1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Architecture-specific setup.
4 *
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
8 *
9 * 2005-10-07 Keith Owens <kaos@sgi.com>
10 * Add notify_die() hooks.
11 */
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/elf.h>
15 #include <linux/errno.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/stddef.h>
28 #include <linux/thread_info.h>
29 #include <linux/unistd.h>
30 #include <linux/efi.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/kdebug.h>
34 #include <linux/utsname.h>
35 #include <linux/tracehook.h>
36 #include <linux/rcupdate.h>
37
38 #include <asm/cpu.h>
39 #include <asm/delay.h>
40 #include <asm/elf.h>
41 #include <asm/irq.h>
42 #include <asm/kexec.h>
43 #include <asm/processor.h>
44 #include <asm/sal.h>
45 #include <asm/switch_to.h>
46 #include <asm/tlbflush.h>
47 #include <linux/uaccess.h>
48 #include <asm/unwind.h>
49 #include <asm/user.h>
50 #include <asm/xtp.h>
51
52 #include "entry.h"
53
54 #include "sigframe.h"
55
56 void (*ia64_mark_idle)(int);
57
58 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
59 EXPORT_SYMBOL(boot_option_idle_override);
60 void (*pm_power_off) (void);
61 EXPORT_SYMBOL(pm_power_off);
62
63 static void
ia64_do_show_stack(struct unw_frame_info * info,void * arg)64 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
65 {
66 unsigned long ip, sp, bsp;
67 const char *loglvl = arg;
68
69 printk("%s\nCall Trace:\n", loglvl);
70 do {
71 unw_get_ip(info, &ip);
72 if (ip == 0)
73 break;
74
75 unw_get_sp(info, &sp);
76 unw_get_bsp(info, &bsp);
77 printk("%s [<%016lx>] %pS\n"
78 " sp=%016lx bsp=%016lx\n",
79 loglvl, ip, (void *)ip, sp, bsp);
80 } while (unw_unwind(info) >= 0);
81 }
82
83 void
show_stack(struct task_struct * task,unsigned long * sp,const char * loglvl)84 show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
85 {
86 if (!task)
87 unw_init_running(ia64_do_show_stack, (void *)loglvl);
88 else {
89 struct unw_frame_info info;
90
91 unw_init_from_blocked_task(&info, task);
92 ia64_do_show_stack(&info, (void *)loglvl);
93 }
94 }
95
96 void
show_regs(struct pt_regs * regs)97 show_regs (struct pt_regs *regs)
98 {
99 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
100
101 print_modules();
102 printk("\n");
103 show_regs_print_info(KERN_DEFAULT);
104 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
105 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
106 init_utsname()->release);
107 printk("ip is at %pS\n", (void *)ip);
108 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
109 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
110 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
111 regs->ar_rnat, regs->ar_bspstore, regs->pr);
112 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
113 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
114 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
115 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
116 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
117 regs->f6.u.bits[1], regs->f6.u.bits[0],
118 regs->f7.u.bits[1], regs->f7.u.bits[0]);
119 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
120 regs->f8.u.bits[1], regs->f8.u.bits[0],
121 regs->f9.u.bits[1], regs->f9.u.bits[0]);
122 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
123 regs->f10.u.bits[1], regs->f10.u.bits[0],
124 regs->f11.u.bits[1], regs->f11.u.bits[0]);
125
126 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
127 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
128 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
129 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
130 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
131 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
132 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
133 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
134 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
135
136 if (user_mode(regs)) {
137 /* print the stacked registers */
138 unsigned long val, *bsp, ndirty;
139 int i, sof, is_nat = 0;
140
141 sof = regs->cr_ifs & 0x7f; /* size of frame */
142 ndirty = (regs->loadrs >> 19);
143 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
144 for (i = 0; i < sof; ++i) {
145 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
146 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
147 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
148 }
149 } else
150 show_stack(NULL, NULL, KERN_DEFAULT);
151 }
152
153 /* local support for deprecated console_print */
154 void
console_print(const char * s)155 console_print(const char *s)
156 {
157 printk(KERN_EMERG "%s", s);
158 }
159
160 void
do_notify_resume_user(sigset_t * unused,struct sigscratch * scr,long in_syscall)161 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
162 {
163 if (fsys_mode(current, &scr->pt)) {
164 /*
165 * defer signal-handling etc. until we return to
166 * privilege-level 0.
