1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35 #include <asm/smp.h>
36
37 #include <drm/i915_drm.h>
38
39 #include "display/intel_frontbuffer.h"
40 #include "gt/intel_gt.h"
41
42 #include "i915_drv.h"
43 #include "i915_scatterlist.h"
44 #include "i915_trace.h"
45 #include "i915_vgpu.h"
46
47 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
48
49 #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
50 #define DBG(...) trace_printk(__VA_ARGS__)
51 #else
52 #define DBG(...)
53 #endif
54
55 /**
56 * DOC: Global GTT views
57 *
58 * Background and previous state
59 *
60 * Historically objects could exists (be bound) in global GTT space only as
61 * singular instances with a view representing all of the object's backing pages
62 * in a linear fashion. This view will be called a normal view.
63 *
64 * To support multiple views of the same object, where the number of mapped
65 * pages is not equal to the backing store, or where the layout of the pages
66 * is not linear, concept of a GGTT view was added.
67 *
68 * One example of an alternative view is a stereo display driven by a single
69 * image. In this case we would have a framebuffer looking like this
70 * (2x2 pages):
71 *
72 * 12
73 * 34
74 *
75 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
76 * rendering. In contrast, fed to the display engine would be an alternative
77 * view which could look something like this:
78 *
79 * 1212
80 * 3434
81 *
82 * In this example both the size and layout of pages in the alternative view is
83 * different from the normal view.
84 *
85 * Implementation and usage
86 *
87 * GGTT views are implemented using VMAs and are distinguished via enum
88 * i915_ggtt_view_type and struct i915_ggtt_view.
89 *
90 * A new flavour of core GEM functions which work with GGTT bound objects were
91 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
92 * renaming in large amounts of code. They take the struct i915_ggtt_view
93 * parameter encapsulating all metadata required to implement a view.
94 *
95 * As a helper for callers which are only interested in the normal view,
96 * globally const i915_ggtt_view_normal singleton instance exists. All old core
97 * GEM API functions, the ones not taking the view parameter, are operating on,
98 * or with the normal GGTT view.
99 *
100 * Code wanting to add or use a new GGTT view needs to:
101 *
102 * 1. Add a new enum with a suitable name.
103 * 2. Extend the metadata in the i915_ggtt_view structure if required.
104 * 3. Add support to i915_get_vma_pages().
105 *
106 * New views are required to build a scatter-gather table from within the
107 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
108 * exists for the lifetime of an VMA.
109 *
110 * Core API is designed to have copy semantics which means that passed in
111 * struct i915_ggtt_view does not need to be persistent (left around after
112 * calling the core API functions).
113 *
114 */
115
116 #define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt)
117
118 static int
119 i915_get_ggtt_vma_pages(struct i915_vma *vma);
120
gen6_ggtt_invalidate(struct i915_ggtt * ggtt)121 static void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
122 {
123 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
124
125 /*
126 * Note that as an uncached mmio write, this will flush the
127 * WCB of the writes into the GGTT before it triggers the invalidate.
128 */
129 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
130 }
131
guc_ggtt_invalidate(struct i915_ggtt * ggtt)132 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
133 {
134 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
135
136 gen6_ggtt_invalidate(ggtt);
137 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
138 }
139
gmch_ggtt_invalidate(struct i915_ggtt * ggtt)140 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
141 {
142 intel_gtt_chipset_flush();
143 }
144
ppgtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)145 static int ppgtt_bind_vma(struct i915_vma *vma,
146 enum i915_cache_level cache_level,
147 u32 unused)
148 {
149 u32 pte_flags;
150 int err;
151
152 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
153 err = vma->vm->allocate_va_range(vma->vm,
154 vma->node.start, vma->size);
155 if (err)
156 return err;
157 }
158
159 /* Applicable to VLV, and gen8+ */
160 pte_flags = 0;
161 if (i915_gem_object_is_readonly(vma->obj))
162 pte_flags |= PTE_READ_ONLY;
163
164 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
165
166 return 0;
167 }
168
ppgtt_unbind_vma(struct i915_vma * vma)169 static void ppgtt_unbind_vma(struct i915_vma *vma)
170 {
171 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
172 }
173
ppgtt_set_pages(struct i915_vma * vma)174 static int ppgtt_set_pages(struct i915_vma *vma)
175 {
176 GEM_BUG_ON(vma->pages);
177
178 vma->pages = vma->obj->mm.pages;
179
180 vma->page_sizes = vma->obj->mm.page_sizes;
181
182 return 0;
183 }
184
clear_pages(struct i915_vma * vma)185 static void clear_pages(struct i915_vma *vma)
186 {
187 GEM_BUG_ON(!vma->pages);
188
189 if (vma->pages != vma->obj->mm.pages) {
190 sg_free_table(vma->pages);
191 kfree(vma->pages);
192 }
193 vma->pages = NULL;
194
195 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
196 }
197
gen8_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)198 static u64 gen8_pte_encode(dma_addr_t addr,
199 enum i915_cache_level level,
200 u32 flags)
201 {
202 gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
203
204 if (unlikely(flags & PTE_READ_ONLY))
205 pte &= ~_PAGE_RW;
206
207 switch (level) {
208 case I915_CACHE_NONE:
209 pte |= PPAT_UNCACHED;
210 break;
211 case I915_CACHE_WT:
212 pte |= PPAT_DISPLAY_ELLC;
213 break;
214 default:
215 pte |= PPAT_CACHED;
216 break;
217 }
218
219 return pte;
220 }
221
gen8_pde_encode(const dma_addr_t addr,const enum i915_cache_level level)222 static u64 gen8_pde_encode(const dma_addr_t addr,
223 const enum i915_cache_level level)
224 {
225 u64 pde = _PAGE_PRESENT | _PAGE_RW;
226 pde |= addr;
227 if (level != I915_CACHE_NONE)
228 pde |= PPAT_CACHED_PDE;
229 else
230 pde |= PPAT_UNCACHED;
231 return pde;
232 }
233
snb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)234 static u64 snb_pte_encode(dma_addr_t addr,
235 enum i915_cache_level level,
236 u32 flags)
237 {
238 gen6_pte_t pte = GEN6_PTE_VALID;
239 pte |= GEN6_PTE_ADDR_ENCODE(addr);
240
241 switch (level) {
242 case I915_CACHE_L3_LLC:
243 case I915_CACHE_LLC:
244 pte |= GEN6_PTE_CACHE_LLC;
245 break;
246 case I915_CACHE_NONE:
247 pte |= GEN6_PTE_UNCACHED;
248 break;
249 default:
250 MISSING_CASE(level);
251 }
252
253 return pte;
254 }
255
ivb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)256 static u64 ivb_pte_encode(dma_addr_t addr,
257 enum i915_cache_level level,
258 u32 flags)
259 {
260 gen6_pte_t pte = GEN6_PTE_VALID;
261 pte |= GEN6_PTE_ADDR_ENCODE(addr);
262
263 switch (level) {
264 case I915_CACHE_L3_LLC:
265 pte |= GEN7_PTE_CACHE_L3_LLC;
266 break;
267 case I915_CACHE_LLC:
268 pte |= GEN6_PTE_CACHE_LLC;
269 break;
270 case I915_CACHE_NONE:
271 pte |= GEN6_PTE_UNCACHED;
272 break;
273 default:
274 MISSING_CASE(level);
275 }
276
277 return pte;
278 }
279
byt_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)280 static u64 byt_pte_encode(dma_addr_t addr,
281 enum i915_cache_level level,
282 u32 flags)
283 {
284 gen6_pte_t pte = GEN6_PTE_VALID;
285 pte |= GEN6_PTE_ADDR_ENCODE(addr);
286
287 if (!(flags & PTE_READ_ONLY))
288 pte |= BYT_PTE_WRITEABLE;
289
290 if (level != I915_CACHE_NONE)
291 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
292
293 return pte;
294 }
295
hsw_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)296 static u64 hsw_pte_encode(dma_addr_t addr,
297 enum i915_cache_level level,
298 u32 flags)
299 {
300 gen6_pte_t pte = GEN6_PTE_VALID;
301 pte |= HSW_PTE_ADDR_ENCODE(addr);
302
303 if (level != I915_CACHE_NONE)
304 pte |= HSW_WB_LLC_AGE3;
305
306 return pte;
307 }
308
iris_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)309 static u64 iris_pte_encode(dma_addr_t addr,
310 enum i915_cache_level level,
311 u32 flags)
312 {
313 gen6_pte_t pte = GEN6_PTE_VALID;
314 pte |= HSW_PTE_ADDR_ENCODE(addr);
315
316 switch (level) {
317 case I915_CACHE_NONE:
318 break;
319 case I915_CACHE_WT:
320 pte |= HSW_WT_ELLC_LLC_AGE3;
321 break;
322 default:
323 pte |= HSW_WB_ELLC_LLC_AGE3;
324 break;
325 }
326
327 return pte;
328 }
329
stash_init(struct pagestash * stash)330 static void stash_init(struct pagestash *stash)
331 {
332 pagevec_init(&stash->pvec);
333 spin_lock_init(&stash->lock);
334 }
335
stash_pop_page(struct pagestash * stash)336 static struct page *stash_pop_page(struct pagestash *stash)
337 {
338 struct page *page = NULL;
339
340 spin_lock(&stash->lock);
341 if (likely(stash->pvec.nr))
342 page = stash->pvec.pages[--stash->pvec.nr];
343 spin_unlock(&stash->lock);
344
345 return page;
346 }
347
stash_push_pagevec(struct pagestash * stash,struct pagevec * pvec)348 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
349 {
350 unsigned int nr;
351
352 spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
353
354 nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
355 memcpy(stash->pvec.pages + stash->pvec.nr,
356 pvec->pages + pvec->nr - nr,
357 sizeof(pvec->pages[0]) * nr);
358 stash->pvec.nr += nr;
359
360 spin_unlock(&stash->lock);
361
362 pvec->nr -= nr;
363 }
364
vm_alloc_page(struct i915_address_space * vm,gfp_t gfp)365 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
366 {
367 struct pagevec stack;
368 struct page *page;
369
370 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
371 i915_gem_shrink_all(vm->i915);
372
373 page = stash_pop_page(&vm->free_pages);
374 if (page)
375 return page;
376
377 if (!vm->pt_kmap_wc)
378 return alloc_page(gfp);
379
380 /* Look in our global stash of WC pages... */
381 page = stash_pop_page(&vm->i915->mm.wc_stash);
382 if (page)
383 return page;
384
385 /*
386 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
387 *
388 * We have to be careful as page allocation may trigger the shrinker
389 * (via direct reclaim) which will fill up the WC stash underneath us.
390 * So we add our WB pages into a temporary pvec on the stack and merge
391 * them into the WC stash after all the allocations are complete.
392 */
393 pagevec_init(&stack);
394 do {
395 struct page *page;
396
397 page = alloc_page(gfp);
398 if (unlikely(!page))
399 break;
400
401 stack.pages[stack.nr++] = page;
402 } while (pagevec_space(&stack));
403
404 if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
405 page = stack.pages[--stack.nr];
406
407 /* Merge spare WC pages to the global stash */
408 if (stack.nr)
409 stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
410
411 /* Push any surplus WC pages onto the local VM stash */
412 if (stack.nr)
413 stash_push_pagevec(&vm->free_pages, &stack);
414 }
415
416 /* Return unwanted leftovers */
417 if (unlikely(stack.nr)) {
418 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
419 __pagevec_release(&stack);
420 }
421
422 return page;
423 }
424
vm_free_pages_release(struct i915_address_space * vm,bool immediate)425 static void vm_free_pages_release(struct i915_address_space *vm,
426 bool immediate)
427 {
428 struct pagevec *pvec = &vm->free_pages.pvec;
429 struct pagevec stack;
430
431 lockdep_assert_held(&vm->free_pages.lock);
432 GEM_BUG_ON(!pagevec_count(pvec));
433
434 if (vm->pt_kmap_wc) {
435 /*
436 * When we use WC, first fill up the global stash and then
437 * only if full immediately free the overflow.
438 */
439 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
440
441 /*
442 * As we have made some room in the VM's free_pages,
443 * we can wait for it to fill again. Unless we are
444 * inside i915_address_space_fini() and must
445 * immediately release the pages!
446 */
447 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
448 return;
449
450 /*
451 * We have to drop the lock to allow ourselves to sleep,
452 * so take a copy of the pvec and clear the stash for
453 * others to use it as we sleep.
454 */
455 stack = *pvec;
456 pagevec_reinit(pvec);
457 spin_unlock(&vm->free_pages.lock);
458
459 pvec = &stack;
460 set_pages_array_wb(pvec->pages, pvec->nr);
461
462 spin_lock(&vm->free_pages.lock);
463 }
464
465 __pagevec_release(pvec);
466 }
467
vm_free_page(struct i915_address_space * vm,struct page * page)468 static void vm_free_page(struct i915_address_space *vm, struct page *page)
469 {
470 /*
471 * On !llc, we need to change the pages back to WB. We only do so
472 * in bulk, so we rarely need to change the page attributes here,
473 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
474 * To make detection of the possible sleep more likely, use an
475 * unconditional might_sleep() for everybody.
476 */
477 might_sleep();
478 spin_lock(&vm->free_pages.lock);
479 while (!pagevec_space(&vm->free_pages.pvec))
480 vm_free_pages_release(vm, false);
481 GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
482 pagevec_add(&vm->free_pages.pvec, page);
483 spin_unlock(&vm->free_pages.lock);
484 }
485
i915_address_space_fini(struct i915_address_space * vm)486 static void i915_address_space_fini(struct i915_address_space *vm)
487 {
488 spin_lock(&vm->free_pages.lock);
489 if (pagevec_count(&vm->free_pages.pvec))
490 vm_free_pages_release(vm, true);
491 GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
492 spin_unlock(&vm->free_pages.lock);
493
494 drm_mm_takedown(&vm->mm);
495
496 mutex_destroy(&vm->mutex);
497 }
498
ppgtt_destroy_vma(struct i915_address_space * vm)499 static void ppgtt_destroy_vma(struct i915_address_space *vm)
500 {
501 struct list_head *phases[] = {
502 &vm->bound_list,
503 &vm->unbound_list,
504 NULL,
505 }, **phase;
506
507 mutex_lock(&vm->i915->drm.struct_mutex);
508 for (phase = phases; *phase; phase++) {
509 struct i915_vma *vma, *vn;
510
511 list_for_each_entry_safe(vma, vn, *phase, vm_link)
512 i915_vma_destroy(vma);
513 }
514 mutex_unlock(&vm->i915->drm.struct_mutex);
515 }
516
__i915_vm_release(struct work_struct * work)517 static void __i915_vm_release(struct work_struct *work)
518 {
519 struct i915_address_space *vm =
520 container_of(work, struct i915_address_space, rcu.work);
521
522 ppgtt_destroy_vma(vm);
523
524 GEM_BUG_ON(!list_empty(&vm->bound_list));
525 GEM_BUG_ON(!list_empty(&vm->unbound_list));
526
527 vm->cleanup(vm);
528 i915_address_space_fini(vm);
529
530 kfree(vm);
531 }
532
i915_vm_release(struct kref * kref)533 void i915_vm_release(struct kref *kref)
534 {
535 struct i915_address_space *vm =
536 container_of(kref, struct i915_address_space, ref);
537
538 GEM_BUG_ON(i915_is_ggtt(vm));
539 trace_i915_ppgtt_release(vm);
540
541 vm->closed = true;
542 queue_rcu_work(vm->i915->wq, &vm->rcu);
543 }
544
i915_address_space_init(struct i915_address_space * vm,int subclass)545 static void i915_address_space_init(struct i915_address_space *vm, int subclass)
546 {
547 kref_init(&vm->ref);
548 INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
549
550 /*
551 * The vm->mutex must be reclaim safe (for use in the shrinker).
