1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf_type.h"
5 #include "iavf_adminq.h"
6 #include "iavf_prototype.h"
7 #include <linux/avf/virtchnl.h>
8 
9 /**
10  * iavf_set_mac_type - Sets MAC type
11  * @hw: pointer to the HW structure
12  *
13  * This function sets the mac type of the adapter based on the
14  * vendor ID and device ID stored in the hw structure.
15  **/
iavf_set_mac_type(struct iavf_hw * hw)16 enum iavf_status iavf_set_mac_type(struct iavf_hw *hw)
17 {
18 	enum iavf_status status = 0;
19 
20 	if (hw->vendor_id == PCI_VENDOR_ID_INTEL) {
21 		switch (hw->device_id) {
22 		case IAVF_DEV_ID_X722_VF:
23 			hw->mac.type = IAVF_MAC_X722_VF;
24 			break;
25 		case IAVF_DEV_ID_VF:
26 		case IAVF_DEV_ID_VF_HV:
27 		case IAVF_DEV_ID_ADAPTIVE_VF:
28 			hw->mac.type = IAVF_MAC_VF;
29 			break;
30 		default:
31 			hw->mac.type = IAVF_MAC_GENERIC;
32 			break;
33 		}
34 	} else {
35 		status = IAVF_ERR_DEVICE_NOT_SUPPORTED;
36 	}
37 
38 	return status;
39 }
40 
41 /**
42  * iavf_aq_str - convert AQ err code to a string
43  * @hw: pointer to the HW structure
44  * @aq_err: the AQ error code to convert
45  **/
iavf_aq_str(struct iavf_hw * hw,enum iavf_admin_queue_err aq_err)46 const char *iavf_aq_str(struct iavf_hw *hw, enum iavf_admin_queue_err aq_err)
47 {
48 	switch (aq_err) {
49 	case IAVF_AQ_RC_OK:
50 		return "OK";
51 	case IAVF_AQ_RC_EPERM:
52 		return "IAVF_AQ_RC_EPERM";
53 	case IAVF_AQ_RC_ENOENT:
54 		return "IAVF_AQ_RC_ENOENT";
55 	case IAVF_AQ_RC_ESRCH:
56 		return "IAVF_AQ_RC_ESRCH";
57 	case IAVF_AQ_RC_EINTR:
58 		return "IAVF_AQ_RC_EINTR";
59 	case IAVF_AQ_RC_EIO:
60 		return "IAVF_AQ_RC_EIO";
61 	case IAVF_AQ_RC_ENXIO:
62 		return "IAVF_AQ_RC_ENXIO";
63 	case IAVF_AQ_RC_E2BIG:
64 		return "IAVF_AQ_RC_E2BIG";
65 	case IAVF_AQ_RC_EAGAIN:
66 		return "IAVF_AQ_RC_EAGAIN";
67 	case IAVF_AQ_RC_ENOMEM:
68 		return "IAVF_AQ_RC_ENOMEM";
69 	case IAVF_AQ_RC_EACCES:
70 		return "IAVF_AQ_RC_EACCES";
71 	case IAVF_AQ_RC_EFAULT:
72 		return "IAVF_AQ_RC_EFAULT";
73 	case IAVF_AQ_RC_EBUSY:
74 		return "IAVF_AQ_RC_EBUSY";
75 	case IAVF_AQ_RC_EEXIST:
76 		return "IAVF_AQ_RC_EEXIST";
77 	case IAVF_AQ_RC_EINVAL:
78 		return "IAVF_AQ_RC_EINVAL";
79 	case IAVF_AQ_RC_ENOTTY:
80 		return "IAVF_AQ_RC_ENOTTY";
81 	case IAVF_AQ_RC_ENOSPC:
82 		return "IAVF_AQ_RC_ENOSPC";
83 	case IAVF_AQ_RC_ENOSYS:
84 		return "IAVF_AQ_RC_ENOSYS";
85 	case IAVF_AQ_RC_ERANGE:
86 		return "IAVF_AQ_RC_ERANGE";
87 	case IAVF_AQ_RC_EFLUSHED:
88 		return "IAVF_AQ_RC_EFLUSHED";
89 	case IAVF_AQ_RC_BAD_ADDR:
90 		return "IAVF_AQ_RC_BAD_ADDR";
91 	case IAVF_AQ_RC_EMODE:
92 		return "IAVF_AQ_RC_EMODE";
93 	case IAVF_AQ_RC_EFBIG:
94 		return "IAVF_AQ_RC_EFBIG";
95 	}
96 
97 	snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err);
98 	return hw->err_str;
99 }
100 
101 /**
102  * iavf_stat_str - convert status err code to a string
103  * @hw: pointer to the HW structure
104  * @stat_err: the status error code to convert
105  **/
