1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57 struct rdma_ah_attr *ah_attr);
58
59 static const char * const ib_events[] = {
60 [IB_EVENT_CQ_ERR] = "CQ error",
61 [IB_EVENT_QP_FATAL] = "QP fatal error",
62 [IB_EVENT_QP_REQ_ERR] = "QP request error",
63 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
64 [IB_EVENT_COMM_EST] = "communication established",
65 [IB_EVENT_SQ_DRAINED] = "send queue drained",
66 [IB_EVENT_PATH_MIG] = "path migration successful",
67 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
68 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
69 [IB_EVENT_PORT_ACTIVE] = "port active",
70 [IB_EVENT_PORT_ERR] = "port error",
71 [IB_EVENT_LID_CHANGE] = "LID change",
72 [IB_EVENT_PKEY_CHANGE] = "P_key change",
73 [IB_EVENT_SM_CHANGE] = "SM change",
74 [IB_EVENT_SRQ_ERR] = "SRQ error",
75 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
76 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
77 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
78 [IB_EVENT_GID_CHANGE] = "GID changed",
79 };
80
ib_event_msg(enum ib_event_type event)81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83 size_t index = event;
84
85 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86 ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89
90 static const char * const wc_statuses[] = {
91 [IB_WC_SUCCESS] = "success",
92 [IB_WC_LOC_LEN_ERR] = "local length error",
93 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
94 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
95 [IB_WC_LOC_PROT_ERR] = "local protection error",
96 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
97 [IB_WC_MW_BIND_ERR] = "memory management operation error",
98 [IB_WC_BAD_RESP_ERR] = "bad response error",
99 [IB_WC_LOC_ACCESS_ERR] = "local access error",
100 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
101 [IB_WC_REM_ACCESS_ERR] = "remote access error",
102 [IB_WC_REM_OP_ERR] = "remote operation error",
103 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
104 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
105 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
106 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
107 [IB_WC_REM_ABORT_ERR] = "operation aborted",
108 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
109 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
110 [IB_WC_FATAL_ERR] = "fatal error",
111 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
112 [IB_WC_GENERAL_ERR] = "general error",
113 };
114
ib_wc_status_msg(enum ib_wc_status status)115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117 size_t index = status;
118
119 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120 wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123
ib_rate_to_mult(enum ib_rate rate)124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126 switch (rate) {
127 case IB_RATE_2_5_GBPS: return 1;
128 case IB_RATE_5_GBPS: return 2;
129 case IB_RATE_10_GBPS: return 4;
130 case IB_RATE_20_GBPS: return 8;
131 case IB_RATE_30_GBPS: return 12;
132 case IB_RATE_40_GBPS: return 16;
133 case IB_RATE_60_GBPS: return 24;
134 case IB_RATE_80_GBPS: return 32;
135 case IB_RATE_120_GBPS: return 48;
136 case IB_RATE_14_GBPS: return 6;
137 case IB_RATE_56_GBPS: return 22;
138 case IB_RATE_112_GBPS: return 45;
139 case IB_RATE_168_GBPS: return 67;
140 case IB_RATE_25_GBPS: return 10;
141 case IB_RATE_100_GBPS: return 40;
142 case IB_RATE_200_GBPS: return 80;
143 case IB_RATE_300_GBPS: return 120;
144 default: return -1;
145 }
146 }
147 EXPORT_SYMBOL(ib_rate_to_mult);
148
mult_to_ib_rate(int mult)149 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
150 {
151 switch (mult) {
152 case 1: return IB_RATE_2_5_GBPS;
153 case 2: return IB_RATE_5_GBPS;
154 case 4: return IB_RATE_10_GBPS;
155 case 8: return IB_RATE_20_GBPS;
156 case 12: return IB_RATE_30_GBPS;
157 case 16: return IB_RATE_40_GBPS;
158 case 24: return IB_RATE_60_GBPS;
159 case 32: return IB_RATE_80_GBPS;
160 case 48: return IB_RATE_120_GBPS;
161 case 6: return IB_RATE_14_GBPS;
162 case 22: return IB_RATE_56_GBPS;
163 case 45: return IB_RATE_112_GBPS;
164 case 67: return IB_RATE_168_GBPS;
165 case 10: return IB_RATE_25_GBPS;
166 case 40: return IB_RATE_100_GBPS;
167 case 80: return IB_RATE_200_GBPS;
168 case 120: return IB_RATE_300_GBPS;
169 default: return IB_RATE_PORT_CURRENT;
170 }
171 }
172 EXPORT_SYMBOL(mult_to_ib_rate);
173
ib_rate_to_mbps(enum ib_rate rate)174 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
175 {
176 switch (rate) {
177 case IB_RATE_2_5_GBPS: return 2500;
178 case IB_RATE_5_GBPS: return 5000;
179 case IB_RATE_10_GBPS: return 10000;
180 case IB_RATE_20_GBPS: return 20000;
181 case IB_RATE_30_GBPS: return 30000;
182 case IB_RATE_40_GBPS: return 40000;
183 case IB_RATE_60_GBPS: return 60000;
184 case IB_RATE_80_GBPS: return 80000;
185 case IB_RATE_120_GBPS: return 120000;
186 case IB_RATE_14_GBPS: return 14062;
187 case IB_RATE_56_GBPS: return 56250;
188 case IB_RATE_112_GBPS: return 112500;
189 case IB_RATE_168_GBPS: return 168750;
190 case IB_RATE_25_GBPS: return 25781;
191 case IB_RATE_100_GBPS: return 103125;
192 case IB_RATE_200_GBPS: return 206250;
193 case IB_RATE_300_GBPS: return 309375;
194 default: return -1;
195 }
196 }
197 EXPORT_SYMBOL(ib_rate_to_mbps);
198
199 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(enum rdma_node_type node_type)200 rdma_node_get_transport(enum rdma_node_type node_type)
201 {
202
203 if (node_type == RDMA_NODE_USNIC)
204 return RDMA_TRANSPORT_USNIC;
205 if (node_type == RDMA_NODE_USNIC_UDP)
206 return RDMA_TRANSPORT_USNIC_UDP;
207 if (node_type == RDMA_NODE_RNIC)
208 return RDMA_TRANSPORT_IWARP;
209
210 return RDMA_TRANSPORT_IB;
211 }
212 EXPORT_SYMBOL(rdma_node_get_transport);
213
rdma_port_get_link_layer(struct ib_device * device,u8 port_num)214 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
215 {
216 enum rdma_transport_type lt;
217 if (device->get_link_layer)
218 return device->get_link_layer(device, port_num);
219
220 lt = rdma_node_get_transport(device->node_type);
221 if (lt == RDMA_TRANSPORT_IB)
222 return IB_LINK_LAYER_INFINIBAND;
223
224 return IB_LINK_LAYER_ETHERNET;
225 }
226 EXPORT_SYMBOL(rdma_port_get_link_layer);
227
228 /* Protection domains */
229
230 /**
231 * ib_alloc_pd - Allocates an unused protection domain.
232 * @device: The device on which to allocate the protection domain.
233 *
234 * A protection domain object provides an association between QPs, shared
235 * receive queues, address handles, memory regions, and memory windows.
236 *
237 * Every PD has a local_dma_lkey which can be used as the lkey value for local
238 * memory operations.
239 */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)240 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
241 const char *caller)
242 {
243 struct ib_pd *pd;
244 int mr_access_flags = 0;
245
246 pd = device->alloc_pd(device, NULL, NULL);
247 if (IS_ERR(pd))
248 return pd;
249
250 pd->device = device;
251 pd->uobject = NULL;
252 pd->__internal_mr = NULL;
253 atomic_set(&pd->usecnt, 0);
254 pd->flags = flags;
255
256 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
257 pd->local_dma_lkey = device->local_dma_lkey;
258 else
259 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
260
261 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
262 pr_warn("%s: enabling unsafe global rkey\n", caller);
263 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
264 }
265
266 pd->res.type = RDMA_RESTRACK_PD;
267 pd->res.kern_name = caller;
268 rdma_restrack_add(&pd->res);
269
270 if (mr_access_flags) {
271 struct ib_mr *mr;
272
273 mr = pd->device->get_dma_mr(pd, mr_access_flags);
274 if (IS_ERR(mr)) {
275 ib_dealloc_pd(pd);
276 return ERR_CAST(mr);
277 }
278
279 mr->device = pd->device;
280 mr->pd = pd;
281 mr->uobject = NULL;
282 mr->need_inval = false;
283
284 pd->__internal_mr = mr;
285
286 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
287 pd->local_dma_lkey = pd->__internal_mr->lkey;
288
289 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
290 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
291 }
292
293 return pd;
294 }
295 EXPORT_SYMBOL(__ib_alloc_pd);
296
297 /**
298 * ib_dealloc_pd - Deallocates a protection domain.
299 * @pd: The protection domain to deallocate.
300 *
301 * It is an error to call this function while any resources in the pd still
302 * exist. The caller is responsible to synchronously destroy them and
303 * guarantee no new allocations will happen.
304 */
ib_dealloc_pd(struct ib_pd * pd)305 void ib_dealloc_pd(struct ib_pd *pd)
306 {
307 int ret;
308
309 if (pd->__internal_mr) {
310 ret = pd->device->dereg_mr(pd->__internal_mr);
311 WARN_ON(ret);
312 pd->__internal_mr = NULL;
313 }
314
315 /* uverbs manipulates usecnt with proper locking, while the kabi
316 requires the caller to guarantee we can't race here. */
317 WARN_ON(atomic_read(&pd->usecnt));
318
319 rdma_restrack_del(&pd->res);
320 /* Making delalloc_pd a void return is a WIP, no driver should return
321 an error here. */
322 ret = pd->device->dealloc_pd(pd);
323 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
324 }
325 EXPORT_SYMBOL(ib_dealloc_pd);
326
327 /* Address handles */
328
329 /**
330 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
331 * @dest: Pointer to destination ah_attr. Contents of the destination
332 * pointer is assumed to be invalid and attribute are overwritten.
333 * @src: Pointer to source ah_attr.
334 */
rdma_copy_ah_attr(struct rdma_ah_attr * dest,const struct rdma_ah_attr * src)335 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
336 const struct rdma_ah_attr *src)
337 {
338 *dest = *src;
339 if (dest->grh.sgid_attr)
340 rdma_hold_gid_attr(dest->grh.sgid_attr);
341 }
342 EXPORT_SYMBOL(rdma_copy_ah_attr);
343
344 /**
345 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
346 * @old: Pointer to existing ah_attr which needs to be replaced.
347 * old is assumed to be valid or zero'd
348 * @new: Pointer to the new ah_attr.
