long flags;
1929
1930 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1931 list_add_tail(&event_handler->list,
1932 &event_handler->device->event_handler_list);
1933 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1934 }
1935 EXPORT_SYMBOL(ib_register_event_handler);
1936
1937 /**
1938 * ib_unregister_event_handler - Unregister an event handler
1939 * @event_handler:Handler to unregister
1940 *
1941 * Unregister an event handler registered with
1942 * ib_register_event_handler().
1943 */
ib_unregister_event_handler(struct ib_event_handler * event_handler)1944 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1945 {
1946 unsigned long flags;
1947
1948 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1949 list_del(&event_handler->list);
1950 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1951 }
1952 EXPORT_SYMBOL(ib_unregister_event_handler);
1953
1954 /**
1955 * ib_dispatch_event - Dispatch an asynchronous event
1956 * @event:Event to dispatch
1957 *
1958 * Low-level drivers must call ib_dispatch_event() to dispatch the
1959 * event to all registered event handlers when an asynchronous event
1960 * occurs.
1961 */
ib_dispatch_event(struct ib_event * event)1962 void ib_dispatch_event(struct ib_event *event)
1963 {
1964 unsigned long flags;
1965 struct ib_event_handler *handler;
1966
1967 spin_lock_irqsave(&event->device->event_handler_lock, flags);
1968
1969 list_for_each_entry(handler, &event->device->event_handler_list, list)
1970 handler->handler(handler, event);
1971
1972 spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
1973 }
1974 EXPORT_SYMBOL(ib_dispatch_event);
1975
iw_query_port(struct ib_device * device,u8 port_num,struct ib_port_attr * port_attr)1976 static int iw_query_port(struct ib_device *device,
1977 u8 port_num,
1978 struct ib_port_attr *port_attr)
1979 {
1980 struct in_device *inetdev;
1981 struct net_device *netdev;
1982 int err;
1983
1984 memset(port_attr, 0, sizeof(*port_attr));
1985
1986 netdev = ib_device_get_netdev(device, port_num);
1987 if (!netdev)
1988 return -ENODEV;
1989
1990 port_attr->max_mtu = IB_MTU_4096;
1991 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
1992
1993 if (!netif_carrier_ok(netdev)) {
1994 port_attr->state = IB_PORT_DOWN;
1995 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
1996 } else {
1997 rcu_read_lock();
1998 inetdev = __in_dev_get_rcu(netdev);
1999
2000 if (inetdev && inetdev->ifa_list) {
2001 port_attr->state = IB_PORT_ACTIVE;
2002 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2003 } else {
2004 port_attr->state = IB_PORT_INIT;
2005 port_attr->phys_state =
2006 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2007 }
2008
2009 rcu_read_unlock();
2010 }
2011
2012 dev_put(netdev);
2013 err = device->ops.query_port(device, port_num, port_attr);
2014 if (err)
2015 return err;
2016
2017 return 0;
2018 }
2019
__ib_query_port(struct ib_device * device,u8 port_num,struct ib_port_attr * port_attr)2020 static int __ib_query_port(struct ib_device *device,
2021 u8 port_num,
2022 struct ib_port_attr *port_attr)
2023 {
2024 union ib_gid gid = {};
2025 int err;
2026
2027 memset(port_attr, 0, sizeof(*port_attr));
2028
2029 err = device->ops.query_port(device, port_num, port_attr);
2030 if (err || port_attr->subnet_prefix)
2031 return err;
2032
2033 if (rdma_port_get_link_layer(device, port_num) !=
2034 IB_LINK_LAYER_INFINIBAND)
2035 return 0;
2036
2037 err = device->ops.query_gid(device, port_num, 0, &gid);
2038 if (err)
2039 return err;
2040
2041 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2042 return 0;
2043 }
2044
2045 /**
2046 * ib_query_port - Query IB port attributes
2047 * @device:Device to query
2048 * @port_num:Port number to query
2049 * @port_attr:Port attributes
2050 *
2051 * ib_query_port() returns the attributes of a port through the
2052 * @port_attr pointer.
