1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include <drm/ttm/ttm_bo_driver.h>
7
8 #include "i915_deps.h"
9 #include "i915_drv.h"
10 #include "intel_memory_region.h"
11 #include "intel_region_ttm.h"
12
13 #include "gem/i915_gem_object.h"
14 #include "gem/i915_gem_region.h"
15 #include "gem/i915_gem_ttm.h"
16 #include "gem/i915_gem_ttm_move.h"
17
18 #include "gt/intel_engine_pm.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_migrate.h"
21
22 /**
23 * DOC: Selftest failure modes for failsafe migration:
24 *
25 * For fail_gpu_migration, the gpu blit scheduled is always a clear blit
26 * rather than a copy blit, and then we force the failure paths as if
27 * the blit fence returned an error.
28 *
29 * For fail_work_allocation we fail the kmalloc of the async worker, we
30 * sync the gpu blit. If it then fails, or fail_gpu_migration is set to
31 * true, then a memcpy operation is performed sync.
32 */
33 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
34 static bool fail_gpu_migration;
35 static bool fail_work_allocation;
36 static bool ban_memcpy;
37
i915_ttm_migrate_set_failure_modes(bool gpu_migration,bool work_allocation)38 void i915_ttm_migrate_set_failure_modes(bool gpu_migration,
39 bool work_allocation)
40 {
41 fail_gpu_migration = gpu_migration;
42 fail_work_allocation = work_allocation;
43 }
44
i915_ttm_migrate_set_ban_memcpy(bool ban)45 void i915_ttm_migrate_set_ban_memcpy(bool ban)
46 {
47 ban_memcpy = ban;
48 }
49 #endif
50
51 static enum i915_cache_level
i915_ttm_cache_level(struct drm_i915_private * i915,struct ttm_resource * res,struct ttm_tt * ttm)52 i915_ttm_cache_level(struct drm_i915_private *i915, struct ttm_resource *res,
53 struct ttm_tt *ttm)
54 {
55 return ((HAS_LLC(i915) || HAS_SNOOP(i915)) &&
56 !i915_ttm_gtt_binds_lmem(res) &&
57 ttm->caching == ttm_cached) ? I915_CACHE_LLC :
58 I915_CACHE_NONE;
59 }
60
61 static struct intel_memory_region *
i915_ttm_region(struct ttm_device * bdev,int ttm_mem_type)62 i915_ttm_region(struct ttm_device *bdev, int ttm_mem_type)
63 {
64 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
65
66 /* There's some room for optimization here... */
67 GEM_BUG_ON(ttm_mem_type != I915_PL_SYSTEM &&
68 ttm_mem_type < I915_PL_LMEM0);
69 if (ttm_mem_type == I915_PL_SYSTEM)
70 return intel_memory_region_lookup(i915, INTEL_MEMORY_SYSTEM,
71 0);
72
73 return intel_memory_region_lookup(i915, INTEL_MEMORY_LOCAL,
74 ttm_mem_type - I915_PL_LMEM0);
75 }
76
77 /**
78 * i915_ttm_adjust_domains_after_move - Adjust the GEM domains after a
79 * TTM move
80 * @obj: The gem object
81 */
i915_ttm_adjust_domains_after_move(struct drm_i915_gem_object * obj)82 void i915_ttm_adjust_domains_after_move(struct drm_i915_gem_object *obj)
83 {
84 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
85
86 if (i915_ttm_cpu_maps_iomem(bo->resource) || bo->ttm->caching != ttm_cached) {
87 obj->write_domain = I915_GEM_DOMAIN_WC;
88 obj->read_domains = I915_GEM_DOMAIN_WC;
89 } else {
90 obj->write_domain = I915_GEM_DOMAIN_CPU;
91 obj->read_domains = I915_GEM_DOMAIN_CPU;
92 }
93 }
94
95 /**
96 * i915_ttm_adjust_gem_after_move - Adjust the GEM state after a TTM move
97 * @obj: The gem object
98 *
99 * Adjusts the GEM object's region, mem_flags and cache coherency after a
100 * TTM move.
101 */
i915_ttm_adjust_gem_after_move(struct drm_i915_gem_object * obj)102 void i915_ttm_adjust_gem_after_move(struct drm_i915_gem_object *obj)
103 {
104 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
105 unsigned int cache_level;
106 unsigned int i;
107
108 /*
109 * If object was moved to an allowable region, update the object
110 * region to consider it migrated. Note that if it's currently not
111 * in an allowable region, it's evicted and we don't update the
112 * object region.
