1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 #include <linux/kernel.h>
6 #include "intel_crtc.h"
7 #include "intel_de.h"
8 #include "intel_display_types.h"
9 #include "intel_display.h"
10 #include "intel_dpll.h"
11 #include "intel_lvds.h"
12 #include "intel_panel.h"
13 #include "intel_sideband.h"
14 #include "display/intel_snps_phy.h"
15 
16 struct intel_limit {
17 	struct {
18 		int min, max;
19 	} dot, vco, n, m, m1, m2, p, p1;
20 
21 	struct {
22 		int dot_limit;
23 		int p2_slow, p2_fast;
24 	} p2;
25 };
26 static const struct intel_limit intel_limits_i8xx_dac = {
27 	.dot = { .min = 25000, .max = 350000 },
28 	.vco = { .min = 908000, .max = 1512000 },
29 	.n = { .min = 2, .max = 16 },
30 	.m = { .min = 96, .max = 140 },
31 	.m1 = { .min = 18, .max = 26 },
32 	.m2 = { .min = 6, .max = 16 },
33 	.p = { .min = 4, .max = 128 },
34 	.p1 = { .min = 2, .max = 33 },
35 	.p2 = { .dot_limit = 165000,
36 		.p2_slow = 4, .p2_fast = 2 },
37 };
38 
39 static const struct intel_limit intel_limits_i8xx_dvo = {
40 	.dot = { .min = 25000, .max = 350000 },
41 	.vco = { .min = 908000, .max = 1512000 },
42 	.n = { .min = 2, .max = 16 },
43 	.m = { .min = 96, .max = 140 },
44 	.m1 = { .min = 18, .max = 26 },
45 	.m2 = { .min = 6, .max = 16 },
46 	.p = { .min = 4, .max = 128 },
47 	.p1 = { .min = 2, .max = 33 },
48 	.p2 = { .dot_limit = 165000,
49 		.p2_slow = 4, .p2_fast = 4 },
50 };
51 
52 static const struct intel_limit intel_limits_i8xx_lvds = {
53 	.dot = { .min = 25000, .max = 350000 },
54 	.vco = { .min = 908000, .max = 1512000 },
55 	.n = { .min = 2, .max = 16 },
56 	.m = { .min = 96, .max = 140 },
57 	.m1 = { .min = 18, .max = 26 },
58 	.m2 = { .min = 6, .max = 16 },
59 	.p = { .min = 4, .max = 128 },
60 	.p1 = { .min = 1, .max = 6 },
61 	.p2 = { .dot_limit = 165000,
62 		.p2_slow = 14, .p2_fast = 7 },
63 };
64 
65 static const struct intel_limit intel_limits_i9xx_sdvo = {
66 	.dot = { .min = 20000, .max = 400000 },
67 	.vco = { .min = 1400000, .max = 2800000 },
68 	.n = { .min = 1, .max = 6 },
69 	.m = { .min = 70, .max = 120 },
70 	.m1 = { .min = 8, .max = 18 },
71 	.m2 = { .min = 3, .max = 7 },
72 	.p = { .min = 5, .max = 80 },
73 	.p1 = { .min = 1, .max = 8 },
74 	.p2 = { .dot_limit = 200000,
75 		.p2_slow = 10, .p2_fast = 5 },
76 };
77 
78 static const struct intel_limit intel_limits_i9xx_lvds = {
79 	.dot = { .min = 20000, .max = 400000 },
80 	.vco = { .min = 1400000, .max = 2800000 },
81 	.n = { .min = 1, .max = 6 },
82 	.m = { .min = 70, .max = 120 },
83 	.m1 = { .min = 8, .max = 18 },
84 	.m2 = { .min = 3, .max = 7 },
85 	.p = { .min = 7, .max = 98 },
86 	.p1 = { .min = 1, .max = 8 },
87 	.p2 = { .dot_limit = 112000,
88 		.p2_slow = 14, .p2_fast = 7 },
89 };
90 
91 
92 static const struct intel_limit intel_limits_g4x_sdvo = {
93 	.dot = { .min = 25000, .max = 270000 },
94 	.vco = { .min = 1750000, .max = 3500000},
95 	.n = { .min = 1, .max = 4 },
96 	.m = { .min = 104, .max = 138 },
97 	.m1 = { .min = 17, .max = 23 },
98 	.m2 = { .min = 5, .max = 11 },
99 	.p = { .min = 10, .max = 30 },
100 	.p1 = { .min = 1, .max = 3},
101 	.p2 = { .dot_limit = 270000,
102 		.p2_slow = 10,
103 		.p2_fast = 10
104 	},
105 };
106 
107 static const struct intel_limit intel_limits_g4x_hdmi = {
108 	.dot = { .min = 22000, .max = 400000 },
109 	.vco = { .min = 1750000, .max = 3500000},
110 	.n = { .min = 1, .max = 4 },
111 	.m = { .min = 104, .max = 138 },
112 	.m1 = { .min = 16, .max = 23 },
113 	.m2 = { .min = 5, .max = 11 },
114 	.p = { .min = 5, .max = 80 },
115 	.p1 = { .min = 1, .max = 8},
116 	.p2 = { .dot_limit = 165000,
117 		.p2_slow = 10, .p2_fast = 5 },
118 };
119 
120 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
121 	.dot = { .min = 20000, .max = 115000 },
122 	.vco = { .min = 1750000, .max = 3500000 },
123 	.n = { .min = 1, .max = 3 },
124 	.m = { .min = 104, .max = 138 },
125 	.m1 = { .min = 17, .max = 23 },
126 	.m2 = { .min = 5, .max = 11 },
127 	.p = { .min = 28, .max = 112 },
128 	.p1 = { .min = 2, .max = 8 },
129 	.p2 = { .dot_limit = 0,
130 		.p2_slow = 14, .p2_fast = 14
131 	},
132 };
133 
134 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
135 	.dot = { .min = 80000, .max = 224000 },
136 	.vco = { .min = 1750000, .max = 3500000 },
137 	.n = { .min = 1, .max = 3 },
138 	.m = { .min = 104, .max = 138 },
139 	.m1 = { .min = 17, .max = 23 },
140 	.m2 = { .min = 5, .max = 11 },
141 	.p = { .min = 14, .max = 42 },
142 	.p1 = { .min = 2, .max = 6 },
143 	.p2 = { .dot_limit = 0,
144 		.p2_slow = 7, .p2_fast = 7
145 	},
146 };
147 
148 static const struct intel_limit pnv_limits_sdvo = {
149 	.dot = { .min = 20000, .max = 400000},
150 	.vco = { .min = 1700000, .max = 3500000 },
151 	/* Pineview's Ncounter is a ring counter */
152 	.n = { .min = 3, .max = 6 },
153 	.m = { .min = 2, .max = 256 },
154 	/* Pineview only has one combined m divider, which we treat as m2. */
155 	.m1 = { .min = 0, .max = 0 },
156 	.m2 = { .min = 0, .max = 254 },
157 	.p = { .min = 5, .max = 80 },
158 	.p1 = { .min = 1, .max = 8 },
159 	.p2 = { .dot_limit = 200000,
160 		.p2_slow = 10, .p2_fast = 5 },
161 };
162 
163 static const struct intel_limit pnv_limits_lvds = {
164 	.dot = { .min = 20000, .max = 400000 },
165 	.vco = { .min = 1700000, .max = 3500000 },
166 	.n = { .min = 3, .max = 6 },
167 	.m = { .min = 2, .max = 256 },
168 	.m1 = { .min = 0, .max = 0 },
169 	.m2 = { .min = 0, .max = 254 },
170 	.p = { .min = 7, .max = 112 },
171 	.p1 = { .min = 1, .max = 8 },
172 	.p2 = { .dot_limit = 112000,
173 		.p2_slow = 14, .p2_fast = 14 },
174 };
175 
176 /* Ironlake / Sandybridge
177  *
178  * We calculate clock using (register_value + 2) for N/M1/M2, so here
179  * the range value for them is (actual_value - 2).