iavf_stat_str(struct iavf_hw * hw,enum iavf_status stat_err)106 const char *iavf_stat_str(struct iavf_hw *hw, enum iavf_status stat_err)
107 {
108 	switch (stat_err) {
109 	case 0:
110 		return "OK";
111 	case IAVF_ERR_NVM:
112 		return "IAVF_ERR_NVM";
113 	case IAVF_ERR_NVM_CHECKSUM:
114 		return "IAVF_ERR_NVM_CHECKSUM";
115 	case IAVF_ERR_PHY:
116 		return "IAVF_ERR_PHY";
117 	case IAVF_ERR_CONFIG:
118 		return "IAVF_ERR_CONFIG";
119 	case IAVF_ERR_PARAM:
120 		return "IAVF_ERR_PARAM";
121 	case IAVF_ERR_MAC_TYPE:
122 		return "IAVF_ERR_MAC_TYPE";
123 	case IAVF_ERR_UNKNOWN_PHY:
124 		return "IAVF_ERR_UNKNOWN_PHY";
125 	case IAVF_ERR_LINK_SETUP:
126 		return "IAVF_ERR_LINK_SETUP";
127 	case IAVF_ERR_ADAPTER_STOPPED:
128 		return "IAVF_ERR_ADAPTER_STOPPED";
129 	case IAVF_ERR_INVALID_MAC_ADDR:
130 		return "IAVF_ERR_INVALID_MAC_ADDR";
131 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
132 		return "IAVF_ERR_DEVICE_NOT_SUPPORTED";
133 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
134 		return "IAVF_ERR_PRIMARY_REQUESTS_PENDING";
135 	case IAVF_ERR_INVALID_LINK_SETTINGS:
136 		return "IAVF_ERR_INVALID_LINK_SETTINGS";
137 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
138 		return "IAVF_ERR_AUTONEG_NOT_COMPLETE";
139 	case IAVF_ERR_RESET_FAILED:
140 		return "IAVF_ERR_RESET_FAILED";
141 	case IAVF_ERR_SWFW_SYNC:
142 		return "IAVF_ERR_SWFW_SYNC";
143 	case IAVF_ERR_NO_AVAILABLE_VSI:
144 		return "IAVF_ERR_NO_AVAILABLE_VSI";
145 	case IAVF_ERR_NO_MEMORY:
146 		return "IAVF_ERR_NO_MEMORY";
147 	case IAVF_ERR_BAD_PTR:
148 		return "IAVF_ERR_BAD_PTR";
149 	case IAVF_ERR_RING_FULL:
150 		return "IAVF_ERR_RING_FULL";
151 	case IAVF_ERR_INVALID_PD_ID:
152 		return "IAVF_ERR_INVALID_PD_ID";
153 	case IAVF_ERR_INVALID_QP_ID:
154 		return "IAVF_ERR_INVALID_QP_ID";
155 	case IAVF_ERR_INVALID_CQ_ID:
156 		return "IAVF_ERR_INVALID_CQ_ID";
157 	case IAVF_ERR_INVALID_CEQ_ID:
158 		return "IAVF_ERR_INVALID_CEQ_ID";
159 	case IAVF_ERR_INVALID_AEQ_ID:
160 		return "IAVF_ERR_INVALID_AEQ_ID";
161 	case IAVF_ERR_INVALID_SIZE:
162 		return "IAVF_ERR_INVALID_SIZE";
163 	case IAVF_ERR_INVALID_ARP_INDEX:
164 		return "IAVF_ERR_INVALID_ARP_INDEX";
165 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
166 		return "IAVF_ERR_INVALID_FPM_FUNC_ID";
167 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
168 		return "IAVF_ERR_QP_INVALID_MSG_SIZE";
169 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
170 		return "IAVF_ERR_QP_TOOMANY_WRS_POSTED";
171 	case IAVF_ERR_INVALID_FRAG_COUNT:
172 		return "IAVF_ERR_INVALID_FRAG_COUNT";
173 	case IAVF_ERR_QUEUE_EMPTY:
174 		return "IAVF_ERR_QUEUE_EMPTY";
175 	case IAVF_ERR_INVALID_ALIGNMENT:
176 		return "IAVF_ERR_INVALID_ALIGNMENT";
177 	case IAVF_ERR_FLUSHED_QUEUE:
178 		return "IAVF_ERR_FLUSHED_QUEUE";
179 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
180 		return "IAVF_ERR_INVALID_PUSH_PAGE_INDEX";
181 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
182 		return "IAVF_ERR_INVALID_IMM_DATA_SIZE";
