1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5 #include <linux/kernel.h>
6 #include "intel_crtc.h"
7 #include "intel_de.h"
8 #include "intel_display_types.h"
9 #include "intel_display.h"
10 #include "intel_dpll.h"
11 #include "intel_lvds.h"
12 #include "intel_panel.h"
13 #include "intel_sideband.h"
14 #include "display/intel_snps_phy.h"
15
16 struct intel_limit {
17 struct {
18 int min, max;
19 } dot, vco, n, m, m1, m2, p, p1;
20
21 struct {
22 int dot_limit;
23 int p2_slow, p2_fast;
24 } p2;
25 };
26 static const struct intel_limit intel_limits_i8xx_dac = {
27 .dot = { .min = 25000, .max = 350000 },
28 .vco = { .min = 908000, .max = 1512000 },
29 .n = { .min = 2, .max = 16 },
30 .m = { .min = 96, .max = 140 },
31 .m1 = { .min = 18, .max = 26 },
32 .m2 = { .min = 6, .max = 16 },
33 .p = { .min = 4, .max = 128 },
34 .p1 = { .min = 2, .max = 33 },
35 .p2 = { .dot_limit = 165000,
36 .p2_slow = 4, .p2_fast = 2 },
37 };
38
39 static const struct intel_limit intel_limits_i8xx_dvo = {
40 .dot = { .min = 25000, .max = 350000 },
41 .vco = { .min = 908000, .max = 1512000 },
42 .n = { .min = 2, .max = 16 },
43 .m = { .min = 96, .max = 140 },
44 .m1 = { .min = 18, .max = 26 },
45 .m2 = { .min = 6, .max = 16 },
46 .p = { .min = 4, .max = 128 },
47 .p1 = { .min = 2, .max = 33 },
48 .p2 = { .dot_limit = 165000,
49 .p2_slow = 4, .p2_fast = 4 },
50 };
51
52 static const struct intel_limit intel_limits_i8xx_lvds = {
53 .dot = { .min = 25000, .max = 350000 },
54 .vco = { .min = 908000, .max = 1512000 },
55 .n = { .min = 2, .max = 16 },
56 .m = { .min = 96, .max = 140 },
57 .m1 = { .min = 18, .max = 26 },
58 .m2 = { .min = 6, .max = 16 },
59 .p = { .min = 4, .max = 128 },
60 .p1 = { .min = 1, .max = 6 },
61 .p2 = { .dot_limit = 165000,
62 .p2_slow = 14, .p2_fast = 7 },
63 };
64
65 static const struct intel_limit intel_limits_i9xx_sdvo = {
66 .dot = { .min = 20000, .max = 400000 },
67 .vco = { .min = 1400000, .max = 2800000 },
68 .n = { .min = 1, .max = 6 },
69 .m = { .min = 70, .max = 120 },
70 .m1 = { .min = 8, .max = 18 },
71 .m2 = { .min = 3, .max = 7 },
72 .p = { .min = 5, .max = 80 },
73 .p1 = { .min = 1, .max = 8 },
74 .p2 = { .dot_limit = 200000,
75 .p2_slow = 10, .p2_fast = 5 },
76 };
77
78 static const struct intel_limit intel_limits_i9xx_lvds = {
79 .dot = { .min = 20000, .max = 400000 },
80 .vco = { .min = 1400000, .max = 2800000 },
81 .n = { .min = 1, .max = 6 },
82 .m = { .min = 70, .max = 120 },
83 .m1 = { .min = 8, .max = 18 },
84 .m2 = { .min = 3, .max = 7 },
85 .p = { .min = 7, .max = 98 },
86 .p1 = { .min = 1, .max = 8 },
87 .p2 = { .dot_limit = 112000,
88 .p2_slow = 14, .p2_fast = 7 },
89 };
90
91
92 static const struct intel_limit intel_limits_g4x_sdvo = {
93 .dot = { .min = 25000, .max = 270000 },
94 .vco = { .min = 1750000, .max = 3500000},
95 .n = { .min = 1, .max = 4 },
96 .m = { .min = 104, .max = 138 },
97 .m1 = { .min = 17, .max = 23 },
98 .m2 = { .min = 5, .max = 11 },
99 .p = { .min = 10, .max = 30 },
100 .p1 = { .min = 1, .max = 3},
101 .p2 = { .dot_limit = 270000,
102 .p2_slow = 10,
103 .p2_fast = 10
104 },
105 };
106
107 static const struct intel_limit intel_limits_g4x_hdmi = {
108 .dot = { .min = 22000, .max = 400000 },
109 .vco = { .min = 1750000, .max = 3500000},
110 .n = { .min = 1, .max = 4 },
111 .m = { .min = 104, .max = 138 },
112 .m1 = { .min = 16, .max = 23 },
113 .m2 = { .min = 5, .max = 11 },
114 .p = { .min = 5, .max = 80 },
115 .p1 = { .min = 1, .max = 8},
116 .p2 = { .dot_limit = 165000,
117 .p2_slow = 10, .p2_fast = 5 },
118 };
119
120 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
121 .dot = { .min = 20000, .max = 115000 },
122 .vco = { .min = 1750000, .max = 3500000 },
123 .n = { .min = 1, .max = 3 },
124 .m = { .min = 104, .max = 138 },
125 .m1 = { .min = 17, .max = 23 },
126 .m2 = { .min = 5, .max = 11 },
127 .p = { .min = 28, .max = 112 },
128 .p1 = { .min = 2, .max = 8 },
129 .p2 = { .dot_limit = 0,
130 .p2_slow = 14, .p2_fast = 14
131 },
132 };
133
134 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
135 .dot = { .min = 80000, .max = 224000 },
136 .vco = { .min = 1750000, .max = 3500000 },
137 .n = { .min = 1, .max = 3 },
138 .m = { .min = 104, .max = 138 },
139 .m1 = { .min = 17, .max = 23 },
140 .m2 = { .min = 5, .max = 11 },
141 .p = { .min = 14, .max = 42 },
142 .p1 = { .min = 2, .max = 6 },
143 .p2 = { .dot_limit = 0,
144 .p2_slow = 7, .p2_fast = 7
145 },
146 };
147
148 static const struct intel_limit pnv_limits_sdvo = {
149 .dot = { .min = 20000, .max = 400000},
150 .vco = { .min = 1700000, .max = 3500000 },
151 /* Pineview's Ncounter is a ring counter */
152 .n = { .min = 3, .max = 6 },
153 .m = { .min = 2, .max = 256 },
154 /* Pineview only has one combined m divider, which we treat as m2. */
155 .m1 = { .min = 0, .max = 0 },
156 .m2 = { .min = 0, .max = 254 },
157 .p = { .min = 5, .max = 80 },
158 .p1 = { .min = 1, .max = 8 },
159 .p2 = { .dot_limit = 200000,
160 .p2_slow = 10, .p2_fast = 5 },
161 };
162
163 static const struct intel_limit pnv_limits_lvds = {
164 .dot = { .min = 20000, .max = 400000 },
165 .vco = { .min = 1700000, .max = 3500000 },
166 .n = { .min = 3, .max = 6 },
167 .m = { .min = 2, .max = 256 },
168 .m1 = { .min = 0, .max = 0 },
169 .m2 = { .min = 0, .max = 254 },
170 .p = { .min = 7, .max = 112 },
171 .p1 = { .min = 1, .max = 8 },
172 .p2 = { .dot_limit = 112000,
173 .p2_slow = 14, .p2_fast = 14 },
174 };
175
176 /* Ironlake / Sandybridge
177 *
178 * We calculate clock using (register_value + 2) for N/M1/M2, so here
179 * the range value for them is (actual_value - 2).