180  */
181 static const struct intel_limit ilk_limits_dac = {
182 	.dot = { .min = 25000, .max = 350000 },
183 	.vco = { .min = 1760000, .max = 3510000 },
184 	.n = { .min = 1, .max = 5 },
185 	.m = { .min = 79, .max = 127 },
186 	.m1 = { .min = 12, .max = 22 },
187 	.m2 = { .min = 5, .max = 9 },
188 	.p = { .min = 5, .max = 80 },
189 	.p1 = { .min = 1, .max = 8 },
190 	.p2 = { .dot_limit = 225000,
191 		.p2_slow = 10, .p2_fast = 5 },
192 };
193 
194 static const struct intel_limit ilk_limits_single_lvds = {
195 	.dot = { .min = 25000, .max = 350000 },
196 	.vco = { .min = 1760000, .max = 3510000 },
197 	.n = { .min = 1, .max = 3 },
198 	.m = { .min = 79, .max = 118 },
199 	.m1 = { .min = 12, .max = 22 },
200 	.m2 = { .min = 5, .max = 9 },
201 	.p = { .min = 28, .max = 112 },
202 	.p1 = { .min = 2, .max = 8 },
203 	.p2 = { .dot_limit = 225000,
204 		.p2_slow = 14, .p2_fast = 14 },
205 };
206 
207 static const struct intel_limit ilk_limits_dual_lvds = {
208 	.dot = { .min = 25000, .max = 350000 },
209 	.vco = { .min = 1760000, .max = 3510000 },
210 	.n = { .min = 1, .max = 3 },
211 	.m = { .min = 79, .max = 127 },
212 	.m1 = { .min = 12, .max = 22 },
213 	.m2 = { .min = 5, .max = 9 },
214 	.p = { .min = 14, .max = 56 },
215 	.p1 = { .min = 2, .max = 8 },
216 	.p2 = { .dot_limit = 225000,
217 		.p2_slow = 7, .p2_fast = 7 },
218 };
219 
220 /* LVDS 100mhz refclk limits. */
221 static const struct intel_limit ilk_limits_single_lvds_100m = {
222 	.dot = { .min = 25000, .max = 350000 },
223 	.vco = { .min = 1760000, .max = 3510000 },
224 	.n = { .min = 1, .max = 2 },
225 	.m = { .min = 79, .max = 126 },
226 	.m1 = { .min = 12, .max = 22 },
227 	.m2 = { .min = 5, .max = 9 },
228 	.p = { .min = 28, .max = 112 },
229 	.p1 = { .min = 2, .max = 8 },
230 	.p2 = { .dot_limit = 225000,
231 		.p2_slow = 14, .p2_fast = 14 },
232 };
233 
234 static const struct intel_limit ilk_limits_dual_lvds_100m = {
235 	.dot = { .min = 25000, .max = 350000 },
236 	.vco = { .min = 1760000, .max = 3510000 },
237 	.n = { .min = 1, .max = 3 },
238 	.m = { .min = 79, .max = 126 },
239 	.m1 = { .min = 12, .max = 22 },
240 	.m2 = { .min = 5, .max = 9 },
241 	.p = { .min = 14, .max = 42 },
242 	.p1 = { .min = 2, .max = 6 },
243 	.p2 = { .dot_limit = 225000,
244 		.p2_slow = 7, .p2_fast = 7 },
245 };
246 
247 static const struct intel_limit intel_limits_vlv = {
248 	 /*
249 	  * These are the data rate limits (measured in fast clocks)
250 	  * since those are the strictest limits we have. The fast
251 	  * clock and actual rate limits are more relaxed, so checking
252 	  * them would make no difference.
253 	  */
254 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
255 	.vco = { .min = 4000000, .max = 6000000 },
256 	.n = { .min = 1, .max = 7 },
257 	.m1 = { .min = 2, .max = 3 },
258 	.m2 = { .min = 11, .max = 156 },
259 	.p1 = { .min = 2, .max = 3 },
260 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
261 };
262 
263 static const struct intel_limit intel_limits_chv = {
264 	/*
265 	 * These are the data rate limits (measured in fast clocks)
266 	 * since those are the strictest limits we have.  The fast
267 	 * clock and actual rate limits are more relaxed, so checking
268 	 * them would make no difference.
269 	 */
270 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
271 	.vco = { .min = 4800000, .max = 6480000 },
272 	.n = { .min = 1, .max = 1 },
273 	.m1 = { .min = 2, .max = 2 },
274 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
275 	.p1 = { .min = 2, .max = 4 },
276 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
277 };
278 
279 static const struct intel_limit intel_limits_bxt = {
280 	/* FIXME: find real dot limits */
281 	.dot = { .min = 0, .max = INT_MAX },
282 	.vco = { .min = 4800000, .max = 6700000 },
283 	.n = { .min = 1, .max = 1 },
284 	.m1 = { .min = 2, .max = 2 },
285 	/* FIXME: find real m2 limits */
286 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
287 	.p1 = { .min = 2, .max = 4 },
288 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
289 };
290 
291 /*
292  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
293  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
294  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
295  * The helpers' return value is the rate of the clock that is fed to the
296  * display engine's pipe which can be the above fast dot clock rate or a
297  * divided-down version of it.
298  */
299 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)300 int pnv_calc_dpll_params(int refclk, struct dpll *clock)
301 {
302 	clock->m = clock->m2 + 2;
303 	clock->p = clock->p1 * clock->p2;
304 	if (WARN_ON(clock->n == 0 || clock->p == 0))
305 		return 0;
306 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
307 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
308 
309 	return clock->dot;
310 }
311 
i9xx_dpll_compute_m(struct dpll * dpll)312 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
313 {
314 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
315 }
316 
i9xx_calc_dpll_params(int refclk,struct dpll * clock)317 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
318 {
319 	clock->m = i9xx_dpll_compute_m(clock);
320 	clock->p = clock->p1 * clock->p2;
321 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
322 		return 0;
323 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
324 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
325 
326 	return clock->dot;
327 }
328 
vlv_calc_dpll_params(int refclk,struct dpll * clock)329 int vlv_calc_dpll_params(int refclk, struct dpll *clock)
330 {
331 	clock->m = clock->m1 * clock->m2;
332 	clock->p = clock->p1 * clock->p2;
333 	if (WARN_ON(clock->n == 0 || clock->p == 0))
334 		return 0;
335 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
336 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
337 
338 	return clock->dot / 5;
339 }
340 
chv_calc_dpll_params(int refclk,struct dpll * clock)341 int chv_calc_dpll_params(int refclk, struct dpll *clock)
342 {
343 	clock->m = clock->m1 * clock->m2;
344 	clock->p = clock->p1 * clock->p2;
345 	if (WARN_ON(clock->n == 0 || clock->p == 0))
346 		return 0;
347 	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
348 					   clock->n << 22);
349 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
350 
351 	return clock->dot / 5;
352 }
353 
354 /*
355  * Returns whether the given set of divisors are valid for a given refclk with
356  * the given connectors.
357  */
intel_pll_is_valid(struct drm_i915_private * dev_priv,const struct intel_limit * limit,const struct dpll * clock)358 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
359 			       const struct intel_limit *limit,
360 			       const struct dpll *clock)
361 {
362 	if (clock->n < limit->n.min || limit->n.max < clock->n)
363 		return false;
364 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
365 		return false;
366 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
367 		return false;
368 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
369 		return false;
370 
371 	if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
372 		if (clock->m1 <= clock->m2)
373 			return false;
374 
375 	if (!IS_LP(dev_priv)) {
376 		if (clock->p < limit->p.min || limit->p.max < clock->p)
377 			return false;
378 		if (clock->m < limit->m.min || limit->m.max < clock->m)
379 			return false;
380 	}
381 
382 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
383 		return false;
384 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
385 	 * connector, etc., rather than just a single range.
