1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include <linux/shmem_fs.h>
7
8 #include <drm/ttm/ttm_bo_driver.h>
9 #include <drm/ttm/ttm_placement.h>
10 #include <drm/drm_buddy.h>
11
12 #include "i915_drv.h"
13 #include "i915_ttm_buddy_manager.h"
14 #include "intel_memory_region.h"
15 #include "intel_region_ttm.h"
16
17 #include "gem/i915_gem_mman.h"
18 #include "gem/i915_gem_object.h"
19 #include "gem/i915_gem_region.h"
20 #include "gem/i915_gem_ttm.h"
21 #include "gem/i915_gem_ttm_move.h"
22 #include "gem/i915_gem_ttm_pm.h"
23 #include "gt/intel_gpu_commands.h"
24
25 #define I915_TTM_PRIO_PURGE 0
26 #define I915_TTM_PRIO_NO_PAGES 1
27 #define I915_TTM_PRIO_HAS_PAGES 2
28 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
29
30 /*
31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
32 */
33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
34
35 /**
36 * struct i915_ttm_tt - TTM page vector with additional private information
37 * @ttm: The base TTM page vector.
38 * @dev: The struct device used for dma mapping and unmapping.
39 * @cached_rsgt: The cached scatter-gather table.
40 * @is_shmem: Set if using shmem.
41 * @filp: The shmem file, if using shmem backend.
42 *
43 * Note that DMA may be going on right up to the point where the page-
44 * vector is unpopulated in delayed destroy. Hence keep the
45 * scatter-gather table mapped and cached up to that point. This is
46 * different from the cached gem object io scatter-gather table which
47 * doesn't have an associated dma mapping.
48 */
49 struct i915_ttm_tt {
50 struct ttm_tt ttm;
51 struct device *dev;
52 struct i915_refct_sgt cached_rsgt;
53
54 bool is_shmem;
55 struct file *filp;
56 };
57
58 static const struct ttm_place sys_placement_flags = {
59 .fpfn = 0,
60 .lpfn = 0,
61 .mem_type = I915_PL_SYSTEM,
62 .flags = 0,
63 };
64
65 static struct ttm_placement i915_sys_placement = {
66 .num_placement = 1,
67 .placement = &sys_placement_flags,
68 .num_busy_placement = 1,
69 .busy_placement = &sys_placement_flags,
70 };
71
72 /**
73 * i915_ttm_sys_placement - Return the struct ttm_placement to be
74 * used for an object in system memory.
75 *
76 * Rather than making the struct extern, use this
77 * function.
78 *
79 * Return: A pointer to a static variable for sys placement.
80 */
i915_ttm_sys_placement(void)81 struct ttm_placement *i915_ttm_sys_placement(void)
82 {
83 return &i915_sys_placement;
84 }
85
i915_ttm_err_to_gem(int err)86 static int i915_ttm_err_to_gem(int err)
87 {
88 /* Fastpath */
89 if (likely(!err))
90 return 0;
91
92 switch (err) {
93 case -EBUSY:
94 /*
95 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
96 * restart the operation, since we don't record the contending
97 * lock. We use -EAGAIN to restart.
98 */
99 return -EAGAIN;
100 case -ENOSPC:
101 /*
102 * Memory type / region is full, and we can't evict.
103 * Except possibly system, that returns -ENOMEM;
104 */
105 return -ENXIO;
106 default:
107 break;
108 }
109
110 return err;
111 }
112
113 static enum ttm_caching
i915_ttm_select_tt_caching(const struct drm_i915_gem_object * obj)114 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
115 {
116 /*
117 * Objects only allowed in system get cached cpu-mappings, or when
118 * evicting lmem-only buffers to system for swapping. Other objects get
119 * WC mapping for now. Even if in system.