180 */
181 static const struct intel_limit ilk_limits_dac = {
182 .dot = { .min = 25000, .max = 350000 },
183 .vco = { .min = 1760000, .max = 3510000 },
184 .n = { .min = 1, .max = 5 },
185 .m = { .min = 79, .max = 127 },
186 .m1 = { .min = 12, .max = 22 },
187 .m2 = { .min = 5, .max = 9 },
188 .p = { .min = 5, .max = 80 },
189 .p1 = { .min = 1, .max = 8 },
190 .p2 = { .dot_limit = 225000,
191 .p2_slow = 10, .p2_fast = 5 },
192 };
193
194 static const struct intel_limit ilk_limits_single_lvds = {
195 .dot = { .min = 25000, .max = 350000 },
196 .vco = { .min = 1760000, .max = 3510000 },
197 .n = { .min = 1, .max = 3 },
198 .m = { .min = 79, .max = 118 },
199 .m1 = { .min = 12, .max = 22 },
200 .m2 = { .min = 5, .max = 9 },
201 .p = { .min = 28, .max = 112 },
202 .p1 = { .min = 2, .max = 8 },
203 .p2 = { .dot_limit = 225000,
204 .p2_slow = 14, .p2_fast = 14 },
205 };
206
207 static const struct intel_limit ilk_limits_dual_lvds = {
208 .dot = { .min = 25000, .max = 350000 },
209 .vco = { .min = 1760000, .max = 3510000 },
210 .n = { .min = 1, .max = 3 },
211 .m = { .min = 79, .max = 127 },
212 .m1 = { .min = 12, .max = 22 },
213 .m2 = { .min = 5, .max = 9 },
214 .p = { .min = 14, .max = 56 },
215 .p1 = { .min = 2, .max = 8 },
216 .p2 = { .dot_limit = 225000,
217 .p2_slow = 7, .p2_fast = 7 },
218 };
219
220 /* LVDS 100mhz refclk limits. */
221 static const struct intel_limit ilk_limits_single_lvds_100m = {
222 .dot = { .min = 25000, .max = 350000 },
223 .vco = { .min = 1760000, .max = 3510000 },
224 .n = { .min = 1, .max = 2 },
225 .m = { .min = 79, .max = 126 },
226 .m1 = { .min = 12, .max = 22 },
227 .m2 = { .min = 5, .max = 9 },
228 .p = { .min = 28, .max = 112 },
229 .p1 = { .min = 2, .max = 8 },
230 .p2 = { .dot_limit = 225000,
231 .p2_slow = 14, .p2_fast = 14 },
232 };
233
234 static const struct intel_limit ilk_limits_dual_lvds_100m = {
235 .dot = { .min = 25000, .max = 350000 },
236 .vco = { .min = 1760000, .max = 3510000 },
237 .n = { .min = 1, .max = 3 },
238 .m = { .min = 79, .max = 126 },
239 .m1 = { .min = 12, .max = 22 },
240 .m2 = { .min = 5, .max = 9 },
241 .p = { .min = 14, .max = 42 },
242 .p1 = { .min = 2, .max = 6 },
243 .p2 = { .dot_limit = 225000,
244 .p2_slow = 7, .p2_fast = 7 },
245 };
246
247 static const struct intel_limit intel_limits_vlv = {
248 /*
249 * These are the data rate limits (measured in fast clocks)
250 * since those are the strictest limits we have. The fast
251 * clock and actual rate limits are more relaxed, so checking
252 * them would make no difference.
253 */
254 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
255 .vco = { .min = 4000000, .max = 6000000 },
256 .n = { .min = 1, .max = 7 },
257 .m1 = { .min = 2, .max = 3 },
258 .m2 = { .min = 11, .max = 156 },
259 .p1 = { .min = 2, .max = 3 },
260 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
261 };
262
263 static const struct intel_limit intel_limits_chv = {
264 /*
265 * These are the data rate limits (measured in fast clocks)
266 * since those are the strictest limits we have. The fast
267 * clock and actual rate limits are more relaxed, so checking
268 * them would make no difference.
269 */
270 .dot = { .min = 25000 * 5, .max = 540000 * 5},
271 .vco = { .min = 4800000, .max = 6480000 },
272 .n = { .min = 1, .max = 1 },
273 .m1 = { .min = 2, .max = 2 },
274 .m2 = { .min = 24 << 22, .max = 175 << 22 },
275 .p1 = { .min = 2, .max = 4 },
276 .p2 = { .p2_slow = 1, .p2_fast = 14 },
277 };
278
279 static const struct intel_limit intel_limits_bxt = {
280 /* FIXME: find real dot limits */
281 .dot = { .min = 0, .max = INT_MAX },
282 .vco = { .min = 4800000, .max = 6700000 },
283 .n = { .min = 1, .max = 1 },
284 .m1 = { .min = 2, .max = 2 },
285 /* FIXME: find real m2 limits */
286 .m2 = { .min = 2 << 22, .max = 255 << 22 },
287 .p1 = { .min = 2, .max = 4 },
288 .p2 = { .p2_slow = 1, .p2_fast = 20 },
289 };
290
291 /*
292 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
293 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
294 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
295 * The helpers' return value is the rate of the clock that is fed to the
296 * display engine's pipe which can be the above fast dot clock rate or a
297 * divided-down version of it.
298 */
299 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)300 int pnv_calc_dpll_params(int refclk, struct dpll *clock)
301 {
302 clock->m = clock->m2 + 2;
303 clock->p = clock->p1 * clock->p2;
304 if (WARN_ON(clock->n == 0 || clock->p == 0))
305 return 0;
306 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
307 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
308
309 return clock->dot;
310 }
311
i9xx_dpll_compute_m(struct dpll * dpll)312 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
313 {
314 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
315 }
316
i9xx_calc_dpll_params(int refclk,struct dpll * clock)317 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
318 {
319 clock->m = i9xx_dpll_compute_m(clock);
320 clock->p = clock->p1 * clock->p2;
321 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
322 return 0;
323 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
324 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
325
326 return clock->dot;
327 }
328
vlv_calc_dpll_params(int refclk,struct dpll * clock)329 int vlv_calc_dpll_params(int refclk, struct dpll *clock)
330 {
331 clock->m = clock->m1 * clock->m2;
332 clock->p = clock->p1 * clock->p2;
333 if (WARN_ON(clock->n == 0 || clock->p == 0))
334 return 0;
335 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
336 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
337
338 return clock->dot / 5;
339 }
340
chv_calc_dpll_params(int refclk,struct dpll * clock)341 int chv_calc_dpll_params(int refclk, struct dpll *clock)
342 {
343 clock->m = clock->m1 * clock->m2;
344 clock->p = clock->p1 * clock->p2;
345 if (WARN_ON(clock->n == 0 || clock->p == 0))
346 return 0;
347 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
348 clock->n << 22);
349 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
350
351 return clock->dot / 5;
352 }
353
354 /*
355 * Returns whether the given set of divisors are valid for a given refclk with
356 * the given connectors.
