1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51
cpu_write_needs_clflush(struct drm_i915_gem_object * obj)52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 if (obj->cache_dirty)
55 return false;
56
57 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 return true;
59
60 return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62
63 static int
insert_mappable_node(struct i915_ggtt * ggtt,struct drm_mm_node * node,u32 size)64 insert_mappable_node(struct i915_ggtt *ggtt,
65 struct drm_mm_node *node, u32 size)
66 {
67 memset(node, 0, sizeof(*node));
68 return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 size, 0, I915_COLOR_UNEVICTABLE,
70 0, ggtt->mappable_end,
71 DRM_MM_INSERT_LOW);
72 }
73
74 static void
remove_mappable_node(struct drm_mm_node * node)75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,u64 size)81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 u64 size)
83 {
84 spin_lock(&dev_priv->mm.object_stat_lock);
85 dev_priv->mm.object_count++;
86 dev_priv->mm.object_memory += size;
87 spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,u64 size)90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 u64 size)
92 {
93 spin_lock(&dev_priv->mm.object_stat_lock);
94 dev_priv->mm.object_count--;
95 dev_priv->mm.object_memory -= size;
96 spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
i915_gem_wait_for_error(struct i915_gpu_error * error)100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 int ret;
103
104 might_sleep();
105
106 /*
107 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 * userspace. If it takes that long something really bad is going on and
109 * we should simply try to bail out and fail as gracefully as possible.
110 */
111 ret = wait_event_interruptible_timeout(error->reset_queue,
112 !i915_reset_backoff(error),
113 I915_RESET_TIMEOUT);
114 if (ret == 0) {
115 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 return -EIO;
117 } else if (ret < 0) {
118 return ret;
119 } else {
120 return 0;
121 }
122 }
123
i915_mutex_lock_interruptible(struct drm_device * dev)124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 struct drm_i915_private *dev_priv = to_i915(dev);
127 int ret;
128
129 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
137 return 0;
138 }
139
__i915_gem_park(struct drm_i915_private * i915)140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 GEM_TRACE("\n");
143
144 lockdep_assert_held(&i915->drm.struct_mutex);
145 GEM_BUG_ON(i915->gt.active_requests);
146 GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147
148 if (!i915->gt.awake)
149 return I915_EPOCH_INVALID;
150
151 GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152
153 /*
154 * Be paranoid and flush a concurrent interrupt to make sure
155 * we don't reactivate any irq tasklets after parking.
156 *
157 * FIXME: Note that even though we have waited for execlists to be idle,
158 * there may still be an in-flight interrupt even though the CSB
159 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 * is completed before we continue, but it doesn't prevent the HW from
161 * raising a spurious interrupt later. To complete the shield we should
162 * coordinate disabling the CS irq with flushing the interrupts.
163 */
164 synchronize_irq(i915->drm.irq);
165
166 intel_engines_park(i915);
167 i915_timelines_park(i915);
168
169 i915_pmu_gt_parked(i915);
170 i915_vma_parked(i915);
171
172 i915->gt.awake = false;
173
174 if (INTEL_GEN(i915) >= 6)
175 gen6_rps_idle(i915);
176
177 intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178
179 intel_runtime_pm_put(i915);
180
181 return i915->gt.epoch;
182 }
183
i915_gem_park(struct drm_i915_private * i915)184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186 GEM_TRACE("\n");
187
188 lockdep_assert_held(&i915->drm.struct_mutex);
189 GEM_BUG_ON(i915->gt.active_requests);
190
191 if (!i915->gt.awake)
192 return;
193
194 /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197
i915_gem_unpark(struct drm_i915_private * i915)198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200 GEM_TRACE("\n");
201
202 lockdep_assert_held(&i915->drm.struct_mutex);
203 GEM_BUG_ON(!i915->gt.active_requests);
204
205 if (i915->gt.awake)
206 return;
207
208 intel_runtime_pm_get_noresume(i915);
209
210 /*
211 * It seems that the DMC likes to transition between the DC states a lot
212 * when there are no connected displays (no active power domains) during
213 * command submission.
214 *
215 * This activity has negative impact on the performance of the chip with
216 * huge latencies observed in the interrupt handler and elsewhere.
217 *
218 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 * GT activity, preventing any DC state transitions.
220 */
221 intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222
223 i915->gt.awake = true;
224 if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 i915->gt.epoch = 1;
226
227 intel_enable_gt_powersave(i915);
228 i915_update_gfx_val(i915);
229 if (INTEL_GEN(i915) >= 6)
230 gen6_rps_busy(i915);
231 i915_pmu_gt_unparked(i915);
232
233 intel_engines_unpark(i915);
234
235 i915_queue_hangcheck(i915);
236
237 queue_delayed_work(i915->wq,
238 &i915->gt.retire_work,
239 round_jiffies_up_relative(HZ));
240 }
241
242 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244 struct drm_file *file)
245 {
246 struct drm_i915_private *dev_priv = to_i915(dev);
247 struct i915_ggtt *ggtt = &dev_priv->ggtt;
248 struct drm_i915_gem_get_aperture *args = data;
249 struct i915_vma *vma;
250 u64 pinned;
251
252 pinned = ggtt->vm.reserved;
253 mutex_lock(&dev->struct_mutex);
254 list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255 if (i915_vma_is_pinned(vma))
256 pinned += vma->node.size;
257 list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258 if (i915_vma_is_pinned(vma))
259 pinned += vma->node.size;
260 mutex_unlock(&dev->struct_mutex);
261
262 args->aper_size = ggtt->vm.total;
263 args->aper_available_size = args->aper_size - pinned;
264
265 return 0;
266 }
267
i915_gem_object_get_pages_phys(struct drm_i915_gem_object * obj)268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270 struct address_space *mapping = obj->base.filp->f_mapping;
271 drm_dma_handle_t *phys;
272 struct sg_table *st;
273 struct scatterlist *sg;
274 char *vaddr;
275 int i;
276 int err;
277
278 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279 return -EINVAL;
280
281 /* Always aligning to the object size, allows a single allocation
282 * to handle all possible callers, and given typical object sizes,
283 * the alignment of the buddy allocation will naturally match.
284 */
285 phys = drm_pci_alloc(obj->base.dev,
286 roundup_pow_of_two(obj->base.size),
287 roundup_pow_of_two(obj->base.size));
288 if (!phys)
289 return -ENOMEM;
290
291 vaddr = phys->vaddr;
292 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 struct page *page;
294 char *src;
295
296 page = shmem_read_mapping_page(mapping, i);
297 if (IS_ERR(page)) {
298 err = PTR_ERR(page);
299 goto err_phys;
300 }
301
302 src = kmap_atomic(page);
303 memcpy(vaddr, src, PAGE_SIZE);
304 drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 kunmap_atomic(src);
306
307 put_page(page);
308 vaddr += PAGE_SIZE;
309 }
310
311 i915_gem_chipset_flush(to_i915(obj->base.dev));
312
313 st = kmalloc(sizeof(*st), GFP_KERNEL);
314 if (!st) {
315 err = -ENOMEM;
316 goto err_phys;
317 }
318
319 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 kfree(st);
321 err = -ENOMEM;
322 goto err_phys;
323 }
324
325 sg = st->sgl;
326 sg->offset = 0;
327 sg->length = obj->base.size;
328
329 sg_dma_address(sg) = phys->busaddr;
330 sg_dma_len(sg) = obj->base.size;
331
332 obj->phys_handle = phys;
333
334 __i915_gem_object_set_pages(obj, st, sg->length);
335
336 return 0;
337
338 err_phys:
339 drm_pci_free(obj->base.dev, phys);
340
341 return err;
342 }
343
__start_cpu_write(struct drm_i915_gem_object * obj)344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346 obj->read_domains = I915_GEM_DOMAIN_CPU;
347 obj->write_domain = I915_GEM_DOMAIN_CPU;
348 if (cpu_write_needs_clflush(obj))
349 obj->cache_dirty = true;
350 }
351
352 static void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 struct sg_table *pages,
355 bool needs_clflush)
356 {
357 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358
359 if (obj->mm.madv == I915_MADV_DONTNEED)
360 obj->mm.dirty = false;
361
362 if (needs_clflush &&
363 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365 drm_clflush_sg(pages);
366
367 __start_cpu_write(obj);
368 }
369
370 static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object * obj,struct sg_table * pages)371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 struct sg_table *pages)
373 {
374 __i915_gem_object_release_shmem(obj, pages, false);
375
376 if (obj->mm.dirty) {
377 struct address_space *mapping = obj->base.filp->f_mapping;
378 char *vaddr = obj->phys_handle->vaddr;
379 int i;
380
381 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 struct page *page;
383 char *dst;
384
385 page = shmem_read_mapping_page(mapping, i);
386 if (IS_ERR(page))
387 continue;
388
389 dst = kmap_atomic(page);
390 drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 memcpy(dst, vaddr, PAGE_SIZE);
392 kunmap_atomic(dst);
393
394 set_page_dirty(page);
395 if (obj->mm.madv == I915_MADV_WILLNEED)
396 mark_page_accessed(page);
397 put_page(page);
398 vaddr += PAGE_SIZE;
399 }
400 obj->mm.dirty = false;
401 }
402
403 sg_free_table(pages);
404 kfree(pages);
405
406 drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408
409 static void
i915_gem_object_release_phys(struct drm_i915_gem_object * obj)410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412 i915_gem_object_unpin_pages(obj);
413 }
414
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 .get_pages = i915_gem_object_get_pages_phys,
417 .put_pages = i915_gem_object_put_pages_phys,
418 .release = i915_gem_object_release_phys,
419 };
420
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422
i915_gem_object_unbind(struct drm_i915_gem_object * obj)423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425 struct i915_vma *vma;
426 LIST_HEAD(still_in_list);
427 int ret;
428
429 lockdep_assert_held(&obj->base.dev->struct_mutex);
430
431 /* Closed vma are removed from the obj->vma_list - but they may
432 * still have an active binding on the object. To remove those we
433 * must wait for all rendering to complete to the object (as unbinding
434 * must anyway), and retire the requests.
435 */
436 ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 if (ret)
438 return ret;
439
440 while ((vma = list_first_entry_or_null(&obj->vma_list,
441 struct i915_vma,
442 obj_link))) {
443 list_move_tail(&vma->obj_link, &still_in_list);
444 ret = i915_vma_unbind(vma);
445 if (ret)
446 break;
447 }
448 list_splice(&still_in_list, &obj->vma_list);
449
450 return ret;
451 }
452
453 static long
i915_gem_object_wait_fence(struct dma_fence * fence,unsigned int flags,long timeout,struct intel_rps_client * rps_client)454 i915_gem_object_wait_fence(struct dma_fence *fence,
455 unsigned int flags,
456 long timeout,
457 struct intel_rps_client *rps_client)
458 {
459 struct i915_request *rq;
460
461 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462
463 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 return timeout;
465
466 if (!dma_fence_is_i915(fence))
467 return dma_fence_wait_timeout(fence,
468 flags & I915_WAIT_INTERRUPTIBLE,
469 timeout);
470
471 rq = to_request(fence);
472 if (i915_request_completed(rq))
473 goto out;
474
475 /*
476 * This client is about to stall waiting for the GPU. In many cases
477 * this is undesirable and limits the throughput of the system, as
478 * many clients cannot continue processing user input/output whilst
479 * blocked. RPS autotuning may take tens of milliseconds to respond
480 * to the GPU load and thus incurs additional latency for the client.
481 * We can circumvent that by promoting the GPU frequency to maximum
482 * before we wait. This makes the GPU throttle up much more quickly
483 * (good for benchmarks and user experience, e.g. window animations),
484 * but at a cost of spending more power processing the workload
485 * (bad for battery). Not all clients even want their results
486 * immediately and for them we should just let the GPU select its own
487 * frequency to maximise efficiency. To prevent a single client from
488 * forcing the clocks too high for the whole system, we only allow
489 * each client to waitboost once in a busy period.
490 */
491 if (rps_client && !i915_request_started(rq)) {
492 if (INTEL_GEN(rq->i915) >= 6)
493 gen6_rps_boost(rq, rps_client);
494 }
495
496 timeout = i915_request_wait(rq, flags, timeout);
497
498 out:
499 if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 i915_request_retire_upto(rq);
501
502 return timeout;
503 }
504
505 static long
i915_gem_object_wait_reservation(struct reservation_object * resv,unsigned int flags,long timeout,struct intel_rps_client * rps_client)506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507 unsigned int flags,
508 long timeout,
509 struct intel_rps_client *rps_client)
510 {
511 unsigned int seq = __read_seqcount_begin(&resv->seq);
512 struct dma_fence *excl;
513 bool prune_fences = false;
514
515 if (flags & I915_WAIT_ALL) {
516 struct dma_fence **shared;
517 unsigned int count, i;
518 int ret;
519
520 ret = reservation_object_get_fences_rcu(resv,
521 &excl, &count, &shared);
522 if (ret)
523 return ret;
524
525 for (i = 0; i < count; i++) {
526 timeout = i915_gem_object_wait_fence(shared[i],
527 flags, timeout,
528 rps_client);
529 if (timeout < 0)
530 break;
531
532 dma_fence_put(shared[i]);
533 }
534
535 for (; i < count; i++)
536 dma_fence_put(shared[i]);
537 kfree(shared);
538
539 /*
540 * If both shared fences and an exclusive fence exist,
541 * then by construction the shared fences must be later
542 * than the exclusive fence. If we successfully wait for
543 * all the shared fences, we know that the exclusive fence
544 * must all be signaled. If all the shared fences are
545 * signaled, we can prune the array and recover the
546 * floating references on the fences/requests.
547 */
548 prune_fences = count && timeout >= 0;
549 } else {
550 excl = reservation_object_get_excl_rcu(resv);
551 }
552
553 if (excl && timeout >= 0)
554 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 rps_client);
556
557 dma_fence_put(excl);
558
559 /*
560 * Opportunistically prune the fences iff we know they have *all* been
561 * signaled and that the reservation object has not been changed (i.e.
562 * no new fences have been added).