2053 */
ib_query_port(struct ib_device * device,u8 port_num,struct ib_port_attr * port_attr)2054 int ib_query_port(struct ib_device *device,
2055 u8 port_num,
2056 struct ib_port_attr *port_attr)
2057 {
2058 if (!rdma_is_port_valid(device, port_num))
2059 return -EINVAL;
2060
2061 if (rdma_protocol_iwarp(device, port_num))
2062 return iw_query_port(device, port_num, port_attr);
2063 else
2064 return __ib_query_port(device, port_num, port_attr);
2065 }
2066 EXPORT_SYMBOL(ib_query_port);
2067
add_ndev_hash(struct ib_port_data * pdata)2068 static void add_ndev_hash(struct ib_port_data *pdata)
2069 {
2070 unsigned long flags;
2071
2072 might_sleep();
2073
2074 spin_lock_irqsave(&ndev_hash_lock, flags);
2075 if (hash_hashed(&pdata->ndev_hash_link)) {
2076 hash_del_rcu(&pdata->ndev_hash_link);
2077 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2078 /*
2079 * We cannot do hash_add_rcu after a hash_del_rcu until the
2080 * grace period
2081 */
2082 synchronize_rcu();
2083 spin_lock_irqsave(&ndev_hash_lock, flags);
2084 }
2085 if (pdata->netdev)
2086 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2087 (uintptr_t)pdata->netdev);
2088 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2089 }
2090
2091 /**
2092 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2093 * @ib_dev: Device to modify
2094 * @ndev: net_device to affiliate, may be NULL
2095 * @port: IB port the net_device is connected to
2096 *
2097 * Drivers should use this to link the ib_device to a netdev so the netdev
2098 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2099 * affiliated with any port.
2100 *
2101 * The caller must ensure that the given ndev is not unregistered or
2102 * unregistering, and that either the ib_device is unregistered or
2103 * ib_device_set_netdev() is called with NULL when the ndev sends a
2104 * NETDEV_UNREGISTER event.
2105 */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,unsigned int port)2106 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2107 unsigned int port)
2108 {
2109 struct net_device *old_ndev;
2110 struct ib_port_data *pdata;
2111 unsigned long flags;
2112 int ret;
2113
2114 /*
2115 * Drivers wish to call this before ib_register_driver, so we have to
2116 * setup the port data early.
2117 */
2118 ret = alloc_port_data(ib_dev);
2119 if (ret)
2120 return ret;
2121
2122 if (!rdma_is_port_valid(ib_dev, port))
2123 return -EINVAL;
2124
2125 pdata = &ib_dev->port_data[port];
2126 spin_lock_irqsave(&pdata->netdev_lock, flags);
2127 old_ndev = rcu_dereference_protected(
2128 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2129 if (old_ndev == ndev) {
2130 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2131 return 0;
2132 }
2133
2134 if (ndev)
2135 dev_hold(ndev);
2136 rcu_assign_pointer(pdata->netdev, ndev);
2137 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2138
2139 add_ndev_hash(pdata);
2140 if (old_ndev)
2141 dev_put(old_ndev);
2142
2143 return 0;
2144 }
2145 EXPORT_SYMBOL(ib_device_set_netdev);
2146
free_netdevs(struct ib_device * ib_dev)2147 static void free_netdevs(struct ib_device *ib_dev)
2148 {
2149 unsigned long flags;
2150 unsigned int port;
2151
2152 if (!ib_dev->port_data)
2153 return;
2154
2155 rdma_for_each_port (ib_dev, port) {
2156 struct ib_port_data *pdata = &ib_dev->port_data[port];
2157 struct net_device *ndev;
2158
2159 spin_lock_irqsave(&pdata->netdev_lock, flags);
2160 ndev = rcu_dereference_protected(
2161 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2162 if (ndev) {
2163 spin_lock(&ndev_hash_lock);
2164 hash_del_rcu(&pdata->ndev_hash_link);
2165 spin_unlock(&ndev_hash_lock);
2166
2167 /*
2168 * If this is the last dev_put there is still a
2169 * synchronize_rcu before the netdev is kfreed, so we
2170 * can continue to rely on unlocked pointer
2171 * comparisons after the put
2172 */
2173 rcu_assign_pointer(pdata->netdev, NULL);
2174 dev_put(ndev);
2175 }
2176 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2177 }
2178 }
2179
ib_device_get_netdev(struct ib_device * ib_dev,unsigned int port)2180 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2181 unsigned int port)
2182 {
2183 struct ib_port_data *pdata;
2184 struct net_device *res;
2185
2186 if (!rdma_is_port_valid(ib_dev, port))
2187 return NULL;
2188
2189 pdata = &ib_dev->port_data[port];
2190
2191 /*
2192 * New drivers should use ib_device_set_netdev() not the legacy
2193 * get_netdev().