349 *
350 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
351 * old the ah_attr is valid; after that it copies the new attribute and holds
352 * the reference to the replaced ah_attr.
353 */
rdma_replace_ah_attr(struct rdma_ah_attr * old,const struct rdma_ah_attr * new)354 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
355 const struct rdma_ah_attr *new)
356 {
357 rdma_destroy_ah_attr(old);
358 *old = *new;
359 if (old->grh.sgid_attr)
360 rdma_hold_gid_attr(old->grh.sgid_attr);
361 }
362 EXPORT_SYMBOL(rdma_replace_ah_attr);
363
364 /**
365 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
366 * @dest: Pointer to destination ah_attr to copy to.
367 * dest is assumed to be valid or zero'd
368 * @src: Pointer to the new ah_attr.
369 *
370 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
371 * if it is valid. This also transfers ownership of internal references from
372 * src to dest, making src invalid in the process. No new reference of the src
373 * ah_attr is taken.
374 */
rdma_move_ah_attr(struct rdma_ah_attr * dest,struct rdma_ah_attr * src)375 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
376 {
377 rdma_destroy_ah_attr(dest);
378 *dest = *src;
379 src->grh.sgid_attr = NULL;
380 }
381 EXPORT_SYMBOL(rdma_move_ah_attr);
382
383 /*
384 * Validate that the rdma_ah_attr is valid for the device before passing it
385 * off to the driver.
386 */
rdma_check_ah_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr)387 static int rdma_check_ah_attr(struct ib_device *device,
388 struct rdma_ah_attr *ah_attr)
389 {
390 if (!rdma_is_port_valid(device, ah_attr->port_num))
391 return -EINVAL;
392
393 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
394 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
395 !(ah_attr->ah_flags & IB_AH_GRH))
396 return -EINVAL;
397
398 if (ah_attr->grh.sgid_attr) {
399 /*
400 * Make sure the passed sgid_attr is consistent with the
401 * parameters
402 */
403 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
404 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
405 return -EINVAL;
406 }
407 return 0;
408 }
409
410 /*
411 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
412 * On success the caller is responsible to call rdma_unfill_sgid_attr().
413 */
rdma_fill_sgid_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr,const struct ib_gid_attr ** old_sgid_attr)414 static int rdma_fill_sgid_attr(struct ib_device *device,
415 struct rdma_ah_attr *ah_attr,
416 const struct ib_gid_attr **old_sgid_attr)
417 {
418 const struct ib_gid_attr *sgid_attr;
419 struct ib_global_route *grh;
420 int ret;
421
422 *old_sgid_attr = ah_attr->grh.sgid_attr;
423
424 ret = rdma_check_ah_attr(device, ah_attr);
425 if (ret)
426 return ret;
427
428 if (!(ah_attr->ah_flags & IB_AH_GRH))
429 return 0;
430
431 grh = rdma_ah_retrieve_grh(ah_attr);
432 if (grh->sgid_attr)
433 return 0;
434
435 sgid_attr =
436 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
437 if (IS_ERR(sgid_attr))
438 return PTR_ERR(sgid_attr);
439
440 /* Move ownerhip of the kref into the ah_attr */
441 grh->sgid_attr = sgid_attr;
442 return 0;
443 }
444
rdma_unfill_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_sgid_attr)445 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
446 const struct ib_gid_attr *old_sgid_attr)
447 {
448 /*
449 * Fill didn't change anything, the caller retains ownership of
450 * whatever it passed
451 */
452 if (ah_attr->grh.sgid_attr == old_sgid_attr)
453 return;
454
455 /*
456 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
457 * doesn't see any change in the rdma_ah_attr. If we get here
458 * old_sgid_attr is NULL.
459 */
460 rdma_destroy_ah_attr(ah_attr);
461 }
462
463 static const struct ib_gid_attr *
rdma_update_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_attr)464 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
465 const struct ib_gid_attr *old_attr)
466 {
467 if (old_attr)
468 rdma_put_gid_attr(old_attr);
469 if (ah_attr->ah_flags & IB_AH_GRH) {
470 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
471 return ah_attr->grh.sgid_attr;
472 }
473 return NULL;
474 }
475
_rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,struct ib_udata * udata)476 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
477 struct rdma_ah_attr *ah_attr,
478 struct ib_udata *udata)
479 {
480 struct ib_ah *ah;
481
482 if (!pd->device->create_ah)
483 return ERR_PTR(-EOPNOTSUPP);
484
485 ah = pd->device->create_ah(pd, ah_attr, udata);
486
487 if (!IS_ERR(ah)) {
488 ah->device = pd->device;
489 ah->pd = pd;
490 ah->uobject = NULL;
491 ah->type = ah_attr->type;
492 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
493
494 atomic_inc(&pd->usecnt);
495 }
496
497 return ah;
498 }
499
500 /**
501 * rdma_create_ah - Creates an address handle for the
502 * given address vector.
503 * @pd: The protection domain associated with the address handle.
504 * @ah_attr: The attributes of the address vector.
505 *
506 * It returns 0 on success and returns appropriate error code on error.
507 * The address handle is used to reference a local or global destination
508 * in all UD QP post sends.
509 */
rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr)510 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
511 {
512 const struct ib_gid_attr *old_sgid_attr;
513 struct ib_ah *ah;
514 int ret;
515
516 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
517 if (ret)
518 return ERR_PTR(ret);
519
520 ah = _rdma_create_ah(pd, ah_attr, NULL);
521
522 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
523 return ah;
524 }
525 EXPORT_SYMBOL(rdma_create_ah);
526
527 /**
528 * rdma_create_user_ah - Creates an address handle for the
529 * given address vector.
530 * It resolves destination mac address for ah attribute of RoCE type.
531 * @pd: The protection domain associated with the address handle.
532 * @ah_attr: The attributes of the address vector.
533 * @udata: pointer to user's input output buffer information need by
534 * provider driver.
535 *
536 * It returns 0 on success and returns appropriate error code on error.
537 * The address handle is used to reference a local or global destination
538 * in all UD QP post sends.
539 */
rdma_create_user_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,struct ib_udata * udata)540 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
541 struct rdma_ah_attr *ah_attr,
542 struct ib_udata *udata)
543 {
544 const struct ib_gid_attr *old_sgid_attr;
545 struct ib_ah *ah;
546 int err;
547
548 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
549 if (err)
550 return ERR_PTR(err);
551
552 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
553 err = ib_resolve_eth_dmac(pd->device, ah_attr);
554 if (err) {
555 ah = ERR_PTR(err);
556 goto out;
557 }
558 }
559
560 ah = _rdma_create_ah(pd, ah_attr, udata);
561
562 out:
563 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
564 return ah;
565 }
566 EXPORT_SYMBOL(rdma_create_user_ah);
567
ib_get_rdma_header_version(const union rdma_network_hdr * hdr)568 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
569 {
570 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
571 struct iphdr ip4h_checked;
572 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
573
574 /* If it's IPv6, the version must be 6, otherwise, the first
575 * 20 bytes (before the IPv4 header) are garbled.
576 */
577 if (ip6h->version != 6)
578 return (ip4h->version == 4) ? 4 : 0;
579 /* version may be 6 or 4 because the first 20 bytes could be garbled */
580
581 /* RoCE v2 requires no options, thus header length
582 * must be 5 words
583 */
584 if (ip4h->ihl != 5)
585 return 6;
586
587 /* Verify checksum.
588 * We can't write on scattered buffers so we need to copy to
589 * temp buffer.
590 */
591 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
592 ip4h_checked.check = 0;
593 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
594 /* if IPv4 header checksum is OK, believe it */
595 if (ip4h->check == ip4h_checked.check)
596 return 4;
597 return 6;
598 }
599 EXPORT_SYMBOL(ib_get_rdma_header_version);
600
ib_get_net_type_by_grh(struct ib_device * device,u8 port_num,const struct ib_grh * grh)601 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
602 u8 port_num,
603 const struct ib_grh *grh)
604 {
605 int grh_version;
606
607 if (rdma_protocol_ib(device, port_num))
608 return RDMA_NETWORK_IB;
609
610 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
611
612 if (grh_version == 4)
613 return RDMA_NETWORK_IPV4;
614
615 if (grh->next_hdr == IPPROTO_UDP)
616 return RDMA_NETWORK_IPV6;
617
618 return RDMA_NETWORK_ROCE_V1;
619 }
620
621 struct find_gid_index_context {
622 u16 vlan_id;
623 enum ib_gid_type gid_type;
624 };
625
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)626 static bool find_gid_index(const union ib_gid *gid,
627 const struct ib_gid_attr *gid_attr,
628 void *context)
629 {
630 struct find_gid_index_context *ctx = context;
631
632 if (ctx->gid_type != gid_attr->gid_type)
633 return false;
634
635 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
636 (is_vlan_dev(gid_attr->ndev) &&
637 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
638 return false;
639
640 return true;
641 }
642
643 static const struct ib_gid_attr *
get_sgid_attr_from_eth(struct ib_device * device,u8 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type)644 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
645 u16 vlan_id, const union ib_gid *sgid,
646 enum ib_gid_type gid_type)
647 {
648 struct find_gid_index_context context = {.vlan_id = vlan_id,
649 .gid_type = gid_type};
650
651 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
652 &context);
653 }
654
ib_get_gids_from_rdma_hdr(const union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)655 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
656 enum rdma_network_type net_type,
657 union ib_gid *sgid, union ib_gid *dgid)
658 {
659 struct sockaddr_in src_in;
660 struct sockaddr_in dst_in;
661 __be32 src_saddr, dst_saddr;
662
663 if (!sgid || !dgid)
664 return -EINVAL;
665
666 if (net_type == RDMA_NETWORK_IPV4) {
667 memcpy(&src_in.sin_addr.s_addr,
668 &hdr->roce4grh.saddr, 4);
669 memcpy(&dst_in.sin_addr.s_addr,
670 &hdr->roce4grh.daddr, 4);
671 src_saddr = src_in.sin_addr.s_addr;
672 dst_saddr = dst_in.sin_addr.s_addr;
673 ipv6_addr_set_v4mapped(src_saddr,
674 (struct in6_addr *)sgid);
675 ipv6_addr_set_v4mapped(dst_saddr,
676 (struct in6_addr *)dgid);
677 return 0;
678 } else if (net_type == RDMA_NETWORK_IPV6 ||
679 net_type == RDMA_NETWORK_IB) {
680 *dgid = hdr->ibgrh.dgid;
681 *sgid = hdr->ibgrh.sgid;
682 return 0;
683 } else {
684 return -EINVAL;
685 }
686 }
687 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
688
689 /* Resolve destination mac address and hop limit for unicast destination
690 * GID entry, considering the source GID entry as well.