120 */
121 if (obj->mm.n_placements <= 1)
122 return ttm_cached;
123
124 return ttm_write_combined;
125 }
126
127 static void
i915_ttm_place_from_region(const struct intel_memory_region * mr,struct ttm_place * place,resource_size_t offset,resource_size_t size,unsigned int flags)128 i915_ttm_place_from_region(const struct intel_memory_region *mr,
129 struct ttm_place *place,
130 resource_size_t offset,
131 resource_size_t size,
132 unsigned int flags)
133 {
134 memset(place, 0, sizeof(*place));
135 place->mem_type = intel_region_to_ttm_type(mr);
136
137 if (mr->type == INTEL_MEMORY_SYSTEM)
138 return;
139
140 if (flags & I915_BO_ALLOC_CONTIGUOUS)
141 place->flags |= TTM_PL_FLAG_CONTIGUOUS;
142 if (offset != I915_BO_INVALID_OFFSET) {
143 place->fpfn = offset >> PAGE_SHIFT;
144 place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
145 } else if (mr->io_size && mr->io_size < mr->total) {
146 if (flags & I915_BO_ALLOC_GPU_ONLY) {
147 place->flags |= TTM_PL_FLAG_TOPDOWN;
148 } else {
149 place->fpfn = 0;
150 place->lpfn = mr->io_size >> PAGE_SHIFT;
151 }
152 }
153 }
154
155 static void
i915_ttm_placement_from_obj(const struct drm_i915_gem_object * obj,struct ttm_place * requested,struct ttm_place * busy,struct ttm_placement * placement)156 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
157 struct ttm_place *requested,
158 struct ttm_place *busy,
159 struct ttm_placement *placement)
160 {
161 unsigned int num_allowed = obj->mm.n_placements;
162 unsigned int flags = obj->flags;
163 unsigned int i;
164
165 placement->num_placement = 1;
166 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
167 obj->mm.region, requested, obj->bo_offset,
168 obj->base.size, flags);
169
170 /* Cache this on object? */
171 placement->num_busy_placement = num_allowed;
172 for (i = 0; i < placement->num_busy_placement; ++i)
173 i915_ttm_place_from_region(obj->mm.placements[i], busy + i,
174 obj->bo_offset, obj->base.size, flags);
175
176 if (num_allowed == 0) {
177 *busy = *requested;
178 placement->num_busy_placement = 1;
179 }
180
181 placement->placement = requested;
182 placement->busy_placement = busy;
183 }
184
i915_ttm_tt_shmem_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)185 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
186 struct ttm_tt *ttm,
187 struct ttm_operation_ctx *ctx)
188 {
189 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
190 struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
191 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
192 const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
193 const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
194 struct file *filp = i915_tt->filp;
195 struct sgt_iter sgt_iter;
196 struct sg_table *st;
197 struct page *page;
198 unsigned long i;
199 int err;
200
201 if (!filp) {
202 struct address_space *mapping;
203 gfp_t mask;
204
205 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
206 if (IS_ERR(filp))
207 return PTR_ERR(filp);
208
209 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
210
211 mapping = filp->f_mapping;
212 mapping_set_gfp_mask(mapping, mask);
213 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
214
215 i915_tt->filp = filp;
216 }
217
218 st = &i915_tt->cached_rsgt.table;
219 err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
220 max_segment);
221 if (err)
222 return err;
223
224 err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
225 DMA_ATTR_SKIP_CPU_SYNC);
226 if (err)
227 goto err_free_st;
228
229 i = 0;
230 for_each_sgt_page(page, sgt_iter, st)
231 ttm->pages[i++] = page;
232
233 if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
234 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
235
236 return 0;
237
238 err_free_st:
239 shmem_sg_free_table(st, filp->f_mapping, false, false);
240
241 return err;
242 }
243
i915_ttm_tt_shmem_unpopulate(struct ttm_tt * ttm)244 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
245 {
246 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
247 bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
248 struct sg_table *st = &i915_tt->cached_rsgt.table;
249
250 shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
251 backup, backup);
252 }
253
i915_ttm_tt_release(struct kref * ref)254 static void i915_ttm_tt_release(struct kref *ref)
255 {
256 struct i915_ttm_tt *i915_tt =
257 container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
258 struct sg_table *st = &i915_tt->cached_rsgt.table;
259
260 GEM_WARN_ON(st->sgl);
261
262 kfree(i915_tt);
263 }
264
265 static const struct i915_refct_sgt_ops tt_rsgt_ops = {
266 .release = i915_ttm_tt_release
267 };
268
i915_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)269 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
270 uint32_t page_flags)
271 {
272 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
273 bdev);
274 struct ttm_resource_manager *man =
275 ttm_manager_type(bo->bdev, bo->resource->mem_type);
276 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
277 unsigned long ccs_pages = 0;
278 enum ttm_caching caching;
279 struct i915_ttm_tt *i915_tt;
280 int ret;
281
282 if (!obj)
283 return NULL;
284
285 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
286 if (!i915_tt)
287 return NULL;
288
289 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR &&
290 man->use_tt)
291 page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
292
293 caching = i915_ttm_select_tt_caching(obj);
294 if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
295 page_flags |= TTM_TT_FLAG_EXTERNAL |
296 TTM_TT_FLAG_EXTERNAL_MAPPABLE;
297 i915_tt->is_shmem = true;
298 }
299
300 if (i915_gem_object_needs_ccs_pages(obj))
301 ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size,
302 NUM_BYTES_PER_CCS_BYTE),
303 PAGE_SIZE);
304
305 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages);
306 if (ret)
307 goto err_free;
308
309 __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
310 &tt_rsgt_ops);
311
312 i915_tt->dev = obj->base.dev->dev;
313
314 return &i915_tt->ttm;
315
316 err_free:
317 kfree(i915_tt);
318 return NULL;
319 }
320
i915_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)321 static int i915_ttm_tt_populate(struct ttm_device *bdev,
322 struct ttm_tt *ttm,
323 struct ttm_operation_ctx *ctx)
324 {
325 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
326
327 if (i915_tt->is_shmem)
328 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
329
330 return ttm_pool_alloc(&bdev->pool, ttm, ctx);
331 }
332
i915_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)333 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
334 {
335 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
336 struct sg_table *st = &i915_tt->cached_rsgt.table;
337
338 if (st->sgl)
339 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
340
341 if (i915_tt->is_shmem) {
342 i915_ttm_tt_shmem_unpopulate(ttm);
343 } else {
344 sg_free_table(st);
345 ttm_pool_free(&bdev->pool, ttm);
346 }
347 }
348
i915_ttm_tt_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)349 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
350 {
351 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
352
353 if (i915_tt->filp)
354 fput(i915_tt->filp);
355
356 ttm_tt_fini(ttm);
357 i915_refct_sgt_put(&i915_tt->cached_rsgt);
358 }
359
i915_ttm_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)360 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
361 const struct ttm_place *place)
362 {
363 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
364
365 if (!obj)
366 return false;
367
368 /*
369 * EXTERNAL objects should never be swapped out by TTM, instead we need
370 * to handle that ourselves. TTM will already skip such objects for us,
371 * but we would like to avoid grabbing locks for no good reason.