563 */
564 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 if (reservation_object_trylock(resv)) {
566 if (!__read_seqcount_retry(&resv->seq, seq))
567 reservation_object_add_excl_fence(resv, NULL);
568 reservation_object_unlock(resv);
569 }
570 }
571
572 return timeout;
573 }
574
__fence_set_priority(struct dma_fence * fence,const struct i915_sched_attr * attr)575 static void __fence_set_priority(struct dma_fence *fence,
576 const struct i915_sched_attr *attr)
577 {
578 struct i915_request *rq;
579 struct intel_engine_cs *engine;
580
581 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 return;
583
584 rq = to_request(fence);
585 engine = rq->engine;
586
587 local_bh_disable();
588 rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589 if (engine->schedule)
590 engine->schedule(rq, attr);
591 rcu_read_unlock();
592 local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594
fence_set_priority(struct dma_fence * fence,const struct i915_sched_attr * attr)595 static void fence_set_priority(struct dma_fence *fence,
596 const struct i915_sched_attr *attr)
597 {
598 /* Recurse once into a fence-array */
599 if (dma_fence_is_array(fence)) {
600 struct dma_fence_array *array = to_dma_fence_array(fence);
601 int i;
602
603 for (i = 0; i < array->num_fences; i++)
604 __fence_set_priority(array->fences[i], attr);
605 } else {
606 __fence_set_priority(fence, attr);
607 }
608 }
609
610 int
i915_gem_object_wait_priority(struct drm_i915_gem_object * obj,unsigned int flags,const struct i915_sched_attr * attr)611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 unsigned int flags,
613 const struct i915_sched_attr *attr)
614 {
615 struct dma_fence *excl;
616
617 if (flags & I915_WAIT_ALL) {
618 struct dma_fence **shared;
619 unsigned int count, i;
620 int ret;
621
622 ret = reservation_object_get_fences_rcu(obj->resv,
623 &excl, &count, &shared);
624 if (ret)
625 return ret;
626
627 for (i = 0; i < count; i++) {
628 fence_set_priority(shared[i], attr);
629 dma_fence_put(shared[i]);
630 }
631
632 kfree(shared);
633 } else {
634 excl = reservation_object_get_excl_rcu(obj->resv);
635 }
636
637 if (excl) {
638 fence_set_priority(excl, attr);
639 dma_fence_put(excl);
640 }
641 return 0;
642 }
643
644 /**
645 * Waits for rendering to the object to be completed
646 * @obj: i915 gem object
647 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648 * @timeout: how long to wait
649 * @rps_client: client (user process) to charge for any waitboosting
650 */
651 int
i915_gem_object_wait(struct drm_i915_gem_object * obj,unsigned int flags,long timeout,struct intel_rps_client * rps_client)652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 unsigned int flags,
654 long timeout,
655 struct intel_rps_client *rps_client)
656 {
657 might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659 GEM_BUG_ON(debug_locks &&
660 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 !!(flags & I915_WAIT_LOCKED));
662 #endif
663 GEM_BUG_ON(timeout < 0);
664
665 timeout = i915_gem_object_wait_reservation(obj->resv,
666 flags, timeout,
667 rps_client);
668 return timeout < 0 ? timeout : 0;
669 }
670
to_rps_client(struct drm_file * file)671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673 struct drm_i915_file_private *fpriv = file->driver_priv;
674
675 return &fpriv->rps_client;
676 }
677
678 static int
i915_gem_phys_pwrite(struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 struct drm_i915_gem_pwrite *args,
681 struct drm_file *file)
682 {
683 void *vaddr = obj->phys_handle->vaddr + args->offset;
684 char __user *user_data = u64_to_user_ptr(args->data_ptr);
685
686 /* We manually control the domain here and pretend that it
687 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 */
689 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 if (copy_from_user(vaddr, user_data, args->size))
691 return -EFAULT;
692
693 drm_clflush_virt_range(vaddr, args->size);
694 i915_gem_chipset_flush(to_i915(obj->base.dev));
695
696 intel_fb_obj_flush(obj, ORIGIN_CPU);
697 return 0;
698 }
699
i915_gem_object_alloc(struct drm_i915_private * dev_priv)700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704
i915_gem_object_free(struct drm_i915_gem_object * obj)705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708 kmem_cache_free(dev_priv->objects, obj);
709 }
710
711 static int
i915_gem_create(struct drm_file * file,struct drm_i915_private * dev_priv,uint64_t size,uint32_t * handle_p)712 i915_gem_create(struct drm_file *file,
713 struct drm_i915_private *dev_priv,
714 uint64_t size,
715 uint32_t *handle_p)
716 {
717 struct drm_i915_gem_object *obj;
718 int ret;
719 u32 handle;
720
721 size = roundup(size, PAGE_SIZE);
722 if (size == 0)
723 return -EINVAL;
724
725 /* Allocate the new object */
726 obj = i915_gem_object_create(dev_priv, size);
727 if (IS_ERR(obj))
728 return PTR_ERR(obj);
729
730 ret = drm_gem_handle_create(file, &obj->base, &handle);
731 /* drop reference from allocate - handle holds it now */
732 i915_gem_object_put(obj);
733 if (ret)
734 return ret;
735
736 *handle_p = handle;
737 return 0;
738 }
739
740 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)741 i915_gem_dumb_create(struct drm_file *file,
742 struct drm_device *dev,
743 struct drm_mode_create_dumb *args)
744 {
745 /* have to work out size/pitch and return them */
746 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747 args->size = args->pitch * args->height;
748 return i915_gem_create(file, to_i915(dev),
749 args->size, &args->handle);
750 }
751
gpu_write_needs_clflush(struct drm_i915_gem_object * obj)752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754 return !(obj->cache_level == I915_CACHE_NONE ||
755 obj->cache_level == I915_CACHE_WT);
756 }
757
758 /**
759 * Creates a new mm object and returns a handle to it.
760 * @dev: drm device pointer
761 * @data: ioctl data blob
762 * @file: drm file pointer
763 */
764 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = to_i915(dev);
769 struct drm_i915_gem_create *args = data;
770
771 i915_gem_flush_free_objects(dev_priv);
772
773 return i915_gem_create(file, dev_priv,
774 args->size, &args->handle);
775 }
776
777 static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object * obj,unsigned int domain)778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780 return (domain == I915_GEM_DOMAIN_GTT ?
781 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783
i915_gem_flush_ggtt_writes(struct drm_i915_private * dev_priv)784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786 /*
787 * No actual flushing is required for the GTT write domain for reads
788 * from the GTT domain. Writes to it "immediately" go to main memory
789 * as far as we know, so there's no chipset flush. It also doesn't
790 * land in the GPU render cache.
791 *
792 * However, we do have to enforce the order so that all writes through
793 * the GTT land before any writes to the device, such as updates to
794 * the GATT itself.
795 *
796 * We also have to wait a bit for the writes to land from the GTT.
797 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 * timing. This issue has only been observed when switching quickly
799 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 * system agents we cannot reproduce this behaviour, until Cannonlake
802 * that was!).
803 */
804
805 i915_gem_chipset_flush(dev_priv);
806
807 intel_runtime_pm_get(dev_priv);
808 spin_lock_irq(&dev_priv->uncore.lock);
809
810 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
811
812 spin_unlock_irq(&dev_priv->uncore.lock);
813 intel_runtime_pm_put(dev_priv);
814 }
815
816 static void
flush_write_domain(struct drm_i915_gem_object * obj,unsigned int flush_domains)817 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
818 {
819 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
820 struct i915_vma *vma;
821
822 if (!(obj->write_domain & flush_domains))
823 return;
824
825 switch (obj->write_domain) {
826 case I915_GEM_DOMAIN_GTT:
827 i915_gem_flush_ggtt_writes(dev_priv);
828
829 intel_fb_obj_flush(obj,
830 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
831
832 for_each_ggtt_vma(vma, obj) {
833 if (vma->iomap)
834 continue;
835
836 i915_vma_unset_ggtt_write(vma);
837 }
838 break;
839
840 case I915_GEM_DOMAIN_WC:
841 wmb();
842 break;
843
844 case I915_GEM_DOMAIN_CPU:
845 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
846 break;
847
848 case I915_GEM_DOMAIN_RENDER:
849 if (gpu_write_needs_clflush(obj))
850 obj->cache_dirty = true;
851 break;
852 }
853
854 obj->write_domain = 0;
855 }
856
857 static inline int
__copy_to_user_swizzled(char __user * cpu_vaddr,const char * gpu_vaddr,int gpu_offset,int length)858 __copy_to_user_swizzled(char __user *cpu_vaddr,
859 const char *gpu_vaddr, int gpu_offset,
860 int length)
861 {
862 int ret, cpu_offset = 0;
863
864 while (length > 0) {
865 int cacheline_end = ALIGN(gpu_offset + 1, 64);
866 int this_length = min(cacheline_end - gpu_offset, length);
867 int swizzled_gpu_offset = gpu_offset ^ 64;
868
869 ret = __copy_to_user(cpu_vaddr + cpu_offset,
870 gpu_vaddr + swizzled_gpu_offset,
871 this_length);
872 if (ret)
873 return ret + length;
874
875 cpu_offset += this_length;
876 gpu_offset += this_length;
877 length -= this_length;
878 }
879
880 return 0;
881 }
882
883 static inline int
__copy_from_user_swizzled(char * gpu_vaddr,int gpu_offset,const char __user * cpu_vaddr,int length)884 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
885 const char __user *cpu_vaddr,
886 int length)
887 {
888 int ret, cpu_offset = 0;
889
890 while (length > 0) {
891 int cacheline_end = ALIGN(gpu_offset + 1, 64);
892 int this_length = min(cacheline_end - gpu_offset, length);
893 int swizzled_gpu_offset = gpu_offset ^ 64;
894
895 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
896 cpu_vaddr + cpu_offset,
897 this_length);
898 if (ret)
899 return ret + length;
900
901 cpu_offset += this_length;
902 gpu_offset += this_length;
903 length -= this_length;
904 }
905
906 return 0;
907 }
908
909 /*
910 * Pins the specified object's pages and synchronizes the object with
911 * GPU accesses. Sets needs_clflush to non-zero if the caller should
912 * flush the object from the CPU cache.
913 */
i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)914 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
915 unsigned int *needs_clflush)
916 {
917 int ret;
918
919 lockdep_assert_held(&obj->base.dev->struct_mutex);
920
921 *needs_clflush = 0;
922 if (!i915_gem_object_has_struct_page(obj))
923 return -ENODEV;
924
925 ret = i915_gem_object_wait(obj,
926 I915_WAIT_INTERRUPTIBLE |
927 I915_WAIT_LOCKED,
928 MAX_SCHEDULE_TIMEOUT,
929 NULL);
930 if (ret)
931 return ret;
932
933 ret = i915_gem_object_pin_pages(obj);
934 if (ret)
935 return ret;
936
937 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
938 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
939 ret = i915_gem_object_set_to_cpu_domain(obj, false);
940 if (ret)
941 goto err_unpin;
942 else
943 goto out;
944 }
945
946 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
947
948 /* If we're not in the cpu read domain, set ourself into the gtt
949 * read domain and manually flush cachelines (if required). This
950 * optimizes for the case when the gpu will dirty the data
951 * anyway again before the next pread happens.
952 */
953 if (!obj->cache_dirty &&
954 !(obj->read_domains & I915_GEM_DOMAIN_CPU))
955 *needs_clflush = CLFLUSH_BEFORE;
956
957 out:
958 /* return with the pages pinned */
959 return 0;
960
961 err_unpin:
962 i915_gem_object_unpin_pages(obj);
963 return ret;
964 }
965
i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)966 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
967 unsigned int *needs_clflush)
968 {
969 int ret;
970
971 lockdep_assert_held(&obj->base.dev->struct_mutex);
972
973 *needs_clflush = 0;
974 if (!i915_gem_object_has_struct_page(obj))
975 return -ENODEV;
976
977 ret = i915_gem_object_wait(obj,
978 I915_WAIT_INTERRUPTIBLE |
979 I915_WAIT_LOCKED |
980 I915_WAIT_ALL,
981 MAX_SCHEDULE_TIMEOUT,
982 NULL);
983 if (ret)
984 return ret;
985
986 ret = i915_gem_object_pin_pages(obj);
987 if (ret)
988 return ret;
989
990 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
991 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
992 ret = i915_gem_object_set_to_cpu_domain(obj, true);
993 if (ret)
994 goto err_unpin;
995 else
996 goto out;
997 }
998
999 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1000
1001 /* If we're not in the cpu write domain, set ourself into the
1002 * gtt write domain and manually flush cachelines (as required).
1003 * This optimizes for the case when the gpu will use the data
1004 * right away and we therefore have to clflush anyway.
1005 */
1006 if (!obj->cache_dirty) {
1007 *needs_clflush |= CLFLUSH_AFTER;
1008
1009 /*
1010 * Same trick applies to invalidate partially written
1011 * cachelines read before writing.
1012 */
1013 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1014 *needs_clflush |= CLFLUSH_BEFORE;
1015 }
1016
1017 out:
1018 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1019 obj->mm.dirty = true;
1020 /* return with the pages pinned */
1021 return 0;
1022
1023 err_unpin:
1024 i915_gem_object_unpin_pages(obj);
1025 return ret;
1026 }
1027
1028 static void
shmem_clflush_swizzled_range(char * addr,unsigned long length,bool swizzled)1029 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1030 bool swizzled)
1031 {
1032 if (unlikely(swizzled)) {
1033 unsigned long start = (unsigned long) addr;
1034 unsigned long end = (unsigned long) addr + length;
1035
1036 /* For swizzling simply ensure that we always flush both
1037 * channels. Lame, but simple and it works. Swizzled
1038 * pwrite/pread is far from a hotpath - current userspace
1039 * doesn't use it at all. */
1040 start = round_down(start, 128);
1041 end = round_up(end, 128);
1042
1043 drm_clflush_virt_range((void *)start, end - start);
1044 } else {
1045 drm_clflush_virt_range(addr, length);
1046 }
1047
1048 }
1049
1050 /* Only difference to the fast-path function is that this can handle bit17
1051 * and uses non-atomic copy and kmap functions. */
1052 static int
shmem_pread_slow(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)1053 shmem_pread_slow(struct page *page, int offset, int length,
1054 char __user *user_data,
1055 bool page_do_bit17_swizzling, bool needs_clflush)
1056 {
1057 char *vaddr;
1058 int ret;
1059
1060 vaddr = kmap(page);
1061 if (needs_clflush)
1062 shmem_clflush_swizzled_range(vaddr + offset, length,
1063 page_do_bit17_swizzling);
1064
1065 if (page_do_bit17_swizzling)
1066 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1067 else
1068 ret = __copy_to_user(user_data, vaddr + offset, length);
1069 kunmap(page);
1070
1071 return ret ? - EFAULT : 0;
1072 }
1073
1074 static int
shmem_pread(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)1075 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1076 bool page_do_bit17_swizzling, bool needs_clflush)
1077 {
1078 int ret;
1079
1080 ret = -ENODEV;
1081 if (!page_do_bit17_swizzling) {
1082 char *vaddr = kmap_atomic(page);
1083
1084 if (needs_clflush)
1085 drm_clflush_virt_range(vaddr + offset, length);
1086 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1087 kunmap_atomic(vaddr);
1088 }
1089 if (ret == 0)
1090 return 0;
1091
1092 return shmem_pread_slow(page, offset, length, user_data,
1093 page_do_bit17_swizzling, needs_clflush);
1094 }
1095
1096 static int
i915_gem_shmem_pread(struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args)1097 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1098 struct drm_i915_gem_pread *args)
1099 {
1100 char __user *user_data;
1101 u64 remain;
1102 unsigned int obj_do_bit17_swizzling;
1103 unsigned int needs_clflush;
1104 unsigned int idx, offset;
1105 int ret;
1106
1107 obj_do_bit17_swizzling = 0;
1108 if (i915_gem_object_needs_bit17_swizzle(obj))
1109 obj_do_bit17_swizzling = BIT(17);
1110
1111 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1112 if (ret)
1113 return ret;
1114
1115 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1116 mutex_unlock(&obj->base.dev->struct_mutex);
1117 if (ret)
1118 return ret;
1119
1120 remain = args->size;
1121 user_data = u64_to_user_ptr(args->data_ptr);
1122 offset = offset_in_page(args->offset);
1123 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1124 struct page *page = i915_gem_object_get_page(obj, idx);
1125 int length;
1126
1127 length = remain;
1128 if (offset + length > PAGE_SIZE)
1129 length = PAGE_SIZE - offset;
1130
1131 ret = shmem_pread(page, offset, length, user_data,
1132 page_to_phys(page) & obj_do_bit17_swizzling,
1133 needs_clflush);
1134 if (ret)
1135 break;
1136
1137 remain -= length;
1138 user_data += length;
1139 offset = 0;
1140 }
1141
1142 i915_gem_obj_finish_shmem_access(obj);
1143 return ret;
1144 }
1145
1146 static inline bool
gtt_user_read(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)1147 gtt_user_read(struct io_mapping *mapping,
1148 loff_t base, int offset,
1149 char __user *user_data, int length)
1150 {
1151 void __iomem *vaddr;
1152 unsigned long unwritten;
1153
1154 /* We can use the cpu mem copy function because this is X86. */
1155 vaddr = io_mapping_map_atomic_wc(mapping, base);
1156 unwritten = __copy_to_user_inatomic(user_data,
1157 (void __force *)vaddr + offset,
1158 length);
1159 io_mapping_unmap_atomic(vaddr);
1160 if (unwritten) {
1161 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1162 unwritten = copy_to_user(user_data,
1163 (void __force *)vaddr + offset,
1164 length);
1165 io_mapping_unmap(vaddr);
1166 }
1167 return unwritten;
1168 }
1169
1170 static int
i915_gem_gtt_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * args)1171 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1172 const struct drm_i915_gem_pread *args)
1173 {
1174 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1175 struct i915_ggtt *ggtt = &i915->ggtt;
1176 struct drm_mm_node node;
1177 struct i915_vma *vma;
1178 void __user *user_data;
1179 u64 remain, offset;
1180 int ret;
1181
1182 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1183 if (ret)
1184 return ret;
1185
1186 intel_runtime_pm_get(i915);
1187 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1188 PIN_MAPPABLE |
1189 PIN_NONFAULT |
1190 PIN_NONBLOCK);
1191 if (!IS_ERR(vma)) {
1192 node.start = i915_ggtt_offset(vma);
1193 node.allocated = false;
1194 ret = i915_vma_put_fence(vma);
1195 if (ret) {
1196 i915_vma_unpin(vma);
1197 vma = ERR_PTR(ret);
1198 }
1199 }
1200 if (IS_ERR(vma)) {
1201 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1202 if (ret)
1203 goto out_unlock;
1204 GEM_BUG_ON(!node.allocated);
1205 }
1206
1207 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1208 if (ret)
1209 goto out_unpin;
1210
1211 mutex_unlock(&i915->drm.struct_mutex);
1212
1213 user_data = u64_to_user_ptr(args->data_ptr);
1214 remain = args->size;
1215 offset = args->offset;
1216
1217 while (remain > 0) {
1218 /* Operation in this page
1219 *
1220 * page_base = page offset within aperture
1221 * page_offset = offset within page
1222 * page_length = bytes to copy for this page
1223 */
1224 u32 page_base = node.start;
1225 unsigned page_offset = offset_in_page(offset);
1226 unsigned page_length = PAGE_SIZE - page_offset;
1227 page_length = remain < page_length ? remain : page_length;
1228 if (node.allocated) {
1229 wmb();
1230 ggtt->vm.insert_page(&ggtt->vm,
1231 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1232 node.start, I915_CACHE_NONE, 0);
1233 wmb();
1234 } else {
1235 page_base += offset & PAGE_MASK;
1236 }
1237
1238 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1239 user_data, page_length)) {
1240 ret = -EFAULT;
1241 break;
1242 }
1243
1244 remain -= page_length;
1245 user_data += page_length;
1246 offset += page_length;
1247 }
1248
1249 mutex_lock(&i915->drm.struct_mutex);
1250 out_unpin:
1251 if (node.allocated) {
1252 wmb();
1253 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1254 remove_mappable_node(&node);
1255 } else {
1256 i915_vma_unpin(vma);
1257 }
1258 out_unlock:
1259 intel_runtime_pm_put(i915);
1260 mutex_unlock(&i915->drm.struct_mutex);
1261
1262 return ret;
1263 }
1264
1265 /**
1266 * Reads data from the object referenced by handle.