357 */
intel_pll_is_valid(struct drm_i915_private * dev_priv,const struct intel_limit * limit,const struct dpll * clock)358 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
359 const struct intel_limit *limit,
360 const struct dpll *clock)
361 {
362 if (clock->n < limit->n.min || limit->n.max < clock->n)
363 return false;
364 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
365 return false;
366 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
367 return false;
368 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
369 return false;
370
371 if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
372 if (clock->m1 <= clock->m2)
373 return false;
374
375 if (!IS_LP(dev_priv)) {
376 if (clock->p < limit->p.min || limit->p.max < clock->p)
377 return false;
378 if (clock->m < limit->m.min || limit->m.max < clock->m)
379 return false;
380 }
381
382 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
383 return false;
384 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
385 * connector, etc., rather than just a single range.
386 */
387 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
388 return false;
389
390 return true;
391 }
392
393 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)394 i9xx_select_p2_div(const struct intel_limit *limit,
395 const struct intel_crtc_state *crtc_state,
396 int target)
397 {
398 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
399
400 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
401 /*
402 * For LVDS just rely on its current settings for dual-channel.
403 * We haven't figured out how to reliably set up different
404 * single/dual channel state, if we even can.
405 */
406 if (intel_is_dual_link_lvds(dev_priv))
407 return limit->p2.p2_fast;
408 else
409 return limit->p2.p2_slow;
410 } else {
411 if (target < limit->p2.dot_limit)
412 return limit->p2.p2_slow;
413 else
414 return limit->p2.p2_fast;
415 }
416 }
417
418 /*
419 * Returns a set of divisors for the desired target clock with the given
420 * refclk, or FALSE. The returned values represent the clock equation:
421 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
422 *
423 * Target and reference clocks are specified in kHz.
424 *
425 * If match_clock is provided, then best_clock P divider must match the P
426 * divider from @match_clock used for LVDS downclocking.
427 */
428 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)429 i9xx_find_best_dpll(const struct intel_limit *limit,
430 struct intel_crtc_state *crtc_state,
431 int target, int refclk, struct dpll *match_clock,
432 struct dpll *best_clock)
433 {
434 struct drm_device *dev = crtc_state->uapi.crtc->dev;
435 struct dpll clock;
436 int err = target;
437
438 memset(best_clock, 0, sizeof(*best_clock));
439
440 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
441
442 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
443 clock.m1++) {
444 for (clock.m2 = limit->m2.min;
445 clock.m2 <= limit->m2.max; clock.m2++) {
446 if (clock.m2 >= clock.m1)
447 break;
448 for (clock.n = limit->n.min;
449 clock.n <= limit->n.max; clock.n++) {
450 for (clock.p1 = limit->p1.min;
451 clock.p1 <= limit->p1.max; clock.p1++) {
452 int this_err;
453
454 i9xx_calc_dpll_params(refclk, &clock);
455 if (!intel_pll_is_valid(to_i915(dev),
456 limit,
457 &clock))
458 continue;
459 if (match_clock &&
460 clock.p != match_clock->p)
461 continue;
462
463 this_err = abs(clock.dot - target);
464 if (this_err < err) {
465 *best_clock = clock;
466 err = this_err;
467 }
468 }
469 }
470 }
471 }
472
473 return (err != target);
474 }
475
476 /*
477 * Returns a set of divisors for the desired target clock with the given
478 * refclk, or FALSE. The returned values represent the clock equation:
479 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
480 *
481 * Target and reference clocks are specified in kHz.
482 *
483 * If match_clock is provided, then best_clock P divider must match the P
484 * divider from @match_clock used for LVDS downclocking.
485 */
486 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)487 pnv_find_best_dpll(const struct intel_limit *limit,
488 struct intel_crtc_state *crtc_state,
489 int target, int refclk, struct dpll *match_clock,
490 struct dpll *best_clock)
491 {
492 struct drm_device *dev = crtc_state->uapi.crtc->dev;
493 struct dpll clock;
494 int err = target;
495
496 memset(best_clock, 0, sizeof(*best_clock));
497
498 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
499
500 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
501 clock.m1++) {
502 for (clock.m2 = limit->m2.min;
503 clock.m2 <= limit->m2.max; clock.m2++) {
504 for (clock.n = limit->n.min;
505 clock.n <= limit->n.max; clock.n++) {
506 for (clock.p1 = limit->p1.min;
507 clock.p1 <= limit->p1.max; clock.p1++) {
508 int this_err;
509
510 pnv_calc_dpll_params(refclk, &clock);
511 if (!intel_pll_is_valid(to_i915(dev),
512 limit,
513 &clock))
514 continue;
515 if (match_clock &&
516 clock.p != match_clock->p)
517 continue;
518
519 this_err = abs(clock.dot - target);
520 if (this_err < err) {
521 *best_clock = clock;
522 err = this_err;
523 }
524 }
525 }
526 }
527 }
528
529 return (err != target);
530 }
531
532 /*
533 * Returns a set of divisors for the desired target clock with the given
534 * refclk, or FALSE. The returned values represent the clock equation:
535 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
536 *
537 * Target and reference clocks are specified in kHz.
538 *
539 * If match_clock is provided, then best_clock P divider must match the P
540 * divider from @match_clock used for LVDS downclocking.
541 */
542 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)543 g4x_find_best_dpll(const struct intel_limit *limit,
544 struct intel_crtc_state *crtc_state,
545 int target, int refclk, struct dpll *match_clock,
546 struct dpll *best_clock)
547 {
548 struct drm_device *dev = crtc_state->uapi.crtc->dev;
549 struct dpll clock;
550 int max_n;
551 bool found = false;
552 /* approximately equals target * 0.00585 */
553 int err_most = (target >> 8) + (target >> 9);
554
555 memset(best_clock, 0, sizeof(*best_clock));
556
557 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
558
559 max_n = limit->n.max;
560 /* based on hardware requirement, prefer smaller n to precision */
561 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
562 /* based on hardware requirement, prefere larger m1,m2 */
563 for (clock.m1 = limit->m1.max;
564 clock.m1 >= limit->m1.min; clock.m1--) {
565 for (clock.m2 = limit->m2.max;
566 clock.m2 >= limit->m2.min; clock.m2--) {
567 for (clock.p1 = limit->p1.max;
568 clock.p1 >= limit->p1.min; clock.p1--) {
569 int this_err;
570
571 i9xx_calc_dpll_params(refclk, &clock);
572 if (!intel_pll_is_valid(to_i915(dev),
573 limit,
574 &clock))
575 continue;
576
577 this_err = abs(clock.dot - target);
578 if (this_err < err_most) {
579 *best_clock = clock;
580 err_most = this_err;
581 max_n = clock.n;
582 found = true;
583 }
584 }
585 }
586 }
587 }
588 return found;
589 }
590
591 /*
592 * Check if the calculated PLL configuration is more optimal compared to the
593 * best configuration and error found so far. Return the calculated error.
594 */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)595 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
596 const struct dpll *calculated_clock,
597 const struct dpll *best_clock,
598 unsigned int best_error_ppm,
599 unsigned int *error_ppm)
600 {
601 /*
602 * For CHV ignore the error and consider only the P value.
603 * Prefer a bigger P value based on HW requirements.
604 */
605 if (IS_CHERRYVIEW(to_i915(dev))) {
606 *error_ppm = 0;
607
608 return calculated_clock->p > best_clock->p;
609 }
610
611 if (drm_WARN_ON_ONCE(dev, !target_freq))
612 return false;
613
614 *error_ppm = div_u64(1000000ULL *
615 abs(target_freq - calculated_clock->dot),
616 target_freq);
617 /*
618 * Prefer a better P value over a better (smaller) error if the error
619 * is small. Ensure this preference for future configurations too by
620 * setting the error to 0.
