1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_breadcrumbs.h"
35 #include "gt/intel_context.h"
36 #include "gt/intel_engine.h"
37 #include "gt/intel_engine_heartbeat.h"
38 #include "gt/intel_gpu_commands.h"
39 #include "gt/intel_reset.h"
40 #include "gt/intel_ring.h"
41 #include "gt/intel_rps.h"
42
43 #include "i915_active.h"
44 #include "i915_drv.h"
45 #include "i915_trace.h"
46 #include "intel_pm.h"
47
48 struct execute_cb {
49 struct irq_work work;
50 struct i915_sw_fence *fence;
51 struct i915_request *signal;
52 };
53
54 static struct kmem_cache *slab_requests;
55 static struct kmem_cache *slab_execute_cbs;
56
i915_fence_get_driver_name(struct dma_fence * fence)57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59 return dev_name(to_request(fence)->engine->i915->drm.dev);
60 }
61
i915_fence_get_timeline_name(struct dma_fence * fence)62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64 const struct i915_gem_context *ctx;
65
66 /*
67 * The timeline struct (as part of the ppgtt underneath a context)
68 * may be freed when the request is no longer in use by the GPU.
69 * We could extend the life of a context to beyond that of all
70 * fences, possibly keeping the hw resource around indefinitely,
71 * or we just give them a false name. Since
72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 * lie seems justifiable.
74 */
75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 return "signaled";
77
78 ctx = i915_request_gem_context(to_request(fence));
79 if (!ctx)
80 return "[" DRIVER_NAME "]";
81
82 return ctx->name;
83 }
84
i915_fence_signaled(struct dma_fence * fence)85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87 return i915_request_completed(to_request(fence));
88 }
89
i915_fence_enable_signaling(struct dma_fence * fence)90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92 return i915_request_enable_breadcrumb(to_request(fence));
93 }
94
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)95 static signed long i915_fence_wait(struct dma_fence *fence,
96 bool interruptible,
97 signed long timeout)
98 {
99 return i915_request_wait(to_request(fence),
100 interruptible | I915_WAIT_PRIORITY,
101 timeout);
102 }
103
i915_request_slab_cache(void)104 struct kmem_cache *i915_request_slab_cache(void)
105 {
106 return slab_requests;
107 }
108
i915_fence_release(struct dma_fence * fence)109 static void i915_fence_release(struct dma_fence *fence)
110 {
111 struct i915_request *rq = to_request(fence);
112
113 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
114 rq->guc_prio != GUC_PRIO_FINI);
115
116 /*
117 * The request is put onto a RCU freelist (i.e. the address
118 * is immediately reused), mark the fences as being freed now.
119 * Otherwise the debugobjects for the fences are only marked as
120 * freed when the slab cache itself is freed, and so we would get
121 * caught trying to reuse dead objects.
122 */
123 i915_sw_fence_fini(&rq->submit);
124 i915_sw_fence_fini(&rq->semaphore);
125
126 /*
127 * Keep one request on each engine for reserved use under mempressure,
128 * do not use with virtual engines as this really is only needed for
129 * kernel contexts.
130 */
131 if (!intel_engine_is_virtual(rq->engine) &&
132 !cmpxchg(&rq->engine->request_pool, NULL, rq)) {
133 intel_context_put(rq->context);
134 return;
135 }
136
137 intel_context_put(rq->context);
138
139 kmem_cache_free(slab_requests, rq);
140 }
141
142 const struct dma_fence_ops i915_fence_ops = {
143 .get_driver_name = i915_fence_get_driver_name,
144 .get_timeline_name = i915_fence_get_timeline_name,
145 .enable_signaling = i915_fence_enable_signaling,
146 .signaled = i915_fence_signaled,
147 .wait = i915_fence_wait,
148 .release = i915_fence_release,
149 };
150
irq_execute_cb(struct irq_work * wrk)151 static void irq_execute_cb(struct irq_work *wrk)
152 {
153 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
154
155 i915_sw_fence_complete(cb->fence);
156 kmem_cache_free(slab_execute_cbs, cb);
157 }
158
159 static __always_inline void
__notify_execute_cb(struct i915_request * rq,bool (* fn)(struct irq_work * wrk))160 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
161 {
162 struct execute_cb *cb, *cn;
163
164 if (llist_empty(&rq->execute_cb))
165 return;
166
167 llist_for_each_entry_safe(cb, cn,
168 llist_del_all(&rq->execute_cb),
169 work.node.llist)
170 fn(&cb->work);
171 }
172
__notify_execute_cb_irq(struct i915_request * rq)173 static void __notify_execute_cb_irq(struct i915_request *rq)
174 {
175 __notify_execute_cb(rq, irq_work_queue);
176 }
177
irq_work_imm(struct irq_work * wrk)178 static bool irq_work_imm(struct irq_work *wrk)
179 {
180 wrk->func(wrk);
181 return false;
182 }
183
i915_request_notify_execute_cb_imm(struct i915_request * rq)184 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
185 {
186 __notify_execute_cb(rq, irq_work_imm);
187 }
188
free_capture_list(struct i915_request * request)189 static void free_capture_list(struct i915_request *request)
190 {
191 struct i915_capture_list *capture;
192
193 capture = fetch_and_zero(&request->capture_list);
194 while (capture) {
195 struct i915_capture_list *next = capture->next;
196
197 kfree(capture);
198 capture = next;
199 }
200 }
201
__i915_request_fill(struct i915_request * rq,u8 val)202 static void __i915_request_fill(struct i915_request *rq, u8 val)
203 {
204 void *vaddr = rq->ring->vaddr;
205 u32 head;
206
207 head = rq->infix;
208 if (rq->postfix < head) {
209 memset(vaddr + head, val, rq->ring->size - head);
210 head = 0;
211 }
212 memset(vaddr + head, val, rq->postfix - head);
213 }
214
215 /**
216 * i915_request_active_engine
217 * @rq: request to inspect
218 * @active: pointer in which to return the active engine
219 *
220 * Fills the currently active engine to the @active pointer if the request
221 * is active and still not completed.
222 *
223 * Returns true if request was active or false otherwise.
224 */
225 bool
i915_request_active_engine(struct i915_request * rq,struct intel_engine_cs ** active)226 i915_request_active_engine(struct i915_request *rq,
227 struct intel_engine_cs **active)
228 {
229 struct intel_engine_cs *engine, *locked;
230 bool ret = false;
231
232 /*
233 * Serialise with __i915_request_submit() so that it sees
234 * is-banned?, or we know the request is already inflight.
235 *
236 * Note that rq->engine is unstable, and so we double
237 * check that we have acquired the lock on the final engine.
238 */
239 locked = READ_ONCE(rq->engine);
240 spin_lock_irq(&locked->sched_engine->lock);
241 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
242 spin_unlock(&locked->sched_engine->lock);
243 locked = engine;
244 spin_lock(&locked->sched_engine->lock);
245 }
246
247 if (i915_request_is_active(rq)) {
248 if (!__i915_request_is_complete(rq))
249 *active = locked;
250 ret = true;
251 }
252
253 spin_unlock_irq(&locked->sched_engine->lock);
254
255 return ret;
256 }
257
__rq_init_watchdog(struct i915_request * rq)258 static void __rq_init_watchdog(struct i915_request *rq)
259 {
260 rq->watchdog.timer.function = NULL;
261 }
262
__rq_watchdog_expired(struct hrtimer * hrtimer)263 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
264 {
265 struct i915_request *rq =
266 container_of(hrtimer, struct i915_request, watchdog.timer);
267 struct intel_gt *gt = rq->engine->gt;
268
269 if (!i915_request_completed(rq)) {
270 if (llist_add(&rq->watchdog.link, >->watchdog.list))
271 schedule_work(>->watchdog.work);
272 } else {
273 i915_request_put(rq);
274 }
275
276 return HRTIMER_NORESTART;
277 }
278
__rq_arm_watchdog(struct i915_request * rq)279 static void __rq_arm_watchdog(struct i915_request *rq)
280 {
281 struct i915_request_watchdog *wdg = &rq->watchdog;
282 struct intel_context *ce = rq->context;
283
284 if (!ce->watchdog.timeout_us)
285 return;
286
287 i915_request_get(rq);
288
289 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
290 wdg->timer.function = __rq_watchdog_expired;
291 hrtimer_start_range_ns(&wdg->timer,
292 ns_to_ktime(ce->watchdog.timeout_us *
293 NSEC_PER_USEC),
294 NSEC_PER_MSEC,
295 HRTIMER_MODE_REL);
296 }
297
__rq_cancel_watchdog(struct i915_request * rq)298 static void __rq_cancel_watchdog(struct i915_request *rq)
299 {
300 struct i915_request_watchdog *wdg = &rq->watchdog;
301
302 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
303 i915_request_put(rq);
304 }
305
i915_request_retire(struct i915_request * rq)306 bool i915_request_retire(struct i915_request *rq)
307 {
308 if (!__i915_request_is_complete(rq))
309 return false;
310
311 RQ_TRACE(rq, "\n");
312
313 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
314 trace_i915_request_retire(rq);
315 i915_request_mark_complete(rq);
316
317 __rq_cancel_watchdog(rq);
318
319 /*
320 * We know the GPU must have read the request to have
321 * sent us the seqno + interrupt, so use the position
322 * of tail of the request to update the last known position
323 * of the GPU head.