1267 * @dev: drm device pointer
1268 * @data: ioctl data blob
1269 * @file: drm file pointer
1270 *
1271 * On error, the contents of *data are undefined.
1272 */
1273 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1274 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1275 struct drm_file *file)
1276 {
1277 struct drm_i915_gem_pread *args = data;
1278 struct drm_i915_gem_object *obj;
1279 int ret;
1280
1281 if (args->size == 0)
1282 return 0;
1283
1284 if (!access_ok(VERIFY_WRITE,
1285 u64_to_user_ptr(args->data_ptr),
1286 args->size))
1287 return -EFAULT;
1288
1289 obj = i915_gem_object_lookup(file, args->handle);
1290 if (!obj)
1291 return -ENOENT;
1292
1293 /* Bounds check source. */
1294 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1295 ret = -EINVAL;
1296 goto out;
1297 }
1298
1299 trace_i915_gem_object_pread(obj, args->offset, args->size);
1300
1301 ret = i915_gem_object_wait(obj,
1302 I915_WAIT_INTERRUPTIBLE,
1303 MAX_SCHEDULE_TIMEOUT,
1304 to_rps_client(file));
1305 if (ret)
1306 goto out;
1307
1308 ret = i915_gem_object_pin_pages(obj);
1309 if (ret)
1310 goto out;
1311
1312 ret = i915_gem_shmem_pread(obj, args);
1313 if (ret == -EFAULT || ret == -ENODEV)
1314 ret = i915_gem_gtt_pread(obj, args);
1315
1316 i915_gem_object_unpin_pages(obj);
1317 out:
1318 i915_gem_object_put(obj);
1319 return ret;
1320 }
1321
1322 /* This is the fast write path which cannot handle
1323 * page faults in the source data
1324 */
1325
1326 static inline bool
ggtt_write(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)1327 ggtt_write(struct io_mapping *mapping,
1328 loff_t base, int offset,
1329 char __user *user_data, int length)
1330 {
1331 void __iomem *vaddr;
1332 unsigned long unwritten;
1333
1334 /* We can use the cpu mem copy function because this is X86. */
1335 vaddr = io_mapping_map_atomic_wc(mapping, base);
1336 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1337 user_data, length);
1338 io_mapping_unmap_atomic(vaddr);
1339 if (unwritten) {
1340 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1341 unwritten = copy_from_user((void __force *)vaddr + offset,
1342 user_data, length);
1343 io_mapping_unmap(vaddr);
1344 }
1345
1346 return unwritten;
1347 }
1348
1349 /**
1350 * This is the fast pwrite path, where we copy the data directly from the
1351 * user into the GTT, uncached.
1352 * @obj: i915 GEM object
1353 * @args: pwrite arguments structure
1354 */
1355 static int
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)1356 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1357 const struct drm_i915_gem_pwrite *args)
1358 {
1359 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1360 struct i915_ggtt *ggtt = &i915->ggtt;
1361 struct drm_mm_node node;
1362 struct i915_vma *vma;
1363 u64 remain, offset;
1364 void __user *user_data;
1365 int ret;
1366
1367 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1368 if (ret)
1369 return ret;
1370
1371 if (i915_gem_object_has_struct_page(obj)) {
1372 /*
1373 * Avoid waking the device up if we can fallback, as
1374 * waking/resuming is very slow (worst-case 10-100 ms
1375 * depending on PCI sleeps and our own resume time).
1376 * This easily dwarfs any performance advantage from
1377 * using the cache bypass of indirect GGTT access.
1378 */
1379 if (!intel_runtime_pm_get_if_in_use(i915)) {
1380 ret = -EFAULT;
1381 goto out_unlock;
1382 }
1383 } else {
1384 /* No backing pages, no fallback, we must force GGTT access */
1385 intel_runtime_pm_get(i915);
1386 }
1387
1388 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1389 PIN_MAPPABLE |
1390 PIN_NONFAULT |
1391 PIN_NONBLOCK);
1392 if (!IS_ERR(vma)) {
1393 node.start = i915_ggtt_offset(vma);
1394 node.allocated = false;
1395 ret = i915_vma_put_fence(vma);
1396 if (ret) {
1397 i915_vma_unpin(vma);
1398 vma = ERR_PTR(ret);
1399 }
1400 }
1401 if (IS_ERR(vma)) {
1402 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1403 if (ret)
1404 goto out_rpm;
1405 GEM_BUG_ON(!node.allocated);
1406 }
1407
1408 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1409 if (ret)
1410 goto out_unpin;
1411
1412 mutex_unlock(&i915->drm.struct_mutex);
1413
1414 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1415
1416 user_data = u64_to_user_ptr(args->data_ptr);
1417 offset = args->offset;
1418 remain = args->size;
1419 while (remain) {
1420 /* Operation in this page
1421 *
1422 * page_base = page offset within aperture
1423 * page_offset = offset within page
1424 * page_length = bytes to copy for this page
1425 */
1426 u32 page_base = node.start;
1427 unsigned int page_offset = offset_in_page(offset);
1428 unsigned int page_length = PAGE_SIZE - page_offset;
1429 page_length = remain < page_length ? remain : page_length;
1430 if (node.allocated) {
1431 wmb(); /* flush the write before we modify the GGTT */
1432 ggtt->vm.insert_page(&ggtt->vm,
1433 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1434 node.start, I915_CACHE_NONE, 0);
1435 wmb(); /* flush modifications to the GGTT (insert_page) */
1436 } else {
1437 page_base += offset & PAGE_MASK;
1438 }
1439 /* If we get a fault while copying data, then (presumably) our
1440 * source page isn't available. Return the error and we'll
1441 * retry in the slow path.
1442 * If the object is non-shmem backed, we retry again with the
1443 * path that handles page fault.
1444 */
1445 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1446 user_data, page_length)) {
1447 ret = -EFAULT;
1448 break;
1449 }
1450
1451 remain -= page_length;
1452 user_data += page_length;
1453 offset += page_length;
1454 }
1455 intel_fb_obj_flush(obj, ORIGIN_CPU);
1456
1457 mutex_lock(&i915->drm.struct_mutex);
1458 out_unpin:
1459 if (node.allocated) {
1460 wmb();
1461 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1462 remove_mappable_node(&node);
1463 } else {
1464 i915_vma_unpin(vma);
1465 }
1466 out_rpm:
1467 intel_runtime_pm_put(i915);
1468 out_unlock:
1469 mutex_unlock(&i915->drm.struct_mutex);
1470 return ret;
1471 }
1472
1473 static int
shmem_pwrite_slow(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)1474 shmem_pwrite_slow(struct page *page, int offset, int length,
1475 char __user *user_data,
1476 bool page_do_bit17_swizzling,
1477 bool needs_clflush_before,
1478 bool needs_clflush_after)
1479 {
1480 char *vaddr;
1481 int ret;
1482
1483 vaddr = kmap(page);
1484 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1485 shmem_clflush_swizzled_range(vaddr + offset, length,
1486 page_do_bit17_swizzling);
1487 if (page_do_bit17_swizzling)
1488 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1489 length);
1490 else
1491 ret = __copy_from_user(vaddr + offset, user_data, length);
1492 if (needs_clflush_after)
1493 shmem_clflush_swizzled_range(vaddr + offset, length,
1494 page_do_bit17_swizzling);
1495 kunmap(page);
1496
1497 return ret ? -EFAULT : 0;
1498 }
1499
1500 /* Per-page copy function for the shmem pwrite fastpath.
1501 * Flushes invalid cachelines before writing to the target if
1502 * needs_clflush_before is set and flushes out any written cachelines after
1503 * writing if needs_clflush is set.
1504 */
1505 static int
shmem_pwrite(struct page * page,int offset,int len,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)1506 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1507 bool page_do_bit17_swizzling,
1508 bool needs_clflush_before,
1509 bool needs_clflush_after)
1510 {
1511 int ret;
1512
1513 ret = -ENODEV;
1514 if (!page_do_bit17_swizzling) {
1515 char *vaddr = kmap_atomic(page);
1516
1517 if (needs_clflush_before)
1518 drm_clflush_virt_range(vaddr + offset, len);
1519 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1520 if (needs_clflush_after)
1521 drm_clflush_virt_range(vaddr + offset, len);
1522
1523 kunmap_atomic(vaddr);
1524 }
1525 if (ret == 0)
1526 return ret;
1527
1528 return shmem_pwrite_slow(page, offset, len, user_data,
1529 page_do_bit17_swizzling,
1530 needs_clflush_before,
1531 needs_clflush_after);
1532 }
1533
1534 static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)1535 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1536 const struct drm_i915_gem_pwrite *args)
1537 {
1538 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1539 void __user *user_data;
1540 u64 remain;
1541 unsigned int obj_do_bit17_swizzling;
1542 unsigned int partial_cacheline_write;
1543 unsigned int needs_clflush;
1544 unsigned int offset, idx;
1545 int ret;
1546
1547 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1548 if (ret)
1549 return ret;
1550
1551 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1552 mutex_unlock(&i915->drm.struct_mutex);
1553 if (ret)
1554 return ret;
1555
1556 obj_do_bit17_swizzling = 0;
1557 if (i915_gem_object_needs_bit17_swizzle(obj))
1558 obj_do_bit17_swizzling = BIT(17);
1559
1560 /* If we don't overwrite a cacheline completely we need to be
1561 * careful to have up-to-date data by first clflushing. Don't
1562 * overcomplicate things and flush the entire patch.
1563 */
1564 partial_cacheline_write = 0;
1565 if (needs_clflush & CLFLUSH_BEFORE)
1566 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1567
1568 user_data = u64_to_user_ptr(args->data_ptr);
1569 remain = args->size;
1570 offset = offset_in_page(args->offset);
1571 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1572 struct page *page = i915_gem_object_get_page(obj, idx);
1573 int length;
1574
1575 length = remain;
1576 if (offset + length > PAGE_SIZE)
1577 length = PAGE_SIZE - offset;
1578
1579 ret = shmem_pwrite(page, offset, length, user_data,
1580 page_to_phys(page) & obj_do_bit17_swizzling,
1581 (offset | length) & partial_cacheline_write,
1582 needs_clflush & CLFLUSH_AFTER);
1583 if (ret)
1584 break;
1585
1586 remain -= length;
1587 user_data += length;
1588 offset = 0;
1589 }
1590
1591 intel_fb_obj_flush(obj, ORIGIN_CPU);
1592 i915_gem_obj_finish_shmem_access(obj);
1593 return ret;
1594 }
1595
1596 /**
1597 * Writes data to the object referenced by handle.
1598 * @dev: drm device
1599 * @data: ioctl data blob
1600 * @file: drm file
1601 *
1602 * On error, the contents of the buffer that were to be modified are undefined.
1603 */
1604 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1605 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1606 struct drm_file *file)
1607 {
1608 struct drm_i915_gem_pwrite *args = data;
1609 struct drm_i915_gem_object *obj;
1610 int ret;
1611
1612 if (args->size == 0)
1613 return 0;
1614
1615 if (!access_ok(VERIFY_READ,
1616 u64_to_user_ptr(args->data_ptr),
1617 args->size))
1618 return -EFAULT;
1619
1620 obj = i915_gem_object_lookup(file, args->handle);
1621 if (!obj)
1622 return -ENOENT;
1623
1624 /* Bounds check destination. */
1625 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1626 ret = -EINVAL;
1627 goto err;
1628 }
1629
1630 /* Writes not allowed into this read-only object */
1631 if (i915_gem_object_is_readonly(obj)) {
1632 ret = -EINVAL;
1633 goto err;
1634 }
1635
1636 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1637
1638 ret = -ENODEV;
1639 if (obj->ops->pwrite)
1640 ret = obj->ops->pwrite(obj, args);
1641 if (ret != -ENODEV)
1642 goto err;
1643
1644 ret = i915_gem_object_wait(obj,
1645 I915_WAIT_INTERRUPTIBLE |
1646 I915_WAIT_ALL,
1647 MAX_SCHEDULE_TIMEOUT,
1648 to_rps_client(file));
1649 if (ret)
1650 goto err;
1651
1652 ret = i915_gem_object_pin_pages(obj);
1653 if (ret)
1654 goto err;
1655
1656 ret = -EFAULT;
1657 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1658 * it would end up going through the fenced access, and we'll get
1659 * different detiling behavior between reading and writing.