552 * Do a dummy acquire now under fs_reclaim so that any allocation
553 * attempt holding the lock is immediately reported by lockdep.
554 */
555 mutex_init(&vm->mutex);
556 lockdep_set_subclass(&vm->mutex, subclass);
557 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
558
559 GEM_BUG_ON(!vm->total);
560 drm_mm_init(&vm->mm, 0, vm->total);
561 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
562
563 stash_init(&vm->free_pages);
564
565 INIT_LIST_HEAD(&vm->unbound_list);
566 INIT_LIST_HEAD(&vm->bound_list);
567 }
568
__setup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p,gfp_t gfp)569 static int __setup_page_dma(struct i915_address_space *vm,
570 struct i915_page_dma *p,
571 gfp_t gfp)
572 {
573 p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
574 if (unlikely(!p->page))
575 return -ENOMEM;
576
577 p->daddr = dma_map_page_attrs(vm->dma,
578 p->page, 0, PAGE_SIZE,
579 PCI_DMA_BIDIRECTIONAL,
580 DMA_ATTR_SKIP_CPU_SYNC |
581 DMA_ATTR_NO_WARN);
582 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
583 vm_free_page(vm, p->page);
584 return -ENOMEM;
585 }
586
587 return 0;
588 }
589
setup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p)590 static int setup_page_dma(struct i915_address_space *vm,
591 struct i915_page_dma *p)
592 {
593 return __setup_page_dma(vm, p, __GFP_HIGHMEM);
594 }
595
cleanup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p)596 static void cleanup_page_dma(struct i915_address_space *vm,
597 struct i915_page_dma *p)
598 {
599 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
600 vm_free_page(vm, p->page);
601 }
602
603 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
604
605 static void
fill_page_dma(const struct i915_page_dma * p,const u64 val,unsigned int count)606 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
607 {
608 kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
609 }
610
611 #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
612 #define fill32_px(px, v) do { \
613 u64 v__ = lower_32_bits(v); \
614 fill_px((px), v__ << 32 | v__); \
615 } while (0)
616
617 static int
setup_scratch_page(struct i915_address_space * vm,gfp_t gfp)618 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
619 {
620 unsigned long size;
621
622 /*
623 * In order to utilize 64K pages for an object with a size < 2M, we will
624 * need to support a 64K scratch page, given that every 16th entry for a
625 * page-table operating in 64K mode must point to a properly aligned 64K
626 * region, including any PTEs which happen to point to scratch.
627 *
628 * This is only relevant for the 48b PPGTT where we support
629 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
630 * scratch (read-only) between all vm, we create one 64k scratch page
631 * for all.
632 */
633 size = I915_GTT_PAGE_SIZE_4K;
634 if (i915_vm_is_4lvl(vm) &&
635 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
636 size = I915_GTT_PAGE_SIZE_64K;
637 gfp |= __GFP_NOWARN;
638 }
639 gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
640
641 do {
642 unsigned int order = get_order(size);
643 struct page *page;
644 dma_addr_t addr;
645
646 page = alloc_pages(gfp, order);
647 if (unlikely(!page))
648 goto skip;
649
650 addr = dma_map_page_attrs(vm->dma,
651 page, 0, size,
652 PCI_DMA_BIDIRECTIONAL,
653 DMA_ATTR_SKIP_CPU_SYNC |
654 DMA_ATTR_NO_WARN);
655 if (unlikely(dma_mapping_error(vm->dma, addr)))
656 goto free_page;
657
658 if (unlikely(!IS_ALIGNED(addr, size)))
659 goto unmap_page;
660
661 vm->scratch[0].base.page = page;
662 vm->scratch[0].base.daddr = addr;
663 vm->scratch_order = order;
664 return 0;
665
666 unmap_page:
667 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
668 free_page:
669 __free_pages(page, order);
670 skip:
671 if (size == I915_GTT_PAGE_SIZE_4K)
672 return -ENOMEM;
673
674 size = I915_GTT_PAGE_SIZE_4K;
675 gfp &= ~__GFP_NOWARN;
676 } while (1);
677 }
678
cleanup_scratch_page(struct i915_address_space * vm)679 static void cleanup_scratch_page(struct i915_address_space *vm)
680 {
681 struct i915_page_dma *p = px_base(&vm->scratch[0]);
682 unsigned int order = vm->scratch_order;
683
684 dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
685 PCI_DMA_BIDIRECTIONAL);
686 __free_pages(p->page, order);
687 }
688
free_scratch(struct i915_address_space * vm)689 static void free_scratch(struct i915_address_space *vm)
690 {
691 int i;
692
693 if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
694 return;
695
696 for (i = 1; i <= vm->top; i++) {
697 if (!px_dma(&vm->scratch[i]))
698 break;
699 cleanup_page_dma(vm, px_base(&vm->scratch[i]));
700 }
701
702 cleanup_scratch_page(vm);
703 }
704
alloc_pt(struct i915_address_space * vm)705 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
706 {
707 struct i915_page_table *pt;
708
709 pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
710 if (unlikely(!pt))
711 return ERR_PTR(-ENOMEM);
712
713 if (unlikely(setup_page_dma(vm, &pt->base))) {
714 kfree(pt);
715 return ERR_PTR(-ENOMEM);
716 }
717
718 atomic_set(&pt->used, 0);
719 return pt;
720 }
721
__alloc_pd(size_t sz)722 static struct i915_page_directory *__alloc_pd(size_t sz)
723 {
724 struct i915_page_directory *pd;
725
726 pd = kzalloc(sz, I915_GFP_ALLOW_FAIL);
727 if (unlikely(!pd))
728 return NULL;
729
730 spin_lock_init(&pd->lock);
731 return pd;
732 }
733
alloc_pd(struct i915_address_space * vm)734 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
735 {
736 struct i915_page_directory *pd;
737
738 pd = __alloc_pd(sizeof(*pd));
739 if (unlikely(!pd))
740 return ERR_PTR(-ENOMEM);
741
742 if (unlikely(setup_page_dma(vm, px_base(pd)))) {
743 kfree(pd);
744 return ERR_PTR(-ENOMEM);
745 }
746
747 return pd;
748 }
749
free_pd(struct i915_address_space * vm,struct i915_page_dma * pd)750 static void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd)
751 {
752 cleanup_page_dma(vm, pd);
753 kfree(pd);
754 }
755
756 #define free_px(vm, px) free_pd(vm, px_base(px))
757
758 static inline void
write_dma_entry(struct i915_page_dma * const pdma,const unsigned short idx,const u64 encoded_entry)759 write_dma_entry(struct i915_page_dma * const pdma,
760 const unsigned short idx,
761 const u64 encoded_entry)
762 {
763 u64 * const vaddr = kmap_atomic(pdma->page);
764
765 vaddr[idx] = encoded_entry;
766 kunmap_atomic(vaddr);
767 }
768
769 static inline void
__set_pd_entry(struct i915_page_directory * const pd,const unsigned short idx,struct i915_page_dma * const to,u64 (* encode)(const dma_addr_t,const enum i915_cache_level))770 __set_pd_entry(struct i915_page_directory * const pd,
771 const unsigned short idx,
772 struct i915_page_dma * const to,
773 u64 (*encode)(const dma_addr_t, const enum i915_cache_level))
774 {
775 /* Each thread pre-pins the pd, and we may have a thread per pde. */
776 GEM_BUG_ON(atomic_read(px_used(pd)) > 2 * ARRAY_SIZE(pd->entry));
777
778 atomic_inc(px_used(pd));
779 pd->entry[idx] = to;
780 write_dma_entry(px_base(pd), idx, encode(to->daddr, I915_CACHE_LLC));
781 }
782
783 #define set_pd_entry(pd, idx, to) \
784 __set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode)
785
786 static inline void
clear_pd_entry(struct i915_page_directory * const pd,const unsigned short idx,const struct i915_page_scratch * const scratch)787 clear_pd_entry(struct i915_page_directory * const pd,
788 const unsigned short idx,
789 const struct i915_page_scratch * const scratch)
790 {
791 GEM_BUG_ON(atomic_read(px_used(pd)) == 0);
792
793 write_dma_entry(px_base(pd), idx, scratch->encode);
794 pd->entry[idx] = NULL;
795 atomic_dec(px_used(pd));
796 }
797
798 static bool
release_pd_entry(struct i915_page_directory * const pd,const unsigned short idx,struct i915_page_table * const pt,const struct i915_page_scratch * const scratch)799 release_pd_entry(struct i915_page_directory * const pd,
800 const unsigned short idx,
801 struct i915_page_table * const pt,
802 const struct i915_page_scratch * const scratch)
803 {
804 bool free = false;
805
806 if (atomic_add_unless(&pt->used, -1, 1))
807 return false;
808
809 spin_lock(&pd->lock);
810 if (atomic_dec_and_test(&pt->used)) {
811 clear_pd_entry(pd, idx, scratch);
812 free = true;
813 }
814 spin_unlock(&pd->lock);
815
816 return free;
817 }
818
819 /*
820 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
821 * the page table structures, we mark them dirty so that
822 * context switching/execlist queuing code takes extra steps
823 * to ensure that tlbs are flushed.
824 */
mark_tlbs_dirty(struct i915_ppgtt * ppgtt)825 static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt)
826 {
827 ppgtt->pd_dirty_engines = ALL_ENGINES;
828 }
829
gen8_ppgtt_notify_vgt(struct i915_ppgtt * ppgtt,bool create)830 static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
831 {
832 struct drm_i915_private *dev_priv = ppgtt->vm.i915;
833 enum vgt_g2v_type msg;
834 int i;
835
836 if (create)
837 atomic_inc(px_used(ppgtt->pd)); /* never remove */
838 else
839 atomic_dec(px_used(ppgtt->pd));
840
841 mutex_lock(&dev_priv->vgpu.lock);
842
843 if (i915_vm_is_4lvl(&ppgtt->vm)) {
844 const u64 daddr = px_dma(ppgtt->pd);
845
846 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
847 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
848
849 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
850 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
851 } else {
852 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
853 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
854
855 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
856 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
857 }
858
859 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
860 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
861 }
862
863 /* g2v_notify atomically (via hv trap) consumes the message packet. */
864 I915_WRITE(vgtif_reg(g2v_notify), msg);
865
866 mutex_unlock(&dev_priv->vgpu.lock);
867 }
868
869 /* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */
870 #define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */
871 #define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE))
872 #define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64))
873 #define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES))
874 #define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl))
875 #define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl))
876 #define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl))
877
878 static inline unsigned int
gen8_pd_range(u64 start,u64 end,int lvl,unsigned int * idx)879 gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx)
880 {
881 const int shift = gen8_pd_shift(lvl);
882 const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
883
884 GEM_BUG_ON(start >= end);
885 end += ~mask >> gen8_pd_shift(1);
886
887 *idx = i915_pde_index(start, shift);
888 if ((start ^ end) & mask)
889 return GEN8_PDES - *idx;
890 else
891 return i915_pde_index(end, shift) - *idx;
892 }
893
gen8_pd_contains(u64 start,u64 end,int lvl)894 static inline bool gen8_pd_contains(u64 start, u64 end, int lvl)
895 {
896 const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
897
898 GEM_BUG_ON(start >= end);
899 return (start ^ end) & mask && (start & ~mask) == 0;
900 }
901
gen8_pt_count(u64 start,u64 end)902 static inline unsigned int gen8_pt_count(u64 start, u64 end)
903 {
904 GEM_BUG_ON(start >= end);
905 if ((start ^ end) >> gen8_pd_shift(1))
906 return GEN8_PDES - (start & (GEN8_PDES - 1));
907 else
908 return end - start;
909 }
910
gen8_pd_top_count(const struct i915_address_space * vm)911 static inline unsigned int gen8_pd_top_count(const struct i915_address_space *vm)
912 {
913 unsigned int shift = __gen8_pte_shift(vm->top);
914 return (vm->total + (1ull << shift) - 1) >> shift;
915 }
916
917 static inline struct i915_page_directory *
gen8_pdp_for_page_index(struct i915_address_space * const vm,const u64 idx)918 gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx)
919 {
920 struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
921
922 if (vm->top == 2)
923 return ppgtt->pd;
924 else
925 return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top));
926 }
927
928 static inline struct i915_page_directory *
gen8_pdp_for_page_address(struct i915_address_space * const vm,const u64 addr)929 gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr)
930 {
931 return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT);
932 }
933
__gen8_ppgtt_cleanup(struct i915_address_space * vm,struct i915_page_directory * pd,int count,int lvl)934 static void __gen8_ppgtt_cleanup(struct i915_address_space *vm,
935 struct i915_page_directory *pd,
936 int count, int lvl)
937 {
938 if (lvl) {
939 void **pde = pd->entry;
940
941 do {
942 if (!*pde)
943 continue;
944
945 __gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1);
946 } while (pde++, --count);
947 }
948
949 free_px(vm, pd);
950 }
951
gen8_ppgtt_cleanup(struct i915_address_space * vm)952 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
953 {
954 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
955
956 if (intel_vgpu_active(vm->i915))
957 gen8_ppgtt_notify_vgt(ppgtt, false);
958
959 __gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top);
960 free_scratch(vm);
961 }
962
__gen8_ppgtt_clear(struct i915_address_space * const vm,struct i915_page_directory * const pd,u64 start,const u64 end,int lvl)963 static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm,
964 struct i915_page_directory * const pd,
965 u64 start, const u64 end, int lvl)
966 {
967 const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
968 unsigned int idx, len;
969
970 GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
971
972 len = gen8_pd_range(start, end, lvl--, &idx);
973 DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
974 __func__, vm, lvl + 1, start, end,
975 idx, len, atomic_read(px_used(pd)));
976 GEM_BUG_ON(!len || len >= atomic_read(px_used(pd)));
977
978 do {
979 struct i915_page_table *pt = pd->entry[idx];
980
981 if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) &&
982 gen8_pd_contains(start, end, lvl)) {
983 DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n",
984 __func__, vm, lvl + 1, idx, start, end);
985 clear_pd_entry(pd, idx, scratch);
986 __gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl);
987 start += (u64)I915_PDES << gen8_pd_shift(lvl);
988 continue;
989 }
990
991 if (lvl) {
992 start = __gen8_ppgtt_clear(vm, as_pd(pt),
993 start, end, lvl);
994 } else {
995 unsigned int count;
996 u64 *vaddr;
997
998 count = gen8_pt_count(start, end);