324 *
325 * Note this requires that we are always called in request
326 * completion order.
327 */
328 GEM_BUG_ON(!list_is_first(&rq->link,
329 &i915_request_timeline(rq)->requests));
330 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
331 /* Poison before we release our space in the ring */
332 __i915_request_fill(rq, POISON_FREE);
333 rq->ring->head = rq->postfix;
334
335 if (!i915_request_signaled(rq)) {
336 spin_lock_irq(&rq->lock);
337 dma_fence_signal_locked(&rq->fence);
338 spin_unlock_irq(&rq->lock);
339 }
340
341 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
342 atomic_dec(&rq->engine->gt->rps.num_waiters);
343
344 /*
345 * We only loosely track inflight requests across preemption,
346 * and so we may find ourselves attempting to retire a _completed_
347 * request that we have removed from the HW and put back on a run
348 * queue.
349 *
350 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
351 * after removing the breadcrumb and signaling it, so that we do not
352 * inadvertently attach the breadcrumb to a completed request.
353 */
354 rq->engine->remove_active_request(rq);
355 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
356
357 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
358
359 intel_context_exit(rq->context);
360 intel_context_unpin(rq->context);
361
362 free_capture_list(rq);
363 i915_sched_node_fini(&rq->sched);
364 i915_request_put(rq);
365
366 return true;
367 }
368
i915_request_retire_upto(struct i915_request * rq)369 void i915_request_retire_upto(struct i915_request *rq)
370 {
371 struct intel_timeline * const tl = i915_request_timeline(rq);
372 struct i915_request *tmp;
373
374 RQ_TRACE(rq, "\n");
375 GEM_BUG_ON(!__i915_request_is_complete(rq));
376
377 do {
378 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
379 GEM_BUG_ON(!i915_request_completed(tmp));
380 } while (i915_request_retire(tmp) && tmp != rq);
381 }
382
383 static struct i915_request * const *
__engine_active(struct intel_engine_cs * engine)384 __engine_active(struct intel_engine_cs *engine)
385 {
386 return READ_ONCE(engine->execlists.active);
387 }
388
__request_in_flight(const struct i915_request * signal)389 static bool __request_in_flight(const struct i915_request *signal)
390 {
391 struct i915_request * const *port, *rq;
392 bool inflight = false;
393
394 if (!i915_request_is_ready(signal))
395 return false;
396
397 /*
398 * Even if we have unwound the request, it may still be on
399 * the GPU (preempt-to-busy). If that request is inside an
400 * unpreemptible critical section, it will not be removed. Some
401 * GPU functions may even be stuck waiting for the paired request
402 * (__await_execution) to be submitted and cannot be preempted
403 * until the bond is executing.
404 *
405 * As we know that there are always preemption points between
406 * requests, we know that only the currently executing request
407 * may be still active even though we have cleared the flag.
408 * However, we can't rely on our tracking of ELSP[0] to know
409 * which request is currently active and so maybe stuck, as
410 * the tracking maybe an event behind. Instead assume that
411 * if the context is still inflight, then it is still active
412 * even if the active flag has been cleared.
413 *
414 * To further complicate matters, if there a pending promotion, the HW
415 * may either perform a context switch to the second inflight execlists,
416 * or it may switch to the pending set of execlists. In the case of the
417 * latter, it may send the ACK and we process the event copying the
418 * pending[] over top of inflight[], _overwriting_ our *active. Since
419 * this implies the HW is arbitrating and not struck in *active, we do
420 * not worry about complete accuracy, but we do require no read/write
421 * tearing of the pointer [the read of the pointer must be valid, even
422 * as the array is being overwritten, for which we require the writes
423 * to avoid tearing.]
424 *
425 * Note that the read of *execlists->active may race with the promotion
426 * of execlists->pending[] to execlists->inflight[], overwritting
427 * the value at *execlists->active. This is fine. The promotion implies
428 * that we received an ACK from the HW, and so the context is not
429 * stuck -- if we do not see ourselves in *active, the inflight status
430 * is valid. If instead we see ourselves being copied into *active,
431 * we are inflight and may signal the callback.
432 */
433 if (!intel_context_inflight(signal->context))
434 return false;
435
436 rcu_read_lock();
437 for (port = __engine_active(signal->engine);
438 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
439 port++) {
440 if (rq->context == signal->context) {
441 inflight = i915_seqno_passed(rq->fence.seqno,
442 signal->fence.seqno);
443 break;
444 }
445 }
446 rcu_read_unlock();
447
448 return inflight;
449 }
450
451 static int
__await_execution(struct i915_request * rq,struct i915_request * signal,gfp_t gfp)452 __await_execution(struct i915_request *rq,
453 struct i915_request *signal,
454 gfp_t gfp)
455 {
456 struct execute_cb *cb;
457
458 if (i915_request_is_active(signal))
459 return 0;
460
461 cb = kmem_cache_alloc(slab_execute_cbs, gfp);
462 if (!cb)
463 return -ENOMEM;
464
465 cb->fence = &rq->submit;
466 i915_sw_fence_await(cb->fence);
467 init_irq_work(&cb->work, irq_execute_cb);
468
469 /*
470 * Register the callback first, then see if the signaler is already
471 * active. This ensures that if we race with the
472 * __notify_execute_cb from i915_request_submit() and we are not
473 * included in that list, we get a second bite of the cherry and
474 * execute it ourselves. After this point, a future
475 * i915_request_submit() will notify us.
476 *
477 * In i915_request_retire() we set the ACTIVE bit on a completed
478 * request (then flush the execute_cb). So by registering the
479 * callback first, then checking the ACTIVE bit, we serialise with
480 * the completed/retired request.
481 */
482 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
483 if (i915_request_is_active(signal) ||
484 __request_in_flight(signal))
485 i915_request_notify_execute_cb_imm(signal);
486 }
487
488 return 0;
489 }
490
fatal_error(int error)491 static bool fatal_error(int error)
492 {
493 switch (error) {
494 case 0: /* not an error! */
495 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
496 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
497 return false;
498 default:
499 return true;
500 }
501 }
502
__i915_request_skip(struct i915_request * rq)503 void __i915_request_skip(struct i915_request *rq)
504 {
505 GEM_BUG_ON(!fatal_error(rq->fence.error));
506
507 if (rq->infix == rq->postfix)
508 return;
509
510 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
511
512 /*
513 * As this request likely depends on state from the lost
514 * context, clear out all the user operations leaving the
515 * breadcrumb at the end (so we get the fence notifications).
516 */
517 __i915_request_fill(rq, 0);
518 rq->infix = rq->postfix;
519 }
520
i915_request_set_error_once(struct i915_request * rq,int error)521 bool i915_request_set_error_once(struct i915_request *rq, int error)
522 {
523 int old;
524
525 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
526
527 if (i915_request_signaled(rq))
528 return false;
529
530 old = READ_ONCE(rq->fence.error);
531 do {
532 if (fatal_error(old))
533 return false;
534 } while (!try_cmpxchg(&rq->fence.error, &old, error));
535
536 return true;
537 }
538
i915_request_mark_eio(struct i915_request * rq)539 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
540 {
541 if (__i915_request_is_complete(rq))
542 return NULL;
543
544 GEM_BUG_ON(i915_request_signaled(rq));
545
546 /* As soon as the request is completed, it may be retired */
547 rq = i915_request_get(rq);
548
549 i915_request_set_error_once(rq, -EIO);
550 i915_request_mark_complete(rq);
551
552 return rq;
553 }
554
__i915_request_submit(struct i915_request * request)555 bool __i915_request_submit(struct i915_request *request)
556 {
557 struct intel_engine_cs *engine = request->engine;
558 bool result = false;
559
560 RQ_TRACE(request, "\n");
561
562 GEM_BUG_ON(!irqs_disabled());
563 lockdep_assert_held(&engine->sched_engine->lock);
564
565 /*
566 * With the advent of preempt-to-busy, we frequently encounter
567 * requests that we have unsubmitted from HW, but left running
568 * until the next ack and so have completed in the meantime. On
569 * resubmission of that completed request, we can skip
570 * updating the payload, and execlists can even skip submitting
571 * the request.
