1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel support for the ptrace() and syscall tracing interfaces.
4 *
5 * Copyright (C) 1999-2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2006 Intel Co
8 * 2006-08-12 - IA64 Native Utrace implementation support added by
9 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 *
11 * Derived from the x86 and Alpha versions.
12 */
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/mm.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/security.h>
22 #include <linux/audit.h>
23 #include <linux/signal.h>
24 #include <linux/regset.h>
25 #include <linux/elf.h>
26 #include <linux/tracehook.h>
27
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/ptrace_offsets.h>
31 #include <asm/rse.h>
32 #include <linux/uaccess.h>
33 #include <asm/unwind.h>
34 #ifdef CONFIG_PERFMON
35 #include <asm/perfmon.h>
36 #endif
37
38 #include "entry.h"
39
40 /*
41 * Bits in the PSR that we allow ptrace() to change:
42 * be, up, ac, mfl, mfh (the user mask; five bits total)
43 * db (debug breakpoint fault; one bit)
44 * id (instruction debug fault disable; one bit)
45 * dd (data debug fault disable; one bit)
46 * ri (restart instruction; two bits)
47 * is (instruction set; one bit)
48 */
49 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
50 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
51
52 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
53 #define PFM_MASK MASK(38)
54
55 #define PTRACE_DEBUG 0
56
57 #if PTRACE_DEBUG
58 # define dprintk(format...) printk(format)
59 # define inline
60 #else
61 # define dprintk(format...)
62 #endif
63
64 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
65
66 static inline int
in_syscall(struct pt_regs * pt)67 in_syscall (struct pt_regs *pt)
68 {
69 return (long) pt->cr_ifs >= 0;
70 }
71
72 /*
73 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
74 * bitset where bit i is set iff the NaT bit of register i is set.
75 */
76 unsigned long
ia64_get_scratch_nat_bits(struct pt_regs * pt,unsigned long scratch_unat)77 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
78 {
79 # define GET_BITS(first, last, unat) \
80 ({ \
81 unsigned long bit = ia64_unat_pos(&pt->r##first); \
82 unsigned long nbits = (last - first + 1); \
83 unsigned long mask = MASK(nbits) << first; \
84 unsigned long dist; \
85 if (bit < first) \
86 dist = 64 + bit - first; \
87 else \
88 dist = bit - first; \
89 ia64_rotr(unat, dist) & mask; \
90 })
91 unsigned long val;
92
93 /*
94 * Registers that are stored consecutively in struct pt_regs
95 * can be handled in parallel. If the register order in
96 * struct_pt_regs changes, this code MUST be updated.
97 */
98 val = GET_BITS( 1, 1, scratch_unat);
99 val |= GET_BITS( 2, 3, scratch_unat);
100 val |= GET_BITS(12, 13, scratch_unat);
101 val |= GET_BITS(14, 14, scratch_unat);
102 val |= GET_BITS(15, 15, scratch_unat);
103 val |= GET_BITS( 8, 11, scratch_unat);
104 val |= GET_BITS(16, 31, scratch_unat);
105 return val;
106
107 # undef GET_BITS
108 }
109
110 /*
111 * Set the NaT bits for the scratch registers according to NAT and
112 * return the resulting unat (assuming the scratch registers are
113 * stored in PT).
114 */
115 unsigned long
ia64_put_scratch_nat_bits(struct pt_regs * pt,unsigned long nat)116 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
117 {
118 # define PUT_BITS(first, last, nat) \
119 ({ \
120 unsigned long bit = ia64_unat_pos(&pt->r##first); \
121 unsigned long nbits = (last - first + 1); \
122 unsigned long mask = MASK(nbits) << first; \
123 long dist; \
124 if (bit < first) \
125 dist = 64 + bit - first; \
126 else \
127 dist = bit - first; \
128 ia64_rotl(nat & mask, dist); \
129 })
130 unsigned long scratch_unat;
131
132 /*
133 * Registers that are stored consecutively in struct pt_regs
134 * can be handled in parallel. If the register order in
135 * struct_pt_regs changes, this code MUST be updated.
136 */
137 scratch_unat = PUT_BITS( 1, 1, nat);
138 scratch_unat |= PUT_BITS( 2, 3, nat);
139 scratch_unat |= PUT_BITS(12, 13, nat);
140 scratch_unat |= PUT_BITS(14, 14, nat);
141 scratch_unat |= PUT_BITS(15, 15, nat);
142 scratch_unat |= PUT_BITS( 8, 11, nat);
143 scratch_unat |= PUT_BITS(16, 31, nat);
144
145 return scratch_unat;
146
147 # undef PUT_BITS
148 }
149
150 #define IA64_MLX_TEMPLATE 0x2
151 #define IA64_MOVL_OPCODE 6
152
153 void
ia64_increment_ip(struct pt_regs * regs)154 ia64_increment_ip (struct pt_regs *regs)
155 {
156 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
157
158 if (ri > 2) {
159 ri = 0;
160 regs->cr_iip += 16;
161 } else if (ri == 2) {
162 get_user(w0, (char __user *) regs->cr_iip + 0);
163 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
164 /*
165 * rfi'ing to slot 2 of an MLX bundle causes
166 * an illegal operation fault. We don't want
167 * that to happen...
168 */
169 ri = 0;
170 regs->cr_iip += 16;
171 }
172 }
173 ia64_psr(regs)->ri = ri;
174 }
175
176 void
ia64_decrement_ip(struct pt_regs * regs)177 ia64_decrement_ip (struct pt_regs *regs)
178 {
179 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
180
181 if (ia64_psr(regs)->ri == 0) {
182 regs->cr_iip -= 16;
183 ri = 2;
184 get_user(w0, (char __user *) regs->cr_iip + 0);
185 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
186 /*
187 * rfi'ing to slot 2 of an MLX bundle causes
188 * an illegal operation fault. We don't want
189 * that to happen...
190 */
191 ri = 1;
192 }
193 }
194 ia64_psr(regs)->ri = ri;
195 }
196
197 /*
198 * This routine is used to read an rnat bits that are stored on the
199 * kernel backing store. Since, in general, the alignment of the user
200 * and kernel are different, this is not completely trivial. In
201 * essence, we need to construct the user RNAT based on up to two
202 * kernel RNAT values and/or the RNAT value saved in the child's
203 * pt_regs.
204 *
205 * user rbs
206 *
207 * +--------+ <-- lowest address
208 * | slot62 |
209 * +--------+
210 * | rnat | 0x....1f8
211 * +--------+
212 * | slot00 | \
213 * +--------+ |
214 * | slot01 | > child_regs->ar_rnat
215 * +--------+ |
216 * | slot02 | / kernel rbs
217 * +--------+ +--------+
218 * <- child_regs->ar_bspstore | slot61 | <-- krbs
219 * +- - - - + +--------+
220 * | slot62 |
221 * +- - - - + +--------+
222 * | rnat |
223 * +- - - - + +--------+
224 * vrnat | slot00 |
225 * +- - - - + +--------+
226 * = =
227 * +--------+
228 * | slot00 | \
229 * +--------+ |
230 * | slot01 | > child_stack->ar_rnat
231 * +--------+ |
232 * | slot02 | /
233 * +--------+
234 * <--- child_stack->ar_bspstore
235 *
236 * The way to think of this code is as follows: bit 0 in the user rnat
237 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
238 * value. The kernel rnat value holding this bit is stored in
239 * variable rnat0. rnat1 is loaded with the kernel rnat value that
240 * form the upper bits of the user rnat value.
241 *
242 * Boundary cases:
243 *
244 * o when reading the rnat "below" the first rnat slot on the kernel
245 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
246 * merged in from pt->ar_rnat.