1660 * pread/pwrite currently are reading and writing from the CPU
1661 * perspective, requiring manual detiling by the client.
1662 */
1663 if (!i915_gem_object_has_struct_page(obj) ||
1664 cpu_write_needs_clflush(obj))
1665 /* Note that the gtt paths might fail with non-page-backed user
1666 * pointers (e.g. gtt mappings when moving data between
1667 * textures). Fallback to the shmem path in that case.
1668 */
1669 ret = i915_gem_gtt_pwrite_fast(obj, args);
1670
1671 if (ret == -EFAULT || ret == -ENOSPC) {
1672 if (obj->phys_handle)
1673 ret = i915_gem_phys_pwrite(obj, args, file);
1674 else
1675 ret = i915_gem_shmem_pwrite(obj, args);
1676 }
1677
1678 i915_gem_object_unpin_pages(obj);
1679 err:
1680 i915_gem_object_put(obj);
1681 return ret;
1682 }
1683
i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object * obj)1684 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1685 {
1686 struct drm_i915_private *i915;
1687 struct list_head *list;
1688 struct i915_vma *vma;
1689
1690 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1691
1692 for_each_ggtt_vma(vma, obj) {
1693 if (i915_vma_is_active(vma))
1694 continue;
1695
1696 if (!drm_mm_node_allocated(&vma->node))
1697 continue;
1698
1699 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1700 }
1701
1702 i915 = to_i915(obj->base.dev);
1703 spin_lock(&i915->mm.obj_lock);
1704 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1705 list_move_tail(&obj->mm.link, list);
1706 spin_unlock(&i915->mm.obj_lock);
1707 }
1708
1709 /**
1710 * Called when user space prepares to use an object with the CPU, either
1711 * through the mmap ioctl's mapping or a GTT mapping.
1712 * @dev: drm device
1713 * @data: ioctl data blob
1714 * @file: drm file
1715 */
1716 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1717 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1718 struct drm_file *file)
1719 {
1720 struct drm_i915_gem_set_domain *args = data;
1721 struct drm_i915_gem_object *obj;
1722 uint32_t read_domains = args->read_domains;
1723 uint32_t write_domain = args->write_domain;
1724 int err;
1725
1726 /* Only handle setting domains to types used by the CPU. */
1727 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1728 return -EINVAL;
1729
1730 /* Having something in the write domain implies it's in the read
1731 * domain, and only that read domain. Enforce that in the request.
1732 */
1733 if (write_domain != 0 && read_domains != write_domain)
1734 return -EINVAL;
1735
1736 obj = i915_gem_object_lookup(file, args->handle);
1737 if (!obj)
1738 return -ENOENT;
1739
1740 /* Try to flush the object off the GPU without holding the lock.
1741 * We will repeat the flush holding the lock in the normal manner
1742 * to catch cases where we are gazumped.
1743 */
1744 err = i915_gem_object_wait(obj,
1745 I915_WAIT_INTERRUPTIBLE |
1746 (write_domain ? I915_WAIT_ALL : 0),
1747 MAX_SCHEDULE_TIMEOUT,
1748 to_rps_client(file));
1749 if (err)
1750 goto out;
1751
1752 /*
1753 * Proxy objects do not control access to the backing storage, ergo
1754 * they cannot be used as a means to manipulate the cache domain
1755 * tracking for that backing storage. The proxy object is always
1756 * considered to be outside of any cache domain.
1757 */
1758 if (i915_gem_object_is_proxy(obj)) {
1759 err = -ENXIO;
1760 goto out;
1761 }
1762
1763 /*
1764 * Flush and acquire obj->pages so that we are coherent through
1765 * direct access in memory with previous cached writes through
1766 * shmemfs and that our cache domain tracking remains valid.
1767 * For example, if the obj->filp was moved to swap without us
1768 * being notified and releasing the pages, we would mistakenly
1769 * continue to assume that the obj remained out of the CPU cached
1770 * domain.
1771 */
1772 err = i915_gem_object_pin_pages(obj);
1773 if (err)
1774 goto out;
1775
1776 err = i915_mutex_lock_interruptible(dev);
1777 if (err)
1778 goto out_unpin;
1779
1780 if (read_domains & I915_GEM_DOMAIN_WC)
1781 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1782 else if (read_domains & I915_GEM_DOMAIN_GTT)
1783 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1784 else
1785 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1786
1787 /* And bump the LRU for this access */
1788 i915_gem_object_bump_inactive_ggtt(obj);
1789
1790 mutex_unlock(&dev->struct_mutex);
1791
1792 if (write_domain != 0)
1793 intel_fb_obj_invalidate(obj,
1794 fb_write_origin(obj, write_domain));
1795
1796 out_unpin:
1797 i915_gem_object_unpin_pages(obj);
1798 out:
1799 i915_gem_object_put(obj);
1800 return err;
1801 }
1802
1803 /**
1804 * Called when user space has done writes to this buffer
1805 * @dev: drm device
1806 * @data: ioctl data blob
1807 * @file: drm file
1808 */
1809 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1810 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1811 struct drm_file *file)
1812 {
1813 struct drm_i915_gem_sw_finish *args = data;
1814 struct drm_i915_gem_object *obj;
1815
1816 obj = i915_gem_object_lookup(file, args->handle);
1817 if (!obj)
1818 return -ENOENT;
1819
1820 /*
1821 * Proxy objects are barred from CPU access, so there is no
1822 * need to ban sw_finish as it is a nop.
1823 */
1824
1825 /* Pinned buffers may be scanout, so flush the cache */
1826 i915_gem_object_flush_if_display(obj);
1827 i915_gem_object_put(obj);
1828
1829 return 0;
1830 }
1831
1832 /**
1833 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1834 * it is mapped to.
1835 * @dev: drm device
1836 * @data: ioctl data blob
1837 * @file: drm file
1838 *
1839 * While the mapping holds a reference on the contents of the object, it doesn't
1840 * imply a ref on the object itself.
1841 *
1842 * IMPORTANT:
1843 *
1844 * DRM driver writers who look a this function as an example for how to do GEM
1845 * mmap support, please don't implement mmap support like here. The modern way
1846 * to implement DRM mmap support is with an mmap offset ioctl (like
1847 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1848 * That way debug tooling like valgrind will understand what's going on, hiding
1849 * the mmap call in a driver private ioctl will break that. The i915 driver only
1850 * does cpu mmaps this way because we didn't know better.
1851 */
1852 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1853 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1854 struct drm_file *file)
1855 {
1856 struct drm_i915_gem_mmap *args = data;
1857 struct drm_i915_gem_object *obj;
1858 unsigned long addr;
1859
1860 if (args->flags & ~(I915_MMAP_WC))
1861 return -EINVAL;
1862
1863 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1864 return -ENODEV;
1865
1866 obj = i915_gem_object_lookup(file, args->handle);
1867 if (!obj)
1868 return -ENOENT;
1869
1870 /* prime objects have no backing filp to GEM mmap
1871 * pages from.
1872 */
1873 if (!obj->base.filp) {
1874 i915_gem_object_put(obj);
1875 return -ENXIO;
1876 }
1877
1878 addr = vm_mmap(obj->base.filp, 0, args->size,
1879 PROT_READ | PROT_WRITE, MAP_SHARED,
1880 args->offset);
1881 if (args->flags & I915_MMAP_WC) {
1882 struct mm_struct *mm = current->mm;
1883 struct vm_area_struct *vma;
1884
1885 if (down_write_killable(&mm->mmap_sem)) {
1886 i915_gem_object_put(obj);
1887 return -EINTR;
1888 }
1889 vma = find_vma(mm, addr);
1890 if (vma)
1891 vma->vm_page_prot =
1892 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1893 else
1894 addr = -ENOMEM;
1895 up_write(&mm->mmap_sem);
1896
1897 /* This may race, but that's ok, it only gets set */
1898 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1899 }
1900 i915_gem_object_put(obj);
1901 if (IS_ERR((void *)addr))
1902 return addr;
1903
1904 args->addr_ptr = (uint64_t) addr;
1905
1906 return 0;
1907 }
1908
tile_row_pages(struct drm_i915_gem_object * obj)1909 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1910 {
1911 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1912 }
1913
1914 /**
1915 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1916 *
1917 * A history of the GTT mmap interface:
1918 *
1919 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1920 * aligned and suitable for fencing, and still fit into the available
1921 * mappable space left by the pinned display objects. A classic problem
1922 * we called the page-fault-of-doom where we would ping-pong between
1923 * two objects that could not fit inside the GTT and so the memcpy
1924 * would page one object in at the expense of the other between every
1925 * single byte.
1926 *
1927 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1928 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1929 * object is too large for the available space (or simply too large
1930 * for the mappable aperture!), a view is created instead and faulted
1931 * into userspace. (This view is aligned and sized appropriately for
1932 * fenced access.)
1933 *
1934 * 2 - Recognise WC as a separate cache domain so that we can flush the
1935 * delayed writes via GTT before performing direct access via WC.
1936 *
1937 * Restrictions:
1938 *
1939 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1940 * hangs on some architectures, corruption on others. An attempt to service
1941 * a GTT page fault from a snoopable object will generate a SIGBUS.
1942 *
1943 * * the object must be able to fit into RAM (physical memory, though no
1944 * limited to the mappable aperture).
1945 *
1946 *
1947 * Caveats:
1948 *
1949 * * a new GTT page fault will synchronize rendering from the GPU and flush
1950 * all data to system memory. Subsequent access will not be synchronized.
1951 *
1952 * * all mappings are revoked on runtime device suspend.
1953 *
1954 * * there are only 8, 16 or 32 fence registers to share between all users
1955 * (older machines require fence register for display and blitter access
1956 * as well). Contention of the fence registers will cause the previous users
1957 * to be unmapped and any new access will generate new page faults.
1958 *
1959 * * running out of memory while servicing a fault may generate a SIGBUS,
1960 * rather than the expected SIGSEGV.
1961 */
i915_gem_mmap_gtt_version(void)1962 int i915_gem_mmap_gtt_version(void)
1963 {
1964 return 2;
1965 }
1966
1967 static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object * obj,pgoff_t page_offset,unsigned int chunk)1968 compute_partial_view(struct drm_i915_gem_object *obj,
1969 pgoff_t page_offset,
1970 unsigned int chunk)
1971 {
1972 struct i915_ggtt_view view;
1973
1974 if (i915_gem_object_is_tiled(obj))
1975 chunk = roundup(chunk, tile_row_pages(obj));
1976
1977 view.type = I915_GGTT_VIEW_PARTIAL;
1978 view.partial.offset = rounddown(page_offset, chunk);
1979 view.partial.size =
1980 min_t(unsigned int, chunk,
1981 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1982
1983 /* If the partial covers the entire object, just create a normal VMA. */
1984 if (chunk >= obj->base.size >> PAGE_SHIFT)
1985 view.type = I915_GGTT_VIEW_NORMAL;
1986
1987 return view;
1988 }
1989
1990 /**
1991 * i915_gem_fault - fault a page into the GTT
1992 * @vmf: fault info
1993 *
1994 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1995 * from userspace. The fault handler takes care of binding the object to
1996 * the GTT (if needed), allocating and programming a fence register (again,
1997 * only if needed based on whether the old reg is still valid or the object
1998 * is tiled) and inserting a new PTE into the faulting process.
1999 *
2000 * Note that the faulting process may involve evicting existing objects
2001 * from the GTT and/or fence registers to make room. So performance may
2002 * suffer if the GTT working set is large or there are few fence registers
2003 * left.
2004 *
2005 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2006 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2007 */
i915_gem_fault(struct vm_fault * vmf)2008 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2009 {
2010 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2011 struct vm_area_struct *area = vmf->vma;
2012 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2013 struct drm_device *dev = obj->base.dev;
2014 struct drm_i915_private *dev_priv = to_i915(dev);
2015 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2016 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2017 struct i915_vma *vma;
2018 pgoff_t page_offset;
2019 int ret;
2020
2021 /* Sanity check that we allow writing into this object */
2022 if (i915_gem_object_is_readonly(obj) && write)
2023 return VM_FAULT_SIGBUS;
2024
2025 /* We don't use vmf->pgoff since that has the fake offset */
2026 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2027
2028 trace_i915_gem_object_fault(obj, page_offset, true, write);
2029
2030 /* Try to flush the object off the GPU first without holding the lock.
2031 * Upon acquiring the lock, we will perform our sanity checks and then
2032 * repeat the flush holding the lock in the normal manner to catch cases
2033 * where we are gazumped.
2034 */
2035 ret = i915_gem_object_wait(obj,
2036 I915_WAIT_INTERRUPTIBLE,
2037 MAX_SCHEDULE_TIMEOUT,
2038 NULL);
2039 if (ret)
2040 goto err;
2041
2042 ret = i915_gem_object_pin_pages(obj);
2043 if (ret)
2044 goto err;
2045
2046 intel_runtime_pm_get(dev_priv);
2047
2048 ret = i915_mutex_lock_interruptible(dev);
2049 if (ret)
2050 goto err_rpm;
2051
2052 /* Access to snoopable pages through the GTT is incoherent. */
2053 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2054 ret = -EFAULT;
2055 goto err_unlock;
2056 }
2057
2058
2059 /* Now pin it into the GTT as needed */
2060 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2061 PIN_MAPPABLE |
2062 PIN_NONBLOCK |
2063 PIN_NONFAULT);
2064 if (IS_ERR(vma)) {
2065 /* Use a partial view if it is bigger than available space */
2066 struct i915_ggtt_view view =
2067 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2068 unsigned int flags;
2069
2070 flags = PIN_MAPPABLE;
2071 if (view.type == I915_GGTT_VIEW_NORMAL)
2072 flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2073
2074 /*
2075 * Userspace is now writing through an untracked VMA, abandon
2076 * all hope that the hardware is able to track future writes.
2077 */
2078 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2079
2080 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2081 if (IS_ERR(vma) && !view.type) {
2082 flags = PIN_MAPPABLE;
2083 view.type = I915_GGTT_VIEW_PARTIAL;
2084 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2085 }
2086 }
2087 if (IS_ERR(vma)) {
2088 ret = PTR_ERR(vma);
2089 goto err_unlock;
2090 }
2091
2092 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2093 if (ret)
2094 goto err_unpin;
2095
2096 ret = i915_vma_pin_fence(vma);
2097 if (ret)
2098 goto err_unpin;
2099
2100 /* Finally, remap it using the new GTT offset */
2101 ret = remap_io_mapping(area,
2102 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2103 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2104 min_t(u64, vma->size, area->vm_end - area->vm_start),
2105 &ggtt->iomap);
2106 if (ret)
2107 goto err_fence;
2108
2109 /* Mark as being mmapped into userspace for later revocation */
2110 assert_rpm_wakelock_held(dev_priv);
2111 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2112 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2113 GEM_BUG_ON(!obj->userfault_count);
2114
2115 i915_vma_set_ggtt_write(vma);
2116
2117 err_fence:
2118 i915_vma_unpin_fence(vma);
2119 err_unpin:
2120 __i915_vma_unpin(vma);
2121 err_unlock:
2122 mutex_unlock(&dev->struct_mutex);
2123 err_rpm:
2124 intel_runtime_pm_put(dev_priv);
2125 i915_gem_object_unpin_pages(obj);
2126 err:
2127 switch (ret) {
2128 case -EIO:
2129 /*
2130 * We eat errors when the gpu is terminally wedged to avoid
2131 * userspace unduly crashing (gl has no provisions for mmaps to
2132 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2133 * and so needs to be reported.