386 	 */
387 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
388 		return false;
389 
390 	return true;
391 }
392 
393 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)394 i9xx_select_p2_div(const struct intel_limit *limit,
395 		   const struct intel_crtc_state *crtc_state,
396 		   int target)
397 {
398 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
399 
400 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
401 		/*
402 		 * For LVDS just rely on its current settings for dual-channel.
403 		 * We haven't figured out how to reliably set up different
404 		 * single/dual channel state, if we even can.
405 		 */
406 		if (intel_is_dual_link_lvds(dev_priv))
407 			return limit->p2.p2_fast;
408 		else
409 			return limit->p2.p2_slow;
410 	} else {
411 		if (target < limit->p2.dot_limit)
412 			return limit->p2.p2_slow;
413 		else
414 			return limit->p2.p2_fast;
415 	}
416 }
417 
418 /*
419  * Returns a set of divisors for the desired target clock with the given
420  * refclk, or FALSE.  The returned values represent the clock equation:
421  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
422  *
423  * Target and reference clocks are specified in kHz.
424  *
425  * If match_clock is provided, then best_clock P divider must match the P
426  * divider from @match_clock used for LVDS downclocking.
427  */
428 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)429 i9xx_find_best_dpll(const struct intel_limit *limit,
430 		    struct intel_crtc_state *crtc_state,
431 		    int target, int refclk, struct dpll *match_clock,
432 		    struct dpll *best_clock)
433 {
434 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
435 	struct dpll clock;
436 	int err = target;
437 
438 	memset(best_clock, 0, sizeof(*best_clock));
439 
440 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
441 
442 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
443 	     clock.m1++) {
444 		for (clock.m2 = limit->m2.min;
445 		     clock.m2 <= limit->m2.max; clock.m2++) {
446 			if (clock.m2 >= clock.m1)
447 				break;
448 			for (clock.n = limit->n.min;
449 			     clock.n <= limit->n.max; clock.n++) {
450 				for (clock.p1 = limit->p1.min;
451 					clock.p1 <= limit->p1.max; clock.p1++) {
452 					int this_err;
453 
454 					i9xx_calc_dpll_params(refclk, &clock);
455 					if (!intel_pll_is_valid(to_i915(dev),
456 								limit,
457 								&clock))
458 						continue;
459 					if (match_clock &&
460 					    clock.p != match_clock->p)
461 						continue;
462 
463 					this_err = abs(clock.dot - target);
464 					if (this_err < err) {
465 						*best_clock = clock;
466 						err = this_err;
467 					}
468 				}
469 			}
470 		}
471 	}
472 
473 	return (err != target);
474 }
475 
476 /*
477  * Returns a set of divisors for the desired target clock with the given
478  * refclk, or FALSE.  The returned values represent the clock equation:
479  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
480  *
481  * Target and reference clocks are specified in kHz.
482  *
483  * If match_clock is provided, then best_clock P divider must match the P
484  * divider from @match_clock used for LVDS downclocking.
485  */
486 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)487 pnv_find_best_dpll(const struct intel_limit *limit,
488 		   struct intel_crtc_state *crtc_state,
489 		   int target, int refclk, struct dpll *match_clock,
490 		   struct dpll *best_clock)
491 {
492 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
493 	struct dpll clock;
494 	int err = target;
495 
496 	memset(best_clock, 0, sizeof(*best_clock));
497 
498 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
499 
500 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
501 	     clock.m1++) {
502 		for (clock.m2 = limit->m2.min;
503 		     clock.m2 <= limit->m2.max; clock.m2++) {
504 			for (clock.n = limit->n.min;
505 			     clock.n <= limit->n.max; clock.n++) {
506 				for (clock.p1 = limit->p1.min;
507 					clock.p1 <= limit->p1.max; clock.p1++) {
508 					int this_err;
509 
510 					pnv_calc_dpll_params(refclk, &clock);
511 					if (!intel_pll_is_valid(to_i915(dev),
512 								limit,
513 								&clock))
514 						continue;
515 					if (match_clock &&
516 					    clock.p != match_clock->p)
517 						continue;
518 
519 					this_err = abs(clock.dot - target);
520 					if (this_err < err) {
521 						*best_clock = clock;
522 						err = this_err;
523 					}
524 				}
525 			}
526 		}
527 	}
528 
529 	return (err != target);
530 }
531 
532 /*
533  * Returns a set of divisors for the desired target clock with the given
534  * refclk, or FALSE.  The returned values represent the clock equation:
535  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
536  *
537  * Target and reference clocks are specified in kHz.
538  *
539  * If match_clock is provided, then best_clock P divider must match the P
540  * divider from @match_clock used for LVDS downclocking.
541  */
542 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)543 g4x_find_best_dpll(const struct intel_limit *limit,
544 		   struct intel_crtc_state *crtc_state,
545 		   int target, int refclk, struct dpll *match_clock,
546 		   struct dpll *best_clock)
547 {
548 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
549 	struct dpll clock;
550 	int max_n;
551 	bool found = false;
552 	/* approximately equals target * 0.00585 */
553 	int err_most = (target >> 8) + (target >> 9);
554 
555 	memset(best_clock, 0, sizeof(*best_clock));
556 
557 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
558 
559 	max_n = limit->n.max;
560 	/* based on hardware requirement, prefer smaller n to precision */
561 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
562 		/* based on hardware requirement, prefere larger m1,m2 */
563 		for (clock.m1 = limit->m1.max;
564 		     clock.m1 >= limit->m1.min; clock.m1--) {
565 			for (clock.m2 = limit->m2.max;
566 			     clock.m2 >= limit->m2.min; clock.m2--) {
567 				for (clock.p1 = limit->p1.max;
568 				     clock.p1 >= limit->p1.min; clock.p1--) {
569 					int this_err;
570 
571 					i9xx_calc_dpll_params(refclk, &clock);
572 					if (!intel_pll_is_valid(to_i915(dev),
573 								limit,
574 								&clock))
575 						continue;
576 
577 					this_err = abs(clock.dot - target);
578 					if (this_err < err_most) {
579 						*best_clock = clock;
580 						err_most = this_err;
581 						max_n = clock.n;
582 						found = true;
583 					}
584 				}
585 			}
586 		}
587 	}
588 	return found;
589 }
590 
591 /*
592  * Check if the calculated PLL configuration is more optimal compared to the
593  * best configuration and error found so far. Return the calculated error.
594  */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)595 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
596 			       const struct dpll *calculated_clock,
597 			       const struct dpll *best_clock,
598 			       unsigned int best_error_ppm,
599 			       unsigned int *error_ppm)
600 {
601 	/*
602 	 * For CHV ignore the error and consider only the P value.
603 	 * Prefer a bigger P value based on HW requirements.
604 	 */
605 	if (IS_CHERRYVIEW(to_i915(dev))) {
606 		*error_ppm = 0;
607 
608 		return calculated_clock->p > best_clock->p;
609 	}
610 
611 	if (drm_WARN_ON_ONCE(dev, !target_freq))
612 		return false;
613 
614 	*error_ppm = div_u64(1000000ULL *
615 				abs(target_freq - calculated_clock->dot),
616 			     target_freq);
617 	/*
618 	 * Prefer a better P value over a better (smaller) error if the error
619 	 * is small. Ensure this preference for future configurations too by
620 	 * setting the error to 0.