247 *
248 * o when reading the rnat "above" the last rnat slot on the kernel
249 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
250 */
251 static unsigned long
get_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long * urbs_end)252 get_rnat (struct task_struct *task, struct switch_stack *sw,
253 unsigned long *krbs, unsigned long *urnat_addr,
254 unsigned long *urbs_end)
255 {
256 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
257 unsigned long umask = 0, mask, m;
258 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
259 long num_regs, nbits;
260 struct pt_regs *pt;
261
262 pt = task_pt_regs(task);
263 kbsp = (unsigned long *) sw->ar_bspstore;
264 ubspstore = (unsigned long *) pt->ar_bspstore;
265
266 if (urbs_end < urnat_addr)
267 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
268 else
269 nbits = 63;
270 mask = MASK(nbits);
271 /*
272 * First, figure out which bit number slot 0 in user-land maps
273 * to in the kernel rnat. Do this by figuring out how many
274 * register slots we're beyond the user's backingstore and
275 * then computing the equivalent address in kernel space.
276 */
277 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
278 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
279 shift = ia64_rse_slot_num(slot0_kaddr);
280 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
281 rnat0_kaddr = rnat1_kaddr - 64;
282
283 if (ubspstore + 63 > urnat_addr) {
284 /* some bits need to be merged in from pt->ar_rnat */
285 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
286 urnat = (pt->ar_rnat & umask);
287 mask &= ~umask;
288 if (!mask)
289 return urnat;
290 }
291
292 m = mask << shift;
293 if (rnat0_kaddr >= kbsp)
294 rnat0 = sw->ar_rnat;
295 else if (rnat0_kaddr > krbs)
296 rnat0 = *rnat0_kaddr;
297 urnat |= (rnat0 & m) >> shift;
298
299 m = mask >> (63 - shift);
300 if (rnat1_kaddr >= kbsp)
301 rnat1 = sw->ar_rnat;
302 else if (rnat1_kaddr > krbs)
303 rnat1 = *rnat1_kaddr;
304 urnat |= (rnat1 & m) << (63 - shift);
305 return urnat;
306 }
307
308 /*
309 * The reverse of get_rnat.
310 */
311 static void
put_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long urnat,unsigned long * urbs_end)312 put_rnat (struct task_struct *task, struct switch_stack *sw,
313 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
314 unsigned long *urbs_end)
315 {
316 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
317 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
318 long num_regs, nbits;
319 struct pt_regs *pt;
320 unsigned long cfm, *urbs_kargs;
321
322 pt = task_pt_regs(task);
323 kbsp = (unsigned long *) sw->ar_bspstore;
324 ubspstore = (unsigned long *) pt->ar_bspstore;
325
326 urbs_kargs = urbs_end;
327 if (in_syscall(pt)) {
328 /*
329 * If entered via syscall, don't allow user to set rnat bits
330 * for syscall args.
331 */
332 cfm = pt->cr_ifs;
333 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
334 }
335
336 if (urbs_kargs >= urnat_addr)
337 nbits = 63;
338 else {
339 if ((urnat_addr - 63) >= urbs_kargs)
340 return;
341 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
342 }
343 mask = MASK(nbits);
344
345 /*
346 * First, figure out which bit number slot 0 in user-land maps
347 * to in the kernel rnat. Do this by figuring out how many
348 * register slots we're beyond the user's backingstore and
349 * then computing the equivalent address in kernel space.
350 */
351 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
352 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
353 shift = ia64_rse_slot_num(slot0_kaddr);
354 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
355 rnat0_kaddr = rnat1_kaddr - 64;
356
357 if (ubspstore + 63 > urnat_addr) {
358 /* some bits need to be place in pt->ar_rnat: */
359 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
360 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
361 mask &= ~umask;
362 if (!mask)
363 return;
364 }
365 /*
366 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
367 * rnat slot is ignored. so we don't have to clear it here.
368 */
369 rnat0 = (urnat << shift);
370 m = mask << shift;
371 if (rnat0_kaddr >= kbsp)
372 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
373 else if (rnat0_kaddr > krbs)
374 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
375
376 rnat1 = (urnat >> (63 - shift));
377 m = mask >> (63 - shift);
378 if (rnat1_kaddr >= kbsp)
379 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
380 else if (rnat1_kaddr > krbs)
381 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
382 }
383
384 static inline int
on_kernel_rbs(unsigned long addr,unsigned long bspstore,unsigned long urbs_end)385 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
386 unsigned long urbs_end)
387 {
388 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
389 urbs_end);
390 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
391 }
392
393 /*
394 * Read a word from the user-level backing store of task CHILD. ADDR
395 * is the user-level address to read the word from, VAL a pointer to
396 * the return value, and USER_BSP gives the end of the user-level
397 * backing store (i.e., it's the address that would be in ar.bsp after
398 * the user executed a "cover" instruction).
399 *
400 * This routine takes care of accessing the kernel register backing
401 * store for those registers that got spilled there. It also takes
402 * care of calculating the appropriate RNaT collection words.
403 */
404 long
ia64_peek(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long * val)405 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
406 unsigned long user_rbs_end, unsigned long addr, long *val)
407 {
408 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
409 struct pt_regs *child_regs;
410 size_t copied;
411 long ret;
412
413 urbs_end = (long *) user_rbs_end;
414 laddr = (unsigned long *) addr;
415 child_regs = task_pt_regs(child);
416 bspstore = (unsigned long *) child_regs->ar_bspstore;
417 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
418 if (on_kernel_rbs(addr, (unsigned long) bspstore,
419 (unsigned long) urbs_end))
420 {
421 /*
422 * Attempt to read the RBS in an area that's actually
423 * on the kernel RBS => read the corresponding bits in
424 * the kernel RBS.
425 */
426 rnat_addr = ia64_rse_rnat_addr(laddr);
427 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
428
429 if (laddr == rnat_addr) {
430 /* return NaT collection word itself */
431 *val = ret;
432 return 0;
433 }
434
435 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
436 /*
437 * It is implementation dependent whether the
438 * data portion of a NaT value gets saved on a
439 * st8.spill or RSE spill (e.g., see EAS 2.6,
440 * 4.4.4.6 Register Spill and Fill). To get
441 * consistent behavior across all possible
442 * IA-64 implementations, we return zero in
443 * this case.
444 */
445 *val = 0;
446 return 0;
447 }
448
449 if (laddr < urbs_end) {
450 /*
451 * The desired word is on the kernel RBS and
452 * is not a NaT.
453 */
454 regnum = ia64_rse_num_regs(bspstore, laddr);
455 *val = *ia64_rse_skip_regs(krbs, regnum);
456 return 0;
457 }
458 }
459 copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
460 if (copied != sizeof(ret))
461 return -EIO;
462 *val = ret;
463 return 0;
464 }
465
466 long
ia64_poke(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long val)467 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
468 unsigned long user_rbs_end, unsigned long addr, long val)
469 {
470 unsigned long *bspstore, *krbs, regnum, *laddr;
471 unsigned long *urbs_end = (long *) user_rbs_end;
472 struct pt_regs *child_regs;
473
474 laddr = (unsigned long *) addr;
475 child_regs = task_pt_regs(child);
476 bspstore = (unsigned long *) child_regs->ar_bspstore;
477 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
478 if (on_kernel_rbs(addr, (unsigned long) bspstore,
479 (unsigned long) urbs_end))
480 {
481 /*
482 * Attempt to write the RBS in an area that's actually
483 * on the kernel RBS => write the corresponding bits
484 * in the kernel RBS.
485 */
486 if (ia64_rse_is_rnat_slot(laddr))
487 put_rnat(child, child_stack, krbs, laddr, val,
488 urbs_end);
489 else {
490 if (laddr < urbs_end) {
491 regnum = ia64_rse_num_regs(bspstore, laddr);
492 *ia64_rse_skip_regs(krbs, regnum) = val;
493 }
494 }
495 } else if (access_process_vm(child, addr, &val, sizeof(val),
496 FOLL_FORCE | FOLL_WRITE)
497 != sizeof(val))
498 return -EIO;
499 return 0;
500 }
501
502 /*
503 * Calculate the address of the end of the user-level register backing
504 * store. This is the address that would have been stored in ar.bsp
505 * if the user had executed a "cover" instruction right before
506 * entering the kernel. If CFMP is not NULL, it is used to return the
507 * "current frame mask" that was active at the time the kernel was
508 * entered.