183 	case IAVF_ERR_TIMEOUT:
184 		return "IAVF_ERR_TIMEOUT";
185 	case IAVF_ERR_OPCODE_MISMATCH:
186 		return "IAVF_ERR_OPCODE_MISMATCH";
187 	case IAVF_ERR_CQP_COMPL_ERROR:
188 		return "IAVF_ERR_CQP_COMPL_ERROR";
189 	case IAVF_ERR_INVALID_VF_ID:
190 		return "IAVF_ERR_INVALID_VF_ID";
191 	case IAVF_ERR_INVALID_HMCFN_ID:
192 		return "IAVF_ERR_INVALID_HMCFN_ID";
193 	case IAVF_ERR_BACKING_PAGE_ERROR:
194 		return "IAVF_ERR_BACKING_PAGE_ERROR";
195 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
196 		return "IAVF_ERR_NO_PBLCHUNKS_AVAILABLE";
197 	case IAVF_ERR_INVALID_PBLE_INDEX:
198 		return "IAVF_ERR_INVALID_PBLE_INDEX";
199 	case IAVF_ERR_INVALID_SD_INDEX:
200 		return "IAVF_ERR_INVALID_SD_INDEX";
201 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
202 		return "IAVF_ERR_INVALID_PAGE_DESC_INDEX";
203 	case IAVF_ERR_INVALID_SD_TYPE:
204 		return "IAVF_ERR_INVALID_SD_TYPE";
205 	case IAVF_ERR_MEMCPY_FAILED:
206 		return "IAVF_ERR_MEMCPY_FAILED";
207 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
208 		return "IAVF_ERR_INVALID_HMC_OBJ_INDEX";
209 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
210 		return "IAVF_ERR_INVALID_HMC_OBJ_COUNT";
211 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
212 		return "IAVF_ERR_INVALID_SRQ_ARM_LIMIT";
213 	case IAVF_ERR_SRQ_ENABLED:
214 		return "IAVF_ERR_SRQ_ENABLED";
215 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
216 		return "IAVF_ERR_ADMIN_QUEUE_ERROR";
217 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
218 		return "IAVF_ERR_ADMIN_QUEUE_TIMEOUT";
219 	case IAVF_ERR_BUF_TOO_SHORT:
220 		return "IAVF_ERR_BUF_TOO_SHORT";
221 	case IAVF_ERR_ADMIN_QUEUE_FULL:
222 		return "IAVF_ERR_ADMIN_QUEUE_FULL";
223 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
224 		return "IAVF_ERR_ADMIN_QUEUE_NO_WORK";
225 	case IAVF_ERR_BAD_RDMA_CQE:
226 		return "IAVF_ERR_BAD_RDMA_CQE";
227 	case IAVF_ERR_NVM_BLANK_MODE:
228 		return "IAVF_ERR_NVM_BLANK_MODE";
229 	case IAVF_ERR_NOT_IMPLEMENTED:
230 		return "IAVF_ERR_NOT_IMPLEMENTED";
231 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
232 		return "IAVF_ERR_PE_DOORBELL_NOT_ENABLED";
233 	case IAVF_ERR_DIAG_TEST_FAILED:
234 		return "IAVF_ERR_DIAG_TEST_FAILED";
235 	case IAVF_ERR_NOT_READY:
236 		return "IAVF_ERR_NOT_READY";
237 	case IAVF_NOT_SUPPORTED:
238 		return "IAVF_NOT_SUPPORTED";
239 	case IAVF_ERR_FIRMWARE_API_VERSION:
240 		return "IAVF_ERR_FIRMWARE_API_VERSION";
241 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
242 		return "IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR";
243 	}
244 
245 	snprintf(hw->err_str, sizeof(hw->err_str), "%d", stat_err);
246 	return hw->err_str;
247 }
248 
249 /**
250  * iavf_debug_aq
251  * @hw: debug mask related to admin queue
252  * @mask: debug mask
253  * @desc: pointer to admin queue descriptor
254  * @buffer: pointer to command buffer
255  * @buf_len: max length of buffer
256  *
257  * Dumps debug log about adminq command with descriptor contents.