167 */
168 if (!ia64_psr(&scr->pt)->lp)
169 ia64_psr(&scr->pt)->lp = 1;
170 return;
171 }
172
173 /* deal with pending signal delivery */
174 if (test_thread_flag(TIF_SIGPENDING)) {
175 local_irq_enable(); /* force interrupt enable */
176 ia64_do_signal(scr, in_syscall);
177 }
178
179 if (test_thread_flag(TIF_NOTIFY_RESUME)) {
180 local_irq_enable(); /* force interrupt enable */
181 tracehook_notify_resume(&scr->pt);
182 }
183
184 /* copy user rbs to kernel rbs */
185 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
186 local_irq_enable(); /* force interrupt enable */
187 ia64_sync_krbs();
188 }
189
190 local_irq_disable(); /* force interrupt disable */
191 }
192
nohalt_setup(char * str)193 static int __init nohalt_setup(char * str)
194 {
195 cpu_idle_poll_ctrl(true);
196 return 1;
197 }
198 __setup("nohalt", nohalt_setup);
199
200 #ifdef CONFIG_HOTPLUG_CPU
201 /* We don't actually take CPU down, just spin without interrupts. */
play_dead(void)202 static inline void play_dead(void)
203 {
204 unsigned int this_cpu = smp_processor_id();
205
206 /* Ack it */
207 __this_cpu_write(cpu_state, CPU_DEAD);
208
209 max_xtp();
210 local_irq_disable();
211 idle_task_exit();
212 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
213 /*
214 * The above is a point of no-return, the processor is
215 * expected to be in SAL loop now.
216 */
217 BUG();
218 }
219 #else
play_dead(void)220 static inline void play_dead(void)
221 {
222 BUG();
223 }
224 #endif /* CONFIG_HOTPLUG_CPU */
225
arch_cpu_idle_dead(void)226 void arch_cpu_idle_dead(void)
227 {
228 play_dead();
229 }
230
arch_cpu_idle(void)231 void arch_cpu_idle(void)
232 {
233 void (*mark_idle)(int) = ia64_mark_idle;
234
235 #ifdef CONFIG_SMP
236 min_xtp();
237 #endif
238 rmb();
239 if (mark_idle)
240 (*mark_idle)(1);
241
242 raw_safe_halt();
243
244 if (mark_idle)
245 (*mark_idle)(0);
246 #ifdef CONFIG_SMP
247 normal_xtp();
248 #endif
249 }
250
251 void
ia64_save_extra(struct task_struct * task)252 ia64_save_extra (struct task_struct *task)
253 {
254 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
255 ia64_save_debug_regs(&task->thread.dbr[0]);
256 }
257
258 void
ia64_load_extra(struct task_struct * task)259 ia64_load_extra (struct task_struct *task)
260 {
261 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
262 ia64_load_debug_regs(&task->thread.dbr[0]);
263 }
264
265 /*
266 * Copy the state of an ia-64 thread.
267 *
268 * We get here through the following call chain:
269 *
270 * from user-level: from kernel:
271 *
272 * <clone syscall> <some kernel call frames>
273 * sys_clone :
274 * kernel_clone kernel_clone
275 * copy_thread copy_thread
276 *
277 * This means that the stack layout is as follows:
278 *
279 * +---------------------+ (highest addr)
280 * | struct pt_regs |
281 * +---------------------+
282 * | struct switch_stack |
283 * +---------------------+
284 * | |
285 * | memory stack |
286 * | | <-- sp (lowest addr)
287 * +---------------------+
288 *
289 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
290 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
291 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
292 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
293 * the stack is page aligned and the page size is at least 4KB, this is always the case,
294 * so there is nothing to worry about.
295 */
296 int
copy_thread(unsigned long clone_flags,unsigned long user_stack_base,unsigned long user_stack_size,struct task_struct * p,unsigned long tls)297 copy_thread(unsigned long clone_flags, unsigned long user_stack_base,
298 unsigned long user_stack_size, struct task_struct *p, unsigned long tls)
299 {
300 extern char ia64_ret_from_clone;
301 struct switch_stack *child_stack, *stack;
302 unsigned long rbs, child_rbs, rbs_size;
303 struct pt_regs *child_ptregs;
304 struct pt_regs *regs = current_pt_regs();
305 int retval = 0;
306
307 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
308 child_stack = (struct switch_stack *) child_ptregs - 1;
309
310 rbs = (unsigned long) current + IA64_RBS_OFFSET;
311 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
312
313 /* copy parts of thread_struct: */
314 p->thread.ksp = (unsigned long) child_stack - 16;
315
316 /*
317 * NOTE: The calling convention considers all floating point
318 * registers in the high partition (fph) to be scratch. Since
319 * the only way to get to this point is through a system call,
320 * we know that the values in fph are all dead. Hence, there
321 * is no need to inherit the fph state from the parent to the
322 * child and all we have to do is to make sure that
323 * IA64_THREAD_FPH_VALID is cleared in the child.