509 */
510 unsigned long
ia64_get_user_rbs_end(struct task_struct * child,struct pt_regs * pt,unsigned long * cfmp)511 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
512 unsigned long *cfmp)
513 {
514 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
515 long ndirty;
516
517 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
518 bspstore = (unsigned long *) pt->ar_bspstore;
519 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
520
521 if (in_syscall(pt))
522 ndirty += (cfm & 0x7f);
523 else
524 cfm &= ~(1UL << 63); /* clear valid bit */
525
526 if (cfmp)
527 *cfmp = cfm;
528 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
529 }
530
531 /*
532 * Synchronize (i.e, write) the RSE backing store living in kernel
533 * space to the VM of the CHILD task. SW and PT are the pointers to
534 * the switch_stack and pt_regs structures, respectively.
535 * USER_RBS_END is the user-level address at which the backing store
536 * ends.
537 */
538 long
ia64_sync_user_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)539 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
540 unsigned long user_rbs_start, unsigned long user_rbs_end)
541 {
542 unsigned long addr, val;
543 long ret;
544
545 /* now copy word for word from kernel rbs to user rbs: */
546 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
547 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
548 if (ret < 0)
549 return ret;
550 if (access_process_vm(child, addr, &val, sizeof(val),
551 FOLL_FORCE | FOLL_WRITE)
552 != sizeof(val))
553 return -EIO;
554 }
555 return 0;
556 }
557
558 static long
ia64_sync_kernel_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)559 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
560 unsigned long user_rbs_start, unsigned long user_rbs_end)
561 {
562 unsigned long addr, val;
563 long ret;
564
565 /* now copy word for word from user rbs to kernel rbs: */
566 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
567 if (access_process_vm(child, addr, &val, sizeof(val),
568 FOLL_FORCE)
569 != sizeof(val))
570 return -EIO;
571
572 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
573 if (ret < 0)
574 return ret;
575 }
576 return 0;
577 }
578
579 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
580 unsigned long, unsigned long);
581
do_sync_rbs(struct unw_frame_info * info,void * arg)582 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
583 {
584 struct pt_regs *pt;
585 unsigned long urbs_end;
586 syncfunc_t fn = arg;
587
588 if (unw_unwind_to_user(info) < 0)
589 return;
590 pt = task_pt_regs(info->task);
591 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
592
593 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
594 }
595
596 /*
597 * when a thread is stopped (ptraced), debugger might change thread's user
598 * stack (change memory directly), and we must avoid the RSE stored in kernel
599 * to override user stack (user space's RSE is newer than kernel's in the
600 * case). To workaround the issue, we copy kernel RSE to user RSE before the
601 * task is stopped, so user RSE has updated data. we then copy user RSE to
602 * kernel after the task is resummed from traced stop and kernel will use the
603 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
604 * synchronize user RSE to kernel.
605 */
ia64_ptrace_stop(void)606 void ia64_ptrace_stop(void)
607 {
608 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
609 return;
610 set_notify_resume(current);
611 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
612 }
613
614 /*
615 * This is called to read back the register backing store.
616 */
ia64_sync_krbs(void)617 void ia64_sync_krbs(void)
618 {
619 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
620
621 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
622 }
623
624 /*
625 * After PTRACE_ATTACH, a thread's register backing store area in user
626 * space is assumed to contain correct data whenever the thread is
627 * stopped. arch_ptrace_stop takes care of this on tracing stops.
628 * But if the child was already stopped for job control when we attach
629 * to it, then it might not ever get into ptrace_stop by the time we
630 * want to examine the user memory containing the RBS.
631 */
632 void
ptrace_attach_sync_user_rbs(struct task_struct * child)633 ptrace_attach_sync_user_rbs (struct task_struct *child)
634 {
635 int stopped = 0;
636 struct unw_frame_info info;
637
638 /*
639 * If the child is in TASK_STOPPED, we need to change that to
640 * TASK_TRACED momentarily while we operate on it. This ensures
641 * that the child won't be woken up and return to user mode while
642 * we are doing the sync. (It can only be woken up for SIGKILL.)
643 */
644
645 read_lock(&tasklist_lock);
646 if (child->sighand) {
647 spin_lock_irq(&child->sighand->siglock);
648 if (child->state == TASK_STOPPED &&
649 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
650 set_notify_resume(child);
651
652 child->state = TASK_TRACED;
653 stopped = 1;
654 }
655 spin_unlock_irq(&child->sighand->siglock);
656 }
657 read_unlock(&tasklist_lock);
658
659 if (!stopped)
660 return;
661
662 unw_init_from_blocked_task(&info, child);
663 do_sync_rbs(&info, ia64_sync_user_rbs);
664
665 /*
666 * Now move the child back into TASK_STOPPED if it should be in a
667 * job control stop, so that SIGCONT can be used to wake it up.
668 */
669 read_lock(&tasklist_lock);
670 if (child->sighand) {
671 spin_lock_irq(&child->sighand->siglock);
672 if (child->state == TASK_TRACED &&
673 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
674 child->state = TASK_STOPPED;
675 }
676 spin_unlock_irq(&child->sighand->siglock);
677 }
678 read_unlock(&tasklist_lock);
679 }
680
681 /*
682 * Write f32-f127 back to task->thread.fph if it has been modified.
683 */
684 inline void
ia64_flush_fph(struct task_struct * task)685 ia64_flush_fph (struct task_struct *task)
686 {
687 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
688
689 /*
690 * Prevent migrating this task while
691 * we're fiddling with the FPU state
692 */
693 preempt_disable();
694 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
695 psr->mfh = 0;
696 task->thread.flags |= IA64_THREAD_FPH_VALID;
697 ia64_save_fpu(&task->thread.fph[0]);
698 }
699 preempt_enable();
700 }
701
702 /*
703 * Sync the fph state of the task so that it can be manipulated
704 * through thread.fph. If necessary, f32-f127 are written back to
705 * thread.fph or, if the fph state hasn't been used before, thread.fph
706 * is cleared to zeroes. Also, access to f32-f127 is disabled to
707 * ensure that the task picks up the state from thread.fph when it
708 * executes again.
709 */
710 void
ia64_sync_fph(struct task_struct * task)711 ia64_sync_fph (struct task_struct *task)
712 {
713 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
714
715 ia64_flush_fph(task);
716 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
717 task->thread.flags |= IA64_THREAD_FPH_VALID;
718 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
719 }
720 ia64_drop_fpu(task);
721 psr->dfh = 1;
722 }
723
724 /*
725 * Change the machine-state of CHILD such that it will return via the normal
726 * kernel exit-path, rather than the syscall-exit path.
727 */
728 static void
convert_to_non_syscall(struct task_struct * child,struct pt_regs * pt,unsigned long cfm)729 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
730 unsigned long cfm)
731 {
732 struct unw_frame_info info, prev_info;
733 unsigned long ip, sp, pr;
734
735 unw_init_from_blocked_task(&info, child);
736 while (1) {
737 prev_info = info;
738 if (unw_unwind(&info) < 0)
739 return;
740
741 unw_get_sp(&info, &sp);
742 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
743 < IA64_PT_REGS_SIZE) {
744 dprintk("ptrace.%s: ran off the top of the kernel "
745 "stack\n", __func__);
746 return;
747 }
748 if (unw_get_pr (&prev_info, &pr) < 0) {
749 unw_get_rp(&prev_info, &ip);
750 dprintk("ptrace.%s: failed to read "
751 "predicate register (ip=0x%lx)\n",
752 __func__, ip);
753 return;
754 }
755 if (unw_is_intr_frame(&info)
756 && (pr & (1UL << PRED_USER_STACK)))
757 break;
758 }
759
760 /*
761 * Note: at the time of this call, the target task is blocked
762 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
763 * (aka, "pLvSys") we redirect execution from
764 * .work_pending_syscall_end to .work_processed_kernel.
765 */
766 unw_get_pr(&prev_info, &pr);
767 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
768 pr |= (1UL << PRED_NON_SYSCALL);
769 unw_set_pr(&prev_info, pr);
770
771 pt->cr_ifs = (1UL << 63) | cfm;
772 /*
773 * Clear the memory that is NOT written on syscall-entry to
774 * ensure we do not leak kernel-state to user when execution
775 * resumes.
