1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10
11 #include <drm/drm_managed.h>
12 #include <drm/i915_drm.h>
13 #include <drm/intel-gtt.h>
14
15 #include "display/intel_display.h"
16 #include "gem/i915_gem_lmem.h"
17
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gt.h"
20 #include "intel_gt_regs.h"
21 #include "intel_pci_config.h"
22 #include "i915_drv.h"
23 #include "i915_pci.h"
24 #include "i915_scatterlist.h"
25 #include "i915_utils.h"
26 #include "i915_vgpu.h"
27
28 #include "intel_gtt.h"
29 #include "gen8_ppgtt.h"
30
i915_ggtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)31 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
32 unsigned long color,
33 u64 *start,
34 u64 *end)
35 {
36 if (i915_node_color_differs(node, color))
37 *start += I915_GTT_PAGE_SIZE;
38
39 /*
40 * Also leave a space between the unallocated reserved node after the
41 * GTT and any objects within the GTT, i.e. we use the color adjustment
42 * to insert a guard page to prevent prefetches crossing over the
43 * GTT boundary.
44 */
45 node = list_next_entry(node, node_list);
46 if (node->color != color)
47 *end -= I915_GTT_PAGE_SIZE;
48 }
49
ggtt_init_hw(struct i915_ggtt * ggtt)50 static int ggtt_init_hw(struct i915_ggtt *ggtt)
51 {
52 struct drm_i915_private *i915 = ggtt->vm.i915;
53
54 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
55
56 ggtt->vm.is_ggtt = true;
57
58 /* Only VLV supports read-only GGTT mappings */
59 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
60
61 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
62 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
63
64 if (ggtt->mappable_end) {
65 if (!io_mapping_init_wc(&ggtt->iomap,
66 ggtt->gmadr.start,
67 ggtt->mappable_end)) {
68 ggtt->vm.cleanup(&ggtt->vm);
69 return -EIO;
70 }
71
72 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
73 ggtt->mappable_end);
74 }
75
76 intel_ggtt_init_fences(ggtt);
77
78 return 0;
79 }
80
81 /**
82 * i915_ggtt_init_hw - Initialize GGTT hardware
83 * @i915: i915 device
84 */
i915_ggtt_init_hw(struct drm_i915_private * i915)85 int i915_ggtt_init_hw(struct drm_i915_private *i915)
86 {
87 int ret;
88
89 /*
90 * Note that we use page colouring to enforce a guard page at the
91 * end of the address space. This is required as the CS may prefetch
92 * beyond the end of the batch buffer, across the page boundary,
93 * and beyond the end of the GTT if we do not provide a guard.
94 */
95 ret = ggtt_init_hw(to_gt(i915)->ggtt);
96 if (ret)
97 return ret;
98
99 return 0;
100 }
101
102 /**
103 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
104 * @vm: The VM to suspend the mappings for
105 *
106 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
107 * DPT page table.
108 */
i915_ggtt_suspend_vm(struct i915_address_space * vm)109 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
110 {
111 struct i915_vma *vma, *vn;
112 int save_skip_rewrite;
113
114 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
115
116 retry:
117 i915_gem_drain_freed_objects(vm->i915);
118
119 mutex_lock(&vm->mutex);
120
121 /*
122 * Skip rewriting PTE on VMA unbind.
123 * FIXME: Use an argument to i915_vma_unbind() instead?
124 */
125 save_skip_rewrite = vm->skip_pte_rewrite;
126 vm->skip_pte_rewrite = true;
127
128 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
129 struct drm_i915_gem_object *obj = vma->obj;
130
131 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
132
133 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
134 continue;
135
136 /* unlikely to race when GPU is idle, so no worry about slowpath.. */
137 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
138 /*
139 * No dead objects should appear here, GPU should be
140 * completely idle, and userspace suspended
141 */
142 i915_gem_object_get(obj);
143
144 mutex_unlock(&vm->mutex);
145
146 i915_gem_object_lock(obj, NULL);
147 GEM_WARN_ON(i915_vma_unbind(vma));
148 i915_gem_object_unlock(obj);
149 i915_gem_object_put(obj);
150
151 vm->skip_pte_rewrite = save_skip_rewrite;
152 goto retry;
153 }
154
155 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
156 i915_vma_wait_for_bind(vma);
157
158 __i915_vma_evict(vma, false);
159 drm_mm_remove_node(&vma->node);
160 }
161
162 i915_gem_object_unlock(obj);
163 }
164
165 vm->clear_range(vm, 0, vm->total);
166
167 vm->skip_pte_rewrite = save_skip_rewrite;
168
169 mutex_unlock(&vm->mutex);
170 }
171
i915_ggtt_suspend(struct i915_ggtt * ggtt)172 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
173 {
174 struct intel_gt *gt;
175
176 i915_ggtt_suspend_vm(&ggtt->vm);
177 ggtt->invalidate(ggtt);
178
179 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
180 intel_gt_check_and_clear_faults(gt);
181 }
182
gen6_ggtt_invalidate(struct i915_ggtt * ggtt)183 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
184 {
185 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
186
187 spin_lock_irq(&uncore->lock);
188 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
189 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
190 spin_unlock_irq(&uncore->lock);
191 }
192
gen8_ggtt_invalidate(struct i915_ggtt * ggtt)193 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
194 {
195 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
196
197 /*
198 * Note that as an uncached mmio write, this will flush the
199 * WCB of the writes into the GGTT before it triggers the invalidate.