258  **/
iavf_debug_aq(struct iavf_hw * hw,enum iavf_debug_mask mask,void * desc,void * buffer,u16 buf_len)259 void iavf_debug_aq(struct iavf_hw *hw, enum iavf_debug_mask mask, void *desc,
260 		   void *buffer, u16 buf_len)
261 {
262 	struct iavf_aq_desc *aq_desc = (struct iavf_aq_desc *)desc;
263 	u8 *buf = (u8 *)buffer;
264 
265 	if ((!(mask & hw->debug_mask)) || !desc)
266 		return;
267 
268 	iavf_debug(hw, mask,
269 		   "AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
270 		   le16_to_cpu(aq_desc->opcode),
271 		   le16_to_cpu(aq_desc->flags),
272 		   le16_to_cpu(aq_desc->datalen),
273 		   le16_to_cpu(aq_desc->retval));
274 	iavf_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
275 		   le32_to_cpu(aq_desc->cookie_high),
276 		   le32_to_cpu(aq_desc->cookie_low));
277 	iavf_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
278 		   le32_to_cpu(aq_desc->params.internal.param0),
279 		   le32_to_cpu(aq_desc->params.internal.param1));
280 	iavf_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
281 		   le32_to_cpu(aq_desc->params.external.addr_high),
282 		   le32_to_cpu(aq_desc->params.external.addr_low));
283 
284 	if (buffer && aq_desc->datalen) {
285 		u16 len = le16_to_cpu(aq_desc->datalen);
286 
287 		iavf_debug(hw, mask, "AQ CMD Buffer:\n");
288 		if (buf_len < len)
289 			len = buf_len;
290 		/* write the full 16-byte chunks */
291 		if (hw->debug_mask & mask) {
292 			char prefix[27];
293 
294 			snprintf(prefix, sizeof(prefix),
295 				 "iavf %02x:%02x.%x: \t0x",
296 				 hw->bus.bus_id,
297 				 hw->bus.device,
298 				 hw->bus.func);
299 
300 			print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET,
301 				       16, 1, buf, len, false);
302 		}
303 	}
304 }
305 
306 /**
307  * iavf_check_asq_alive
308  * @hw: pointer to the hw struct
309  *
310  * Returns true if Queue is enabled else false.
311  **/
iavf_check_asq_alive(struct iavf_hw * hw)312 bool iavf_check_asq_alive(struct iavf_hw *hw)
313 {
314 	if (hw->aq.asq.len)
315 		return !!(rd32(hw, hw->aq.asq.len) &
316 			  IAVF_VF_ATQLEN1_ATQENABLE_MASK);
317 	else
318 		return false;
319 }
320 
321 /**
322  * iavf_aq_queue_shutdown
323  * @hw: pointer to the hw struct
324  * @unloading: is the driver unloading itself
325  *
326  * Tell the Firmware that we're shutting down the AdminQ and whether
327  * or not the driver is unloading as well.
328  **/
iavf_aq_queue_shutdown(struct iavf_hw * hw,bool unloading)329 enum iavf_status iavf_aq_queue_shutdown(struct iavf_hw *hw, bool unloading)
330 {
331 	struct iavf_aq_desc desc;
332 	struct iavf_aqc_queue_shutdown *cmd =
333 		(struct iavf_aqc_queue_shutdown *)&desc.params.raw;
334 	enum iavf_status status;
335 
336 	iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_queue_shutdown);
337 
338 	if (unloading)
339 		cmd->driver_unloading = cpu_to_le32(IAVF_AQ_DRIVER_UNLOADING);
340 	status = iavf_asq_send_command(hw, &desc, NULL, 0, NULL);
341 
342 	return status;
343 }
344 
345 /**
346  * iavf_aq_get_set_rss_lut
347  * @hw: pointer to the hardware structure
348  * @vsi_id: vsi fw index
349  * @pf_lut: for PF table set true, for VSI table set false
350  * @lut: pointer to the lut buffer provided by the caller
351  * @lut_size: size of the lut buffer
352  * @set: set true to set the table, false to get the table
353  *
354  * Internal function to get or set RSS look up table
355  **/
iavf_aq_get_set_rss_lut(struct iavf_hw * hw,u16 vsi_id,bool pf_lut,u8 * lut,u16 lut_size,bool set)356 static enum iavf_status iavf_aq_get_set_rss_lut(struct iavf_hw *hw,
357 						u16 vsi_id, bool pf_lut,
358 						u8 *lut, u16 lut_size,
359 						bool set)
360 {
361 	enum iavf_status status;
362 	struct iavf_aq_desc desc;
363 	struct iavf_aqc_get_set_rss_lut *cmd_resp =
364 		   (struct iavf_aqc_get_set_rss_lut *)&desc.params.raw;
365 
366 	if (set)
367 		iavf_fill_default_direct_cmd_desc(&desc,
368 						  iavf_aqc_opc_set_rss_lut);