2194 */
2195 if (ib_dev->ops.get_netdev)
2196 res = ib_dev->ops.get_netdev(ib_dev, port);
2197 else {
2198 spin_lock(&pdata->netdev_lock);
2199 res = rcu_dereference_protected(
2200 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2201 if (res)
2202 dev_hold(res);
2203 spin_unlock(&pdata->netdev_lock);
2204 }
2205
2206 /*
2207 * If we are starting to unregister expedite things by preventing
2208 * propagation of an unregistering netdev.
2209 */
2210 if (res && res->reg_state != NETREG_REGISTERED) {
2211 dev_put(res);
2212 return NULL;
2213 }
2214
2215 return res;
2216 }
2217
2218 /**
2219 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2220 * @ndev: netdev to locate
2221 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2222 *
2223 * Find and hold an ib_device that is associated with a netdev via
2224 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2225 * returned pointer.
2226 */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2227 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2228 enum rdma_driver_id driver_id)
2229 {
2230 struct ib_device *res = NULL;
2231 struct ib_port_data *cur;
2232
2233 rcu_read_lock();
2234 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2235 (uintptr_t)ndev) {
2236 if (rcu_access_pointer(cur->netdev) == ndev &&
2237 (driver_id == RDMA_DRIVER_UNKNOWN ||
2238 cur->ib_dev->ops.driver_id == driver_id) &&
2239 ib_device_try_get(cur->ib_dev)) {
2240 res = cur->ib_dev;
2241 break;
2242 }
2243 }
2244 rcu_read_unlock();
2245
2246 return res;
2247 }
2248 EXPORT_SYMBOL(ib_device_get_by_netdev);
2249
2250 /**
2251 * ib_enum_roce_netdev - enumerate all RoCE ports
2252 * @ib_dev : IB device we want to query
2253 * @filter: Should we call the callback?
2254 * @filter_cookie: Cookie passed to filter
2255 * @cb: Callback to call for each found RoCE ports
2256 * @cookie: Cookie passed back to the callback
2257 *
2258 * Enumerates all of the physical RoCE ports of ib_dev
2259 * which are related to netdevice and calls callback() on each
2260 * device for which filter() function returns non zero.
2261 */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2262 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2263 roce_netdev_filter filter,
2264 void *filter_cookie,
2265 roce_netdev_callback cb,
2266 void *cookie)
2267 {
2268 unsigned int port;
2269
2270 rdma_for_each_port (ib_dev, port)
2271 if (rdma_protocol_roce(ib_dev, port)) {
2272 struct net_device *idev =
2273 ib_device_get_netdev(ib_dev, port);
2274
2275 if (filter(ib_dev, port, idev, filter_cookie))
2276 cb(ib_dev, port, idev, cookie);
2277
2278 if (idev)
2279 dev_put(idev);
2280 }
2281 }
2282
2283 /**
2284 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2285 * @filter: Should we call the callback?
2286 * @filter_cookie: Cookie passed to filter
2287 * @cb: Callback to call for each found RoCE ports
2288 * @cookie: Cookie passed back to the callback
2289 *
2290 * Enumerates all RoCE devices' physical ports which are related
2291 * to netdevices and calls callback() on each device for which
2292 * filter() function returns non zero.