621 	 */
622 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
623 		*error_ppm = 0;
624 
625 		return true;
626 	}
627 
628 	return *error_ppm + 10 < best_error_ppm;
629 }
630 
631 /*
632  * Returns a set of divisors for the desired target clock with the given
633  * refclk, or FALSE.  The returned values represent the clock equation:
634  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
635  */
636 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)637 vlv_find_best_dpll(const struct intel_limit *limit,
638 		   struct intel_crtc_state *crtc_state,
639 		   int target, int refclk, struct dpll *match_clock,
640 		   struct dpll *best_clock)
641 {
642 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
643 	struct drm_device *dev = crtc->base.dev;
644 	struct dpll clock;
645 	unsigned int bestppm = 1000000;
646 	/* min update 19.2 MHz */
647 	int max_n = min(limit->n.max, refclk / 19200);
648 	bool found = false;
649 
650 	target *= 5; /* fast clock */
651 
652 	memset(best_clock, 0, sizeof(*best_clock));
653 
654 	/* based on hardware requirement, prefer smaller n to precision */
655 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
656 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
657 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
658 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
659 				clock.p = clock.p1 * clock.p2;
660 				/* based on hardware requirement, prefer bigger m1,m2 values */
661 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
662 					unsigned int ppm;
663 
664 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
665 								     refclk * clock.m1);
666 
667 					vlv_calc_dpll_params(refclk, &clock);
668 
669 					if (!intel_pll_is_valid(to_i915(dev),
670 								limit,
671 								&clock))
672 						continue;
673 
674 					if (!vlv_PLL_is_optimal(dev, target,
675 								&clock,
676 								best_clock,
677 								bestppm, &ppm))
678 						continue;
679 
680 					*best_clock = clock;
681 					bestppm = ppm;
682 					found = true;
683 				}
684 			}
685 		}
686 	}
687 
688 	return found;
689 }
690 
691 /*
692  * Returns a set of divisors for the desired target clock with the given
693  * refclk, or FALSE.  The returned values represent the clock equation:
694  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
695  */
696 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)697 chv_find_best_dpll(const struct intel_limit *limit,
698 		   struct intel_crtc_state *crtc_state,
699 		   int target, int refclk, struct dpll *match_clock,
700 		   struct dpll *best_clock)
701 {
702 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
703 	struct drm_device *dev = crtc->base.dev;
704 	unsigned int best_error_ppm;
705 	struct dpll clock;
706 	u64 m2;
707 	int found = false;
708 
709 	memset(best_clock, 0, sizeof(*best_clock));
710 	best_error_ppm = 1000000;
711 
712 	/*
713 	 * Based on hardware doc, the n always set to 1, and m1 always
714 	 * set to 2.  If requires to support 200Mhz refclk, we need to
715 	 * revisit this because n may not 1 anymore.
716 	 */
717 	clock.n = 1;
718 	clock.m1 = 2;
719 	target *= 5;	/* fast clock */
720 
721 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
722 		for (clock.p2 = limit->p2.p2_fast;
723 				clock.p2 >= limit->p2.p2_slow;
724 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
725 			unsigned int error_ppm;
726 
727 			clock.p = clock.p1 * clock.p2;
728 
729 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
730 						   refclk * clock.m1);
731 
732 			if (m2 > INT_MAX/clock.m1)
733 				continue;
734 
735 			clock.m2 = m2;
736 
737 			chv_calc_dpll_params(refclk, &clock);
738 
739 			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
740 				continue;
741 
742 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
743 						best_error_ppm, &error_ppm))
744 				continue;
745 
746 			*best_clock = clock;
747 			best_error_ppm = error_ppm;
748 			found = true;
749 		}
750 	}
751 
752 	return found;
753 }
754 
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,struct dpll * best_clock)755 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
756 			struct dpll *best_clock)
757 {
758 	int refclk = 100000;
759 	const struct intel_limit *limit = &intel_limits_bxt;
760 
761 	return chv_find_best_dpll(limit, crtc_state,
762 				  crtc_state->port_clock, refclk,
763 				  NULL, best_clock);
764 }
765 
pnv_dpll_compute_fp(struct dpll * dpll)766 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
767 {
768 	return (1 << dpll->n) << 16 | dpll->m2;
769 }
770 
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)771 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
772 				     struct intel_crtc_state *crtc_state,
773 				     struct dpll *reduced_clock)
774 {
775 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
776 	u32 fp, fp2 = 0;
777 
778 	if (IS_PINEVIEW(dev_priv)) {
779 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
780 		if (reduced_clock)
781 			fp2 = pnv_dpll_compute_fp(reduced_clock);
782 	} else {
783 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
784 		if (reduced_clock)
785 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
786 	}
787 
788 	crtc_state->dpll_hw_state.fp0 = fp;
789 
790 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
791 	    reduced_clock) {
792 		crtc_state->dpll_hw_state.fp1 = fp2;
793 	} else {
794 		crtc_state->dpll_hw_state.fp1 = fp;
795 	}
796 }
797 
i9xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)798 static void i9xx_compute_dpll(struct intel_crtc *crtc,
799 			      struct intel_crtc_state *crtc_state,
800 			      struct dpll *reduced_clock)
801 {
802 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
803 	u32 dpll;
804 	struct dpll *clock = &crtc_state->dpll;
805 
806 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
807 
808 	dpll = DPLL_VGA_MODE_DIS;
809 
810 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
811 		dpll |= DPLLB_MODE_LVDS;
812 	else
813 		dpll |= DPLLB_MODE_DAC_SERIAL;
814 
815 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
816 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
817 		dpll |= (crtc_state->pixel_multiplier - 1)
818 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
819 	}
820 
821 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
822 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
823 		dpll |= DPLL_SDVO_HIGH_SPEED;
824 
825 	if (intel_crtc_has_dp_encoder(crtc_state))
826 		dpll |= DPLL_SDVO_HIGH_SPEED;
827 
828 	/* compute bitmask from p1 value */
829 	if (IS_PINEVIEW(dev_priv))
830 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
831 	else {
832 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
833 		if (IS_G4X(dev_priv) && reduced_clock)
834 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
835 	}
836 	switch (clock->p2) {
837 	case 5:
838 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
839 		break;
840 	case 7:
841 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
842 		break;
843 	case 10:
844 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
845 		break;
846 	case 14:
847 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
848 		break;
849 	}
850 	if (DISPLAY_VER(dev_priv) >= 4)
851 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
852 
853 	if (crtc_state->sdvo_tv_clock)
854 		dpll |= PLL_REF_INPUT_TVCLKINBC;
855 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
856 		 intel_panel_use_ssc(dev_priv))
857 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
858 	else
859 		dpll |= PLL_REF_INPUT_DREFCLK;
860 
861 	dpll |= DPLL_VCO_ENABLE;
862 	crtc_state->dpll_hw_state.dpll = dpll;
863 
864 	if (DISPLAY_VER(dev_priv) >= 4) {
865 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
866 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
867 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
868 	}
869 }
870 
i8xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)871 static void i8xx_compute_dpll(struct intel_crtc *crtc,
872 			      struct intel_crtc_state *crtc_state,
873 			      struct dpll *reduced_clock)
874 {
875 	struct drm_device *dev = crtc->base.dev;
876 	struct drm_i915_private *dev_priv = to_i915(dev);
877 	u32 dpll;
878 	struct dpll *clock = &crtc_state->dpll;
879 
880 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
881 
882 	dpll = DPLL_VGA_MODE_DIS;
883 
884 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
885 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
886 	} else {
887 		if (clock->p1 == 2)
888 			dpll |= PLL_P1_DIVIDE_BY_TWO;
889 		else
890 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
891 		if (clock->p2 == 4)
892 			dpll |= PLL_P2_DIVIDE_BY_4;
893 	}
894 
895 	/*
896 	 * Bspec:
897 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
898 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
899 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
900 	 *  Enable) must be set to “1” in both the DPLL A Control Register
901 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
902 	 *
903 	 * For simplicity We simply keep both bits always enabled in
904 	 * both DPLLS. The spec says we should disable the DVO 2X clock
905 	 * when not needed, but this seems to work fine in practice.