621 */
622 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
623 *error_ppm = 0;
624
625 return true;
626 }
627
628 return *error_ppm + 10 < best_error_ppm;
629 }
630
631 /*
632 * Returns a set of divisors for the desired target clock with the given
633 * refclk, or FALSE. The returned values represent the clock equation:
634 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
635 */
636 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)637 vlv_find_best_dpll(const struct intel_limit *limit,
638 struct intel_crtc_state *crtc_state,
639 int target, int refclk, struct dpll *match_clock,
640 struct dpll *best_clock)
641 {
642 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
643 struct drm_device *dev = crtc->base.dev;
644 struct dpll clock;
645 unsigned int bestppm = 1000000;
646 /* min update 19.2 MHz */
647 int max_n = min(limit->n.max, refclk / 19200);
648 bool found = false;
649
650 target *= 5; /* fast clock */
651
652 memset(best_clock, 0, sizeof(*best_clock));
653
654 /* based on hardware requirement, prefer smaller n to precision */
655 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
656 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
657 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
658 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
659 clock.p = clock.p1 * clock.p2;
660 /* based on hardware requirement, prefer bigger m1,m2 values */
661 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
662 unsigned int ppm;
663
664 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
665 refclk * clock.m1);
666
667 vlv_calc_dpll_params(refclk, &clock);
668
669 if (!intel_pll_is_valid(to_i915(dev),
670 limit,
671 &clock))
672 continue;
673
674 if (!vlv_PLL_is_optimal(dev, target,
675 &clock,
676 best_clock,
677 bestppm, &ppm))
678 continue;
679
680 *best_clock = clock;
681 bestppm = ppm;
682 found = true;
683 }
684 }
685 }
686 }
687
688 return found;
689 }
690
691 /*
692 * Returns a set of divisors for the desired target clock with the given
693 * refclk, or FALSE. The returned values represent the clock equation:
694 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
695 */
696 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)697 chv_find_best_dpll(const struct intel_limit *limit,
698 struct intel_crtc_state *crtc_state,
699 int target, int refclk, struct dpll *match_clock,
700 struct dpll *best_clock)
701 {
702 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
703 struct drm_device *dev = crtc->base.dev;
704 unsigned int best_error_ppm;
705 struct dpll clock;
706 u64 m2;
707 int found = false;
708
709 memset(best_clock, 0, sizeof(*best_clock));
710 best_error_ppm = 1000000;
711
712 /*
713 * Based on hardware doc, the n always set to 1, and m1 always
714 * set to 2. If requires to support 200Mhz refclk, we need to
715 * revisit this because n may not 1 anymore.
716 */
717 clock.n = 1;
718 clock.m1 = 2;
719 target *= 5; /* fast clock */
720
721 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
722 for (clock.p2 = limit->p2.p2_fast;
723 clock.p2 >= limit->p2.p2_slow;
724 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
725 unsigned int error_ppm;
726
727 clock.p = clock.p1 * clock.p2;
728
729 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
730 refclk * clock.m1);
731
732 if (m2 > INT_MAX/clock.m1)
733 continue;
734
735 clock.m2 = m2;
736
737 chv_calc_dpll_params(refclk, &clock);
738
739 if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
740 continue;
741
742 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
743 best_error_ppm, &error_ppm))
744 continue;
745
746 *best_clock = clock;
747 best_error_ppm = error_ppm;
748 found = true;
749 }
750 }
751
752 return found;
753 }
754
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,struct dpll * best_clock)755 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
756 struct dpll *best_clock)
757 {
758 int refclk = 100000;
759 const struct intel_limit *limit = &intel_limits_bxt;
760
761 return chv_find_best_dpll(limit, crtc_state,
762 crtc_state->port_clock, refclk,
763 NULL, best_clock);
764 }
765
pnv_dpll_compute_fp(struct dpll * dpll)766 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
767 {
768 return (1 << dpll->n) << 16 | dpll->m2;
769 }
770
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)771 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
772 struct intel_crtc_state *crtc_state,
773 struct dpll *reduced_clock)
774 {
775 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
776 u32 fp, fp2 = 0;
777
778 if (IS_PINEVIEW(dev_priv)) {
779 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
780 if (reduced_clock)
781 fp2 = pnv_dpll_compute_fp(reduced_clock);
782 } else {
783 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
784 if (reduced_clock)
785 fp2 = i9xx_dpll_compute_fp(reduced_clock);
786 }
787
788 crtc_state->dpll_hw_state.fp0 = fp;
789
790 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
791 reduced_clock) {
792 crtc_state->dpll_hw_state.fp1 = fp2;
793 } else {
794 crtc_state->dpll_hw_state.fp1 = fp;
795 }
796 }
797
i9xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)798 static void i9xx_compute_dpll(struct intel_crtc *crtc,
799 struct intel_crtc_state *crtc_state,
800 struct dpll *reduced_clock)
801 {
802 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
803 u32 dpll;
804 struct dpll *clock = &crtc_state->dpll;
805
806 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
807
808 dpll = DPLL_VGA_MODE_DIS;
809
810 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
811 dpll |= DPLLB_MODE_LVDS;
812 else
813 dpll |= DPLLB_MODE_DAC_SERIAL;
814
815 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
816 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
817 dpll |= (crtc_state->pixel_multiplier - 1)
818 << SDVO_MULTIPLIER_SHIFT_HIRES;
819 }
820
821 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
822 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
823 dpll |= DPLL_SDVO_HIGH_SPEED;
824
825 if (intel_crtc_has_dp_encoder(crtc_state))
826 dpll |= DPLL_SDVO_HIGH_SPEED;
827
828 /* compute bitmask from p1 value */
829 if (IS_PINEVIEW(dev_priv))
830 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
831 else {
832 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
833 if (IS_G4X(dev_priv) && reduced_clock)
834 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
835 }
836 switch (clock->p2) {
837 case 5:
838 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
839 break;
840 case 7:
841 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
842 break;
843 case 10:
844 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
845 break;
846 case 14:
847 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
848 break;
849 }
850 if (DISPLAY_VER(dev_priv) >= 4)
851 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
852
853 if (crtc_state->sdvo_tv_clock)
854 dpll |= PLL_REF_INPUT_TVCLKINBC;
855 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
856 intel_panel_use_ssc(dev_priv))
857 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
858 else
859 dpll |= PLL_REF_INPUT_DREFCLK;
860
861 dpll |= DPLL_VCO_ENABLE;
862 crtc_state->dpll_hw_state.dpll = dpll;
863
864 if (DISPLAY_VER(dev_priv) >= 4) {
865 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
866 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
867 crtc_state->dpll_hw_state.dpll_md = dpll_md;
868 }
869 }
870
i8xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)871 static void i8xx_compute_dpll(struct intel_crtc *crtc,
872 struct intel_crtc_state *crtc_state,
873 struct dpll *reduced_clock)
874 {
875 struct drm_device *dev = crtc->base.dev;
876 struct drm_i915_private *dev_priv = to_i915(dev);
877 u32 dpll;
878 struct dpll *clock = &crtc_state->dpll;
879
880 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
881
882 dpll = DPLL_VGA_MODE_DIS;
883
884 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
885 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
886 } else {
887 if (clock->p1 == 2)
888 dpll |= PLL_P1_DIVIDE_BY_TWO;
889 else
890 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
891 if (clock->p2 == 4)
892 dpll |= PLL_P2_DIVIDE_BY_4;
893 }
894
895 /*
896 * Bspec:
897 * "[Almador Errata}: For the correct operation of the muxed DVO pins
898 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
899 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
900 * Enable) must be set to “1” in both the DPLL A Control Register
901 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
902 *
903 * For simplicity We simply keep both bits always enabled in
904 * both DPLLS. The spec says we should disable the DVO 2X clock
905 * when not needed, but this seems to work fine in practice.