776 */
777 pt->r2 = 0;
778 pt->r3 = 0;
779 pt->r14 = 0;
780 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
781 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
782 pt->b7 = 0;
783 pt->ar_ccv = 0;
784 pt->ar_csd = 0;
785 pt->ar_ssd = 0;
786 }
787
788 static int
access_nat_bits(struct task_struct * child,struct pt_regs * pt,struct unw_frame_info * info,unsigned long * data,int write_access)789 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
790 struct unw_frame_info *info,
791 unsigned long *data, int write_access)
792 {
793 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
794 char nat = 0;
795
796 if (write_access) {
797 nat_bits = *data;
798 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
799 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
800 dprintk("ptrace: failed to set ar.unat\n");
801 return -1;
802 }
803 for (regnum = 4; regnum <= 7; ++regnum) {
804 unw_get_gr(info, regnum, &dummy, &nat);
805 unw_set_gr(info, regnum, dummy,
806 (nat_bits >> regnum) & 1);
807 }
808 } else {
809 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
810 dprintk("ptrace: failed to read ar.unat\n");
811 return -1;
812 }
813 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
814 for (regnum = 4; regnum <= 7; ++regnum) {
815 unw_get_gr(info, regnum, &dummy, &nat);
816 nat_bits |= (nat != 0) << regnum;
817 }
818 *data = nat_bits;
819 }
820 return 0;
821 }
822
823 static int
824 access_uarea (struct task_struct *child, unsigned long addr,
825 unsigned long *data, int write_access);
826
827 static long
ptrace_getregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)828 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
829 {
830 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
831 struct unw_frame_info info;
832 struct ia64_fpreg fpval;
833 struct switch_stack *sw;
834 struct pt_regs *pt;
835 long ret, retval = 0;
836 char nat = 0;
837 int i;
838
839 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
840 return -EIO;
841
842 pt = task_pt_regs(child);
843 sw = (struct switch_stack *) (child->thread.ksp + 16);
844 unw_init_from_blocked_task(&info, child);
845 if (unw_unwind_to_user(&info) < 0) {
846 return -EIO;
847 }
848
849 if (((unsigned long) ppr & 0x7) != 0) {
850 dprintk("ptrace:unaligned register address %p\n", ppr);
851 return -EIO;
852 }
853
854 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
855 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
856 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
857 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
858 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
859 || access_uarea(child, PT_CFM, &cfm, 0)
860 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
861 return -EIO;
862
863 /* control regs */
864
865 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
866 retval |= __put_user(psr, &ppr->cr_ipsr);
867
868 /* app regs */
869
870 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
871 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
872 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
873 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
874 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
875 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
876
877 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
878 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
879 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
880 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
881 retval |= __put_user(cfm, &ppr->cfm);
882
883 /* gr1-gr3 */
884
885 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
886 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
887
888 /* gr4-gr7 */
889
890 for (i = 4; i < 8; i++) {
891 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
892 return -EIO;
893 retval |= __put_user(val, &ppr->gr[i]);
894 }
895
896 /* gr8-gr11 */
897
898 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
899
900 /* gr12-gr15 */
901
902 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
903 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
904 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
905
906 /* gr16-gr31 */
907
908 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
909
910 /* b0 */
911
912 retval |= __put_user(pt->b0, &ppr->br[0]);
913
914 /* b1-b5 */
915
916 for (i = 1; i < 6; i++) {
917 if (unw_access_br(&info, i, &val, 0) < 0)
918 return -EIO;
919 __put_user(val, &ppr->br[i]);
920 }
921
922 /* b6-b7 */
923
924 retval |= __put_user(pt->b6, &ppr->br[6]);
925 retval |= __put_user(pt->b7, &ppr->br[7]);
926
927 /* fr2-fr5 */
928
929 for (i = 2; i < 6; i++) {
930 if (unw_get_fr(&info, i, &fpval) < 0)
931 return -EIO;
932 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
933 }
934
935 /* fr6-fr11 */
936
937 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
938 sizeof(struct ia64_fpreg) * 6);
939
940 /* fp scratch regs(12-15) */
941
942 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
943 sizeof(struct ia64_fpreg) * 4);
944
945 /* fr16-fr31 */
946
947 for (i = 16; i < 32; i++) {
948 if (unw_get_fr(&info, i, &fpval) < 0)
949 return -EIO;
950 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
951 }
952
953 /* fph */
954
955 ia64_flush_fph(child);
956 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
957 sizeof(ppr->fr[32]) * 96);
958
959 /* preds */
960
961 retval |= __put_user(pt->pr, &ppr->pr);
962
963 /* nat bits */
964
965 retval |= __put_user(nat_bits, &ppr->nat);
966
967 ret = retval ? -EIO : 0;
968 return ret;
969 }
970
971 static long
ptrace_setregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)972 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
973 {
974 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
975 struct unw_frame_info info;
976 struct switch_stack *sw;
977 struct ia64_fpreg fpval;
978 struct pt_regs *pt;
979 long ret, retval = 0;
980 int i;
981
982 memset(&fpval, 0, sizeof(fpval));
983
984 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
985 return -EIO;
986
987 pt = task_pt_regs(child);
988 sw = (struct switch_stack *) (child->thread.ksp + 16);
989 unw_init_from_blocked_task(&info, child);
990 if (unw_unwind_to_user(&info) < 0) {
991 return -EIO;
992 }
993
994 if (((unsigned long) ppr & 0x7) != 0) {
995 dprintk("ptrace:unaligned register address %p\n", ppr);
996 return -EIO;
997 }
998
999 /* control regs */
1000
1001 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1002 retval |= __get_user(psr, &ppr->cr_ipsr);
1003
1004 /* app regs */
1005
1006 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1007 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1008 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1009 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1010 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1011 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1012
1013 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1014 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1015 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1016 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1017 retval |= __get_user(cfm, &ppr->cfm);
1018
1019 /* gr1-gr3 */
1020
1021 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1022 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1023
1024 /* gr4-gr7 */
1025
1026 for (i = 4; i < 8; i++) {
1027 retval |= __get_user(val, &ppr->gr[i]);
1028 /* NaT bit will be set via PT_NAT_BITS: */
1029 if (unw_set_gr(&info, i, val, 0) < 0)
1030 return -EIO;
1031 }
1032
1033 /* gr8-gr11 */
1034
1035 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1036
1037 /* gr12-gr15 */
1038
1039 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1040 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1041 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1042
1043 /* gr16-gr31 */
1044
1045 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1046
1047 /* b0 */
1048
1049 retval |= __get_user(pt->b0, &ppr->br[0]);
1050
1051 /* b1-b5 */
1052
1053 for (i = 1; i < 6; i++) {
1054 retval |= __get_user(val, &ppr->br[i]);
1055 unw_set_br(&info, i, val);
1056 }
1057
1058 /* b6-b7 */
1059
1060 retval |= __get_user(pt->b6, &ppr->br[6]);
1061 retval |= __get_user(pt->b7, &ppr->br[7]);
1062
1063 /* fr2-fr5 */
1064
1065 for (i = 2; i < 6; i++) {
1066 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1067 if (unw_set_fr(&info, i, fpval) < 0)
1068 return -EIO;
1069 }
1070
1071 /* fr6-fr11 */
1072
1073 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1074 sizeof(ppr->fr[6]) * 6);
1075
1076 /* fp scratch regs(12-15) */
1077
1078 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1079 sizeof(ppr->fr[12]) * 4);
1080
1081 /* fr16-fr31 */
1082
1083 for (i = 16; i < 32; i++) {
1084 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1085 sizeof(fpval));
1086 if (unw_set_fr(&info, i, fpval) < 0)
1087 return -EIO;
1088 }
1089
1090 /* fph */
1091
1092 ia64_sync_fph(child);
1093 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1094 sizeof(ppr->fr[32]) * 96);
1095
1096 /* preds */
1097
1098 retval |= __get_user(pt->pr, &ppr->pr);
1099
1100 /* nat bits */
1101
1102 retval |= __get_user(nat_bits, &ppr->nat);
1103
1104 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1105 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1106 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1107 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1108 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1109 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1110 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1111 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1112
1113 ret = retval ? -EIO : 0;
1114 return ret;
1115 }
1116
1117 void
user_enable_single_step(struct task_struct * child)1118 user_enable_single_step (struct task_struct *child)
1119 {
1120 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1121
1122 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1123 child_psr->ss = 1;
1124 }
1125
1126 void
user_enable_block_step(struct task_struct * child)1127 user_enable_block_step (struct task_struct *child)
1128 {
1129 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1130
1131 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1132 child_psr->tb = 1;
1133 }
1134
1135 void
user_disable_single_step(struct task_struct * child)1136 user_disable_single_step (struct task_struct *child)
1137 {
1138 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1139
1140 /* make sure the single step/taken-branch trap bits are not set: */
1141 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1142 child_psr->ss = 0;
1143 child_psr->tb = 0;
1144 }
1145
1146 /*
1147 * Called by kernel/ptrace.c when detaching..