369 	else
370 		iavf_fill_default_direct_cmd_desc(&desc,
371 						  iavf_aqc_opc_get_rss_lut);
372 
373 	/* Indirect command */
374 	desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF);
375 	desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD);
376 
377 	cmd_resp->vsi_id =
378 			cpu_to_le16((u16)((vsi_id <<
379 					  IAVF_AQC_SET_RSS_LUT_VSI_ID_SHIFT) &
380 					  IAVF_AQC_SET_RSS_LUT_VSI_ID_MASK));
381 	cmd_resp->vsi_id |= cpu_to_le16((u16)IAVF_AQC_SET_RSS_LUT_VSI_VALID);
382 
383 	if (pf_lut)
384 		cmd_resp->flags |= cpu_to_le16((u16)
385 					((IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_PF <<
386 					IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
387 					IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
388 	else
389 		cmd_resp->flags |= cpu_to_le16((u16)
390 					((IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_VSI <<
391 					IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
392 					IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
393 
394 	status = iavf_asq_send_command(hw, &desc, lut, lut_size, NULL);
395 
396 	return status;
397 }
398 
399 /**
400  * iavf_aq_set_rss_lut
401  * @hw: pointer to the hardware structure
402  * @vsi_id: vsi fw index
403  * @pf_lut: for PF table set true, for VSI table set false
404  * @lut: pointer to the lut buffer provided by the caller
405  * @lut_size: size of the lut buffer
406  *
407  * set the RSS lookup table, PF or VSI type
408  **/
iavf_aq_set_rss_lut(struct iavf_hw * hw,u16 vsi_id,bool pf_lut,u8 * lut,u16 lut_size)409 enum iavf_status iavf_aq_set_rss_lut(struct iavf_hw *hw, u16 vsi_id,
410 				     bool pf_lut, u8 *lut, u16 lut_size)
411 {
412 	return iavf_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true);
413 }
414 
415 /**
416  * iavf_aq_get_set_rss_key
417  * @hw: pointer to the hw struct
418  * @vsi_id: vsi fw index
419  * @key: pointer to key info struct
420  * @set: set true to set the key, false to get the key
421  *
422  * get the RSS key per VSI
423  **/
424 static enum
iavf_aq_get_set_rss_key(struct iavf_hw * hw,u16 vsi_id,struct iavf_aqc_get_set_rss_key_data * key,bool set)425 iavf_status iavf_aq_get_set_rss_key(struct iavf_hw *hw, u16 vsi_id,
426 				    struct iavf_aqc_get_set_rss_key_data *key,
427 				    bool set)
428 {
429 	enum iavf_status status;
430 	struct iavf_aq_desc desc;
431 	struct iavf_aqc_get_set_rss_key *cmd_resp =
432 			(struct iavf_aqc_get_set_rss_key *)&desc.params.raw;
433 	u16 key_size = sizeof(struct iavf_aqc_get_set_rss_key_data);
434 
435 	if (set)
436 		iavf_fill_default_direct_cmd_desc(&desc,
437 						  iavf_aqc_opc_set_rss_key);
438 	else
439 		iavf_fill_default_direct_cmd_desc(&desc,
440 						  iavf_aqc_opc_get_rss_key);
441 
442 	/* Indirect command */
443 	desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF);
444 	desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD);
445 
446 	cmd_resp->vsi_id =
447 			cpu_to_le16((u16)((vsi_id <<
448 					  IAVF_AQC_SET_RSS_KEY_VSI_ID_SHIFT) &
449 					  IAVF_AQC_SET_RSS_KEY_VSI_ID_MASK));
450 	cmd_resp->vsi_id |= cpu_to_le16((u16)IAVF_AQC_SET_RSS_KEY_VSI_VALID);
451 
452 	status = iavf_asq_send_command(hw, &desc, key, key_size, NULL);
453 
454 	return status;
455 }
456 
457 /**
458  * iavf_aq_set_rss_key
459  * @hw: pointer to the hw struct
460  * @vsi_id: vsi fw index
461  * @key: pointer to key info struct
462  *
463  * set the RSS key per VSI
464  **/
iavf_aq_set_rss_key(struct iavf_hw * hw,u16 vsi_id,struct iavf_aqc_get_set_rss_key_data * key)465 enum iavf_status iavf_aq_set_rss_key(struct iavf_hw *hw, u16 vsi_id,
466 				     struct iavf_aqc_get_set_rss_key_data *key)
467 {
468 	return iavf_aq_get_set_rss_key(hw, vsi_id, key, true);
469 }
470 
471 /* The iavf_ptype_lookup table is used to convert from the 8-bit ptype in the
472  * hardware to a bit-field that can be used by SW to more easily determine the
473  * packet type.