2134 */
2135 if (!i915_terminally_wedged(&dev_priv->gpu_error))
2136 return VM_FAULT_SIGBUS;
2137 /* else: fall through */
2138 case -EAGAIN:
2139 /*
2140 * EAGAIN means the gpu is hung and we'll wait for the error
2141 * handler to reset everything when re-faulting in
2142 * i915_mutex_lock_interruptible.
2143 */
2144 case 0:
2145 case -ERESTARTSYS:
2146 case -EINTR:
2147 case -EBUSY:
2148 /*
2149 * EBUSY is ok: this just means that another thread
2150 * already did the job.
2151 */
2152 return VM_FAULT_NOPAGE;
2153 case -ENOMEM:
2154 return VM_FAULT_OOM;
2155 case -ENOSPC:
2156 case -EFAULT:
2157 return VM_FAULT_SIGBUS;
2158 default:
2159 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2160 return VM_FAULT_SIGBUS;
2161 }
2162 }
2163
__i915_gem_object_release_mmap(struct drm_i915_gem_object * obj)2164 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2165 {
2166 struct i915_vma *vma;
2167
2168 GEM_BUG_ON(!obj->userfault_count);
2169
2170 obj->userfault_count = 0;
2171 list_del(&obj->userfault_link);
2172 drm_vma_node_unmap(&obj->base.vma_node,
2173 obj->base.dev->anon_inode->i_mapping);
2174
2175 for_each_ggtt_vma(vma, obj)
2176 i915_vma_unset_userfault(vma);
2177 }
2178
2179 /**
2180 * i915_gem_release_mmap - remove physical page mappings
2181 * @obj: obj in question
2182 *
2183 * Preserve the reservation of the mmapping with the DRM core code, but
2184 * relinquish ownership of the pages back to the system.
2185 *
2186 * It is vital that we remove the page mapping if we have mapped a tiled
2187 * object through the GTT and then lose the fence register due to
2188 * resource pressure. Similarly if the object has been moved out of the
2189 * aperture, than pages mapped into userspace must be revoked. Removing the
2190 * mapping will then trigger a page fault on the next user access, allowing
2191 * fixup by i915_gem_fault().
2192 */
2193 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)2194 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2195 {
2196 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2197
2198 /* Serialisation between user GTT access and our code depends upon
2199 * revoking the CPU's PTE whilst the mutex is held. The next user
2200 * pagefault then has to wait until we release the mutex.
2201 *
2202 * Note that RPM complicates somewhat by adding an additional
2203 * requirement that operations to the GGTT be made holding the RPM
2204 * wakeref.
2205 */
2206 lockdep_assert_held(&i915->drm.struct_mutex);
2207 intel_runtime_pm_get(i915);
2208
2209 if (!obj->userfault_count)
2210 goto out;
2211
2212 __i915_gem_object_release_mmap(obj);
2213
2214 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2215 * memory transactions from userspace before we return. The TLB
2216 * flushing implied above by changing the PTE above *should* be
2217 * sufficient, an extra barrier here just provides us with a bit
2218 * of paranoid documentation about our requirement to serialise
2219 * memory writes before touching registers / GSM.
2220 */
2221 wmb();
2222
2223 out:
2224 intel_runtime_pm_put(i915);
2225 }
2226
i915_gem_runtime_suspend(struct drm_i915_private * dev_priv)2227 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2228 {
2229 struct drm_i915_gem_object *obj, *on;
2230 int i;
2231
2232 /*
2233 * Only called during RPM suspend. All users of the userfault_list
2234 * must be holding an RPM wakeref to ensure that this can not
2235 * run concurrently with themselves (and use the struct_mutex for
2236 * protection between themselves).
2237 */
2238
2239 list_for_each_entry_safe(obj, on,
2240 &dev_priv->mm.userfault_list, userfault_link)
2241 __i915_gem_object_release_mmap(obj);
2242
2243 /* The fence will be lost when the device powers down. If any were
2244 * in use by hardware (i.e. they are pinned), we should not be powering
2245 * down! All other fences will be reacquired by the user upon waking.
2246 */
2247 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2248 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2249
2250 /* Ideally we want to assert that the fence register is not
2251 * live at this point (i.e. that no piece of code will be
2252 * trying to write through fence + GTT, as that both violates
2253 * our tracking of activity and associated locking/barriers,
2254 * but also is illegal given that the hw is powered down).
2255 *
2256 * Previously we used reg->pin_count as a "liveness" indicator.
2257 * That is not sufficient, and we need a more fine-grained
2258 * tool if we want to have a sanity check here.
2259 */
2260
2261 if (!reg->vma)
2262 continue;
2263
2264 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2265 reg->dirty = true;
2266 }
2267 }
2268
i915_gem_object_create_mmap_offset(struct drm_i915_gem_object * obj)2269 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2270 {
2271 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2272 int err;
2273
2274 err = drm_gem_create_mmap_offset(&obj->base);
2275 if (likely(!err))
2276 return 0;
2277
2278 /* Attempt to reap some mmap space from dead objects */
2279 do {
2280 err = i915_gem_wait_for_idle(dev_priv,
2281 I915_WAIT_INTERRUPTIBLE,
2282 MAX_SCHEDULE_TIMEOUT);
2283 if (err)
2284 break;
2285
2286 i915_gem_drain_freed_objects(dev_priv);
2287 err = drm_gem_create_mmap_offset(&obj->base);
2288 if (!err)
2289 break;
2290
2291 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2292
2293 return err;
2294 }
2295
i915_gem_object_free_mmap_offset(struct drm_i915_gem_object * obj)2296 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2297 {
2298 drm_gem_free_mmap_offset(&obj->base);
2299 }
2300
2301 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)2302 i915_gem_mmap_gtt(struct drm_file *file,
2303 struct drm_device *dev,
2304 uint32_t handle,
2305 uint64_t *offset)
2306 {
2307 struct drm_i915_gem_object *obj;
2308 int ret;
2309
2310 obj = i915_gem_object_lookup(file, handle);
2311 if (!obj)
2312 return -ENOENT;
2313
2314 ret = i915_gem_object_create_mmap_offset(obj);
2315 if (ret == 0)
2316 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2317
2318 i915_gem_object_put(obj);
2319 return ret;
2320 }
2321
2322 /**
2323 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2324 * @dev: DRM device
2325 * @data: GTT mapping ioctl data
2326 * @file: GEM object info
2327 *
2328 * Simply returns the fake offset to userspace so it can mmap it.
2329 * The mmap call will end up in drm_gem_mmap(), which will set things
2330 * up so we can get faults in the handler above.
2331 *
2332 * The fault handler will take care of binding the object into the GTT
2333 * (since it may have been evicted to make room for something), allocating
2334 * a fence register, and mapping the appropriate aperture address into
2335 * userspace.
2336 */
2337 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2338 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2339 struct drm_file *file)
2340 {
2341 struct drm_i915_gem_mmap_gtt *args = data;
2342
2343 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2344 }
2345
2346 /* Immediately discard the backing storage */
2347 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)2348 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2349 {
2350 i915_gem_object_free_mmap_offset(obj);
2351
2352 if (obj->base.filp == NULL)
2353 return;
2354
2355 /* Our goal here is to return as much of the memory as
2356 * is possible back to the system as we are called from OOM.
2357 * To do this we must instruct the shmfs to drop all of its
2358 * backing pages, *now*.
2359 */
2360 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2361 obj->mm.madv = __I915_MADV_PURGED;
2362 obj->mm.pages = ERR_PTR(-EFAULT);
2363 }
2364
2365 /* Try to discard unwanted pages */
__i915_gem_object_invalidate(struct drm_i915_gem_object * obj)2366 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2367 {
2368 struct address_space *mapping;
2369
2370 lockdep_assert_held(&obj->mm.lock);
2371 GEM_BUG_ON(i915_gem_object_has_pages(obj));
2372
2373 switch (obj->mm.madv) {
2374 case I915_MADV_DONTNEED:
2375 i915_gem_object_truncate(obj);
2376 case __I915_MADV_PURGED:
2377 return;
2378 }
2379
2380 if (obj->base.filp == NULL)
2381 return;
2382
2383 mapping = obj->base.filp->f_mapping,
2384 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2385 }
2386
2387 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj,struct sg_table * pages)2388 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2389 struct sg_table *pages)
2390 {
2391 struct sgt_iter sgt_iter;
2392 struct page *page;
2393
2394 __i915_gem_object_release_shmem(obj, pages, true);
2395
2396 i915_gem_gtt_finish_pages(obj, pages);
2397
2398 if (i915_gem_object_needs_bit17_swizzle(obj))
2399 i915_gem_object_save_bit_17_swizzle(obj, pages);
2400
2401 for_each_sgt_page(page, sgt_iter, pages) {
2402 if (obj->mm.dirty)
2403 set_page_dirty(page);
2404
2405 if (obj->mm.madv == I915_MADV_WILLNEED)
2406 mark_page_accessed(page);
2407
2408 put_page(page);
2409 }
2410 obj->mm.dirty = false;
2411
2412 sg_free_table(pages);
2413 kfree(pages);
2414 }
2415
__i915_gem_object_reset_page_iter(struct drm_i915_gem_object * obj)2416 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2417 {
2418 struct radix_tree_iter iter;
2419 void __rcu **slot;
2420
2421 rcu_read_lock();
2422 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2423 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2424 rcu_read_unlock();
2425 }
2426
2427 static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object * obj)2428 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2429 {
2430 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2431 struct sg_table *pages;
2432
2433 pages = fetch_and_zero(&obj->mm.pages);
2434 if (!pages)
2435 return NULL;
2436
2437 spin_lock(&i915->mm.obj_lock);
2438 list_del(&obj->mm.link);
2439 spin_unlock(&i915->mm.obj_lock);
2440
2441 if (obj->mm.mapping) {
2442 void *ptr;
2443
2444 ptr = page_mask_bits(obj->mm.mapping);
2445 if (is_vmalloc_addr(ptr))
2446 vunmap(ptr);
2447 else
2448 kunmap(kmap_to_page(ptr));
2449
2450 obj->mm.mapping = NULL;
2451 }
2452
2453 __i915_gem_object_reset_page_iter(obj);
2454 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2455
2456 return pages;
2457 }
2458
__i915_gem_object_put_pages(struct drm_i915_gem_object * obj,enum i915_mm_subclass subclass)2459 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2460 enum i915_mm_subclass subclass)
2461 {
2462 struct sg_table *pages;
2463
2464 if (i915_gem_object_has_pinned_pages(obj))
2465 return;
2466
2467 GEM_BUG_ON(obj->bind_count);
2468 if (!i915_gem_object_has_pages(obj))
2469 return;
2470
2471 /* May be called by shrinker from within get_pages() (on another bo) */
2472 mutex_lock_nested(&obj->mm.lock, subclass);
2473 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2474 goto unlock;
2475
2476 /*
2477 * ->put_pages might need to allocate memory for the bit17 swizzle
2478 * array, hence protect them from being reaped by removing them from gtt
2479 * lists early.
2480 */
2481 pages = __i915_gem_object_unset_pages(obj);
2482 if (!IS_ERR(pages))
2483 obj->ops->put_pages(obj, pages);
2484
2485 unlock:
2486 mutex_unlock(&obj->mm.lock);
2487 }
2488
i915_sg_trim(struct sg_table * orig_st)2489 static bool i915_sg_trim(struct sg_table *orig_st)
2490 {
2491 struct sg_table new_st;
2492 struct scatterlist *sg, *new_sg;
2493 unsigned int i;
2494
2495 if (orig_st->nents == orig_st->orig_nents)
2496 return false;
2497
2498 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2499 return false;
2500
2501 new_sg = new_st.sgl;
2502 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2503 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2504 /* called before being DMA mapped, no need to copy sg->dma_* */
2505 new_sg = sg_next(new_sg);
2506 }
2507 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2508
2509 sg_free_table(orig_st);
2510
2511 *orig_st = new_st;
2512 return true;
2513 }
2514
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj)2515 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2516 {
2517 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2518 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2519 unsigned long i;
2520 struct address_space *mapping;
2521 struct sg_table *st;
2522 struct scatterlist *sg;
2523 struct sgt_iter sgt_iter;
2524 struct page *page;
2525 unsigned long last_pfn = 0; /* suppress gcc warning */
2526 unsigned int max_segment = i915_sg_segment_size();
2527 unsigned int sg_page_sizes;
2528 gfp_t noreclaim;
2529 int ret;
2530
2531 /* Assert that the object is not currently in any GPU domain. As it
2532 * wasn't in the GTT, there shouldn't be any way it could have been in
2533 * a GPU cache
2534 */
2535 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2536 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2537
2538 st = kmalloc(sizeof(*st), GFP_KERNEL);
2539 if (st == NULL)
2540 return -ENOMEM;
2541
2542 rebuild_st:
2543 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2544 kfree(st);
2545 return -ENOMEM;
2546 }
2547
2548 /* Get the list of pages out of our struct file. They'll be pinned
2549 * at this point until we release them.
2550 *
2551 * Fail silently without starting the shrinker
2552 */
2553 mapping = obj->base.filp->f_mapping;
2554 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2555 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2556
2557 sg = st->sgl;
2558 st->nents = 0;
2559 sg_page_sizes = 0;
2560 for (i = 0; i < page_count; i++) {
2561 const unsigned int shrink[] = {
2562 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2563 0,
2564 }, *s = shrink;
2565 gfp_t gfp = noreclaim;
2566
2567 do {
2568 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2569 if (likely(!IS_ERR(page)))
2570 break;
2571
2572 if (!*s) {
2573 ret = PTR_ERR(page);
2574 goto err_sg;
2575 }
2576
2577 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2578 cond_resched();
2579
2580 /* We've tried hard to allocate the memory by reaping
2581 * our own buffer, now let the real VM do its job and
2582 * go down in flames if truly OOM.
2583 *
2584 * However, since graphics tend to be disposable,
2585 * defer the oom here by reporting the ENOMEM back
2586 * to userspace.
2587 */
2588 if (!*s) {
2589 /* reclaim and warn, but no oom */
2590 gfp = mapping_gfp_mask(mapping);
2591
2592 /* Our bo are always dirty and so we require
2593 * kswapd to reclaim our pages (direct reclaim
2594 * does not effectively begin pageout of our
2595 * buffers on its own). However, direct reclaim
2596 * only waits for kswapd when under allocation
2597 * congestion. So as a result __GFP_RECLAIM is
2598 * unreliable and fails to actually reclaim our
2599 * dirty pages -- unless you try over and over
2600 * again with !__GFP_NORETRY. However, we still
2601 * want to fail this allocation rather than
2602 * trigger the out-of-memory killer and for
2603 * this we want __GFP_RETRY_MAYFAIL.
2604 */
2605 gfp |= __GFP_RETRY_MAYFAIL;
2606 }
2607 } while (1);
2608
2609 if (!i ||
2610 sg->length >= max_segment ||
2611 page_to_pfn(page) != last_pfn + 1) {
2612 if (i) {
2613 sg_page_sizes |= sg->length;
2614 sg = sg_next(sg);
2615 }
2616 st->nents++;
2617 sg_set_page(sg, page, PAGE_SIZE, 0);
2618 } else {
2619 sg->length += PAGE_SIZE;
2620 }
2621 last_pfn = page_to_pfn(page);
2622
2623 /* Check that the i965g/gm workaround works. */
2624 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2625 }
2626 if (sg) { /* loop terminated early; short sg table */
2627 sg_page_sizes |= sg->length;
2628 sg_mark_end(sg);
2629 }
2630
2631 /* Trim unused sg entries to avoid wasting memory. */
2632 i915_sg_trim(st);
2633
2634 ret = i915_gem_gtt_prepare_pages(obj, st);
2635 if (ret) {
2636 /* DMA remapping failed? One possible cause is that
2637 * it could not reserve enough large entries, asking
2638 * for PAGE_SIZE chunks instead may be helpful.