324 *
325 * XXX We could push this optimization a bit further by
326 * clearing IA64_THREAD_FPH_VALID on ANY system call.
327 * However, it's not clear this is worth doing. Also, it
328 * would be a slight deviation from the normal Linux system
329 * call behavior where scratch registers are preserved across
330 * system calls (unless used by the system call itself).
331 */
332 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
333 | IA64_THREAD_PM_VALID)
334 # define THREAD_FLAGS_TO_SET 0
335 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
336 | THREAD_FLAGS_TO_SET);
337
338 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
339
340 if (unlikely(p->flags & PF_KTHREAD)) {
341 if (unlikely(!user_stack_base)) {
342 /* fork_idle() called us */
343 return 0;
344 }
345 memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
346 child_stack->r4 = user_stack_base; /* payload */
347 child_stack->r5 = user_stack_size; /* argument */
348 /*
349 * Preserve PSR bits, except for bits 32-34 and 37-45,
350 * which we can't read.
351 */
352 child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
353 /* mark as valid, empty frame */
354 child_ptregs->cr_ifs = 1UL << 63;
355 child_stack->ar_fpsr = child_ptregs->ar_fpsr
356 = ia64_getreg(_IA64_REG_AR_FPSR);
357 child_stack->pr = (1 << PRED_KERNEL_STACK);
358 child_stack->ar_bspstore = child_rbs;
359 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
360
361 /* stop some PSR bits from being inherited.
362 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
363 * therefore we must specify them explicitly here and not include them in
364 * IA64_PSR_BITS_TO_CLEAR.
365 */
366 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
367 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
368
369 return 0;
370 }
371 stack = ((struct switch_stack *) regs) - 1;
372 /* copy parent's switch_stack & pt_regs to child: */
373 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
374
375 /* copy the parent's register backing store to the child: */
376 rbs_size = stack->ar_bspstore - rbs;
377 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
378 if (clone_flags & CLONE_SETTLS)
379 child_ptregs->r13 = tls;
380 if (user_stack_base) {
381 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
382 child_ptregs->ar_bspstore = user_stack_base;
383 child_ptregs->ar_rnat = 0;
384 child_ptregs->loadrs = 0;
385 }
386 child_stack->ar_bspstore = child_rbs + rbs_size;
387 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
388
389 /* stop some PSR bits from being inherited.
390 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
391 * therefore we must specify them explicitly here and not include them in
392 * IA64_PSR_BITS_TO_CLEAR.
393 */
394 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
395 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
396 return retval;
397 }
398
ia64_clone(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,unsigned long parent_tidptr,unsigned long child_tidptr,unsigned long tls)399 asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
400 unsigned long stack_size, unsigned long parent_tidptr,
401 unsigned long child_tidptr, unsigned long tls)
402 {
403 struct kernel_clone_args args = {
404 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
405 .pidfd = (int __user *)parent_tidptr,
406 .child_tid = (int __user *)child_tidptr,
407 .parent_tid = (int __user *)parent_tidptr,
408 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
409 .stack = stack_start,
410 .stack_size = stack_size,
411 .tls = tls,
412 };
413
414 return kernel_clone(&args);
415 }
416
417 static void
do_copy_task_regs(struct task_struct * task,struct unw_frame_info * info,void * arg)418 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
419 {
420 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
421 unsigned long ip;
422 elf_greg_t *dst = arg;
423 struct pt_regs *pt;
424 char nat;
425 int i;
426
427 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
428
429 if (unw_unwind_to_user(info) < 0)
430 return;
431
432 unw_get_sp(info, &sp);
433 pt = (struct pt_regs *) (sp + 16);
434
435 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
436
437 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
438 return;
439
440 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
441 &ar_rnat);
442
443 /*
444 * coredump format:
445 * r0-r31
446 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