200 */
201 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
202 }
203
guc_ggtt_invalidate(struct i915_ggtt * ggtt)204 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
205 {
206 struct drm_i915_private *i915 = ggtt->vm.i915;
207
208 gen8_ggtt_invalidate(ggtt);
209
210 if (GRAPHICS_VER(i915) >= 12) {
211 struct intel_gt *gt;
212
213 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
214 intel_uncore_write_fw(gt->uncore,
215 GEN12_GUC_TLB_INV_CR,
216 GEN12_GUC_TLB_INV_CR_INVALIDATE);
217 } else {
218 intel_uncore_write_fw(ggtt->vm.gt->uncore,
219 GEN8_GTCR, GEN8_GTCR_INVALIDATE);
220 }
221 }
222
mtl_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)223 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
224 unsigned int pat_index,
225 u32 flags)
226 {
227 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
228
229 WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
230
231 if (flags & PTE_LM)
232 pte |= GEN12_GGTT_PTE_LM;
233
234 if (pat_index & BIT(0))
235 pte |= MTL_GGTT_PTE_PAT0;
236
237 if (pat_index & BIT(1))
238 pte |= MTL_GGTT_PTE_PAT1;
239
240 return pte;
241 }
242
gen8_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)243 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
244 unsigned int pat_index,
245 u32 flags)
246 {
247 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
248
249 if (flags & PTE_LM)
250 pte |= GEN12_GGTT_PTE_LM;
251
252 return pte;
253 }
254
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)255 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
256 {
257 writeq(pte, addr);
258 }
259
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)260 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
261 dma_addr_t addr,
262 u64 offset,
263 unsigned int pat_index,
264 u32 flags)
265 {
266 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
267 gen8_pte_t __iomem *pte =
268 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
269
270 gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
271
272 ggtt->invalidate(ggtt);
273 }
274
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)275 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
276 struct i915_vma_resource *vma_res,
277 unsigned int pat_index,
278 u32 flags)
279 {
280 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
281 const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
282 gen8_pte_t __iomem *gte;
283 gen8_pte_t __iomem *end;
284 struct sgt_iter iter;
285 dma_addr_t addr;
286
287 /*
288 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
289 * not to allow the user to override access to a read only page.
290 */
291
292 gte = (gen8_pte_t __iomem *)ggtt->gsm;
293 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
294 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
295 while (gte < end)
296 gen8_set_pte(gte++, vm->scratch[0]->encode);
297 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
298
299 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
300 gen8_set_pte(gte++, pte_encode | addr);
301 GEM_BUG_ON(gte > end);
302
303 /* Fill the allocated but "unused" space beyond the end of the buffer */
304 while (gte < end)
305 gen8_set_pte(gte++, vm->scratch[0]->encode);
306
307 /*
308 * We want to flush the TLBs only after we're certain all the PTE
309 * updates have finished.
310 */
311 ggtt->invalidate(ggtt);
312 }
313
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)314 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
315 u64 start, u64 length)
316 {
317 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
318 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
319 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
320 const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
321 gen8_pte_t __iomem *gtt_base =
322 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
323 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
324 int i;
325
326 if (WARN(num_entries > max_entries,
327 "First entry = %d; Num entries = %d (max=%d)\n",
328 first_entry, num_entries, max_entries))
329 num_entries = max_entries;
330
331 for (i = 0; i < num_entries; i++)
332 gen8_set_pte(>t_base[i], scratch_pte);
333 }
334
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)335 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
336 dma_addr_t addr,
337 u64 offset,
338 unsigned int pat_index,
339 u32 flags)
340 {
341 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
342 gen6_pte_t __iomem *pte =
343 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
344
345 iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
346
347 ggtt->invalidate(ggtt);
348 }
349
350 /*
351 * Binds an object into the global gtt with the specified cache level.
352 * The object will be accessible to the GPU via commands whose operands
353 * reference offsets within the global GTT as well as accessible by the GPU
354 * through the GMADR mapped BAR (i915->mm.gtt->gtt).