906 	 */
907 	if (IS_I830(dev_priv) ||
908 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
909 		dpll |= DPLL_DVO_2X_MODE;
910 
911 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
912 	    intel_panel_use_ssc(dev_priv))
913 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
914 	else
915 		dpll |= PLL_REF_INPUT_DREFCLK;
916 
917 	dpll |= DPLL_VCO_ENABLE;
918 	crtc_state->dpll_hw_state.dpll = dpll;
919 }
920 
hsw_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)921 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
922 				  struct intel_crtc_state *crtc_state)
923 {
924 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
925 	struct intel_atomic_state *state =
926 		to_intel_atomic_state(crtc_state->uapi.state);
927 	struct intel_encoder *encoder =
928 		intel_get_crtc_new_encoder(state, crtc_state);
929 
930 	if (IS_DG2(dev_priv)) {
931 		return intel_mpllb_calc_state(crtc_state, encoder);
932 	} else if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
933 		   DISPLAY_VER(dev_priv) >= 11) {
934 		if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
935 			drm_dbg_kms(&dev_priv->drm,
936 				    "failed to find PLL for pipe %c\n",
937 				    pipe_name(crtc->pipe));
938 			return -EINVAL;
939 		}
940 	}
941 
942 	return 0;
943 }
944 
ilk_needs_fb_cb_tune(struct dpll * dpll,int factor)945 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
946 {
947 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
948 }
949 
950 
ilk_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)951 static void ilk_compute_dpll(struct intel_crtc *crtc,
952 			     struct intel_crtc_state *crtc_state,
953 			     struct dpll *reduced_clock)
954 {
955 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
956 	u32 dpll, fp, fp2;
957 	int factor;
958 
959 	/* Enable autotuning of the PLL clock (if permissible) */
960 	factor = 21;
961 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
962 		if ((intel_panel_use_ssc(dev_priv) &&
963 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
964 		    (HAS_PCH_IBX(dev_priv) &&
965 		     intel_is_dual_link_lvds(dev_priv)))
966 			factor = 25;
967 	} else if (crtc_state->sdvo_tv_clock) {
968 		factor = 20;
969 	}
970 
971 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
972 
973 	if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
974 		fp |= FP_CB_TUNE;
975 
976 	if (reduced_clock) {
977 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
978 
979 		if (reduced_clock->m < factor * reduced_clock->n)
980 			fp2 |= FP_CB_TUNE;
981 	} else {
982 		fp2 = fp;
983 	}
984 
985 	dpll = 0;
986 
987 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
988 		dpll |= DPLLB_MODE_LVDS;
989 	else
990 		dpll |= DPLLB_MODE_DAC_SERIAL;
991 
992 	dpll |= (crtc_state->pixel_multiplier - 1)
993 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
994 
995 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
996 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
997 		dpll |= DPLL_SDVO_HIGH_SPEED;
998 
999 	if (intel_crtc_has_dp_encoder(crtc_state))
1000 		dpll |= DPLL_SDVO_HIGH_SPEED;
1001 
1002 	/*
1003 	 * The high speed IO clock is only really required for
1004 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1005 	 * possible to share the DPLL between CRT and HDMI. Enabling
1006 	 * the clock needlessly does no real harm, except use up a
1007 	 * bit of power potentially.
1008 	 *
1009 	 * We'll limit this to IVB with 3 pipes, since it has only two
1010 	 * DPLLs and so DPLL sharing is the only way to get three pipes
1011 	 * driving PCH ports at the same time. On SNB we could do this,
1012 	 * and potentially avoid enabling the second DPLL, but it's not
1013 	 * clear if it''s a win or loss power wise. No point in doing
1014 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1015 	 */
1016 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1017 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1018 		dpll |= DPLL_SDVO_HIGH_SPEED;
1019 
1020 	/* compute bitmask from p1 value */
1021 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1022 	/* also FPA1 */
1023 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1024 
1025 	switch (crtc_state->dpll.p2) {
1026 	case 5:
1027 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1028 		break;
1029 	case 7:
1030 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1031 		break;
1032 	case 10:
1033 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1034 		break;
1035 	case 14:
1036 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1037 		break;
1038 	}
1039 
1040 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1041 	    intel_panel_use_ssc(dev_priv))
1042 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1043 	else
1044 		dpll |= PLL_REF_INPUT_DREFCLK;
1045 
1046 	dpll |= DPLL_VCO_ENABLE;
1047 
1048 	crtc_state->dpll_hw_state.dpll = dpll;
1049 	crtc_state->dpll_hw_state.fp0 = fp;
1050 	crtc_state->dpll_hw_state.fp1 = fp2;
1051 }
1052 
ilk_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1053 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
1054 				  struct intel_crtc_state *crtc_state)
1055 {
1056 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1057 	struct intel_atomic_state *state =
1058 		to_intel_atomic_state(crtc_state->uapi.state);
1059 	const struct intel_limit *limit;
1060 	int refclk = 120000;
1061 
1062 	memset(&crtc_state->dpll_hw_state, 0,
1063 	       sizeof(crtc_state->dpll_hw_state));
1064 
1065 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1066 	if (!crtc_state->has_pch_encoder)
1067 		return 0;
1068 
1069 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1070 		if (intel_panel_use_ssc(dev_priv)) {
1071 			drm_dbg_kms(&dev_priv->drm,
1072 				    "using SSC reference clock of %d kHz\n",
1073 				    dev_priv->vbt.lvds_ssc_freq);
1074 			refclk = dev_priv->vbt.lvds_ssc_freq;
1075 		}
1076 
1077 		if (intel_is_dual_link_lvds(dev_priv)) {
1078 			if (refclk == 100000)
1079 				limit = &ilk_limits_dual_lvds_100m;
1080 			else
1081 				limit = &ilk_limits_dual_lvds;
1082 		} else {
1083 			if (refclk == 100000)
1084 				limit = &ilk_limits_single_lvds_100m;
1085 			else
1086 				limit = &ilk_limits_single_lvds;
1087 		}
1088 	} else {
1089 		limit = &ilk_limits_dac;
1090 	}
1091 
1092 	if (!crtc_state->clock_set &&
1093 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1094 				refclk, NULL, &crtc_state->dpll)) {
1095 		drm_err(&dev_priv->drm,
1096 			"Couldn't find PLL settings for mode!\n");
1097 		return -EINVAL;
1098 	}
1099 
1100 	ilk_compute_dpll(crtc, crtc_state, NULL);
1101 
1102 	if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
1103 		drm_dbg_kms(&dev_priv->drm,
1104 			    "failed to find PLL for pipe %c\n",
1105 			    pipe_name(crtc->pipe));
1106 		return -EINVAL;
1107 	}
1108 
1109 	return 0;
1110 }
1111 
vlv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)1112 void vlv_compute_dpll(struct intel_crtc *crtc,
1113 		      struct intel_crtc_state *pipe_config)
1114 {
1115 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1116 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1117 	if (crtc->pipe != PIPE_A)
1118 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1119 
1120 	/* DPLL not used with DSI, but still need the rest set up */
1121 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
1122 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
1123 			DPLL_EXT_BUFFER_ENABLE_VLV;
1124 
1125 	pipe_config->dpll_hw_state.dpll_md =
1126 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1127 }
1128 
chv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)1129 void chv_compute_dpll(struct intel_crtc *crtc,
1130 		      struct intel_crtc_state *pipe_config)
1131 {
1132 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
1133 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1134 	if (crtc->pipe != PIPE_A)
1135 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1136 
1137 	/* DPLL not used with DSI, but still need the rest set up */
1138 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
1139 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
1140 
1141 	pipe_config->dpll_hw_state.dpll_md =
1142 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1143 }
1144 
chv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1145 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
1146 				  struct intel_crtc_state *crtc_state)
1147 {
