1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SMP boot-related support
4 *
5 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2001, 2004-2005 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Ashok Raj <ashok.raj@intel.com>
12 *
13 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
14 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
15 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
16 * smp_boot_cpus()/smp_commence() is replaced by
17 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
18 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
19 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
20 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
21 * Add multi-threading and multi-core detection
22 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
23 * Setup cpu_sibling_map and cpu_core_map
24 */
25
26 #include <linux/module.h>
27 #include <linux/acpi.h>
28 #include <linux/memblock.h>
29 #include <linux/cpu.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/irq.h>
34 #include <linux/kernel.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/mm.h>
37 #include <linux/notifier.h>
38 #include <linux/smp.h>
39 #include <linux/spinlock.h>
40 #include <linux/efi.h>
41 #include <linux/percpu.h>
42 #include <linux/bitops.h>
43
44 #include <linux/atomic.h>
45 #include <asm/cache.h>
46 #include <asm/current.h>
47 #include <asm/delay.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/mca.h>
51 #include <asm/page.h>
52 #include <asm/processor.h>
53 #include <asm/ptrace.h>
54 #include <asm/sal.h>
55 #include <asm/tlbflush.h>
56 #include <asm/unistd.h>
57
58 #define SMP_DEBUG 0
59
60 #if SMP_DEBUG
61 #define Dprintk(x...) printk(x)
62 #else
63 #define Dprintk(x...)
64 #endif
65
66 #ifdef CONFIG_HOTPLUG_CPU
67 #ifdef CONFIG_PERMIT_BSP_REMOVE
68 #define bsp_remove_ok 1
69 #else
70 #define bsp_remove_ok 0
71 #endif
72
73 /*
74 * Global array allocated for NR_CPUS at boot time
75 */
76 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
77
78 /*
79 * start_ap in head.S uses this to store current booting cpu
80 * info.
81 */
82 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
83
84 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
85
86 #else
87 #define set_brendez_area(x)
88 #endif
89
90
91 /*
92 * ITC synchronization related stuff:
93 */
94 #define MASTER (0)
95 #define SLAVE (SMP_CACHE_BYTES/8)
96
97 #define NUM_ROUNDS 64 /* magic value */
98 #define NUM_ITERS 5 /* likewise */
99
100 static DEFINE_SPINLOCK(itc_sync_lock);
101 static volatile unsigned long go[SLAVE + 1];
102
103 #define DEBUG_ITC_SYNC 0
104
105 extern void start_ap (void);
106 extern unsigned long ia64_iobase;
107
108 struct task_struct *task_for_booting_cpu;
109
110 /*
111 * State for each CPU
112 */
113 DEFINE_PER_CPU(int, cpu_state);
114
115 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
116 EXPORT_SYMBOL(cpu_core_map);
117 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
118 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
119
120 int smp_num_siblings = 1;
121
122 /* which logical CPU number maps to which CPU (physical APIC ID) */
123 volatile int ia64_cpu_to_sapicid[NR_CPUS];
124 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
125
126 static cpumask_t cpu_callin_map;
127
128 struct smp_boot_data smp_boot_data __initdata;
129
130 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
131
132 char __initdata no_int_routing;
133
134 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
135
136 #ifdef CONFIG_FORCE_CPEI_RETARGET
137 #define CPEI_OVERRIDE_DEFAULT (1)
138 #else
139 #define CPEI_OVERRIDE_DEFAULT (0)
140 #endif
141
142 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
143
144 static int __init
cmdl_force_cpei(char * str)145 cmdl_force_cpei(char *str)
146 {
147 int value=0;
148
149 get_option (&str, &value);
150 force_cpei_retarget = value;
151
152 return 1;
153 }
154
155 __setup("force_cpei=", cmdl_force_cpei);
156
157 static int __init
nointroute(char * str)158 nointroute (char *str)
159 {
160 no_int_routing = 1;
161 printk ("no_int_routing on\n");
162 return 1;
163 }
164
165 __setup("nointroute", nointroute);
166
fix_b0_for_bsp(void)167 static void fix_b0_for_bsp(void)
168 {
169 #ifdef CONFIG_HOTPLUG_CPU
170 int cpuid;
171 static int fix_bsp_b0 = 1;
172
173 cpuid = smp_processor_id();
174
175 /*
176 * Cache the b0 value on the first AP that comes up
177 */
178 if (!(fix_bsp_b0 && cpuid))
179 return;
180
181 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
182 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
183
184 fix_bsp_b0 = 0;
185 #endif
186 }
187
188 void
sync_master(void * arg)189 sync_master (void *arg)
190 {
191 unsigned long flags, i;
192
193 go[MASTER] = 0;
194
195 local_irq_save(flags);
196 {
197 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
198 while (!go[MASTER])
199 cpu_relax();
200 go[MASTER] = 0;
201 go[SLAVE] = ia64_get_itc();
202 }
203 }
204 local_irq_restore(flags);
205 }
206
207 /*
208 * Return the number of cycles by which our itc differs from the itc on the master
209 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
210 * negative that it is behind.