1148 *
1149 * Make sure the single step bit is not set.
1150 */
1151 void
ptrace_disable(struct task_struct * child)1152 ptrace_disable (struct task_struct *child)
1153 {
1154 user_disable_single_step(child);
1155 }
1156
1157 long
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)1158 arch_ptrace (struct task_struct *child, long request,
1159 unsigned long addr, unsigned long data)
1160 {
1161 switch (request) {
1162 case PTRACE_PEEKTEXT:
1163 case PTRACE_PEEKDATA:
1164 /* read word at location addr */
1165 if (ptrace_access_vm(child, addr, &data, sizeof(data),
1166 FOLL_FORCE)
1167 != sizeof(data))
1168 return -EIO;
1169 /* ensure return value is not mistaken for error code */
1170 force_successful_syscall_return();
1171 return data;
1172
1173 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1174 * by the generic ptrace_request().
1175 */
1176
1177 case PTRACE_PEEKUSR:
1178 /* read the word at addr in the USER area */
1179 if (access_uarea(child, addr, &data, 0) < 0)
1180 return -EIO;
1181 /* ensure return value is not mistaken for error code */
1182 force_successful_syscall_return();
1183 return data;
1184
1185 case PTRACE_POKEUSR:
1186 /* write the word at addr in the USER area */
1187 if (access_uarea(child, addr, &data, 1) < 0)
1188 return -EIO;
1189 return 0;
1190
1191 case PTRACE_OLD_GETSIGINFO:
1192 /* for backwards-compatibility */
1193 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1194
1195 case PTRACE_OLD_SETSIGINFO:
1196 /* for backwards-compatibility */
1197 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1198
1199 case PTRACE_GETREGS:
1200 return ptrace_getregs(child,
1201 (struct pt_all_user_regs __user *) data);
1202
1203 case PTRACE_SETREGS:
1204 return ptrace_setregs(child,
1205 (struct pt_all_user_regs __user *) data);
1206
1207 default:
1208 return ptrace_request(child, request, addr, data);
1209 }
1210 }
1211
1212
1213 /* "asmlinkage" so the input arguments are preserved... */
1214
1215 asmlinkage long
syscall_trace_enter(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1216 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1217 long arg4, long arg5, long arg6, long arg7,
1218 struct pt_regs regs)
1219 {
1220 if (test_thread_flag(TIF_SYSCALL_TRACE))
1221 if (tracehook_report_syscall_entry(®s))
1222 return -ENOSYS;
1223
1224 /* copy user rbs to kernel rbs */
1225 if (test_thread_flag(TIF_RESTORE_RSE))
1226 ia64_sync_krbs();
1227
1228
1229 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1230
1231 return 0;
1232 }
1233
1234 /* "asmlinkage" so the input arguments are preserved... */
1235
1236 asmlinkage void
syscall_trace_leave(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1237 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1238 long arg4, long arg5, long arg6, long arg7,
1239 struct pt_regs regs)
1240 {
1241 int step;
1242
1243 audit_syscall_exit(®s);
1244
1245 step = test_thread_flag(TIF_SINGLESTEP);
1246 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1247 tracehook_report_syscall_exit(®s, step);
1248
1249 /* copy user rbs to kernel rbs */
1250 if (test_thread_flag(TIF_RESTORE_RSE))
1251 ia64_sync_krbs();
1252 }
1253
1254 /* Utrace implementation starts here */
1255 struct regset_get {
1256 void *kbuf;
1257 void __user *ubuf;
1258 };
1259
1260 struct regset_set {
1261 const void *kbuf;
1262 const void __user *ubuf;
1263 };
1264
1265 struct regset_getset {
1266 struct task_struct *target;
1267 const struct user_regset *regset;
1268 union {
1269 struct regset_get get;
1270 struct regset_set set;
1271 } u;
1272 unsigned int pos;
1273 unsigned int count;
1274 int ret;
1275 };
1276
1277 static int
access_elf_gpreg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1278 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1279 unsigned long addr, unsigned long *data, int write_access)
1280 {
1281 struct pt_regs *pt;
1282 unsigned long *ptr = NULL;
1283 int ret;
1284 char nat = 0;
1285
1286 pt = task_pt_regs(target);
1287 switch (addr) {
1288 case ELF_GR_OFFSET(1):
1289 ptr = &pt->r1;
1290 break;
1291 case ELF_GR_OFFSET(2):
1292 case ELF_GR_OFFSET(3):
1293 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1294 break;
1295 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1296 if (write_access) {
1297 /* read NaT bit first: */
1298 unsigned long dummy;
1299
1300 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1301 if (ret < 0)
1302 return ret;
1303 }
1304 return unw_access_gr(info, addr/8, data, &nat, write_access);
1305 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1306 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1307 break;
1308 case ELF_GR_OFFSET(12):
1309 case ELF_GR_OFFSET(13):
1310 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1311 break;
1312 case ELF_GR_OFFSET(14):
1313 ptr = &pt->r14;
1314 break;
1315 case ELF_GR_OFFSET(15):
1316 ptr = &pt->r15;
1317 }
1318 if (write_access)
1319 *ptr = *data;
1320 else
1321 *data = *ptr;
1322 return 0;
1323 }
1324
1325 static int
access_elf_breg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1326 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1327 unsigned long addr, unsigned long *data, int write_access)
1328 {
1329 struct pt_regs *pt;
1330 unsigned long *ptr = NULL;
1331
1332 pt = task_pt_regs(target);
1333 switch (addr) {
1334 case ELF_BR_OFFSET(0):
1335 ptr = &pt->b0;
1336 break;
1337 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1338 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1339 data, write_access);
1340 case ELF_BR_OFFSET(6):
1341 ptr = &pt->b6;
1342 break;
1343 case ELF_BR_OFFSET(7):
1344 ptr = &pt->b7;
1345 }
1346 if (write_access)
1347 *ptr = *data;
1348 else
1349 *data = *ptr;
1350 return 0;
1351 }
1352
1353 static int
access_elf_areg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1354 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1355 unsigned long addr, unsigned long *data, int write_access)
1356 {
1357 struct pt_regs *pt;
1358 unsigned long cfm, urbs_end;
1359 unsigned long *ptr = NULL;
1360
1361 pt = task_pt_regs(target);
1362 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1363 switch (addr) {
1364 case ELF_AR_RSC_OFFSET:
1365 /* force PL3 */
1366 if (write_access)
1367 pt->ar_rsc = *data | (3 << 2);
1368 else
1369 *data = pt->ar_rsc;
1370 return 0;
1371 case ELF_AR_BSP_OFFSET:
1372 /*
1373 * By convention, we use PT_AR_BSP to refer to
1374 * the end of the user-level backing store.
1375 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1376 * to get the real value of ar.bsp at the time
1377 * the kernel was entered.