1148 	int refclk = 100000;
1149 	const struct intel_limit *limit = &intel_limits_chv;
1150 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1151 
1152 	memset(&crtc_state->dpll_hw_state, 0,
1153 	       sizeof(crtc_state->dpll_hw_state));
1154 
1155 	if (!crtc_state->clock_set &&
1156 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1157 				refclk, NULL, &crtc_state->dpll)) {
1158 		drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
1159 		return -EINVAL;
1160 	}
1161 
1162 	chv_compute_dpll(crtc, crtc_state);
1163 
1164 	return 0;
1165 }
1166 
vlv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1167 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
1168 				  struct intel_crtc_state *crtc_state)
1169 {
1170 	int refclk = 100000;
1171 	const struct intel_limit *limit = &intel_limits_vlv;
1172 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1173 
1174 	memset(&crtc_state->dpll_hw_state, 0,
1175 	       sizeof(crtc_state->dpll_hw_state));
1176 
1177 	if (!crtc_state->clock_set &&
1178 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1179 				refclk, NULL, &crtc_state->dpll)) {
1180 		drm_err(&i915->drm,  "Couldn't find PLL settings for mode!\n");
1181 		return -EINVAL;
1182 	}
1183 
1184 	vlv_compute_dpll(crtc, crtc_state);
1185 
1186 	return 0;
1187 }
1188 
g4x_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1189 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
1190 				  struct intel_crtc_state *crtc_state)
1191 {
1192 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1193 	const struct intel_limit *limit;
1194 	int refclk = 96000;
1195 
1196 	memset(&crtc_state->dpll_hw_state, 0,
1197 	       sizeof(crtc_state->dpll_hw_state));
1198 
1199 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1200 		if (intel_panel_use_ssc(dev_priv)) {
1201 			refclk = dev_priv->vbt.lvds_ssc_freq;
1202 			drm_dbg_kms(&dev_priv->drm,
1203 				    "using SSC reference clock of %d kHz\n",
1204 				    refclk);
1205 		}
1206 
1207 		if (intel_is_dual_link_lvds(dev_priv))
1208 			limit = &intel_limits_g4x_dual_channel_lvds;
1209 		else
1210 			limit = &intel_limits_g4x_single_channel_lvds;
1211 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1212 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1213 		limit = &intel_limits_g4x_hdmi;
1214 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1215 		limit = &intel_limits_g4x_sdvo;
1216 	} else {
1217 		/* The option is for other outputs */
1218 		limit = &intel_limits_i9xx_sdvo;
1219 	}
1220 
1221 	if (!crtc_state->clock_set &&
1222 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1223 				refclk, NULL, &crtc_state->dpll)) {
1224 		drm_err(&dev_priv->drm,
1225 			"Couldn't find PLL settings for mode!\n");
1226 		return -EINVAL;
1227 	}
1228 
1229 	i9xx_compute_dpll(crtc, crtc_state, NULL);
1230 
1231 	return 0;
1232 }
1233 
pnv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1234 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
1235 				  struct intel_crtc_state *crtc_state)
1236 {
1237 	struct drm_device *dev = crtc->base.dev;
1238 	struct drm_i915_private *dev_priv = to_i915(dev);
1239 	const struct intel_limit *limit;
1240 	int refclk = 96000;
1241 
1242 	memset(&crtc_state->dpll_hw_state, 0,
1243 	       sizeof(crtc_state->dpll_hw_state));
1244 
1245 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1246 		if (intel_panel_use_ssc(dev_priv)) {
1247 			refclk = dev_priv->vbt.lvds_ssc_freq;
1248 			drm_dbg_kms(&dev_priv->drm,
1249 				    "using SSC reference clock of %d kHz\n",
1250 				    refclk);
1251 		}
1252 
1253 		limit = &pnv_limits_lvds;
1254 	} else {
1255 		limit = &pnv_limits_sdvo;
1256 	}
1257 
1258 	if (!crtc_state->clock_set &&
1259 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1260 				refclk, NULL, &crtc_state->dpll)) {
1261 		drm_err(&dev_priv->drm,
1262 			"Couldn't find PLL settings for mode!\n");
1263 		return -EINVAL;
1264 	}
1265 
1266 	i9xx_compute_dpll(crtc, crtc_state, NULL);
1267 
1268 	return 0;
1269 }
1270 
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1271 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
1272 				   struct intel_crtc_state *crtc_state)
1273 {
1274 	struct drm_device *dev = crtc->base.dev;
1275 	struct drm_i915_private *dev_priv = to_i915(dev);
1276 	const struct intel_limit *limit;
1277 	int refclk = 96000;
1278 
1279 	memset(&crtc_state->dpll_hw_state, 0,
1280 	       sizeof(crtc_state->dpll_hw_state));
1281 
1282 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1283 		if (intel_panel_use_ssc(dev_priv)) {
1284 			refclk = dev_priv->vbt.lvds_ssc_freq;
1285 			drm_dbg_kms(&dev_priv->drm,
1286 				    "using SSC reference clock of %d kHz\n",
1287 				    refclk);
1288 		}
1289 
1290 		limit = &intel_limits_i9xx_lvds;
1291 	} else {
1292 		limit = &intel_limits_i9xx_sdvo;
1293 	}
1294 
1295 	if (!crtc_state->clock_set &&
1296 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1297 				 refclk, NULL, &crtc_state->dpll)) {
1298 		drm_err(&dev_priv->drm,
1299 			"Couldn't find PLL settings for mode!\n");
1300 		return -EINVAL;
1301 	}
1302 
1303 	i9xx_compute_dpll(crtc, crtc_state, NULL);
1304 
1305 	return 0;
1306 }
1307 
i8xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1308 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
1309 				   struct intel_crtc_state *crtc_state)
1310 {
1311 	struct drm_device *dev = crtc->base.dev;
1312 	struct drm_i915_private *dev_priv = to_i915(dev);
1313 	const struct intel_limit *limit;
1314 	int refclk = 48000;
1315 
1316 	memset(&crtc_state->dpll_hw_state, 0,
1317 	       sizeof(crtc_state->dpll_hw_state));
1318 
1319 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1320 		if (intel_panel_use_ssc(dev_priv)) {
1321 			refclk = dev_priv->vbt.lvds_ssc_freq;
1322 			drm_dbg_kms(&dev_priv->drm,
1323 				    "using SSC reference clock of %d kHz\n",
1324 				    refclk);
1325 		}
1326 
1327 		limit = &intel_limits_i8xx_lvds;
1328 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1329 		limit = &intel_limits_i8xx_dvo;
1330 	} else {
1331 		limit = &intel_limits_i8xx_dac;
1332 	}
1333 
1334 	if (!crtc_state->clock_set &&
1335 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1336 				 refclk, NULL, &crtc_state->dpll)) {
1337 		drm_err(&dev_priv->drm,
1338 			"Couldn't find PLL settings for mode!\n");
1339 		return -EINVAL;
1340 	}
1341 
1342 	i8xx_compute_dpll(crtc, crtc_state, NULL);
1343 
1344 	return 0;
1345 }
1346 
1347 void
intel_dpll_init_clock_hook(struct drm_i915_private * dev_priv)1348 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1349 {
1350 	if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1351 		dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
1352 	else if (HAS_PCH_SPLIT(dev_priv))
1353 		dev_priv->display.crtc_compute_clock = ilk_crtc_compute_clock;
1354 	else if (IS_CHERRYVIEW(dev_priv))
1355 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
1356 	else if (IS_VALLEYVIEW(dev_priv))
1357 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
1358 	else if (IS_G4X(dev_priv))
1359 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
1360 	else if (IS_PINEVIEW(dev_priv))
1361 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
1362 	else if (DISPLAY_VER(dev_priv) != 2)
1363 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
1364 	else
1365 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
1366 }
1367 
i9xx_has_pps(struct drm_i915_private * dev_priv)1368 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1369 {
1370 	if (IS_I830(dev_priv))
1371 		return false;
1372 
1373 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1374 }
1375 
i9xx_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)1376 void i9xx_enable_pll(struct intel_crtc *crtc,
1377 		     const struct intel_crtc_state *crtc_state)
1378 {
1379 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1380 	i915_reg_t reg = DPLL(crtc->pipe);
1381 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1382 	int i;
1383 
1384 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1385 
1386 	/* PLL is protected by panel, make sure we can write it */
1387 	if (i9xx_has_pps(dev_priv))
1388 		assert_panel_unlocked(dev_priv, crtc->pipe);
1389 
1390 	/*
1391 	 * Apparently we need to have VGA mode enabled prior to changing
1392 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1393 	 * dividers, even though the register value does change.