906 */
907 if (IS_I830(dev_priv) ||
908 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
909 dpll |= DPLL_DVO_2X_MODE;
910
911 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
912 intel_panel_use_ssc(dev_priv))
913 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
914 else
915 dpll |= PLL_REF_INPUT_DREFCLK;
916
917 dpll |= DPLL_VCO_ENABLE;
918 crtc_state->dpll_hw_state.dpll = dpll;
919 }
920
hsw_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)921 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
922 struct intel_crtc_state *crtc_state)
923 {
924 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
925 struct intel_atomic_state *state =
926 to_intel_atomic_state(crtc_state->uapi.state);
927 struct intel_encoder *encoder =
928 intel_get_crtc_new_encoder(state, crtc_state);
929
930 if (IS_DG2(dev_priv)) {
931 return intel_mpllb_calc_state(crtc_state, encoder);
932 } else if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
933 DISPLAY_VER(dev_priv) >= 11) {
934 if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
935 drm_dbg_kms(&dev_priv->drm,
936 "failed to find PLL for pipe %c\n",
937 pipe_name(crtc->pipe));
938 return -EINVAL;
939 }
940 }
941
942 return 0;
943 }
944
ilk_needs_fb_cb_tune(struct dpll * dpll,int factor)945 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
946 {
947 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
948 }
949
950
ilk_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)951 static void ilk_compute_dpll(struct intel_crtc *crtc,
952 struct intel_crtc_state *crtc_state,
953 struct dpll *reduced_clock)
954 {
955 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
956 u32 dpll, fp, fp2;
957 int factor;
958
959 /* Enable autotuning of the PLL clock (if permissible) */
960 factor = 21;
961 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
962 if ((intel_panel_use_ssc(dev_priv) &&
963 dev_priv->vbt.lvds_ssc_freq == 100000) ||
964 (HAS_PCH_IBX(dev_priv) &&
965 intel_is_dual_link_lvds(dev_priv)))
966 factor = 25;
967 } else if (crtc_state->sdvo_tv_clock) {
968 factor = 20;
969 }
970
971 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
972
973 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
974 fp |= FP_CB_TUNE;
975
976 if (reduced_clock) {
977 fp2 = i9xx_dpll_compute_fp(reduced_clock);
978
979 if (reduced_clock->m < factor * reduced_clock->n)
980 fp2 |= FP_CB_TUNE;
981 } else {
982 fp2 = fp;
983 }
984
985 dpll = 0;
986
987 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
988 dpll |= DPLLB_MODE_LVDS;
989 else
990 dpll |= DPLLB_MODE_DAC_SERIAL;
991
992 dpll |= (crtc_state->pixel_multiplier - 1)
993 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
994
995 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
996 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
997 dpll |= DPLL_SDVO_HIGH_SPEED;
998
999 if (intel_crtc_has_dp_encoder(crtc_state))
1000 dpll |= DPLL_SDVO_HIGH_SPEED;
1001
1002 /*
1003 * The high speed IO clock is only really required for
1004 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1005 * possible to share the DPLL between CRT and HDMI. Enabling
1006 * the clock needlessly does no real harm, except use up a
1007 * bit of power potentially.
1008 *
1009 * We'll limit this to IVB with 3 pipes, since it has only two
1010 * DPLLs and so DPLL sharing is the only way to get three pipes
1011 * driving PCH ports at the same time. On SNB we could do this,
1012 * and potentially avoid enabling the second DPLL, but it's not
1013 * clear if it''s a win or loss power wise. No point in doing
1014 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1015 */
1016 if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1017 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1018 dpll |= DPLL_SDVO_HIGH_SPEED;
1019
1020 /* compute bitmask from p1 value */
1021 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1022 /* also FPA1 */
1023 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1024
1025 switch (crtc_state->dpll.p2) {
1026 case 5:
1027 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1028 break;
1029 case 7:
1030 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1031 break;
1032 case 10:
1033 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1034 break;
1035 case 14:
1036 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1037 break;
1038 }
1039
1040 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1041 intel_panel_use_ssc(dev_priv))
1042 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1043 else
1044 dpll |= PLL_REF_INPUT_DREFCLK;
1045
1046 dpll |= DPLL_VCO_ENABLE;
1047
1048 crtc_state->dpll_hw_state.dpll = dpll;
1049 crtc_state->dpll_hw_state.fp0 = fp;
1050 crtc_state->dpll_hw_state.fp1 = fp2;
1051 }
1052
ilk_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1053 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
1054 struct intel_crtc_state *crtc_state)
1055 {
1056 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1057 struct intel_atomic_state *state =
1058 to_intel_atomic_state(crtc_state->uapi.state);
1059 const struct intel_limit *limit;
1060 int refclk = 120000;
1061
1062 memset(&crtc_state->dpll_hw_state, 0,
1063 sizeof(crtc_state->dpll_hw_state));
1064
1065 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1066 if (!crtc_state->has_pch_encoder)
1067 return 0;
1068
1069 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1070 if (intel_panel_use_ssc(dev_priv)) {
1071 drm_dbg_kms(&dev_priv->drm,
1072 "using SSC reference clock of %d kHz\n",
1073 dev_priv->vbt.lvds_ssc_freq);
1074 refclk = dev_priv->vbt.lvds_ssc_freq;
1075 }
1076
1077 if (intel_is_dual_link_lvds(dev_priv)) {
1078 if (refclk == 100000)
1079 limit = &ilk_limits_dual_lvds_100m;
1080 else
1081 limit = &ilk_limits_dual_lvds;
1082 } else {
1083 if (refclk == 100000)
1084 limit = &ilk_limits_single_lvds_100m;
1085 else
1086 limit = &ilk_limits_single_lvds;
1087 }
1088 } else {
1089 limit = &ilk_limits_dac;
1090 }
1091
1092 if (!crtc_state->clock_set &&
1093 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1094 refclk, NULL, &crtc_state->dpll)) {
1095 drm_err(&dev_priv->drm,
1096 "Couldn't find PLL settings for mode!\n");
1097 return -EINVAL;
1098 }
1099
1100 ilk_compute_dpll(crtc, crtc_state, NULL);
1101
1102 if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
1103 drm_dbg_kms(&dev_priv->drm,
1104 "failed to find PLL for pipe %c\n",
1105 pipe_name(crtc->pipe));
1106 return -EINVAL;
1107 }
1108
1109 return 0;
1110 }
1111
vlv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)1112 void vlv_compute_dpll(struct intel_crtc *crtc,
1113 struct intel_crtc_state *pipe_config)
1114 {
1115 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1116 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1117 if (crtc->pipe != PIPE_A)
1118 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1119
1120 /* DPLL not used with DSI, but still need the rest set up */
1121 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
1122 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
1123 DPLL_EXT_BUFFER_ENABLE_VLV;
1124
1125 pipe_config->dpll_hw_state.dpll_md =
1126 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1127 }
1128
chv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)1129 void chv_compute_dpll(struct intel_crtc *crtc,
1130 struct intel_crtc_state *pipe_config)
1131 {
1132 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
1133 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1134 if (crtc->pipe != PIPE_A)
1135 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1136
1137 /* DPLL not used with DSI, but still need the rest set up */
1138 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
1139 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
1140
1141 pipe_config->dpll_hw_state.dpll_md =
1142 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1143 }
1144
chv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1145 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
1146 struct intel_crtc_state *crtc_state)