1378 *
1379 * Furthermore, when changing the contents of
1380 * PT_AR_BSP (or PT_CFM) while the task is
1381 * blocked in a system call, convert the state
1382 * so that the non-system-call exit
1383 * path is used. This ensures that the proper
1384 * state will be picked up when resuming
1385 * execution. However, it *also* means that
1386 * once we write PT_AR_BSP/PT_CFM, it won't be
1387 * possible to modify the syscall arguments of
1388 * the pending system call any longer. This
1389 * shouldn't be an issue because modifying
1390 * PT_AR_BSP/PT_CFM generally implies that
1391 * we're either abandoning the pending system
1392 * call or that we defer it's re-execution
1393 * (e.g., due to GDB doing an inferior
1394 * function call).
1395 */
1396 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1397 if (write_access) {
1398 if (*data != urbs_end) {
1399 if (in_syscall(pt))
1400 convert_to_non_syscall(target,
1401 pt,
1402 cfm);
1403 /*
1404 * Simulate user-level write
1405 * of ar.bsp:
1406 */
1407 pt->loadrs = 0;
1408 pt->ar_bspstore = *data;
1409 }
1410 } else
1411 *data = urbs_end;
1412 return 0;
1413 case ELF_AR_BSPSTORE_OFFSET:
1414 ptr = &pt->ar_bspstore;
1415 break;
1416 case ELF_AR_RNAT_OFFSET:
1417 ptr = &pt->ar_rnat;
1418 break;
1419 case ELF_AR_CCV_OFFSET:
1420 ptr = &pt->ar_ccv;
1421 break;
1422 case ELF_AR_UNAT_OFFSET:
1423 ptr = &pt->ar_unat;
1424 break;
1425 case ELF_AR_FPSR_OFFSET:
1426 ptr = &pt->ar_fpsr;
1427 break;
1428 case ELF_AR_PFS_OFFSET:
1429 ptr = &pt->ar_pfs;
1430 break;
1431 case ELF_AR_LC_OFFSET:
1432 return unw_access_ar(info, UNW_AR_LC, data,
1433 write_access);
1434 case ELF_AR_EC_OFFSET:
1435 return unw_access_ar(info, UNW_AR_EC, data,
1436 write_access);
1437 case ELF_AR_CSD_OFFSET:
1438 ptr = &pt->ar_csd;
1439 break;
1440 case ELF_AR_SSD_OFFSET:
1441 ptr = &pt->ar_ssd;
1442 }
1443 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1444 switch (addr) {
1445 case ELF_CR_IIP_OFFSET:
1446 ptr = &pt->cr_iip;
1447 break;
1448 case ELF_CFM_OFFSET:
1449 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1450 if (write_access) {
1451 if (((cfm ^ *data) & PFM_MASK) != 0) {
1452 if (in_syscall(pt))
1453 convert_to_non_syscall(target,
1454 pt,
1455 cfm);
1456 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1457 | (*data & PFM_MASK));
1458 }
1459 } else
1460 *data = cfm;
1461 return 0;
1462 case ELF_CR_IPSR_OFFSET:
1463 if (write_access) {
1464 unsigned long tmp = *data;
1465 /* psr.ri==3 is a reserved value: SDM 2:25 */
1466 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1467 tmp &= ~IA64_PSR_RI;
1468 pt->cr_ipsr = ((tmp & IPSR_MASK)
1469 | (pt->cr_ipsr & ~IPSR_MASK));
1470 } else
1471 *data = (pt->cr_ipsr & IPSR_MASK);
1472 return 0;
1473 }
1474 } else if (addr == ELF_NAT_OFFSET)
1475 return access_nat_bits(target, pt, info,
1476 data, write_access);
1477 else if (addr == ELF_PR_OFFSET)
1478 ptr = &pt->pr;
1479 else
1480 return -1;
1481
1482 if (write_access)
1483 *ptr = *data;
1484 else
1485 *data = *ptr;
1486
1487 return 0;
1488 }
1489
1490 static int
access_elf_reg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1491 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1492 unsigned long addr, unsigned long *data, int write_access)
1493 {
1494 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1495 return access_elf_gpreg(target, info, addr, data, write_access);
1496 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1497 return access_elf_breg(target, info, addr, data, write_access);
1498 else
1499 return access_elf_areg(target, info, addr, data, write_access);
1500 }
1501
do_gpregs_get(struct unw_frame_info * info,void * arg)1502 void do_gpregs_get(struct unw_frame_info *info, void *arg)
1503 {
1504 struct pt_regs *pt;
1505 struct regset_getset *dst = arg;
1506 elf_greg_t tmp[16];
1507 unsigned int i, index, min_copy;
1508
1509 if (unw_unwind_to_user(info) < 0)
1510 return;
1511
1512 /*
1513 * coredump format:
1514 * r0-r31
1515 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1516 * predicate registers (p0-p63)
1517 * b0-b7
1518 * ip cfm user-mask
1519 * ar.rsc ar.bsp ar.bspstore ar.rnat
1520 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1521 */
1522
1523
1524 /* Skip r0 */
1525 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1526 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1527 &dst->u.get.kbuf,
1528 &dst->u.get.ubuf,
1529 0, ELF_GR_OFFSET(1));
1530 if (dst->ret || dst->count == 0)
1531 return;
1532 }
1533
1534 /* gr1 - gr15 */
1535 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1536 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1537 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1538 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1539 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1540 index++)
1541 if (access_elf_reg(dst->target, info, i,
1542 &tmp[index], 0) < 0) {
1543 dst->ret = -EIO;
1544 return;
1545 }
1546 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1547 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1548 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1549 if (dst->ret || dst->count == 0)
1550 return;
1551 }
1552
1553 /* r16-r31 */
1554 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1555 pt = task_pt_regs(dst->target);
1556 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1557 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1558 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1559 if (dst->ret || dst->count == 0)
1560 return;
1561 }
1562
1563 /* nat, pr, b0 - b7 */
1564 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1565 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1566 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1567 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1568 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1569 index++)
1570 if (access_elf_reg(dst->target, info, i,
1571 &tmp[index], 0) < 0) {
1572 dst->ret = -EIO;
1573 return;
1574 }
1575 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1576 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1577 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1578 if (dst->ret || dst->count == 0)
1579 return;
1580 }
1581
1582 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1583 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1584 */
1585 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1586 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1587 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1588 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1589 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1590 index++)
1591 if (access_elf_reg(dst->target, info, i,
1592 &tmp[index], 0) < 0) {
1593 dst->ret = -EIO;
1594 return;
1595 }
1596 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1597 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1598 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1599 }
1600 }
1601
do_gpregs_set(struct unw_frame_info * info,void * arg)1602 void do_gpregs_set(struct unw_frame_info *info, void *arg)
1603 {
1604 struct pt_regs *pt;
1605 struct regset_getset *dst = arg;
1606 elf_greg_t tmp[16];
1607 unsigned int i, index;
1608
1609 if (unw_unwind_to_user(info) < 0)
1610 return;
1611
1612 /* Skip r0 */
1613 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1614 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1615 &dst->u.set.kbuf,
1616 &dst->u.set.ubuf,
1617 0, ELF_GR_OFFSET(1));
1618 if (dst->ret || dst->count == 0)
1619 return;
1620 }
1621
1622 /* gr1-gr15 */
1623 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1624 i = dst->pos;
1625 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1626 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1627 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1628 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1629 if (dst->ret)