355 */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)356 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
357 struct i915_vma_resource *vma_res,
358 unsigned int pat_index,
359 u32 flags)
360 {
361 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
362 gen6_pte_t __iomem *gte;
363 gen6_pte_t __iomem *end;
364 struct sgt_iter iter;
365 dma_addr_t addr;
366
367 gte = (gen6_pte_t __iomem *)ggtt->gsm;
368 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
369
370 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
371 while (gte < end)
372 iowrite32(vm->scratch[0]->encode, gte++);
373 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
374 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
375 iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
376 GEM_BUG_ON(gte > end);
377
378 /* Fill the allocated but "unused" space beyond the end of the buffer */
379 while (gte < end)
380 iowrite32(vm->scratch[0]->encode, gte++);
381
382 /*
383 * We want to flush the TLBs only after we're certain all the PTE
384 * updates have finished.
385 */
386 ggtt->invalidate(ggtt);
387 }
388
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)389 static void nop_clear_range(struct i915_address_space *vm,
390 u64 start, u64 length)
391 {
392 }
393
bxt_vtd_ggtt_wa(struct i915_address_space * vm)394 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
395 {
396 /*
397 * Make sure the internal GAM fifo has been cleared of all GTT
398 * writes before exiting stop_machine(). This guarantees that
399 * any aperture accesses waiting to start in another process
400 * cannot back up behind the GTT writes causing a hang.
401 * The register can be any arbitrary GAM register.
402 */
403 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
404 }
405
406 struct insert_page {
407 struct i915_address_space *vm;
408 dma_addr_t addr;
409 u64 offset;
410 unsigned int pat_index;
411 };
412
bxt_vtd_ggtt_insert_page__cb(void * _arg)413 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
414 {
415 struct insert_page *arg = _arg;
416
417 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
418 arg->pat_index, 0);
419 bxt_vtd_ggtt_wa(arg->vm);
420
421 return 0;
422 }
423
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 unused)424 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
425 dma_addr_t addr,
426 u64 offset,
427 unsigned int pat_index,
428 u32 unused)
429 {
430 struct insert_page arg = { vm, addr, offset, pat_index };
431
432 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
433 }
434
435 struct insert_entries {
436 struct i915_address_space *vm;
437 struct i915_vma_resource *vma_res;
438 unsigned int pat_index;
439 u32 flags;
440 };
441
bxt_vtd_ggtt_insert_entries__cb(void * _arg)442 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
443 {
444 struct insert_entries *arg = _arg;
445
446 gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
447 arg->pat_index, arg->flags);
448 bxt_vtd_ggtt_wa(arg->vm);
449
450 return 0;
451 }
452
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)453 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
454 struct i915_vma_resource *vma_res,
455 unsigned int pat_index,
456 u32 flags)
457 {
458 struct insert_entries arg = { vm, vma_res, pat_index, flags };
459
460 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
461 }
462
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)463 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
464 u64 start, u64 length)
465 {
466 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
467 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
468 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
469 gen6_pte_t scratch_pte, __iomem *gtt_base =
470 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
471 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
472 int i;
473
474 if (WARN(num_entries > max_entries,
475 "First entry = %d; Num entries = %d (max=%d)\n",
476 first_entry, num_entries, max_entries))
477 num_entries = max_entries;
478
479 scratch_pte = vm->scratch[0]->encode;
480 for (i = 0; i < num_entries; i++)
481 iowrite32(scratch_pte, >t_base[i]);
482 }
483
intel_ggtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)484 void intel_ggtt_bind_vma(struct i915_address_space *vm,
485 struct i915_vm_pt_stash *stash,
486 struct i915_vma_resource *vma_res,
487 unsigned int pat_index,
488 u32 flags)
489 {
490 u32 pte_flags;
491
492 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
493 return;
494
495 vma_res->bound_flags |= flags;
496
497 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
498 pte_flags = 0;
499 if (vma_res->bi.readonly)
500 pte_flags |= PTE_READ_ONLY;
501 if (vma_res->bi.lmem)
502 pte_flags |= PTE_LM;
503
504 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
505 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
506 }
507
intel_ggtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)508 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
509 struct i915_vma_resource *vma_res)
510 {
511 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
512 }
513
514 /*
515 * Reserve the top of the GuC address space for firmware images. Addresses
516 * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
517 * which makes for a suitable range to hold GuC/HuC firmware images if the
518 * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
519 * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
520 * of the same size anyway, which is far more than needed, to keep the logic
521 * in uc_fw_ggtt_offset() simple.
