1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #ifndef __I915_UTILS_H
26 #define __I915_UTILS_H
27 
28 #include <linux/list.h>
29 #include <linux/overflow.h>
30 #include <linux/sched.h>
31 #include <linux/types.h>
32 #include <linux/workqueue.h>
33 
34 struct drm_i915_private;
35 
36 #undef WARN_ON
37 /* Many gcc seem to no see through this and fall over :( */
38 #if 0
39 #define WARN_ON(x) ({ \
40 	bool __i915_warn_cond = (x); \
41 	if (__builtin_constant_p(__i915_warn_cond)) \
42 		BUILD_BUG_ON(__i915_warn_cond); \
43 	WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
44 #else
45 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
46 #endif
47 
48 #undef WARN_ON_ONCE
49 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
50 
51 #define MISSING_CASE(x) WARN(1, "Missing case (%s == %ld)\n", \
52 			     __stringify(x), (long)(x))
53 
54 void __printf(3, 4)
55 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
56 	      const char *fmt, ...);
57 
58 #define i915_report_error(dev_priv, fmt, ...)				   \
59 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
60 
61 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
62 
63 int __i915_inject_load_error(struct drm_i915_private *i915, int err,
64 			     const char *func, int line);
65 #define i915_inject_load_error(_i915, _err) \
66 	__i915_inject_load_error((_i915), (_err), __func__, __LINE__)
67 bool i915_error_injected(void);
68 
69 #else
70 
71 #define i915_inject_load_error(_i915, _err) 0
72 #define i915_error_injected() false
73 
74 #endif
75 
76 #define i915_inject_probe_failure(i915) i915_inject_load_error((i915), -ENODEV)
77 
78 #define i915_probe_error(i915, fmt, ...)				   \
79 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
80 		      fmt, ##__VA_ARGS__)
81 
82 #if defined(GCC_VERSION) && GCC_VERSION >= 70000
83 #define add_overflows_t(T, A, B) \
84 	__builtin_add_overflow_p((A), (B), (T)0)
85 #else
86 #define add_overflows_t(T, A, B) ({ \
87 	typeof(A) a = (A); \
88 	typeof(B) b = (B); \
89 	(T)(a + b) < a; \
90 })
91 #endif
92 
93 #define add_overflows(A, B) \
94 	add_overflows_t(typeof((A) + (B)), (A), (B))
95 
96 #define range_overflows(start, size, max) ({ \
97 	typeof(start) start__ = (start); \
98 	typeof(size) size__ = (size); \
99 	typeof(max) max__ = (max); \
100 	(void)(&start__ == &size__); \
101 	(void)(&start__ == &max__); \
102 	start__ > max__ || size__ > max__ - start__; \
103 })
104 
105 #define range_overflows_t(type, start, size, max) \
106 	range_overflows((type)(start), (type)(size), (type)(max))
107 
108 /* Note we don't consider signbits :| */
109 #define overflows_type(x, T) \
110 	(sizeof(x) > sizeof(T) && (x) >> BITS_PER_TYPE(T))
111 
112 static inline bool
__check_struct_size(size_t base,size_t arr,size_t count,size_t * size)113 __check_struct_size(size_t base, size_t arr, size_t count, size_t *size)
114 {
115 	size_t sz;
116 
117 	if (check_mul_overflow(count, arr, &sz))
118 		return false;
119 
120 	if (check_add_overflow(sz, base, &sz))
121 		return false;
122 
123 	*size = sz;
124 	return true;
125 }
126 
127 /**
128  * check_struct_size() - Calculate size of structure with trailing array.
129  * @p: Pointer to the structure.
130  * @member: Name of the array member.
131  * @n: Number of elements in the array.
132  * @sz: Total size of structure and array
133  *
134  * Calculates size of memory needed for structure @p followed by an
135  * array of @n @member elements, like struct_size() but reports
136  * whether it overflowed, and the resultant size in @sz
137  *
138  * Return: false if the calculation overflowed.