1147 {
1148 int refclk = 100000;
1149 const struct intel_limit *limit = &intel_limits_chv;
1150 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1151
1152 memset(&crtc_state->dpll_hw_state, 0,
1153 sizeof(crtc_state->dpll_hw_state));
1154
1155 if (!crtc_state->clock_set &&
1156 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1157 refclk, NULL, &crtc_state->dpll)) {
1158 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
1159 return -EINVAL;
1160 }
1161
1162 chv_compute_dpll(crtc, crtc_state);
1163
1164 return 0;
1165 }
1166
vlv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1167 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
1168 struct intel_crtc_state *crtc_state)
1169 {
1170 int refclk = 100000;
1171 const struct intel_limit *limit = &intel_limits_vlv;
1172 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1173
1174 memset(&crtc_state->dpll_hw_state, 0,
1175 sizeof(crtc_state->dpll_hw_state));
1176
1177 if (!crtc_state->clock_set &&
1178 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1179 refclk, NULL, &crtc_state->dpll)) {
1180 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
1181 return -EINVAL;
1182 }
1183
1184 vlv_compute_dpll(crtc, crtc_state);
1185
1186 return 0;
1187 }
1188
g4x_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1189 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
1190 struct intel_crtc_state *crtc_state)
1191 {
1192 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1193 const struct intel_limit *limit;
1194 int refclk = 96000;
1195
1196 memset(&crtc_state->dpll_hw_state, 0,
1197 sizeof(crtc_state->dpll_hw_state));
1198
1199 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1200 if (intel_panel_use_ssc(dev_priv)) {
1201 refclk = dev_priv->vbt.lvds_ssc_freq;
1202 drm_dbg_kms(&dev_priv->drm,
1203 "using SSC reference clock of %d kHz\n",
1204 refclk);
1205 }
1206
1207 if (intel_is_dual_link_lvds(dev_priv))
1208 limit = &intel_limits_g4x_dual_channel_lvds;
1209 else
1210 limit = &intel_limits_g4x_single_channel_lvds;
1211 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1212 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1213 limit = &intel_limits_g4x_hdmi;
1214 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1215 limit = &intel_limits_g4x_sdvo;
1216 } else {
1217 /* The option is for other outputs */
1218 limit = &intel_limits_i9xx_sdvo;
1219 }
1220
1221 if (!crtc_state->clock_set &&
1222 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1223 refclk, NULL, &crtc_state->dpll)) {
1224 drm_err(&dev_priv->drm,
1225 "Couldn't find PLL settings for mode!\n");
1226 return -EINVAL;
1227 }
1228
1229 i9xx_compute_dpll(crtc, crtc_state, NULL);
1230
1231 return 0;
1232 }
1233
pnv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1234 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
1235 struct intel_crtc_state *crtc_state)
1236 {
1237 struct drm_device *dev = crtc->base.dev;
1238 struct drm_i915_private *dev_priv = to_i915(dev);
1239 const struct intel_limit *limit;
1240 int refclk = 96000;
1241
1242 memset(&crtc_state->dpll_hw_state, 0,
1243 sizeof(crtc_state->dpll_hw_state));
1244
1245 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1246 if (intel_panel_use_ssc(dev_priv)) {
1247 refclk = dev_priv->vbt.lvds_ssc_freq;
1248 drm_dbg_kms(&dev_priv->drm,
1249 "using SSC reference clock of %d kHz\n",
1250 refclk);
1251 }
1252
1253 limit = &pnv_limits_lvds;
1254 } else {
1255 limit = &pnv_limits_sdvo;
1256 }
1257
1258 if (!crtc_state->clock_set &&
1259 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1260 refclk, NULL, &crtc_state->dpll)) {
1261 drm_err(&dev_priv->drm,
1262 "Couldn't find PLL settings for mode!\n");
1263 return -EINVAL;
1264 }
1265
1266 i9xx_compute_dpll(crtc, crtc_state, NULL);
1267
1268 return 0;
1269 }
1270
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1271 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
1272 struct intel_crtc_state *crtc_state)
1273 {
1274 struct drm_device *dev = crtc->base.dev;
1275 struct drm_i915_private *dev_priv = to_i915(dev);
1276 const struct intel_limit *limit;
1277 int refclk = 96000;
1278
1279 memset(&crtc_state->dpll_hw_state, 0,
1280 sizeof(crtc_state->dpll_hw_state));
1281
1282 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1283 if (intel_panel_use_ssc(dev_priv)) {
1284 refclk = dev_priv->vbt.lvds_ssc_freq;
1285 drm_dbg_kms(&dev_priv->drm,
1286 "using SSC reference clock of %d kHz\n",
1287 refclk);
1288 }
1289
1290 limit = &intel_limits_i9xx_lvds;
1291 } else {
1292 limit = &intel_limits_i9xx_sdvo;
1293 }
1294
1295 if (!crtc_state->clock_set &&
1296 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1297 refclk, NULL, &crtc_state->dpll)) {
1298 drm_err(&dev_priv->drm,
1299 "Couldn't find PLL settings for mode!\n");
1300 return -EINVAL;
1301 }
1302
1303 i9xx_compute_dpll(crtc, crtc_state, NULL);
1304
1305 return 0;
1306 }
1307
i8xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)1308 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
1309 struct intel_crtc_state *crtc_state)
1310 {
1311 struct drm_device *dev = crtc->base.dev;
1312 struct drm_i915_private *dev_priv = to_i915(dev);
1313 const struct intel_limit *limit;
1314 int refclk = 48000;
1315
1316 memset(&crtc_state->dpll_hw_state, 0,
1317 sizeof(crtc_state->dpll_hw_state));
1318
1319 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1320 if (intel_panel_use_ssc(dev_priv)) {
1321 refclk = dev_priv->vbt.lvds_ssc_freq;
1322 drm_dbg_kms(&dev_priv->drm,
1323 "using SSC reference clock of %d kHz\n",
1324 refclk);
1325 }
1326
1327 limit = &intel_limits_i8xx_lvds;
1328 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1329 limit = &intel_limits_i8xx_dvo;
1330 } else {
1331 limit = &intel_limits_i8xx_dac;
1332 }
1333
1334 if (!crtc_state->clock_set &&
1335 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1336 refclk, NULL, &crtc_state->dpll)) {
1337 drm_err(&dev_priv->drm,
1338 "Couldn't find PLL settings for mode!\n");
1339 return -EINVAL;
1340 }
1341
1342 i8xx_compute_dpll(crtc, crtc_state, NULL);
1343
1344 return 0;
1345 }
1346
1347 void
intel_dpll_init_clock_hook(struct drm_i915_private * dev_priv)1348 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1349 {
1350 if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1351 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
1352 else if (HAS_PCH_SPLIT(dev_priv))
1353 dev_priv->display.crtc_compute_clock = ilk_crtc_compute_clock;
1354 else if (IS_CHERRYVIEW(dev_priv))
1355 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
1356 else if (IS_VALLEYVIEW(dev_priv))
1357 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
1358 else if (IS_G4X(dev_priv))
1359 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
1360 else if (IS_PINEVIEW(dev_priv))
1361 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
1362 else if (DISPLAY_VER(dev_priv) != 2)
1363 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
1364 else
1365 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
1366 }
1367
i9xx_has_pps(struct drm_i915_private * dev_priv)1368 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1369 {
1370 if (IS_I830(dev_priv))
1371 return false;
1372
1373 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1374 }
1375
i9xx_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)1376 void i9xx_enable_pll(struct intel_crtc *crtc,
1377 const struct intel_crtc_state *crtc_state)
1378 {
1379 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1380 i915_reg_t reg = DPLL(crtc->pipe);
1381 u32 dpll = crtc_state->dpll_hw_state.dpll;
1382 int i;
1383
1384 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1385
1386 /* PLL is protected by panel, make sure we can write it */
1387 if (i9xx_has_pps(dev_priv))
1388 assert_panel_unlocked(dev_priv, crtc->pipe);
1389
1390 /*
1391 * Apparently we need to have VGA mode enabled prior to changing
1392 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1393 * dividers, even though the register value does change.