522 */
523 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
524
ggtt_reserve_guc_top(struct i915_ggtt * ggtt)525 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
526 {
527 u64 offset;
528 int ret;
529
530 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
531 return 0;
532
533 GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
534 offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
535
536 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
537 GUC_TOP_RESERVE_SIZE, offset,
538 I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
539 if (ret)
540 drm_dbg(&ggtt->vm.i915->drm,
541 "Failed to reserve top of GGTT for GuC\n");
542
543 return ret;
544 }
545
ggtt_release_guc_top(struct i915_ggtt * ggtt)546 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
547 {
548 if (drm_mm_node_allocated(&ggtt->uc_fw))
549 drm_mm_remove_node(&ggtt->uc_fw);
550 }
551
cleanup_init_ggtt(struct i915_ggtt * ggtt)552 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
553 {
554 ggtt_release_guc_top(ggtt);
555 if (drm_mm_node_allocated(&ggtt->error_capture))
556 drm_mm_remove_node(&ggtt->error_capture);
557 mutex_destroy(&ggtt->error_mutex);
558 }
559
init_ggtt(struct i915_ggtt * ggtt)560 static int init_ggtt(struct i915_ggtt *ggtt)
561 {
562 /*
563 * Let GEM Manage all of the aperture.
564 *
565 * However, leave one page at the end still bound to the scratch page.
566 * There are a number of places where the hardware apparently prefetches
567 * past the end of the object, and we've seen multiple hangs with the
568 * GPU head pointer stuck in a batchbuffer bound at the last page of the
569 * aperture. One page should be enough to keep any prefetching inside
570 * of the aperture.
571 */
572 unsigned long hole_start, hole_end;
573 struct drm_mm_node *entry;
574 int ret;
575
576 /*
577 * GuC requires all resources that we're sharing with it to be placed in
578 * non-WOPCM memory. If GuC is not present or not in use we still need a
579 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
580 * why.
581 */
582 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
583 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
584
585 ret = intel_vgt_balloon(ggtt);
586 if (ret)
587 return ret;
588
589 mutex_init(&ggtt->error_mutex);
590 if (ggtt->mappable_end) {
591 /*
592 * Reserve a mappable slot for our lockless error capture.
593 *
594 * We strongly prefer taking address 0x0 in order to protect
595 * other critical buffers against accidental overwrites,
596 * as writing to address 0 is a very common mistake.
597 *
598 * Since 0 may already be in use by the system (e.g. the BIOS
599 * framebuffer), we let the reservation fail quietly and hope
600 * 0 remains reserved always.
601 *
602 * If we fail to reserve 0, and then fail to find any space
603 * for an error-capture, remain silent. We can afford not
604 * to reserve an error_capture node as we have fallback
605 * paths, and we trust that 0 will remain reserved. However,
606 * the only likely reason for failure to insert is a driver
607 * bug, which we expect to cause other failures...
608 *
609 * Since CPU can perform speculative reads on error capture
610 * (write-combining allows it) add scratch page after error
611 * capture to avoid DMAR errors.
612 */
613 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
614 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
615 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
616 drm_mm_insert_node_in_range(&ggtt->vm.mm,
617 &ggtt->error_capture,
618 ggtt->error_capture.size, 0,
619 ggtt->error_capture.color,
620 0, ggtt->mappable_end,
621 DRM_MM_INSERT_LOW);
622 }
623 if (drm_mm_node_allocated(&ggtt->error_capture)) {
624 u64 start = ggtt->error_capture.start;
625 u64 size = ggtt->error_capture.size;
626
627 ggtt->vm.scratch_range(&ggtt->vm, start, size);
628 drm_dbg(&ggtt->vm.i915->drm,
629 "Reserved GGTT:[%llx, %llx] for use by error capture\n",
630 start, start + size);
631 }
632
633 /*
634 * The upper portion of the GuC address space has a sizeable hole
635 * (several MB) that is inaccessible by GuC. Reserve this range within
636 * GGTT as it can comfortably hold GuC/HuC firmware images.
637 */
638 ret = ggtt_reserve_guc_top(ggtt);
639 if (ret)
640 goto err;
641
642 /* Clear any non-preallocated blocks */
643 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
644 drm_dbg(&ggtt->vm.i915->drm,
645 "clearing unused GTT space: [%lx, %lx]\n",
646 hole_start, hole_end);
647 ggtt->vm.clear_range(&ggtt->vm, hole_start,
648 hole_end - hole_start);
649 }
650
651 /* And finally clear the reserved guard page */
652 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
653
654 return 0;
655
656 err:
657 cleanup_init_ggtt(ggtt);
658 return ret;
659 }
660
aliasing_gtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)661 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
662 struct i915_vm_pt_stash *stash,
663 struct i915_vma_resource *vma_res,
664 unsigned int pat_index,
665 u32 flags)
666 {
667 u32 pte_flags;
668
669 /* Currently applicable only to VLV */
670 pte_flags = 0;
671 if (vma_res->bi.readonly)
672 pte_flags |= PTE_READ_ONLY;
673
674 if (flags & I915_VMA_LOCAL_BIND)
675 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
676 stash, vma_res, pat_index, flags);
677
678 if (flags & I915_VMA_GLOBAL_BIND)
679 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
680
681 vma_res->bound_flags |= flags;
682 }
683
aliasing_gtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)684 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
685 struct i915_vma_resource *vma_res)
686 {
687 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
688 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
689
690 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
691 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
692 }
693
init_aliasing_ppgtt(struct i915_ggtt * ggtt)694 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
695 {
696 struct i915_vm_pt_stash stash = {};
697 struct i915_ppgtt *ppgtt;
698 int err;
699
700 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
701 if (IS_ERR(ppgtt))
702 return PTR_ERR(ppgtt);
703
704 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
705 err = -ENODEV;
706 goto err_ppgtt;
707 }
708
709 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
710 if (err)
711 goto err_ppgtt;
712
713 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
714 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
715 i915_gem_object_unlock(ppgtt->vm.scratch[0]);
716 if (err)
717 goto err_stash;
718
719 /*
720 * Note we only pre-allocate as far as the end of the global
721 * GTT. On 48b / 4-level page-tables, the difference is very,
722 * very significant! We have to preallocate as GVT/vgpu does
723 * not like the page directory disappearing.