139  */
140 #define check_struct_size(p, member, n, sz) \
141 	likely(__check_struct_size(sizeof(*(p)), \
142 				   sizeof(*(p)->member) + __must_be_array((p)->member), \
143 				   n, sz))
144 
145 #define ptr_mask_bits(ptr, n) ({					\
146 	unsigned long __v = (unsigned long)(ptr);			\
147 	(typeof(ptr))(__v & -BIT(n));					\
148 })
149 
150 #define ptr_unmask_bits(ptr, n) ((unsigned long)(ptr) & (BIT(n) - 1))
151 
152 #define ptr_unpack_bits(ptr, bits, n) ({				\
153 	unsigned long __v = (unsigned long)(ptr);			\
154 	*(bits) = __v & (BIT(n) - 1);					\
155 	(typeof(ptr))(__v & -BIT(n));					\
156 })
157 
158 #define ptr_pack_bits(ptr, bits, n) ({					\
159 	unsigned long __bits = (bits);					\
160 	GEM_BUG_ON(__bits & -BIT(n));					\
161 	((typeof(ptr))((unsigned long)(ptr) | __bits));			\
162 })
163 
164 #define ptr_dec(ptr) ({							\
165 	unsigned long __v = (unsigned long)(ptr);			\
166 	(typeof(ptr))(__v - 1);						\
167 })
168 
169 #define ptr_inc(ptr) ({							\
170 	unsigned long __v = (unsigned long)(ptr);			\
171 	(typeof(ptr))(__v + 1);						\
172 })
173 
174 #define page_mask_bits(ptr) ptr_mask_bits(ptr, PAGE_SHIFT)
175 #define page_unmask_bits(ptr) ptr_unmask_bits(ptr, PAGE_SHIFT)
176 #define page_pack_bits(ptr, bits) ptr_pack_bits(ptr, bits, PAGE_SHIFT)
177 #define page_unpack_bits(ptr, bits) ptr_unpack_bits(ptr, bits, PAGE_SHIFT)
178 
179 #define struct_member(T, member) (((T *)0)->member)
180 
181 #define ptr_offset(ptr, member) offsetof(typeof(*(ptr)), member)
182 
183 #define fetch_and_zero(ptr) ({						\
184 	typeof(*ptr) __T = *(ptr);					\
185 	*(ptr) = (typeof(*ptr))0;					\
186 	__T;								\
187 })
188 
189 /*
190  * container_of_user: Extract the superclass from a pointer to a member.
191  *
192  * Exactly like container_of() with the exception that it plays nicely
193  * with sparse for __user @ptr.
194  */
195 #define container_of_user(ptr, type, member) ({				\
196 	void __user *__mptr = (void __user *)(ptr);			\
197 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), struct_member(type, member)) && \
198 			 !__same_type(*(ptr), void),			\
199 			 "pointer type mismatch in container_of()");	\
200 	((type __user *)(__mptr - offsetof(type, member))); })
201 
202 /*
203  * check_user_mbz: Check that a user value exists and is zero
204  *
205  * Frequently in our uABI we reserve space for future extensions, and
206  * two ensure that userspace is prepared we enforce that space must
207  * be zero. (Then any future extension can safely assume a default value
208  * of 0.)
209  *
210  * check_user_mbz() combines checking that the user pointer is accessible
211  * and that the contained value is zero.
212  *
213  * Returns: -EFAULT if not accessible, -EINVAL if !zero, or 0 on success.
214  */
215 #define check_user_mbz(U) ({						\
216 	typeof(*(U)) mbz__;						\
217 	get_user(mbz__, (U)) ? -EFAULT : mbz__ ? -EINVAL : 0;		\
218 })
219 
ptr_to_u64(const void * ptr)220 static inline u64 ptr_to_u64(const void *ptr)
221 {
222 	return (uintptr_t)ptr;
223 }
224 
225 #define u64_to_ptr(T, x) ({						\
226 	typecheck(u64, x);						\
227 	(T *)(uintptr_t)(x);						\
228 })
229 
230 #define __mask_next_bit(mask) ({					\
231 	int __idx = ffs(mask) - 1;					\
232 	mask &= ~BIT(__idx);						\
233 	__idx;								\
234 })
235 
__list_del_many(struct list_head * head,struct list_head * first)236 static inline void __list_del_many(struct list_head *head,
237 				   struct list_head *first)
238 {
239 	first->prev = head;
240 	WRITE_ONCE(head->next, first);
241 }
242 
243 /*
244  * Wait until the work is finally complete, even if it tries to postpone
245  * by requeueing itself. Note, that if the worker never cancels itself,
246  * we will spin forever.
247  */
drain_delayed_work(struct delayed_work * dw)248 static inline void drain_delayed_work(struct delayed_work *dw)
249 {
250 	do {
251 		while (flush_delayed_work(dw))
252 			;
253 	} while (delayed_work_pending(dw));
254 }
255 
msecs_to_jiffies_timeout(const unsigned int m)256 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
257 {
258 	unsigned long j = msecs_to_jiffies(m);
259 
260 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
261 }
262 
263 /*
264  * If you need to wait X milliseconds between events A and B, but event B
265  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
266  * when event A happened, then just before event B you call this function and
267  * pass the timestamp as the first argument, and X as the second argument.
268  */
269 static inline void
wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies,int to_wait_ms)270 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
271 {
272 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
273 
274 	/*
275 	 * Don't re-read the value of "jiffies" every time since it may change
276 	 * behind our back and break the math.
277 	 */
278 	tmp_jiffies = jiffies;
279 	target_jiffies = timestamp_jiffies +
280 			 msecs_to_jiffies_timeout(to_wait_ms);
281 
282 	if (time_after(target_jiffies, tmp_jiffies)) {
283 		remaining_jiffies = target_jiffies - tmp_jiffies;
284 		while (remaining_jiffies)
285 			remaining_jiffies =
286 			    schedule_timeout_uninterruptible(remaining_jiffies);
287 	}
288 }
289 
290 /**
291  * __wait_for - magic wait macro
292  *
293  * Macro to help avoid open coding check/wait/timeout patterns. Note that it's
294  * important that we check the condition again after having timed out, since the
295  * timeout could be due to preemption or similar and we've never had a chance to
296  * check the condition before the timeout.