999 DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n",
1000 __func__, vm, lvl, start, end,
1001 gen8_pd_index(start, 0), count,
1002 atomic_read(&pt->used));
1003 GEM_BUG_ON(!count || count >= atomic_read(&pt->used));
1004
1005 vaddr = kmap_atomic_px(pt);
1006 memset64(vaddr + gen8_pd_index(start, 0),
1007 vm->scratch[0].encode,
1008 count);
1009 kunmap_atomic(vaddr);
1010
1011 atomic_sub(count, &pt->used);
1012 start += count;
1013 }
1014
1015 if (release_pd_entry(pd, idx, pt, scratch))
1016 free_px(vm, pt);
1017 } while (idx++, --len);
1018
1019 return start;
1020 }
1021
gen8_ppgtt_clear(struct i915_address_space * vm,u64 start,u64 length)1022 static void gen8_ppgtt_clear(struct i915_address_space *vm,
1023 u64 start, u64 length)
1024 {
1025 GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1026 GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1027 GEM_BUG_ON(range_overflows(start, length, vm->total));
1028
1029 start >>= GEN8_PTE_SHIFT;
1030 length >>= GEN8_PTE_SHIFT;
1031 GEM_BUG_ON(length == 0);
1032
1033 __gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1034 start, start + length, vm->top);
1035 }
1036
__gen8_ppgtt_alloc(struct i915_address_space * const vm,struct i915_page_directory * const pd,u64 * const start,const u64 end,int lvl)1037 static int __gen8_ppgtt_alloc(struct i915_address_space * const vm,
1038 struct i915_page_directory * const pd,
1039 u64 * const start, const u64 end, int lvl)
1040 {
1041 const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
1042 struct i915_page_table *alloc = NULL;
1043 unsigned int idx, len;
1044 int ret = 0;
1045
1046 GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
1047
1048 len = gen8_pd_range(*start, end, lvl--, &idx);
1049 DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
1050 __func__, vm, lvl + 1, *start, end,
1051 idx, len, atomic_read(px_used(pd)));
1052 GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1));
1053
1054 spin_lock(&pd->lock);
1055 GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */
1056 do {
1057 struct i915_page_table *pt = pd->entry[idx];
1058
1059 if (!pt) {
1060 spin_unlock(&pd->lock);
1061
1062 DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n",
1063 __func__, vm, lvl + 1, idx);
1064
1065 pt = fetch_and_zero(&alloc);
1066 if (lvl) {
1067 if (!pt) {
1068 pt = &alloc_pd(vm)->pt;
1069 if (IS_ERR(pt)) {
1070 ret = PTR_ERR(pt);
1071 goto out;
1072 }
1073 }
1074
1075 fill_px(pt, vm->scratch[lvl].encode);
1076 } else {
1077 if (!pt) {
1078 pt = alloc_pt(vm);
1079 if (IS_ERR(pt)) {
1080 ret = PTR_ERR(pt);
1081 goto out;
1082 }
1083 }
1084
1085 if (intel_vgpu_active(vm->i915) ||
1086 gen8_pt_count(*start, end) < I915_PDES)
1087 fill_px(pt, vm->scratch[lvl].encode);
1088 }
1089
1090 spin_lock(&pd->lock);
1091 if (likely(!pd->entry[idx]))
1092 set_pd_entry(pd, idx, pt);
1093 else
1094 alloc = pt, pt = pd->entry[idx];
1095 }
1096
1097 if (lvl) {
1098 atomic_inc(&pt->used);
1099 spin_unlock(&pd->lock);
1100
1101 ret = __gen8_ppgtt_alloc(vm, as_pd(pt),
1102 start, end, lvl);
1103 if (unlikely(ret)) {
1104 if (release_pd_entry(pd, idx, pt, scratch))
1105 free_px(vm, pt);
1106 goto out;
1107 }
1108
1109 spin_lock(&pd->lock);
1110 atomic_dec(&pt->used);
1111 GEM_BUG_ON(!atomic_read(&pt->used));
1112 } else {
1113 unsigned int count = gen8_pt_count(*start, end);
1114
1115 DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n",
1116 __func__, vm, lvl, *start, end,
1117 gen8_pd_index(*start, 0), count,
1118 atomic_read(&pt->used));
1119
1120 atomic_add(count, &pt->used);
1121 /* All other pdes may be simultaneously removed */
1122 GEM_BUG_ON(atomic_read(&pt->used) > 2 * I915_PDES);
1123 *start += count;
1124 }
1125 } while (idx++, --len);
1126 spin_unlock(&pd->lock);
1127 out:
1128 if (alloc)
1129 free_px(vm, alloc);
1130 return ret;
1131 }
1132
gen8_ppgtt_alloc(struct i915_address_space * vm,u64 start,u64 length)1133 static int gen8_ppgtt_alloc(struct i915_address_space *vm,
1134 u64 start, u64 length)
1135 {
1136 u64 from;
1137 int err;
1138
1139 GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1140 GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1141 GEM_BUG_ON(range_overflows(start, length, vm->total));
1142
1143 start >>= GEN8_PTE_SHIFT;
1144 length >>= GEN8_PTE_SHIFT;
1145 GEM_BUG_ON(length == 0);
1146 from = start;
1147
1148 err = __gen8_ppgtt_alloc(vm, i915_vm_to_ppgtt(vm)->pd,
1149 &start, start + length, vm->top);
1150 if (unlikely(err && from != start))
1151 __gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1152 from, start, vm->top);
1153
1154 return err;
1155 }
1156
1157 static inline struct sgt_dma {
1158 struct scatterlist *sg;
1159 dma_addr_t dma, max;
sgt_dma(struct i915_vma * vma)1160 } sgt_dma(struct i915_vma *vma) {
1161 struct scatterlist *sg = vma->pages->sgl;
1162 dma_addr_t addr = sg_dma_address(sg);
1163 return (struct sgt_dma) { sg, addr, addr + sg->length };
1164 }
1165
1166 static __always_inline u64
gen8_ppgtt_insert_pte(struct i915_ppgtt * ppgtt,struct i915_page_directory * pdp,struct sgt_dma * iter,u64 idx,enum i915_cache_level cache_level,u32 flags)1167 gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt,
1168 struct i915_page_directory *pdp,
1169 struct sgt_dma *iter,
1170 u64 idx,
1171 enum i915_cache_level cache_level,
1172 u32 flags)
1173 {
1174 struct i915_page_directory *pd;
1175 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1176 gen8_pte_t *vaddr;
1177
1178 pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2));
1179 vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1180 do {
1181 vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma;
1182
1183 iter->dma += I915_GTT_PAGE_SIZE;
1184 if (iter->dma >= iter->max) {
1185 iter->sg = __sg_next(iter->sg);
1186 if (!iter->sg) {
1187 idx = 0;
1188 break;
1189 }
1190
1191 iter->dma = sg_dma_address(iter->sg);
1192 iter->max = iter->dma + iter->sg->length;
1193 }
1194
1195 if (gen8_pd_index(++idx, 0) == 0) {
1196 if (gen8_pd_index(idx, 1) == 0) {
1197 /* Limited by sg length for 3lvl */
1198 if (gen8_pd_index(idx, 2) == 0)
1199 break;
1200
1201 pd = pdp->entry[gen8_pd_index(idx, 2)];
1202 }
1203
1204 kunmap_atomic(vaddr);
1205 vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1206 }
1207 } while (1);
1208 kunmap_atomic(vaddr);
1209
1210 return idx;
1211 }
1212
gen8_ppgtt_insert_huge(struct i915_vma * vma,struct sgt_dma * iter,enum i915_cache_level cache_level,u32 flags)1213 static void gen8_ppgtt_insert_huge(struct i915_vma *vma,
1214 struct sgt_dma *iter,
1215 enum i915_cache_level cache_level,
1216 u32 flags)
1217 {
1218 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1219 u64 start = vma->node.start;
1220 dma_addr_t rem = iter->sg->length;
1221
1222 GEM_BUG_ON(!i915_vm_is_4lvl(vma->vm));
1223
1224 do {
1225 struct i915_page_directory * const pdp =
1226 gen8_pdp_for_page_address(vma->vm, start);
1227 struct i915_page_directory * const pd =
1228 i915_pd_entry(pdp, __gen8_pte_index(start, 2));
1229 gen8_pte_t encode = pte_encode;
1230 unsigned int maybe_64K = -1;
1231 unsigned int page_size;
1232 gen8_pte_t *vaddr;
1233 u16 index;
1234
1235 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1236 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1237 rem >= I915_GTT_PAGE_SIZE_2M &&
1238 !__gen8_pte_index(start, 0)) {
1239 index = __gen8_pte_index(start, 1);
1240 encode |= GEN8_PDE_PS_2M;
1241 page_size = I915_GTT_PAGE_SIZE_2M;
1242
1243 vaddr = kmap_atomic_px(pd);
1244 } else {
1245 struct i915_page_table *pt =
1246 i915_pt_entry(pd, __gen8_pte_index(start, 1));
1247
1248 index = __gen8_pte_index(start, 0);
1249 page_size = I915_GTT_PAGE_SIZE;
1250
1251 if (!index &&
1252 vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1253 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1254 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1255 rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))
1256 maybe_64K = __gen8_pte_index(start, 1);
1257
1258 vaddr = kmap_atomic_px(pt);
1259 }
1260
1261 do {
1262 GEM_BUG_ON(iter->sg->length < page_size);
1263 vaddr[index++] = encode | iter->dma;
1264
1265 start += page_size;
1266 iter->dma += page_size;
1267 rem -= page_size;
1268 if (iter->dma >= iter->max) {
1269 iter->sg = __sg_next(iter->sg);
1270 if (!iter->sg)
1271 break;
1272
1273 rem = iter->sg->length;
1274 iter->dma = sg_dma_address(iter->sg);
1275 iter->max = iter->dma + rem;
1276
1277 if (maybe_64K != -1 && index < I915_PDES &&
1278 !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1279 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1280 rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)))
1281 maybe_64K = -1;
1282
1283 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1284 break;
1285 }
1286 } while (rem >= page_size && index < I915_PDES);
1287
1288 kunmap_atomic(vaddr);
1289
1290 /*
1291 * Is it safe to mark the 2M block as 64K? -- Either we have
1292 * filled whole page-table with 64K entries, or filled part of
1293 * it and have reached the end of the sg table and we have
1294 * enough padding.
1295 */
1296 if (maybe_64K != -1 &&
1297 (index == I915_PDES ||
1298 (i915_vm_has_scratch_64K(vma->vm) &&
1299 !iter->sg && IS_ALIGNED(vma->node.start +
1300 vma->node.size,
1301 I915_GTT_PAGE_SIZE_2M)))) {
1302 vaddr = kmap_atomic_px(pd);
1303 vaddr[maybe_64K] |= GEN8_PDE_IPS_64K;
1304 kunmap_atomic(vaddr);
1305 page_size = I915_GTT_PAGE_SIZE_64K;
1306
1307 /*
1308 * We write all 4K page entries, even when using 64K
1309 * pages. In order to verify that the HW isn't cheating
1310 * by using the 4K PTE instead of the 64K PTE, we want
1311 * to remove all the surplus entries. If the HW skipped
1312 * the 64K PTE, it will read/write into the scratch page
1313 * instead - which we detect as missing results during
1314 * selftests.
1315 */
1316 if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1317 u16 i;
1318
1319 encode = vma->vm->scratch[0].encode;
1320 vaddr = kmap_atomic_px(i915_pt_entry(pd, maybe_64K));
1321
1322 for (i = 1; i < index; i += 16)
1323 memset64(vaddr + i, encode, 15);
1324
1325 kunmap_atomic(vaddr);
1326 }
1327 }
1328
1329 vma->page_sizes.gtt |= page_size;
1330 } while (iter->sg);
1331 }
1332
gen8_ppgtt_insert(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)1333 static void gen8_ppgtt_insert(struct i915_address_space *vm,
1334 struct i915_vma *vma,
1335 enum i915_cache_level cache_level,
1336 u32 flags)
1337 {
1338 struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
1339 struct sgt_dma iter = sgt_dma(vma);
1340
1341 if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1342 gen8_ppgtt_insert_huge(vma, &iter, cache_level, flags);
1343 } else {
1344 u64 idx = vma->node.start >> GEN8_PTE_SHIFT;
1345
1346 do {
1347 struct i915_page_directory * const pdp =
1348 gen8_pdp_for_page_index(vm, idx);
1349
1350 idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx,
1351 cache_level, flags);
1352 } while (idx);
1353
1354 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1355 }
1356 }
1357
gen8_init_scratch(struct i915_address_space * vm)1358 static int gen8_init_scratch(struct i915_address_space *vm)
1359 {
1360 int ret;
1361 int i;
1362
1363 /*
1364 * If everybody agrees to not to write into the scratch page,
1365 * we can reuse it for all vm, keeping contexts and processes separate.
1366 */
1367 if (vm->has_read_only &&
1368 vm->i915->kernel_context &&
1369 vm->i915->kernel_context->vm) {
1370 struct i915_address_space *clone = vm->i915->kernel_context->vm;
1371
1372 GEM_BUG_ON(!clone->has_read_only);
1373
1374 vm->scratch_order = clone->scratch_order;
1375 memcpy(vm->scratch, clone->scratch, sizeof(vm->scratch));
1376 px_dma(&vm->scratch[0]) = 0; /* no xfer of ownership */
1377 return 0;
1378 }
1379
1380 ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1381 if (ret)
1382 return ret;
1383
1384 vm->scratch[0].encode =
1385 gen8_pte_encode(px_dma(&vm->scratch[0]),
1386 I915_CACHE_LLC, vm->has_read_only);
1387
1388 for (i = 1; i <= vm->top; i++) {
1389 if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[i]))))
1390 goto free_scratch;
1391
1392 fill_px(&vm->scratch[i], vm->scratch[i - 1].encode);
1393 vm->scratch[i].encode =
1394 gen8_pde_encode(px_dma(&vm->scratch[i]),
1395 I915_CACHE_LLC);
1396 }
1397
1398 return 0;
1399
1400 free_scratch:
1401 free_scratch(vm);
1402 return -ENOMEM;
1403 }
1404
gen8_preallocate_top_level_pdp(struct i915_ppgtt * ppgtt)1405 static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1406 {
1407 struct i915_address_space *vm = &ppgtt->vm;
1408 struct i915_page_directory *pd = ppgtt->pd;
1409 unsigned int idx;
1410
1411 GEM_BUG_ON(vm->top != 2);
1412 GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES);
1413
1414 for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) {
1415 struct i915_page_directory *pde;
1416
1417 pde = alloc_pd(vm);
1418 if (IS_ERR(pde))
1419 return PTR_ERR(pde);
1420
1421 fill_px(pde, vm->scratch[1].encode);
1422 set_pd_entry(pd, idx, pde);
1423 atomic_inc(px_used(pde)); /* keep pinned */
1424 }
1425
1426 return 0;
1427 }
1428
ppgtt_init(struct i915_ppgtt * ppgtt,struct intel_gt * gt)1429 static void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt)
1430 {
1431 struct drm_i915_private *i915 = gt->i915;
1432
1433 ppgtt->vm.gt = gt;
1434 ppgtt->vm.i915 = i915;
1435 ppgtt->vm.dma = &i915->drm.pdev->dev;
1436 ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1437
1438 i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1439
1440 ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma;
1441 ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma;
1442 ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages;
1443 ppgtt->vm.vma_ops.clear_pages = clear_pages;
1444 }
1445
1446 static struct i915_page_directory *
gen8_alloc_top_pd(struct i915_address_space * vm)1447 gen8_alloc_top_pd(struct i915_address_space *vm)
1448 {
1449 const unsigned int count = gen8_pd_top_count(vm);
1450 struct i915_page_directory *pd;
1451
1452 GEM_BUG_ON(count > ARRAY_SIZE(pd->entry));
1453
1454 pd = __alloc_pd(offsetof(typeof(*pd), entry[count]));
1455 if (unlikely(!pd))
1456 return ERR_PTR(-ENOMEM);
1457
1458 if (unlikely(setup_page_dma(vm, px_base(pd)))) {
1459 kfree(pd);
1460 return ERR_PTR(-ENOMEM);
1461 }
1462
1463 fill_page_dma(px_base(pd), vm->scratch[vm->top].encode, count);
1464 atomic_inc(px_used(pd)); /* mark as pinned */
1465 return pd;
1466 }
1467
1468 /*
1469 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1470 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1471 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1472 * space.