211 */
212 static inline long
get_delta(long * rt,long * master)213 get_delta (long *rt, long *master)
214 {
215 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
216 unsigned long tcenter, t0, t1, tm;
217 long i;
218
219 for (i = 0; i < NUM_ITERS; ++i) {
220 t0 = ia64_get_itc();
221 go[MASTER] = 1;
222 while (!(tm = go[SLAVE]))
223 cpu_relax();
224 go[SLAVE] = 0;
225 t1 = ia64_get_itc();
226
227 if (t1 - t0 < best_t1 - best_t0)
228 best_t0 = t0, best_t1 = t1, best_tm = tm;
229 }
230
231 *rt = best_t1 - best_t0;
232 *master = best_tm - best_t0;
233
234 /* average best_t0 and best_t1 without overflow: */
235 tcenter = (best_t0/2 + best_t1/2);
236 if (best_t0 % 2 + best_t1 % 2 == 2)
237 ++tcenter;
238 return tcenter - best_tm;
239 }
240
241 /*
242 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
243 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
244 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
245 * step). The basic idea is for the slave to ask the master what itc value it has and to
246 * read its own itc before and after the master responds. Each iteration gives us three
247 * timestamps:
248 *
249 * slave master
250 *
251 * t0 ---\
252 * ---\
253 * --->
254 * tm
255 * /---
256 * /---
257 * t1 <---
258 *
259 *
260 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
261 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
262 * between the slave and the master is symmetric. Even if the interconnect were
263 * asymmetric, we would still know that the synchronization error is smaller than the
264 * roundtrip latency (t0 - t1).
265 *
266 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
267 * within one or two cycles. However, we can only *guarantee* that the synchronization is
268 * accurate to within a round-trip time, which is typically in the range of several
269 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
270 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
271 * than half a micro second or so.
272 */
273 void
ia64_sync_itc(unsigned int master)274 ia64_sync_itc (unsigned int master)
275 {
276 long i, delta, adj, adjust_latency = 0, done = 0;
277 unsigned long flags, rt, master_time_stamp, bound;
278 #if DEBUG_ITC_SYNC
279 struct {
280 long rt; /* roundtrip time */
281 long master; /* master's timestamp */
282 long diff; /* difference between midpoint and master's timestamp */
283 long lat; /* estimate of itc adjustment latency */
284 } t[NUM_ROUNDS];
285 #endif
286
287 /*
288 * Make sure local timer ticks are disabled while we sync. If
289 * they were enabled, we'd have to worry about nasty issues
290 * like setting the ITC ahead of (or a long time before) the
291 * next scheduled tick.