372 */
373 if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
374 return false;
375
376 /* Will do for now. Our pinned objects are still on TTM's LRU lists */
377 if (!i915_gem_object_evictable(obj))
378 return false;
379
380 return ttm_bo_eviction_valuable(bo, place);
381 }
382
i915_ttm_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)383 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
384 struct ttm_placement *placement)
385 {
386 *placement = i915_sys_placement;
387 }
388
389 /**
390 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
391 * @obj: The GEM object
392 * This function frees any LMEM-related information that is cached on
393 * the object. For example the radix tree for fast page lookup and the
394 * cached refcounted sg-table
395 */
i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object * obj)396 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
397 {
398 struct radix_tree_iter iter;
399 void __rcu **slot;
400
401 if (!obj->ttm.cached_io_rsgt)
402 return;
403
404 rcu_read_lock();
405 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
406 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
407 rcu_read_unlock();
408
409 i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
410 obj->ttm.cached_io_rsgt = NULL;
411 }
412
413 /**
414 * i915_ttm_purge - Clear an object of its memory
415 * @obj: The object
416 *
417 * This function is called to clear an object of it's memory when it is
418 * marked as not needed anymore.
419 *
420 * Return: 0 on success, negative error code on failure.
421 */
i915_ttm_purge(struct drm_i915_gem_object * obj)422 int i915_ttm_purge(struct drm_i915_gem_object *obj)
423 {
424 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
425 struct i915_ttm_tt *i915_tt =
426 container_of(bo->ttm, typeof(*i915_tt), ttm);
427 struct ttm_operation_ctx ctx = {
428 .interruptible = true,
429 .no_wait_gpu = false,
430 };
431 struct ttm_placement place = {};
432 int ret;
433
434 if (obj->mm.madv == __I915_MADV_PURGED)
435 return 0;
436
437 ret = ttm_bo_validate(bo, &place, &ctx);
438 if (ret)
439 return ret;
440
441 if (bo->ttm && i915_tt->filp) {
442 /*
443 * The below fput(which eventually calls shmem_truncate) might
444 * be delayed by worker, so when directly called to purge the
445 * pages(like by the shrinker) we should try to be more
446 * aggressive and release the pages immediately.
447 */
448 shmem_truncate_range(file_inode(i915_tt->filp),
449 0, (loff_t)-1);
450 fput(fetch_and_zero(&i915_tt->filp));
451 }
452
453 obj->write_domain = 0;
454 obj->read_domains = 0;
455 i915_ttm_adjust_gem_after_move(obj);
456 i915_ttm_free_cached_io_rsgt(obj);
457 obj->mm.madv = __I915_MADV_PURGED;
458
459 return 0;
460 }
461
i915_ttm_shrink(struct drm_i915_gem_object * obj,unsigned int flags)462 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
463 {
464 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
465 struct i915_ttm_tt *i915_tt =
466 container_of(bo->ttm, typeof(*i915_tt), ttm);
467 struct ttm_operation_ctx ctx = {
468 .interruptible = true,
469 .no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
470 };
471 struct ttm_placement place = {};
472 int ret;
473
474 if (!bo->ttm || bo->resource->mem_type != TTM_PL_SYSTEM)
475 return 0;
476
477 GEM_BUG_ON(!i915_tt->is_shmem);
478
479 if (!i915_tt->filp)
480 return 0;
481
482 ret = ttm_bo_wait_ctx(bo, &ctx);
483 if (ret)
484 return ret;
485
486 switch (obj->mm.madv) {
487 case I915_MADV_DONTNEED:
488 return i915_ttm_purge(obj);
489 case __I915_MADV_PURGED:
490 return 0;
491 }
492
493 if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
494 return 0;
495
496 bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
497 ret = ttm_bo_validate(bo, &place, &ctx);
498 if (ret) {
499 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
500 return ret;
501 }
502
503 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
504 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
505
506 return 0;
507 }
508
i915_ttm_delete_mem_notify(struct ttm_buffer_object * bo)509 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
510 {
511 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
512 intel_wakeref_t wakeref = 0;
513
514 if (bo->resource && likely(obj)) {
515 /* ttm_bo_release() already has dma_resv_lock */
516 if (i915_ttm_cpu_maps_iomem(bo->resource))
517 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
518
519 __i915_gem_object_pages_fini(obj);
520
521 if (wakeref)
522 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
523
524 i915_ttm_free_cached_io_rsgt(obj);
525 }
526 }
527
i915_ttm_tt_get_st(struct ttm_tt * ttm)528 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
529 {
530 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
531 struct sg_table *st;
532 int ret;
533
534 if (i915_tt->cached_rsgt.table.sgl)
535 return i915_refct_sgt_get(&i915_tt->cached_rsgt);
536
537 st = &i915_tt->cached_rsgt.table;
538 ret = sg_alloc_table_from_pages_segment(st,
539 ttm->pages, ttm->num_pages,
540 0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
541 i915_sg_segment_size(i915_tt->dev), GFP_KERNEL);
542 if (ret) {
543 st->sgl = NULL;
544 return ERR_PTR(ret);
545 }
546
547 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
548 if (ret) {
549 sg_free_table(st);
550 return ERR_PTR(ret);
551 }
552
553 return i915_refct_sgt_get(&i915_tt->cached_rsgt);
554 }
555
556 /**
557 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
558 * resource memory
559 * @obj: The GEM object used for sg-table caching
560 * @res: The struct ttm_resource for which an sg-table is requested.