1473 *
1474 */
gen8_ppgtt_create(struct drm_i915_private * i915)1475 static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1476 {
1477 struct i915_ppgtt *ppgtt;
1478 int err;
1479
1480 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1481 if (!ppgtt)
1482 return ERR_PTR(-ENOMEM);
1483
1484 ppgtt_init(ppgtt, &i915->gt);
1485 ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2;
1486
1487 /*
1488 * From bdw, there is hw support for read-only pages in the PPGTT.
1489 *
1490 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
1491 * for now.
1492 */
1493 ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1494
1495 /* There are only few exceptions for gen >=6. chv and bxt.
1496 * And we are not sure about the latter so play safe for now.
1497 */
1498 if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1499 ppgtt->vm.pt_kmap_wc = true;
1500
1501 err = gen8_init_scratch(&ppgtt->vm);
1502 if (err)
1503 goto err_free;
1504
1505 ppgtt->pd = gen8_alloc_top_pd(&ppgtt->vm);
1506 if (IS_ERR(ppgtt->pd)) {
1507 err = PTR_ERR(ppgtt->pd);
1508 goto err_free_scratch;
1509 }
1510
1511 if (!i915_vm_is_4lvl(&ppgtt->vm)) {
1512 if (intel_vgpu_active(i915)) {
1513 err = gen8_preallocate_top_level_pdp(ppgtt);
1514 if (err)
1515 goto err_free_pd;
1516 }
1517 }
1518
1519 ppgtt->vm.insert_entries = gen8_ppgtt_insert;
1520 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc;
1521 ppgtt->vm.clear_range = gen8_ppgtt_clear;
1522
1523 if (intel_vgpu_active(i915))
1524 gen8_ppgtt_notify_vgt(ppgtt, true);
1525
1526 ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1527
1528 return ppgtt;
1529
1530 err_free_pd:
1531 __gen8_ppgtt_cleanup(&ppgtt->vm, ppgtt->pd,
1532 gen8_pd_top_count(&ppgtt->vm), ppgtt->vm.top);
1533 err_free_scratch:
1534 free_scratch(&ppgtt->vm);
1535 err_free:
1536 kfree(ppgtt);
1537 return ERR_PTR(err);
1538 }
1539
1540 /* Write pde (index) from the page directory @pd to the page table @pt */
gen6_write_pde(const struct gen6_ppgtt * ppgtt,const unsigned int pde,const struct i915_page_table * pt)1541 static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
1542 const unsigned int pde,
1543 const struct i915_page_table *pt)
1544 {
1545 /* Caller needs to make sure the write completes if necessary */
1546 iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1547 ppgtt->pd_addr + pde);
1548 }
1549
gen7_ppgtt_enable(struct intel_gt * gt)1550 static void gen7_ppgtt_enable(struct intel_gt *gt)
1551 {
1552 struct drm_i915_private *i915 = gt->i915;
1553 struct intel_uncore *uncore = gt->uncore;
1554 struct intel_engine_cs *engine;
1555 enum intel_engine_id id;
1556 u32 ecochk;
1557
1558 intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
1559
1560 ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
1561 if (IS_HASWELL(i915)) {
1562 ecochk |= ECOCHK_PPGTT_WB_HSW;
1563 } else {
1564 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1565 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1566 }
1567 intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
1568
1569 for_each_engine(engine, i915, id) {
1570 /* GFX_MODE is per-ring on gen7+ */
1571 ENGINE_WRITE(engine,
1572 RING_MODE_GEN7,
1573 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1574 }
1575 }
1576
gen6_ppgtt_enable(struct intel_gt * gt)1577 static void gen6_ppgtt_enable(struct intel_gt *gt)
1578 {
1579 struct intel_uncore *uncore = gt->uncore;
1580
1581 intel_uncore_rmw(uncore,
1582 GAC_ECO_BITS,
1583 0,
1584 ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
1585
1586 intel_uncore_rmw(uncore,
1587 GAB_CTL,
1588 0,
1589 GAB_CTL_CONT_AFTER_PAGEFAULT);
1590
1591 intel_uncore_rmw(uncore,
1592 GAM_ECOCHK,
1593 0,
1594 ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1595
1596 if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
1597 intel_uncore_write(uncore,
1598 GFX_MODE,
1599 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1600 }
1601
1602 /* PPGTT support for Sandybdrige/Gen6 and later */
gen6_ppgtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)1603 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1604 u64 start, u64 length)
1605 {
1606 struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1607 const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1608 const gen6_pte_t scratch_pte = vm->scratch[0].encode;
1609 unsigned int pde = first_entry / GEN6_PTES;
1610 unsigned int pte = first_entry % GEN6_PTES;
1611 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1612
1613 while (num_entries) {
1614 struct i915_page_table * const pt =
1615 i915_pt_entry(ppgtt->base.pd, pde++);
1616 const unsigned int count = min(num_entries, GEN6_PTES - pte);
1617 gen6_pte_t *vaddr;
1618
1619 GEM_BUG_ON(px_base(pt) == px_base(&vm->scratch[1]));
1620
1621 num_entries -= count;
1622
1623 GEM_BUG_ON(count > atomic_read(&pt->used));
1624 if (!atomic_sub_return(count, &pt->used))
1625 ppgtt->scan_for_unused_pt = true;
1626
1627 /*
1628 * Note that the hw doesn't support removing PDE on the fly
1629 * (they are cached inside the context with no means to
1630 * invalidate the cache), so we can only reset the PTE
1631 * entries back to scratch.
1632 */
1633
1634 vaddr = kmap_atomic_px(pt);
1635 memset32(vaddr + pte, scratch_pte, count);
1636 kunmap_atomic(vaddr);
1637
1638 pte = 0;
1639 }
1640 }
1641
gen6_ppgtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)1642 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1643 struct i915_vma *vma,
1644 enum i915_cache_level cache_level,
1645 u32 flags)
1646 {
1647 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1648 struct i915_page_directory * const pd = ppgtt->pd;
1649 unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1650 unsigned act_pt = first_entry / GEN6_PTES;
1651 unsigned act_pte = first_entry % GEN6_PTES;
1652 const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1653 struct sgt_dma iter = sgt_dma(vma);
1654 gen6_pte_t *vaddr;
1655
1656 GEM_BUG_ON(pd->entry[act_pt] == &vm->scratch[1]);
1657
1658 vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1659 do {
1660 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1661
1662 iter.dma += I915_GTT_PAGE_SIZE;
1663 if (iter.dma == iter.max) {
1664 iter.sg = __sg_next(iter.sg);
1665 if (!iter.sg)
1666 break;
1667
1668 iter.dma = sg_dma_address(iter.sg);
1669 iter.max = iter.dma + iter.sg->length;
1670 }
1671
1672 if (++act_pte == GEN6_PTES) {
1673 kunmap_atomic(vaddr);
1674 vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1675 act_pte = 0;
1676 }
1677 } while (1);
1678 kunmap_atomic(vaddr);
1679
1680 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1681 }
1682
gen6_alloc_va_range(struct i915_address_space * vm,u64 start,u64 length)1683 static int gen6_alloc_va_range(struct i915_address_space *vm,
1684 u64 start, u64 length)
1685 {
1686 struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1687 struct i915_page_directory * const pd = ppgtt->base.pd;
1688 struct i915_page_table *pt, *alloc = NULL;
1689 intel_wakeref_t wakeref;
1690 u64 from = start;
1691 unsigned int pde;
1692 bool flush = false;
1693 int ret = 0;
1694
1695 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1696
1697 spin_lock(&pd->lock);
1698 gen6_for_each_pde(pt, pd, start, length, pde) {
1699 const unsigned int count = gen6_pte_count(start, length);
1700
1701 if (px_base(pt) == px_base(&vm->scratch[1])) {
1702 spin_unlock(&pd->lock);
1703
1704 pt = fetch_and_zero(&alloc);
1705 if (!pt)
1706 pt = alloc_pt(vm);
1707 if (IS_ERR(pt)) {
1708 ret = PTR_ERR(pt);
1709 goto unwind_out;
1710 }
1711
1712 fill32_px(pt, vm->scratch[0].encode);
1713
1714 spin_lock(&pd->lock);
1715 if (pd->entry[pde] == &vm->scratch[1]) {
1716 pd->entry[pde] = pt;
1717 if (i915_vma_is_bound(ppgtt->vma,
1718 I915_VMA_GLOBAL_BIND)) {
1719 gen6_write_pde(ppgtt, pde, pt);
1720 flush = true;
1721 }
1722 } else {
1723 alloc = pt;
1724 pt = pd->entry[pde];
1725 }
1726 }
1727
1728 atomic_add(count, &pt->used);
1729 }
1730 spin_unlock(&pd->lock);
1731
1732 if (flush) {
1733 mark_tlbs_dirty(&ppgtt->base);
1734 gen6_ggtt_invalidate(vm->gt->ggtt);
1735 }
1736
1737 goto out;
1738
1739 unwind_out:
1740 gen6_ppgtt_clear_range(vm, from, start - from);
1741 out:
1742 if (alloc)
1743 free_px(vm, alloc);
1744 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1745 return ret;
1746 }
1747
gen6_ppgtt_init_scratch(struct gen6_ppgtt * ppgtt)1748 static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1749 {
1750 struct i915_address_space * const vm = &ppgtt->base.vm;
1751 struct i915_page_directory * const pd = ppgtt->base.pd;
1752 int ret;
1753
1754 ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1755 if (ret)
1756 return ret;
1757
1758 vm->scratch[0].encode =
1759 vm->pte_encode(px_dma(&vm->scratch[0]),
1760 I915_CACHE_NONE, PTE_READ_ONLY);
1761
1762 if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[1])))) {
1763 cleanup_scratch_page(vm);
1764 return -ENOMEM;
1765 }
1766
1767 fill32_px(&vm->scratch[1], vm->scratch[0].encode);
1768 memset_p(pd->entry, &vm->scratch[1], I915_PDES);
1769
1770 return 0;
1771 }
1772
gen6_ppgtt_free_pd(struct gen6_ppgtt * ppgtt)1773 static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1774 {
1775 struct i915_page_directory * const pd = ppgtt->base.pd;
1776 struct i915_page_dma * const scratch =
1777 px_base(&ppgtt->base.vm.scratch[1]);
1778 struct i915_page_table *pt;
1779 u32 pde;
1780
1781 gen6_for_all_pdes(pt, pd, pde)
1782 if (px_base(pt) != scratch)
1783 free_px(&ppgtt->base.vm, pt);
1784 }
1785
gen6_ppgtt_cleanup(struct i915_address_space * vm)1786 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1787 {
1788 struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1789 struct drm_i915_private *i915 = vm->i915;
1790
1791 /* FIXME remove the struct_mutex to bring the locking under control */
1792 mutex_lock(&i915->drm.struct_mutex);
1793 i915_vma_destroy(ppgtt->vma);
1794 mutex_unlock(&i915->drm.struct_mutex);
1795
1796 gen6_ppgtt_free_pd(ppgtt);
1797 free_scratch(vm);
1798 kfree(ppgtt->base.pd);
1799 }
1800
pd_vma_set_pages(struct i915_vma * vma)1801 static int pd_vma_set_pages(struct i915_vma *vma)
1802 {
1803 vma->pages = ERR_PTR(-ENODEV);
1804 return 0;
1805 }
1806
pd_vma_clear_pages(struct i915_vma * vma)1807 static void pd_vma_clear_pages(struct i915_vma *vma)
1808 {
1809 GEM_BUG_ON(!vma->pages);
1810
1811 vma->pages = NULL;
1812 }
1813
pd_vma_bind(struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)1814 static int pd_vma_bind(struct i915_vma *vma,
1815 enum i915_cache_level cache_level,
1816 u32 unused)
1817 {
1818 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1819 struct gen6_ppgtt *ppgtt = vma->private;
1820 u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1821 struct i915_page_table *pt;
1822 unsigned int pde;
1823
1824 px_base(ppgtt->base.pd)->ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1825 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1826
1827 gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
1828 gen6_write_pde(ppgtt, pde, pt);
1829
1830 mark_tlbs_dirty(&ppgtt->base);
1831 gen6_ggtt_invalidate(ggtt);
1832
1833 return 0;
1834 }
1835
pd_vma_unbind(struct i915_vma * vma)1836 static void pd_vma_unbind(struct i915_vma *vma)
1837 {
1838 struct gen6_ppgtt *ppgtt = vma->private;
1839 struct i915_page_directory * const pd = ppgtt->base.pd;
1840 struct i915_page_dma * const scratch =
1841 px_base(&ppgtt->base.vm.scratch[1]);
1842 struct i915_page_table *pt;
1843 unsigned int pde;
1844
1845 if (!ppgtt->scan_for_unused_pt)
1846 return;
1847
1848 /* Free all no longer used page tables */
1849 gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
1850 if (px_base(pt) == scratch || atomic_read(&pt->used))
1851 continue;
1852
1853 free_px(&ppgtt->base.vm, pt);
1854 pd->entry[pde] = scratch;
1855 }
1856
1857 ppgtt->scan_for_unused_pt = false;
1858 }
1859
1860 static const struct i915_vma_ops pd_vma_ops = {
1861 .set_pages = pd_vma_set_pages,
1862 .clear_pages = pd_vma_clear_pages,
1863 .bind_vma = pd_vma_bind,
1864 .unbind_vma = pd_vma_unbind,
1865 };
1866
pd_vma_create(struct gen6_ppgtt * ppgtt,int size)1867 static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
1868 {
1869 struct drm_i915_private *i915 = ppgtt->base.vm.i915;
1870 struct i915_ggtt *ggtt = ppgtt->base.vm.gt->ggtt;
1871 struct i915_vma *vma;
1872
1873 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
1874 GEM_BUG_ON(size > ggtt->vm.total);
1875
1876 vma = i915_vma_alloc();
1877 if (!vma)
1878 return ERR_PTR(-ENOMEM);
1879
1880 i915_active_init(i915, &vma->active, NULL, NULL);
1881
1882 vma->vm = &ggtt->vm;
1883 vma->ops = &pd_vma_ops;
1884 vma->private = ppgtt;
1885
1886 vma->size = size;
1887 vma->fence_size = size;
1888 vma->flags = I915_VMA_GGTT;
1889 vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
1890
1891 INIT_LIST_HEAD(&vma->obj_link);
1892 INIT_LIST_HEAD(&vma->closed_link);
1893
1894 mutex_lock(&vma->vm->mutex);
1895 list_add(&vma->vm_link, &vma->vm->unbound_list);
1896 mutex_unlock(&vma->vm->mutex);
1897
1898 return vma;
1899 }
1900
gen6_ppgtt_pin(struct i915_ppgtt * base)1901 int gen6_ppgtt_pin(struct i915_ppgtt *base)
1902 {
1903 struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1904 int err;
1905
1906 GEM_BUG_ON(ppgtt->base.vm.closed);
1907
1908 /*
1909 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
1910 * which will be pinned into every active context.