572 *
573 * We must remove the request from the caller's priority queue,
574 * and the caller must only call us when the request is in their
575 * priority queue, under the sched_engine->lock. This ensures that the
576 * request has *not* yet been retired and we can safely move
577 * the request into the engine->active.list where it will be
578 * dropped upon retiring. (Otherwise if resubmit a *retired*
579 * request, this would be a horrible use-after-free.)
580 */
581 if (__i915_request_is_complete(request)) {
582 list_del_init(&request->sched.link);
583 goto active;
584 }
585
586 if (unlikely(intel_context_is_banned(request->context)))
587 i915_request_set_error_once(request, -EIO);
588
589 if (unlikely(fatal_error(request->fence.error)))
590 __i915_request_skip(request);
591
592 /*
593 * Are we using semaphores when the gpu is already saturated?
594 *
595 * Using semaphores incurs a cost in having the GPU poll a
596 * memory location, busywaiting for it to change. The continual
597 * memory reads can have a noticeable impact on the rest of the
598 * system with the extra bus traffic, stalling the cpu as it too
599 * tries to access memory across the bus (perf stat -e bus-cycles).
600 *
601 * If we installed a semaphore on this request and we only submit
602 * the request after the signaler completed, that indicates the
603 * system is overloaded and using semaphores at this time only
604 * increases the amount of work we are doing. If so, we disable
605 * further use of semaphores until we are idle again, whence we
606 * optimistically try again.
607 */
608 if (request->sched.semaphores &&
609 i915_sw_fence_signaled(&request->semaphore))
610 engine->saturated |= request->sched.semaphores;
611
612 engine->emit_fini_breadcrumb(request,
613 request->ring->vaddr + request->postfix);
614
615 trace_i915_request_execute(request);
616 if (engine->bump_serial)
617 engine->bump_serial(engine);
618 else
619 engine->serial++;
620
621 result = true;
622
623 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
624 engine->add_active_request(request);
625 active:
626 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
627 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
628
629 /*
630 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
631 *
632 * In the future, perhaps when we have an active time-slicing scheduler,
633 * it will be interesting to unsubmit parallel execution and remove
634 * busywaits from the GPU until their master is restarted. This is
635 * quite hairy, we have to carefully rollback the fence and do a
636 * preempt-to-idle cycle on the target engine, all the while the
637 * master execute_cb may refire.
638 */
639 __notify_execute_cb_irq(request);
640
641 /* We may be recursing from the signal callback of another i915 fence */
642 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
643 i915_request_enable_breadcrumb(request);
644
645 return result;
646 }
647
i915_request_submit(struct i915_request * request)648 void i915_request_submit(struct i915_request *request)
649 {
650 struct intel_engine_cs *engine = request->engine;
651 unsigned long flags;
652
653 /* Will be called from irq-context when using foreign fences. */
654 spin_lock_irqsave(&engine->sched_engine->lock, flags);
655
656 __i915_request_submit(request);
657
658 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
659 }
660
__i915_request_unsubmit(struct i915_request * request)661 void __i915_request_unsubmit(struct i915_request *request)
662 {
663 struct intel_engine_cs *engine = request->engine;
664
665 /*
666 * Only unwind in reverse order, required so that the per-context list
667 * is kept in seqno/ring order.
668 */
669 RQ_TRACE(request, "\n");
670
671 GEM_BUG_ON(!irqs_disabled());
672 lockdep_assert_held(&engine->sched_engine->lock);
673
674 /*
675 * Before we remove this breadcrumb from the signal list, we have
676 * to ensure that a concurrent dma_fence_enable_signaling() does not
677 * attach itself. We first mark the request as no longer active and
678 * make sure that is visible to other cores, and then remove the
679 * breadcrumb if attached.
680 */
681 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
682 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
683 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
684 i915_request_cancel_breadcrumb(request);
685
686 /* We've already spun, don't charge on resubmitting. */
687 if (request->sched.semaphores && __i915_request_has_started(request))
688 request->sched.semaphores = 0;
689
690 /*
691 * We don't need to wake_up any waiters on request->execute, they
692 * will get woken by any other event or us re-adding this request
693 * to the engine timeline (__i915_request_submit()). The waiters
694 * should be quite adapt at finding that the request now has a new
695 * global_seqno to the one they went to sleep on.
696 */
697 }
698
i915_request_unsubmit(struct i915_request * request)699 void i915_request_unsubmit(struct i915_request *request)
700 {
701 struct intel_engine_cs *engine = request->engine;
702 unsigned long flags;
703
704 /* Will be called from irq-context when using foreign fences. */
705 spin_lock_irqsave(&engine->sched_engine->lock, flags);
706
707 __i915_request_unsubmit(request);
708
709 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
710 }
711
i915_request_cancel(struct i915_request * rq,int error)712 void i915_request_cancel(struct i915_request *rq, int error)
713 {
714 if (!i915_request_set_error_once(rq, error))
715 return;
716
717 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
718
719 intel_context_cancel_request(rq->context, rq);
720 }
721
722 static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)723 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
724 {
725 struct i915_request *request =
726 container_of(fence, typeof(*request), submit);
727
728 switch (state) {
729 case FENCE_COMPLETE:
730 trace_i915_request_submit(request);
731
732 if (unlikely(fence->error))
733 i915_request_set_error_once(request, fence->error);
734 else
735 __rq_arm_watchdog(request);
736
737 /*
738 * We need to serialize use of the submit_request() callback
739 * with its hotplugging performed during an emergency
740 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
741 * critical section in order to force i915_gem_set_wedged() to
742 * wait until the submit_request() is completed before
743 * proceeding.
744 */
745 rcu_read_lock();
746 request->engine->submit_request(request);
747 rcu_read_unlock();
748 break;
749
750 case FENCE_FREE:
751 i915_request_put(request);
752 break;
753 }
754
755 return NOTIFY_DONE;
756 }
757
758 static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)759 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
760 {
761 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
762
763 switch (state) {
764 case FENCE_COMPLETE:
765 break;
766
767 case FENCE_FREE:
768 i915_request_put(rq);
769 break;
770 }
771
772 return NOTIFY_DONE;
773 }
774
retire_requests(struct intel_timeline * tl)775 static void retire_requests(struct intel_timeline *tl)
776 {
777 struct i915_request *rq, *rn;
778
779 list_for_each_entry_safe(rq, rn, &tl->requests, link)
780 if (!i915_request_retire(rq))
781 break;
782 }
783
784 static noinline struct i915_request *
request_alloc_slow(struct intel_timeline * tl,struct i915_request ** rsvd,gfp_t gfp)785 request_alloc_slow(struct intel_timeline *tl,
786 struct i915_request **rsvd,
787 gfp_t gfp)
788 {
789 struct i915_request *rq;
790
791 /* If we cannot wait, dip into our reserves */
792 if (!gfpflags_allow_blocking(gfp)) {
793 rq = xchg(rsvd, NULL);
794 if (!rq) /* Use the normal failure path for one final WARN */
795 goto out;
796
797 return rq;
798 }
799
800 if (list_empty(&tl->requests))
801 goto out;
802
803 /* Move our oldest request to the slab-cache (if not in use!) */
804 rq = list_first_entry(&tl->requests, typeof(*rq), link);
805 i915_request_retire(rq);
806
807 rq = kmem_cache_alloc(slab_requests,
808 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
809 if (rq)
810 return rq;
811
812 /* Ratelimit ourselves to prevent oom from malicious clients */
813 rq = list_last_entry(&tl->requests, typeof(*rq), link);
814 cond_synchronize_rcu(rq->rcustate);
815
816 /* Retire our old requests in the hope that we free some */
817 retire_requests(tl);
818
819 out:
820 return kmem_cache_alloc(slab_requests, gfp);
821 }
822
__i915_request_ctor(void * arg)823 static void __i915_request_ctor(void *arg)
824 {
825 struct i915_request *rq = arg;
826
827 spin_lock_init(&rq->lock);
828 i915_sched_node_init(&rq->sched);
829 i915_sw_fence_init(&rq->submit, submit_notify);
830 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
831
832 rq->capture_list = NULL;
833
834 init_llist_head(&rq->execute_cb);
835 }
836
837 struct i915_request *
__i915_request_create(struct intel_context * ce,gfp_t gfp)838 __i915_request_create(struct intel_context *ce, gfp_t gfp)
839 {
840 struct intel_timeline *tl = ce->timeline;
841 struct i915_request *rq;
842 u32 seqno;
843 int ret;
844
845 might_alloc(gfp);
846
847 /* Check that the caller provided an already pinned context */
848 __intel_context_pin(ce);
849
850 /*
851 * Beware: Dragons be flying overhead.