474  *
475  * Macros are used to shorten the table lines and make this table human
476  * readable.
477  *
478  * We store the PTYPE in the top byte of the bit field - this is just so that
479  * we can check that the table doesn't have a row missing, as the index into
480  * the table should be the PTYPE.
481  *
482  * Typical work flow:
483  *
484  * IF NOT iavf_ptype_lookup[ptype].known
485  * THEN
486  *      Packet is unknown
487  * ELSE IF iavf_ptype_lookup[ptype].outer_ip == IAVF_RX_PTYPE_OUTER_IP
488  *      Use the rest of the fields to look at the tunnels, inner protocols, etc
489  * ELSE
490  *      Use the enum iavf_rx_l2_ptype to decode the packet type
491  * ENDIF
492  */
493 
494 /* macro to make the table lines short, use explicit indexing with [PTYPE] */
495 #define IAVF_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
496 	[PTYPE] = { \
497 		1, \
498 		IAVF_RX_PTYPE_OUTER_##OUTER_IP, \
499 		IAVF_RX_PTYPE_OUTER_##OUTER_IP_VER, \
500 		IAVF_RX_PTYPE_##OUTER_FRAG, \
501 		IAVF_RX_PTYPE_TUNNEL_##T, \
502 		IAVF_RX_PTYPE_TUNNEL_END_##TE, \
503 		IAVF_RX_PTYPE_##TEF, \
504 		IAVF_RX_PTYPE_INNER_PROT_##I, \
505 		IAVF_RX_PTYPE_PAYLOAD_LAYER_##PL }
506 
507 #define IAVF_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
508 
509 /* shorter macros makes the table fit but are terse */
510 #define IAVF_RX_PTYPE_NOF		IAVF_RX_PTYPE_NOT_FRAG
511 #define IAVF_RX_PTYPE_FRG		IAVF_RX_PTYPE_FRAG
512 #define IAVF_RX_PTYPE_INNER_PROT_TS	IAVF_RX_PTYPE_INNER_PROT_TIMESYNC
513 
514 /* Lookup table mapping the 8-bit HW PTYPE to the bit field for decoding */
515 struct iavf_rx_ptype_decoded iavf_ptype_lookup[BIT(8)] = {
516 	/* L2 Packet types */
517 	IAVF_PTT_UNUSED_ENTRY(0),
518 	IAVF_PTT(1,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
519 	IAVF_PTT(2,  L2, NONE, NOF, NONE, NONE, NOF, TS,   PAY2),
520 	IAVF_PTT(3,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
521 	IAVF_PTT_UNUSED_ENTRY(4),
522 	IAVF_PTT_UNUSED_ENTRY(5),
523 	IAVF_PTT(6,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
524 	IAVF_PTT(7,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
525 	IAVF_PTT_UNUSED_ENTRY(8),
526 	IAVF_PTT_UNUSED_ENTRY(9),
527 	IAVF_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
528 	IAVF_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE),
529 	IAVF_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
530 	IAVF_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
531 	IAVF_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
532 	IAVF_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
533 	IAVF_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
534 	IAVF_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
535 	IAVF_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
536 	IAVF_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
537 	IAVF_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
538 	IAVF_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
539 
540 	/* Non Tunneled IPv4 */
541 	IAVF_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3),
542 	IAVF_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3),
543 	IAVF_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP,  PAY4),
544 	IAVF_PTT_UNUSED_ENTRY(25),
545 	IAVF_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP,  PAY4),
546 	IAVF_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4),
547 	IAVF_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4),
548 
549 	/* IPv4 --> IPv4 */
550 	IAVF_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
551 	IAVF_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
552 	IAVF_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
553 	IAVF_PTT_UNUSED_ENTRY(32),
554 	IAVF_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
555 	IAVF_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
556 	IAVF_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
557 
558 	/* IPv4 --> IPv6 */
559 	IAVF_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
560 	IAVF_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
561 	IAVF_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
562 	IAVF_PTT_UNUSED_ENTRY(39),
563 	IAVF_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
564 	IAVF_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
565 	IAVF_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
566 
567 	/* IPv4 --> GRE/NAT */
568 	IAVF_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
569 
570 	/* IPv4 --> GRE/NAT --> IPv4 */
571 	IAVF_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
572 	IAVF_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
573 	IAVF_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
574 	IAVF_PTT_UNUSED_ENTRY(47),
575 	IAVF_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
576 	IAVF_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
577 	IAVF_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
578 
579 	/* IPv4 --> GRE/NAT --> IPv6 */
580 	IAVF_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
581 	IAVF_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
582 	IAVF_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
583 	IAVF_PTT_UNUSED_ENTRY(54),
584 	IAVF_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
585 	IAVF_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
586 	IAVF_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
587 
588 	/* IPv4 --> GRE/NAT --> MAC */
589 	IAVF_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
590 
591 	/* IPv4 --> GRE/NAT --> MAC --> IPv4 */
592 	IAVF_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
593 	IAVF_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
594 	IAVF_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
595 	IAVF_PTT_UNUSED_ENTRY(62),
596 	IAVF_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
597 	IAVF_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
598 	IAVF_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
599 
600 	/* IPv4 --> GRE/NAT -> MAC --> IPv6 */
601 	IAVF_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
602 	IAVF_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
603 	IAVF_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
604 	IAVF_PTT_UNUSED_ENTRY(69),
605 	IAVF_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
606 	IAVF_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