561 *
562 * This function returns a refcounted sg-table representing the memory
563 * pointed to by @res. If @res is the object's current resource it may also
564 * cache the sg_table on the object or attempt to access an already cached
565 * sg-table. The refcounted sg-table needs to be put when no-longer in use.
566 *
567 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
568 * failure.
569 */
570 struct i915_refct_sgt *
i915_ttm_resource_get_st(struct drm_i915_gem_object * obj,struct ttm_resource * res)571 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
572 struct ttm_resource *res)
573 {
574 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
575 u32 page_alignment;
576
577 if (!i915_ttm_gtt_binds_lmem(res))
578 return i915_ttm_tt_get_st(bo->ttm);
579
580 page_alignment = bo->page_alignment << PAGE_SHIFT;
581 if (!page_alignment)
582 page_alignment = obj->mm.region->min_page_size;
583
584 /*
585 * If CPU mapping differs, we need to add the ttm_tt pages to
586 * the resulting st. Might make sense for GGTT.
587 */
588 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
589 if (bo->resource == res) {
590 if (!obj->ttm.cached_io_rsgt) {
591 struct i915_refct_sgt *rsgt;
592
593 rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
594 res,
595 page_alignment);
596 if (IS_ERR(rsgt))
597 return rsgt;
598
599 obj->ttm.cached_io_rsgt = rsgt;
600 }
601 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
602 }
603
604 return intel_region_ttm_resource_to_rsgt(obj->mm.region, res,
605 page_alignment);
606 }
607
i915_ttm_truncate(struct drm_i915_gem_object * obj)608 static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
609 {
610 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
611 int err;
612
613 WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
614
615 err = ttm_bo_wait(bo, true, false);
616 if (err)
617 return err;
618
619 err = i915_ttm_move_notify(bo);
620 if (err)
621 return err;
622
623 return i915_ttm_purge(obj);
624 }
625
i915_ttm_swap_notify(struct ttm_buffer_object * bo)626 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
627 {
628 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
629 int ret;
630
631 if (!obj)
632 return;
633
634 ret = i915_ttm_move_notify(bo);
635 GEM_WARN_ON(ret);
636 GEM_WARN_ON(obj->ttm.cached_io_rsgt);
637 if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
638 i915_ttm_purge(obj);
639 }
640
641 /**
642 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU
643 * accessible.
644 * @res: The TTM resource to check.
645 *
646 * This is interesting on small-BAR systems where we may encounter lmem objects
647 * that can't be accessed via the CPU.
648 */
i915_ttm_resource_mappable(struct ttm_resource * res)649 bool i915_ttm_resource_mappable(struct ttm_resource *res)
650 {
651 struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
652
653 if (!i915_ttm_cpu_maps_iomem(res))
654 return true;
655
656 return bman_res->used_visible_size == bman_res->base.num_pages;
657 }
658
i915_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)659 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
660 {
661 struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo);
662 bool unknown_state;
663
664 if (!obj)
665 return -EINVAL;
666
667 if (!kref_get_unless_zero(&obj->base.refcount))
668 return -EINVAL;
669
670 assert_object_held(obj);
671
672 unknown_state = i915_gem_object_has_unknown_state(obj);
673 i915_gem_object_put(obj);
674 if (unknown_state)
675 return -EINVAL;
676
677 if (!i915_ttm_cpu_maps_iomem(mem))
678 return 0;
679
680 if (!i915_ttm_resource_mappable(mem))
681 return -EINVAL;
682
683 mem->bus.caching = ttm_write_combined;
684 mem->bus.is_iomem = true;
685
686 return 0;
687 }
688
i915_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)689 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
690 unsigned long page_offset)
691 {
692 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
693 struct scatterlist *sg;
694 unsigned long base;
695 unsigned int ofs;
696
697 GEM_BUG_ON(!obj);
698 GEM_WARN_ON(bo->ttm);
699
700 base = obj->mm.region->iomap.base - obj->mm.region->region.start;
701 sg = __i915_gem_object_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs, true);
702
703 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
704 }
705
706 /*
707 * All callbacks need to take care not to downcast a struct ttm_buffer_object
708 * without checking its subclass, since it might be a TTM ghost object.