852 *
853 * We use RCU to look up requests in flight. The lookups may
854 * race with the request being allocated from the slab freelist.
855 * That is the request we are writing to here, may be in the process
856 * of being read by __i915_active_request_get_rcu(). As such,
857 * we have to be very careful when overwriting the contents. During
858 * the RCU lookup, we change chase the request->engine pointer,
859 * read the request->global_seqno and increment the reference count.
860 *
861 * The reference count is incremented atomically. If it is zero,
862 * the lookup knows the request is unallocated and complete. Otherwise,
863 * it is either still in use, or has been reallocated and reset
864 * with dma_fence_init(). This increment is safe for release as we
865 * check that the request we have a reference to and matches the active
866 * request.
867 *
868 * Before we increment the refcount, we chase the request->engine
869 * pointer. We must not call kmem_cache_zalloc() or else we set
870 * that pointer to NULL and cause a crash during the lookup. If
871 * we see the request is completed (based on the value of the
872 * old engine and seqno), the lookup is complete and reports NULL.
873 * If we decide the request is not completed (new engine or seqno),
874 * then we grab a reference and double check that it is still the
875 * active request - which it won't be and restart the lookup.
876 *
877 * Do not use kmem_cache_zalloc() here!
878 */
879 rq = kmem_cache_alloc(slab_requests,
880 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
881 if (unlikely(!rq)) {
882 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
883 if (!rq) {
884 ret = -ENOMEM;
885 goto err_unreserve;
886 }
887 }
888
889 /*
890 * Hold a reference to the intel_context over life of an i915_request.
891 * Without this an i915_request can exist after the context has been
892 * destroyed (e.g. request retired, context closed, but user space holds
893 * a reference to the request from an out fence). In the case of GuC
894 * submission + virtual engine, the engine that the request references
895 * is also destroyed which can trigger bad pointer dref in fence ops
896 * (e.g. i915_fence_get_driver_name). We could likely change these
897 * functions to avoid touching the engine but let's just be safe and
898 * hold the intel_context reference. In execlist mode the request always
899 * eventually points to a physical engine so this isn't an issue.
900 */
901 rq->context = intel_context_get(ce);
902 rq->engine = ce->engine;
903 rq->ring = ce->ring;
904 rq->execution_mask = ce->engine->mask;
905
906 ret = intel_timeline_get_seqno(tl, rq, &seqno);
907 if (ret)
908 goto err_free;
909
910 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
911 tl->fence_context, seqno);
912
913 RCU_INIT_POINTER(rq->timeline, tl);
914 rq->hwsp_seqno = tl->hwsp_seqno;
915 GEM_BUG_ON(__i915_request_is_complete(rq));
916
917 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
918
919 rq->guc_prio = GUC_PRIO_INIT;
920
921 /* We bump the ref for the fence chain */
922 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
923 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
924
925 i915_sched_node_reinit(&rq->sched);
926
927 /* No zalloc, everything must be cleared after use */
928 rq->batch = NULL;
929 __rq_init_watchdog(rq);
930 GEM_BUG_ON(rq->capture_list);
931 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
932
933 /*
934 * Reserve space in the ring buffer for all the commands required to
935 * eventually emit this request. This is to guarantee that the
936 * i915_request_add() call can't fail. Note that the reserve may need
937 * to be redone if the request is not actually submitted straight
938 * away, e.g. because a GPU scheduler has deferred it.
939 *
940 * Note that due to how we add reserved_space to intel_ring_begin()
941 * we need to double our request to ensure that if we need to wrap
942 * around inside i915_request_add() there is sufficient space at
943 * the beginning of the ring as well.
944 */
945 rq->reserved_space =
946 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
947
948 /*
949 * Record the position of the start of the request so that
950 * should we detect the updated seqno part-way through the
951 * GPU processing the request, we never over-estimate the
952 * position of the head.
953 */
954 rq->head = rq->ring->emit;
955
956 ret = rq->engine->request_alloc(rq);
957 if (ret)
958 goto err_unwind;
959
960 rq->infix = rq->ring->emit; /* end of header; start of user payload */
961
962 intel_context_mark_active(ce);
963 list_add_tail_rcu(&rq->link, &tl->requests);
964
965 return rq;
966
967 err_unwind:
968 ce->ring->emit = rq->head;
969
970 /* Make sure we didn't add ourselves to external state before freeing */
971 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
972 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
973
974 err_free:
975 intel_context_put(ce);
976 kmem_cache_free(slab_requests, rq);
977 err_unreserve:
978 intel_context_unpin(ce);
979 return ERR_PTR(ret);
980 }
981
982 struct i915_request *
i915_request_create(struct intel_context * ce)983 i915_request_create(struct intel_context *ce)
984 {
985 struct i915_request *rq;
986 struct intel_timeline *tl;
987
988 tl = intel_context_timeline_lock(ce);
989 if (IS_ERR(tl))
990 return ERR_CAST(tl);
991
992 /* Move our oldest request to the slab-cache (if not in use!) */
993 rq = list_first_entry(&tl->requests, typeof(*rq), link);
994 if (!list_is_last(&rq->link, &tl->requests))
995 i915_request_retire(rq);
996
997 intel_context_enter(ce);
998 rq = __i915_request_create(ce, GFP_KERNEL);
999 intel_context_exit(ce); /* active reference transferred to request */
1000 if (IS_ERR(rq))
1001 goto err_unlock;
1002
1003 /* Check that we do not interrupt ourselves with a new request */
1004 rq->cookie = lockdep_pin_lock(&tl->mutex);
1005
1006 return rq;
1007
1008 err_unlock:
1009 intel_context_timeline_unlock(tl);
1010 return rq;
1011 }
1012
1013 static int
i915_request_await_start(struct i915_request * rq,struct i915_request * signal)1014 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1015 {
1016 struct dma_fence *fence;
1017 int err;
1018
1019 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1020 return 0;
1021
1022 if (i915_request_started(signal))
1023 return 0;
1024
1025 /*
1026 * The caller holds a reference on @signal, but we do not serialise
1027 * against it being retired and removed from the lists.
1028 *
1029 * We do not hold a reference to the request before @signal, and
1030 * so must be very careful to ensure that it is not _recycled_ as
1031 * we follow the link backwards.
1032 */
1033 fence = NULL;
1034 rcu_read_lock();
1035 do {
1036 struct list_head *pos = READ_ONCE(signal->link.prev);
1037 struct i915_request *prev;
1038
1039 /* Confirm signal has not been retired, the link is valid */
1040 if (unlikely(__i915_request_has_started(signal)))
1041 break;
1042
1043 /* Is signal the earliest request on its timeline? */
1044 if (pos == &rcu_dereference(signal->timeline)->requests)
1045 break;
1046
1047 /*
1048 * Peek at the request before us in the timeline. That
1049 * request will only be valid before it is retired, so
1050 * after acquiring a reference to it, confirm that it is
1051 * still part of the signaler's timeline.
1052 */
1053 prev = list_entry(pos, typeof(*prev), link);
1054 if (!i915_request_get_rcu(prev))
1055 break;
1056
1057 /* After the strong barrier, confirm prev is still attached */
1058 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1059 i915_request_put(prev);
1060 break;
1061 }
1062
1063 fence = &prev->fence;
1064 } while (0);
1065 rcu_read_unlock();
1066 if (!fence)
1067 return 0;
1068
1069 err = 0;
1070 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1071 err = i915_sw_fence_await_dma_fence(&rq->submit,
1072 fence, 0,
1073 I915_FENCE_GFP);
1074 dma_fence_put(fence);
1075
1076 return err;
1077 }
1078
1079 static intel_engine_mask_t
already_busywaiting(struct i915_request * rq)1080 already_busywaiting(struct i915_request *rq)
1081 {
1082 /*
1083 * Polling a semaphore causes bus traffic, delaying other users of
1084 * both the GPU and CPU. We want to limit the impact on others,
1085 * while taking advantage of early submission to reduce GPU
1086 * latency. Therefore we restrict ourselves to not using more
1087 * than one semaphore from each source, and not using a semaphore
1088 * if we have detected the engine is saturated (i.e. would not be
1089 * submitted early and cause bus traffic reading an already passed
1090 * semaphore).