2639 */
2640 if (max_segment > PAGE_SIZE) {
2641 for_each_sgt_page(page, sgt_iter, st)
2642 put_page(page);
2643 sg_free_table(st);
2644
2645 max_segment = PAGE_SIZE;
2646 goto rebuild_st;
2647 } else {
2648 dev_warn(&dev_priv->drm.pdev->dev,
2649 "Failed to DMA remap %lu pages\n",
2650 page_count);
2651 goto err_pages;
2652 }
2653 }
2654
2655 if (i915_gem_object_needs_bit17_swizzle(obj))
2656 i915_gem_object_do_bit_17_swizzle(obj, st);
2657
2658 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2659
2660 return 0;
2661
2662 err_sg:
2663 sg_mark_end(sg);
2664 err_pages:
2665 for_each_sgt_page(page, sgt_iter, st)
2666 put_page(page);
2667 sg_free_table(st);
2668 kfree(st);
2669
2670 /* shmemfs first checks if there is enough memory to allocate the page
2671 * and reports ENOSPC should there be insufficient, along with the usual
2672 * ENOMEM for a genuine allocation failure.
2673 *
2674 * We use ENOSPC in our driver to mean that we have run out of aperture
2675 * space and so want to translate the error from shmemfs back to our
2676 * usual understanding of ENOMEM.
2677 */
2678 if (ret == -ENOSPC)
2679 ret = -ENOMEM;
2680
2681 return ret;
2682 }
2683
__i915_gem_object_set_pages(struct drm_i915_gem_object * obj,struct sg_table * pages,unsigned int sg_page_sizes)2684 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2685 struct sg_table *pages,
2686 unsigned int sg_page_sizes)
2687 {
2688 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2689 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2690 int i;
2691
2692 lockdep_assert_held(&obj->mm.lock);
2693
2694 obj->mm.get_page.sg_pos = pages->sgl;
2695 obj->mm.get_page.sg_idx = 0;
2696
2697 obj->mm.pages = pages;
2698
2699 if (i915_gem_object_is_tiled(obj) &&
2700 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2701 GEM_BUG_ON(obj->mm.quirked);
2702 __i915_gem_object_pin_pages(obj);
2703 obj->mm.quirked = true;
2704 }
2705
2706 GEM_BUG_ON(!sg_page_sizes);
2707 obj->mm.page_sizes.phys = sg_page_sizes;
2708
2709 /*
2710 * Calculate the supported page-sizes which fit into the given
2711 * sg_page_sizes. This will give us the page-sizes which we may be able
2712 * to use opportunistically when later inserting into the GTT. For
2713 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2714 * 64K or 4K pages, although in practice this will depend on a number of
2715 * other factors.
2716 */
2717 obj->mm.page_sizes.sg = 0;
2718 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2719 if (obj->mm.page_sizes.phys & ~0u << i)
2720 obj->mm.page_sizes.sg |= BIT(i);
2721 }
2722 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2723
2724 spin_lock(&i915->mm.obj_lock);
2725 list_add(&obj->mm.link, &i915->mm.unbound_list);
2726 spin_unlock(&i915->mm.obj_lock);
2727 }
2728
____i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2729 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2730 {
2731 int err;
2732
2733 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2734 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2735 return -EFAULT;
2736 }
2737
2738 err = obj->ops->get_pages(obj);
2739 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2740
2741 return err;
2742 }
2743
2744 /* Ensure that the associated pages are gathered from the backing storage
2745 * and pinned into our object. i915_gem_object_pin_pages() may be called
2746 * multiple times before they are released by a single call to
2747 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2748 * either as a result of memory pressure (reaping pages under the shrinker)
2749 * or as the object is itself released.
2750 */
__i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2751 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2752 {
2753 int err;
2754
2755 err = mutex_lock_interruptible(&obj->mm.lock);
2756 if (err)
2757 return err;
2758
2759 if (unlikely(!i915_gem_object_has_pages(obj))) {
2760 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2761
2762 err = ____i915_gem_object_get_pages(obj);
2763 if (err)
2764 goto unlock;
2765
2766 smp_mb__before_atomic();
2767 }
2768 atomic_inc(&obj->mm.pages_pin_count);
2769
2770 unlock:
2771 mutex_unlock(&obj->mm.lock);
2772 return err;
2773 }
2774
2775 /* The 'mapping' part of i915_gem_object_pin_map() below */
i915_gem_object_map(const struct drm_i915_gem_object * obj,enum i915_map_type type)2776 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2777 enum i915_map_type type)
2778 {
2779 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2780 struct sg_table *sgt = obj->mm.pages;
2781 struct sgt_iter sgt_iter;
2782 struct page *page;
2783 struct page *stack_pages[32];
2784 struct page **pages = stack_pages;
2785 unsigned long i = 0;
2786 pgprot_t pgprot;
2787 void *addr;
2788
2789 /* A single page can always be kmapped */
2790 if (n_pages == 1 && type == I915_MAP_WB)
2791 return kmap(sg_page(sgt->sgl));
2792
2793 if (n_pages > ARRAY_SIZE(stack_pages)) {
2794 /* Too big for stack -- allocate temporary array instead */
2795 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2796 if (!pages)
2797 return NULL;
2798 }
2799
2800 for_each_sgt_page(page, sgt_iter, sgt)
2801 pages[i++] = page;
2802
2803 /* Check that we have the expected number of pages */
2804 GEM_BUG_ON(i != n_pages);
2805
2806 switch (type) {
2807 default:
2808 MISSING_CASE(type);
2809 /* fallthrough to use PAGE_KERNEL anyway */
2810 case I915_MAP_WB:
2811 pgprot = PAGE_KERNEL;
2812 break;
2813 case I915_MAP_WC:
2814 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2815 break;
2816 }
2817 addr = vmap(pages, n_pages, 0, pgprot);
2818
2819 if (pages != stack_pages)
2820 kvfree(pages);
2821
2822 return addr;
2823 }
2824
2825 /* get, pin, and map the pages of the object into kernel space */
i915_gem_object_pin_map(struct drm_i915_gem_object * obj,enum i915_map_type type)2826 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2827 enum i915_map_type type)
2828 {
2829 enum i915_map_type has_type;
2830 bool pinned;
2831 void *ptr;
2832 int ret;
2833
2834 if (unlikely(!i915_gem_object_has_struct_page(obj)))
2835 return ERR_PTR(-ENXIO);
2836
2837 ret = mutex_lock_interruptible(&obj->mm.lock);
2838 if (ret)
2839 return ERR_PTR(ret);
2840
2841 pinned = !(type & I915_MAP_OVERRIDE);
2842 type &= ~I915_MAP_OVERRIDE;
2843
2844 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2845 if (unlikely(!i915_gem_object_has_pages(obj))) {
2846 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2847
2848 ret = ____i915_gem_object_get_pages(obj);
2849 if (ret)
2850 goto err_unlock;
2851
2852 smp_mb__before_atomic();
2853 }
2854 atomic_inc(&obj->mm.pages_pin_count);
2855 pinned = false;
2856 }
2857 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2858
2859 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2860 if (ptr && has_type != type) {
2861 if (pinned) {
2862 ret = -EBUSY;
2863 goto err_unpin;
2864 }
2865
2866 if (is_vmalloc_addr(ptr))
2867 vunmap(ptr);
2868 else
2869 kunmap(kmap_to_page(ptr));
2870
2871 ptr = obj->mm.mapping = NULL;
2872 }
2873
2874 if (!ptr) {
2875 ptr = i915_gem_object_map(obj, type);
2876 if (!ptr) {
2877 ret = -ENOMEM;
2878 goto err_unpin;
2879 }
2880
2881 obj->mm.mapping = page_pack_bits(ptr, type);
2882 }
2883
2884 out_unlock:
2885 mutex_unlock(&obj->mm.lock);
2886 return ptr;
2887
2888 err_unpin:
2889 atomic_dec(&obj->mm.pages_pin_count);
2890 err_unlock:
2891 ptr = ERR_PTR(ret);
2892 goto out_unlock;
2893 }
2894
2895 static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)2896 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2897 const struct drm_i915_gem_pwrite *arg)
2898 {
2899 struct address_space *mapping = obj->base.filp->f_mapping;
2900 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2901 u64 remain, offset;
2902 unsigned int pg;
2903
2904 /* Before we instantiate/pin the backing store for our use, we
2905 * can prepopulate the shmemfs filp efficiently using a write into
2906 * the pagecache. We avoid the penalty of instantiating all the
2907 * pages, important if the user is just writing to a few and never
2908 * uses the object on the GPU, and using a direct write into shmemfs
2909 * allows it to avoid the cost of retrieving a page (either swapin
2910 * or clearing-before-use) before it is overwritten.
2911 */
2912 if (i915_gem_object_has_pages(obj))
2913 return -ENODEV;
2914
2915 if (obj->mm.madv != I915_MADV_WILLNEED)
2916 return -EFAULT;
2917
2918 /* Before the pages are instantiated the object is treated as being
2919 * in the CPU domain. The pages will be clflushed as required before
2920 * use, and we can freely write into the pages directly. If userspace
2921 * races pwrite with any other operation; corruption will ensue -
2922 * that is userspace's prerogative!
2923 */
2924
2925 remain = arg->size;
2926 offset = arg->offset;
2927 pg = offset_in_page(offset);
2928
2929 do {
2930 unsigned int len, unwritten;
2931 struct page *page;
2932 void *data, *vaddr;
2933 int err;
2934
2935 len = PAGE_SIZE - pg;
2936 if (len > remain)
2937 len = remain;
2938
2939 err = pagecache_write_begin(obj->base.filp, mapping,
2940 offset, len, 0,
2941 &page, &data);
2942 if (err < 0)
2943 return err;
2944
2945 vaddr = kmap(page);
2946 unwritten = copy_from_user(vaddr + pg, user_data, len);
2947 kunmap(page);
2948
2949 err = pagecache_write_end(obj->base.filp, mapping,
2950 offset, len, len - unwritten,
2951 page, data);
2952 if (err < 0)
2953 return err;
2954
2955 if (unwritten)
2956 return -EFAULT;
2957
2958 remain -= len;
2959 user_data += len;
2960 offset += len;
2961 pg = 0;
2962 } while (remain);
2963
2964 return 0;
2965 }
2966
i915_gem_client_mark_guilty(struct drm_i915_file_private * file_priv,const struct i915_gem_context * ctx)2967 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2968 const struct i915_gem_context *ctx)
2969 {
2970 unsigned int score;
2971 unsigned long prev_hang;
2972
2973 if (i915_gem_context_is_banned(ctx))
2974 score = I915_CLIENT_SCORE_CONTEXT_BAN;
2975 else
2976 score = 0;
2977
2978 prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
2979 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
2980 score += I915_CLIENT_SCORE_HANG_FAST;
2981
2982 if (score) {
2983 atomic_add(score, &file_priv->ban_score);
2984
2985 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
2986 ctx->name, score,
2987 atomic_read(&file_priv->ban_score));
2988 }
2989 }
2990
i915_gem_context_mark_guilty(struct i915_gem_context * ctx)2991 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2992 {
2993 unsigned int score;
2994 bool banned, bannable;
2995
2996 atomic_inc(&ctx->guilty_count);
2997
2998 bannable = i915_gem_context_is_bannable(ctx);
2999 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3000 banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3001
3002 /* Cool contexts don't accumulate client ban score */
3003 if (!bannable)
3004 return;
3005
3006 if (banned) {
3007 DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3008 ctx->name, atomic_read(&ctx->guilty_count),
3009 score);
3010 i915_gem_context_set_banned(ctx);
3011 }
3012
3013 if (!IS_ERR_OR_NULL(ctx->file_priv))
3014 i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3015 }
3016
i915_gem_context_mark_innocent(struct i915_gem_context * ctx)3017 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3018 {
3019 atomic_inc(&ctx->active_count);
3020 }
3021
3022 struct i915_request *
i915_gem_find_active_request(struct intel_engine_cs * engine)3023 i915_gem_find_active_request(struct intel_engine_cs *engine)
3024 {
3025 struct i915_request *request, *active = NULL;
3026 unsigned long flags;
3027
3028 /*
3029 * We are called by the error capture, reset and to dump engine
3030 * state at random points in time. In particular, note that neither is
3031 * crucially ordered with an interrupt. After a hang, the GPU is dead
3032 * and we assume that no more writes can happen (we waited long enough
3033 * for all writes that were in transaction to be flushed) - adding an
3034 * extra delay for a recent interrupt is pointless. Hence, we do
3035 * not need an engine->irq_seqno_barrier() before the seqno reads.
3036 * At all other times, we must assume the GPU is still running, but
3037 * we only care about the snapshot of this moment.
3038 */
3039 spin_lock_irqsave(&engine->timeline.lock, flags);
3040 list_for_each_entry(request, &engine->timeline.requests, link) {
3041 if (__i915_request_completed(request, request->global_seqno))
3042 continue;
3043
3044 active = request;
3045 break;
3046 }
3047 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3048
3049 return active;
3050 }
3051
3052 /*
3053 * Ensure irq handler finishes, and not run again.
3054 * Also return the active request so that we only search for it once.
3055 */
3056 struct i915_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs * engine)3057 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3058 {
3059 struct i915_request *request;
3060
3061 /*
3062 * During the reset sequence, we must prevent the engine from
3063 * entering RC6. As the context state is undefined until we restart
3064 * the engine, if it does enter RC6 during the reset, the state
3065 * written to the powercontext is undefined and so we may lose
3066 * GPU state upon resume, i.e. fail to restart after a reset.
3067 */
3068 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3069
3070 request = engine->reset.prepare(engine);
3071 if (request && request->fence.error == -EIO)
3072 request = ERR_PTR(-EIO); /* Previous reset failed! */
3073
3074 return request;
3075 }
3076
i915_gem_reset_prepare(struct drm_i915_private * dev_priv)3077 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3078 {
3079 struct intel_engine_cs *engine;
3080 struct i915_request *request;
3081 enum intel_engine_id id;
3082 int err = 0;
3083
3084 for_each_engine(engine, dev_priv, id) {
3085 request = i915_gem_reset_prepare_engine(engine);
3086 if (IS_ERR(request)) {
3087 err = PTR_ERR(request);
3088 continue;
3089 }
3090
3091 engine->hangcheck.active_request = request;
3092 }
3093
3094 i915_gem_revoke_fences(dev_priv);
3095 intel_uc_sanitize(dev_priv);
3096
3097 return err;
3098 }
3099
engine_skip_context(struct i915_request * request)3100 static void engine_skip_context(struct i915_request *request)
3101 {
3102 struct intel_engine_cs *engine = request->engine;
3103 struct i915_gem_context *hung_ctx = request->gem_context;
3104 struct i915_timeline *timeline = request->timeline;
3105 unsigned long flags;
3106
3107 GEM_BUG_ON(timeline == &engine->timeline);
3108
3109 spin_lock_irqsave(&engine->timeline.lock, flags);
3110 spin_lock(&timeline->lock);
3111
3112 list_for_each_entry_continue(request, &engine->timeline.requests, link)
3113 if (request->gem_context == hung_ctx)
3114 i915_request_skip(request, -EIO);
3115
3116 list_for_each_entry(request, &timeline->requests, link)
3117 i915_request_skip(request, -EIO);
3118
3119 spin_unlock(&timeline->lock);
3120 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3121 }
3122
3123 /* Returns the request if it was guilty of the hang */
3124 static struct i915_request *
i915_gem_reset_request(struct intel_engine_cs * engine,struct i915_request * request,bool stalled)3125 i915_gem_reset_request(struct intel_engine_cs *engine,
3126 struct i915_request *request,
3127 bool stalled)
3128 {
3129 /* The guilty request will get skipped on a hung engine.