113 */
114 if (intel_region_to_ttm_type(obj->mm.region) != bo->resource->mem_type) {
115 for (i = 0; i < obj->mm.n_placements; ++i) {
116 struct intel_memory_region *mr = obj->mm.placements[i];
117
118 if (intel_region_to_ttm_type(mr) == bo->resource->mem_type &&
119 mr != obj->mm.region) {
120 i915_gem_object_release_memory_region(obj);
121 i915_gem_object_init_memory_region(obj, mr);
122 break;
123 }
124 }
125 }
126
127 obj->mem_flags &= ~(I915_BO_FLAG_STRUCT_PAGE | I915_BO_FLAG_IOMEM);
128
129 obj->mem_flags |= i915_ttm_cpu_maps_iomem(bo->resource) ? I915_BO_FLAG_IOMEM :
130 I915_BO_FLAG_STRUCT_PAGE;
131
132 cache_level = i915_ttm_cache_level(to_i915(bo->base.dev), bo->resource,
133 bo->ttm);
134 i915_gem_object_set_cache_coherency(obj, cache_level);
135 }
136
137 /**
138 * i915_ttm_move_notify - Prepare an object for move
139 * @bo: The ttm buffer object.
140 *
141 * This function prepares an object for move by removing all GPU bindings,
142 * removing all CPU mapings and finally releasing the pages sg-table.
143 *
144 * Return: 0 if successful, negative error code on error.
145 */
i915_ttm_move_notify(struct ttm_buffer_object * bo)146 int i915_ttm_move_notify(struct ttm_buffer_object *bo)
147 {
148 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
149 int ret;
150
151 /*
152 * Note: The async unbinding here will actually transform the
153 * blocking wait for unbind into a wait before finally submitting
154 * evict / migration blit and thus stall the migration timeline
155 * which may not be good for overall throughput. We should make
156 * sure we await the unbind fences *after* the migration blit
157 * instead of *before* as we currently do.
158 */
159 ret = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE |
160 I915_GEM_OBJECT_UNBIND_ASYNC);
161 if (ret)
162 return ret;
163
164 ret = __i915_gem_object_put_pages(obj);
165 if (ret)
166 return ret;
167
168 return 0;
169 }
170
i915_ttm_accel_move(struct ttm_buffer_object * bo,bool clear,struct ttm_resource * dst_mem,struct ttm_tt * dst_ttm,struct sg_table * dst_st,const struct i915_deps * deps)171 static struct dma_fence *i915_ttm_accel_move(struct ttm_buffer_object *bo,
172 bool clear,
173 struct ttm_resource *dst_mem,
174 struct ttm_tt *dst_ttm,
175 struct sg_table *dst_st,
176 const struct i915_deps *deps)
177 {
178 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
179 bdev);
180 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
181 struct i915_request *rq;
182 struct ttm_tt *src_ttm = bo->ttm;
183 enum i915_cache_level src_level, dst_level;
184 int ret;
185
186 if (!to_gt(i915)->migrate.context || intel_gt_is_wedged(to_gt(i915)))
187 return ERR_PTR(-EINVAL);
188
189 /* With fail_gpu_migration, we always perform a GPU clear. */
190 if (I915_SELFTEST_ONLY(fail_gpu_migration))
191 clear = true;
192
193 dst_level = i915_ttm_cache_level(i915, dst_mem, dst_ttm);
194 if (clear) {
195 if (bo->type == ttm_bo_type_kernel &&
196 !I915_SELFTEST_ONLY(fail_gpu_migration))
197 return ERR_PTR(-EINVAL);
198
199 intel_engine_pm_get(to_gt(i915)->migrate.context->engine);
200 ret = intel_context_migrate_clear(to_gt(i915)->migrate.context, deps,
201 dst_st->sgl, dst_level,
202 i915_ttm_gtt_binds_lmem(dst_mem),
203 0, &rq);
204 } else {
205 struct i915_refct_sgt *src_rsgt =
206 i915_ttm_resource_get_st(obj, bo->resource);
207
208 if (IS_ERR(src_rsgt))
209 return ERR_CAST(src_rsgt);
210
211 src_level = i915_ttm_cache_level(i915, bo->resource, src_ttm);
212 intel_engine_pm_get(to_gt(i915)->migrate.context->engine);
213 ret = intel_context_migrate_copy(to_gt(i915)->migrate.context,
214 deps, src_rsgt->table.sgl,
215 src_level,
216 i915_ttm_gtt_binds_lmem(bo->resource),
217 dst_st->sgl, dst_level,
218 i915_ttm_gtt_binds_lmem(dst_mem),
219 &rq);
220
221 i915_refct_sgt_put(src_rsgt);
222 }
223
224 intel_engine_pm_put(to_gt(i915)->migrate.context->engine);
225
226 if (ret && rq) {
227 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
228 i915_request_put(rq);
229 }
230
231 return ret ? ERR_PTR(ret) : &rq->fence;
232 }
233
234 /**
235 * struct i915_ttm_memcpy_arg - argument for the bo memcpy functionality.