1394 	 */
1395 	intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS);
1396 	intel_de_write(dev_priv, reg, dpll);
1397 
1398 	/* Wait for the clocks to stabilize. */
1399 	intel_de_posting_read(dev_priv, reg);
1400 	udelay(150);
1401 
1402 	if (DISPLAY_VER(dev_priv) >= 4) {
1403 		intel_de_write(dev_priv, DPLL_MD(crtc->pipe),
1404 			       crtc_state->dpll_hw_state.dpll_md);
1405 	} else {
1406 		/* The pixel multiplier can only be updated once the
1407 		 * DPLL is enabled and the clocks are stable.
1408 		 *
1409 		 * So write it again.
1410 		 */
1411 		intel_de_write(dev_priv, reg, dpll);
1412 	}
1413 
1414 	/* We do this three times for luck */
1415 	for (i = 0; i < 3; i++) {
1416 		intel_de_write(dev_priv, reg, dpll);
1417 		intel_de_posting_read(dev_priv, reg);
1418 		udelay(150); /* wait for warmup */
1419 	}
1420 }
1421 
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)1422 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1423 				 enum pipe pipe)
1424 {
1425 	u32 reg_val;
1426 
1427 	/*
1428 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1429 	 * and set it to a reasonable value instead.
1430 	 */
1431 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1432 	reg_val &= 0xffffff00;
1433 	reg_val |= 0x00000030;
1434 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1435 
1436 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1437 	reg_val &= 0x00ffffff;
1438 	reg_val |= 0x8c000000;
1439 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1440 
1441 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1442 	reg_val &= 0xffffff00;
1443 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1444 
1445 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1446 	reg_val &= 0x00ffffff;
1447 	reg_val |= 0xb0000000;
1448 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1449 }
1450 
_vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1451 static void _vlv_enable_pll(struct intel_crtc *crtc,
1452 			    const struct intel_crtc_state *pipe_config)
1453 {
1454 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1455 	enum pipe pipe = crtc->pipe;
1456 
1457 	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1458 	intel_de_posting_read(dev_priv, DPLL(pipe));
1459 	udelay(150);
1460 
1461 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1462 		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1463 }
1464 
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1465 void vlv_enable_pll(struct intel_crtc *crtc,
1466 		    const struct intel_crtc_state *pipe_config)
1467 {
1468 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1469 	enum pipe pipe = crtc->pipe;
1470 
1471 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1472 
1473 	/* PLL is protected by panel, make sure we can write it */
1474 	assert_panel_unlocked(dev_priv, pipe);
1475 
1476 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1477 		_vlv_enable_pll(crtc, pipe_config);
1478 
1479 	intel_de_write(dev_priv, DPLL_MD(pipe),
1480 		       pipe_config->dpll_hw_state.dpll_md);
1481 	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1482 }
1483 
1484 
_chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1485 static void _chv_enable_pll(struct intel_crtc *crtc,
1486 			    const struct intel_crtc_state *pipe_config)
1487 {
1488 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1489 	enum pipe pipe = crtc->pipe;
1490 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1491 	u32 tmp;
1492 
1493 	vlv_dpio_get(dev_priv);
1494 
1495 	/* Enable back the 10bit clock to display controller */
1496 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1497 	tmp |= DPIO_DCLKP_EN;
1498 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1499 
1500 	vlv_dpio_put(dev_priv);
1501 
1502 	/*
1503 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1504 	 */
1505 	udelay(1);
1506 
1507 	/* Enable PLL */
1508 	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1509 
1510 	/* Check PLL is locked */
1511 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1512 		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1513 }
1514 
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1515 void chv_enable_pll(struct intel_crtc *crtc,
1516 		    const struct intel_crtc_state *pipe_config)
1517 {
1518 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1519 	enum pipe pipe = crtc->pipe;
1520 
1521 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1522 
1523 	/* PLL is protected by panel, make sure we can write it */
1524 	assert_panel_unlocked(dev_priv, pipe);
1525 
1526 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1527 		_chv_enable_pll(crtc, pipe_config);
1528 
1529 	if (pipe != PIPE_A) {
1530 		/*
1531 		 * WaPixelRepeatModeFixForC0:chv
1532 		 *
1533 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1534 		 * the value from DPLLBMD to either pipe B or C.
1535 		 */
1536 		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1537 		intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1538 			       pipe_config->dpll_hw_state.dpll_md);
1539 		intel_de_write(dev_priv, CBR4_VLV, 0);
1540 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1541 
1542 		/*
1543 		 * DPLLB VGA mode also seems to cause problems.
1544 		 * We should always have it disabled.
1545 		 */
1546 		drm_WARN_ON(&dev_priv->drm,
1547 			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1548 			     DPLL_VGA_MODE_DIS) == 0);
1549 	} else {
1550 		intel_de_write(dev_priv, DPLL_MD(pipe),
1551 			       pipe_config->dpll_hw_state.dpll_md);
1552 		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1553 	}
1554 }
1555 
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1556 void vlv_prepare_pll(struct intel_crtc *crtc,
1557 		     const struct intel_crtc_state *pipe_config)
1558 {
1559 	struct drm_device *dev = crtc->base.dev;
1560 	struct drm_i915_private *dev_priv = to_i915(dev);
1561 	enum pipe pipe = crtc->pipe;
1562 	u32 mdiv;
1563 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
1564 	u32 coreclk, reg_val;
1565 
1566 	/* Enable Refclk */
1567 	intel_de_write(dev_priv, DPLL(pipe),
1568 		       pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
1569 
1570 	/* No need to actually set up the DPLL with DSI */
1571 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
1572 		return;
1573 
1574 	vlv_dpio_get(dev_priv);
1575 
1576 	bestn = pipe_config->dpll.n;
1577 	bestm1 = pipe_config->dpll.m1;
1578 	bestm2 = pipe_config->dpll.m2;
1579 	bestp1 = pipe_config->dpll.p1;
1580 	bestp2 = pipe_config->dpll.p2;
1581 
1582 	/* See eDP HDMI DPIO driver vbios notes doc */
1583 
1584 	/* PLL B needs special handling */
1585 	if (pipe == PIPE_B)
1586 		vlv_pllb_recal_opamp(dev_priv, pipe);
1587 
1588 	/* Set up Tx target for periodic Rcomp update */
1589 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
1590 
1591 	/* Disable target IRef on PLL */
1592 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
1593 	reg_val &= 0x00ffffff;
1594 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
1595 
1596 	/* Disable fast lock */
1597 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
1598 
1599 	/* Set idtafcrecal before PLL is enabled */
1600 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
1601 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
1602 	mdiv |= ((bestn << DPIO_N_SHIFT));
1603 	mdiv |= (1 << DPIO_K_SHIFT);
1604 
1605 	/*
1606 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1607 	 * but we don't support that).
1608 	 * Note: don't use the DAC post divider as it seems unstable.