3130 *
3131 * Users of client default contexts do not rely on logical
3132 * state preserved between batches so it is safe to execute
3133 * queued requests following the hang. Non default contexts
3134 * rely on preserved state, so skipping a batch loses the
3135 * evolution of the state and it needs to be considered corrupted.
3136 * Executing more queued batches on top of corrupted state is
3137 * risky. But we take the risk by trying to advance through
3138 * the queued requests in order to make the client behaviour
3139 * more predictable around resets, by not throwing away random
3140 * amount of batches it has prepared for execution. Sophisticated
3141 * clients can use gem_reset_stats_ioctl and dma fence status
3142 * (exported via sync_file info ioctl on explicit fences) to observe
3143 * when it loses the context state and should rebuild accordingly.
3144 *
3145 * The context ban, and ultimately the client ban, mechanism are safety
3146 * valves if client submission ends up resulting in nothing more than
3147 * subsequent hangs.
3148 */
3149
3150 if (i915_request_completed(request)) {
3151 GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3152 engine->name, request->global_seqno,
3153 request->fence.context, request->fence.seqno,
3154 intel_engine_get_seqno(engine));
3155 stalled = false;
3156 }
3157
3158 if (stalled) {
3159 i915_gem_context_mark_guilty(request->gem_context);
3160 i915_request_skip(request, -EIO);
3161
3162 /* If this context is now banned, skip all pending requests. */
3163 if (i915_gem_context_is_banned(request->gem_context))
3164 engine_skip_context(request);
3165 } else {
3166 /*
3167 * Since this is not the hung engine, it may have advanced
3168 * since the hang declaration. Double check by refinding
3169 * the active request at the time of the reset.
3170 */
3171 request = i915_gem_find_active_request(engine);
3172 if (request) {
3173 unsigned long flags;
3174
3175 i915_gem_context_mark_innocent(request->gem_context);
3176 dma_fence_set_error(&request->fence, -EAGAIN);
3177
3178 /* Rewind the engine to replay the incomplete rq */
3179 spin_lock_irqsave(&engine->timeline.lock, flags);
3180 request = list_prev_entry(request, link);
3181 if (&request->link == &engine->timeline.requests)
3182 request = NULL;
3183 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3184 }
3185 }
3186
3187 return request;
3188 }
3189
i915_gem_reset_engine(struct intel_engine_cs * engine,struct i915_request * request,bool stalled)3190 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3191 struct i915_request *request,
3192 bool stalled)
3193 {
3194 /*
3195 * Make sure this write is visible before we re-enable the interrupt
3196 * handlers on another CPU, as tasklet_enable() resolves to just
3197 * a compiler barrier which is insufficient for our purpose here.
3198 */
3199 smp_store_mb(engine->irq_posted, 0);
3200
3201 if (request)
3202 request = i915_gem_reset_request(engine, request, stalled);
3203
3204 /* Setup the CS to resume from the breadcrumb of the hung request */
3205 engine->reset.reset(engine, request);
3206 }
3207
i915_gem_reset(struct drm_i915_private * dev_priv,unsigned int stalled_mask)3208 void i915_gem_reset(struct drm_i915_private *dev_priv,
3209 unsigned int stalled_mask)
3210 {
3211 struct intel_engine_cs *engine;
3212 enum intel_engine_id id;
3213
3214 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3215
3216 i915_retire_requests(dev_priv);
3217
3218 for_each_engine(engine, dev_priv, id) {
3219 struct intel_context *ce;
3220
3221 i915_gem_reset_engine(engine,
3222 engine->hangcheck.active_request,
3223 stalled_mask & ENGINE_MASK(id));
3224 ce = fetch_and_zero(&engine->last_retired_context);
3225 if (ce)
3226 intel_context_unpin(ce);
3227
3228 /*
3229 * Ostensibily, we always want a context loaded for powersaving,
3230 * so if the engine is idle after the reset, send a request
3231 * to load our scratch kernel_context.
3232 *
3233 * More mysteriously, if we leave the engine idle after a reset,
3234 * the next userspace batch may hang, with what appears to be
3235 * an incoherent read by the CS (presumably stale TLB). An
3236 * empty request appears sufficient to paper over the glitch.
3237 */
3238 if (intel_engine_is_idle(engine)) {
3239 struct i915_request *rq;
3240
3241 rq = i915_request_alloc(engine,
3242 dev_priv->kernel_context);
3243 if (!IS_ERR(rq))
3244 i915_request_add(rq);
3245 }
3246 }
3247
3248 i915_gem_restore_fences(dev_priv);
3249 }
3250
i915_gem_reset_finish_engine(struct intel_engine_cs * engine)3251 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3252 {
3253 engine->reset.finish(engine);
3254
3255 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3256 }
3257
i915_gem_reset_finish(struct drm_i915_private * dev_priv)3258 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3259 {
3260 struct intel_engine_cs *engine;
3261 enum intel_engine_id id;
3262
3263 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3264
3265 for_each_engine(engine, dev_priv, id) {
3266 engine->hangcheck.active_request = NULL;
3267 i915_gem_reset_finish_engine(engine);
3268 }
3269 }
3270
nop_submit_request(struct i915_request * request)3271 static void nop_submit_request(struct i915_request *request)
3272 {
3273 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3274 request->engine->name,
3275 request->fence.context, request->fence.seqno);
3276 dma_fence_set_error(&request->fence, -EIO);
3277
3278 i915_request_submit(request);
3279 }
3280
nop_complete_submit_request(struct i915_request * request)3281 static void nop_complete_submit_request(struct i915_request *request)
3282 {
3283 unsigned long flags;
3284
3285 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3286 request->engine->name,
3287 request->fence.context, request->fence.seqno);
3288 dma_fence_set_error(&request->fence, -EIO);
3289
3290 spin_lock_irqsave(&request->engine->timeline.lock, flags);
3291 __i915_request_submit(request);
3292 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3293 spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3294 }
3295
i915_gem_set_wedged(struct drm_i915_private * i915)3296 void i915_gem_set_wedged(struct drm_i915_private *i915)
3297 {
3298 struct intel_engine_cs *engine;
3299 enum intel_engine_id id;
3300
3301 GEM_TRACE("start\n");
3302
3303 if (GEM_SHOW_DEBUG()) {
3304 struct drm_printer p = drm_debug_printer(__func__);
3305
3306 for_each_engine(engine, i915, id)
3307 intel_engine_dump(engine, &p, "%s\n", engine->name);
3308 }
3309
3310 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3311 smp_mb__after_atomic();
3312
3313 /*
3314 * First, stop submission to hw, but do not yet complete requests by
3315 * rolling the global seqno forward (since this would complete requests
3316 * for which we haven't set the fence error to EIO yet).
3317 */
3318 for_each_engine(engine, i915, id) {
3319 i915_gem_reset_prepare_engine(engine);
3320
3321 engine->submit_request = nop_submit_request;
3322 engine->schedule = NULL;
3323 }
3324 i915->caps.scheduler = 0;
3325
3326 /* Even if the GPU reset fails, it should still stop the engines */
3327 intel_gpu_reset(i915, ALL_ENGINES);
3328
3329 /*
3330 * Make sure no one is running the old callback before we proceed with
3331 * cancelling requests and resetting the completion tracking. Otherwise
3332 * we might submit a request to the hardware which never completes.
3333 */
3334 synchronize_rcu();
3335
3336 for_each_engine(engine, i915, id) {
3337 /* Mark all executing requests as skipped */
3338 engine->cancel_requests(engine);
3339
3340 /*
3341 * Only once we've force-cancelled all in-flight requests can we
3342 * start to complete all requests.
3343 */
3344 engine->submit_request = nop_complete_submit_request;
3345 }
3346
3347 /*
3348 * Make sure no request can slip through without getting completed by
3349 * either this call here to intel_engine_init_global_seqno, or the one
3350 * in nop_complete_submit_request.
3351 */
3352 synchronize_rcu();
3353
3354 for_each_engine(engine, i915, id) {
3355 unsigned long flags;
3356
3357 /*
3358 * Mark all pending requests as complete so that any concurrent
3359 * (lockless) lookup doesn't try and wait upon the request as we
3360 * reset it.
3361 */
3362 spin_lock_irqsave(&engine->timeline.lock, flags);
3363 intel_engine_init_global_seqno(engine,
3364 intel_engine_last_submit(engine));
3365 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3366
3367 i915_gem_reset_finish_engine(engine);
3368 }
3369
3370 GEM_TRACE("end\n");
3371
3372 wake_up_all(&i915->gpu_error.reset_queue);
3373 }
3374
i915_gem_unset_wedged(struct drm_i915_private * i915)3375 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3376 {
3377 struct i915_timeline *tl;
3378
3379 lockdep_assert_held(&i915->drm.struct_mutex);
3380 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3381 return true;
3382
3383 GEM_TRACE("start\n");
3384
3385 /*
3386 * Before unwedging, make sure that all pending operations
3387 * are flushed and errored out - we may have requests waiting upon
3388 * third party fences. We marked all inflight requests as EIO, and
3389 * every execbuf since returned EIO, for consistency we want all
3390 * the currently pending requests to also be marked as EIO, which
3391 * is done inside our nop_submit_request - and so we must wait.
3392 *
3393 * No more can be submitted until we reset the wedged bit.
3394 */
3395 list_for_each_entry(tl, &i915->gt.timelines, link) {
3396 struct i915_request *rq;
3397
3398 rq = i915_gem_active_peek(&tl->last_request,
3399 &i915->drm.struct_mutex);
3400 if (!rq)
3401 continue;
3402
3403 /*
3404 * We can't use our normal waiter as we want to
3405 * avoid recursively trying to handle the current
3406 * reset. The basic dma_fence_default_wait() installs
3407 * a callback for dma_fence_signal(), which is
3408 * triggered by our nop handler (indirectly, the
3409 * callback enables the signaler thread which is
3410 * woken by the nop_submit_request() advancing the seqno
3411 * and when the seqno passes the fence, the signaler
3412 * then signals the fence waking us up).
3413 */
3414 if (dma_fence_default_wait(&rq->fence, true,
3415 MAX_SCHEDULE_TIMEOUT) < 0)
3416 return false;
3417 }
3418 i915_retire_requests(i915);
3419 GEM_BUG_ON(i915->gt.active_requests);
3420
3421 /*
3422 * Undo nop_submit_request. We prevent all new i915 requests from
3423 * being queued (by disallowing execbuf whilst wedged) so having
3424 * waited for all active requests above, we know the system is idle
3425 * and do not have to worry about a thread being inside
3426 * engine->submit_request() as we swap over. So unlike installing
3427 * the nop_submit_request on reset, we can do this from normal
3428 * context and do not require stop_machine().
3429 */
3430 intel_engines_reset_default_submission(i915);
3431 i915_gem_contexts_lost(i915);
3432
3433 GEM_TRACE("end\n");
3434
3435 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3436 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3437
3438 return true;
3439 }
3440
3441 static void
i915_gem_retire_work_handler(struct work_struct * work)3442 i915_gem_retire_work_handler(struct work_struct *work)
3443 {
3444 struct drm_i915_private *dev_priv =
3445 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3446 struct drm_device *dev = &dev_priv->drm;
3447
3448 /* Come back later if the device is busy... */
3449 if (mutex_trylock(&dev->struct_mutex)) {
3450 i915_retire_requests(dev_priv);
3451 mutex_unlock(&dev->struct_mutex);
3452 }
3453
3454 /*
3455 * Keep the retire handler running until we are finally idle.
3456 * We do not need to do this test under locking as in the worst-case
3457 * we queue the retire worker once too often.
3458 */
3459 if (READ_ONCE(dev_priv->gt.awake))
3460 queue_delayed_work(dev_priv->wq,
3461 &dev_priv->gt.retire_work,
3462 round_jiffies_up_relative(HZ));
3463 }
3464
shrink_caches(struct drm_i915_private * i915)3465 static void shrink_caches(struct drm_i915_private *i915)
3466 {
3467 /*
3468 * kmem_cache_shrink() discards empty slabs and reorders partially
3469 * filled slabs to prioritise allocating from the mostly full slabs,
3470 * with the aim of reducing fragmentation.
3471 */
3472 kmem_cache_shrink(i915->priorities);
3473 kmem_cache_shrink(i915->dependencies);
3474 kmem_cache_shrink(i915->requests);
3475 kmem_cache_shrink(i915->luts);
3476 kmem_cache_shrink(i915->vmas);
3477 kmem_cache_shrink(i915->objects);
3478 }
3479
3480 struct sleep_rcu_work {
3481 union {
3482 struct rcu_head rcu;
3483 struct work_struct work;
3484 };
3485 struct drm_i915_private *i915;
3486 unsigned int epoch;
3487 };
3488
3489 static inline bool
same_epoch(struct drm_i915_private * i915,unsigned int epoch)3490 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3491 {
3492 /*
3493 * There is a small chance that the epoch wrapped since we started
3494 * sleeping. If we assume that epoch is at least a u32, then it will
3495 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3496 */
3497 return epoch == READ_ONCE(i915->gt.epoch);
3498 }
3499
__sleep_work(struct work_struct * work)3500 static void __sleep_work(struct work_struct *work)
3501 {
3502 struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3503 struct drm_i915_private *i915 = s->i915;
3504 unsigned int epoch = s->epoch;
3505
3506 kfree(s);
3507 if (same_epoch(i915, epoch))
3508 shrink_caches(i915);
3509 }
3510
__sleep_rcu(struct rcu_head * rcu)3511 static void __sleep_rcu(struct rcu_head *rcu)
3512 {
3513 struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3514 struct drm_i915_private *i915 = s->i915;
3515
3516 if (same_epoch(i915, s->epoch)) {
3517 INIT_WORK(&s->work, __sleep_work);
3518 queue_work(i915->wq, &s->work);
3519 } else {
3520 kfree(s);
3521 }
3522 }
3523
3524 static inline bool
new_requests_since_last_retire(const struct drm_i915_private * i915)3525 new_requests_since_last_retire(const struct drm_i915_private *i915)
3526 {
3527 return (READ_ONCE(i915->gt.active_requests) ||
3528 work_pending(&i915->gt.idle_work.work));
3529 }
3530
assert_kernel_context_is_current(struct drm_i915_private * i915)3531 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3532 {
3533 struct intel_engine_cs *engine;
3534 enum intel_engine_id id;
3535
3536 if (i915_terminally_wedged(&i915->gpu_error))
3537 return;
3538
3539 GEM_BUG_ON(i915->gt.active_requests);
3540 for_each_engine(engine, i915, id) {
3541 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3542 GEM_BUG_ON(engine->last_retired_context !=
3543 to_intel_context(i915->kernel_context, engine));
3544 }
3545 }
3546
3547 static void
i915_gem_idle_work_handler(struct work_struct * work)3548 i915_gem_idle_work_handler(struct work_struct *work)
3549 {
3550 struct drm_i915_private *dev_priv =
3551 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3552 unsigned int epoch = I915_EPOCH_INVALID;
3553 bool rearm_hangcheck;
3554
3555 if (!READ_ONCE(dev_priv->gt.awake))
3556 return;
3557
3558 if (READ_ONCE(dev_priv->gt.active_requests))
3559 return;
3560
3561 /*
3562 * Flush out the last user context, leaving only the pinned
3563 * kernel context resident. When we are idling on the kernel_context,
3564 * no more new requests (with a context switch) are emitted and we
3565 * can finally rest. A consequence is that the idle work handler is
3566 * always called at least twice before idling (and if the system is
3567 * idle that implies a round trip through the retire worker).