1630 return;
1631 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1632 if (access_elf_reg(dst->target, info, i,
1633 &tmp[index], 1) < 0) {
1634 dst->ret = -EIO;
1635 return;
1636 }
1637 if (dst->count == 0)
1638 return;
1639 }
1640
1641 /* gr16-gr31 */
1642 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1643 pt = task_pt_regs(dst->target);
1644 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1645 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1646 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1647 if (dst->ret || dst->count == 0)
1648 return;
1649 }
1650
1651 /* nat, pr, b0 - b7 */
1652 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1653 i = dst->pos;
1654 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1655 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1656 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1657 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1658 if (dst->ret)
1659 return;
1660 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1661 if (access_elf_reg(dst->target, info, i,
1662 &tmp[index], 1) < 0) {
1663 dst->ret = -EIO;
1664 return;
1665 }
1666 if (dst->count == 0)
1667 return;
1668 }
1669
1670 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1671 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1672 */
1673 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1674 i = dst->pos;
1675 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1676 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1677 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1678 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1679 if (dst->ret)
1680 return;
1681 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1682 if (access_elf_reg(dst->target, info, i,
1683 &tmp[index], 1) < 0) {
1684 dst->ret = -EIO;
1685 return;
1686 }
1687 }
1688 }
1689
1690 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1691
do_fpregs_get(struct unw_frame_info * info,void * arg)1692 void do_fpregs_get(struct unw_frame_info *info, void *arg)
1693 {
1694 struct regset_getset *dst = arg;
1695 struct task_struct *task = dst->target;
1696 elf_fpreg_t tmp[30];
1697 int index, min_copy, i;
1698
1699 if (unw_unwind_to_user(info) < 0)
1700 return;
1701
1702 /* Skip pos 0 and 1 */
1703 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1704 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1705 &dst->u.get.kbuf,
1706 &dst->u.get.ubuf,
1707 0, ELF_FP_OFFSET(2));
1708 if (dst->count == 0 || dst->ret)
1709 return;
1710 }
1711
1712 /* fr2-fr31 */
1713 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1714 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1715
1716 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1717 dst->pos + dst->count);
1718 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1719 index++)
1720 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1721 &tmp[index])) {
1722 dst->ret = -EIO;
1723 return;
1724 }
1725 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1726 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1727 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1728 if (dst->count == 0 || dst->ret)
1729 return;
1730 }
1731
1732 /* fph */
1733 if (dst->count > 0) {
1734 ia64_flush_fph(dst->target);
1735 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1736 dst->ret = user_regset_copyout(
1737 &dst->pos, &dst->count,
1738 &dst->u.get.kbuf, &dst->u.get.ubuf,
1739 &dst->target->thread.fph,
1740 ELF_FP_OFFSET(32), -1);
1741 else
1742 /* Zero fill instead. */
1743 dst->ret = user_regset_copyout_zero(
1744 &dst->pos, &dst->count,
1745 &dst->u.get.kbuf, &dst->u.get.ubuf,
1746 ELF_FP_OFFSET(32), -1);
1747 }
1748 }
1749
do_fpregs_set(struct unw_frame_info * info,void * arg)1750 void do_fpregs_set(struct unw_frame_info *info, void *arg)
1751 {
1752 struct regset_getset *dst = arg;
1753 elf_fpreg_t fpreg, tmp[30];
1754 int index, start, end;
1755
1756 if (unw_unwind_to_user(info) < 0)
1757 return;
1758
1759 /* Skip pos 0 and 1 */
1760 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1761 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1762 &dst->u.set.kbuf,
1763 &dst->u.set.ubuf,
1764 0, ELF_FP_OFFSET(2));
1765 if (dst->count == 0 || dst->ret)
1766 return;
1767 }
1768
1769 /* fr2-fr31 */
1770 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1771 start = dst->pos;
1772 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1773 dst->pos + dst->count);
1774 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1775 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1776 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1777 if (dst->ret)
1778 return;
1779
1780 if (start & 0xF) { /* only write high part */
1781 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1782 &fpreg)) {
1783 dst->ret = -EIO;
1784 return;
1785 }
1786 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1787 = fpreg.u.bits[0];
1788 start &= ~0xFUL;
1789 }
1790 if (end & 0xF) { /* only write low part */
1791 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1792 &fpreg)) {
1793 dst->ret = -EIO;
1794 return;
1795 }
1796 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1797 = fpreg.u.bits[1];
1798 end = (end + 0xF) & ~0xFUL;
1799 }
1800
1801 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1802 index = start / sizeof(elf_fpreg_t);
1803 if (unw_set_fr(info, index, tmp[index - 2])) {
1804 dst->ret = -EIO;
1805 return;
1806 }
1807 }
1808 if (dst->ret || dst->count == 0)
1809 return;
1810 }
1811
1812 /* fph */
1813 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1814 ia64_sync_fph(dst->target);
1815 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1816 &dst->u.set.kbuf,
1817 &dst->u.set.ubuf,
1818 &dst->target->thread.fph,
1819 ELF_FP_OFFSET(32), -1);
1820 }
1821 }
1822
1823 static int
do_regset_call(void (* call)(struct unw_frame_info *,void *),struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1824 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1825 struct task_struct *target,
1826 const struct user_regset *regset,
1827 unsigned int pos, unsigned int count,
1828 const void *kbuf, const void __user *ubuf)
1829 {
1830 struct regset_getset info = { .target = target, .regset = regset,
1831 .pos = pos, .count = count,
1832 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1833 .ret = 0 };
1834
1835 if (target == current)
1836 unw_init_running(call, &info);
1837 else {
1838 struct unw_frame_info ufi;
1839 memset(&ufi, 0, sizeof(ufi));
1840 unw_init_from_blocked_task(&ufi, target);
1841 (*call)(&ufi, &info);
1842 }
1843
1844 return info.ret;
1845 }
1846
1847 static int
gpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1848 gpregs_get(struct task_struct *target,
1849 const struct user_regset *regset,
1850 unsigned int pos, unsigned int count,
1851 void *kbuf, void __user *ubuf)
1852 {
1853 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1854 kbuf, ubuf);
1855 }
1856
gpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1857 static int gpregs_set(struct task_struct *target,
1858 const struct user_regset *regset,
1859 unsigned int pos, unsigned int count,
1860 const void *kbuf, const void __user *ubuf)
1861 {
1862 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1863 kbuf, ubuf);
1864 }
1865
do_gpregs_writeback(struct unw_frame_info * info,void * arg)1866 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1867 {
1868 do_sync_rbs(info, ia64_sync_user_rbs);
1869 }
1870
1871 /*
1872 * This is called to write back the register backing store.
1873 * ptrace does this before it stops, so that a tracer reading the user
1874 * memory after the thread stops will get the current register data.