607 	IAVF_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
608 
609 	/* IPv4 --> GRE/NAT --> MAC/VLAN */
610 	IAVF_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
611 
612 	/* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */
613 	IAVF_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
614 	IAVF_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
615 	IAVF_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
616 	IAVF_PTT_UNUSED_ENTRY(77),
617 	IAVF_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
618 	IAVF_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
619 	IAVF_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
620 
621 	/* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */
622 	IAVF_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
623 	IAVF_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
624 	IAVF_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
625 	IAVF_PTT_UNUSED_ENTRY(84),
626 	IAVF_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
627 	IAVF_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
628 	IAVF_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
629 
630 	/* Non Tunneled IPv6 */
631 	IAVF_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3),
632 	IAVF_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3),
633 	IAVF_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP,  PAY4),
634 	IAVF_PTT_UNUSED_ENTRY(91),
635 	IAVF_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP,  PAY4),
636 	IAVF_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4),
637 	IAVF_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4),
638 
639 	/* IPv6 --> IPv4 */
640 	IAVF_PTT(95,  IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
641 	IAVF_PTT(96,  IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
642 	IAVF_PTT(97,  IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
643 	IAVF_PTT_UNUSED_ENTRY(98),
644 	IAVF_PTT(99,  IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
645 	IAVF_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
646 	IAVF_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
647 
648 	/* IPv6 --> IPv6 */
649 	IAVF_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
650 	IAVF_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
651 	IAVF_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
652 	IAVF_PTT_UNUSED_ENTRY(105),
653 	IAVF_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
654 	IAVF_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
655 	IAVF_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
656 
657 	/* IPv6 --> GRE/NAT */
658 	IAVF_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
659 
660 	/* IPv6 --> GRE/NAT -> IPv4 */
661 	IAVF_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
662 	IAVF_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
663 	IAVF_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
664 	IAVF_PTT_UNUSED_ENTRY(113),
665 	IAVF_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
666 	IAVF_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
667 	IAVF_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
668 
669 	/* IPv6 --> GRE/NAT -> IPv6 */
670 	IAVF_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
671 	IAVF_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
672 	IAVF_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
673 	IAVF_PTT_UNUSED_ENTRY(120),
674 	IAVF_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
675 	IAVF_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
676 	IAVF_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
677 
678 	/* IPv6 --> GRE/NAT -> MAC */
679 	IAVF_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
680 
681 	/* IPv6 --> GRE/NAT -> MAC -> IPv4 */
682 	IAVF_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
683 	IAVF_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
684 	IAVF_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
685 	IAVF_PTT_UNUSED_ENTRY(128),
686 	IAVF_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
687 	IAVF_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
688 	IAVF_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
689 
690 	/* IPv6 --> GRE/NAT -> MAC -> IPv6 */
691 	IAVF_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
692 	IAVF_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
693 	IAVF_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
694 	IAVF_PTT_UNUSED_ENTRY(135),
695 	IAVF_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
696 	IAVF_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
697 	IAVF_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
698 
699 	/* IPv6 --> GRE/NAT -> MAC/VLAN */
700 	IAVF_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
701 
702 	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */
703 	IAVF_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
704 	IAVF_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
705 	IAVF_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
706 	IAVF_PTT_UNUSED_ENTRY(143),
707 	IAVF_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
708 	IAVF_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
709 	IAVF_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
710 
711 	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */
712 	IAVF_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
713 	IAVF_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
714 	IAVF_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
715 	IAVF_PTT_UNUSED_ENTRY(150),
716 	IAVF_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
717 	IAVF_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
718 	IAVF_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
719 
720 	/* unused entries */
721 	[154 ... 255] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
722 };
723 
724 /**
725  * iavf_aq_send_msg_to_pf
726  * @hw: pointer to the hardware structure
727  * @v_opcode: opcodes for VF-PF communication
728  * @v_retval: return error code
729  * @msg: pointer to the msg buffer
730  * @msglen: msg length
731  * @cmd_details: pointer to command details
732  *
733  * Send message to PF driver using admin queue. By default, this message
734  * is sent asynchronously, i.e. iavf_asq_send_command() does not wait for
735  * completion before returning.