691 * ah_attribute must have have valid port_num, sgid_index.
692 */
ib_resolve_unicast_gid_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)693 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
694 struct rdma_ah_attr *ah_attr)
695 {
696 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
697 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
698 int hop_limit = 0xff;
699 int ret = 0;
700
701 /* If destination is link local and source GID is RoCEv1,
702 * IP stack is not used.
703 */
704 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
705 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
706 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
707 ah_attr->roce.dmac);
708 return ret;
709 }
710
711 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
712 ah_attr->roce.dmac,
713 sgid_attr->ndev, &hop_limit);
714
715 grh->hop_limit = hop_limit;
716 return ret;
717 }
718
719 /*
720 * This function initializes address handle attributes from the incoming packet.
721 * Incoming packet has dgid of the receiver node on which this code is
722 * getting executed and, sgid contains the GID of the sender.
723 *
724 * When resolving mac address of destination, the arrived dgid is used
725 * as sgid and, sgid is used as dgid because sgid contains destinations
726 * GID whom to respond to.
727 *
728 * On success the caller is responsible to call rdma_destroy_ah_attr on the
729 * attr.
730 */
ib_init_ah_attr_from_wc(struct ib_device * device,u8 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct rdma_ah_attr * ah_attr)731 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
732 const struct ib_wc *wc, const struct ib_grh *grh,
733 struct rdma_ah_attr *ah_attr)
734 {
735 u32 flow_class;
736 int ret;
737 enum rdma_network_type net_type = RDMA_NETWORK_IB;
738 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
739 const struct ib_gid_attr *sgid_attr;
740 int hoplimit = 0xff;
741 union ib_gid dgid;
742 union ib_gid sgid;
743
744 might_sleep();
745
746 memset(ah_attr, 0, sizeof *ah_attr);
747 ah_attr->type = rdma_ah_find_type(device, port_num);
748 if (rdma_cap_eth_ah(device, port_num)) {
749 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
750 net_type = wc->network_hdr_type;
751 else
752 net_type = ib_get_net_type_by_grh(device, port_num, grh);
753 gid_type = ib_network_to_gid_type(net_type);
754 }
755 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
756 &sgid, &dgid);
757 if (ret)
758 return ret;
759
760 rdma_ah_set_sl(ah_attr, wc->sl);
761 rdma_ah_set_port_num(ah_attr, port_num);
762
763 if (rdma_protocol_roce(device, port_num)) {
764 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
765 wc->vlan_id : 0xffff;
766
767 if (!(wc->wc_flags & IB_WC_GRH))
768 return -EPROTOTYPE;
769
770 sgid_attr = get_sgid_attr_from_eth(device, port_num,
771 vlan_id, &dgid,
772 gid_type);
773 if (IS_ERR(sgid_attr))
774 return PTR_ERR(sgid_attr);
775
776 flow_class = be32_to_cpu(grh->version_tclass_flow);
777 rdma_move_grh_sgid_attr(ah_attr,
778 &sgid,
779 flow_class & 0xFFFFF,
780 hoplimit,
781 (flow_class >> 20) & 0xFF,
782 sgid_attr);
783
784 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
785 if (ret)
786 rdma_destroy_ah_attr(ah_attr);
787
788 return ret;
789 } else {
790 rdma_ah_set_dlid(ah_attr, wc->slid);
791 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
792
793 if ((wc->wc_flags & IB_WC_GRH) == 0)
794 return 0;
795
796 if (dgid.global.interface_id !=
797 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
798 sgid_attr = rdma_find_gid_by_port(
799 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
800 } else
801 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
802
803 if (IS_ERR(sgid_attr))
804 return PTR_ERR(sgid_attr);
805 flow_class = be32_to_cpu(grh->version_tclass_flow);
806 rdma_move_grh_sgid_attr(ah_attr,
807 &sgid,
808 flow_class & 0xFFFFF,
809 hoplimit,
810 (flow_class >> 20) & 0xFF,
811 sgid_attr);
812
813 return 0;
814 }
815 }
816 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
817
818 /**
819 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
820 * of the reference
821 *
822 * @attr: Pointer to AH attribute structure
823 * @dgid: Destination GID
824 * @flow_label: Flow label
825 * @hop_limit: Hop limit
826 * @traffic_class: traffic class
827 * @sgid_attr: Pointer to SGID attribute
828 *
829 * This takes ownership of the sgid_attr reference. The caller must ensure
830 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
831 * calling this function.
832 */
rdma_move_grh_sgid_attr(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 hop_limit,u8 traffic_class,const struct ib_gid_attr * sgid_attr)833 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
834 u32 flow_label, u8 hop_limit, u8 traffic_class,
835 const struct ib_gid_attr *sgid_attr)
836 {
837 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
838 traffic_class);
839 attr->grh.sgid_attr = sgid_attr;
840 }
841 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
842
843 /**
844 * rdma_destroy_ah_attr - Release reference to SGID attribute of
845 * ah attribute.
846 * @ah_attr: Pointer to ah attribute
847 *
848 * Release reference to the SGID attribute of the ah attribute if it is
849 * non NULL. It is safe to call this multiple times, and safe to call it on
850 * a zero initialized ah_attr.
851 */
rdma_destroy_ah_attr(struct rdma_ah_attr * ah_attr)852 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
853 {
854 if (ah_attr->grh.sgid_attr) {
855 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
856 ah_attr->grh.sgid_attr = NULL;
857 }
858 }
859 EXPORT_SYMBOL(rdma_destroy_ah_attr);
860
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u8 port_num)861 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
862 const struct ib_grh *grh, u8 port_num)
863 {
864 struct rdma_ah_attr ah_attr;
865 struct ib_ah *ah;
866 int ret;
867
868 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
869 if (ret)
870 return ERR_PTR(ret);
871
872 ah = rdma_create_ah(pd, &ah_attr);
873
874 rdma_destroy_ah_attr(&ah_attr);
875 return ah;
876 }
877 EXPORT_SYMBOL(ib_create_ah_from_wc);
878
rdma_modify_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)879 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
880 {
881 const struct ib_gid_attr *old_sgid_attr;
882 int ret;
883
884 if (ah->type != ah_attr->type)
885 return -EINVAL;
886
887 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
888 if (ret)
889 return ret;
890
891 ret = ah->device->modify_ah ?
892 ah->device->modify_ah(ah, ah_attr) :
893 -EOPNOTSUPP;
894
895 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
896 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
897 return ret;
898 }
899 EXPORT_SYMBOL(rdma_modify_ah);
900
rdma_query_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)901 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
902 {
903 ah_attr->grh.sgid_attr = NULL;
904
905 return ah->device->query_ah ?
906 ah->device->query_ah(ah, ah_attr) :
907 -EOPNOTSUPP;
908 }
909 EXPORT_SYMBOL(rdma_query_ah);
910
rdma_destroy_ah(struct ib_ah * ah)911 int rdma_destroy_ah(struct ib_ah *ah)
912 {
913 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
914 struct ib_pd *pd;
915 int ret;
916
917 pd = ah->pd;
918 ret = ah->device->destroy_ah(ah);
919 if (!ret) {
920 atomic_dec(&pd->usecnt);
921 if (sgid_attr)
922 rdma_put_gid_attr(sgid_attr);
923 }
924
925 return ret;
926 }
927 EXPORT_SYMBOL(rdma_destroy_ah);
928
929 /* Shared receive queues */
930
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)931 struct ib_srq *ib_create_srq(struct ib_pd *pd,
932 struct ib_srq_init_attr *srq_init_attr)
933 {
934 struct ib_srq *srq;
935
936 if (!pd->device->create_srq)
937 return ERR_PTR(-EOPNOTSUPP);
938
939 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
940
941 if (!IS_ERR(srq)) {
942 srq->device = pd->device;
943 srq->pd = pd;
944 srq->uobject = NULL;
945 srq->event_handler = srq_init_attr->event_handler;
946 srq->srq_context = srq_init_attr->srq_context;
947 srq->srq_type = srq_init_attr->srq_type;
948 if (ib_srq_has_cq(srq->srq_type)) {
949 srq->ext.cq = srq_init_attr->ext.cq;
950 atomic_inc(&srq->ext.cq->usecnt);
951 }
952 if (srq->srq_type == IB_SRQT_XRC) {
953 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
954 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
955 }
956 atomic_inc(&pd->usecnt);
957 atomic_set(&srq->usecnt, 0);
958 }
959
960 return srq;
961 }
962 EXPORT_SYMBOL(ib_create_srq);
963
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)964 int ib_modify_srq(struct ib_srq *srq,
965 struct ib_srq_attr *srq_attr,
966 enum ib_srq_attr_mask srq_attr_mask)
967 {
968 return srq->device->modify_srq ?
969 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
970 -EOPNOTSUPP;
971 }
972 EXPORT_SYMBOL(ib_modify_srq);
973
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)974 int ib_query_srq(struct ib_srq *srq,
975 struct ib_srq_attr *srq_attr)
976 {
977 return srq->device->query_srq ?