1091 *
1092 * See the are-we-too-late? check in __i915_request_submit().
1093 */
1094 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1095 }
1096
1097 static int
__emit_semaphore_wait(struct i915_request * to,struct i915_request * from,u32 seqno)1098 __emit_semaphore_wait(struct i915_request *to,
1099 struct i915_request *from,
1100 u32 seqno)
1101 {
1102 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1103 u32 hwsp_offset;
1104 int len, err;
1105 u32 *cs;
1106
1107 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1108 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1109
1110 /* We need to pin the signaler's HWSP until we are finished reading. */
1111 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1112 if (err)
1113 return err;
1114
1115 len = 4;
1116 if (has_token)
1117 len += 2;
1118
1119 cs = intel_ring_begin(to, len);
1120 if (IS_ERR(cs))
1121 return PTR_ERR(cs);
1122
1123 /*
1124 * Using greater-than-or-equal here means we have to worry
1125 * about seqno wraparound. To side step that issue, we swap
1126 * the timeline HWSP upon wrapping, so that everyone listening
1127 * for the old (pre-wrap) values do not see the much smaller
1128 * (post-wrap) values than they were expecting (and so wait
1129 * forever).
1130 */
1131 *cs++ = (MI_SEMAPHORE_WAIT |
1132 MI_SEMAPHORE_GLOBAL_GTT |
1133 MI_SEMAPHORE_POLL |
1134 MI_SEMAPHORE_SAD_GTE_SDD) +
1135 has_token;
1136 *cs++ = seqno;
1137 *cs++ = hwsp_offset;
1138 *cs++ = 0;
1139 if (has_token) {
1140 *cs++ = 0;
1141 *cs++ = MI_NOOP;
1142 }
1143
1144 intel_ring_advance(to, cs);
1145 return 0;
1146 }
1147
1148 static int
emit_semaphore_wait(struct i915_request * to,struct i915_request * from,gfp_t gfp)1149 emit_semaphore_wait(struct i915_request *to,
1150 struct i915_request *from,
1151 gfp_t gfp)
1152 {
1153 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1154 struct i915_sw_fence *wait = &to->submit;
1155
1156 if (!intel_context_use_semaphores(to->context))
1157 goto await_fence;
1158
1159 if (i915_request_has_initial_breadcrumb(to))
1160 goto await_fence;
1161
1162 /*
1163 * If this or its dependents are waiting on an external fence
1164 * that may fail catastrophically, then we want to avoid using
1165 * sempahores as they bypass the fence signaling metadata, and we
1166 * lose the fence->error propagation.
1167 */
1168 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1169 goto await_fence;
1170
1171 /* Just emit the first semaphore we see as request space is limited. */
1172 if (already_busywaiting(to) & mask)
1173 goto await_fence;
1174
1175 if (i915_request_await_start(to, from) < 0)
1176 goto await_fence;
1177
1178 /* Only submit our spinner after the signaler is running! */
1179 if (__await_execution(to, from, gfp))
1180 goto await_fence;
1181
1182 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1183 goto await_fence;
1184
1185 to->sched.semaphores |= mask;
1186 wait = &to->semaphore;
1187
1188 await_fence:
1189 return i915_sw_fence_await_dma_fence(wait,
1190 &from->fence, 0,
1191 I915_FENCE_GFP);
1192 }
1193
intel_timeline_sync_has_start(struct intel_timeline * tl,struct dma_fence * fence)1194 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1195 struct dma_fence *fence)
1196 {
1197 return __intel_timeline_sync_is_later(tl,
1198 fence->context,
1199 fence->seqno - 1);
1200 }
1201
intel_timeline_sync_set_start(struct intel_timeline * tl,const struct dma_fence * fence)1202 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1203 const struct dma_fence *fence)
1204 {
1205 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1206 }
1207
1208 static int
__i915_request_await_execution(struct i915_request * to,struct i915_request * from)1209 __i915_request_await_execution(struct i915_request *to,
1210 struct i915_request *from)
1211 {
1212 int err;
1213
1214 GEM_BUG_ON(intel_context_is_barrier(from->context));
1215
1216 /* Submit both requests at the same time */
1217 err = __await_execution(to, from, I915_FENCE_GFP);
1218 if (err)
1219 return err;
1220
1221 /* Squash repeated depenendices to the same timelines */
1222 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1223 &from->fence))
1224 return 0;
1225
1226 /*
1227 * Wait until the start of this request.
1228 *
1229 * The execution cb fires when we submit the request to HW. But in
1230 * many cases this may be long before the request itself is ready to
1231 * run (consider that we submit 2 requests for the same context, where
1232 * the request of interest is behind an indefinite spinner). So we hook
1233 * up to both to reduce our queues and keep the execution lag minimised
1234 * in the worst case, though we hope that the await_start is elided.
1235 */
1236 err = i915_request_await_start(to, from);
1237 if (err < 0)
1238 return err;
1239
1240 /*
1241 * Ensure both start together [after all semaphores in signal]
1242 *
1243 * Now that we are queued to the HW at roughly the same time (thanks
1244 * to the execute cb) and are ready to run at roughly the same time
1245 * (thanks to the await start), our signaler may still be indefinitely
1246 * delayed by waiting on a semaphore from a remote engine. If our
1247 * signaler depends on a semaphore, so indirectly do we, and we do not
1248 * want to start our payload until our signaler also starts theirs.
1249 * So we wait.
1250 *
1251 * However, there is also a second condition for which we need to wait
1252 * for the precise start of the signaler. Consider that the signaler
1253 * was submitted in a chain of requests following another context
1254 * (with just an ordinary intra-engine fence dependency between the
1255 * two). In this case the signaler is queued to HW, but not for
1256 * immediate execution, and so we must wait until it reaches the
1257 * active slot.
1258 */
1259 if (intel_engine_has_semaphores(to->engine) &&
1260 !i915_request_has_initial_breadcrumb(to)) {
1261 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1262 if (err < 0)
1263 return err;
1264 }
1265
1266 /* Couple the dependency tree for PI on this exposed to->fence */
1267 if (to->engine->sched_engine->schedule) {
1268 err = i915_sched_node_add_dependency(&to->sched,
1269 &from->sched,
1270 I915_DEPENDENCY_WEAK);
1271 if (err < 0)
1272 return err;
1273 }
1274
1275 return intel_timeline_sync_set_start(i915_request_timeline(to),
1276 &from->fence);
1277 }
1278
mark_external(struct i915_request * rq)1279 static void mark_external(struct i915_request *rq)
1280 {
1281 /*
1282 * The downside of using semaphores is that we lose metadata passing
1283 * along the signaling chain. This is particularly nasty when we
1284 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1285 * fatal errors we want to scrub the request before it is executed,
1286 * which means that we cannot preload the request onto HW and have
1287 * it wait upon a semaphore.
1288 */
1289 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1290 }
1291
1292 static int
__i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1293 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1294 {
1295 mark_external(rq);
1296 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1297 i915_fence_context_timeout(rq->engine->i915,
1298 fence->context),
1299 I915_FENCE_GFP);
1300 }
1301
1302 static int
i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1303 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1304 {
1305 struct dma_fence *iter;
1306 int err = 0;
1307
1308 if (!to_dma_fence_chain(fence))
1309 return __i915_request_await_external(rq, fence);
1310
1311 dma_fence_chain_for_each(iter, fence) {
1312 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1313
1314 if (!dma_fence_is_i915(chain->fence)) {
1315 err = __i915_request_await_external(rq, iter);
1316 break;
1317 }
1318
1319 err = i915_request_await_dma_fence(rq, chain->fence);
1320 if (err < 0)
1321 break;
1322 }
1323
1324 dma_fence_put(iter);
1325 return err;
1326 }
1327
1328 int
i915_request_await_execution(struct i915_request * rq,struct dma_fence * fence)1329 i915_request_await_execution(struct i915_request *rq,
1330 struct dma_fence *fence)
1331 {
1332 struct dma_fence **child = &fence;
1333 unsigned int nchild = 1;
1334 int ret;
1335
1336 if (dma_fence_is_array(fence)) {
1337 struct dma_fence_array *array = to_dma_fence_array(fence);
1338
1339 /* XXX Error for signal-on-any fence arrays */
1340
1341 child = array->fences;
1342 nchild = array->num_fences;
1343 GEM_BUG_ON(!nchild);
1344 }
1345
1346 do {
1347 fence = *child++;
1348 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1349 continue;
1350
1351 if (fence->context == rq->fence.context)
1352 continue;
1353
1354 /*
1355 * We don't squash repeated fence dependencies here as we
1356 * want to run our callback in all cases.