736  **/
iavf_aq_send_msg_to_pf(struct iavf_hw * hw,enum virtchnl_ops v_opcode,enum iavf_status v_retval,u8 * msg,u16 msglen,struct iavf_asq_cmd_details * cmd_details)737 enum iavf_status iavf_aq_send_msg_to_pf(struct iavf_hw *hw,
738 					enum virtchnl_ops v_opcode,
739 					enum iavf_status v_retval,
740 					u8 *msg, u16 msglen,
741 					struct iavf_asq_cmd_details *cmd_details)
742 {
743 	struct iavf_asq_cmd_details details;
744 	struct iavf_aq_desc desc;
745 	enum iavf_status status;
746 
747 	iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_send_msg_to_pf);
748 	desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_SI);
749 	desc.cookie_high = cpu_to_le32(v_opcode);
750 	desc.cookie_low = cpu_to_le32(v_retval);
751 	if (msglen) {
752 		desc.flags |= cpu_to_le16((u16)(IAVF_AQ_FLAG_BUF
753 						| IAVF_AQ_FLAG_RD));
754 		if (msglen > IAVF_AQ_LARGE_BUF)
755 			desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_LB);
756 		desc.datalen = cpu_to_le16(msglen);
757 	}
758 	if (!cmd_details) {
759 		memset(&details, 0, sizeof(details));
760 		details.async = true;
761 		cmd_details = &details;
762 	}
763 	status = iavf_asq_send_command(hw, &desc, msg, msglen, cmd_details);
764 	return status;
765 }
766 
767 /**
768  * iavf_vf_parse_hw_config
769  * @hw: pointer to the hardware structure
770  * @msg: pointer to the virtual channel VF resource structure
771  *
772  * Given a VF resource message from the PF, populate the hw struct
773  * with appropriate information.
774  **/
iavf_vf_parse_hw_config(struct iavf_hw * hw,struct virtchnl_vf_resource * msg)775 void iavf_vf_parse_hw_config(struct iavf_hw *hw,
776 			     struct virtchnl_vf_resource *msg)
777 {
778 	struct virtchnl_vsi_resource *vsi_res;
779 	int i;
780 
781 	vsi_res = &msg->vsi_res[0];
782 
783 	hw->dev_caps.num_vsis = msg->num_vsis;
784 	hw->dev_caps.num_rx_qp = msg->num_queue_pairs;
785 	hw->dev_caps.num_tx_qp = msg->num_queue_pairs;
786 	hw->dev_caps.num_msix_vectors_vf = msg->max_vectors;
787 	hw->dev_caps.dcb = msg->vf_cap_flags &
788 			   VIRTCHNL_VF_OFFLOAD_L2;
789 	hw->dev_caps.fcoe = 0;
790 	for (i = 0; i < msg->num_vsis; i++) {
791 		if (vsi_res->vsi_type == VIRTCHNL_VSI_SRIOV) {
792 			ether_addr_copy(hw->mac.perm_addr,
793 					vsi_res->default_mac_addr);
794 			ether_addr_copy(hw->mac.addr,
795 					vsi_res->default_mac_addr);
796 		}
797 		vsi_res++;
798 	}
799 }
800