1394 */
1395 intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS);
1396 intel_de_write(dev_priv, reg, dpll);
1397
1398 /* Wait for the clocks to stabilize. */
1399 intel_de_posting_read(dev_priv, reg);
1400 udelay(150);
1401
1402 if (DISPLAY_VER(dev_priv) >= 4) {
1403 intel_de_write(dev_priv, DPLL_MD(crtc->pipe),
1404 crtc_state->dpll_hw_state.dpll_md);
1405 } else {
1406 /* The pixel multiplier can only be updated once the
1407 * DPLL is enabled and the clocks are stable.
1408 *
1409 * So write it again.
1410 */
1411 intel_de_write(dev_priv, reg, dpll);
1412 }
1413
1414 /* We do this three times for luck */
1415 for (i = 0; i < 3; i++) {
1416 intel_de_write(dev_priv, reg, dpll);
1417 intel_de_posting_read(dev_priv, reg);
1418 udelay(150); /* wait for warmup */
1419 }
1420 }
1421
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)1422 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1423 enum pipe pipe)
1424 {
1425 u32 reg_val;
1426
1427 /*
1428 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1429 * and set it to a reasonable value instead.
1430 */
1431 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1432 reg_val &= 0xffffff00;
1433 reg_val |= 0x00000030;
1434 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1435
1436 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1437 reg_val &= 0x00ffffff;
1438 reg_val |= 0x8c000000;
1439 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1440
1441 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1442 reg_val &= 0xffffff00;
1443 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1444
1445 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1446 reg_val &= 0x00ffffff;
1447 reg_val |= 0xb0000000;
1448 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1449 }
1450
_vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1451 static void _vlv_enable_pll(struct intel_crtc *crtc,
1452 const struct intel_crtc_state *pipe_config)
1453 {
1454 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1455 enum pipe pipe = crtc->pipe;
1456
1457 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1458 intel_de_posting_read(dev_priv, DPLL(pipe));
1459 udelay(150);
1460
1461 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1462 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1463 }
1464
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1465 void vlv_enable_pll(struct intel_crtc *crtc,
1466 const struct intel_crtc_state *pipe_config)
1467 {
1468 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1469 enum pipe pipe = crtc->pipe;
1470
1471 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1472
1473 /* PLL is protected by panel, make sure we can write it */
1474 assert_panel_unlocked(dev_priv, pipe);
1475
1476 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1477 _vlv_enable_pll(crtc, pipe_config);
1478
1479 intel_de_write(dev_priv, DPLL_MD(pipe),
1480 pipe_config->dpll_hw_state.dpll_md);
1481 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1482 }
1483
1484
_chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1485 static void _chv_enable_pll(struct intel_crtc *crtc,
1486 const struct intel_crtc_state *pipe_config)
1487 {
1488 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1489 enum pipe pipe = crtc->pipe;
1490 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1491 u32 tmp;
1492
1493 vlv_dpio_get(dev_priv);
1494
1495 /* Enable back the 10bit clock to display controller */
1496 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1497 tmp |= DPIO_DCLKP_EN;
1498 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1499
1500 vlv_dpio_put(dev_priv);
1501
1502 /*
1503 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1504 */
1505 udelay(1);
1506
1507 /* Enable PLL */
1508 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1509
1510 /* Check PLL is locked */
1511 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1512 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1513 }
1514
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1515 void chv_enable_pll(struct intel_crtc *crtc,
1516 const struct intel_crtc_state *pipe_config)
1517 {
1518 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1519 enum pipe pipe = crtc->pipe;
1520
1521 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1522
1523 /* PLL is protected by panel, make sure we can write it */
1524 assert_panel_unlocked(dev_priv, pipe);
1525
1526 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1527 _chv_enable_pll(crtc, pipe_config);
1528
1529 if (pipe != PIPE_A) {
1530 /*
1531 * WaPixelRepeatModeFixForC0:chv
1532 *
1533 * DPLLCMD is AWOL. Use chicken bits to propagate
1534 * the value from DPLLBMD to either pipe B or C.
1535 */
1536 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1537 intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1538 pipe_config->dpll_hw_state.dpll_md);
1539 intel_de_write(dev_priv, CBR4_VLV, 0);
1540 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1541
1542 /*
1543 * DPLLB VGA mode also seems to cause problems.
1544 * We should always have it disabled.
1545 */
1546 drm_WARN_ON(&dev_priv->drm,
1547 (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1548 DPLL_VGA_MODE_DIS) == 0);
1549 } else {
1550 intel_de_write(dev_priv, DPLL_MD(pipe),
1551 pipe_config->dpll_hw_state.dpll_md);
1552 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1553 }
1554 }
1555
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1556 void vlv_prepare_pll(struct intel_crtc *crtc,
1557 const struct intel_crtc_state *pipe_config)
1558 {
1559 struct drm_device *dev = crtc->base.dev;
1560 struct drm_i915_private *dev_priv = to_i915(dev);
1561 enum pipe pipe = crtc->pipe;
1562 u32 mdiv;
1563 u32 bestn, bestm1, bestm2, bestp1, bestp2;
1564 u32 coreclk, reg_val;
1565
1566 /* Enable Refclk */
1567 intel_de_write(dev_priv, DPLL(pipe),
1568 pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
1569
1570 /* No need to actually set up the DPLL with DSI */
1571 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
1572 return;
1573
1574 vlv_dpio_get(dev_priv);
1575
1576 bestn = pipe_config->dpll.n;
1577 bestm1 = pipe_config->dpll.m1;
1578 bestm2 = pipe_config->dpll.m2;
1579 bestp1 = pipe_config->dpll.p1;
1580 bestp2 = pipe_config->dpll.p2;
1581
1582 /* See eDP HDMI DPIO driver vbios notes doc */
1583
1584 /* PLL B needs special handling */
1585 if (pipe == PIPE_B)
1586 vlv_pllb_recal_opamp(dev_priv, pipe);
1587
1588 /* Set up Tx target for periodic Rcomp update */
1589 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
1590
1591 /* Disable target IRef on PLL */
1592 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
1593 reg_val &= 0x00ffffff;
1594 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
1595
1596 /* Disable fast lock */
1597 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
1598
1599 /* Set idtafcrecal before PLL is enabled */
1600 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
1601 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
1602 mdiv |= ((bestn << DPIO_N_SHIFT));
1603 mdiv |= (1 << DPIO_K_SHIFT);
1604
1605 /*
1606 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1607 * but we don't support that).
1608 * Note: don't use the DAC post divider as it seems unstable.