978 srq->device->query_srq(srq, srq_attr) : -EOPNOTSUPP;
979 }
980 EXPORT_SYMBOL(ib_query_srq);
981
ib_destroy_srq(struct ib_srq * srq)982 int ib_destroy_srq(struct ib_srq *srq)
983 {
984 struct ib_pd *pd;
985 enum ib_srq_type srq_type;
986 struct ib_xrcd *uninitialized_var(xrcd);
987 struct ib_cq *uninitialized_var(cq);
988 int ret;
989
990 if (atomic_read(&srq->usecnt))
991 return -EBUSY;
992
993 pd = srq->pd;
994 srq_type = srq->srq_type;
995 if (ib_srq_has_cq(srq_type))
996 cq = srq->ext.cq;
997 if (srq_type == IB_SRQT_XRC)
998 xrcd = srq->ext.xrc.xrcd;
999
1000 ret = srq->device->destroy_srq(srq);
1001 if (!ret) {
1002 atomic_dec(&pd->usecnt);
1003 if (srq_type == IB_SRQT_XRC)
1004 atomic_dec(&xrcd->usecnt);
1005 if (ib_srq_has_cq(srq_type))
1006 atomic_dec(&cq->usecnt);
1007 }
1008
1009 return ret;
1010 }
1011 EXPORT_SYMBOL(ib_destroy_srq);
1012
1013 /* Queue pairs */
1014
__ib_shared_qp_event_handler(struct ib_event * event,void * context)1015 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1016 {
1017 struct ib_qp *qp = context;
1018 unsigned long flags;
1019
1020 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1021 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1022 if (event->element.qp->event_handler)
1023 event->element.qp->event_handler(event, event->element.qp->qp_context);
1024 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1025 }
1026
__ib_insert_xrcd_qp(struct ib_xrcd * xrcd,struct ib_qp * qp)1027 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1028 {
1029 mutex_lock(&xrcd->tgt_qp_mutex);
1030 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1031 mutex_unlock(&xrcd->tgt_qp_mutex);
1032 }
1033
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)1034 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1035 void (*event_handler)(struct ib_event *, void *),
1036 void *qp_context)
1037 {
1038 struct ib_qp *qp;
1039 unsigned long flags;
1040 int err;
1041
1042 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1043 if (!qp)
1044 return ERR_PTR(-ENOMEM);
1045
1046 qp->real_qp = real_qp;
1047 err = ib_open_shared_qp_security(qp, real_qp->device);
1048 if (err) {
1049 kfree(qp);
1050 return ERR_PTR(err);
1051 }
1052
1053 qp->real_qp = real_qp;
1054 atomic_inc(&real_qp->usecnt);
1055 qp->device = real_qp->device;
1056 qp->event_handler = event_handler;
1057 qp->qp_context = qp_context;
1058 qp->qp_num = real_qp->qp_num;
1059 qp->qp_type = real_qp->qp_type;
1060
1061 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1062 list_add(&qp->open_list, &real_qp->open_list);
1063 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1064
1065 return qp;
1066 }
1067
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)1068 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1069 struct ib_qp_open_attr *qp_open_attr)
1070 {
1071 struct ib_qp *qp, *real_qp;
1072
1073 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1074 return ERR_PTR(-EINVAL);
1075
1076 qp = ERR_PTR(-EINVAL);
1077 mutex_lock(&xrcd->tgt_qp_mutex);
1078 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1079 if (real_qp->qp_num == qp_open_attr->qp_num) {
1080 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1081 qp_open_attr->qp_context);
1082 break;
1083 }
1084 }
1085 mutex_unlock(&xrcd->tgt_qp_mutex);
1086 return qp;
1087 }
1088 EXPORT_SYMBOL(ib_open_qp);
1089
ib_create_xrc_qp(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr)1090 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
1091 struct ib_qp_init_attr *qp_init_attr)
1092 {
1093 struct ib_qp *real_qp = qp;
1094
1095 qp->event_handler = __ib_shared_qp_event_handler;
1096 qp->qp_context = qp;
1097 qp->pd = NULL;
1098 qp->send_cq = qp->recv_cq = NULL;
1099 qp->srq = NULL;
1100 qp->xrcd = qp_init_attr->xrcd;
1101 atomic_inc(&qp_init_attr->xrcd->usecnt);
1102 INIT_LIST_HEAD(&qp->open_list);
1103
1104 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1105 qp_init_attr->qp_context);
1106 if (!IS_ERR(qp))
1107 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1108 else
1109 real_qp->device->destroy_qp(real_qp);
1110 return qp;
1111 }
1112
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr)1113 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1114 struct ib_qp_init_attr *qp_init_attr)
1115 {
1116 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1117 struct ib_qp *qp;
1118 int ret;
1119
1120 if (qp_init_attr->rwq_ind_tbl &&
1121 (qp_init_attr->recv_cq ||
1122 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1123 qp_init_attr->cap.max_recv_sge))
1124 return ERR_PTR(-EINVAL);
1125
1126 /*
1127 * If the callers is using the RDMA API calculate the resources
1128 * needed for the RDMA READ/WRITE operations.
1129 *
1130 * Note that these callers need to pass in a port number.
1131 */
1132 if (qp_init_attr->cap.max_rdma_ctxs)
1133 rdma_rw_init_qp(device, qp_init_attr);
1134
1135 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1136 if (IS_ERR(qp))
1137 return qp;
1138
1139 ret = ib_create_qp_security(qp, device);
1140 if (ret) {
1141 ib_destroy_qp(qp);
1142 return ERR_PTR(ret);
1143 }
1144
1145 qp->real_qp = qp;
1146 qp->qp_type = qp_init_attr->qp_type;
1147 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1148
1149 atomic_set(&qp->usecnt, 0);
1150 qp->mrs_used = 0;
1151 spin_lock_init(&qp->mr_lock);
1152 INIT_LIST_HEAD(&qp->rdma_mrs);
1153 INIT_LIST_HEAD(&qp->sig_mrs);
1154 qp->port = 0;
1155
1156 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
1157 return ib_create_xrc_qp(qp, qp_init_attr);
1158
1159 qp->event_handler = qp_init_attr->event_handler;
1160 qp->qp_context = qp_init_attr->qp_context;
1161 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1162 qp->recv_cq = NULL;
1163 qp->srq = NULL;
1164 } else {
1165 qp->recv_cq = qp_init_attr->recv_cq;
1166 if (qp_init_attr->recv_cq)
1167 atomic_inc(&qp_init_attr->recv_cq->usecnt);
1168 qp->srq = qp_init_attr->srq;
1169 if (qp->srq)
1170 atomic_inc(&qp_init_attr->srq->usecnt);
1171 }
1172
1173 qp->send_cq = qp_init_attr->send_cq;
1174 qp->xrcd = NULL;
1175
1176 atomic_inc(&pd->usecnt);
1177 if (qp_init_attr->send_cq)
1178 atomic_inc(&qp_init_attr->send_cq->usecnt);
1179 if (qp_init_attr->rwq_ind_tbl)
1180 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1181
1182 if (qp_init_attr->cap.max_rdma_ctxs) {
1183 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1184 if (ret) {
1185 pr_err("failed to init MR pool ret= %d\n", ret);
1186 ib_destroy_qp(qp);
1187 return ERR_PTR(ret);
1188 }
1189 }
1190
1191 /*
1192 * Note: all hw drivers guarantee that max_send_sge is lower than
1193 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1194 * max_send_sge <= max_sge_rd.
1195 */
1196 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1197 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1198 device->attrs.max_sge_rd);
1199
1200 return qp;
1201 }
1202 EXPORT_SYMBOL(ib_create_qp);
1203
1204 static const struct {
1205 int valid;
1206 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1207 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1208 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1209 [IB_QPS_RESET] = {
1210 [IB_QPS_RESET] = { .valid = 1 },
1211 [IB_QPS_INIT] = {
1212 .valid = 1,
1213 .req_param = {
1214 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1215 IB_QP_PORT |
1216 IB_QP_QKEY),
1217 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1218 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1219 IB_QP_PORT |
1220 IB_QP_ACCESS_FLAGS),
1221 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1222 IB_QP_PORT |
1223 IB_QP_ACCESS_FLAGS),
1224 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1225 IB_QP_PORT |
1226 IB_QP_ACCESS_FLAGS),
1227 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1228 IB_QP_PORT |
1229 IB_QP_ACCESS_FLAGS),
1230 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1231 IB_QP_QKEY),
1232 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1233 IB_QP_QKEY),
1234 }
1235 },
1236 },
1237 [IB_QPS_INIT] = {
1238 [IB_QPS_RESET] = { .valid = 1 },
1239 [IB_QPS_ERR] = { .valid = 1 },
1240 [IB_QPS_INIT] = {
1241 .valid = 1,
1242 .opt_param = {
1243 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1244 IB_QP_PORT |
1245 IB_QP_QKEY),
1246 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1247 IB_QP_PORT |
1248 IB_QP_ACCESS_FLAGS),
1249 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1250 IB_QP_PORT |
1251 IB_QP_ACCESS_FLAGS),
1252 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1253 IB_QP_PORT |
1254 IB_QP_ACCESS_FLAGS),
1255 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1256 IB_QP_PORT |
1257 IB_QP_ACCESS_FLAGS),
1258 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1259 IB_QP_QKEY),
1260 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1261 IB_QP_QKEY),
1262 }
1263 },
1264 [IB_QPS_RTR] = {
1265 .valid = 1,
1266 .req_param = {
1267 [IB_QPT_UC] = (IB_QP_AV |
1268 IB_QP_PATH_MTU |
1269 IB_QP_DEST_QPN |
1270 IB_QP_RQ_PSN),
1271 [IB_QPT_RC] = (IB_QP_AV |
1272 IB_QP_PATH_MTU |
1273 IB_QP_DEST_QPN |
1274 IB_QP_RQ_PSN |
1275 IB_QP_MAX_DEST_RD_ATOMIC |
1276 IB_QP_MIN_RNR_TIMER),
1277 [IB_QPT_XRC_INI] = (IB_QP_AV |
1278 IB_QP_PATH_MTU |
1279 IB_QP_DEST_QPN |
1280 IB_QP_RQ_PSN),
1281 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1282 IB_QP_PATH_MTU |
1283 IB_QP_DEST_QPN |
1284 IB_QP_RQ_PSN |
1285 IB_QP_MAX_DEST_RD_ATOMIC |
1286 IB_QP_MIN_RNR_TIMER),
1287 },
1288 .opt_param = {
1289 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1290 IB_QP_QKEY),
1291 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1292 IB_QP_ACCESS_FLAGS |
1293 IB_QP_PKEY_INDEX),
1294 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1295 IB_QP_ACCESS_FLAGS |
1296 IB_QP_PKEY_INDEX),
1297 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1298 IB_QP_ACCESS_FLAGS |
1299 IB_QP_PKEY_INDEX),
1300 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1301 IB_QP_ACCESS_FLAGS |
1302 IB_QP_PKEY_INDEX),
1303 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1304 IB_QP_QKEY),
1305 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1306 IB_QP_QKEY),
1307 },
1308 },
1309 },
1310 [IB_QPS_RTR] = {
1311 [IB_QPS_RESET] = { .valid = 1 },
1312 [IB_QPS_ERR] = { .valid = 1 },
1313 [IB_QPS_RTS] = {
1314 .valid = 1,
1315 .req_param = {
1316 [IB_QPT_UD] = IB_QP_SQ_PSN,
1317 [IB_QPT_UC] = IB_QP_SQ_PSN,
1318 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1319 IB_QP_RETRY_CNT |
1320 IB_QP_RNR_RETRY |
1321 IB_QP_SQ_PSN |
1322 IB_QP_MAX_QP_RD_ATOMIC),
1323 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1324 IB_QP_RETRY_CNT |
1325 IB_QP_RNR_RETRY |
1326 IB_QP_SQ_PSN |
1327 IB_QP_MAX_QP_RD_ATOMIC),
1328 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1329 IB_QP_SQ_PSN),