2293 */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2294 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2295 void *filter_cookie,
2296 roce_netdev_callback cb,
2297 void *cookie)
2298 {
2299 struct ib_device *dev;
2300 unsigned long index;
2301
2302 down_read(&devices_rwsem);
2303 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2304 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2305 up_read(&devices_rwsem);
2306 }
2307
2308 /**
2309 * ib_enum_all_devs - enumerate all ib_devices
2310 * @cb: Callback to call for each found ib_device
2311 *
2312 * Enumerates all ib_devices and calls callback() on each device.
2313 */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2314 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2315 struct netlink_callback *cb)
2316 {
2317 unsigned long index;
2318 struct ib_device *dev;
2319 unsigned int idx = 0;
2320 int ret = 0;
2321
2322 down_read(&devices_rwsem);
2323 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2324 if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2325 continue;
2326
2327 ret = nldev_cb(dev, skb, cb, idx);
2328 if (ret)
2329 break;
2330 idx++;
2331 }
2332 up_read(&devices_rwsem);
2333 return ret;
2334 }
2335
2336 /**
2337 * ib_query_pkey - Get P_Key table entry
2338 * @device:Device to query
2339 * @port_num:Port number to query
2340 * @index:P_Key table index to query
2341 * @pkey:Returned P_Key
2342 *
2343 * ib_query_pkey() fetches the specified P_Key table entry.
2344 */
ib_query_pkey(struct ib_device * device,u8 port_num,u16 index,u16 * pkey)2345 int ib_query_pkey(struct ib_device *device,
2346 u8 port_num, u16 index, u16 *pkey)
2347 {
2348 if (!rdma_is_port_valid(device, port_num))
2349 return -EINVAL;
2350
2351 return device->ops.query_pkey(device, port_num, index, pkey);
2352 }
2353 EXPORT_SYMBOL(ib_query_pkey);
2354
2355 /**
2356 * ib_modify_device - Change IB device attributes
2357 * @device:Device to modify
2358 * @device_modify_mask:Mask of attributes to change
2359 * @device_modify:New attribute values
2360 *
2361 * ib_modify_device() changes a device's attributes as specified by
2362 * the @device_modify_mask and @device_modify structure.
2363 */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2364 int ib_modify_device(struct ib_device *device,
2365 int device_modify_mask,
2366 struct ib_device_modify *device_modify)
2367 {
2368 if (!device->ops.modify_device)
2369 return -ENOSYS;
2370
2371 return device->ops.modify_device(device, device_modify_mask,
2372 device_modify);
2373 }
2374 EXPORT_SYMBOL(ib_modify_device);
2375
2376 /**
2377 * ib_modify_port - Modifies the attributes for the specified port.
2378 * @device: The device to modify.
2379 * @port_num: The number of the port to modify.
2380 * @port_modify_mask: Mask used to specify which attributes of the port
2381 * to change.
2382 * @port_modify: New attribute values for the port.
2383 *
2384 * ib_modify_port() changes a port's attributes as specified by the
2385 * @port_modify_mask and @port_modify structure.
2386 */
ib_modify_port(struct ib_device * device,u8 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2387 int ib_modify_port(struct ib_device *device,
2388 u8 port_num, int port_modify_mask,
2389 struct ib_port_modify *port_modify)
2390 {
2391 int rc;
2392
2393 if (!rdma_is_port_valid(device, port_num))
2394 return -EINVAL;
2395
2396 if (device->ops.modify_port)
2397 rc = device->ops.modify_port(device, port_num,
2398 port_modify_mask,
2399 port_modify);
2400 else
2401 rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS;
2402 return rc;
2403 }
2404 EXPORT_SYMBOL(ib_modify_port);
2405
2406 /**
2407 * ib_find_gid - Returns the port number and GID table index where
2408 * a specified GID value occurs. Its searches only for IB link layer.