1609 	 */
1610 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
1611 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1612 
1613 	mdiv |= DPIO_ENABLE_CALIBRATION;
1614 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1615 
1616 	/* Set HBR and RBR LPF coefficients */
1617 	if (pipe_config->port_clock == 162000 ||
1618 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
1619 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
1620 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1621 				 0x009f0003);
1622 	else
1623 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1624 				 0x00d0000f);
1625 
1626 	if (intel_crtc_has_dp_encoder(pipe_config)) {
1627 		/* Use SSC source */
1628 		if (pipe == PIPE_A)
1629 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1630 					 0x0df40000);
1631 		else
1632 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1633 					 0x0df70000);
1634 	} else { /* HDMI or VGA */
1635 		/* Use bend source */
1636 		if (pipe == PIPE_A)
1637 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1638 					 0x0df70000);
1639 		else
1640 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1641 					 0x0df40000);
1642 	}
1643 
1644 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
1645 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1646 	if (intel_crtc_has_dp_encoder(pipe_config))
1647 		coreclk |= 0x01000000;
1648 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
1649 
1650 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
1651 
1652 	vlv_dpio_put(dev_priv);
1653 }
1654 
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1655 void chv_prepare_pll(struct intel_crtc *crtc,
1656 		     const struct intel_crtc_state *pipe_config)
1657 {
1658 	struct drm_device *dev = crtc->base.dev;
1659 	struct drm_i915_private *dev_priv = to_i915(dev);
1660 	enum pipe pipe = crtc->pipe;
1661 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1662 	u32 loopfilter, tribuf_calcntr;
1663 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
1664 	u32 dpio_val;
1665 	int vco;
1666 
1667 	/* Enable Refclk and SSC */
1668 	intel_de_write(dev_priv, DPLL(pipe),
1669 		       pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
1670 
1671 	/* No need to actually set up the DPLL with DSI */
1672 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
1673 		return;
1674 
1675 	bestn = pipe_config->dpll.n;
1676 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
1677 	bestm1 = pipe_config->dpll.m1;
1678 	bestm2 = pipe_config->dpll.m2 >> 22;
1679 	bestp1 = pipe_config->dpll.p1;
1680 	bestp2 = pipe_config->dpll.p2;
1681 	vco = pipe_config->dpll.vco;
1682 	dpio_val = 0;
1683 	loopfilter = 0;
1684 
1685 	vlv_dpio_get(dev_priv);
1686 
1687 	/* p1 and p2 divider */
1688 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
1689 			5 << DPIO_CHV_S1_DIV_SHIFT |
1690 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
1691 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1692 			1 << DPIO_CHV_K_DIV_SHIFT);
1693 
1694 	/* Feedback post-divider - m2 */
1695 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
1696 
1697 	/* Feedback refclk divider - n and m1 */
1698 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
1699 			DPIO_CHV_M1_DIV_BY_2 |
1700 			1 << DPIO_CHV_N_DIV_SHIFT);
1701 
1702 	/* M2 fraction division */
1703 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
1704 
1705 	/* M2 fraction division enable */
1706 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
1707 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
1708 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
1709 	if (bestm2_frac)
1710 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
1711 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
1712 
1713 	/* Program digital lock detect threshold */
1714 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
1715 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
1716 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
1717 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
1718 	if (!bestm2_frac)
1719 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
1720 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
1721 
1722 	/* Loop filter */
1723 	if (vco == 5400000) {
1724 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
1725 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
1726 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
1727 		tribuf_calcntr = 0x9;
1728 	} else if (vco <= 6200000) {
1729 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
1730 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
1731 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1732 		tribuf_calcntr = 0x9;
1733 	} else if (vco <= 6480000) {
1734 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1735 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1736 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1737 		tribuf_calcntr = 0x8;
1738 	} else {
1739 		/* Not supported. Apply the same limits as in the max case */
1740 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1741 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1742 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1743 		tribuf_calcntr = 0;
1744 	}
1745 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
1746 
1747 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
1748 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
1749 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
1750 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
1751 
1752 	/* AFC Recal */
1753 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
1754 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
1755 			DPIO_AFC_RECAL);
1756 
1757 	vlv_dpio_put(dev_priv);
1758 }
1759 
1760 /**
1761  * vlv_force_pll_on - forcibly enable just the PLL
1762  * @dev_priv: i915 private structure
1763  * @pipe: pipe PLL to enable
1764  * @dpll: PLL configuration
1765  *
1766  * Enable the PLL for @pipe using the supplied @dpll config. To be used
1767  * in cases where we need the PLL enabled even when @pipe is not going to
1768  * be enabled.
1769  */
vlv_force_pll_on(struct drm_i915_private * dev_priv,enum pipe pipe,const struct dpll * dpll)1770 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
1771 		     const struct dpll *dpll)
1772 {
1773 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1774 	struct intel_crtc_state *pipe_config;
1775 
1776 	pipe_config = intel_crtc_state_alloc(crtc);
1777 	if (!pipe_config)
1778 		return -ENOMEM;
1779 
1780 	pipe_config->cpu_transcoder = (enum transcoder)pipe;
1781 	pipe_config->pixel_multiplier = 1;
1782 	pipe_config->dpll = *dpll;
1783 
1784 	if (IS_CHERRYVIEW(dev_priv)) {
1785 		chv_compute_dpll(crtc, pipe_config);
1786 		chv_prepare_pll(crtc, pipe_config);
1787 		chv_enable_pll(crtc, pipe_config);
1788 	} else {
1789 		vlv_compute_dpll(crtc, pipe_config);
1790 		vlv_prepare_pll(crtc, pipe_config);
1791 		vlv_enable_pll(crtc, pipe_config);
1792 	}
1793 
1794 	kfree(pipe_config);
1795 
1796 	return 0;
1797 }
1798 
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1799 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1800 {
1801 	u32 val;
1802 
1803 	/* Make sure the pipe isn't still relying on us */
1804 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1805 
1806 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1807 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1808 	if (pipe != PIPE_A)
1809 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1810 
1811 	intel_de_write(dev_priv, DPLL(pipe), val);
1812 	intel_de_posting_read(dev_priv, DPLL(pipe));
1813 }
1814 
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1815 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1816 {
1817 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1818 	u32 val;
1819 
1820 	/* Make sure the pipe isn't still relying on us */
1821 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1822 
1823 	val = DPLL_SSC_REF_CLK_CHV |
1824 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1825 	if (pipe != PIPE_A)
1826 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1827 
1828 	intel_de_write(dev_priv, DPLL(pipe), val);
1829 	intel_de_posting_read(dev_priv, DPLL(pipe));
1830 
1831 	vlv_dpio_get(dev_priv);
1832 
1833 	/* Disable 10bit clock to display controller */
1834 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1835 	val &= ~DPIO_DCLKP_EN;
1836 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1837 
1838 	vlv_dpio_put(dev_priv);
1839 }
1840 
i9xx_disable_pll(const struct intel_crtc_state * crtc_state)1841 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1842 {
1843 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1844 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1845 	enum pipe pipe = crtc->pipe;
1846 
1847 	/* Don't disable pipe or pipe PLLs if needed */
1848 	if (IS_I830(dev_priv))
1849 		return;
1850 
1851 	/* Make sure the pipe isn't still relying on us */
1852 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1853 
1854 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1855 	intel_de_posting_read(dev_priv, DPLL(pipe));
1856 }
1857 
1858 
1859 /**
1860  * vlv_force_pll_off - forcibly disable just the PLL
1861  * @dev_priv: i915 private structure
1862  * @pipe: pipe PLL to disable
1863  *
1864  * Disable the PLL for @pipe. To be used in cases where we need
1865  * the PLL enabled even when @pipe is not going to be enabled.
1866  */
vlv_force_pll_off(struct drm_i915_private * dev_priv,enum pipe pipe)1867 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
1868 {
1869 	if (IS_CHERRYVIEW(dev_priv))
1870 		chv_disable_pll(dev_priv, pipe);
1871 	else
1872 		vlv_disable_pll(dev_priv, pipe);
1873 }
1874