1330 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1331 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1332 },
1333 .opt_param = {
1334 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1335 IB_QP_QKEY),
1336 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1337 IB_QP_ALT_PATH |
1338 IB_QP_ACCESS_FLAGS |
1339 IB_QP_PATH_MIG_STATE),
1340 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1341 IB_QP_ALT_PATH |
1342 IB_QP_ACCESS_FLAGS |
1343 IB_QP_MIN_RNR_TIMER |
1344 IB_QP_PATH_MIG_STATE),
1345 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1346 IB_QP_ALT_PATH |
1347 IB_QP_ACCESS_FLAGS |
1348 IB_QP_PATH_MIG_STATE),
1349 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1350 IB_QP_ALT_PATH |
1351 IB_QP_ACCESS_FLAGS |
1352 IB_QP_MIN_RNR_TIMER |
1353 IB_QP_PATH_MIG_STATE),
1354 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1355 IB_QP_QKEY),
1356 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1357 IB_QP_QKEY),
1358 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1359 }
1360 }
1361 },
1362 [IB_QPS_RTS] = {
1363 [IB_QPS_RESET] = { .valid = 1 },
1364 [IB_QPS_ERR] = { .valid = 1 },
1365 [IB_QPS_RTS] = {
1366 .valid = 1,
1367 .opt_param = {
1368 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1369 IB_QP_QKEY),
1370 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1371 IB_QP_ACCESS_FLAGS |
1372 IB_QP_ALT_PATH |
1373 IB_QP_PATH_MIG_STATE),
1374 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1375 IB_QP_ACCESS_FLAGS |
1376 IB_QP_ALT_PATH |
1377 IB_QP_PATH_MIG_STATE |
1378 IB_QP_MIN_RNR_TIMER),
1379 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1380 IB_QP_ACCESS_FLAGS |
1381 IB_QP_ALT_PATH |
1382 IB_QP_PATH_MIG_STATE),
1383 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1384 IB_QP_ACCESS_FLAGS |
1385 IB_QP_ALT_PATH |
1386 IB_QP_PATH_MIG_STATE |
1387 IB_QP_MIN_RNR_TIMER),
1388 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1389 IB_QP_QKEY),
1390 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1391 IB_QP_QKEY),
1392 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1393 }
1394 },
1395 [IB_QPS_SQD] = {
1396 .valid = 1,
1397 .opt_param = {
1398 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1399 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1400 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1401 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1402 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1403 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1404 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1405 }
1406 },
1407 },
1408 [IB_QPS_SQD] = {
1409 [IB_QPS_RESET] = { .valid = 1 },
1410 [IB_QPS_ERR] = { .valid = 1 },
1411 [IB_QPS_RTS] = {
1412 .valid = 1,
1413 .opt_param = {
1414 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1415 IB_QP_QKEY),
1416 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1417 IB_QP_ALT_PATH |
1418 IB_QP_ACCESS_FLAGS |
1419 IB_QP_PATH_MIG_STATE),
1420 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1421 IB_QP_ALT_PATH |
1422 IB_QP_ACCESS_FLAGS |
1423 IB_QP_MIN_RNR_TIMER |
1424 IB_QP_PATH_MIG_STATE),
1425 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1426 IB_QP_ALT_PATH |
1427 IB_QP_ACCESS_FLAGS |
1428 IB_QP_PATH_MIG_STATE),
1429 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1430 IB_QP_ALT_PATH |
1431 IB_QP_ACCESS_FLAGS |
1432 IB_QP_MIN_RNR_TIMER |
1433 IB_QP_PATH_MIG_STATE),
1434 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1435 IB_QP_QKEY),
1436 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1437 IB_QP_QKEY),
1438 }
1439 },
1440 [IB_QPS_SQD] = {
1441 .valid = 1,
1442 .opt_param = {
1443 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1444 IB_QP_QKEY),
1445 [IB_QPT_UC] = (IB_QP_AV |
1446 IB_QP_ALT_PATH |
1447 IB_QP_ACCESS_FLAGS |
1448 IB_QP_PKEY_INDEX |
1449 IB_QP_PATH_MIG_STATE),
1450 [IB_QPT_RC] = (IB_QP_PORT |
1451 IB_QP_AV |
1452 IB_QP_TIMEOUT |
1453 IB_QP_RETRY_CNT |
1454 IB_QP_RNR_RETRY |
1455 IB_QP_MAX_QP_RD_ATOMIC |
1456 IB_QP_MAX_DEST_RD_ATOMIC |
1457 IB_QP_ALT_PATH |
1458 IB_QP_ACCESS_FLAGS |
1459 IB_QP_PKEY_INDEX |
1460 IB_QP_MIN_RNR_TIMER |
1461 IB_QP_PATH_MIG_STATE),
1462 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1463 IB_QP_AV |
1464 IB_QP_TIMEOUT |
1465 IB_QP_RETRY_CNT |
1466 IB_QP_RNR_RETRY |
1467 IB_QP_MAX_QP_RD_ATOMIC |
1468 IB_QP_ALT_PATH |
1469 IB_QP_ACCESS_FLAGS |
1470 IB_QP_PKEY_INDEX |
1471 IB_QP_PATH_MIG_STATE),
1472 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1473 IB_QP_AV |
1474 IB_QP_TIMEOUT |
1475 IB_QP_MAX_DEST_RD_ATOMIC |
1476 IB_QP_ALT_PATH |
1477 IB_QP_ACCESS_FLAGS |
1478 IB_QP_PKEY_INDEX |
1479 IB_QP_MIN_RNR_TIMER |
1480 IB_QP_PATH_MIG_STATE),
1481 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1482 IB_QP_QKEY),
1483 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1484 IB_QP_QKEY),
1485 }
1486 }
1487 },
1488 [IB_QPS_SQE] = {
1489 [IB_QPS_RESET] = { .valid = 1 },
1490 [IB_QPS_ERR] = { .valid = 1 },
1491 [IB_QPS_RTS] = {
1492 .valid = 1,
1493 .opt_param = {
1494 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1495 IB_QP_QKEY),
1496 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1497 IB_QP_ACCESS_FLAGS),
1498 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1499 IB_QP_QKEY),
1500 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1501 IB_QP_QKEY),
1502 }
1503 }
1504 },
1505 [IB_QPS_ERR] = {
1506 [IB_QPS_RESET] = { .valid = 1 },
1507 [IB_QPS_ERR] = { .valid = 1 }
1508 }
1509 };
1510
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask,enum rdma_link_layer ll)1511 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1512 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1513 enum rdma_link_layer ll)
1514 {
1515 enum ib_qp_attr_mask req_param, opt_param;
1516
1517 if (mask & IB_QP_CUR_STATE &&
1518 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1519 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1520 return false;
1521
1522 if (!qp_state_table[cur_state][next_state].valid)
1523 return false;
1524
1525 req_param = qp_state_table[cur_state][next_state].req_param[type];
1526 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1527
1528 if ((mask & req_param) != req_param)
1529 return false;
1530
1531 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1532 return false;
1533
1534 return true;
1535 }
1536 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1537
1538 /**
1539 * ib_resolve_eth_dmac - Resolve destination mac address
1540 * @device: Device to consider
1541 * @ah_attr: address handle attribute which describes the
1542 * source and destination parameters
1543 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1544 * returns 0 on success or appropriate error code. It initializes the
1545 * necessary ah_attr fields when call is successful.
1546 */
ib_resolve_eth_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)1547 static int ib_resolve_eth_dmac(struct ib_device *device,
1548 struct rdma_ah_attr *ah_attr)
1549 {
1550 int ret = 0;
1551
1552 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1553 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1554 __be32 addr = 0;
1555
1556 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1557 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1558 } else {
1559 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1560 (char *)ah_attr->roce.dmac);
1561 }
1562 } else {
1563 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1564 }
1565 return ret;
1566 }
1567
is_qp_type_connected(const struct ib_qp * qp)1568 static bool is_qp_type_connected(const struct ib_qp *qp)
1569 {
1570 return (qp->qp_type == IB_QPT_UC ||
1571 qp->qp_type == IB_QPT_RC ||
1572 qp->qp_type == IB_QPT_XRC_INI ||
1573 qp->qp_type == IB_QPT_XRC_TGT);
1574 }
1575
1576 /**
1577 * IB core internal function to perform QP attributes modification.
1578 */
_ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1579 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1580 int attr_mask, struct ib_udata *udata)
1581 {
1582 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1583 const struct ib_gid_attr *old_sgid_attr_av;
1584 const struct ib_gid_attr *old_sgid_attr_alt_av;
1585 int ret;
1586
1587 if (attr_mask & IB_QP_AV) {
1588 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1589 &old_sgid_attr_av);
1590 if (ret)
1591 return ret;
1592 }
1593 if (attr_mask & IB_QP_ALT_PATH) {
1594 /*
1595 * FIXME: This does not track the migration state, so if the
1596 * user loads a new alternate path after the HW has migrated
1597 * from primary->alternate we will keep the wrong
1598 * references. This is OK for IB because the reference
1599 * counting does not serve any functional purpose.
1600 */
1601 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1602 &old_sgid_attr_alt_av);
1603 if (ret)
1604 goto out_av;
1605
1606 /*
1607 * Today the core code can only handle alternate paths and APM
1608 * for IB. Ban them in roce mode.
1609 */
1610 if (!(rdma_protocol_ib(qp->device,
1611 attr->alt_ah_attr.port_num) &&
1612 rdma_protocol_ib(qp->device, port))) {
1613 ret = EINVAL;
1614 goto out;
1615 }
1616 }
1617
1618 /*
1619 * If the user provided the qp_attr then we have to resolve it. Kernel
1620 * users have to provide already resolved rdma_ah_attr's
1621 */
1622 if (udata && (attr_mask & IB_QP_AV) &&
1623 attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1624 is_qp_type_connected(qp)) {
1625 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1626 if (ret)
1627 goto out;
1628 }
1629
1630 if (rdma_ib_or_roce(qp->device, port)) {
1631 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1632 pr_warn("%s: %s rq_psn overflow, masking to 24 bits\n",
1633 __func__, qp->device->name);
1634 attr->rq_psn &= 0xffffff;
1635 }
1636
1637 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1638 pr_warn("%s: %s sq_psn overflow, masking to 24 bits\n",
1639 __func__, qp->device->name);
1640 attr->sq_psn &= 0xffffff;
1641 }
1642 }
1643
1644 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1645 if (ret)
1646 goto out;
1647
1648 if (attr_mask & IB_QP_PORT)
1649 qp->port = attr->port_num;
1650 if (attr_mask & IB_QP_AV)
1651 qp->av_sgid_attr =
1652 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1653 if (attr_mask & IB_QP_ALT_PATH)
1654 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1655 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1656
1657 out:
1658 if (attr_mask & IB_QP_ALT_PATH)
1659 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1660 out_av:
1661 if (attr_mask & IB_QP_AV)
1662 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1663 return ret;
1664 }
1665
1666 /**
1667 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1668 * @ib_qp: The QP to modify.