292 */
293 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
294
295 go[MASTER] = 1;
296
297 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
298 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
299 return;
300 }
301
302 while (go[MASTER])
303 cpu_relax(); /* wait for master to be ready */
304
305 spin_lock_irqsave(&itc_sync_lock, flags);
306 {
307 for (i = 0; i < NUM_ROUNDS; ++i) {
308 delta = get_delta(&rt, &master_time_stamp);
309 if (delta == 0) {
310 done = 1; /* let's lock on to this... */
311 bound = rt;
312 }
313
314 if (!done) {
315 if (i > 0) {
316 adjust_latency += -delta;
317 adj = -delta + adjust_latency/4;
318 } else
319 adj = -delta;
320
321 ia64_set_itc(ia64_get_itc() + adj);
322 }
323 #if DEBUG_ITC_SYNC
324 t[i].rt = rt;
325 t[i].master = master_time_stamp;
326 t[i].diff = delta;
327 t[i].lat = adjust_latency/4;
328 #endif
329 }
330 }
331 spin_unlock_irqrestore(&itc_sync_lock, flags);
332
333 #if DEBUG_ITC_SYNC
334 for (i = 0; i < NUM_ROUNDS; ++i)
335 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
336 t[i].rt, t[i].master, t[i].diff, t[i].lat);
337 #endif
338
339 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
340 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
341 }
342
343 /*
344 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
345 */
smp_setup_percpu_timer(void)346 static inline void smp_setup_percpu_timer(void)
347 {
348 }
349
350 static void
smp_callin(void)351 smp_callin (void)
352 {
353 int cpuid, phys_id, itc_master;
354 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
355 extern void ia64_init_itm(void);
356 extern volatile int time_keeper_id;
357
358 cpuid = smp_processor_id();
359 phys_id = hard_smp_processor_id();
360 itc_master = time_keeper_id;
361
362 if (cpu_online(cpuid)) {
363 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
364 phys_id, cpuid);
365 BUG();
366 }
367
368 fix_b0_for_bsp();
369
370 /*
371 * numa_node_id() works after this.
372 */
373 set_numa_node(cpu_to_node_map[cpuid]);
374 set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
375
376 spin_lock(&vector_lock);
377 /* Setup the per cpu irq handling data structures */
378 __setup_vector_irq(cpuid);
379 notify_cpu_starting(cpuid);
380 set_cpu_online(cpuid, true);
381 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
382 spin_unlock(&vector_lock);
383
384 smp_setup_percpu_timer();
385
386 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
387
388 local_irq_enable();
389
390 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
391 /*
392 * Synchronize the ITC with the BP. Need to do this after irqs are
393 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
394 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
395 * local_bh_enable(), which bugs out if irqs are not enabled...
396 */
397 Dprintk("Going to syncup ITC with ITC Master.\n");
398 ia64_sync_itc(itc_master);
399 }
400
401 /*
402 * Get our bogomips.
403 */
404 ia64_init_itm();
405
406 /*
407 * Delay calibration can be skipped if new processor is identical to the
408 * previous processor.
409 */
410 last_cpuinfo = cpu_data(cpuid - 1);
411 this_cpuinfo = local_cpu_data;
412 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
413 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
414 last_cpuinfo->features != this_cpuinfo->features ||
415 last_cpuinfo->revision != this_cpuinfo->revision ||
416 last_cpuinfo->family != this_cpuinfo->family ||
417 last_cpuinfo->archrev != this_cpuinfo->archrev ||
418 last_cpuinfo->model != this_cpuinfo->model)
419 calibrate_delay();
420 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
421
422 /*
423 * Allow the master to continue.
424 */
425 cpumask_set_cpu(cpuid, &cpu_callin_map);
426 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
427 }
428
429
430 /*
431 * Activate a secondary processor. head.S calls this.