709 */
710 static struct ttm_device_funcs i915_ttm_bo_driver = {
711 .ttm_tt_create = i915_ttm_tt_create,
712 .ttm_tt_populate = i915_ttm_tt_populate,
713 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
714 .ttm_tt_destroy = i915_ttm_tt_destroy,
715 .eviction_valuable = i915_ttm_eviction_valuable,
716 .evict_flags = i915_ttm_evict_flags,
717 .move = i915_ttm_move,
718 .swap_notify = i915_ttm_swap_notify,
719 .delete_mem_notify = i915_ttm_delete_mem_notify,
720 .io_mem_reserve = i915_ttm_io_mem_reserve,
721 .io_mem_pfn = i915_ttm_io_mem_pfn,
722 };
723
724 /**
725 * i915_ttm_driver - Return a pointer to the TTM device funcs
726 *
727 * Return: Pointer to statically allocated TTM device funcs.
728 */
i915_ttm_driver(void)729 struct ttm_device_funcs *i915_ttm_driver(void)
730 {
731 return &i915_ttm_bo_driver;
732 }
733
__i915_ttm_get_pages(struct drm_i915_gem_object * obj,struct ttm_placement * placement)734 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
735 struct ttm_placement *placement)
736 {
737 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
738 struct ttm_operation_ctx ctx = {
739 .interruptible = true,
740 .no_wait_gpu = false,
741 };
742 int real_num_busy;
743 int ret;
744
745 /* First try only the requested placement. No eviction. */
746 real_num_busy = fetch_and_zero(&placement->num_busy_placement);
747 ret = ttm_bo_validate(bo, placement, &ctx);
748 if (ret) {
749 ret = i915_ttm_err_to_gem(ret);
750 /*
751 * Anything that wants to restart the operation gets to
752 * do that.
753 */
754 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
755 ret == -EAGAIN)
756 return ret;
757
758 /*
759 * If the initial attempt fails, allow all accepted placements,
760 * evicting if necessary.
761 */
762 placement->num_busy_placement = real_num_busy;
763 ret = ttm_bo_validate(bo, placement, &ctx);
764 if (ret)
765 return i915_ttm_err_to_gem(ret);
766 }
767
768 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
769 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
770 if (ret)
771 return ret;
772
773 i915_ttm_adjust_domains_after_move(obj);
774 i915_ttm_adjust_gem_after_move(obj);
775 }
776
777 if (!i915_gem_object_has_pages(obj)) {
778 struct i915_refct_sgt *rsgt =
779 i915_ttm_resource_get_st(obj, bo->resource);
780
781 if (IS_ERR(rsgt))
782 return PTR_ERR(rsgt);
783
784 GEM_BUG_ON(obj->mm.rsgt);
785 obj->mm.rsgt = rsgt;
786 __i915_gem_object_set_pages(obj, &rsgt->table,
787 i915_sg_dma_sizes(rsgt->table.sgl));
788 }
789
790 GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages));
791 i915_ttm_adjust_lru(obj);
792 return ret;
793 }
794
i915_ttm_get_pages(struct drm_i915_gem_object * obj)795 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
796 {
797 struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
798 struct ttm_placement placement;
799
800 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
801
802 /* Move to the requested placement. */
803 i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
804
805 return __i915_ttm_get_pages(obj, &placement);
806 }
807
808 /**
809 * DOC: Migration vs eviction
810 *
811 * GEM migration may not be the same as TTM migration / eviction. If
812 * the TTM core decides to evict an object it may be evicted to a
813 * TTM memory type that is not in the object's allowable GEM regions, or
814 * in fact theoretically to a TTM memory type that doesn't correspond to
815 * a GEM memory region. In that case the object's GEM region is not
816 * updated, and the data is migrated back to the GEM region at
817 * get_pages time. TTM may however set up CPU ptes to the object even
818 * when it is evicted.
819 * Gem forced migration using the i915_ttm_migrate() op, is allowed even
820 * to regions that are not in the object's list of allowable placements.
821 */
__i915_ttm_migrate(struct drm_i915_gem_object * obj,struct intel_memory_region * mr,unsigned int flags)822 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
823 struct intel_memory_region *mr,
824 unsigned int flags)
825 {
826 struct ttm_place requested;
827 struct ttm_placement placement;
828 int ret;
829
830 i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
831 obj->base.size, flags);
832 placement.num_placement = 1;
833 placement.num_busy_placement = 1;
834 placement.placement = &requested;
835 placement.busy_placement = &requested;
836
837 ret = __i915_ttm_get_pages(obj, &placement);
838 if (ret)
839 return ret;
840
841 /*
842 * Reinitialize the region bindings. This is primarily
843 * required for objects where the new region is not in
844 * its allowable placements.
845 */
846 if (obj->mm.region != mr) {
847 i915_gem_object_release_memory_region(obj);
848 i915_gem_object_init_memory_region(obj, mr);
849 }
850
851 return 0;
852 }
853
i915_ttm_migrate(struct drm_i915_gem_object * obj,struct intel_memory_region * mr,unsigned int flags)854 static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
855 struct intel_memory_region *mr,
856 unsigned int flags)
857 {
858 return __i915_ttm_migrate(obj, mr, flags);
859 }
860
i915_ttm_put_pages(struct drm_i915_gem_object * obj,struct sg_table * st)861 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
862 struct sg_table *st)
863 {
864 /*
865 * We're currently not called from a shrinker, so put_pages()
866 * typically means the object is about to destroyed, or called
867 * from move_notify(). So just avoid doing much for now.