447 * predicate registers (p0-p63)
448 * b0-b7
449 * ip cfm user-mask
450 * ar.rsc ar.bsp ar.bspstore ar.rnat
451 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
452 */
453
454 /* r0 is zero */
455 for (i = 1, mask = (1UL << i); i < 32; ++i) {
456 unw_get_gr(info, i, &dst[i], &nat);
457 if (nat)
458 nat_bits |= mask;
459 mask <<= 1;
460 }
461 dst[32] = nat_bits;
462 unw_get_pr(info, &dst[33]);
463
464 for (i = 0; i < 8; ++i)
465 unw_get_br(info, i, &dst[34 + i]);
466
467 unw_get_rp(info, &ip);
468 dst[42] = ip + ia64_psr(pt)->ri;
469 dst[43] = cfm;
470 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
471
472 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
473 /*
474 * For bsp and bspstore, unw_get_ar() would return the kernel
475 * addresses, but we need the user-level addresses instead:
476 */
477 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
478 dst[47] = pt->ar_bspstore;
479 dst[48] = ar_rnat;
480 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
481 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
482 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
483 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
484 unw_get_ar(info, UNW_AR_LC, &dst[53]);
485 unw_get_ar(info, UNW_AR_EC, &dst[54]);
486 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
487 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
488 }
489
490 void
do_copy_regs(struct unw_frame_info * info,void * arg)491 do_copy_regs (struct unw_frame_info *info, void *arg)
492 {
493 do_copy_task_regs(current, info, arg);
494 }
495
496 void
ia64_elf_core_copy_regs(struct pt_regs * pt,elf_gregset_t dst)497 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
498 {
499 unw_init_running(do_copy_regs, dst);
500 }
501
502 /*
503 * Flush thread state. This is called when a thread does an execve().
504 */
505 void
flush_thread(void)506 flush_thread (void)
507 {
508 /* drop floating-point and debug-register state if it exists: */
509 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
510 ia64_drop_fpu(current);
511 }
512
513 /*
514 * Clean up state associated with a thread. This is called when
515 * the thread calls exit().
516 */
517 void
exit_thread(struct task_struct * tsk)518 exit_thread (struct task_struct *tsk)
519 {
520
521 ia64_drop_fpu(tsk);
522 }
523
524 unsigned long
get_wchan(struct task_struct * p)525 get_wchan (struct task_struct *p)
526 {
527 struct unw_frame_info info;
528 unsigned long ip;
529 int count = 0;
530
531 if (!p || p == current || p->state == TASK_RUNNING)
532 return 0;
533
534 /*
535 * Note: p may not be a blocked task (it could be current or
536 * another process running on some other CPU. Rather than
537 * trying to determine if p is really blocked, we just assume
538 * it's blocked and rely on the unwind routines to fail
539 * gracefully if the process wasn't really blocked after all.
540 * --davidm 99/12/15
541 */
542 unw_init_from_blocked_task(&info, p);
543 do {
544 if (p->state == TASK_RUNNING)
545 return 0;
546 if (unw_unwind(&info) < 0)
547 return 0;
548 unw_get_ip(&info, &ip);
549 if (!in_sched_functions(ip))
550 return ip;
551 } while (count++ < 16);
552 return 0;
553 }
554
555 void
cpu_halt(void)556 cpu_halt (void)
557 {
558 pal_power_mgmt_info_u_t power_info[8];
559 unsigned long min_power;
560 int i, min_power_state;
561
562 if (ia64_pal_halt_info(power_info) != 0)
563 return;
564
565 min_power_state = 0;
566 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
567 for (i = 1; i < 8; ++i)
568 if (power_info[i].pal_power_mgmt_info_s.im
569 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
570 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
571 min_power_state = i;
572 }
573
574 while (1)
575 ia64_pal_halt(min_power_state);
576 }
577
machine_shutdown(void)578 void machine_shutdown(void)
579 {
580 smp_shutdown_nonboot_cpus(reboot_cpu);
581
582 #ifdef CONFIG_KEXEC
583 kexec_disable_iosapic();
584 #endif
585 }
586
587 void
machine_restart(char * restart_cmd)588 machine_restart (char *restart_cmd)
589 {
590 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
591 efi_reboot(REBOOT_WARM, NULL);
592 }
593
594 void
machine_halt(void)595 machine_halt (void)
596 {
597 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
598 cpu_halt();
599 }
600
601 void
machine_power_off(void)602 machine_power_off (void)
603 {
604 if (pm_power_off)
605 pm_power_off();
606 machine_halt();
607 }
608
609 EXPORT_SYMBOL(ia64_delay_loop);
610