432 */
433 int
start_secondary(void * unused)434 start_secondary (void *unused)
435 {
436 /* Early console may use I/O ports */
437 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
438 #ifndef CONFIG_PRINTK_TIME
439 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
440 #endif
441 efi_map_pal_code();
442 cpu_init();
443 preempt_disable();
444 smp_callin();
445
446 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
447 return 0;
448 }
449
450 static int
do_boot_cpu(int sapicid,int cpu,struct task_struct * idle)451 do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
452 {
453 int timeout;
454
455 task_for_booting_cpu = idle;
456 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
457
458 set_brendez_area(cpu);
459 ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
460
461 /*
462 * Wait 10s total for the AP to start
463 */
464 Dprintk("Waiting on callin_map ...");
465 for (timeout = 0; timeout < 100000; timeout++) {
466 if (cpumask_test_cpu(cpu, &cpu_callin_map))
467 break; /* It has booted */
468 barrier(); /* Make sure we re-read cpu_callin_map */
469 udelay(100);
470 }
471 Dprintk("\n");
472
473 if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
474 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
475 ia64_cpu_to_sapicid[cpu] = -1;
476 set_cpu_online(cpu, false); /* was set in smp_callin() */
477 return -EINVAL;
478 }
479 return 0;
480 }
481
482 static int __init
decay(char * str)483 decay (char *str)
484 {
485 int ticks;
486 get_option (&str, &ticks);
487 return 1;
488 }
489
490 __setup("decay=", decay);
491
492 /*
493 * Initialize the logical CPU number to SAPICID mapping
494 */
495 void __init
smp_build_cpu_map(void)496 smp_build_cpu_map (void)
497 {
498 int sapicid, cpu, i;
499 int boot_cpu_id = hard_smp_processor_id();
500
501 for (cpu = 0; cpu < NR_CPUS; cpu++) {
502 ia64_cpu_to_sapicid[cpu] = -1;
503 }
504
505 ia64_cpu_to_sapicid[0] = boot_cpu_id;
506 init_cpu_present(cpumask_of(0));
507 set_cpu_possible(0, true);
508 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
509 sapicid = smp_boot_data.cpu_phys_id[i];
510 if (sapicid == boot_cpu_id)
511 continue;
512 set_cpu_present(cpu, true);
513 set_cpu_possible(cpu, true);
514 ia64_cpu_to_sapicid[cpu] = sapicid;
515 cpu++;
516 }
517 }
518
519 /*
520 * Cycle through the APs sending Wakeup IPIs to boot each.
521 */
522 void __init
smp_prepare_cpus(unsigned int max_cpus)523 smp_prepare_cpus (unsigned int max_cpus)
524 {
525 int boot_cpu_id = hard_smp_processor_id();
526
527 /*
528 * Initialize the per-CPU profiling counter/multiplier
529 */
530
531 smp_setup_percpu_timer();
532
533 cpumask_set_cpu(0, &cpu_callin_map);
534
535 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
536 ia64_cpu_to_sapicid[0] = boot_cpu_id;
537
538 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
539
540 current_thread_info()->cpu = 0;
541
542 /*
543 * If SMP should be disabled, then really disable it!
544 */
545 if (!max_cpus) {
546 printk(KERN_INFO "SMP mode deactivated.\n");
547 init_cpu_online(cpumask_of(0));
548 init_cpu_present(cpumask_of(0));
549 init_cpu_possible(cpumask_of(0));
550 return;
551 }
552 }
553
smp_prepare_boot_cpu(void)554 void smp_prepare_boot_cpu(void)
555 {
556 set_cpu_online(smp_processor_id(), true);
557 cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
558 set_numa_node(cpu_to_node_map[smp_processor_id()]);
559 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
560 }
561
562 #ifdef CONFIG_HOTPLUG_CPU
563 static inline void
clear_cpu_sibling_map(int cpu)564 clear_cpu_sibling_map(int cpu)
565 {
566 int i;
567
568 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
569 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
570 for_each_cpu(i, &cpu_core_map[cpu])
571 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
572
573 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
574 }
575
576 static void
remove_siblinginfo(int cpu)577 remove_siblinginfo(int cpu)
578 {
579 int last = 0;
580
581 if (cpu_data(cpu)->threads_per_core == 1 &&
582 cpu_data(cpu)->cores_per_socket == 1) {
583 cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
584 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
585 return;
586 }
587
588 last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
589
590 /* remove it from all sibling map's */
591 clear_cpu_sibling_map(cpu);
592 }
593
594 extern void fixup_irqs(void);
595
migrate_platform_irqs(unsigned int cpu)596 int migrate_platform_irqs(unsigned int cpu)
597 {
598 int new_cpei_cpu;
599 struct irq_data *data = NULL;
600 const struct cpumask *mask;
601 int retval = 0;
602
603 /*
604 * dont permit CPEI target to removed.