1875 */
1876 static int
gpregs_writeback(struct task_struct * target,const struct user_regset * regset,int now)1877 gpregs_writeback(struct task_struct *target,
1878 const struct user_regset *regset,
1879 int now)
1880 {
1881 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1882 return 0;
1883 set_notify_resume(target);
1884 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1885 NULL, NULL);
1886 }
1887
1888 static int
fpregs_active(struct task_struct * target,const struct user_regset * regset)1889 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1890 {
1891 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1892 }
1893
fpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1894 static int fpregs_get(struct task_struct *target,
1895 const struct user_regset *regset,
1896 unsigned int pos, unsigned int count,
1897 void *kbuf, void __user *ubuf)
1898 {
1899 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1900 kbuf, ubuf);
1901 }
1902
fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1903 static int fpregs_set(struct task_struct *target,
1904 const struct user_regset *regset,
1905 unsigned int pos, unsigned int count,
1906 const void *kbuf, const void __user *ubuf)
1907 {
1908 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1909 kbuf, ubuf);
1910 }
1911
1912 static int
access_uarea(struct task_struct * child,unsigned long addr,unsigned long * data,int write_access)1913 access_uarea(struct task_struct *child, unsigned long addr,
1914 unsigned long *data, int write_access)
1915 {
1916 unsigned int pos = -1; /* an invalid value */
1917 int ret;
1918 unsigned long *ptr, regnum;
1919
1920 if ((addr & 0x7) != 0) {
1921 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1922 return -1;
1923 }
1924 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1925 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1926 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1927 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1928 dprintk("ptrace: rejecting access to register "
1929 "address 0x%lx\n", addr);
1930 return -1;
1931 }
1932
1933 switch (addr) {
1934 case PT_F32 ... (PT_F127 + 15):
1935 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1936 break;
1937 case PT_F2 ... (PT_F5 + 15):
1938 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1939 break;
1940 case PT_F10 ... (PT_F31 + 15):
1941 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1942 break;
1943 case PT_F6 ... (PT_F9 + 15):
1944 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1945 break;
1946 }
1947
1948 if (pos != -1) {
1949 if (write_access)
1950 ret = fpregs_set(child, NULL, pos,
1951 sizeof(unsigned long), data, NULL);
1952 else
1953 ret = fpregs_get(child, NULL, pos,
1954 sizeof(unsigned long), data, NULL);
1955 if (ret != 0)
1956 return -1;
1957 return 0;
1958 }
1959
1960 switch (addr) {
1961 case PT_NAT_BITS:
1962 pos = ELF_NAT_OFFSET;
1963 break;
1964 case PT_R4 ... PT_R7:
1965 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1966 break;
1967 case PT_B1 ... PT_B5:
1968 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1969 break;
1970 case PT_AR_EC:
1971 pos = ELF_AR_EC_OFFSET;
1972 break;
1973 case PT_AR_LC:
1974 pos = ELF_AR_LC_OFFSET;
1975 break;
1976 case PT_CR_IPSR:
1977 pos = ELF_CR_IPSR_OFFSET;
1978 break;
1979 case PT_CR_IIP:
1980 pos = ELF_CR_IIP_OFFSET;
1981 break;
1982 case PT_CFM:
1983 pos = ELF_CFM_OFFSET;
1984 break;
1985 case PT_AR_UNAT:
1986 pos = ELF_AR_UNAT_OFFSET;
1987 break;
1988 case PT_AR_PFS:
1989 pos = ELF_AR_PFS_OFFSET;
1990 break;
1991 case PT_AR_RSC:
1992 pos = ELF_AR_RSC_OFFSET;
1993 break;
1994 case PT_AR_RNAT:
1995 pos = ELF_AR_RNAT_OFFSET;
1996 break;
1997 case PT_AR_BSPSTORE:
1998 pos = ELF_AR_BSPSTORE_OFFSET;
1999 break;
2000 case PT_PR:
2001 pos = ELF_PR_OFFSET;
2002 break;
2003 case PT_B6:
2004 pos = ELF_BR_OFFSET(6);
2005 break;
2006 case PT_AR_BSP:
2007 pos = ELF_AR_BSP_OFFSET;
2008 break;
2009 case PT_R1 ... PT_R3:
2010 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2011 break;
2012 case PT_R12 ... PT_R15:
2013 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2014 break;
2015 case PT_R8 ... PT_R11:
2016 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2017 break;
2018 case PT_R16 ... PT_R31:
2019 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2020 break;
2021 case PT_AR_CCV:
2022 pos = ELF_AR_CCV_OFFSET;
2023 break;
2024 case PT_AR_FPSR:
2025 pos = ELF_AR_FPSR_OFFSET;
2026 break;
2027 case PT_B0:
2028 pos = ELF_BR_OFFSET(0);
2029 break;
2030 case PT_B7:
2031 pos = ELF_BR_OFFSET(7);
2032 break;
2033 case PT_AR_CSD:
2034 pos = ELF_AR_CSD_OFFSET;
2035 break;
2036 case PT_AR_SSD:
2037 pos = ELF_AR_SSD_OFFSET;
2038 break;
2039 }
2040
2041 if (pos != -1) {
2042 if (write_access)
2043 ret = gpregs_set(child, NULL, pos,
2044 sizeof(unsigned long), data, NULL);
2045 else
2046 ret = gpregs_get(child, NULL, pos,
2047 sizeof(unsigned long), data, NULL);
2048 if (ret != 0)
2049 return -1;
2050 return 0;
2051 }
2052
2053 /* access debug registers */
2054 if (addr >= PT_IBR) {
2055 regnum = (addr - PT_IBR) >> 3;
2056 ptr = &child->thread.ibr[0];
2057 } else {
2058 regnum = (addr - PT_DBR) >> 3;
2059 ptr = &child->thread.dbr[0];
2060 }
2061
2062 if (regnum >= 8) {
2063 dprintk("ptrace: rejecting access to register "
2064 "address 0x%lx\n", addr);
2065 return -1;
2066 }
2067 #ifdef CONFIG_PERFMON
2068 /*
2069 * Check if debug registers are used by perfmon. This
2070 * test must be done once we know that we can do the
2071 * operation, i.e. the arguments are all valid, but
2072 * before we start modifying the state.
2073 *
2074 * Perfmon needs to keep a count of how many processes
2075 * are trying to modify the debug registers for system
2076 * wide monitoring sessions.
2077 *
2078 * We also include read access here, because they may
2079 * cause the PMU-installed debug register state
2080 * (dbr[], ibr[]) to be reset. The two arrays are also
2081 * used by perfmon, but we do not use
2082 * IA64_THREAD_DBG_VALID. The registers are restored
2083 * by the PMU context switch code.
2084 */
2085 if (pfm_use_debug_registers(child))
2086 return -1;
2087 #endif
2088
2089 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2090 child->thread.flags |= IA64_THREAD_DBG_VALID;
2091 memset(child->thread.dbr, 0,
2092 sizeof(child->thread.dbr));
2093 memset(child->thread.ibr, 0,
2094 sizeof(child->thread.ibr));
2095 }
2096
2097 ptr += regnum;
2098
2099 if ((regnum & 1) && write_access) {
2100 /* don't let the user set kernel-level breakpoints: */
2101 *ptr = *data & ~(7UL << 56);
2102 return 0;
2103 }
2104 if (write_access)
2105 *ptr = *data;
2106 else
2107 *data = *ptr;
2108 return 0;
2109 }
2110
2111 static const struct user_regset native_regsets[] = {
2112 {
2113 .core_note_type = NT_PRSTATUS,
2114 .n = ELF_NGREG,
2115 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2116 .get = gpregs_get, .set = gpregs_set,
2117 .writeback = gpregs_writeback
2118 },
2119 {
2120 .core_note_type = NT_PRFPREG,
2121 .n = ELF_NFPREG,
2122 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2123 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2124 },
2125 };
2126
2127 static const struct user_regset_view user_ia64_view = {
2128 .name = "ia64",
2129 .e_machine = EM_IA_64,
2130 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2131 };
2132
task_user_regset_view(struct task_struct * tsk)2133 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2134 {
2135 return &user_ia64_view;
2136 }
2137
2138 struct syscall_get_set_args {
2139 unsigned int i;
2140 unsigned int n;
2141 unsigned long *args;
2142 struct pt_regs *regs;
2143 int rw;
2144 };
2145
syscall_get_set_args_cb(struct unw_frame_info * info,void * data)2146 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2147 {
2148 struct syscall_get_set_args *args = data;
2149 struct pt_regs *pt = args->regs;
2150 unsigned long *krbs, cfm, ndirty;
2151 int i, count;
2152
2153 if (unw_unwind_to_user(info) < 0)
2154 return;
2155
2156 cfm = pt->cr_ifs;
2157 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2158 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2159
2160 count = 0;
2161 if (in_syscall(pt))
2162 count = min_t(int, args->n, cfm & 0x7f);
2163
2164 for (i = 0; i < count; i++) {
2165 if (args->rw)
2166 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2167 args->args[i];
2168 else
2169 args->args[i] = *ia64_rse_skip_regs(krbs,
2170 ndirty + i + args->i);
2171 }
2172
2173 if (!args->rw) {
2174 while (i < args->n) {
2175 args->args[i] = 0;
2176 i++;
2177 }
2178 }
2179 }
2180
ia64_syscall_get_set_arguments(struct task_struct * task,struct pt_regs * regs,unsigned long * args,int rw)2181 void ia64_syscall_get_set_arguments(struct task_struct *task,
2182 struct pt_regs *regs, unsigned long *args, int rw)
2183 {
2184 struct syscall_get_set_args data = {
2185 .i = 0,
2186 .n = 6,
2187 .args = args,
2188 .regs = regs,
2189 .rw = rw,
2190 };
2191
2192 if (task == current)
2193 unw_init_running(syscall_get_set_args_cb, &data);
2194 else {
2195 struct unw_frame_info ufi;
2196 memset(&ufi, 0, sizeof(ufi));
2197 unw_init_from_blocked_task(&ufi, task);
2198 syscall_get_set_args_cb(&ufi, &data);
2199 }
2200 }
2201