297  */
298 #define __wait_for(OP, COND, US, Wmin, Wmax) ({ \
299 	const ktime_t end__ = ktime_add_ns(ktime_get_raw(), 1000ll * (US)); \
300 	long wait__ = (Wmin); /* recommended min for usleep is 10 us */	\
301 	int ret__;							\
302 	might_sleep();							\
303 	for (;;) {							\
304 		const bool expired__ = ktime_after(ktime_get_raw(), end__); \
305 		OP;							\
306 		/* Guarantee COND check prior to timeout */		\
307 		barrier();						\
308 		if (COND) {						\
309 			ret__ = 0;					\
310 			break;						\
311 		}							\
312 		if (expired__) {					\
313 			ret__ = -ETIMEDOUT;				\
314 			break;						\
315 		}							\
316 		usleep_range(wait__, wait__ * 2);			\
317 		if (wait__ < (Wmax))					\
318 			wait__ <<= 1;					\
319 	}								\
320 	ret__;								\
321 })
322 
323 #define _wait_for(COND, US, Wmin, Wmax)	__wait_for(, (COND), (US), (Wmin), \
324 						   (Wmax))
325 #define wait_for(COND, MS)		_wait_for((COND), (MS) * 1000, 10, 1000)
326 
327 /* If CONFIG_PREEMPT_COUNT is disabled, in_atomic() always reports false. */
328 #if defined(CONFIG_DRM_I915_DEBUG) && defined(CONFIG_PREEMPT_COUNT)
329 # define _WAIT_FOR_ATOMIC_CHECK(ATOMIC) WARN_ON_ONCE((ATOMIC) && !in_atomic())
330 #else
331 # define _WAIT_FOR_ATOMIC_CHECK(ATOMIC) do { } while (0)
332 #endif
333 
334 #define _wait_for_atomic(COND, US, ATOMIC) \
335 ({ \
336 	int cpu, ret, timeout = (US) * 1000; \
337 	u64 base; \
338 	_WAIT_FOR_ATOMIC_CHECK(ATOMIC); \
339 	if (!(ATOMIC)) { \
340 		preempt_disable(); \
341 		cpu = smp_processor_id(); \
342 	} \
343 	base = local_clock(); \
344 	for (;;) { \
345 		u64 now = local_clock(); \
346 		if (!(ATOMIC)) \
347 			preempt_enable(); \
348 		/* Guarantee COND check prior to timeout */ \
349 		barrier(); \
350 		if (COND) { \
351 			ret = 0; \
352 			break; \
353 		} \
354 		if (now - base >= timeout) { \
355 			ret = -ETIMEDOUT; \
356 			break; \
357 		} \
358 		cpu_relax(); \
359 		if (!(ATOMIC)) { \
360 			preempt_disable(); \
361 			if (unlikely(cpu != smp_processor_id())) { \
362 				timeout -= now - base; \
363 				cpu = smp_processor_id(); \
364 				base = local_clock(); \
365 			} \
366 		} \
367 	} \
368 	ret; \
369 })
370 
371 #define wait_for_us(COND, US) \
372 ({ \
373 	int ret__; \
374 	BUILD_BUG_ON(!__builtin_constant_p(US)); \
375 	if ((US) > 10) \
376 		ret__ = _wait_for((COND), (US), 10, 10); \
377 	else \
378 		ret__ = _wait_for_atomic((COND), (US), 0); \
379 	ret__; \
380 })
381 
382 #define wait_for_atomic_us(COND, US) \
383 ({ \
384 	BUILD_BUG_ON(!__builtin_constant_p(US)); \
385 	BUILD_BUG_ON((US) > 50000); \
386 	_wait_for_atomic((COND), (US), 1); \
387 })
388 
389 #define wait_for_atomic(COND, MS) wait_for_atomic_us((COND), (MS) * 1000)
390 
391 #define KHz(x) (1000 * (x))
392 #define MHz(x) KHz(1000 * (x))
393 
394 #define KBps(x) (1000 * (x))
395 #define MBps(x) KBps(1000 * (x))
396 #define GBps(x) ((u64)1000 * MBps((x)))
397 
yesno(bool v)398 static inline const char *yesno(bool v)
399 {
400 	return v ? "yes" : "no";
401 }
402 
onoff(bool v)403 static inline const char *onoff(bool v)
404 {
405 	return v ? "on" : "off";
406 }
407 
enableddisabled(bool v)408 static inline const char *enableddisabled(bool v)
409 {
410 	return v ? "enabled" : "disabled";
411 }
412 
add_taint_for_CI(unsigned int taint)413 static inline void add_taint_for_CI(unsigned int taint)
414 {
415 	/*
416 	 * The system is "ok", just about surviving for the user, but
417 	 * CI results are now unreliable as the HW is very suspect.
418 	 * CI checks the taint state after every test and will reboot
419 	 * the machine if the kernel is tainted.
420 	 */
421 	add_taint(taint, LOCKDEP_STILL_OK);
422 }
423 
424 #endif /* !__I915_UTILS_H */
425