1357 */
1358
1359 if (dma_fence_is_i915(fence))
1360 ret = __i915_request_await_execution(rq,
1361 to_request(fence));
1362 else
1363 ret = i915_request_await_external(rq, fence);
1364 if (ret < 0)
1365 return ret;
1366 } while (--nchild);
1367
1368 return 0;
1369 }
1370
1371 static int
await_request_submit(struct i915_request * to,struct i915_request * from)1372 await_request_submit(struct i915_request *to, struct i915_request *from)
1373 {
1374 /*
1375 * If we are waiting on a virtual engine, then it may be
1376 * constrained to execute on a single engine *prior* to submission.
1377 * When it is submitted, it will be first submitted to the virtual
1378 * engine and then passed to the physical engine. We cannot allow
1379 * the waiter to be submitted immediately to the physical engine
1380 * as it may then bypass the virtual request.
1381 */
1382 if (to->engine == READ_ONCE(from->engine))
1383 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1384 &from->submit,
1385 I915_FENCE_GFP);
1386 else
1387 return __i915_request_await_execution(to, from);
1388 }
1389
1390 static int
i915_request_await_request(struct i915_request * to,struct i915_request * from)1391 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1392 {
1393 int ret;
1394
1395 GEM_BUG_ON(to == from);
1396 GEM_BUG_ON(to->timeline == from->timeline);
1397
1398 if (i915_request_completed(from)) {
1399 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1400 return 0;
1401 }
1402
1403 if (to->engine->sched_engine->schedule) {
1404 ret = i915_sched_node_add_dependency(&to->sched,
1405 &from->sched,
1406 I915_DEPENDENCY_EXTERNAL);
1407 if (ret < 0)
1408 return ret;
1409 }
1410
1411 if (!intel_engine_uses_guc(to->engine) &&
1412 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1413 ret = await_request_submit(to, from);
1414 else
1415 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1416 if (ret < 0)
1417 return ret;
1418
1419 return 0;
1420 }
1421
1422 int
i915_request_await_dma_fence(struct i915_request * rq,struct dma_fence * fence)1423 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1424 {
1425 struct dma_fence **child = &fence;
1426 unsigned int nchild = 1;
1427 int ret;
1428
1429 /*
1430 * Note that if the fence-array was created in signal-on-any mode,
1431 * we should *not* decompose it into its individual fences. However,
1432 * we don't currently store which mode the fence-array is operating
1433 * in. Fortunately, the only user of signal-on-any is private to
1434 * amdgpu and we should not see any incoming fence-array from
1435 * sync-file being in signal-on-any mode.
1436 */
1437 if (dma_fence_is_array(fence)) {
1438 struct dma_fence_array *array = to_dma_fence_array(fence);
1439
1440 child = array->fences;
1441 nchild = array->num_fences;
1442 GEM_BUG_ON(!nchild);
1443 }
1444
1445 do {
1446 fence = *child++;
1447 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1448 continue;
1449
1450 /*
1451 * Requests on the same timeline are explicitly ordered, along
1452 * with their dependencies, by i915_request_add() which ensures
1453 * that requests are submitted in-order through each ring.
1454 */
1455 if (fence->context == rq->fence.context)
1456 continue;
1457
1458 /* Squash repeated waits to the same timelines */
1459 if (fence->context &&
1460 intel_timeline_sync_is_later(i915_request_timeline(rq),
1461 fence))
1462 continue;
1463
1464 if (dma_fence_is_i915(fence))
1465 ret = i915_request_await_request(rq, to_request(fence));
1466 else
1467 ret = i915_request_await_external(rq, fence);
1468 if (ret < 0)
1469 return ret;
1470
1471 /* Record the latest fence used against each timeline */
1472 if (fence->context)
1473 intel_timeline_sync_set(i915_request_timeline(rq),
1474 fence);
1475 } while (--nchild);
1476
1477 return 0;
1478 }
1479
1480 /**
1481 * i915_request_await_object - set this request to (async) wait upon a bo
1482 * @to: request we are wishing to use
1483 * @obj: object which may be in use on another ring.
1484 * @write: whether the wait is on behalf of a writer
1485 *
1486 * This code is meant to abstract object synchronization with the GPU.
1487 * Conceptually we serialise writes between engines inside the GPU.
1488 * We only allow one engine to write into a buffer at any time, but
1489 * multiple readers. To ensure each has a coherent view of memory, we must:
1490 *
1491 * - If there is an outstanding write request to the object, the new
1492 * request must wait for it to complete (either CPU or in hw, requests
1493 * on the same ring will be naturally ordered).
1494 *
1495 * - If we are a write request (pending_write_domain is set), the new
1496 * request must wait for outstanding read requests to complete.
1497 *
1498 * Returns 0 if successful, else propagates up the lower layer error.
1499 */
1500 int
i915_request_await_object(struct i915_request * to,struct drm_i915_gem_object * obj,bool write)1501 i915_request_await_object(struct i915_request *to,
1502 struct drm_i915_gem_object *obj,
1503 bool write)
1504 {
1505 struct dma_fence *excl;
1506 int ret = 0;
1507
1508 if (write) {
1509 struct dma_fence **shared;
1510 unsigned int count, i;
1511
1512 ret = dma_resv_get_fences(obj->base.resv, &excl, &count,
1513 &shared);
1514 if (ret)
1515 return ret;
1516
1517 for (i = 0; i < count; i++) {
1518 ret = i915_request_await_dma_fence(to, shared[i]);
1519 if (ret)
1520 break;
1521
1522 dma_fence_put(shared[i]);
1523 }
1524
1525 for (; i < count; i++)
1526 dma_fence_put(shared[i]);
1527 kfree(shared);
1528 } else {
1529 excl = dma_resv_get_excl_unlocked(obj->base.resv);
1530 }
1531
1532 if (excl) {
1533 if (ret == 0)
1534 ret = i915_request_await_dma_fence(to, excl);
1535
1536 dma_fence_put(excl);
1537 }
1538
1539 return ret;
1540 }
1541
1542 static struct i915_request *
__i915_request_add_to_timeline(struct i915_request * rq)1543 __i915_request_add_to_timeline(struct i915_request *rq)
1544 {
1545 struct intel_timeline *timeline = i915_request_timeline(rq);
1546 struct i915_request *prev;
1547
1548 /*
1549 * Dependency tracking and request ordering along the timeline
1550 * is special cased so that we can eliminate redundant ordering
1551 * operations while building the request (we know that the timeline
1552 * itself is ordered, and here we guarantee it).
1553 *
1554 * As we know we will need to emit tracking along the timeline,
1555 * we embed the hooks into our request struct -- at the cost of
1556 * having to have specialised no-allocation interfaces (which will
1557 * be beneficial elsewhere).
1558 *
1559 * A second benefit to open-coding i915_request_await_request is
1560 * that we can apply a slight variant of the rules specialised
1561 * for timelines that jump between engines (such as virtual engines).
1562 * If we consider the case of virtual engine, we must emit a dma-fence
1563 * to prevent scheduling of the second request until the first is
1564 * complete (to maximise our greedy late load balancing) and this
1565 * precludes optimising to use semaphores serialisation of a single
1566 * timeline across engines.
1567 */
1568 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1569 &rq->fence));
1570 if (prev && !__i915_request_is_complete(prev)) {
1571 bool uses_guc = intel_engine_uses_guc(rq->engine);
1572
1573 /*
1574 * The requests are supposed to be kept in order. However,
1575 * we need to be wary in case the timeline->last_request
1576 * is used as a barrier for external modification to this
1577 * context.
1578 */
1579 GEM_BUG_ON(prev->context == rq->context &&
1580 i915_seqno_passed(prev->fence.seqno,
1581 rq->fence.seqno));
1582
1583 if ((!uses_guc &&
1584 is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) ||
1585 (uses_guc && prev->context == rq->context))
1586 i915_sw_fence_await_sw_fence(&rq->submit,
1587 &prev->submit,
1588 &rq->submitq);
1589 else
1590 __i915_sw_fence_await_dma_fence(&rq->submit,
1591 &prev->fence,
1592 &rq->dmaq);
1593 if (rq->engine->sched_engine->schedule)
1594 __i915_sched_node_add_dependency(&rq->sched,
1595 &prev->sched,
1596 &rq->dep,
1597 0);
1598 }
1599
1600 /*
1601 * Make sure that no request gazumped us - if it was allocated after
1602 * our i915_request_alloc() and called __i915_request_add() before
1603 * us, the timeline will hold its seqno which is later than ours.