1911 * (When vma->pin_count becomes atomic, I expect we will naturally
1912 * need a larger, unpacked, type and kill this redundancy.)
1913 */
1914 if (ppgtt->pin_count++)
1915 return 0;
1916
1917 /*
1918 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1919 * allocator works in address space sizes, so it's multiplied by page
1920 * size. We allocate at the top of the GTT to avoid fragmentation.
1921 */
1922 err = i915_vma_pin(ppgtt->vma,
1923 0, GEN6_PD_ALIGN,
1924 PIN_GLOBAL | PIN_HIGH);
1925 if (err)
1926 goto unpin;
1927
1928 return 0;
1929
1930 unpin:
1931 ppgtt->pin_count = 0;
1932 return err;
1933 }
1934
gen6_ppgtt_unpin(struct i915_ppgtt * base)1935 void gen6_ppgtt_unpin(struct i915_ppgtt *base)
1936 {
1937 struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1938
1939 GEM_BUG_ON(!ppgtt->pin_count);
1940 if (--ppgtt->pin_count)
1941 return;
1942
1943 i915_vma_unpin(ppgtt->vma);
1944 }
1945
gen6_ppgtt_unpin_all(struct i915_ppgtt * base)1946 void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
1947 {
1948 struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1949
1950 if (!ppgtt->pin_count)
1951 return;
1952
1953 ppgtt->pin_count = 0;
1954 i915_vma_unpin(ppgtt->vma);
1955 }
1956
gen6_ppgtt_create(struct drm_i915_private * i915)1957 static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1958 {
1959 struct i915_ggtt * const ggtt = &i915->ggtt;
1960 struct gen6_ppgtt *ppgtt;
1961 int err;
1962
1963 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1964 if (!ppgtt)
1965 return ERR_PTR(-ENOMEM);
1966
1967 ppgtt_init(&ppgtt->base, &i915->gt);
1968 ppgtt->base.vm.top = 1;
1969
1970 ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1971 ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
1972 ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
1973 ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
1974
1975 ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
1976
1977 ppgtt->base.pd = __alloc_pd(sizeof(*ppgtt->base.pd));
1978 if (!ppgtt->base.pd) {
1979 err = -ENOMEM;
1980 goto err_free;
1981 }
1982
1983 err = gen6_ppgtt_init_scratch(ppgtt);
1984 if (err)
1985 goto err_pd;
1986
1987 ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
1988 if (IS_ERR(ppgtt->vma)) {
1989 err = PTR_ERR(ppgtt->vma);
1990 goto err_scratch;
1991 }
1992
1993 return &ppgtt->base;
1994
1995 err_scratch:
1996 free_scratch(&ppgtt->base.vm);
1997 err_pd:
1998 kfree(ppgtt->base.pd);
1999 err_free:
2000 kfree(ppgtt);
2001 return ERR_PTR(err);
2002 }
2003
gtt_write_workarounds(struct intel_gt * gt)2004 static void gtt_write_workarounds(struct intel_gt *gt)
2005 {
2006 struct drm_i915_private *i915 = gt->i915;
2007 struct intel_uncore *uncore = gt->uncore;
2008
2009 /* This function is for gtt related workarounds. This function is
2010 * called on driver load and after a GPU reset, so you can place
2011 * workarounds here even if they get overwritten by GPU reset.
2012 */
2013 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2014 if (IS_BROADWELL(i915))
2015 intel_uncore_write(uncore,
2016 GEN8_L3_LRA_1_GPGPU,
2017 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2018 else if (IS_CHERRYVIEW(i915))
2019 intel_uncore_write(uncore,
2020 GEN8_L3_LRA_1_GPGPU,
2021 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2022 else if (IS_GEN9_LP(i915))
2023 intel_uncore_write(uncore,
2024 GEN8_L3_LRA_1_GPGPU,
2025 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2026 else if (INTEL_GEN(i915) >= 9)
2027 intel_uncore_write(uncore,
2028 GEN8_L3_LRA_1_GPGPU,
2029 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2030
2031 /*
2032 * To support 64K PTEs we need to first enable the use of the
2033 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2034 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2035 * shouldn't be needed after GEN10.
2036 *
2037 * 64K pages were first introduced from BDW+, although technically they
2038 * only *work* from gen9+. For pre-BDW we instead have the option for
2039 * 32K pages, but we don't currently have any support for it in our
2040 * driver.
2041 */
2042 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
2043 INTEL_GEN(i915) <= 10)
2044 intel_uncore_rmw(uncore,
2045 GEN8_GAMW_ECO_DEV_RW_IA,
2046 0,
2047 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2048
2049 if (IS_GEN_RANGE(i915, 8, 11)) {
2050 bool can_use_gtt_cache = true;
2051
2052 /*
2053 * According to the BSpec if we use 2M/1G pages then we also
2054 * need to disable the GTT cache. At least on BDW we can see
2055 * visual corruption when using 2M pages, and not disabling the
2056 * GTT cache.
2057 */
2058 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
2059 can_use_gtt_cache = false;
2060
2061 /* WaGttCachingOffByDefault */
2062 intel_uncore_write(uncore,
2063 HSW_GTT_CACHE_EN,
2064 can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
2065 WARN_ON_ONCE(can_use_gtt_cache &&
2066 intel_uncore_read(uncore,
2067 HSW_GTT_CACHE_EN) == 0);
2068 }
2069 }
2070
i915_ppgtt_init_hw(struct intel_gt * gt)2071 int i915_ppgtt_init_hw(struct intel_gt *gt)
2072 {
2073 struct drm_i915_private *i915 = gt->i915;
2074
2075 gtt_write_workarounds(gt);
2076
2077 if (IS_GEN(i915, 6))
2078 gen6_ppgtt_enable(gt);
2079 else if (IS_GEN(i915, 7))
2080 gen7_ppgtt_enable(gt);
2081
2082 return 0;
2083 }
2084
2085 static struct i915_ppgtt *
__ppgtt_create(struct drm_i915_private * i915)2086 __ppgtt_create(struct drm_i915_private *i915)
2087 {
2088 if (INTEL_GEN(i915) < 8)
2089 return gen6_ppgtt_create(i915);
2090 else
2091 return gen8_ppgtt_create(i915);
2092 }
2093
2094 struct i915_ppgtt *
i915_ppgtt_create(struct drm_i915_private * i915)2095 i915_ppgtt_create(struct drm_i915_private *i915)
2096 {
2097 struct i915_ppgtt *ppgtt;
2098
2099 ppgtt = __ppgtt_create(i915);
2100 if (IS_ERR(ppgtt))
2101 return ppgtt;
2102
2103 trace_i915_ppgtt_create(&ppgtt->vm);
2104
2105 return ppgtt;
2106 }
2107
2108 /* Certain Gen5 chipsets require require idling the GPU before
2109 * unmapping anything from the GTT when VT-d is enabled.
2110 */
needs_idle_maps(struct drm_i915_private * dev_priv)2111 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2112 {
2113 /* Query intel_iommu to see if we need the workaround. Presumably that
2114 * was loaded first.
2115 */
2116 return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2117 }
2118
ggtt_suspend_mappings(struct i915_ggtt * ggtt)2119 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
2120 {
2121 struct drm_i915_private *i915 = ggtt->vm.i915;
2122
2123 /* Don't bother messing with faults pre GEN6 as we have little
2124 * documentation supporting that it's a good idea.
2125 */
2126 if (INTEL_GEN(i915) < 6)
2127 return;
2128
2129 intel_gt_check_and_clear_faults(ggtt->vm.gt);
2130
2131 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2132
2133 ggtt->invalidate(ggtt);
2134 }
2135
i915_gem_suspend_gtt_mappings(struct drm_i915_private * i915)2136 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
2137 {
2138 ggtt_suspend_mappings(&i915->ggtt);
2139 }
2140
i915_gem_gtt_prepare_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)2141 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2142 struct sg_table *pages)
2143 {
2144 do {
2145 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2146 pages->sgl, pages->nents,
2147 PCI_DMA_BIDIRECTIONAL,
2148 DMA_ATTR_NO_WARN))
2149 return 0;
2150
2151 /*
2152 * If the DMA remap fails, one cause can be that we have
2153 * too many objects pinned in a small remapping table,
2154 * such as swiotlb. Incrementally purge all other objects and
2155 * try again - if there are no more pages to remove from
2156 * the DMA remapper, i915_gem_shrink will return 0.
2157 */
2158 GEM_BUG_ON(obj->mm.pages == pages);
2159 } while (i915_gem_shrink(to_i915(obj->base.dev),
2160 obj->base.size >> PAGE_SHIFT, NULL,
2161 I915_SHRINK_BOUND |
2162 I915_SHRINK_UNBOUND));
2163
2164 return -ENOSPC;
2165 }
2166
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)2167 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2168 {
2169 writeq(pte, addr);
2170 }
2171
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 unused)2172 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2173 dma_addr_t addr,
2174 u64 offset,
2175 enum i915_cache_level level,
2176 u32 unused)
2177 {
2178 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2179 gen8_pte_t __iomem *pte =
2180 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2181
2182 gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2183
2184 ggtt->invalidate(ggtt);
2185 }
2186
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2187 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2188 struct i915_vma *vma,
2189 enum i915_cache_level level,
2190 u32 flags)
2191 {
2192 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2193 struct sgt_iter sgt_iter;
2194 gen8_pte_t __iomem *gtt_entries;
2195 const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2196 dma_addr_t addr;
2197
2198 /*
2199 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2200 * not to allow the user to override access to a read only page.
2201 */
2202
2203 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2204 gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2205 for_each_sgt_dma(addr, sgt_iter, vma->pages)
2206 gen8_set_pte(gtt_entries++, pte_encode | addr);
2207
2208 /*
2209 * We want to flush the TLBs only after we're certain all the PTE
2210 * updates have finished.
2211 */
2212 ggtt->invalidate(ggtt);
2213 }
2214
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 flags)2215 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2216 dma_addr_t addr,
2217 u64 offset,
2218 enum i915_cache_level level,
2219 u32 flags)
2220 {
2221 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2222 gen6_pte_t __iomem *pte =
2223 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2224
2225 iowrite32(vm->pte_encode(addr, level, flags), pte);
2226
2227 ggtt->invalidate(ggtt);
2228 }
2229
2230 /*
2231 * Binds an object into the global gtt with the specified cache level. The object
2232 * will be accessible to the GPU via commands whose operands reference offsets
2233 * within the global GTT as well as accessible by the GPU through the GMADR
2234 * mapped BAR (dev_priv->mm.gtt->gtt).
2235 */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2236 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2237 struct i915_vma *vma,
2238 enum i915_cache_level level,
2239 u32 flags)
2240 {
2241 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2242 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2243 unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2244 struct sgt_iter iter;
2245 dma_addr_t addr;
2246 for_each_sgt_dma(addr, iter, vma->pages)
2247 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2248
2249 /*
2250 * We want to flush the TLBs only after we're certain all the PTE
2251 * updates have finished.
2252 */
2253 ggtt->invalidate(ggtt);
2254 }
2255
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)2256 static void nop_clear_range(struct i915_address_space *vm,
2257 u64 start, u64 length)
2258 {
2259 }
2260
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2261 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2262 u64 start, u64 length)
2263 {
2264 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2265 unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2266 unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2267 const gen8_pte_t scratch_pte = vm->scratch[0].encode;
2268 gen8_pte_t __iomem *gtt_base =
2269 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2270 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2271 int i;
2272
2273 if (WARN(num_entries > max_entries,
2274 "First entry = %d; Num entries = %d (max=%d)\n",
2275 first_entry, num_entries, max_entries))
2276 num_entries = max_entries;
2277
2278 for (i = 0; i < num_entries; i++)
2279 gen8_set_pte(>t_base[i], scratch_pte);
2280 }
2281
bxt_vtd_ggtt_wa(struct i915_address_space * vm)2282 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2283 {
2284 struct drm_i915_private *dev_priv = vm->i915;
2285
2286 /*
2287 * Make sure the internal GAM fifo has been cleared of all GTT
2288 * writes before exiting stop_machine(). This guarantees that
2289 * any aperture accesses waiting to start in another process
2290 * cannot back up behind the GTT writes causing a hang.
2291 * The register can be any arbitrary GAM register.
2292 */
2293 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2294 }
2295
2296 struct insert_page {
2297 struct i915_address_space *vm;
2298 dma_addr_t addr;
2299 u64 offset;
2300 enum i915_cache_level level;
2301 };
2302
bxt_vtd_ggtt_insert_page__cb(void * _arg)2303 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2304 {
2305 struct insert_page *arg = _arg;
2306
2307 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2308 bxt_vtd_ggtt_wa(arg->vm);
2309
2310 return 0;
2311 }
2312
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 unused)2313 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2314 dma_addr_t addr,
2315 u64 offset,
2316 enum i915_cache_level level,
2317 u32 unused)
2318 {
2319 struct insert_page arg = { vm, addr, offset, level };
2320
2321 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2322 }
2323
2324 struct insert_entries {
2325 struct i915_address_space *vm;
2326 struct i915_vma *vma;
2327 enum i915_cache_level level;
2328 u32 flags;
2329 };
2330
bxt_vtd_ggtt_insert_entries__cb(void * _arg)2331 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2332 {
2333 struct insert_entries *arg = _arg;
2334
2335 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2336 bxt_vtd_ggtt_wa(arg->vm);
2337
2338 return 0;
2339 }
2340
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2341 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2342 struct i915_vma *vma,
2343 enum i915_cache_level level,
2344 u32 flags)
2345 {
2346 struct insert_entries arg = { vm, vma, level, flags };
2347
2348 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2349 }
2350
2351 struct clear_range {
2352 struct i915_address_space *vm;
2353 u64 start;
2354 u64 length;
2355 };
2356
bxt_vtd_ggtt_clear_range__cb(void * _arg)2357 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2358 {
2359 struct clear_range *arg = _arg;
2360
2361 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2362 bxt_vtd_ggtt_wa(arg->vm);
2363
2364 return 0;
2365 }
2366
bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space * vm,u64 start,u64 length)2367 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2368 u64 start,
2369 u64 length)
2370 {
2371 struct clear_range arg = { vm, start, length };
2372
2373 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2374 }
2375
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2376 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2377 u64 start, u64 length)
2378 {
2379 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2380 unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2381 unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2382 gen6_pte_t scratch_pte, __iomem *gtt_base =
2383 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2384 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2385 int i;
2386
2387 if (WARN(num_entries > max_entries,
2388 "First entry = %d; Num entries = %d (max=%d)\n",
2389 first_entry, num_entries, max_entries))
2390 num_entries = max_entries;
2391
2392 scratch_pte = vm->scratch[0].encode;
2393 for (i = 0; i < num_entries; i++)
2394 iowrite32(scratch_pte, >t_base[i]);
2395 }
2396
i915_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level cache_level,u32 unused)2397 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2398 dma_addr_t addr,
2399 u64 offset,
2400 enum i915_cache_level cache_level,
2401 u32 unused)
2402 {
2403 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2404 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2405
2406 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2407 }
2408
i915_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)2409 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2410 struct i915_vma *vma,
2411 enum i915_cache_level cache_level,
2412 u32 unused)
2413 {
2414 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2415 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2416
2417 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2418 flags);
2419 }
2420
i915_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2421 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2422 u64 start, u64 length)
2423 {
2424 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2425 }
2426
ggtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)2427 static int ggtt_bind_vma(struct i915_vma *vma,
2428 enum i915_cache_level cache_level,
2429 u32 flags)
2430 {
2431 struct drm_i915_private *i915 = vma->vm->i915;
2432 struct drm_i915_gem_object *obj = vma->obj;
2433 intel_wakeref_t wakeref;
2434 u32 pte_flags;
2435
2436 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2437 pte_flags = 0;
2438 if (i915_gem_object_is_readonly(obj))
2439 pte_flags |= PTE_READ_ONLY;
2440
2441 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2442 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2443
2444 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2445
2446 /*
2447 * Without aliasing PPGTT there's no difference between
2448 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2449 * upgrade to both bound if we bind either to avoid double-binding.