1609 */
1610 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
1611 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1612
1613 mdiv |= DPIO_ENABLE_CALIBRATION;
1614 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1615
1616 /* Set HBR and RBR LPF coefficients */
1617 if (pipe_config->port_clock == 162000 ||
1618 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
1619 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
1620 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1621 0x009f0003);
1622 else
1623 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1624 0x00d0000f);
1625
1626 if (intel_crtc_has_dp_encoder(pipe_config)) {
1627 /* Use SSC source */
1628 if (pipe == PIPE_A)
1629 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1630 0x0df40000);
1631 else
1632 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1633 0x0df70000);
1634 } else { /* HDMI or VGA */
1635 /* Use bend source */
1636 if (pipe == PIPE_A)
1637 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1638 0x0df70000);
1639 else
1640 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1641 0x0df40000);
1642 }
1643
1644 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
1645 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1646 if (intel_crtc_has_dp_encoder(pipe_config))
1647 coreclk |= 0x01000000;
1648 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
1649
1650 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
1651
1652 vlv_dpio_put(dev_priv);
1653 }
1654
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1655 void chv_prepare_pll(struct intel_crtc *crtc,
1656 const struct intel_crtc_state *pipe_config)
1657 {
1658 struct drm_device *dev = crtc->base.dev;
1659 struct drm_i915_private *dev_priv = to_i915(dev);
1660 enum pipe pipe = crtc->pipe;
1661 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1662 u32 loopfilter, tribuf_calcntr;
1663 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
1664 u32 dpio_val;
1665 int vco;
1666
1667 /* Enable Refclk and SSC */
1668 intel_de_write(dev_priv, DPLL(pipe),
1669 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
1670
1671 /* No need to actually set up the DPLL with DSI */
1672 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
1673 return;
1674
1675 bestn = pipe_config->dpll.n;
1676 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
1677 bestm1 = pipe_config->dpll.m1;
1678 bestm2 = pipe_config->dpll.m2 >> 22;
1679 bestp1 = pipe_config->dpll.p1;
1680 bestp2 = pipe_config->dpll.p2;
1681 vco = pipe_config->dpll.vco;
1682 dpio_val = 0;
1683 loopfilter = 0;
1684
1685 vlv_dpio_get(dev_priv);
1686
1687 /* p1 and p2 divider */
1688 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
1689 5 << DPIO_CHV_S1_DIV_SHIFT |
1690 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
1691 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1692 1 << DPIO_CHV_K_DIV_SHIFT);
1693
1694 /* Feedback post-divider - m2 */
1695 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
1696
1697 /* Feedback refclk divider - n and m1 */
1698 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
1699 DPIO_CHV_M1_DIV_BY_2 |
1700 1 << DPIO_CHV_N_DIV_SHIFT);
1701
1702 /* M2 fraction division */
1703 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
1704
1705 /* M2 fraction division enable */
1706 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
1707 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
1708 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
1709 if (bestm2_frac)
1710 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
1711 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
1712
1713 /* Program digital lock detect threshold */
1714 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
1715 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
1716 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
1717 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
1718 if (!bestm2_frac)
1719 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
1720 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
1721
1722 /* Loop filter */
1723 if (vco == 5400000) {
1724 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
1725 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
1726 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
1727 tribuf_calcntr = 0x9;
1728 } else if (vco <= 6200000) {
1729 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
1730 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
1731 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1732 tribuf_calcntr = 0x9;
1733 } else if (vco <= 6480000) {
1734 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1735 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1736 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1737 tribuf_calcntr = 0x8;
1738 } else {
1739 /* Not supported. Apply the same limits as in the max case */
1740 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1741 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1742 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1743 tribuf_calcntr = 0;
1744 }
1745 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
1746
1747 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
1748 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
1749 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
1750 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
1751
1752 /* AFC Recal */
1753 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
1754 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
1755 DPIO_AFC_RECAL);
1756
1757 vlv_dpio_put(dev_priv);
1758 }
1759
1760 /**
1761 * vlv_force_pll_on - forcibly enable just the PLL
1762 * @dev_priv: i915 private structure
1763 * @pipe: pipe PLL to enable
1764 * @dpll: PLL configuration
1765 *
1766 * Enable the PLL for @pipe using the supplied @dpll config. To be used
1767 * in cases where we need the PLL enabled even when @pipe is not going to
1768 * be enabled.
1769 */
vlv_force_pll_on(struct drm_i915_private * dev_priv,enum pipe pipe,const struct dpll * dpll)1770 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
1771 const struct dpll *dpll)
1772 {
1773 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1774 struct intel_crtc_state *pipe_config;
1775
1776 pipe_config = intel_crtc_state_alloc(crtc);
1777 if (!pipe_config)
1778 return -ENOMEM;
1779
1780 pipe_config->cpu_transcoder = (enum transcoder)pipe;
1781 pipe_config->pixel_multiplier = 1;
1782 pipe_config->dpll = *dpll;
1783
1784 if (IS_CHERRYVIEW(dev_priv)) {
1785 chv_compute_dpll(crtc, pipe_config);
1786 chv_prepare_pll(crtc, pipe_config);
1787 chv_enable_pll(crtc, pipe_config);
1788 } else {
1789 vlv_compute_dpll(crtc, pipe_config);
1790 vlv_prepare_pll(crtc, pipe_config);
1791 vlv_enable_pll(crtc, pipe_config);
1792 }
1793
1794 kfree(pipe_config);
1795
1796 return 0;
1797 }
1798
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1799 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1800 {
1801 u32 val;
1802
1803 /* Make sure the pipe isn't still relying on us */
1804 assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1805
1806 val = DPLL_INTEGRATED_REF_CLK_VLV |
1807 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1808 if (pipe != PIPE_A)
1809 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1810
1811 intel_de_write(dev_priv, DPLL(pipe), val);
1812 intel_de_posting_read(dev_priv, DPLL(pipe));
1813 }
1814
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1815 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1816 {
1817 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1818 u32 val;
1819
1820 /* Make sure the pipe isn't still relying on us */
1821 assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1822
1823 val = DPLL_SSC_REF_CLK_CHV |
1824 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1825 if (pipe != PIPE_A)
1826 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1827
1828 intel_de_write(dev_priv, DPLL(pipe), val);
1829 intel_de_posting_read(dev_priv, DPLL(pipe));
1830
1831 vlv_dpio_get(dev_priv);
1832
1833 /* Disable 10bit clock to display controller */
1834 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1835 val &= ~DPIO_DCLKP_EN;
1836 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1837
1838 vlv_dpio_put(dev_priv);
1839 }
1840
i9xx_disable_pll(const struct intel_crtc_state * crtc_state)1841 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1842 {
1843 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1844 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1845 enum pipe pipe = crtc->pipe;
1846
1847 /* Don't disable pipe or pipe PLLs if needed */
1848 if (IS_I830(dev_priv))
1849 return;
1850
1851 /* Make sure the pipe isn't still relying on us */
1852 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1853
1854 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1855 intel_de_posting_read(dev_priv, DPLL(pipe));
1856 }
1857
1858
1859 /**
1860 * vlv_force_pll_off - forcibly disable just the PLL
1861 * @dev_priv: i915 private structure
1862 * @pipe: pipe PLL to disable
1863 *
1864 * Disable the PLL for @pipe. To be used in cases where we need
1865 * the PLL enabled even when @pipe is not going to be enabled.
1866 */
vlv_force_pll_off(struct drm_i915_private * dev_priv,enum pipe pipe)1867 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
1868 {
1869 if (IS_CHERRYVIEW(dev_priv))
1870 chv_disable_pll(dev_priv, pipe);
1871 else
1872 vlv_disable_pll(dev_priv, pipe);
1873 }
1874