605 */
606 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
607 printk ("CPU (%d) is CPEI Target\n", cpu);
608 if (can_cpei_retarget()) {
609 /*
610 * Now re-target the CPEI to a different processor
611 */
612 new_cpei_cpu = cpumask_any(cpu_online_mask);
613 mask = cpumask_of(new_cpei_cpu);
614 set_cpei_target_cpu(new_cpei_cpu);
615 data = irq_get_irq_data(ia64_cpe_irq);
616 /*
617 * Switch for now, immediately, we need to do fake intr
618 * as other interrupts, but need to study CPEI behaviour with
619 * polling before making changes.
620 */
621 if (data && data->chip) {
622 data->chip->irq_disable(data);
623 data->chip->irq_set_affinity(data, mask, false);
624 data->chip->irq_enable(data);
625 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
626 }
627 }
628 if (!data) {
629 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
630 retval = -EBUSY;
631 }
632 }
633 return retval;
634 }
635
636 /* must be called with cpucontrol mutex held */
__cpu_disable(void)637 int __cpu_disable(void)
638 {
639 int cpu = smp_processor_id();
640
641 /*
642 * dont permit boot processor for now
643 */
644 if (cpu == 0 && !bsp_remove_ok) {
645 printk ("Your platform does not support removal of BSP\n");
646 return (-EBUSY);
647 }
648
649 set_cpu_online(cpu, false);
650
651 if (migrate_platform_irqs(cpu)) {
652 set_cpu_online(cpu, true);
653 return -EBUSY;
654 }
655
656 remove_siblinginfo(cpu);
657 fixup_irqs();
658 local_flush_tlb_all();
659 cpumask_clear_cpu(cpu, &cpu_callin_map);
660 return 0;
661 }
662
__cpu_die(unsigned int cpu)663 void __cpu_die(unsigned int cpu)
664 {
665 unsigned int i;
666
667 for (i = 0; i < 100; i++) {
668 /* They ack this in play_dead by setting CPU_DEAD */
669 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
670 {
671 printk ("CPU %d is now offline\n", cpu);
672 return;
673 }
674 msleep(100);
675 }
676 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
677 }
678 #endif /* CONFIG_HOTPLUG_CPU */
679
680 void
smp_cpus_done(unsigned int dummy)681 smp_cpus_done (unsigned int dummy)
682 {
683 int cpu;
684 unsigned long bogosum = 0;
685
686 /*
687 * Allow the user to impress friends.
688 */
689
690 for_each_online_cpu(cpu) {
691 bogosum += cpu_data(cpu)->loops_per_jiffy;
692 }
693
694 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
695 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
696 }
697
set_cpu_sibling_map(int cpu)698 static inline void set_cpu_sibling_map(int cpu)
699 {
700 int i;
701
702 for_each_online_cpu(i) {
703 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
704 cpumask_set_cpu(i, &cpu_core_map[cpu]);
705 cpumask_set_cpu(cpu, &cpu_core_map[i]);
706 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
707 cpumask_set_cpu(i,
708 &per_cpu(cpu_sibling_map, cpu));
709 cpumask_set_cpu(cpu,
710 &per_cpu(cpu_sibling_map, i));
711 }
712 }
713 }
714 }
715
716 int
__cpu_up(unsigned int cpu,struct task_struct * tidle)717 __cpu_up(unsigned int cpu, struct task_struct *tidle)
718 {
719 int ret;
720 int sapicid;
721
722 sapicid = ia64_cpu_to_sapicid[cpu];
723 if (sapicid == -1)
724 return -EINVAL;
725
726 /*
727 * Already booted cpu? not valid anymore since we dont
728 * do idle loop tightspin anymore.