236 * @_dst_iter: Storage space for the destination kmap iterator.
237 * @_src_iter: Storage space for the source kmap iterator.
238 * @dst_iter: Pointer to the destination kmap iterator.
239 * @src_iter: Pointer to the source kmap iterator.
240 * @clear: Whether to clear instead of copy.
241 * @src_rsgt: Refcounted scatter-gather list of source memory.
242 * @dst_rsgt: Refcounted scatter-gather list of destination memory.
243 */
244 struct i915_ttm_memcpy_arg {
245 union {
246 struct ttm_kmap_iter_tt tt;
247 struct ttm_kmap_iter_iomap io;
248 } _dst_iter,
249 _src_iter;
250 struct ttm_kmap_iter *dst_iter;
251 struct ttm_kmap_iter *src_iter;
252 unsigned long num_pages;
253 bool clear;
254 struct i915_refct_sgt *src_rsgt;
255 struct i915_refct_sgt *dst_rsgt;
256 };
257
258 /**
259 * struct i915_ttm_memcpy_work - Async memcpy worker under a dma-fence.
260 * @fence: The dma-fence.
261 * @work: The work struct use for the memcpy work.
262 * @lock: The fence lock. Not used to protect anything else ATM.
263 * @irq_work: Low latency worker to signal the fence since it can't be done
264 * from the callback for lockdep reasons.
265 * @cb: Callback for the accelerated migration fence.
266 * @arg: The argument for the memcpy functionality.
267 * @i915: The i915 pointer.
268 * @obj: The GEM object.
269 * @memcpy_allowed: Instead of processing the @arg, and falling back to memcpy
270 * or memset, we wedge the device and set the @obj unknown_state, to prevent
271 * further access to the object with the CPU or GPU. On some devices we might
272 * only be permitted to use the blitter engine for such operations.
273 */
274 struct i915_ttm_memcpy_work {
275 struct dma_fence fence;
276 struct work_struct work;
277 spinlock_t lock;
278 struct irq_work irq_work;
279 struct dma_fence_cb cb;
280 struct i915_ttm_memcpy_arg arg;
281 struct drm_i915_private *i915;
282 struct drm_i915_gem_object *obj;
283 bool memcpy_allowed;
284 };
285
i915_ttm_move_memcpy(struct i915_ttm_memcpy_arg * arg)286 static void i915_ttm_move_memcpy(struct i915_ttm_memcpy_arg *arg)
287 {
288 ttm_move_memcpy(arg->clear, arg->num_pages,
289 arg->dst_iter, arg->src_iter);
290 }
291
i915_ttm_memcpy_init(struct i915_ttm_memcpy_arg * arg,struct ttm_buffer_object * bo,bool clear,struct ttm_resource * dst_mem,struct ttm_tt * dst_ttm,struct i915_refct_sgt * dst_rsgt)292 static void i915_ttm_memcpy_init(struct i915_ttm_memcpy_arg *arg,
293 struct ttm_buffer_object *bo, bool clear,
294 struct ttm_resource *dst_mem,
295 struct ttm_tt *dst_ttm,
296 struct i915_refct_sgt *dst_rsgt)
297 {
298 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
299 struct intel_memory_region *dst_reg, *src_reg;
300
301 dst_reg = i915_ttm_region(bo->bdev, dst_mem->mem_type);
302 src_reg = i915_ttm_region(bo->bdev, bo->resource->mem_type);
303 GEM_BUG_ON(!dst_reg || !src_reg);
304
305 arg->dst_iter = !i915_ttm_cpu_maps_iomem(dst_mem) ?