1604 */
1605 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1606
1607 return prev;
1608 }
1609
1610 /*
1611 * NB: This function is not allowed to fail. Doing so would mean the the
1612 * request is not being tracked for completion but the work itself is
1613 * going to happen on the hardware. This would be a Bad Thing(tm).
1614 */
__i915_request_commit(struct i915_request * rq)1615 struct i915_request *__i915_request_commit(struct i915_request *rq)
1616 {
1617 struct intel_engine_cs *engine = rq->engine;
1618 struct intel_ring *ring = rq->ring;
1619 u32 *cs;
1620
1621 RQ_TRACE(rq, "\n");
1622
1623 /*
1624 * To ensure that this call will not fail, space for its emissions
1625 * should already have been reserved in the ring buffer. Let the ring
1626 * know that it is time to use that space up.
1627 */
1628 GEM_BUG_ON(rq->reserved_space > ring->space);
1629 rq->reserved_space = 0;
1630 rq->emitted_jiffies = jiffies;
1631
1632 /*
1633 * Record the position of the start of the breadcrumb so that
1634 * should we detect the updated seqno part-way through the
1635 * GPU processing the request, we never over-estimate the
1636 * position of the ring's HEAD.
1637 */
1638 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1639 GEM_BUG_ON(IS_ERR(cs));
1640 rq->postfix = intel_ring_offset(rq, cs);
1641
1642 return __i915_request_add_to_timeline(rq);
1643 }
1644
__i915_request_queue_bh(struct i915_request * rq)1645 void __i915_request_queue_bh(struct i915_request *rq)
1646 {
1647 i915_sw_fence_commit(&rq->semaphore);
1648 i915_sw_fence_commit(&rq->submit);
1649 }
1650
__i915_request_queue(struct i915_request * rq,const struct i915_sched_attr * attr)1651 void __i915_request_queue(struct i915_request *rq,
1652 const struct i915_sched_attr *attr)
1653 {
1654 /*
1655 * Let the backend know a new request has arrived that may need
1656 * to adjust the existing execution schedule due to a high priority
1657 * request - i.e. we may want to preempt the current request in order
1658 * to run a high priority dependency chain *before* we can execute this
1659 * request.
1660 *
1661 * This is called before the request is ready to run so that we can
1662 * decide whether to preempt the entire chain so that it is ready to
1663 * run at the earliest possible convenience.
1664 */
1665 if (attr && rq->engine->sched_engine->schedule)
1666 rq->engine->sched_engine->schedule(rq, attr);
1667
1668 local_bh_disable();
1669 __i915_request_queue_bh(rq);
1670 local_bh_enable(); /* kick tasklets */
1671 }
1672
i915_request_add(struct i915_request * rq)1673 void i915_request_add(struct i915_request *rq)
1674 {
1675 struct intel_timeline * const tl = i915_request_timeline(rq);
1676 struct i915_sched_attr attr = {};
1677 struct i915_gem_context *ctx;
1678
1679 lockdep_assert_held(&tl->mutex);
1680 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1681
1682 trace_i915_request_add(rq);
1683 __i915_request_commit(rq);
1684
1685 /* XXX placeholder for selftests */
1686 rcu_read_lock();
1687 ctx = rcu_dereference(rq->context->gem_context);
1688 if (ctx)
1689 attr = ctx->sched;
1690 rcu_read_unlock();
1691
1692 __i915_request_queue(rq, &attr);
1693
1694 mutex_unlock(&tl->mutex);
1695 }
1696
local_clock_ns(unsigned int * cpu)1697 static unsigned long local_clock_ns(unsigned int *cpu)
1698 {
1699 unsigned long t;
1700
1701 /*
1702 * Cheaply and approximately convert from nanoseconds to microseconds.
1703 * The result and subsequent calculations are also defined in the same
1704 * approximate microseconds units. The principal source of timing
1705 * error here is from the simple truncation.
1706 *
1707 * Note that local_clock() is only defined wrt to the current CPU;
1708 * the comparisons are no longer valid if we switch CPUs. Instead of
1709 * blocking preemption for the entire busywait, we can detect the CPU
1710 * switch and use that as indicator of system load and a reason to
1711 * stop busywaiting, see busywait_stop().
1712 */
1713 *cpu = get_cpu();
1714 t = local_clock();
1715 put_cpu();
1716
1717 return t;
1718 }
1719
busywait_stop(unsigned long timeout,unsigned int cpu)1720 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1721 {
1722 unsigned int this_cpu;
1723
1724 if (time_after(local_clock_ns(&this_cpu), timeout))
1725 return true;
1726
1727 return this_cpu != cpu;
1728 }
1729
__i915_spin_request(struct i915_request * const rq,int state)1730 static bool __i915_spin_request(struct i915_request * const rq, int state)
1731 {
1732 unsigned long timeout_ns;
1733 unsigned int cpu;
1734
1735 /*
1736 * Only wait for the request if we know it is likely to complete.
1737 *
1738 * We don't track the timestamps around requests, nor the average
1739 * request length, so we do not have a good indicator that this
1740 * request will complete within the timeout. What we do know is the
1741 * order in which requests are executed by the context and so we can
1742 * tell if the request has been started. If the request is not even
1743 * running yet, it is a fair assumption that it will not complete
1744 * within our relatively short timeout.
1745 */
1746 if (!i915_request_is_running(rq))
1747 return false;
1748
1749 /*
1750 * When waiting for high frequency requests, e.g. during synchronous
1751 * rendering split between the CPU and GPU, the finite amount of time
1752 * required to set up the irq and wait upon it limits the response
1753 * rate. By busywaiting on the request completion for a short while we
1754 * can service the high frequency waits as quick as possible. However,
1755 * if it is a slow request, we want to sleep as quickly as possible.
1756 * The tradeoff between waiting and sleeping is roughly the time it
1757 * takes to sleep on a request, on the order of a microsecond.
1758 */
1759
1760 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1761 timeout_ns += local_clock_ns(&cpu);
1762 do {
1763 if (dma_fence_is_signaled(&rq->fence))
1764 return true;
1765
1766 if (signal_pending_state(state, current))
1767 break;
1768
1769 if (busywait_stop(timeout_ns, cpu))
1770 break;
1771
1772 cpu_relax();
1773 } while (!need_resched());
1774
1775 return false;
1776 }
1777
1778 struct request_wait {
1779 struct dma_fence_cb cb;
1780 struct task_struct *tsk;
1781 };
1782
request_wait_wake(struct dma_fence * fence,struct dma_fence_cb * cb)1783 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1784 {
1785 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1786
1787 wake_up_process(fetch_and_zero(&wait->tsk));
1788 }
1789
1790 /**
1791 * i915_request_wait - wait until execution of request has finished
1792 * @rq: the request to wait upon
1793 * @flags: how to wait
1794 * @timeout: how long to wait in jiffies
1795 *
1796 * i915_request_wait() waits for the request to be completed, for a
1797 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1798 * unbounded wait).
1799 *
1800 * Returns the remaining time (in jiffies) if the request completed, which may
1801 * be zero or -ETIME if the request is unfinished after the timeout expires.
1802 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1803 * pending before the request completes.
1804 */
i915_request_wait(struct i915_request * rq,unsigned int flags,long timeout)1805 long i915_request_wait(struct i915_request *rq,
1806 unsigned int flags,
1807 long timeout)
1808 {
1809 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1810 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1811 struct request_wait wait;
1812
1813 might_sleep();
1814 GEM_BUG_ON(timeout < 0);
1815
1816 if (dma_fence_is_signaled(&rq->fence))
1817 return timeout;
1818
1819 if (!timeout)
1820 return -ETIME;
1821
1822 trace_i915_request_wait_begin(rq, flags);
1823
1824 /*
1825 * We must never wait on the GPU while holding a lock as we
1826 * may need to perform a GPU reset. So while we don't need to
1827 * serialise wait/reset with an explicit lock, we do want
1828 * lockdep to detect potential dependency cycles.
1829 */
1830 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1831
1832 /*
1833 * Optimistic spin before touching IRQs.