724 */
725 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
726
727 ggtt->alias = ppgtt;
728 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
729
730 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
731 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
732
733 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
734 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
735
736 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
737 return 0;
738
739 err_stash:
740 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
741 err_ppgtt:
742 i915_vm_put(&ppgtt->vm);
743 return err;
744 }
745
fini_aliasing_ppgtt(struct i915_ggtt * ggtt)746 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
747 {
748 struct i915_ppgtt *ppgtt;
749
750 ppgtt = fetch_and_zero(&ggtt->alias);
751 if (!ppgtt)
752 return;
753
754 i915_vm_put(&ppgtt->vm);
755
756 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
757 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
758 }
759
i915_init_ggtt(struct drm_i915_private * i915)760 int i915_init_ggtt(struct drm_i915_private *i915)
761 {
762 int ret;
763
764 ret = init_ggtt(to_gt(i915)->ggtt);
765 if (ret)
766 return ret;
767
768 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
769 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
770 if (ret)
771 cleanup_init_ggtt(to_gt(i915)->ggtt);
772 }
773
774 return 0;
775 }
776
ggtt_cleanup_hw(struct i915_ggtt * ggtt)777 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
778 {
779 struct i915_vma *vma, *vn;
780
781 flush_workqueue(ggtt->vm.i915->wq);
782 i915_gem_drain_freed_objects(ggtt->vm.i915);
783
784 mutex_lock(&ggtt->vm.mutex);
785
786 ggtt->vm.skip_pte_rewrite = true;
787
788 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
789 struct drm_i915_gem_object *obj = vma->obj;
790 bool trylock;
791
792 trylock = i915_gem_object_trylock(obj, NULL);
793 WARN_ON(!trylock);
794
795 WARN_ON(__i915_vma_unbind(vma));
796 if (trylock)
797 i915_gem_object_unlock(obj);
798 }
799
800 if (drm_mm_node_allocated(&ggtt->error_capture))
801 drm_mm_remove_node(&ggtt->error_capture);
802 mutex_destroy(&ggtt->error_mutex);
803
804 ggtt_release_guc_top(ggtt);
805 intel_vgt_deballoon(ggtt);
806
807 ggtt->vm.cleanup(&ggtt->vm);
808
809 mutex_unlock(&ggtt->vm.mutex);
810 i915_address_space_fini(&ggtt->vm);
811
812 arch_phys_wc_del(ggtt->mtrr);
813
814 if (ggtt->iomap.size)
815 io_mapping_fini(&ggtt->iomap);
816 }
817
818 /**
819 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
820 * @i915: i915 device
821 */
i915_ggtt_driver_release(struct drm_i915_private * i915)822 void i915_ggtt_driver_release(struct drm_i915_private *i915)
823 {
824 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
825
826 fini_aliasing_ppgtt(ggtt);
827
828 intel_ggtt_fini_fences(ggtt);
829 ggtt_cleanup_hw(ggtt);
830 }
831
832 /**
833 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
834 * all free objects have been drained.