729 */
730 if (cpumask_test_cpu(cpu, &cpu_callin_map))
731 return -EINVAL;
732
733 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
734 /* Processor goes to start_secondary(), sets online flag */
735 ret = do_boot_cpu(sapicid, cpu, tidle);
736 if (ret < 0)
737 return ret;
738
739 if (cpu_data(cpu)->threads_per_core == 1 &&
740 cpu_data(cpu)->cores_per_socket == 1) {
741 cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
742 cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
743 return 0;
744 }
745
746 set_cpu_sibling_map(cpu);
747
748 return 0;
749 }
750
751 /*
752 * Assume that CPUs have been discovered by some platform-dependent interface. For
753 * SoftSDV/Lion, that would be ACPI.
754 *
755 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
756 */
757 void __init
init_smp_config(void)758 init_smp_config(void)
759 {
760 struct fptr {
761 unsigned long fp;
762 unsigned long gp;
763 } *ap_startup;
764 long sal_ret;
765
766 /* Tell SAL where to drop the APs. */
767 ap_startup = (struct fptr *) start_ap;
768 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
769 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
770 if (sal_ret < 0)
771 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
772 ia64_sal_strerror(sal_ret));
773 }
774
775 /*
776 * identify_siblings(cpu) gets called from identify_cpu. This populates the
777 * information related to logical execution units in per_cpu_data structure.
778 */
identify_siblings(struct cpuinfo_ia64 * c)779 void identify_siblings(struct cpuinfo_ia64 *c)
780 {
781 long status;
782 u16 pltid;
783 pal_logical_to_physical_t info;
784
785 status = ia64_pal_logical_to_phys(-1, &info);
786 if (status != PAL_STATUS_SUCCESS) {
787 if (status != PAL_STATUS_UNIMPLEMENTED) {
788 printk(KERN_ERR
789 "ia64_pal_logical_to_phys failed with %ld\n",
790 status);
791 return;
792 }
793
794 info.overview_ppid = 0;
795 info.overview_cpp = 1;
796 info.overview_tpc = 1;
797 }
798
799 status = ia64_sal_physical_id_info(&pltid);
800 if (status != PAL_STATUS_SUCCESS) {
801 if (status != PAL_STATUS_UNIMPLEMENTED)
802 printk(KERN_ERR
803 "ia64_sal_pltid failed with %ld\n",
804 status);
805 return;
806 }
807
808 c->socket_id = (pltid << 8) | info.overview_ppid;
809
810 if (info.overview_cpp == 1 && info.overview_tpc == 1)
811 return;
812
813 c->cores_per_socket = info.overview_cpp;
814 c->threads_per_core = info.overview_tpc;
815 c->num_log = info.overview_num_log;
816
817 c->core_id = info.log1_cid;
818 c->thread_id = info.log1_tid;
819 }
820
821 /*
822 * returns non zero, if multi-threading is enabled
823 * on at least one physical package. Due to hotplug cpu
824 * and (maxcpus=), all threads may not necessarily be enabled
825 * even though the processor supports multi-threading.
826 */
is_multithreading_enabled(void)827 int is_multithreading_enabled(void)
828 {
829 int i, j;
830
831 for_each_present_cpu(i) {
832 for_each_present_cpu(j) {
833 if (j == i)
834 continue;
835 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
836 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
837 return 1;
838 }
839 }
840 }
841 return 0;
842 }
843 EXPORT_SYMBOL_GPL(is_multithreading_enabled);
844