306 ttm_kmap_iter_tt_init(&arg->_dst_iter.tt, dst_ttm) :
307 ttm_kmap_iter_iomap_init(&arg->_dst_iter.io, &dst_reg->iomap,
308 &dst_rsgt->table, dst_reg->region.start);
309
310 arg->src_iter = !i915_ttm_cpu_maps_iomem(bo->resource) ?
311 ttm_kmap_iter_tt_init(&arg->_src_iter.tt, bo->ttm) :
312 ttm_kmap_iter_iomap_init(&arg->_src_iter.io, &src_reg->iomap,
313 &obj->ttm.cached_io_rsgt->table,
314 src_reg->region.start);
315 arg->clear = clear;
316 arg->num_pages = bo->base.size >> PAGE_SHIFT;
317
318 arg->dst_rsgt = i915_refct_sgt_get(dst_rsgt);
319 arg->src_rsgt = clear ? NULL :
320 i915_ttm_resource_get_st(obj, bo->resource);
321 }
322
i915_ttm_memcpy_release(struct i915_ttm_memcpy_arg * arg)323 static void i915_ttm_memcpy_release(struct i915_ttm_memcpy_arg *arg)
324 {
325 i915_refct_sgt_put(arg->src_rsgt);
326 i915_refct_sgt_put(arg->dst_rsgt);
327 }
328
__memcpy_work(struct work_struct * work)329 static void __memcpy_work(struct work_struct *work)
330 {
331 struct i915_ttm_memcpy_work *copy_work =
332 container_of(work, typeof(*copy_work), work);
333 struct i915_ttm_memcpy_arg *arg = ©_work->arg;
334 bool cookie;
335
336 /*
337 * FIXME: We need to take a closer look here. We should be able to plonk
338 * this into the fence critical section.
339 */
340 if (!copy_work->memcpy_allowed) {
341 struct intel_gt *gt;
342 unsigned int id;
343
344 for_each_gt(gt, copy_work->i915, id)
345 intel_gt_set_wedged(gt);
346 }
347
348 cookie = dma_fence_begin_signalling();
349
350 if (copy_work->memcpy_allowed) {
351 i915_ttm_move_memcpy(arg);
352 } else {
353 /*
354 * Prevent further use of the object. Any future GTT binding or
355 * CPU access is not allowed once we signal the fence. Outside
356 * of the fence critical section, we then also then wedge the gpu
357 * to indicate the device is not functional.
358 *
359 * The below dma_fence_signal() is our write-memory-barrier.
360 */
361 copy_work->obj->mm.unknown_state = true;
362 }
363
364 dma_fence_end_signalling(cookie);
365
366 dma_fence_signal(©_work->fence);
367
368 i915_ttm_memcpy_release(arg);
369 i915_gem_object_put(copy_work->obj);
370 dma_fence_put(©_work->fence);
371 }
372
__memcpy_irq_work(struct irq_work * irq_work)373 static void __memcpy_irq_work(struct irq_work *irq_work)
374 {
375 struct i915_ttm_memcpy_work *copy_work =
376 container_of(irq_work, typeof(*copy_work), irq_work);
377 struct i915_ttm_memcpy_arg *arg = ©_work->arg;
378
379 dma_fence_signal(©_work->fence);
380 i915_ttm_memcpy_release(arg);
381 i915_gem_object_put(copy_work->obj);
382 dma_fence_put(©_work->fence);
383 }
384
__memcpy_cb(struct dma_fence * fence,struct dma_fence_cb * cb)385 static void __memcpy_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
386 {
387 struct i915_ttm_memcpy_work *copy_work =
388 container_of(cb, typeof(*copy_work), cb);
389
390 if (unlikely(fence->error || I915_SELFTEST_ONLY(fail_gpu_migration))) {
391 INIT_WORK(©_work->work, __memcpy_work);
392 queue_work(system_unbound_wq, ©_work->work);
393 } else {
394 init_irq_work(©_work->irq_work, __memcpy_irq_work);
395 irq_work_queue(©_work->irq_work);
396 }
397 }
398
get_driver_name(struct dma_fence * fence)399 static const char *get_driver_name(struct dma_fence *fence)
400 {
401 return "i915_ttm_memcpy_work";
402 }
403
get_timeline_name(struct dma_fence * fence)404 static const char *get_timeline_name(struct dma_fence *fence)