835 * @i915: i915 device
836 */
i915_ggtt_driver_late_release(struct drm_i915_private * i915)837 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
838 {
839 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
840
841 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
842 dma_resv_fini(&ggtt->vm._resv);
843 }
844
gen6_get_total_gtt_size(u16 snb_gmch_ctl)845 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
846 {
847 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
848 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
849 return snb_gmch_ctl << 20;
850 }
851
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)852 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
853 {
854 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
855 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
856 if (bdw_gmch_ctl)
857 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
858
859 #ifdef CONFIG_X86_32
860 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
861 if (bdw_gmch_ctl > 4)
862 bdw_gmch_ctl = 4;
863 #endif
864
865 return bdw_gmch_ctl << 20;
866 }
867
chv_get_total_gtt_size(u16 gmch_ctrl)868 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
869 {
870 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
871 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
872
873 if (gmch_ctrl)
874 return 1 << (20 + gmch_ctrl);
875
876 return 0;
877 }
878
gen6_gttmmadr_size(struct drm_i915_private * i915)879 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
880 {
881 /*
882 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
883 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
884 */
885 GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
886 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
887 }
888
gen6_gttadr_offset(struct drm_i915_private * i915)889 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
890 {
891 return gen6_gttmmadr_size(i915) / 2;
892 }
893
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)894 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
895 {
896 struct drm_i915_private *i915 = ggtt->vm.i915;
897 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
898 phys_addr_t phys_addr;
899 u32 pte_flags;
900 int ret;
901
902 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
903 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
904
905 /*
906 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
907 * will be dropped. For WC mappings in general we have 64 byte burst
908 * writes when the WC buffer is flushed, so we can't use it, but have to
909 * resort to an uncached mapping. The WC issue is easily caught by the
910 * readback check when writing GTT PTE entries.
911 */
912 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11)
913 ggtt->gsm = ioremap(phys_addr, size);
914 else
915 ggtt->gsm = ioremap_wc(phys_addr, size);
916 if (!ggtt->gsm) {
917 drm_err(&i915->drm, "Failed to map the ggtt page table\n");
918 return -ENOMEM;
919 }
920
921 kref_init(&ggtt->vm.resv_ref);
922 ret = setup_scratch_page(&ggtt->vm);
923 if (ret) {
924 drm_err(&i915->drm, "Scratch setup failed\n");
925 /* iounmap will also get called at remove, but meh */
926 iounmap(ggtt->gsm);
927 return ret;
928 }
929
930 pte_flags = 0;
931 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
932 pte_flags |= PTE_LM;
933
934 ggtt->vm.scratch[0]->encode =
935 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
936 i915_gem_get_pat_index(i915,
937 I915_CACHE_NONE),
938 pte_flags);
939
940 return 0;
941 }
942
gen6_gmch_remove(struct i915_address_space * vm)943 static void gen6_gmch_remove(struct i915_address_space *vm)
944 {
945 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
946
947 iounmap(ggtt->gsm);
948 free_scratch(vm);
949 }
950
pci_resource(struct pci_dev * pdev,int bar)951 static struct resource pci_resource(struct pci_dev *pdev, int bar)
952 {
953 return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
954 pci_resource_len(pdev, bar));
955 }
956
gen8_gmch_probe(struct i915_ggtt * ggtt)957 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
958 {
959 struct drm_i915_private *i915 = ggtt->vm.i915;
960 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
961 unsigned int size;
962 u16 snb_gmch_ctl;
963
964 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
965 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
966 return -ENXIO;
967
968 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
969 ggtt->mappable_end = resource_size(&ggtt->gmadr);
970 }
971
972 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
973 if (IS_CHERRYVIEW(i915))
974 size = chv_get_total_gtt_size(snb_gmch_ctl);
975 else
976 size = gen8_get_total_gtt_size(snb_gmch_ctl);
977
978 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
979 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
980 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
981
982 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
983 ggtt->vm.cleanup = gen6_gmch_remove;
984 ggtt->vm.insert_page = gen8_ggtt_insert_page;
985 ggtt->vm.clear_range = nop_clear_range;
986 ggtt->vm.scratch_range = gen8_ggtt_clear_range;
987
988 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
989
990 /*
991 * Serialize GTT updates with aperture access on BXT if VT-d is on,
992 * and always on CHV.
993 */
994 if (intel_vm_no_concurrent_access_wa(i915)) {
995 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
996 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
997
998 /*
999 * Calling stop_machine() version of GGTT update function
1000 * at error capture/reset path will raise lockdep warning.
1001 * Allow calling gen8_ggtt_insert_* directly at reset path
1002 * which is safe from parallel GGTT updates.
1003 */
1004 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1005 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1006
1007 ggtt->vm.bind_async_flags =
1008 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1009 }
1010
1011 if (intel_uc_wants_guc(&ggtt->vm.gt->uc))
1012 ggtt->invalidate = guc_ggtt_invalidate;
1013 else
1014 ggtt->invalidate = gen8_ggtt_invalidate;
1015
1016 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1017 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1018
1019 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1020 ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1021 else
1022 ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1023
1024 return ggtt_probe_common(ggtt, size);
1025 }
1026
1027 /*
1028 * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1029 * so the switch-case statements in these PTE encode functions are still valid.
1030 * See translation table LEGACY_CACHELEVEL.