2450 */
2451 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2452
2453 return 0;
2454 }
2455
ggtt_unbind_vma(struct i915_vma * vma)2456 static void ggtt_unbind_vma(struct i915_vma *vma)
2457 {
2458 struct drm_i915_private *i915 = vma->vm->i915;
2459 intel_wakeref_t wakeref;
2460
2461 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2462 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2463 }
2464
aliasing_gtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)2465 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2466 enum i915_cache_level cache_level,
2467 u32 flags)
2468 {
2469 struct drm_i915_private *i915 = vma->vm->i915;
2470 u32 pte_flags;
2471 int ret;
2472
2473 /* Currently applicable only to VLV */
2474 pte_flags = 0;
2475 if (i915_gem_object_is_readonly(vma->obj))
2476 pte_flags |= PTE_READ_ONLY;
2477
2478 if (flags & I915_VMA_LOCAL_BIND) {
2479 struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
2480
2481 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2482 ret = alias->vm.allocate_va_range(&alias->vm,
2483 vma->node.start,
2484 vma->size);
2485 if (ret)
2486 return ret;
2487 }
2488
2489 alias->vm.insert_entries(&alias->vm, vma,
2490 cache_level, pte_flags);
2491 }
2492
2493 if (flags & I915_VMA_GLOBAL_BIND) {
2494 intel_wakeref_t wakeref;
2495
2496 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2497 vma->vm->insert_entries(vma->vm, vma,
2498 cache_level, pte_flags);
2499 }
2500 }
2501
2502 return 0;
2503 }
2504
aliasing_gtt_unbind_vma(struct i915_vma * vma)2505 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2506 {
2507 struct drm_i915_private *i915 = vma->vm->i915;
2508
2509 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2510 struct i915_address_space *vm = vma->vm;
2511 intel_wakeref_t wakeref;
2512
2513 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2514 vm->clear_range(vm, vma->node.start, vma->size);
2515 }
2516
2517 if (vma->flags & I915_VMA_LOCAL_BIND) {
2518 struct i915_address_space *vm =
2519 &i915_vm_to_ggtt(vma->vm)->alias->vm;
2520
2521 vm->clear_range(vm, vma->node.start, vma->size);
2522 }
2523 }
2524
i915_gem_gtt_finish_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)2525 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2526 struct sg_table *pages)
2527 {
2528 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2529 struct device *kdev = &dev_priv->drm.pdev->dev;
2530 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2531
2532 if (unlikely(ggtt->do_idle_maps)) {
2533 if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2534 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2535 /* Wait a bit, in hopes it avoids the hang */
2536 udelay(10);
2537 }
2538 }
2539
2540 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2541 }
2542
ggtt_set_pages(struct i915_vma * vma)2543 static int ggtt_set_pages(struct i915_vma *vma)
2544 {
2545 int ret;
2546
2547 GEM_BUG_ON(vma->pages);
2548
2549 ret = i915_get_ggtt_vma_pages(vma);
2550 if (ret)
2551 return ret;
2552
2553 vma->page_sizes = vma->obj->mm.page_sizes;
2554
2555 return 0;
2556 }
2557
i915_gtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)2558 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2559 unsigned long color,
2560 u64 *start,
2561 u64 *end)
2562 {
2563 if (node->allocated && node->color != color)
2564 *start += I915_GTT_PAGE_SIZE;
2565
2566 /* Also leave a space between the unallocated reserved node after the
2567 * GTT and any objects within the GTT, i.e. we use the color adjustment
2568 * to insert a guard page to prevent prefetches crossing over the
2569 * GTT boundary.
2570 */
2571 node = list_next_entry(node, node_list);
2572 if (node->color != color)
2573 *end -= I915_GTT_PAGE_SIZE;
2574 }
2575
init_aliasing_ppgtt(struct i915_ggtt * ggtt)2576 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
2577 {
2578 struct i915_ppgtt *ppgtt;
2579 int err;
2580
2581 ppgtt = i915_ppgtt_create(ggtt->vm.i915);
2582 if (IS_ERR(ppgtt))
2583 return PTR_ERR(ppgtt);
2584
2585 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2586 err = -ENODEV;
2587 goto err_ppgtt;
2588 }
2589
2590 /*
2591 * Note we only pre-allocate as far as the end of the global
2592 * GTT. On 48b / 4-level page-tables, the difference is very,
2593 * very significant! We have to preallocate as GVT/vgpu does
2594 * not like the page directory disappearing.
2595 */
2596 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2597 if (err)
2598 goto err_ppgtt;
2599
2600 ggtt->alias = ppgtt;
2601
2602 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2603 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2604
2605 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2606 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2607
2608 return 0;
2609
2610 err_ppgtt:
2611 i915_vm_put(&ppgtt->vm);
2612 return err;
2613 }
2614
fini_aliasing_ppgtt(struct i915_ggtt * ggtt)2615 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
2616 {
2617 struct drm_i915_private *i915 = ggtt->vm.i915;
2618 struct i915_ppgtt *ppgtt;
2619
2620 mutex_lock(&i915->drm.struct_mutex);
2621
2622 ppgtt = fetch_and_zero(&ggtt->alias);
2623 if (!ppgtt)
2624 goto out;
2625
2626 i915_vm_put(&ppgtt->vm);
2627
2628 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
2629 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2630
2631 out:
2632 mutex_unlock(&i915->drm.struct_mutex);
2633 }
2634
ggtt_reserve_guc_top(struct i915_ggtt * ggtt)2635 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
2636 {
2637 u64 size;
2638 int ret;
2639
2640 if (!USES_GUC(ggtt->vm.i915))
2641 return 0;
2642
2643 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
2644 size = ggtt->vm.total - GUC_GGTT_TOP;
2645
2646 ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
2647 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
2648 PIN_NOEVICT);
2649 if (ret)
2650 DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
2651
2652 return ret;
2653 }
2654
ggtt_release_guc_top(struct i915_ggtt * ggtt)2655 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
2656 {
2657 if (drm_mm_node_allocated(&ggtt->uc_fw))
2658 drm_mm_remove_node(&ggtt->uc_fw);
2659 }
2660
cleanup_init_ggtt(struct i915_ggtt * ggtt)2661 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
2662 {
2663 ggtt_release_guc_top(ggtt);
2664 drm_mm_remove_node(&ggtt->error_capture);
2665 }
2666
init_ggtt(struct i915_ggtt * ggtt)2667 static int init_ggtt(struct i915_ggtt *ggtt)
2668 {
2669 /* Let GEM Manage all of the aperture.
2670 *
2671 * However, leave one page at the end still bound to the scratch page.
2672 * There are a number of places where the hardware apparently prefetches
2673 * past the end of the object, and we've seen multiple hangs with the
2674 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2675 * aperture. One page should be enough to keep any prefetching inside
2676 * of the aperture.
2677 */
2678 unsigned long hole_start, hole_end;
2679 struct drm_mm_node *entry;
2680 int ret;
2681
2682 /*
2683 * GuC requires all resources that we're sharing with it to be placed in
2684 * non-WOPCM memory. If GuC is not present or not in use we still need a
2685 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2686 * why.
2687 */
2688 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2689 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
2690
2691 ret = intel_vgt_balloon(ggtt);
2692 if (ret)
2693 return ret;
2694
2695 /* Reserve a mappable slot for our lockless error capture */
2696 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2697 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2698 0, ggtt->mappable_end,
2699 DRM_MM_INSERT_LOW);
2700 if (ret)
2701 return ret;
2702
2703 /*
2704 * The upper portion of the GuC address space has a sizeable hole
2705 * (several MB) that is inaccessible by GuC. Reserve this range within
2706 * GGTT as it can comfortably hold GuC/HuC firmware images.
2707 */
2708 ret = ggtt_reserve_guc_top(ggtt);
2709 if (ret)
2710 goto err;
2711
2712 /* Clear any non-preallocated blocks */
2713 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2714 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2715 hole_start, hole_end);
2716 ggtt->vm.clear_range(&ggtt->vm, hole_start,
2717 hole_end - hole_start);
2718 }
2719
2720 /* And finally clear the reserved guard page */
2721 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2722
2723 return 0;
2724
2725 err:
2726 cleanup_init_ggtt(ggtt);
2727 return ret;
2728 }
2729
i915_init_ggtt(struct drm_i915_private * i915)2730 int i915_init_ggtt(struct drm_i915_private *i915)
2731 {
2732 int ret;
2733
2734 ret = init_ggtt(&i915->ggtt);
2735 if (ret)
2736 return ret;
2737
2738 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
2739 ret = init_aliasing_ppgtt(&i915->ggtt);
2740 if (ret)
2741 cleanup_init_ggtt(&i915->ggtt);
2742 }
2743
2744 return 0;
2745 }
2746
ggtt_cleanup_hw(struct i915_ggtt * ggtt)2747 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
2748 {
2749 struct drm_i915_private *i915 = ggtt->vm.i915;
2750 struct i915_vma *vma, *vn;
2751
2752 ggtt->vm.closed = true;
2753
2754 rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
2755 flush_workqueue(i915->wq);
2756
2757 mutex_lock(&i915->drm.struct_mutex);
2758
2759 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2760 WARN_ON(i915_vma_unbind(vma));
2761
2762 if (drm_mm_node_allocated(&ggtt->error_capture))
2763 drm_mm_remove_node(&ggtt->error_capture);
2764
2765 ggtt_release_guc_top(ggtt);
2766
2767 if (drm_mm_initialized(&ggtt->vm.mm)) {
2768 intel_vgt_deballoon(ggtt);
2769 i915_address_space_fini(&ggtt->vm);
2770 }
2771
2772 ggtt->vm.cleanup(&ggtt->vm);
2773
2774 mutex_unlock(&i915->drm.struct_mutex);
2775
2776 arch_phys_wc_del(ggtt->mtrr);
2777 io_mapping_fini(&ggtt->iomap);
2778 }
2779
2780 /**
2781 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
2782 * @i915: i915 device
2783 */
i915_ggtt_driver_release(struct drm_i915_private * i915)2784 void i915_ggtt_driver_release(struct drm_i915_private *i915)
2785 {
2786 struct pagevec *pvec;
2787
2788 fini_aliasing_ppgtt(&i915->ggtt);
2789
2790 ggtt_cleanup_hw(&i915->ggtt);
2791
2792 pvec = &i915->mm.wc_stash.pvec;
2793 if (pvec->nr) {
2794 set_pages_array_wb(pvec->pages, pvec->nr);
2795 __pagevec_release(pvec);
2796 }
2797
2798 i915_gem_cleanup_stolen(i915);
2799 }
2800
gen6_get_total_gtt_size(u16 snb_gmch_ctl)2801 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2802 {
2803 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2804 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2805 return snb_gmch_ctl << 20;
2806 }
2807
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)2808 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2809 {
2810 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2811 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2812 if (bdw_gmch_ctl)
2813 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2814
2815 #ifdef CONFIG_X86_32
2816 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2817 if (bdw_gmch_ctl > 4)
2818 bdw_gmch_ctl = 4;
2819 #endif
2820
2821 return bdw_gmch_ctl << 20;
2822 }
2823
chv_get_total_gtt_size(u16 gmch_ctrl)2824 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2825 {
2826 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2827 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2828
2829 if (gmch_ctrl)
2830 return 1 << (20 + gmch_ctrl);
2831
2832 return 0;
2833 }
2834
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)2835 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2836 {
2837 struct drm_i915_private *dev_priv = ggtt->vm.i915;
2838 struct pci_dev *pdev = dev_priv->drm.pdev;
2839 phys_addr_t phys_addr;
2840 int ret;
2841
2842 /* For Modern GENs the PTEs and register space are split in the BAR */
2843 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2844
2845 /*
2846 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2847 * will be dropped. For WC mappings in general we have 64 byte burst
2848 * writes when the WC buffer is flushed, so we can't use it, but have to
2849 * resort to an uncached mapping. The WC issue is easily caught by the
2850 * readback check when writing GTT PTE entries.
2851 */
2852 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2853 ggtt->gsm = ioremap_nocache(phys_addr, size);
2854 else
2855 ggtt->gsm = ioremap_wc(phys_addr, size);
2856 if (!ggtt->gsm) {
2857 DRM_ERROR("Failed to map the ggtt page table\n");
2858 return -ENOMEM;
2859 }
2860
2861 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2862 if (ret) {
2863 DRM_ERROR("Scratch setup failed\n");
2864 /* iounmap will also get called at remove, but meh */
2865 iounmap(ggtt->gsm);
2866 return ret;
2867 }
2868
2869 ggtt->vm.scratch[0].encode =
2870 ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
2871 I915_CACHE_NONE, 0);
2872
2873 return 0;
2874 }
2875
tgl_setup_private_ppat(struct drm_i915_private * dev_priv)2876 static void tgl_setup_private_ppat(struct drm_i915_private *dev_priv)
2877 {
2878 /* TGL doesn't support LLC or AGE settings */
2879 I915_WRITE(GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
2880 I915_WRITE(GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
2881 I915_WRITE(GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
2882 I915_WRITE(GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
2883 I915_WRITE(GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
2884 I915_WRITE(GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
2885 I915_WRITE(GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
2886 I915_WRITE(GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
2887 }
2888
cnl_setup_private_ppat(struct drm_i915_private * dev_priv)2889 static void cnl_setup_private_ppat(struct drm_i915_private *dev_priv)
2890 {
2891 I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC);
2892 I915_WRITE(GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2893 I915_WRITE(GEN10_PAT_INDEX(2), GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2894 I915_WRITE(GEN10_PAT_INDEX(3), GEN8_PPAT_UC);
2895 I915_WRITE(GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2896 I915_WRITE(GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2897 I915_WRITE(GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2898 I915_WRITE(GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2899 }
2900
2901 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2902 * bits. When using advanced contexts each context stores its own PAT, but
2903 * writing this data shouldn't be harmful even in those cases. */
bdw_setup_private_ppat(struct drm_i915_private * dev_priv)2904 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2905 {
2906 u64 pat;
2907
2908 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2909 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2910 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2911 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2912 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2913 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2914 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2915 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2916
2917 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2918 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2919 }
2920
chv_setup_private_ppat(struct drm_i915_private * dev_priv)2921 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2922 {
2923 u64 pat;
2924
2925 /*
2926 * Map WB on BDW to snooped on CHV.