2409 * @device: The device to query.
2410 * @gid: The GID value to search for.
2411 * @port_num: The port number of the device where the GID value was found.
2412 * @index: The index into the GID table where the GID was found. This
2413 * parameter may be NULL.
2414 */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u8 * port_num,u16 * index)2415 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2416 u8 *port_num, u16 *index)
2417 {
2418 union ib_gid tmp_gid;
2419 unsigned int port;
2420 int ret, i;
2421
2422 rdma_for_each_port (device, port) {
2423 if (!rdma_protocol_ib(device, port))
2424 continue;
2425
2426 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2427 ++i) {
2428 ret = rdma_query_gid(device, port, i, &tmp_gid);
2429 if (ret)
2430 return ret;
2431 if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2432 *port_num = port;
2433 if (index)
2434 *index = i;
2435 return 0;
2436 }
2437 }
2438 }
2439
2440 return -ENOENT;
2441 }
2442 EXPORT_SYMBOL(ib_find_gid);
2443
2444 /**
2445 * ib_find_pkey - Returns the PKey table index where a specified
2446 * PKey value occurs.
2447 * @device: The device to query.
2448 * @port_num: The port number of the device to search for the PKey.
2449 * @pkey: The PKey value to search for.
2450 * @index: The index into the PKey table where the PKey was found.
2451 */
ib_find_pkey(struct ib_device * device,u8 port_num,u16 pkey,u16 * index)2452 int ib_find_pkey(struct ib_device *device,
2453 u8 port_num, u16 pkey, u16 *index)
2454 {
2455 int ret, i;
2456 u16 tmp_pkey;
2457 int partial_ix = -1;
2458
2459 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2460 ++i) {
2461 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2462 if (ret)
2463 return ret;
2464 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2465 /* if there is full-member pkey take it.*/
2466 if (tmp_pkey & 0x8000) {
2467 *index = i;
2468 return 0;
2469 }
2470 if (partial_ix < 0)
2471 partial_ix = i;
2472 }
2473 }
2474
2475 /*no full-member, if exists take the limited*/
2476 if (partial_ix >= 0) {
2477 *index = partial_ix;
2478 return 0;
2479 }
2480 return -ENOENT;
2481 }
2482 EXPORT_SYMBOL(ib_find_pkey);
2483
2484 /**
2485 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2486 * for a received CM request
2487 * @dev: An RDMA device on which the request has been received.
2488 * @port: Port number on the RDMA device.
2489 * @pkey: The Pkey the request came on.
2490 * @gid: A GID that the net_dev uses to communicate.
2491 * @addr: Contains the IP address that the request specified as its
2492 * destination.
2493 *
2494 */
ib_get_net_dev_by_params(struct ib_device * dev,u8 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2495 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2496 u8 port,
2497 u16 pkey,
2498 const union ib_gid *gid,
2499 const struct sockaddr *addr)
2500 {
2501 struct net_device *net_dev = NULL;
2502 unsigned long index;
2503 void *client_data;
2504
2505 if (!rdma_protocol_ib(dev, port))
2506 return NULL;
2507
2508 /*
2509 * Holding the read side guarantees that the client will not become
2510 * unregistered while we are calling get_net_dev_by_params()
2511 */
2512 down_read(&dev->client_data_rwsem);
2513 xan_for_each_marked (&dev->client_data, index, client_data,