405 {
406 return "unbound";
407 }
408
409 static const struct dma_fence_ops dma_fence_memcpy_ops = {
410 .get_driver_name = get_driver_name,
411 .get_timeline_name = get_timeline_name,
412 };
413
414 static struct dma_fence *
i915_ttm_memcpy_work_arm(struct i915_ttm_memcpy_work * work,struct dma_fence * dep)415 i915_ttm_memcpy_work_arm(struct i915_ttm_memcpy_work *work,
416 struct dma_fence *dep)
417 {
418 int ret;
419
420 spin_lock_init(&work->lock);
421 dma_fence_init(&work->fence, &dma_fence_memcpy_ops, &work->lock, 0, 0);
422 dma_fence_get(&work->fence);
423 ret = dma_fence_add_callback(dep, &work->cb, __memcpy_cb);
424 if (ret) {
425 if (ret != -ENOENT)
426 dma_fence_wait(dep, false);
427
428 return ERR_PTR(I915_SELFTEST_ONLY(fail_gpu_migration) ? -EINVAL :
429 dep->error);
430 }
431
432 return &work->fence;
433 }
434
i915_ttm_memcpy_allowed(struct ttm_buffer_object * bo,struct ttm_resource * dst_mem)435 static bool i915_ttm_memcpy_allowed(struct ttm_buffer_object *bo,
436 struct ttm_resource *dst_mem)
437 {
438 if (i915_gem_object_needs_ccs_pages(i915_ttm_to_gem(bo)))
439 return false;
440
441 if (!(i915_ttm_resource_mappable(bo->resource) &&
442 i915_ttm_resource_mappable(dst_mem)))
443 return false;
444
445 return I915_SELFTEST_ONLY(ban_memcpy) ? false : true;
446 }
447
448 static struct dma_fence *
__i915_ttm_move(struct ttm_buffer_object * bo,const struct ttm_operation_ctx * ctx,bool clear,struct ttm_resource * dst_mem,struct ttm_tt * dst_ttm,struct i915_refct_sgt * dst_rsgt,bool allow_accel,const struct i915_deps * move_deps)449 __i915_ttm_move(struct ttm_buffer_object *bo,
450 const struct ttm_operation_ctx *ctx, bool clear,
451 struct ttm_resource *dst_mem, struct ttm_tt *dst_ttm,
452 struct i915_refct_sgt *dst_rsgt, bool allow_accel,
453 const struct i915_deps *move_deps)
454 {
455 const bool memcpy_allowed = i915_ttm_memcpy_allowed(bo, dst_mem);
456 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
457 struct drm_i915_private *i915 = to_i915(bo->base.dev);
458 struct i915_ttm_memcpy_work *copy_work = NULL;
459 struct i915_ttm_memcpy_arg _arg, *arg = &_arg;
460 struct dma_fence *fence = ERR_PTR(-EINVAL);
461
462 if (allow_accel) {
463 fence = i915_ttm_accel_move(bo, clear, dst_mem, dst_ttm,
464 &dst_rsgt->table, move_deps);
465
466 /*
467 * We only need to intercept the error when moving to lmem.
468 * When moving to system, TTM or shmem will provide us with
469 * cleared pages.
470 */
471 if (!IS_ERR(fence) && !i915_ttm_gtt_binds_lmem(dst_mem) &&
472 !I915_SELFTEST_ONLY(fail_gpu_migration ||
473 fail_work_allocation))
474 goto out;
475 }
476
477 /* If we've scheduled gpu migration. Try to arm error intercept. */
478 if (!IS_ERR(fence)) {
479 struct dma_fence *dep = fence;
480
481 if (!I915_SELFTEST_ONLY(fail_work_allocation))
482 copy_work = kzalloc(sizeof(*copy_work), GFP_KERNEL);
483
484 if (copy_work) {
485 copy_work->i915 = i915;
486 copy_work->memcpy_allowed = memcpy_allowed;
487 copy_work->obj = i915_gem_object_get(obj);
488 arg = ©_work->arg;
489 if (memcpy_allowed)
490 i915_ttm_memcpy_init(arg, bo, clear, dst_mem,
491 dst_ttm, dst_rsgt);
492
493 fence = i915_ttm_memcpy_work_arm(copy_work, dep);
494 } else {
495 dma_fence_wait(dep, false);
496 fence = ERR_PTR(I915_SELFTEST_ONLY(fail_gpu_migration) ?