2927 *
2928 * Only the snoop bit has meaning for CHV, the rest is
2929 * ignored.
2930 *
2931 * The hardware will never snoop for certain types of accesses:
2932 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2933 * - PPGTT page tables
2934 * - some other special cycles
2935 *
2936 * As with BDW, we also need to consider the following for GT accesses:
2937 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2938 * so RTL will always use the value corresponding to
2939 * pat_sel = 000".
2940 * Which means we must set the snoop bit in PAT entry 0
2941 * in order to keep the global status page working.
2942 */
2943
2944 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2945 GEN8_PPAT(1, 0) |
2946 GEN8_PPAT(2, 0) |
2947 GEN8_PPAT(3, 0) |
2948 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2949 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2950 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2951 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2952
2953 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2954 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2955 }
2956
gen6_gmch_remove(struct i915_address_space * vm)2957 static void gen6_gmch_remove(struct i915_address_space *vm)
2958 {
2959 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2960
2961 iounmap(ggtt->gsm);
2962 cleanup_scratch_page(vm);
2963 }
2964
setup_private_pat(struct drm_i915_private * dev_priv)2965 static void setup_private_pat(struct drm_i915_private *dev_priv)
2966 {
2967 GEM_BUG_ON(INTEL_GEN(dev_priv) < 8);
2968
2969 if (INTEL_GEN(dev_priv) >= 12)
2970 tgl_setup_private_ppat(dev_priv);
2971 else if (INTEL_GEN(dev_priv) >= 10)
2972 cnl_setup_private_ppat(dev_priv);
2973 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2974 chv_setup_private_ppat(dev_priv);
2975 else
2976 bdw_setup_private_ppat(dev_priv);
2977 }
2978
gen8_gmch_probe(struct i915_ggtt * ggtt)2979 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2980 {
2981 struct drm_i915_private *dev_priv = ggtt->vm.i915;
2982 struct pci_dev *pdev = dev_priv->drm.pdev;
2983 unsigned int size;
2984 u16 snb_gmch_ctl;
2985 int err;
2986
2987 /* TODO: We're not aware of mappable constraints on gen8 yet */
2988 ggtt->gmadr =
2989 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
2990 pci_resource_len(pdev, 2));
2991 ggtt->mappable_end = resource_size(&ggtt->gmadr);
2992
2993 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2994 if (!err)
2995 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2996 if (err)
2997 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2998
2999 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3000 if (IS_CHERRYVIEW(dev_priv))
3001 size = chv_get_total_gtt_size(snb_gmch_ctl);
3002 else
3003 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3004
3005 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3006 ggtt->vm.cleanup = gen6_gmch_remove;
3007 ggtt->vm.insert_page = gen8_ggtt_insert_page;
3008 ggtt->vm.clear_range = nop_clear_range;
3009 if (intel_scanout_needs_vtd_wa(dev_priv))
3010 ggtt->vm.clear_range = gen8_ggtt_clear_range;
3011
3012 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3013
3014 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3015 if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
3016 IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3017 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3018 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
3019 if (ggtt->vm.clear_range != nop_clear_range)
3020 ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3021 }
3022
3023 ggtt->invalidate = gen6_ggtt_invalidate;
3024
3025 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3026 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3027 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3028 ggtt->vm.vma_ops.clear_pages = clear_pages;
3029
3030 ggtt->vm.pte_encode = gen8_pte_encode;
3031
3032 setup_private_pat(dev_priv);
3033
3034 return ggtt_probe_common(ggtt, size);
3035 }
3036
gen6_gmch_probe(struct i915_ggtt * ggtt)3037 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3038 {
3039 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3040 struct pci_dev *pdev = dev_priv->drm.pdev;
3041 unsigned int size;
3042 u16 snb_gmch_ctl;
3043 int err;
3044
3045 ggtt->gmadr =
3046 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3047 pci_resource_len(pdev, 2));
3048 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3049
3050 /* 64/512MB is the current min/max we actually know of, but this is just
3051 * a coarse sanity check.
3052 */
3053 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3054 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3055 return -ENXIO;
3056 }
3057
3058 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3059 if (!err)
3060 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3061 if (err)
3062 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3063 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3064
3065 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3066 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3067
3068 ggtt->vm.clear_range = nop_clear_range;
3069 if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3070 ggtt->vm.clear_range = gen6_ggtt_clear_range;
3071 ggtt->vm.insert_page = gen6_ggtt_insert_page;
3072 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3073 ggtt->vm.cleanup = gen6_gmch_remove;
3074
3075 ggtt->invalidate = gen6_ggtt_invalidate;
3076
3077 if (HAS_EDRAM(dev_priv))
3078 ggtt->vm.pte_encode = iris_pte_encode;
3079 else if (IS_HASWELL(dev_priv))
3080 ggtt->vm.pte_encode = hsw_pte_encode;
3081 else if (IS_VALLEYVIEW(dev_priv))
3082 ggtt->vm.pte_encode = byt_pte_encode;
3083 else if (INTEL_GEN(dev_priv) >= 7)
3084 ggtt->vm.pte_encode = ivb_pte_encode;
3085 else
3086 ggtt->vm.pte_encode = snb_pte_encode;
3087
3088 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3089 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3090 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3091 ggtt->vm.vma_ops.clear_pages = clear_pages;
3092
3093 return ggtt_probe_common(ggtt, size);
3094 }
3095
i915_gmch_remove(struct i915_address_space * vm)3096 static void i915_gmch_remove(struct i915_address_space *vm)
3097 {
3098 intel_gmch_remove();
3099 }
3100
i915_gmch_probe(struct i915_ggtt * ggtt)3101 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3102 {
3103 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3104 phys_addr_t gmadr_base;
3105 int ret;
3106
3107 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3108 if (!ret) {
3109 DRM_ERROR("failed to set up gmch\n");
3110 return -EIO;
3111 }
3112
3113 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3114
3115 ggtt->gmadr =
3116 (struct resource) DEFINE_RES_MEM(gmadr_base,
3117 ggtt->mappable_end);
3118
3119 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3120 ggtt->vm.insert_page = i915_ggtt_insert_page;
3121 ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3122 ggtt->vm.clear_range = i915_ggtt_clear_range;
3123 ggtt->vm.cleanup = i915_gmch_remove;
3124
3125 ggtt->invalidate = gmch_ggtt_invalidate;
3126
3127 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3128 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3129 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3130 ggtt->vm.vma_ops.clear_pages = clear_pages;
3131
3132 if (unlikely(ggtt->do_idle_maps))
3133 dev_notice(dev_priv->drm.dev,
3134 "Applying Ironlake quirks for intel_iommu\n");
3135
3136 return 0;
3137 }
3138
ggtt_probe_hw(struct i915_ggtt * ggtt,struct intel_gt * gt)3139 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
3140 {
3141 struct drm_i915_private *i915 = gt->i915;
3142 int ret;
3143
3144 ggtt->vm.gt = gt;
3145 ggtt->vm.i915 = i915;
3146 ggtt->vm.dma = &i915->drm.pdev->dev;
3147
3148 if (INTEL_GEN(i915) <= 5)
3149 ret = i915_gmch_probe(ggtt);
3150 else if (INTEL_GEN(i915) < 8)
3151 ret = gen6_gmch_probe(ggtt);
3152 else
3153 ret = gen8_gmch_probe(ggtt);
3154 if (ret)
3155 return ret;
3156
3157 if ((ggtt->vm.total - 1) >> 32) {
3158 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3159 " of address space! Found %lldM!\n",
3160 ggtt->vm.total >> 20);
3161 ggtt->vm.total = 1ULL << 32;
3162 ggtt->mappable_end =
3163 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3164 }
3165
3166 if (ggtt->mappable_end > ggtt->vm.total) {
3167 DRM_ERROR("mappable aperture extends past end of GGTT,"
3168 " aperture=%pa, total=%llx\n",
3169 &ggtt->mappable_end, ggtt->vm.total);
3170 ggtt->mappable_end = ggtt->vm.total;
3171 }
3172
3173 /* GMADR is the PCI mmio aperture into the global GTT. */
3174 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3175 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3176 DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3177 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3178
3179 return 0;
3180 }
3181
3182 /**
3183 * i915_ggtt_probe_hw - Probe GGTT hardware location
3184 * @i915: i915 device
3185 */
i915_ggtt_probe_hw(struct drm_i915_private * i915)3186 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
3187 {
3188 int ret;
3189
3190 ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
3191 if (ret)
3192 return ret;
3193
3194 if (intel_vtd_active())
3195 dev_info(i915->drm.dev, "VT-d active for gfx access\n");
3196
3197 return 0;
3198 }
3199
ggtt_init_hw(struct i915_ggtt * ggtt)3200 static int ggtt_init_hw(struct i915_ggtt *ggtt)
3201 {
3202 struct drm_i915_private *i915 = ggtt->vm.i915;
3203 int ret = 0;
3204
3205 mutex_lock(&i915->drm.struct_mutex);
3206
3207 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3208
3209 ggtt->vm.is_ggtt = true;
3210
3211 /* Only VLV supports read-only GGTT mappings */
3212 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
3213
3214 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
3215 ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3216
3217 if (!io_mapping_init_wc(&ggtt->iomap,
3218 ggtt->gmadr.start,
3219 ggtt->mappable_end)) {
3220 ggtt->vm.cleanup(&ggtt->vm);
3221 ret = -EIO;
3222 goto out;
3223 }
3224
3225 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3226
3227 i915_ggtt_init_fences(ggtt);
3228
3229 out:
3230 mutex_unlock(&i915->drm.struct_mutex);
3231
3232 return ret;
3233 }
3234
3235 /**
3236 * i915_ggtt_init_hw - Initialize GGTT hardware
3237 * @dev_priv: i915 device
3238 */
i915_ggtt_init_hw(struct drm_i915_private * dev_priv)3239 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3240 {
3241 int ret;
3242
3243 stash_init(&dev_priv->mm.wc_stash);
3244
3245 /* Note that we use page colouring to enforce a guard page at the
3246 * end of the address space. This is required as the CS may prefetch
3247 * beyond the end of the batch buffer, across the page boundary,
3248 * and beyond the end of the GTT if we do not provide a guard.
3249 */
3250 ret = ggtt_init_hw(&dev_priv->ggtt);
3251 if (ret)
3252 return ret;
3253
3254 /*
3255 * Initialise stolen early so that we may reserve preallocated
3256 * objects for the BIOS to KMS transition.
3257 */
3258 ret = i915_gem_init_stolen(dev_priv);
3259 if (ret)
3260 goto out_gtt_cleanup;
3261
3262 return 0;
3263
3264 out_gtt_cleanup:
3265 dev_priv->ggtt.vm.cleanup(&dev_priv->ggtt.vm);
3266 return ret;
3267 }
3268
i915_ggtt_enable_hw(struct drm_i915_private * dev_priv)3269 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3270 {
3271 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3272 return -EIO;
3273
3274 return 0;
3275 }
3276
i915_ggtt_enable_guc(struct i915_ggtt * ggtt)3277 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
3278 {
3279 GEM_BUG_ON(ggtt->invalidate != gen6_ggtt_invalidate);
3280
3281 ggtt->invalidate = guc_ggtt_invalidate;
3282
3283 ggtt->invalidate(ggtt);
3284 }
3285
i915_ggtt_disable_guc(struct i915_ggtt * ggtt)3286 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
3287 {
3288 /* XXX Temporary pardon for error unload */
3289 if (ggtt->invalidate == gen6_ggtt_invalidate)
3290 return;
3291
3292 /* We should only be called after i915_ggtt_enable_guc() */
3293 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
3294
3295 ggtt->invalidate = gen6_ggtt_invalidate;
3296
3297 ggtt->invalidate(ggtt);
3298 }
3299
ggtt_restore_mappings(struct i915_ggtt * ggtt)3300 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
3301 {
3302 struct i915_vma *vma, *vn;
3303 bool flush = false;
3304
3305 intel_gt_check_and_clear_faults(ggtt->vm.gt);
3306
3307 mutex_lock(&ggtt->vm.mutex);
3308
3309 /* First fill our portion of the GTT with scratch pages */
3310 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3311 ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3312
3313 /* clflush objects bound into the GGTT and rebind them. */
3314 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3315 struct drm_i915_gem_object *obj = vma->obj;
3316
3317 if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3318 continue;
3319
3320 mutex_unlock(&ggtt->vm.mutex);
3321
3322 if (!i915_vma_unbind(vma))
3323 goto lock;
3324
3325 WARN_ON(i915_vma_bind(vma,
3326 obj ? obj->cache_level : 0,
3327 PIN_UPDATE));
3328 if (obj) { /* only used during resume => exclusive access */
3329 flush |= fetch_and_zero(&obj->write_domain);
3330 obj->read_domains |= I915_GEM_DOMAIN_GTT;
3331 }
3332
3333 lock:
3334 mutex_lock(&ggtt->vm.mutex);
3335 }
3336
3337 ggtt->vm.closed = false;
3338 ggtt->invalidate(ggtt);
3339
3340 mutex_unlock(&ggtt->vm.mutex);
3341
3342 if (flush)
3343 wbinvd_on_all_cpus();
3344 }
3345
i915_gem_restore_gtt_mappings(struct drm_i915_private * i915)3346 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
3347 {
3348 ggtt_restore_mappings(&i915->ggtt);
3349
3350 if (INTEL_GEN(i915) >= 8)
3351 setup_private_pat(i915);
3352 }
3353
3354 static struct scatterlist *
rotate_pages(struct drm_i915_gem_object * obj,unsigned int offset,unsigned int width,unsigned int height,unsigned int stride,struct sg_table * st,struct scatterlist * sg)3355 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3356 unsigned int width, unsigned int height,
3357 unsigned int stride,
3358 struct sg_table *st, struct scatterlist *sg)
3359 {
3360 unsigned int column, row;
3361 unsigned int src_idx;
3362
3363 for (column = 0; column < width; column++) {
3364 src_idx = stride * (height - 1) + column + offset;
3365 for (row = 0; row < height; row++) {
3366 st->nents++;
3367 /* We don't need the pages, but need to initialize
3368 * the entries so the sg list can be happily traversed.
3369 * The only thing we need are DMA addresses.