1031 */
snb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1032 static u64 snb_pte_encode(dma_addr_t addr,
1033 unsigned int pat_index,
1034 u32 flags)
1035 {
1036 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1037
1038 switch (pat_index) {
1039 case I915_CACHE_L3_LLC:
1040 case I915_CACHE_LLC:
1041 pte |= GEN6_PTE_CACHE_LLC;
1042 break;
1043 case I915_CACHE_NONE:
1044 pte |= GEN6_PTE_UNCACHED;
1045 break;
1046 default:
1047 MISSING_CASE(pat_index);
1048 }
1049
1050 return pte;
1051 }
1052
ivb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1053 static u64 ivb_pte_encode(dma_addr_t addr,
1054 unsigned int pat_index,
1055 u32 flags)
1056 {
1057 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1058
1059 switch (pat_index) {
1060 case I915_CACHE_L3_LLC:
1061 pte |= GEN7_PTE_CACHE_L3_LLC;
1062 break;
1063 case I915_CACHE_LLC:
1064 pte |= GEN6_PTE_CACHE_LLC;
1065 break;
1066 case I915_CACHE_NONE:
1067 pte |= GEN6_PTE_UNCACHED;
1068 break;
1069 default:
1070 MISSING_CASE(pat_index);
1071 }
1072
1073 return pte;
1074 }
1075
byt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1076 static u64 byt_pte_encode(dma_addr_t addr,
1077 unsigned int pat_index,
1078 u32 flags)
1079 {
1080 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1081
1082 if (!(flags & PTE_READ_ONLY))
1083 pte |= BYT_PTE_WRITEABLE;
1084
1085 if (pat_index != I915_CACHE_NONE)
1086 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1087
1088 return pte;
1089 }
1090
hsw_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1091 static u64 hsw_pte_encode(dma_addr_t addr,
1092 unsigned int pat_index,
1093 u32 flags)
1094 {
1095 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1096
1097 if (pat_index != I915_CACHE_NONE)
1098 pte |= HSW_WB_LLC_AGE3;
1099
1100 return pte;
1101 }
1102
iris_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1103 static u64 iris_pte_encode(dma_addr_t addr,
1104 unsigned int pat_index,
1105 u32 flags)
1106 {
1107 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1108
1109 switch (pat_index) {
1110 case I915_CACHE_NONE:
1111 break;
1112 case I915_CACHE_WT:
1113 pte |= HSW_WT_ELLC_LLC_AGE3;
1114 break;
1115 default:
1116 pte |= HSW_WB_ELLC_LLC_AGE3;
1117 break;
1118 }
1119
1120 return pte;
1121 }
1122
gen6_gmch_probe(struct i915_ggtt * ggtt)1123 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1124 {
1125 struct drm_i915_private *i915 = ggtt->vm.i915;
1126 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1127 unsigned int size;
1128 u16 snb_gmch_ctl;
1129
1130 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1131 return -ENXIO;
1132
1133 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1134 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1135
1136 /*
1137 * 64/512MB is the current min/max we actually know of, but this is
1138 * just a coarse sanity check.
1139 */
1140 if (ggtt->mappable_end < (64 << 20) ||
1141 ggtt->mappable_end > (512 << 20)) {
1142 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1143 &ggtt->mappable_end);
1144 return -ENXIO;
1145 }
1146
1147 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1148
1149 size = gen6_get_total_gtt_size(snb_gmch_ctl);
1150 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1151
1152 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1153 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1154
1155 ggtt->vm.clear_range = nop_clear_range;
1156 if (!HAS_FULL_PPGTT(i915))
1157 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1158 ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1159 ggtt->vm.insert_page = gen6_ggtt_insert_page;
1160 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1161 ggtt->vm.cleanup = gen6_gmch_remove;
1162
1163 ggtt->invalidate = gen6_ggtt_invalidate;
1164
1165 if (HAS_EDRAM(i915))
1166 ggtt->vm.pte_encode = iris_pte_encode;
1167 else if (IS_HASWELL(i915))
1168 ggtt->vm.pte_encode = hsw_pte_encode;
1169 else if (IS_VALLEYVIEW(i915))
1170 ggtt->vm.pte_encode = byt_pte_encode;
1171 else if (GRAPHICS_VER(i915) >= 7)
1172 ggtt->vm.pte_encode = ivb_pte_encode;
1173 else
1174 ggtt->vm.pte_encode = snb_pte_encode;
1175
1176 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1177 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1178
1179 return ggtt_probe_common(ggtt, size);
1180 }
1181
ggtt_probe_hw(struct i915_ggtt * ggtt,struct intel_gt * gt)1182 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1183 {
1184 struct drm_i915_private *i915 = gt->i915;
1185 int ret;
1186
1187 ggtt->vm.gt = gt;
1188 ggtt->vm.i915 = i915;
1189 ggtt->vm.dma = i915->drm.dev;
1190 dma_resv_init(&ggtt->vm._resv);