1669 * @attr: On input, specifies the QP attributes to modify. On output,
1670 * the current values of selected QP attributes are returned.
1671 * @attr_mask: A bit-mask used to specify which attributes of the QP
1672 * are being modified.
1673 * @udata: pointer to user's input output buffer information
1674 * are being modified.
1675 * It returns 0 on success and returns appropriate error code on error.
1676 */
ib_modify_qp_with_udata(struct ib_qp * ib_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1677 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1678 int attr_mask, struct ib_udata *udata)
1679 {
1680 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1681 }
1682 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1683
ib_get_eth_speed(struct ib_device * dev,u8 port_num,u8 * speed,u8 * width)1684 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1685 {
1686 int rc;
1687 u32 netdev_speed;
1688 struct net_device *netdev;
1689 struct ethtool_link_ksettings lksettings;
1690
1691 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1692 return -EINVAL;
1693
1694 if (!dev->get_netdev)
1695 return -EOPNOTSUPP;
1696
1697 netdev = dev->get_netdev(dev, port_num);
1698 if (!netdev)
1699 return -ENODEV;
1700
1701 rtnl_lock();
1702 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1703 rtnl_unlock();
1704
1705 dev_put(netdev);
1706
1707 if (!rc) {
1708 netdev_speed = lksettings.base.speed;
1709 } else {
1710 netdev_speed = SPEED_1000;
1711 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1712 netdev_speed);
1713 }
1714
1715 if (netdev_speed <= SPEED_1000) {
1716 *width = IB_WIDTH_1X;
1717 *speed = IB_SPEED_SDR;
1718 } else if (netdev_speed <= SPEED_10000) {
1719 *width = IB_WIDTH_1X;
1720 *speed = IB_SPEED_FDR10;
1721 } else if (netdev_speed <= SPEED_20000) {
1722 *width = IB_WIDTH_4X;
1723 *speed = IB_SPEED_DDR;
1724 } else if (netdev_speed <= SPEED_25000) {
1725 *width = IB_WIDTH_1X;
1726 *speed = IB_SPEED_EDR;
1727 } else if (netdev_speed <= SPEED_40000) {
1728 *width = IB_WIDTH_4X;
1729 *speed = IB_SPEED_FDR10;
1730 } else {
1731 *width = IB_WIDTH_4X;
1732 *speed = IB_SPEED_EDR;
1733 }
1734
1735 return 0;
1736 }
1737 EXPORT_SYMBOL(ib_get_eth_speed);
1738
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)1739 int ib_modify_qp(struct ib_qp *qp,
1740 struct ib_qp_attr *qp_attr,
1741 int qp_attr_mask)
1742 {
1743 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1744 }
1745 EXPORT_SYMBOL(ib_modify_qp);
1746
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)1747 int ib_query_qp(struct ib_qp *qp,
1748 struct ib_qp_attr *qp_attr,
1749 int qp_attr_mask,
1750 struct ib_qp_init_attr *qp_init_attr)
1751 {
1752 qp_attr->ah_attr.grh.sgid_attr = NULL;
1753 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1754
1755 return qp->device->query_qp ?
1756 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1757 -EOPNOTSUPP;
1758 }
1759 EXPORT_SYMBOL(ib_query_qp);
1760
ib_close_qp(struct ib_qp * qp)1761 int ib_close_qp(struct ib_qp *qp)
1762 {
1763 struct ib_qp *real_qp;
1764 unsigned long flags;
1765
1766 real_qp = qp->real_qp;
1767 if (real_qp == qp)
1768 return -EINVAL;
1769
1770 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1771 list_del(&qp->open_list);
1772 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1773
1774 atomic_dec(&real_qp->usecnt);
1775 if (qp->qp_sec)
1776 ib_close_shared_qp_security(qp->qp_sec);
1777 kfree(qp);
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL(ib_close_qp);
1782
__ib_destroy_shared_qp(struct ib_qp * qp)1783 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1784 {
1785 struct ib_xrcd *xrcd;
1786 struct ib_qp *real_qp;
1787 int ret;
1788
1789 real_qp = qp->real_qp;
1790 xrcd = real_qp->xrcd;
1791
1792 mutex_lock(&xrcd->tgt_qp_mutex);
1793 ib_close_qp(qp);
1794 if (atomic_read(&real_qp->usecnt) == 0)
1795 list_del(&real_qp->xrcd_list);
1796 else
1797 real_qp = NULL;
1798 mutex_unlock(&xrcd->tgt_qp_mutex);
1799
1800 if (real_qp) {
1801 ret = ib_destroy_qp(real_qp);
1802 if (!ret)
1803 atomic_dec(&xrcd->usecnt);
1804 else
1805 __ib_insert_xrcd_qp(xrcd, real_qp);
1806 }
1807
1808 return 0;
1809 }
1810
ib_destroy_qp(struct ib_qp * qp)1811 int ib_destroy_qp(struct ib_qp *qp)
1812 {
1813 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1814 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1815 struct ib_pd *pd;
1816 struct ib_cq *scq, *rcq;
1817 struct ib_srq *srq;
1818 struct ib_rwq_ind_table *ind_tbl;
1819 struct ib_qp_security *sec;
1820 int ret;
1821
1822 WARN_ON_ONCE(qp->mrs_used > 0);
1823
1824 if (atomic_read(&qp->usecnt))
1825 return -EBUSY;
1826
1827 if (qp->real_qp != qp)
1828 return __ib_destroy_shared_qp(qp);
1829
1830 pd = qp->pd;
1831 scq = qp->send_cq;
1832 rcq = qp->recv_cq;
1833 srq = qp->srq;
1834 ind_tbl = qp->rwq_ind_tbl;
1835 sec = qp->qp_sec;
1836 if (sec)
1837 ib_destroy_qp_security_begin(sec);
1838
1839 if (!qp->uobject)
1840 rdma_rw_cleanup_mrs(qp);
1841
1842 rdma_restrack_del(&qp->res);
1843 ret = qp->device->destroy_qp(qp);
1844 if (!ret) {
1845 if (alt_path_sgid_attr)
1846 rdma_put_gid_attr(alt_path_sgid_attr);
1847 if (av_sgid_attr)
1848 rdma_put_gid_attr(av_sgid_attr);
1849 if (pd)
1850 atomic_dec(&pd->usecnt);
1851 if (scq)
1852 atomic_dec(&scq->usecnt);
1853 if (rcq)
1854 atomic_dec(&rcq->usecnt);
1855 if (srq)
1856 atomic_dec(&srq->usecnt);
1857 if (ind_tbl)
1858 atomic_dec(&ind_tbl->usecnt);
1859 if (sec)
1860 ib_destroy_qp_security_end(sec);
1861 } else {
1862 if (sec)
1863 ib_destroy_qp_security_abort(sec);
1864 }
1865
1866 return ret;
1867 }
1868 EXPORT_SYMBOL(ib_destroy_qp);
1869
1870 /* Completion queues */
1871
__ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr,const char * caller)1872 struct ib_cq *__ib_create_cq(struct ib_device *device,
1873 ib_comp_handler comp_handler,
1874 void (*event_handler)(struct ib_event *, void *),
1875 void *cq_context,
1876 const struct ib_cq_init_attr *cq_attr,
1877 const char *caller)
1878 {
1879 struct ib_cq *cq;
1880
1881 cq = device->create_cq(device, cq_attr, NULL, NULL);
1882
1883 if (!IS_ERR(cq)) {
1884 cq->device = device;
1885 cq->uobject = NULL;
1886 cq->comp_handler = comp_handler;
1887 cq->event_handler = event_handler;
1888 cq->cq_context = cq_context;
1889 atomic_set(&cq->usecnt, 0);
1890 cq->res.type = RDMA_RESTRACK_CQ;
1891 cq->res.kern_name = caller;
1892 rdma_restrack_add(&cq->res);
1893 }
1894
1895 return cq;
1896 }
1897 EXPORT_SYMBOL(__ib_create_cq);
1898
rdma_set_cq_moderation(struct ib_cq * cq,u16 cq_count,u16 cq_period)1899 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1900 {
1901 return cq->device->modify_cq ?
1902 cq->device->modify_cq(cq, cq_count, cq_period) : -EOPNOTSUPP;
1903 }
1904 EXPORT_SYMBOL(rdma_set_cq_moderation);
1905
ib_destroy_cq(struct ib_cq * cq)1906 int ib_destroy_cq(struct ib_cq *cq)
1907 {
1908 if (atomic_read(&cq->usecnt))
1909 return -EBUSY;
1910
1911 rdma_restrack_del(&cq->res);
1912 return cq->device->destroy_cq(cq);
1913 }
1914 EXPORT_SYMBOL(ib_destroy_cq);
1915
ib_resize_cq(struct ib_cq * cq,int cqe)1916 int ib_resize_cq(struct ib_cq *cq, int cqe)
1917 {
1918 return cq->device->resize_cq ?
1919 cq->device->resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1920 }
1921 EXPORT_SYMBOL(ib_resize_cq);
1922
1923 /* Memory regions */
1924
ib_dereg_mr(struct ib_mr * mr)1925 int ib_dereg_mr(struct ib_mr *mr)
1926 {
1927 struct ib_pd *pd = mr->pd;
1928 struct ib_dm *dm = mr->dm;
1929 int ret;
1930
1931 rdma_restrack_del(&mr->res);
1932 ret = mr->device->dereg_mr(mr);
1933 if (!ret) {
1934 atomic_dec(&pd->usecnt);
1935 if (dm)
1936 atomic_dec(&dm->usecnt);
1937 }
1938
1939 return ret;
1940 }
1941 EXPORT_SYMBOL(ib_dereg_mr);
1942
1943 /**
1944 * ib_alloc_mr() - Allocates a memory region
1945 * @pd: protection domain associated with the region
1946 * @mr_type: memory region type
1947 * @max_num_sg: maximum sg entries available for registration.
1948 *
1949 * Notes:
1950 * Memory registeration page/sg lists must not exceed max_num_sg.
1951 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1952 * max_num_sg * used_page_size.