3370 */
3371 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3372 sg_dma_address(sg) =
3373 i915_gem_object_get_dma_address(obj, src_idx);
3374 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3375 sg = sg_next(sg);
3376 src_idx -= stride;
3377 }
3378 }
3379
3380 return sg;
3381 }
3382
3383 static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info * rot_info,struct drm_i915_gem_object * obj)3384 intel_rotate_pages(struct intel_rotation_info *rot_info,
3385 struct drm_i915_gem_object *obj)
3386 {
3387 unsigned int size = intel_rotation_info_size(rot_info);
3388 struct sg_table *st;
3389 struct scatterlist *sg;
3390 int ret = -ENOMEM;
3391 int i;
3392
3393 /* Allocate target SG list. */
3394 st = kmalloc(sizeof(*st), GFP_KERNEL);
3395 if (!st)
3396 goto err_st_alloc;
3397
3398 ret = sg_alloc_table(st, size, GFP_KERNEL);
3399 if (ret)
3400 goto err_sg_alloc;
3401
3402 st->nents = 0;
3403 sg = st->sgl;
3404
3405 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3406 sg = rotate_pages(obj, rot_info->plane[i].offset,
3407 rot_info->plane[i].width, rot_info->plane[i].height,
3408 rot_info->plane[i].stride, st, sg);
3409 }
3410
3411 return st;
3412
3413 err_sg_alloc:
3414 kfree(st);
3415 err_st_alloc:
3416
3417 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3418 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3419
3420 return ERR_PTR(ret);
3421 }
3422
3423 static struct scatterlist *
remap_pages(struct drm_i915_gem_object * obj,unsigned int offset,unsigned int width,unsigned int height,unsigned int stride,struct sg_table * st,struct scatterlist * sg)3424 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3425 unsigned int width, unsigned int height,
3426 unsigned int stride,
3427 struct sg_table *st, struct scatterlist *sg)
3428 {
3429 unsigned int row;
3430
3431 for (row = 0; row < height; row++) {
3432 unsigned int left = width * I915_GTT_PAGE_SIZE;
3433
3434 while (left) {
3435 dma_addr_t addr;
3436 unsigned int length;
3437
3438 /* We don't need the pages, but need to initialize
3439 * the entries so the sg list can be happily traversed.
3440 * The only thing we need are DMA addresses.
3441 */
3442
3443 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
3444
3445 length = min(left, length);
3446
3447 st->nents++;
3448
3449 sg_set_page(sg, NULL, length, 0);
3450 sg_dma_address(sg) = addr;
3451 sg_dma_len(sg) = length;
3452 sg = sg_next(sg);
3453
3454 offset += length / I915_GTT_PAGE_SIZE;
3455 left -= length;
3456 }
3457
3458 offset += stride - width;
3459 }
3460
3461 return sg;
3462 }
3463
3464 static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info * rem_info,struct drm_i915_gem_object * obj)3465 intel_remap_pages(struct intel_remapped_info *rem_info,
3466 struct drm_i915_gem_object *obj)
3467 {
3468 unsigned int size = intel_remapped_info_size(rem_info);
3469 struct sg_table *st;
3470 struct scatterlist *sg;
3471 int ret = -ENOMEM;
3472 int i;
3473
3474 /* Allocate target SG list. */
3475 st = kmalloc(sizeof(*st), GFP_KERNEL);
3476 if (!st)
3477 goto err_st_alloc;
3478
3479 ret = sg_alloc_table(st, size, GFP_KERNEL);
3480 if (ret)
3481 goto err_sg_alloc;
3482
3483 st->nents = 0;
3484 sg = st->sgl;
3485
3486 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
3487 sg = remap_pages(obj, rem_info->plane[i].offset,
3488 rem_info->plane[i].width, rem_info->plane[i].height,
3489 rem_info->plane[i].stride, st, sg);
3490 }
3491
3492 i915_sg_trim(st);
3493
3494 return st;
3495
3496 err_sg_alloc:
3497 kfree(st);
3498 err_st_alloc:
3499
3500 DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3501 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
3502
3503 return ERR_PTR(ret);
3504 }
3505
3506 static noinline struct sg_table *
intel_partial_pages(const struct i915_ggtt_view * view,struct drm_i915_gem_object * obj)3507 intel_partial_pages(const struct i915_ggtt_view *view,
3508 struct drm_i915_gem_object *obj)
3509 {
3510 struct sg_table *st;
3511 struct scatterlist *sg, *iter;
3512 unsigned int count = view->partial.size;
3513 unsigned int offset;
3514 int ret = -ENOMEM;
3515
3516 st = kmalloc(sizeof(*st), GFP_KERNEL);
3517 if (!st)
3518 goto err_st_alloc;
3519
3520 ret = sg_alloc_table(st, count, GFP_KERNEL);
3521 if (ret)
3522 goto err_sg_alloc;
3523
3524 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3525 GEM_BUG_ON(!iter);
3526
3527 sg = st->sgl;
3528 st->nents = 0;
3529 do {
3530 unsigned int len;
3531
3532 len = min(iter->length - (offset << PAGE_SHIFT),
3533 count << PAGE_SHIFT);
3534 sg_set_page(sg, NULL, len, 0);
3535 sg_dma_address(sg) =
3536 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3537 sg_dma_len(sg) = len;
3538
3539 st->nents++;
3540 count -= len >> PAGE_SHIFT;
3541 if (count == 0) {
3542 sg_mark_end(sg);
3543 i915_sg_trim(st); /* Drop any unused tail entries. */
3544
3545 return st;
3546 }
3547
3548 sg = __sg_next(sg);
3549 iter = __sg_next(iter);
3550 offset = 0;
3551 } while (1);
3552
3553 err_sg_alloc:
3554 kfree(st);
3555 err_st_alloc:
3556 return ERR_PTR(ret);
3557 }
3558
3559 static int
i915_get_ggtt_vma_pages(struct i915_vma * vma)3560 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3561 {
3562 int ret;
3563
3564 /* The vma->pages are only valid within the lifespan of the borrowed
3565 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3566 * must be the vma->pages. A simple rule is that vma->pages must only
3567 * be accessed when the obj->mm.pages are pinned.
3568 */
3569 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3570
3571 switch (vma->ggtt_view.type) {
3572 default:
3573 GEM_BUG_ON(vma->ggtt_view.type);
3574 /* fall through */
3575 case I915_GGTT_VIEW_NORMAL:
3576 vma->pages = vma->obj->mm.pages;
3577 return 0;
3578
3579 case I915_GGTT_VIEW_ROTATED:
3580 vma->pages =
3581 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3582 break;
3583
3584 case I915_GGTT_VIEW_REMAPPED:
3585 vma->pages =
3586 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
3587 break;
3588
3589 case I915_GGTT_VIEW_PARTIAL:
3590 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3591 break;
3592 }
3593
3594 ret = 0;
3595 if (IS_ERR(vma->pages)) {
3596 ret = PTR_ERR(vma->pages);
3597 vma->pages = NULL;
3598 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3599 vma->ggtt_view.type, ret);
3600 }
3601 return ret;
3602 }
3603
3604 /**
3605 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3606 * @vm: the &struct i915_address_space
3607 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3608 * @size: how much space to allocate inside the GTT,
3609 * must be #I915_GTT_PAGE_SIZE aligned
3610 * @offset: where to insert inside the GTT,
3611 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3612 * (@offset + @size) must fit within the address space
3613 * @color: color to apply to node, if this node is not from a VMA,
3614 * color must be #I915_COLOR_UNEVICTABLE
3615 * @flags: control search and eviction behaviour
3616 *
3617 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3618 * the address space (using @size and @color). If the @node does not fit, it
3619 * tries to evict any overlapping nodes from the GTT, including any
3620 * neighbouring nodes if the colors do not match (to ensure guard pages between
3621 * differing domains). See i915_gem_evict_for_node() for the gory details
3622 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3623 * evicting active overlapping objects, and any overlapping node that is pinned
3624 * or marked as unevictable will also result in failure.
3625 *
3626 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3627 * asked to wait for eviction and interrupted.
3628 */
i915_gem_gtt_reserve(struct i915_address_space * vm,struct drm_mm_node * node,u64 size,u64 offset,unsigned long color,unsigned int flags)3629 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3630 struct drm_mm_node *node,
3631 u64 size, u64 offset, unsigned long color,
3632 unsigned int flags)
3633 {
3634 int err;
3635
3636 GEM_BUG_ON(!size);
3637 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3638 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3639 GEM_BUG_ON(range_overflows(offset, size, vm->total));
3640 GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3641 GEM_BUG_ON(drm_mm_node_allocated(node));
3642
3643 node->size = size;
3644 node->start = offset;
3645 node->color = color;
3646
3647 err = drm_mm_reserve_node(&vm->mm, node);
3648 if (err != -ENOSPC)
3649 return err;
3650
3651 if (flags & PIN_NOEVICT)
3652 return -ENOSPC;
3653
3654 err = i915_gem_evict_for_node(vm, node, flags);
3655 if (err == 0)
3656 err = drm_mm_reserve_node(&vm->mm, node);
3657
3658 return err;
3659 }
3660
random_offset(u64 start,u64 end,u64 len,u64 align)3661 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3662 {
3663 u64 range, addr;
3664
3665 GEM_BUG_ON(range_overflows(start, len, end));
3666 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3667
3668 range = round_down(end - len, align) - round_up(start, align);
3669 if (range) {
3670 if (sizeof(unsigned long) == sizeof(u64)) {
3671 addr = get_random_long();
3672 } else {
3673 addr = get_random_int();
3674 if (range > U32_MAX) {
3675 addr <<= 32;
3676 addr |= get_random_int();
3677 }
3678 }
3679 div64_u64_rem(addr, range, &addr);
3680 start += addr;
3681 }
3682
3683 return round_up(start, align);
3684 }
3685
3686 /**
3687 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3688 * @vm: the &struct i915_address_space
3689 * @node: the &struct drm_mm_node (typically i915_vma.node)
3690 * @size: how much space to allocate inside the GTT,
3691 * must be #I915_GTT_PAGE_SIZE aligned
3692 * @alignment: required alignment of starting offset, may be 0 but
3693 * if specified, this must be a power-of-two and at least
3694 * #I915_GTT_MIN_ALIGNMENT
3695 * @color: color to apply to node
3696 * @start: start of any range restriction inside GTT (0 for all),
3697 * must be #I915_GTT_PAGE_SIZE aligned
3698 * @end: end of any range restriction inside GTT (U64_MAX for all),
3699 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3700 * @flags: control search and eviction behaviour
3701 *
3702 * i915_gem_gtt_insert() first searches for an available hole into which
3703 * is can insert the node. The hole address is aligned to @alignment and
3704 * its @size must then fit entirely within the [@start, @end] bounds. The
3705 * nodes on either side of the hole must match @color, or else a guard page
3706 * will be inserted between the two nodes (or the node evicted). If no
3707 * suitable hole is found, first a victim is randomly selected and tested
3708 * for eviction, otherwise then the LRU list of objects within the GTT
3709 * is scanned to find the first set of replacement nodes to create the hole.
3710 * Those old overlapping nodes are evicted from the GTT (and so must be
3711 * rebound before any future use). Any node that is currently pinned cannot
3712 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3713 * active and #PIN_NONBLOCK is specified, that node is also skipped when
3714 * searching for an eviction candidate. See i915_gem_evict_something() for
3715 * the gory details on the eviction algorithm.
3716 *
3717 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3718 * asked to wait for eviction and interrupted.
3719 */
i915_gem_gtt_insert(struct i915_address_space * vm,struct drm_mm_node * node,u64 size,u64 alignment,unsigned long color,u64 start,u64 end,unsigned int flags)3720 int i915_gem_gtt_insert(struct i915_address_space *vm,
3721 struct drm_mm_node *node,
3722 u64 size, u64 alignment, unsigned long color,
3723 u64 start, u64 end, unsigned int flags)
3724 {
3725 enum drm_mm_insert_mode mode;
3726 u64 offset;
3727 int err;
3728
3729 lockdep_assert_held(&vm->i915->drm.struct_mutex);
3730 GEM_BUG_ON(!size);
3731 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3732 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3733 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3734 GEM_BUG_ON(start >= end);
3735 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3736 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3737 GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3738 GEM_BUG_ON(drm_mm_node_allocated(node));
3739
3740 if (unlikely(range_overflows(start, size, end)))
3741 return -ENOSPC;
3742
3743 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3744 return -ENOSPC;
3745
3746 mode = DRM_MM_INSERT_BEST;
3747 if (flags & PIN_HIGH)
3748 mode = DRM_MM_INSERT_HIGHEST;
3749 if (flags & PIN_MAPPABLE)
3750 mode = DRM_MM_INSERT_LOW;
3751
3752 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3753 * so we know that we always have a minimum alignment of 4096.
3754 * The drm_mm range manager is optimised to return results
3755 * with zero alignment, so where possible use the optimal
3756 * path.
3757 */
3758 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3759 if (alignment <= I915_GTT_MIN_ALIGNMENT)
3760 alignment = 0;
3761
3762 err = drm_mm_insert_node_in_range(&vm->mm, node,
3763 size, alignment, color,
3764 start, end, mode);
3765 if (err != -ENOSPC)
3766 return err;
3767
3768 if (mode & DRM_MM_INSERT_ONCE) {
3769 err = drm_mm_insert_node_in_range(&vm->mm, node,
3770 size, alignment, color,
3771 start, end,
3772 DRM_MM_INSERT_BEST);
3773 if (err != -ENOSPC)
3774 return err;
3775 }
3776
3777 if (flags & PIN_NOEVICT)
3778 return -ENOSPC;
3779
3780 /*
3781 * No free space, pick a slot at random.
3782 *
3783 * There is a pathological case here using a GTT shared between
3784 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3785 *
3786 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3787 * (64k objects) (448k objects)
3788 *
3789 * Now imagine that the eviction LRU is ordered top-down (just because
3790 * pathology meets real life), and that we need to evict an object to
3791 * make room inside the aperture. The eviction scan then has to walk
3792 * the 448k list before it finds one within range. And now imagine that
3793 * it has to search for a new hole between every byte inside the memcpy,
3794 * for several simultaneous clients.
3795 *
3796 * On a full-ppgtt system, if we have run out of available space, there
3797 * will be lots and lots of objects in the eviction list! Again,
3798 * searching that LRU list may be slow if we are also applying any
3799 * range restrictions (e.g. restriction to low 4GiB) and so, for
3800 * simplicity and similarilty between different GTT, try the single
3801 * random replacement first.
3802 */
3803 offset = random_offset(start, end,
3804 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3805 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3806 if (err != -ENOSPC)
3807 return err;
3808
3809 if (flags & PIN_NOSEARCH)
3810 return -ENOSPC;
3811
3812 /* Randomly selected placement is pinned, do a search */
3813 err = i915_gem_evict_something(vm, size, alignment, color,
3814 start, end, flags);
3815 if (err)
3816 return err;
3817
3818 return drm_mm_insert_node_in_range(&vm->mm, node,
3819 size, alignment, color,
3820 start, end, DRM_MM_INSERT_EVICT);
3821 }
3822
3823 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3824 #include "selftests/mock_gtt.c"
3825 #include "selftests/i915_gem_gtt.c"
3826 #endif
3827