497 -EINVAL : fence->error);
498 }
499 dma_fence_put(dep);
500
501 if (!IS_ERR(fence))
502 goto out;
503 } else {
504 int err = PTR_ERR(fence);
505
506 if (err == -EINTR || err == -ERESTARTSYS || err == -EAGAIN)
507 return fence;
508
509 if (move_deps) {
510 err = i915_deps_sync(move_deps, ctx);
511 if (err)
512 return ERR_PTR(err);
513 }
514 }
515
516 /* Error intercept failed or no accelerated migration to start with */
517
518 if (memcpy_allowed) {
519 if (!copy_work)
520 i915_ttm_memcpy_init(arg, bo, clear, dst_mem, dst_ttm,
521 dst_rsgt);
522 i915_ttm_move_memcpy(arg);
523 i915_ttm_memcpy_release(arg);
524 }
525 if (copy_work)
526 i915_gem_object_put(copy_work->obj);
527 kfree(copy_work);
528
529 return memcpy_allowed ? NULL : ERR_PTR(-EIO);
530 out:
531 if (!fence && copy_work) {
532 i915_ttm_memcpy_release(arg);
533 i915_gem_object_put(copy_work->obj);
534 kfree(copy_work);
535 }
536
537 return fence;
538 }
539
540 /**
541 * i915_ttm_move - The TTM move callback used by i915.
542 * @bo: The buffer object.
543 * @evict: Whether this is an eviction.
544 * @dst_mem: The destination ttm resource.
545 * @hop: If we need multihop, what temporary memory type to move to.
546 *
547 * Return: 0 if successful, negative error code otherwise.
548 */
i915_ttm_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * dst_mem,struct ttm_place * hop)549 int i915_ttm_move(struct ttm_buffer_object *bo, bool evict,
550 struct ttm_operation_ctx *ctx,
551 struct ttm_resource *dst_mem,
552 struct ttm_place *hop)
553 {
554 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
555 struct ttm_resource_manager *dst_man =
556 ttm_manager_type(bo->bdev, dst_mem->mem_type);
557 struct dma_fence *migration_fence = NULL;
558 struct ttm_tt *ttm = bo->ttm;
559 struct i915_refct_sgt *dst_rsgt;
560 bool clear;
561 int ret;
562
563 if (GEM_WARN_ON(!obj)) {
564 ttm_bo_move_null(bo, dst_mem);
565 return 0;
566 }
567
568 ret = i915_ttm_move_notify(bo);
569 if (ret)
570 return ret;
571
572 if (obj->mm.madv != I915_MADV_WILLNEED) {
573 i915_ttm_purge(obj);
574 ttm_resource_free(bo, &dst_mem);
575 return 0;
576 }
577
578 /* Populate ttm with pages if needed. Typically system memory. */
579 if (ttm && (dst_man->use_tt || (ttm->page_flags & TTM_TT_FLAG_SWAPPED))) {
580 ret = ttm_tt_populate(bo->bdev, ttm, ctx);
581 if (ret)
582 return ret;
583 }
584
585 dst_rsgt = i915_ttm_resource_get_st(obj, dst_mem);
586 if (IS_ERR(dst_rsgt))
587 return PTR_ERR(dst_rsgt);
588
589 clear = !i915_ttm_cpu_maps_iomem(bo->resource) && (!ttm || !ttm_tt_is_populated(ttm));
590 if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC))) {
591 struct i915_deps deps;
592
593 i915_deps_init(&deps, GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
594 ret = i915_deps_add_resv(&deps, bo->base.resv, ctx);
595 if (ret) {
596 i915_refct_sgt_put(dst_rsgt);
597 return ret;
598 }
599
600 migration_fence = __i915_ttm_move(bo, ctx, clear, dst_mem, ttm,
601 dst_rsgt, true, &deps);
602 i915_deps_fini(&deps);
603 }
604
605 /* We can possibly get an -ERESTARTSYS here */
606 if (IS_ERR(migration_fence)) {
607 i915_refct_sgt_put(dst_rsgt);