1834 *
1835 * We may use a rather large value here to offset the penalty of
1836 * switching away from the active task. Frequently, the client will
1837 * wait upon an old swapbuffer to throttle itself to remain within a
1838 * frame of the gpu. If the client is running in lockstep with the gpu,
1839 * then it should not be waiting long at all, and a sleep now will incur
1840 * extra scheduler latency in producing the next frame. To try to
1841 * avoid adding the cost of enabling/disabling the interrupt to the
1842 * short wait, we first spin to see if the request would have completed
1843 * in the time taken to setup the interrupt.
1844 *
1845 * We need upto 5us to enable the irq, and upto 20us to hide the
1846 * scheduler latency of a context switch, ignoring the secondary
1847 * impacts from a context switch such as cache eviction.
1848 *
1849 * The scheme used for low-latency IO is called "hybrid interrupt
1850 * polling". The suggestion there is to sleep until just before you
1851 * expect to be woken by the device interrupt and then poll for its
1852 * completion. That requires having a good predictor for the request
1853 * duration, which we currently lack.
1854 */
1855 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1856 __i915_spin_request(rq, state))
1857 goto out;
1858
1859 /*
1860 * This client is about to stall waiting for the GPU. In many cases
1861 * this is undesirable and limits the throughput of the system, as
1862 * many clients cannot continue processing user input/output whilst
1863 * blocked. RPS autotuning may take tens of milliseconds to respond
1864 * to the GPU load and thus incurs additional latency for the client.
1865 * We can circumvent that by promoting the GPU frequency to maximum
1866 * before we sleep. This makes the GPU throttle up much more quickly
1867 * (good for benchmarks and user experience, e.g. window animations),
1868 * but at a cost of spending more power processing the workload
1869 * (bad for battery).
1870 */
1871 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1872 intel_rps_boost(rq);
1873
1874 wait.tsk = current;
1875 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1876 goto out;
1877
1878 /*
1879 * Flush the submission tasklet, but only if it may help this request.
1880 *
1881 * We sometimes experience some latency between the HW interrupts and
1882 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1883 * be due to lazy CS events), so lets run the tasklet manually if there
1884 * is a chance it may submit this request. If the request is not ready
1885 * to run, as it is waiting for other fences to be signaled, flushing
1886 * the tasklet is busy work without any advantage for this client.
1887 *
1888 * If the HW is being lazy, this is the last chance before we go to
1889 * sleep to catch any pending events. We will check periodically in
1890 * the heartbeat to flush the submission tasklets as a last resort
1891 * for unhappy HW.
1892 */
1893 if (i915_request_is_ready(rq))
1894 __intel_engine_flush_submission(rq->engine, false);
1895
1896 for (;;) {
1897 set_current_state(state);
1898
1899 if (dma_fence_is_signaled(&rq->fence))
1900 break;
1901
1902 if (signal_pending_state(state, current)) {
1903 timeout = -ERESTARTSYS;
1904 break;
1905 }
1906
1907 if (!timeout) {
1908 timeout = -ETIME;
1909 break;
1910 }
1911
1912 timeout = io_schedule_timeout(timeout);
1913 }
1914 __set_current_state(TASK_RUNNING);
1915
1916 if (READ_ONCE(wait.tsk))
1917 dma_fence_remove_callback(&rq->fence, &wait.cb);
1918 GEM_BUG_ON(!list_empty(&wait.cb.node));
1919
1920 out:
1921 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1922 trace_i915_request_wait_end(rq);
1923 return timeout;
1924 }
1925
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)1926 static int print_sched_attr(const struct i915_sched_attr *attr,
1927 char *buf, int x, int len)
1928 {
1929 if (attr->priority == I915_PRIORITY_INVALID)
1930 return x;
1931
1932 x += snprintf(buf + x, len - x,
1933 " prio=%d", attr->priority);
1934
1935 return x;
1936 }
1937
queue_status(const struct i915_request * rq)1938 static char queue_status(const struct i915_request *rq)
1939 {
1940 if (i915_request_is_active(rq))
1941 return 'E';
1942
1943 if (i915_request_is_ready(rq))
1944 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
1945
1946 return 'U';
1947 }
1948
run_status(const struct i915_request * rq)1949 static const char *run_status(const struct i915_request *rq)
1950 {
1951 if (__i915_request_is_complete(rq))
1952 return "!";
1953
1954 if (__i915_request_has_started(rq))
1955 return "*";
1956
1957 if (!i915_sw_fence_signaled(&rq->semaphore))
1958 return "&";
1959
1960 return "";
1961 }
1962
fence_status(const struct i915_request * rq)1963 static const char *fence_status(const struct i915_request *rq)
1964 {
1965 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
1966 return "+";
1967
1968 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
1969 return "-";
1970
1971 return "";
1972 }
1973
i915_request_show(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent)1974 void i915_request_show(struct drm_printer *m,
1975 const struct i915_request *rq,
1976 const char *prefix,
1977 int indent)
1978 {
1979 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
1980 char buf[80] = "";
1981 int x = 0;
1982
1983 /*
1984 * The prefix is used to show the queue status, for which we use
1985 * the following flags:
1986 *
1987 * U [Unready]
1988 * - initial status upon being submitted by the user
1989 *
1990 * - the request is not ready for execution as it is waiting
1991 * for external fences
1992 *
1993 * R [Ready]
1994 * - all fences the request was waiting on have been signaled,
1995 * and the request is now ready for execution and will be
1996 * in a backend queue
1997 *
1998 * - a ready request may still need to wait on semaphores
1999 * [internal fences]
2000 *
2001 * V [Ready/virtual]
2002 * - same as ready, but queued over multiple backends
2003 *
2004 * E [Executing]
2005 * - the request has been transferred from the backend queue and
2006 * submitted for execution on HW
2007 *
2008 * - a completed request may still be regarded as executing, its
2009 * status may not be updated until it is retired and removed
2010 * from the lists
2011 */
2012
2013 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2014
2015 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2016 prefix, indent, " ",
2017 queue_status(rq),
2018 rq->fence.context, rq->fence.seqno,
2019 run_status(rq),
2020 fence_status(rq),
2021 buf,
2022 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2023 name);
2024 }
2025
engine_match_ring(struct intel_engine_cs * engine,struct i915_request * rq)2026 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2027 {
2028 u32 ring = ENGINE_READ(engine, RING_START);
2029
2030 return ring == i915_ggtt_offset(rq->ring->vma);
2031 }
2032
match_ring(struct i915_request * rq)2033 static bool match_ring(struct i915_request *rq)
2034 {
2035 struct intel_engine_cs *engine;
2036 bool found;
2037 int i;
2038
2039 if (!intel_engine_is_virtual(rq->engine))
2040 return engine_match_ring(rq->engine, rq);
2041
2042 found = false;
2043 i = 0;
2044 while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2045 found = engine_match_ring(engine, rq);
2046 if (found)
2047 break;
2048 }
2049
2050 return found;
2051 }
2052
i915_test_request_state(struct i915_request * rq)2053 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2054 {
2055 if (i915_request_completed(rq))
2056 return I915_REQUEST_COMPLETE;
2057
2058 if (!i915_request_started(rq))
2059 return I915_REQUEST_PENDING;
2060
2061 if (match_ring(rq))
2062 return I915_REQUEST_ACTIVE;
2063
2064 return I915_REQUEST_QUEUED;
2065 }
2066
2067 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2068 #include "selftests/mock_request.c"
2069 #include "selftests/i915_request.c"
2070 #endif
2071
i915_request_module_exit(void)2072 void i915_request_module_exit(void)
2073 {
2074 kmem_cache_destroy(slab_execute_cbs);
2075 kmem_cache_destroy(slab_requests);
2076 }
2077
i915_request_module_init(void)2078 int __init i915_request_module_init(void)
2079 {
2080 slab_requests =
2081 kmem_cache_create("i915_request",
2082 sizeof(struct i915_request),
2083 __alignof__(struct i915_request),
2084 SLAB_HWCACHE_ALIGN |
2085 SLAB_RECLAIM_ACCOUNT |
2086 SLAB_TYPESAFE_BY_RCU,
2087 __i915_request_ctor);
2088 if (!slab_requests)
2089 return -ENOMEM;
2090
2091 slab_execute_cbs = KMEM_CACHE(execute_cb,
2092 SLAB_HWCACHE_ALIGN |
2093 SLAB_RECLAIM_ACCOUNT |
2094 SLAB_TYPESAFE_BY_RCU);
2095 if (!slab_execute_cbs)
2096 goto err_requests;
2097
2098 return 0;
2099
2100 err_requests:
2101 kmem_cache_destroy(slab_requests);
2102 return -ENOMEM;
2103 }
2104