868 * If the object is not destroyed next, The TTM eviction logic
869 * and shrinkers will move it out if needed.
870 */
871
872 if (obj->mm.rsgt)
873 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
874 }
875
876 /**
877 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
878 * @obj: The object
879 */
i915_ttm_adjust_lru(struct drm_i915_gem_object * obj)880 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
881 {
882 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
883 struct i915_ttm_tt *i915_tt =
884 container_of(bo->ttm, typeof(*i915_tt), ttm);
885 bool shrinkable =
886 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
887
888 /*
889 * Don't manipulate the TTM LRUs while in TTM bo destruction.
890 * We're called through i915_ttm_delete_mem_notify().
891 */
892 if (!kref_read(&bo->kref))
893 return;
894
895 /*
896 * We skip managing the shrinker LRU in set_pages() and just manage
897 * everything here. This does at least solve the issue with having
898 * temporary shmem mappings(like with evicted lmem) not being visible to
899 * the shrinker. Only our shmem objects are shrinkable, everything else
900 * we keep as unshrinkable.
901 *
902 * To make sure everything plays nice we keep an extra shrink pin in TTM
903 * if the underlying pages are not currently shrinkable. Once we release
904 * our pin, like when the pages are moved to shmem, the pages will then
905 * be added to the shrinker LRU, assuming the caller isn't also holding
906 * a pin.
907 *
908 * TODO: consider maybe also bumping the shrinker list here when we have
909 * already unpinned it, which should give us something more like an LRU.
910 *
911 * TODO: There is a small window of opportunity for this function to
912 * get called from eviction after we've dropped the last GEM refcount,
913 * but before the TTM deleted flag is set on the object. Avoid
914 * adjusting the shrinker list in such cases, since the object is
915 * not available to the shrinker anyway due to its zero refcount.
916 * To fix this properly we should move to a TTM shrinker LRU list for
917 * these objects.
918 */
919 if (kref_get_unless_zero(&obj->base.refcount)) {
920 if (shrinkable != obj->mm.ttm_shrinkable) {
921 if (shrinkable) {
922 if (obj->mm.madv == I915_MADV_WILLNEED)
923 __i915_gem_object_make_shrinkable(obj);
924 else
925 __i915_gem_object_make_purgeable(obj);
926 } else {
927 i915_gem_object_make_unshrinkable(obj);
928 }
929
930 obj->mm.ttm_shrinkable = shrinkable;
931 }
932 i915_gem_object_put(obj);
933 }
934
935 /*
936 * Put on the correct LRU list depending on the MADV status
937 */
938 spin_lock(&bo->bdev->lru_lock);
939 if (shrinkable) {
940 /* Try to keep shmem_tt from being considered for shrinking. */
941 bo->priority = TTM_MAX_BO_PRIORITY - 1;
942 } else if (obj->mm.madv != I915_MADV_WILLNEED) {
943 bo->priority = I915_TTM_PRIO_PURGE;
944 } else if (!i915_gem_object_has_pages(obj)) {
945 bo->priority = I915_TTM_PRIO_NO_PAGES;
946 } else {
947 struct ttm_resource_manager *man =
948 ttm_manager_type(bo->bdev, bo->resource->mem_type);
949
950 /*
951 * If we need to place an LMEM resource which doesn't need CPU
952 * access then we should try not to victimize mappable objects
953 * first, since we likely end up stealing more of the mappable
954 * portion. And likewise when we try to find space for a mappble
955 * object, we know not to ever victimize objects that don't
956 * occupy any mappable pages.
957 */
958 if (i915_ttm_cpu_maps_iomem(bo->resource) &&
959 i915_ttm_buddy_man_visible_size(man) < man->size &&
960 !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
961 bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
962 else
963 bo->priority = I915_TTM_PRIO_HAS_PAGES;
964 }
965
966 ttm_bo_move_to_lru_tail(bo);
967 spin_unlock(&bo->bdev->lru_lock);
968 }
969
970 /*
971 * TTM-backed gem object destruction requires some clarification.
972 * Basically we have two possibilities here. We can either rely on the
973 * i915 delayed destruction and put the TTM object when the object
974 * is idle. This would be detected by TTM which would bypass the
975 * TTM delayed destroy handling. The other approach is to put the TTM
976 * object early and rely on the TTM destroyed handling, and then free
977 * the leftover parts of the GEM object once TTM's destroyed list handling is
978 * complete. For now, we rely on the latter for two reasons:
979 * a) TTM can evict an object even when it's on the delayed destroy list,
980 * which in theory allows for complete eviction.
981 * b) There is work going on in TTM to allow freeing an object even when
982 * it's not idle, and using the TTM destroyed list handling could help us
983 * benefit from that.