608 return PTR_ERR(migration_fence);
609 }
610
611 if (migration_fence) {
612 if (I915_SELFTEST_ONLY(evict && fail_gpu_migration))
613 ret = -EIO; /* never feed non-migrate fences into ttm */
614 else
615 ret = ttm_bo_move_accel_cleanup(bo, migration_fence, evict,
616 true, dst_mem);
617 if (ret) {
618 dma_fence_wait(migration_fence, false);
619 ttm_bo_move_sync_cleanup(bo, dst_mem);
620 }
621 dma_fence_put(migration_fence);
622 } else {
623 ttm_bo_move_sync_cleanup(bo, dst_mem);
624 }
625
626 i915_ttm_adjust_domains_after_move(obj);
627 i915_ttm_free_cached_io_rsgt(obj);
628
629 if (i915_ttm_gtt_binds_lmem(dst_mem) || i915_ttm_cpu_maps_iomem(dst_mem)) {
630 obj->ttm.cached_io_rsgt = dst_rsgt;
631 obj->ttm.get_io_page.sg_pos = dst_rsgt->table.sgl;
632 obj->ttm.get_io_page.sg_idx = 0;
633 } else {
634 i915_refct_sgt_put(dst_rsgt);
635 }
636
637 i915_ttm_adjust_lru(obj);
638 i915_ttm_adjust_gem_after_move(obj);
639 return 0;
640 }
641
642 /**
643 * i915_gem_obj_copy_ttm - Copy the contents of one ttm-based gem object to
644 * another
645 * @dst: The destination object
646 * @src: The source object
647 * @allow_accel: Allow using the blitter. Otherwise TTM memcpy is used.
648 * @intr: Whether to perform waits interruptible:
649 *
650 * Note: The caller is responsible for assuring that the underlying
651 * TTM objects are populated if needed and locked.
652 *
653 * Return: Zero on success. Negative error code on error. If @intr == true,
654 * then it may return -ERESTARTSYS or -EINTR.
655 */
i915_gem_obj_copy_ttm(struct drm_i915_gem_object * dst,struct drm_i915_gem_object * src,bool allow_accel,bool intr)656 int i915_gem_obj_copy_ttm(struct drm_i915_gem_object *dst,
657 struct drm_i915_gem_object *src,
658 bool allow_accel, bool intr)
659 {
660 struct ttm_buffer_object *dst_bo = i915_gem_to_ttm(dst);
661 struct ttm_buffer_object *src_bo = i915_gem_to_ttm(src);
662 struct ttm_operation_ctx ctx = {
663 .interruptible = intr,
664 };
665 struct i915_refct_sgt *dst_rsgt;
666 struct dma_fence *copy_fence;
667 struct i915_deps deps;
668 int ret;
669
670 assert_object_held(dst);
671 assert_object_held(src);
672 i915_deps_init(&deps, GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
673
674 ret = dma_resv_reserve_fences(src_bo->base.resv, 1);
675 if (ret)
676 return ret;
677
678 ret = dma_resv_reserve_fences(dst_bo->base.resv, 1);
679 if (ret)
680 return ret;
681
682 ret = i915_deps_add_resv(&deps, dst_bo->base.resv, &ctx);
683 if (ret)
684 return ret;
685
686 ret = i915_deps_add_resv(&deps, src_bo->base.resv, &ctx);
687 if (ret)
688 return ret;
689
690 dst_rsgt = i915_ttm_resource_get_st(dst, dst_bo->resource);
691 copy_fence = __i915_ttm_move(src_bo, &ctx, false, dst_bo->resource,
692 dst_bo->ttm, dst_rsgt, allow_accel,
693 &deps);
694
695 i915_deps_fini(&deps);
696 i915_refct_sgt_put(dst_rsgt);
697 if (IS_ERR_OR_NULL(copy_fence))
698 return PTR_ERR_OR_ZERO(copy_fence);
699
700 dma_resv_add_fence(dst_bo->base.resv, copy_fence, DMA_RESV_USAGE_WRITE);
701 dma_resv_add_fence(src_bo->base.resv, copy_fence, DMA_RESV_USAGE_READ);
702 dma_fence_put(copy_fence);
703
704 return 0;
705 }
706