1953 *
1954 */
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)1955 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1956 enum ib_mr_type mr_type,
1957 u32 max_num_sg)
1958 {
1959 struct ib_mr *mr;
1960
1961 if (!pd->device->alloc_mr)
1962 return ERR_PTR(-EOPNOTSUPP);
1963
1964 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1965 if (!IS_ERR(mr)) {
1966 mr->device = pd->device;
1967 mr->pd = pd;
1968 mr->dm = NULL;
1969 mr->uobject = NULL;
1970 atomic_inc(&pd->usecnt);
1971 mr->need_inval = false;
1972 mr->res.type = RDMA_RESTRACK_MR;
1973 rdma_restrack_add(&mr->res);
1974 }
1975
1976 return mr;
1977 }
1978 EXPORT_SYMBOL(ib_alloc_mr);
1979
1980 /* "Fast" memory regions */
1981
ib_alloc_fmr(struct ib_pd * pd,int mr_access_flags,struct ib_fmr_attr * fmr_attr)1982 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1983 int mr_access_flags,
1984 struct ib_fmr_attr *fmr_attr)
1985 {
1986 struct ib_fmr *fmr;
1987
1988 if (!pd->device->alloc_fmr)
1989 return ERR_PTR(-EOPNOTSUPP);
1990
1991 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1992 if (!IS_ERR(fmr)) {
1993 fmr->device = pd->device;
1994 fmr->pd = pd;
1995 atomic_inc(&pd->usecnt);
1996 }
1997
1998 return fmr;
1999 }
2000 EXPORT_SYMBOL(ib_alloc_fmr);
2001
ib_unmap_fmr(struct list_head * fmr_list)2002 int ib_unmap_fmr(struct list_head *fmr_list)
2003 {
2004 struct ib_fmr *fmr;
2005
2006 if (list_empty(fmr_list))
2007 return 0;
2008
2009 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2010 return fmr->device->unmap_fmr(fmr_list);
2011 }
2012 EXPORT_SYMBOL(ib_unmap_fmr);
2013
ib_dealloc_fmr(struct ib_fmr * fmr)2014 int ib_dealloc_fmr(struct ib_fmr *fmr)
2015 {
2016 struct ib_pd *pd;
2017 int ret;
2018
2019 pd = fmr->pd;
2020 ret = fmr->device->dealloc_fmr(fmr);
2021 if (!ret)
2022 atomic_dec(&pd->usecnt);
2023
2024 return ret;
2025 }
2026 EXPORT_SYMBOL(ib_dealloc_fmr);
2027
2028 /* Multicast groups */
2029
is_valid_mcast_lid(struct ib_qp * qp,u16 lid)2030 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2031 {
2032 struct ib_qp_init_attr init_attr = {};
2033 struct ib_qp_attr attr = {};
2034 int num_eth_ports = 0;
2035 int port;
2036
2037 /* If QP state >= init, it is assigned to a port and we can check this
2038 * port only.
2039 */
2040 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2041 if (attr.qp_state >= IB_QPS_INIT) {
2042 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2043 IB_LINK_LAYER_INFINIBAND)
2044 return true;
2045 goto lid_check;
2046 }
2047 }
2048
2049 /* Can't get a quick answer, iterate over all ports */
2050 for (port = 0; port < qp->device->phys_port_cnt; port++)
2051 if (rdma_port_get_link_layer(qp->device, port) !=
2052 IB_LINK_LAYER_INFINIBAND)
2053 num_eth_ports++;
2054
2055 /* If we have at lease one Ethernet port, RoCE annex declares that
2056 * multicast LID should be ignored. We can't tell at this step if the
2057 * QP belongs to an IB or Ethernet port.
2058 */
2059 if (num_eth_ports)
2060 return true;
2061
2062 /* If all the ports are IB, we can check according to IB spec. */
2063 lid_check:
2064 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2065 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2066 }
2067
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2068 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2069 {
2070 int ret;
2071
2072 if (!qp->device->attach_mcast)
2073 return -EOPNOTSUPP;
2074
2075 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2076 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2077 return -EINVAL;
2078
2079 ret = qp->device->attach_mcast(qp, gid, lid);
2080 if (!ret)
2081 atomic_inc(&qp->usecnt);
2082 return ret;
2083 }
2084 EXPORT_SYMBOL(ib_attach_mcast);
2085
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2086 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2087 {
2088 int ret;
2089
2090 if (!qp->device->detach_mcast)
2091 return -EOPNOTSUPP;
2092
2093 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2094 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2095 return -EINVAL;
2096
2097 ret = qp->device->detach_mcast(qp, gid, lid);
2098 if (!ret)
2099 atomic_dec(&qp->usecnt);
2100 return ret;
2101 }
2102 EXPORT_SYMBOL(ib_detach_mcast);
2103
__ib_alloc_xrcd(struct ib_device * device,const char * caller)2104 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2105 {
2106 struct ib_xrcd *xrcd;
2107
2108 if (!device->alloc_xrcd)
2109 return ERR_PTR(-EOPNOTSUPP);
2110
2111 xrcd = device->alloc_xrcd(device, NULL, NULL);
2112 if (!IS_ERR(xrcd)) {
2113 xrcd->device = device;
2114 xrcd->inode = NULL;
2115 atomic_set(&xrcd->usecnt, 0);
2116 mutex_init(&xrcd->tgt_qp_mutex);
2117 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2118 }
2119
2120 return xrcd;
2121 }
2122 EXPORT_SYMBOL(__ib_alloc_xrcd);
2123
ib_dealloc_xrcd(struct ib_xrcd * xrcd)2124 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
2125 {
2126 struct ib_qp *qp;
2127 int ret;
2128
2129 if (atomic_read(&xrcd->usecnt))
2130 return -EBUSY;
2131
2132 while (!list_empty(&xrcd->tgt_qp_list)) {
2133 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2134 ret = ib_destroy_qp(qp);
2135 if (ret)
2136 return ret;
2137 }
2138
2139 return xrcd->device->dealloc_xrcd(xrcd);
2140 }
2141 EXPORT_SYMBOL(ib_dealloc_xrcd);
2142
2143 /**
2144 * ib_create_wq - Creates a WQ associated with the specified protection
2145 * domain.
2146 * @pd: The protection domain associated with the WQ.
2147 * @wq_attr: A list of initial attributes required to create the
2148 * WQ. If WQ creation succeeds, then the attributes are updated to
2149 * the actual capabilities of the created WQ.
2150 *
2151 * wq_attr->max_wr and wq_attr->max_sge determine
2152 * the requested size of the WQ, and set to the actual values allocated
2153 * on return.
2154 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2155 * at least as large as the requested values.
2156 */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)2157 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2158 struct ib_wq_init_attr *wq_attr)
2159 {
2160 struct ib_wq *wq;
2161
2162 if (!pd->device->create_wq)
2163 return ERR_PTR(-EOPNOTSUPP);
2164
2165 wq = pd->device->create_wq(pd, wq_attr, NULL);
2166 if (!IS_ERR(wq)) {
2167 wq->event_handler = wq_attr->event_handler;
2168 wq->wq_context = wq_attr->wq_context;
2169 wq->wq_type = wq_attr->wq_type;
2170 wq->cq = wq_attr->cq;
2171 wq->device = pd->device;
2172 wq->pd = pd;
2173 wq->uobject = NULL;
2174 atomic_inc(&pd->usecnt);
2175 atomic_inc(&wq_attr->cq->usecnt);
2176 atomic_set(&wq->usecnt, 0);
2177 }
2178 return wq;
2179 }
2180 EXPORT_SYMBOL(ib_create_wq);
2181
2182 /**
2183 * ib_destroy_wq - Destroys the specified WQ.
2184 * @wq: The WQ to destroy.
2185 */
ib_destroy_wq(struct ib_wq * wq)2186 int ib_destroy_wq(struct ib_wq *wq)
2187 {
2188 int err;
2189 struct ib_cq *cq = wq->cq;
2190 struct ib_pd *pd = wq->pd;
2191
2192 if (atomic_read(&wq->usecnt))
2193 return -EBUSY;
2194
2195 err = wq->device->destroy_wq(wq);
2196 if (!err) {
2197 atomic_dec(&pd->usecnt);
2198 atomic_dec(&cq->usecnt);
2199 }
2200 return err;
2201 }
2202 EXPORT_SYMBOL(ib_destroy_wq);
2203
2204 /**
2205 * ib_modify_wq - Modifies the specified WQ.
2206 * @wq: The WQ to modify.
2207 * @wq_attr: On input, specifies the WQ attributes to modify.
2208 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2209 * are being modified.
2210 * On output, the current values of selected WQ attributes are returned.
2211 */
ib_modify_wq(struct ib_wq * wq,struct ib_wq_attr * wq_attr,u32 wq_attr_mask)2212 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2213 u32 wq_attr_mask)
2214 {
2215 int err;
2216
2217 if (!wq->device->modify_wq)
2218 return -EOPNOTSUPP;
2219
2220 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2221 return err;
2222 }
2223 EXPORT_SYMBOL(ib_modify_wq);
2224
2225 /*
2226 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2227 * @device: The device on which to create the rwq indirection table.
2228 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2229 * create the Indirection Table.
2230 *
2231 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2232 * than the created ib_rwq_ind_table object and the caller is responsible
2233 * for its memory allocation/free.
2234 */
ib_create_rwq_ind_table(struct ib_device * device,struct ib_rwq_ind_table_init_attr * init_attr)2235 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2236 struct ib_rwq_ind_table_init_attr *init_attr)
2237 {
2238 struct ib_rwq_ind_table *rwq_ind_table;
2239 int i;
2240 u32 table_size;
2241
2242 if (!device->create_rwq_ind_table)
2243 return ERR_PTR(-EOPNOTSUPP);
2244
2245 table_size = (1 << init_attr->log_ind_tbl_size);
2246 rwq_ind_table = device->create_rwq_ind_table(device,
2247 init_attr, NULL);
2248 if (IS_ERR(rwq_ind_table))
2249 return rwq_ind_table;
2250
2251 rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2252 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2253 rwq_ind_table->device = device;
2254 rwq_ind_table->uobject = NULL;
2255 atomic_set(&rwq_ind_table->usecnt, 0);
2256
2257 for (i = 0; i < table_size; i++)
2258 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2259
2260 return rwq_ind_table;
2261 }
2262 EXPORT_SYMBOL(ib_create_rwq_ind_table);
2263
2264 /*
2265 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2266 * @wq_ind_table: The Indirection Table to destroy.
2267 */
ib_destroy_rwq_ind_table(struct ib_rwq_ind_table * rwq_ind_table)2268 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2269 {
2270 int err, i;
2271 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2272 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2273
2274 if (atomic_read(&rwq_ind_table->usecnt))
2275 return -EBUSY;
2276
2277 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
2278 if (!err) {
2279 for (i = 0; i < table_size; i++)
2280 atomic_dec(&ind_tbl[i]->usecnt);
2281 }
2282
2283 return err;
2284 }
2285 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2286
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)2287 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2288 struct ib_mr_status *mr_status)
2289 {
2290 return mr->device->check_mr_status ?