984 */
i915_ttm_delayed_free(struct drm_i915_gem_object * obj)985 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
986 {
987 GEM_BUG_ON(!obj->ttm.created);
988
989 ttm_bo_put(i915_gem_to_ttm(obj));
990 }
991
vm_fault_ttm(struct vm_fault * vmf)992 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
993 {
994 struct vm_area_struct *area = vmf->vma;
995 struct ttm_buffer_object *bo = area->vm_private_data;
996 struct drm_device *dev = bo->base.dev;
997 struct drm_i915_gem_object *obj;
998 intel_wakeref_t wakeref = 0;
999 vm_fault_t ret;
1000 int idx;
1001
1002 obj = i915_ttm_to_gem(bo);
1003 if (!obj)
1004 return VM_FAULT_SIGBUS;
1005
1006 /* Sanity check that we allow writing into this object */
1007 if (unlikely(i915_gem_object_is_readonly(obj) &&
1008 area->vm_flags & VM_WRITE))
1009 return VM_FAULT_SIGBUS;
1010
1011 ret = ttm_bo_vm_reserve(bo, vmf);
1012 if (ret)
1013 return ret;
1014
1015 if (obj->mm.madv != I915_MADV_WILLNEED) {
1016 dma_resv_unlock(bo->base.resv);
1017 return VM_FAULT_SIGBUS;
1018 }
1019
1020 if (!i915_ttm_resource_mappable(bo->resource)) {
1021 int err = -ENODEV;
1022 int i;
1023
1024 for (i = 0; i < obj->mm.n_placements; i++) {
1025 struct intel_memory_region *mr = obj->mm.placements[i];
1026 unsigned int flags;
1027
1028 if (!mr->io_size && mr->type != INTEL_MEMORY_SYSTEM)
1029 continue;
1030
1031 flags = obj->flags;
1032 flags &= ~I915_BO_ALLOC_GPU_ONLY;
1033 err = __i915_ttm_migrate(obj, mr, flags);
1034 if (!err)
1035 break;
1036 }
1037
1038 if (err) {
1039 drm_dbg(dev, "Unable to make resource CPU accessible\n");
1040 dma_resv_unlock(bo->base.resv);
1041 ret = VM_FAULT_SIGBUS;
1042 goto out_rpm;
1043 }
1044 }
1045
1046 if (i915_ttm_cpu_maps_iomem(bo->resource))
1047 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1048
1049 if (drm_dev_enter(dev, &idx)) {
1050 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1051 TTM_BO_VM_NUM_PREFAULT);
1052 drm_dev_exit(idx);
1053 } else {
1054 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1055 }
1056
1057 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1058 goto out_rpm;
1059
1060 /* ttm_bo_vm_reserve() already has dma_resv_lock */
1061 if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) {
1062 obj->userfault_count = 1;
1063 mutex_lock(&to_gt(to_i915(obj->base.dev))->lmem_userfault_lock);
1064 list_add(&obj->userfault_link, &to_gt(to_i915(obj->base.dev))->lmem_userfault_list);
1065 mutex_unlock(&to_gt(to_i915(obj->base.dev))->lmem_userfault_lock);
1066 }
1067
1068 if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
1069 intel_wakeref_auto(&to_gt(to_i915(obj->base.dev))->userfault_wakeref,
1070 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
1071
1072 i915_ttm_adjust_lru(obj);
1073
1074 dma_resv_unlock(bo->base.resv);
1075
1076 out_rpm:
1077 if (wakeref)
1078 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1079
1080 return ret;
1081 }
1082
1083 static int
vm_access_ttm(struct vm_area_struct * area,unsigned long addr,void * buf,int len,int write)1084 vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
1085 void *buf, int len, int write)
1086 {
1087 struct drm_i915_gem_object *obj =
1088 i915_ttm_to_gem(area->vm_private_data);
1089
1090 if (i915_gem_object_is_readonly(obj) && write)
1091 return -EACCES;
1092
1093 return ttm_bo_vm_access(area, addr, buf, len, write);
1094 }
1095
ttm_vm_open(struct vm_area_struct * vma)1096 static void ttm_vm_open(struct vm_area_struct *vma)
1097 {
1098 struct drm_i915_gem_object *obj =
1099 i915_ttm_to_gem(vma->vm_private_data);
1100
1101 GEM_BUG_ON(!obj);
1102 i915_gem_object_get(obj);
1103 }
1104
ttm_vm_close(struct vm_area_struct * vma)1105 static void ttm_vm_close(struct vm_area_struct *vma)
1106 {
1107 struct drm_i915_gem_object *obj =
1108 i915_ttm_to_gem(vma->vm_private_data);
1109
1110 GEM_BUG_ON(!obj);
1111 i915_gem_object_put(obj);
1112 }
1113
1114 static const struct vm_operations_struct vm_ops_ttm = {
1115 .fault = vm_fault_ttm,
1116 .access = vm_access_ttm,
1117 .open = ttm_vm_open,
1118 .close = ttm_vm_close,
1119 };
1120
i915_ttm_mmap_offset(struct drm_i915_gem_object * obj)1121 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
1122 {
1123 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
1124 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
1125
1126 return drm_vma_node_offset_addr(&obj->base.vma_node);
1127 }
1128
i915_ttm_unmap_virtual(struct drm_i915_gem_object * obj)1129 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
1130 {
1131 ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
1132 }
1133
1134 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
1135 .name = "i915_gem_object_ttm",
1136 .flags = I915_GEM_OBJECT_IS_SHRINKABLE |
1137 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
1138
1139 .get_pages = i915_ttm_get_pages,
1140 .put_pages = i915_ttm_put_pages,
1141 .truncate = i915_ttm_truncate,
1142 .shrink = i915_ttm_shrink,
1143
1144 .adjust_lru = i915_ttm_adjust_lru,
1145 .delayed_free = i915_ttm_delayed_free,
1146 .migrate = i915_ttm_migrate,
1147
1148 .mmap_offset = i915_ttm_mmap_offset,
1149 .unmap_virtual = i915_ttm_unmap_virtual,
1150 .mmap_ops = &vm_ops_ttm,
1151 };
1152
i915_ttm_bo_destroy(struct ttm_buffer_object * bo)1153 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
1154 {
1155 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1156
1157 i915_gem_object_release_memory_region(obj);
1158 mutex_destroy(&obj->ttm.get_io_page.lock);
1159
1160 if (obj->ttm.created) {
1161 /*
1162 * We freely manage the shrinker LRU outide of the mm.pages life
1163 * cycle. As a result when destroying the object we should be
1164 * extra paranoid and ensure we remove it from the LRU, before
1165 * we free the object.