2514 CLIENT_DATA_REGISTERED) {
2515 struct ib_client *client = xa_load(&clients, index);
2516
2517 if (!client || !client->get_net_dev_by_params)
2518 continue;
2519
2520 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2521 addr, client_data);
2522 if (net_dev)
2523 break;
2524 }
2525 up_read(&dev->client_data_rwsem);
2526
2527 return net_dev;
2528 }
2529 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2530
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2531 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2532 {
2533 struct ib_device_ops *dev_ops = &dev->ops;
2534 #define SET_DEVICE_OP(ptr, name) \
2535 do { \
2536 if (ops->name) \
2537 if (!((ptr)->name)) \
2538 (ptr)->name = ops->name; \
2539 } while (0)
2540
2541 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2542
2543 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2544 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2545 dev_ops->driver_id != ops->driver_id);
2546 dev_ops->driver_id = ops->driver_id;
2547 }
2548 if (ops->owner) {
2549 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2550 dev_ops->owner = ops->owner;
2551 }
2552 if (ops->uverbs_abi_ver)
2553 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2554
2555 dev_ops->uverbs_no_driver_id_binding |=
2556 ops->uverbs_no_driver_id_binding;
2557
2558 SET_DEVICE_OP(dev_ops, add_gid);
2559 SET_DEVICE_OP(dev_ops, advise_mr);
2560 SET_DEVICE_OP(dev_ops, alloc_dm);
2561 SET_DEVICE_OP(dev_ops, alloc_fmr);
2562 SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2563 SET_DEVICE_OP(dev_ops, alloc_mr);
2564 SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2565 SET_DEVICE_OP(dev_ops, alloc_mw);
2566 SET_DEVICE_OP(dev_ops, alloc_pd);
2567 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2568 SET_DEVICE_OP(dev_ops, alloc_ucontext);
2569 SET_DEVICE_OP(dev_ops, alloc_xrcd);
2570 SET_DEVICE_OP(dev_ops, attach_mcast);
2571 SET_DEVICE_OP(dev_ops, check_mr_status);
2572 SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2573 SET_DEVICE_OP(dev_ops, counter_bind_qp);
2574 SET_DEVICE_OP(dev_ops, counter_dealloc);
2575 SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2576 SET_DEVICE_OP(dev_ops, counter_update_stats);
2577 SET_DEVICE_OP(dev_ops, create_ah);
2578 SET_DEVICE_OP(dev_ops, create_counters);
2579 SET_DEVICE_OP(dev_ops, create_cq);
2580 SET_DEVICE_OP(dev_ops, create_flow);
2581 SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2582 SET_DEVICE_OP(dev_ops, create_qp);
2583 SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2584 SET_DEVICE_OP(dev_ops, create_srq);
2585 SET_DEVICE_OP(dev_ops, create_wq);
2586 SET_DEVICE_OP(dev_ops, dealloc_dm);
2587 SET_DEVICE_OP(dev_ops, dealloc_driver);
2588 SET_DEVICE_OP(dev_ops, dealloc_fmr);
2589 SET_DEVICE_OP(dev_ops, dealloc_mw);
2590 SET_DEVICE_OP(dev_ops, dealloc_pd);
2591 SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2592 SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2593 SET_DEVICE_OP(dev_ops, del_gid);
2594 SET_DEVICE_OP(dev_ops, dereg_mr);
2595 SET_DEVICE_OP(dev_ops, destroy_ah);
2596 SET_DEVICE_OP(dev_ops, destroy_counters);
2597 SET_DEVICE_OP(dev_ops, destroy_cq);
2598 SET_DEVICE_OP(dev_ops, destroy_flow);
2599 SET_DEVICE_OP(dev_ops, destroy_flow_action);