2291 mr->device->check_mr_status(mr, check_mask, mr_status) : -EOPNOTSUPP;
2292 }
2293 EXPORT_SYMBOL(ib_check_mr_status);
2294
ib_set_vf_link_state(struct ib_device * device,int vf,u8 port,int state)2295 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2296 int state)
2297 {
2298 if (!device->set_vf_link_state)
2299 return -EOPNOTSUPP;
2300
2301 return device->set_vf_link_state(device, vf, port, state);
2302 }
2303 EXPORT_SYMBOL(ib_set_vf_link_state);
2304
ib_get_vf_config(struct ib_device * device,int vf,u8 port,struct ifla_vf_info * info)2305 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2306 struct ifla_vf_info *info)
2307 {
2308 if (!device->get_vf_config)
2309 return -EOPNOTSUPP;
2310
2311 return device->get_vf_config(device, vf, port, info);
2312 }
2313 EXPORT_SYMBOL(ib_get_vf_config);
2314
ib_get_vf_stats(struct ib_device * device,int vf,u8 port,struct ifla_vf_stats * stats)2315 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2316 struct ifla_vf_stats *stats)
2317 {
2318 if (!device->get_vf_stats)
2319 return -EOPNOTSUPP;
2320
2321 return device->get_vf_stats(device, vf, port, stats);
2322 }
2323 EXPORT_SYMBOL(ib_get_vf_stats);
2324
ib_set_vf_guid(struct ib_device * device,int vf,u8 port,u64 guid,int type)2325 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2326 int type)
2327 {
2328 if (!device->set_vf_guid)
2329 return -EOPNOTSUPP;
2330
2331 return device->set_vf_guid(device, vf, port, guid, type);
2332 }
2333 EXPORT_SYMBOL(ib_set_vf_guid);
2334
2335 /**
2336 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2337 * and set it the memory region.
2338 * @mr: memory region
2339 * @sg: dma mapped scatterlist
2340 * @sg_nents: number of entries in sg
2341 * @sg_offset: offset in bytes into sg
2342 * @page_size: page vector desired page size
2343 *
2344 * Constraints:
2345 * - The first sg element is allowed to have an offset.
2346 * - Each sg element must either be aligned to page_size or virtually
2347 * contiguous to the previous element. In case an sg element has a
2348 * non-contiguous offset, the mapping prefix will not include it.
2349 * - The last sg element is allowed to have length less than page_size.
2350 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2351 * then only max_num_sg entries will be mapped.
2352 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2353 * constraints holds and the page_size argument is ignored.
2354 *
2355 * Returns the number of sg elements that were mapped to the memory region.
2356 *
2357 * After this completes successfully, the memory region
2358 * is ready for registration.
2359 */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)2360 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2361 unsigned int *sg_offset, unsigned int page_size)
2362 {
2363 if (unlikely(!mr->device->map_mr_sg))
2364 return -EOPNOTSUPP;
2365
2366 mr->page_size = page_size;
2367
2368 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2369 }
2370 EXPORT_SYMBOL(ib_map_mr_sg);
2371
2372 /**
2373 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2374 * to a page vector
2375 * @mr: memory region
2376 * @sgl: dma mapped scatterlist
2377 * @sg_nents: number of entries in sg
2378 * @sg_offset_p: IN: start offset in bytes into sg
2379 * OUT: offset in bytes for element n of the sg of the first
2380 * byte that has not been processed where n is the return
2381 * value of this function.
2382 * @set_page: driver page assignment function pointer
2383 *
2384 * Core service helper for drivers to convert the largest
2385 * prefix of given sg list to a page vector. The sg list
2386 * prefix converted is the prefix that meet the requirements
2387 * of ib_map_mr_sg.
2388 *
2389 * Returns the number of sg elements that were assigned to
2390 * a page vector.
2391 */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))2392 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2393 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2394 {
2395 struct scatterlist *sg;
2396 u64 last_end_dma_addr = 0;
2397 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2398 unsigned int last_page_off = 0;
2399 u64 page_mask = ~((u64)mr->page_size - 1);
2400 int i, ret;
2401
2402 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2403 return -EINVAL;
2404
2405 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2406 mr->length = 0;
2407
2408 for_each_sg(sgl, sg, sg_nents, i) {
2409 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2410 u64 prev_addr = dma_addr;
2411 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2412 u64 end_dma_addr = dma_addr + dma_len;
2413 u64 page_addr = dma_addr & page_mask;
2414
2415 /*
2416 * For the second and later elements, check whether either the
2417 * end of element i-1 or the start of element i is not aligned
2418 * on a page boundary.
2419 */
2420 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2421 /* Stop mapping if there is a gap. */
2422 if (last_end_dma_addr != dma_addr)
2423 break;
2424
2425 /*
2426 * Coalesce this element with the last. If it is small
2427 * enough just update mr->length. Otherwise start
2428 * mapping from the next page.
2429 */
2430 goto next_page;
2431 }
2432
2433 do {
2434 ret = set_page(mr, page_addr);
2435 if (unlikely(ret < 0)) {
2436 sg_offset = prev_addr - sg_dma_address(sg);
2437 mr->length += prev_addr - dma_addr;
2438 if (sg_offset_p)
2439 *sg_offset_p = sg_offset;
2440 return i || sg_offset ? i : ret;
2441 }
2442 prev_addr = page_addr;
2443 next_page:
2444 page_addr += mr->page_size;
2445 } while (page_addr < end_dma_addr);
2446
2447 mr->length += dma_len;
2448 last_end_dma_addr = end_dma_addr;
2449 last_page_off = end_dma_addr & ~page_mask;
2450
2451 sg_offset = 0;
2452 }
2453
2454 if (sg_offset_p)
2455 *sg_offset_p = 0;
2456 return i;
2457 }
2458 EXPORT_SYMBOL(ib_sg_to_pages);
2459
2460 struct ib_drain_cqe {
2461 struct ib_cqe cqe;
2462 struct completion done;
2463 };
2464
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)2465 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2466 {
2467 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2468 cqe);
2469
2470 complete(&cqe->done);
2471 }
2472
2473 /*
2474 * Post a WR and block until its completion is reaped for the SQ.
2475 */
__ib_drain_sq(struct ib_qp * qp)2476 static void __ib_drain_sq(struct ib_qp *qp)
2477 {
2478 struct ib_cq *cq = qp->send_cq;
2479 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2480 struct ib_drain_cqe sdrain;
2481 struct ib_rdma_wr swr = {
2482 .wr = {
2483 .next = NULL,
2484 { .wr_cqe = &sdrain.cqe, },
2485 .opcode = IB_WR_RDMA_WRITE,
2486 },
2487 };
2488 int ret;
2489
2490 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2491 if (ret) {
2492 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2493 return;
2494 }
2495
2496 sdrain.cqe.done = ib_drain_qp_done;
2497 init_completion(&sdrain.done);
2498
2499 ret = ib_post_send(qp, &swr.wr, NULL);
2500 if (ret) {
2501 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2502 return;
2503 }
2504
2505 if (cq->poll_ctx == IB_POLL_DIRECT)
2506 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2507 ib_process_cq_direct(cq, -1);
2508 else
2509 wait_for_completion(&sdrain.done);
2510 }
2511
2512 /*
2513 * Post a WR and block until its completion is reaped for the RQ.
2514 */
__ib_drain_rq(struct ib_qp * qp)2515 static void __ib_drain_rq(struct ib_qp *qp)
2516 {
2517 struct ib_cq *cq = qp->recv_cq;
2518 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2519 struct ib_drain_cqe rdrain;
2520 struct ib_recv_wr rwr = {};
2521 int ret;
2522
2523 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2524 if (ret) {
2525 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2526 return;
2527 }
2528
2529 rwr.wr_cqe = &rdrain.cqe;
2530 rdrain.cqe.done = ib_drain_qp_done;
2531 init_completion(&rdrain.done);
2532
2533 ret = ib_post_recv(qp, &rwr, NULL);
2534 if (ret) {
2535 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2536 return;
2537 }
2538
2539 if (cq->poll_ctx == IB_POLL_DIRECT)
2540 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2541 ib_process_cq_direct(cq, -1);
2542 else
2543 wait_for_completion(&rdrain.done);
2544 }
2545
2546 /**
2547 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2548 * application.
2549 * @qp: queue pair to drain
2550 *
2551 * If the device has a provider-specific drain function, then
2552 * call that. Otherwise call the generic drain function
2553 * __ib_drain_sq().
2554 *
2555 * The caller must:
2556 *
2557 * ensure there is room in the CQ and SQ for the drain work request and
2558 * completion.
2559 *
2560 * allocate the CQ using ib_alloc_cq().
2561 *
2562 * ensure that there are no other contexts that are posting WRs concurrently.
2563 * Otherwise the drain is not guaranteed.
2564 */
ib_drain_sq(struct ib_qp * qp)2565 void ib_drain_sq(struct ib_qp *qp)
2566 {
2567 if (qp->device->drain_sq)
2568 qp->device->drain_sq(qp);
2569 else
2570 __ib_drain_sq(qp);
2571 }
2572 EXPORT_SYMBOL(ib_drain_sq);
2573
2574 /**
2575 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2576 * application.
2577 * @qp: queue pair to drain
2578 *
2579 * If the device has a provider-specific drain function, then
2580 * call that. Otherwise call the generic drain function
2581 * __ib_drain_rq().
2582 *
2583 * The caller must:
2584 *
2585 * ensure there is room in the CQ and RQ for the drain work request and
2586 * completion.
2587 *
2588 * allocate the CQ using ib_alloc_cq().
2589 *
2590 * ensure that there are no other contexts that are posting WRs concurrently.
2591 * Otherwise the drain is not guaranteed.
2592 */
ib_drain_rq(struct ib_qp * qp)2593 void ib_drain_rq(struct ib_qp *qp)
2594 {
2595 if (qp->device->drain_rq)
2596 qp->device->drain_rq(qp);
2597 else
2598 __ib_drain_rq(qp);
2599 }
2600 EXPORT_SYMBOL(ib_drain_rq);
2601
2602 /**
2603 * ib_drain_qp() - Block until all CQEs have been consumed by the
2604 * application on both the RQ and SQ.
2605 * @qp: queue pair to drain
2606 *
2607 * The caller must:
2608 *
2609 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2610 * and completions.
2611 *
2612 * allocate the CQs using ib_alloc_cq().
2613 *
2614 * ensure that there are no other contexts that are posting WRs concurrently.
2615 * Otherwise the drain is not guaranteed.
2616 */
ib_drain_qp(struct ib_qp * qp)2617 void ib_drain_qp(struct ib_qp *qp)
2618 {
2619 ib_drain_sq(qp);
2620 if (!qp->srq)
2621 ib_drain_rq(qp);
2622 }
2623 EXPORT_SYMBOL(ib_drain_qp);
2624