1166 *
1167 * Touching the ttm_shrinkable outside of the object lock here
1168 * should be safe now that the last GEM object ref was dropped.
1169 */
1170 if (obj->mm.ttm_shrinkable)
1171 i915_gem_object_make_unshrinkable(obj);
1172
1173 i915_ttm_backup_free(obj);
1174
1175 /* This releases all gem object bindings to the backend. */
1176 __i915_gem_free_object(obj);
1177
1178 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1179 } else {
1180 __i915_gem_object_fini(obj);
1181 }
1182 }
1183
1184 /**
1185 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1186 * @mem: The initial memory region for the object.
1187 * @obj: The gem object.
1188 * @size: Object size in bytes.
1189 * @flags: gem object flags.
1190 *
1191 * Return: 0 on success, negative error code on failure.
1192 */
__i915_gem_ttm_object_init(struct intel_memory_region * mem,struct drm_i915_gem_object * obj,resource_size_t offset,resource_size_t size,resource_size_t page_size,unsigned int flags)1193 int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1194 struct drm_i915_gem_object *obj,
1195 resource_size_t offset,
1196 resource_size_t size,
1197 resource_size_t page_size,
1198 unsigned int flags)
1199 {
1200 static struct lock_class_key lock_class;
1201 struct drm_i915_private *i915 = mem->i915;
1202 struct ttm_operation_ctx ctx = {
1203 .interruptible = true,
1204 .no_wait_gpu = false,
1205 };
1206 enum ttm_bo_type bo_type;
1207 int ret;
1208
1209 drm_gem_private_object_init(&i915->drm, &obj->base, size);
1210 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1211
1212 obj->bo_offset = offset;
1213
1214 /* Don't put on a region list until we're either locked or fully initialized. */
1215 obj->mm.region = mem;
1216 INIT_LIST_HEAD(&obj->mm.region_link);
1217
1218 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1219 mutex_init(&obj->ttm.get_io_page.lock);
1220 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1221 ttm_bo_type_kernel;
1222
1223 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1224
1225 /* Forcing the page size is kernel internal only */
1226 GEM_BUG_ON(page_size && obj->mm.n_placements);
1227
1228 /*
1229 * Keep an extra shrink pin to prevent the object from being made
1230 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1231 * drop the pin. The TTM backend manages the shrinker LRU itself,
1232 * outside of the normal mm.pages life cycle.
1233 */
1234 i915_gem_object_make_unshrinkable(obj);
1235
1236 /*
1237 * If this function fails, it will call the destructor, but
1238 * our caller still owns the object. So no freeing in the
1239 * destructor until obj->ttm.created is true.
1240 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
1241 * until successful initialization.
1242 */
1243 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type,
1244 &i915_sys_placement, page_size >> PAGE_SHIFT,
1245 &ctx, NULL, NULL, i915_ttm_bo_destroy);
1246 if (ret)
1247 return i915_ttm_err_to_gem(ret);
1248
1249 obj->ttm.created = true;
1250 i915_gem_object_release_memory_region(obj);
1251 i915_gem_object_init_memory_region(obj, mem);
1252 i915_ttm_adjust_domains_after_move(obj);
1253 i915_ttm_adjust_gem_after_move(obj);
1254 i915_gem_object_unlock(obj);
1255
1256 return 0;
1257 }
1258
1259 static const struct intel_memory_region_ops ttm_system_region_ops = {
1260 .init_object = __i915_gem_ttm_object_init,
1261 .release = intel_region_ttm_fini,
1262 };
1263
1264 struct intel_memory_region *
i915_gem_ttm_system_setup(struct drm_i915_private * i915,u16 type,u16 instance)1265 i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1266 u16 type, u16 instance)
1267 {
1268 struct intel_memory_region *mr;
1269
1270 mr = intel_memory_region_create(i915, 0,
1271 totalram_pages() << PAGE_SHIFT,
1272 PAGE_SIZE, 0, 0,
1273 type, instance,
1274 &ttm_system_region_ops);
1275 if (IS_ERR(mr))
1276 return mr;
1277
1278 intel_memory_region_set_name(mr, "system-ttm");
1279 return mr;
1280 }
1281