1191
1192 if (GRAPHICS_VER(i915) >= 8)
1193 ret = gen8_gmch_probe(ggtt);
1194 else if (GRAPHICS_VER(i915) >= 6)
1195 ret = gen6_gmch_probe(ggtt);
1196 else
1197 ret = intel_ggtt_gmch_probe(ggtt);
1198
1199 if (ret) {
1200 dma_resv_fini(&ggtt->vm._resv);
1201 return ret;
1202 }
1203
1204 if ((ggtt->vm.total - 1) >> 32) {
1205 drm_err(&i915->drm,
1206 "We never expected a Global GTT with more than 32bits"
1207 " of address space! Found %lldM!\n",
1208 ggtt->vm.total >> 20);
1209 ggtt->vm.total = 1ULL << 32;
1210 ggtt->mappable_end =
1211 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1212 }
1213
1214 if (ggtt->mappable_end > ggtt->vm.total) {
1215 drm_err(&i915->drm,
1216 "mappable aperture extends past end of GGTT,"
1217 " aperture=%pa, total=%llx\n",
1218 &ggtt->mappable_end, ggtt->vm.total);
1219 ggtt->mappable_end = ggtt->vm.total;
1220 }
1221
1222 /* GMADR is the PCI mmio aperture into the global GTT. */
1223 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1224 drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1225 (u64)ggtt->mappable_end >> 20);
1226 drm_dbg(&i915->drm, "DSM size = %lluM\n",
1227 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1228
1229 return 0;
1230 }
1231
1232 /**
1233 * i915_ggtt_probe_hw - Probe GGTT hardware location
1234 * @i915: i915 device
1235 */
i915_ggtt_probe_hw(struct drm_i915_private * i915)1236 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1237 {
1238 struct intel_gt *gt;
1239 int ret, i;
1240
1241 for_each_gt(gt, i915, i) {
1242 ret = intel_gt_assign_ggtt(gt);
1243 if (ret)
1244 return ret;
1245 }
1246
1247 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1248 if (ret)
1249 return ret;
1250
1251 if (i915_vtd_active(i915))
1252 drm_info(&i915->drm, "VT-d active for gfx access\n");
1253
1254 return 0;
1255 }
1256
i915_ggtt_create(struct drm_i915_private * i915)1257 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1258 {
1259 struct i915_ggtt *ggtt;
1260
1261 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1262 if (!ggtt)
1263 return ERR_PTR(-ENOMEM);
1264
1265 INIT_LIST_HEAD(&ggtt->gt_list);
1266
1267 return ggtt;
1268 }
1269
i915_ggtt_enable_hw(struct drm_i915_private * i915)1270 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1271 {
1272 if (GRAPHICS_VER(i915) < 6)
1273 return intel_ggtt_gmch_enable_hw(i915);
1274
1275 return 0;
1276 }
1277
1278 /**
1279 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1280 * @vm: The VM to restore the mappings for
1281 *
1282 * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1283 * DPT page table.
1284 *
1285 * Returns %true if restoring the mapping for any object that was in a write
1286 * domain before suspend.
1287 */
i915_ggtt_resume_vm(struct i915_address_space * vm)1288 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1289 {
1290 struct i915_vma *vma;
1291 bool write_domain_objs = false;
1292
1293 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1294
1295 /* First fill our portion of the GTT with scratch pages */
1296 vm->clear_range(vm, 0, vm->total);
1297
1298 /* clflush objects bound into the GGTT and rebind them. */
1299 list_for_each_entry(vma, &vm->bound_list, vm_link) {
1300 struct drm_i915_gem_object *obj = vma->obj;
1301 unsigned int was_bound =
1302 atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1303
1304 GEM_BUG_ON(!was_bound);
1305
1306 /*
1307 * Clear the bound flags of the vma resource to allow
1308 * ptes to be repopulated.
1309 */
1310 vma->resource->bound_flags = 0;
1311 vma->ops->bind_vma(vm, NULL, vma->resource,
1312 obj ? obj->pat_index :
1313 i915_gem_get_pat_index(vm->i915,
1314 I915_CACHE_NONE),
1315 was_bound);
1316
1317 if (obj) { /* only used during resume => exclusive access */
1318 write_domain_objs |= fetch_and_zero(&obj->write_domain);
1319 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1320 }
1321 }
1322
1323 return write_domain_objs;
1324 }
1325
i915_ggtt_resume(struct i915_ggtt * ggtt)1326 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1327 {
1328 struct intel_gt *gt;
1329 bool flush;
1330
1331 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1332 intel_gt_check_and_clear_faults(gt);
1333
1334 flush = i915_ggtt_resume_vm(&ggtt->vm);
1335
1336 if (drm_mm_node_allocated(&ggtt->error_capture))
1337 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1338 ggtt->error_capture.size);
1339
1340 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1341 intel_uc_resume_mappings(>->uc);
1342
1343 ggtt->invalidate(ggtt);
1344
1345 if (flush)
1346 wbinvd_on_all_cpus();
1347
1348 intel_ggtt_restore_fences(ggtt);
1349 }
1350