2600 SET_DEVICE_OP(dev_ops, destroy_qp);
2601 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2602 SET_DEVICE_OP(dev_ops, destroy_srq);
2603 SET_DEVICE_OP(dev_ops, destroy_wq);
2604 SET_DEVICE_OP(dev_ops, detach_mcast);
2605 SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2606 SET_DEVICE_OP(dev_ops, drain_rq);
2607 SET_DEVICE_OP(dev_ops, drain_sq);
2608 SET_DEVICE_OP(dev_ops, enable_driver);
2609 SET_DEVICE_OP(dev_ops, fill_res_entry);
2610 SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2611 SET_DEVICE_OP(dev_ops, get_dma_mr);
2612 SET_DEVICE_OP(dev_ops, get_hw_stats);
2613 SET_DEVICE_OP(dev_ops, get_link_layer);
2614 SET_DEVICE_OP(dev_ops, get_netdev);
2615 SET_DEVICE_OP(dev_ops, get_port_immutable);
2616 SET_DEVICE_OP(dev_ops, get_vector_affinity);
2617 SET_DEVICE_OP(dev_ops, get_vf_config);
2618 SET_DEVICE_OP(dev_ops, get_vf_stats);
2619 SET_DEVICE_OP(dev_ops, init_port);
2620 SET_DEVICE_OP(dev_ops, invalidate_range);
2621 SET_DEVICE_OP(dev_ops, iw_accept);
2622 SET_DEVICE_OP(dev_ops, iw_add_ref);
2623 SET_DEVICE_OP(dev_ops, iw_connect);
2624 SET_DEVICE_OP(dev_ops, iw_create_listen);
2625 SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2626 SET_DEVICE_OP(dev_ops, iw_get_qp);
2627 SET_DEVICE_OP(dev_ops, iw_reject);
2628 SET_DEVICE_OP(dev_ops, iw_rem_ref);
2629 SET_DEVICE_OP(dev_ops, map_mr_sg);
2630 SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2631 SET_DEVICE_OP(dev_ops, map_phys_fmr);
2632 SET_DEVICE_OP(dev_ops, mmap);
2633 SET_DEVICE_OP(dev_ops, modify_ah);
2634 SET_DEVICE_OP(dev_ops, modify_cq);
2635 SET_DEVICE_OP(dev_ops, modify_device);
2636 SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2637 SET_DEVICE_OP(dev_ops, modify_port);
2638 SET_DEVICE_OP(dev_ops, modify_qp);
2639 SET_DEVICE_OP(dev_ops, modify_srq);
2640 SET_DEVICE_OP(dev_ops, modify_wq);
2641 SET_DEVICE_OP(dev_ops, peek_cq);
2642 SET_DEVICE_OP(dev_ops, poll_cq);
2643 SET_DEVICE_OP(dev_ops, post_recv);
2644 SET_DEVICE_OP(dev_ops, post_send);
2645 SET_DEVICE_OP(dev_ops, post_srq_recv);
2646 SET_DEVICE_OP(dev_ops, process_mad);
2647 SET_DEVICE_OP(dev_ops, query_ah);
2648 SET_DEVICE_OP(dev_ops, query_device);
2649 SET_DEVICE_OP(dev_ops, query_gid);
2650 SET_DEVICE_OP(dev_ops, query_pkey);
2651 SET_DEVICE_OP(dev_ops, query_port);
2652 SET_DEVICE_OP(dev_ops, query_qp);
2653 SET_DEVICE_OP(dev_ops, query_srq);
2654 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2655 SET_DEVICE_OP(dev_ops, read_counters);
2656 SET_DEVICE_OP(dev_ops, reg_dm_mr);
2657 SET_DEVICE_OP(dev_ops, reg_user_mr);
2658 SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2659 SET_DEVICE_OP(dev_ops, req_notify_cq);
2660 SET_DEVICE_OP(dev_ops, rereg_user_mr);
2661 SET_DEVICE_OP(dev_ops, resize_cq);
2662 SET_DEVICE_OP(dev_ops, set_vf_guid);
2663 SET_DEVICE_OP(dev_ops, set_vf_link_state);
2664 SET_DEVICE_OP(dev_ops, unmap_fmr);
2665
2666 SET_OBJ_SIZE(dev_ops, ib_ah);
2667 SET_OBJ_SIZE(dev_ops, ib_cq);
2668 SET_OBJ_SIZE(dev_ops, ib_pd);
2669 SET_OBJ_SIZE(dev_ops, ib_srq);
2670 SET_OBJ_SIZE(dev_ops, ib_ucontext);
2671 }
2672 EXPORT_SYMBOL(ib_set_device_ops);
2673
2674 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2675 [RDMA_NL_LS_OP_RESOLVE] = {
2676 .doit = ib_nl_handle_resolve_resp,
2677 .flags = RDMA_NL_ADMIN_PERM,
2678 },
2679 [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2680 .doit = ib_nl_handle_set_timeout,
2681 .flags = RDMA_NL_ADMIN_PERM,
2682 },
2683 [RDMA_NL_LS_OP_IP_RESOLVE] = {
2684 .doit = ib_nl_handle_ip_res_resp,
2685 .flags = RDMA_NL_ADMIN_PERM,
2686 },
2687 };
2688
ib_core_init(void)2689 static int __init ib_core_init(void)
2690 {
2691 int ret;
2692
2693 ib_wq = alloc_workqueue("infiniband", 0, 0);
2694 if (!ib_wq)
2695 return -ENOMEM;
2696
2697 ib_comp_wq = alloc_workqueue("ib-comp-wq",
2698 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2699 if (!ib_comp_wq) {
2700 ret = -ENOMEM;
2701 goto err;
2702 }
2703
2704 ib_comp_unbound_wq =
2705 alloc_workqueue("ib-comp-unb-wq",
2706 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2707 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2708 if (!ib_comp_unbound_wq) {
2709 ret = -ENOMEM;
2710 goto err_comp;
2711 }
2712
2713 ret = class_register(&ib_class);
2714 if (ret) {
2715 pr_warn("Couldn't create InfiniBand device class\n");
2716 goto err_comp_unbound;
2717 }
2718
2719 rdma_nl_init();
2720
2721 ret = addr_init();
2722 if (ret) {
2723 pr_warn("Could't init IB address resolution\n");
2724 goto err_ibnl;
2725 }
2726
2727 ret = ib_mad_init();
2728 if (ret) {
2729 pr_warn("Couldn't init IB MAD\n");
2730 goto err_addr;
2731 }
2732
2733 ret = ib_sa_init();
2734 if (ret) {
2735 pr_warn("Couldn't init SA\n");
2736 goto err_mad;
2737 }
2738
2739 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2740 if (ret) {
2741 pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2742 goto err_sa;
2743 }
2744
2745 ret = register_pernet_device(&rdma_dev_net_ops);
2746 if (ret) {
2747 pr_warn("Couldn't init compat dev. ret %d\n", ret);
2748 goto err_compat;
2749 }
2750
2751 nldev_init();
2752 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2753 roce_gid_mgmt_init();
2754
2755 return 0;
2756
2757 err_compat:
2758 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2759 err_sa:
2760 ib_sa_cleanup();
2761 err_mad:
2762 ib_mad_cleanup();
2763 err_addr:
2764 addr_cleanup();
2765 err_ibnl:
2766 class_unregister(&ib_class);
2767 err_comp_unbound:
2768 destroy_workqueue(ib_comp_unbound_wq);
2769 err_comp:
2770 destroy_workqueue(ib_comp_wq);
2771 err:
2772 destroy_workqueue(ib_wq);
2773 return ret;
2774 }
2775
ib_core_cleanup(void)2776 static void __exit ib_core_cleanup(void)
2777 {
2778 roce_gid_mgmt_cleanup();
2779 nldev_exit();
2780 rdma_nl_unregister(RDMA_NL_LS);
2781 unregister_pernet_device(&rdma_dev_net_ops);
2782 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2783 ib_sa_cleanup();
2784 ib_mad_cleanup();
2785 addr_cleanup();
2786 rdma_nl_exit();
2787 class_unregister(&ib_class);
2788 destroy_workqueue(ib_comp_unbound_wq);
2789 destroy_workqueue(ib_comp_wq);
2790 /* Make sure that any pending umem accounting work is done. */
2791 destroy_workqueue(ib_wq);
2792 flush_workqueue(system_unbound_wq);
2793 WARN_ON(!xa_empty(&clients));
2794 WARN_ON(!xa_empty(&devices));
2795 }
2796
2797 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2798
2799 /* ib core relies on netdev stack to first register net_ns_type_operations
2800 * ns kobject type before ib_core initialization.
2801 */
2802 fs_initcall(ib_core_init);
2803 module_exit(ib_core_cleanup);
2804