3568 */
3569 mutex_lock(&dev_priv->drm.struct_mutex);
3570 i915_gem_switch_to_kernel_context(dev_priv);
3571 mutex_unlock(&dev_priv->drm.struct_mutex);
3572
3573 GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3574 READ_ONCE(dev_priv->gt.active_requests));
3575
3576 /*
3577 * Wait for last execlists context complete, but bail out in case a
3578 * new request is submitted. As we don't trust the hardware, we
3579 * continue on if the wait times out. This is necessary to allow
3580 * the machine to suspend even if the hardware dies, and we will
3581 * try to recover in resume (after depriving the hardware of power,
3582 * it may be in a better mmod).
3583 */
3584 __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3585 intel_engines_are_idle(dev_priv),
3586 I915_IDLE_ENGINES_TIMEOUT * 1000,
3587 10, 500);
3588
3589 rearm_hangcheck =
3590 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3591
3592 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3593 /* Currently busy, come back later */
3594 mod_delayed_work(dev_priv->wq,
3595 &dev_priv->gt.idle_work,
3596 msecs_to_jiffies(50));
3597 goto out_rearm;
3598 }
3599
3600 /*
3601 * New request retired after this work handler started, extend active
3602 * period until next instance of the work.
3603 */
3604 if (new_requests_since_last_retire(dev_priv))
3605 goto out_unlock;
3606
3607 epoch = __i915_gem_park(dev_priv);
3608
3609 assert_kernel_context_is_current(dev_priv);
3610
3611 rearm_hangcheck = false;
3612 out_unlock:
3613 mutex_unlock(&dev_priv->drm.struct_mutex);
3614
3615 out_rearm:
3616 if (rearm_hangcheck) {
3617 GEM_BUG_ON(!dev_priv->gt.awake);
3618 i915_queue_hangcheck(dev_priv);
3619 }
3620
3621 /*
3622 * When we are idle, it is an opportune time to reap our caches.
3623 * However, we have many objects that utilise RCU and the ordered
3624 * i915->wq that this work is executing on. To try and flush any
3625 * pending frees now we are idle, we first wait for an RCU grace
3626 * period, and then queue a task (that will run last on the wq) to
3627 * shrink and re-optimize the caches.
3628 */
3629 if (same_epoch(dev_priv, epoch)) {
3630 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3631 if (s) {
3632 s->i915 = dev_priv;
3633 s->epoch = epoch;
3634 call_rcu(&s->rcu, __sleep_rcu);
3635 }
3636 }
3637 }
3638
i915_gem_close_object(struct drm_gem_object * gem,struct drm_file * file)3639 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3640 {
3641 struct drm_i915_private *i915 = to_i915(gem->dev);
3642 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3643 struct drm_i915_file_private *fpriv = file->driver_priv;
3644 struct i915_lut_handle *lut, *ln;
3645
3646 mutex_lock(&i915->drm.struct_mutex);
3647
3648 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3649 struct i915_gem_context *ctx = lut->ctx;
3650 struct i915_vma *vma;
3651
3652 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3653 if (ctx->file_priv != fpriv)
3654 continue;
3655
3656 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3657 GEM_BUG_ON(vma->obj != obj);
3658
3659 /* We allow the process to have multiple handles to the same
3660 * vma, in the same fd namespace, by virtue of flink/open.
3661 */
3662 GEM_BUG_ON(!vma->open_count);
3663 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3664 i915_vma_close(vma);
3665
3666 list_del(&lut->obj_link);
3667 list_del(&lut->ctx_link);
3668
3669 kmem_cache_free(i915->luts, lut);
3670 __i915_gem_object_release_unless_active(obj);
3671 }
3672
3673 mutex_unlock(&i915->drm.struct_mutex);
3674 }
3675
to_wait_timeout(s64 timeout_ns)3676 static unsigned long to_wait_timeout(s64 timeout_ns)
3677 {
3678 if (timeout_ns < 0)
3679 return MAX_SCHEDULE_TIMEOUT;
3680
3681 if (timeout_ns == 0)
3682 return 0;
3683
3684 return nsecs_to_jiffies_timeout(timeout_ns);
3685 }
3686
3687 /**
3688 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3689 * @dev: drm device pointer
3690 * @data: ioctl data blob
3691 * @file: drm file pointer
3692 *
3693 * Returns 0 if successful, else an error is returned with the remaining time in
3694 * the timeout parameter.
3695 * -ETIME: object is still busy after timeout
3696 * -ERESTARTSYS: signal interrupted the wait
3697 * -ENONENT: object doesn't exist
3698 * Also possible, but rare:
3699 * -EAGAIN: incomplete, restart syscall
3700 * -ENOMEM: damn
3701 * -ENODEV: Internal IRQ fail
3702 * -E?: The add request failed
3703 *
3704 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3705 * non-zero timeout parameter the wait ioctl will wait for the given number of
3706 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3707 * without holding struct_mutex the object may become re-busied before this
3708 * function completes. A similar but shorter * race condition exists in the busy
3709 * ioctl
3710 */
3711 int
i915_gem_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3712 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3713 {
3714 struct drm_i915_gem_wait *args = data;
3715 struct drm_i915_gem_object *obj;
3716 ktime_t start;
3717 long ret;
3718
3719 if (args->flags != 0)
3720 return -EINVAL;
3721
3722 obj = i915_gem_object_lookup(file, args->bo_handle);
3723 if (!obj)
3724 return -ENOENT;
3725
3726 start = ktime_get();
3727
3728 ret = i915_gem_object_wait(obj,
3729 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3730 to_wait_timeout(args->timeout_ns),
3731 to_rps_client(file));
3732
3733 if (args->timeout_ns > 0) {
3734 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3735 if (args->timeout_ns < 0)
3736 args->timeout_ns = 0;
3737
3738 /*
3739 * Apparently ktime isn't accurate enough and occasionally has a
3740 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3741 * things up to make the test happy. We allow up to 1 jiffy.
3742 *
3743 * This is a regression from the timespec->ktime conversion.
3744 */
3745 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3746 args->timeout_ns = 0;
3747
3748 /* Asked to wait beyond the jiffie/scheduler precision? */
3749 if (ret == -ETIME && args->timeout_ns)
3750 ret = -EAGAIN;
3751 }
3752
3753 i915_gem_object_put(obj);
3754 return ret;
3755 }
3756
wait_for_timeline(struct i915_timeline * tl,unsigned int flags,long timeout)3757 static long wait_for_timeline(struct i915_timeline *tl,
3758 unsigned int flags, long timeout)
3759 {
3760 struct i915_request *rq;
3761
3762 rq = i915_gem_active_get_unlocked(&tl->last_request);
3763 if (!rq)
3764 return timeout;
3765
3766 /*
3767 * "Race-to-idle".
3768 *
3769 * Switching to the kernel context is often used a synchronous
3770 * step prior to idling, e.g. in suspend for flushing all
3771 * current operations to memory before sleeping. These we
3772 * want to complete as quickly as possible to avoid prolonged
3773 * stalls, so allow the gpu to boost to maximum clocks.
3774 */
3775 if (flags & I915_WAIT_FOR_IDLE_BOOST)
3776 gen6_rps_boost(rq, NULL);
3777
3778 timeout = i915_request_wait(rq, flags, timeout);
3779 i915_request_put(rq);
3780
3781 return timeout;
3782 }
3783
wait_for_engines(struct drm_i915_private * i915)3784 static int wait_for_engines(struct drm_i915_private *i915)
3785 {
3786 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3787 dev_err(i915->drm.dev,
3788 "Failed to idle engines, declaring wedged!\n");
3789 GEM_TRACE_DUMP();
3790 i915_gem_set_wedged(i915);
3791 return -EIO;
3792 }
3793
3794 return 0;
3795 }
3796
i915_gem_wait_for_idle(struct drm_i915_private * i915,unsigned int flags,long timeout)3797 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3798 unsigned int flags, long timeout)
3799 {
3800 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3801 flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3802 timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3803
3804 /* If the device is asleep, we have no requests outstanding */
3805 if (!READ_ONCE(i915->gt.awake))
3806 return 0;
3807
3808 if (flags & I915_WAIT_LOCKED) {
3809 struct i915_timeline *tl;
3810 int err;
3811
3812 lockdep_assert_held(&i915->drm.struct_mutex);
3813
3814 list_for_each_entry(tl, &i915->gt.timelines, link) {
3815 timeout = wait_for_timeline(tl, flags, timeout);
3816 if (timeout < 0)
3817 return timeout;
3818 }
3819
3820 err = wait_for_engines(i915);
3821 if (err)
3822 return err;
3823
3824 i915_retire_requests(i915);
3825 GEM_BUG_ON(i915->gt.active_requests);
3826 } else {
3827 struct intel_engine_cs *engine;
3828 enum intel_engine_id id;
3829
3830 for_each_engine(engine, i915, id) {
3831 struct i915_timeline *tl = &engine->timeline;
3832
3833 timeout = wait_for_timeline(tl, flags, timeout);
3834 if (timeout < 0)
3835 return timeout;
3836 }
3837 }
3838
3839 return 0;
3840 }
3841
__i915_gem_object_flush_for_display(struct drm_i915_gem_object * obj)3842 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3843 {
3844 /*
3845 * We manually flush the CPU domain so that we can override and
3846 * force the flush for the display, and perform it asyncrhonously.
3847 */
3848 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3849 if (obj->cache_dirty)
3850 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3851 obj->write_domain = 0;
3852 }
3853
i915_gem_object_flush_if_display(struct drm_i915_gem_object * obj)3854 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3855 {
3856 if (!READ_ONCE(obj->pin_global))
3857 return;
3858
3859 mutex_lock(&obj->base.dev->struct_mutex);
3860 __i915_gem_object_flush_for_display(obj);
3861 mutex_unlock(&obj->base.dev->struct_mutex);
3862 }
3863
3864 /**
3865 * Moves a single object to the WC read, and possibly write domain.
3866 * @obj: object to act on
3867 * @write: ask for write access or read only
3868 *
3869 * This function returns when the move is complete, including waiting on
3870 * flushes to occur.
3871 */
3872 int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object * obj,bool write)3873 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3874 {
3875 int ret;
3876
3877 lockdep_assert_held(&obj->base.dev->struct_mutex);
3878
3879 ret = i915_gem_object_wait(obj,
3880 I915_WAIT_INTERRUPTIBLE |
3881 I915_WAIT_LOCKED |
3882 (write ? I915_WAIT_ALL : 0),
3883 MAX_SCHEDULE_TIMEOUT,
3884 NULL);
3885 if (ret)
3886 return ret;
3887
3888 if (obj->write_domain == I915_GEM_DOMAIN_WC)
3889 return 0;
3890
3891 /* Flush and acquire obj->pages so that we are coherent through
3892 * direct access in memory with previous cached writes through
3893 * shmemfs and that our cache domain tracking remains valid.
3894 * For example, if the obj->filp was moved to swap without us
3895 * being notified and releasing the pages, we would mistakenly
3896 * continue to assume that the obj remained out of the CPU cached
3897 * domain.
3898 */
3899 ret = i915_gem_object_pin_pages(obj);
3900 if (ret)
3901 return ret;
3902
3903 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3904
3905 /* Serialise direct access to this object with the barriers for
3906 * coherent writes from the GPU, by effectively invalidating the
3907 * WC domain upon first access.
3908 */
3909 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3910 mb();
3911
3912 /* It should now be out of any other write domains, and we can update
3913 * the domain values for our changes.
3914 */
3915 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3916 obj->read_domains |= I915_GEM_DOMAIN_WC;
3917 if (write) {
3918 obj->read_domains = I915_GEM_DOMAIN_WC;
3919 obj->write_domain = I915_GEM_DOMAIN_WC;
3920 obj->mm.dirty = true;
3921 }
3922
3923 i915_gem_object_unpin_pages(obj);
3924 return 0;
3925 }
3926
3927 /**
3928 * Moves a single object to the GTT read, and possibly write domain.
3929 * @obj: object to act on
3930 * @write: ask for write access or read only
3931 *
3932 * This function returns when the move is complete, including waiting on
3933 * flushes to occur.
3934 */
3935 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)3936 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3937 {
3938 int ret;
3939
3940 lockdep_assert_held(&obj->base.dev->struct_mutex);
3941
3942 ret = i915_gem_object_wait(obj,
3943 I915_WAIT_INTERRUPTIBLE |
3944 I915_WAIT_LOCKED |
3945 (write ? I915_WAIT_ALL : 0),
3946 MAX_SCHEDULE_TIMEOUT,
3947 NULL);
3948 if (ret)
3949 return ret;
3950
3951 if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3952 return 0;
3953
3954 /* Flush and acquire obj->pages so that we are coherent through
3955 * direct access in memory with previous cached writes through
3956 * shmemfs and that our cache domain tracking remains valid.
3957 * For example, if the obj->filp was moved to swap without us
3958 * being notified and releasing the pages, we would mistakenly
3959 * continue to assume that the obj remained out of the CPU cached
3960 * domain.
3961 */
3962 ret = i915_gem_object_pin_pages(obj);
3963 if (ret)
3964 return ret;
3965
3966 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3967
3968 /* Serialise direct access to this object with the barriers for
3969 * coherent writes from the GPU, by effectively invalidating the
3970 * GTT domain upon first access.
3971 */
3972 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3973 mb();
3974
3975 /* It should now be out of any other write domains, and we can update
3976 * the domain values for our changes.
3977 */
3978 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3979 obj->read_domains |= I915_GEM_DOMAIN_GTT;
3980 if (write) {
3981 obj->read_domains = I915_GEM_DOMAIN_GTT;
3982 obj->write_domain = I915_GEM_DOMAIN_GTT;
3983 obj->mm.dirty = true;
3984 }
3985
3986 i915_gem_object_unpin_pages(obj);
3987 return 0;
3988 }
3989
3990 /**
3991 * Changes the cache-level of an object across all VMA.
3992 * @obj: object to act on
3993 * @cache_level: new cache level to set for the object
3994 *
3995 * After this function returns, the object will be in the new cache-level
3996 * across all GTT and the contents of the backing storage will be coherent,
3997 * with respect to the new cache-level. In order to keep the backing storage
3998 * coherent for all users, we only allow a single cache level to be set
3999 * globally on the object and prevent it from being changed whilst the
4000 * hardware is reading from the object. That is if the object is currently
4001 * on the scanout it will be set to uncached (or equivalent display
4002 * cache coherency) and all non-MOCS GPU access will also be uncached so
4003 * that all direct access to the scanout remains coherent.
4004 */
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)4005 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4006 enum i915_cache_level cache_level)
4007 {
4008 struct i915_vma *vma;
4009 int ret;
4010
4011 lockdep_assert_held(&obj->base.dev->struct_mutex);
4012
4013 if (obj->cache_level == cache_level)
4014 return 0;
4015
4016 /* Inspect the list of currently bound VMA and unbind any that would
4017 * be invalid given the new cache-level. This is principally to
4018 * catch the issue of the CS prefetch crossing page boundaries and
4019 * reading an invalid PTE on older architectures.
4020 */
4021 restart:
4022 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4023 if (!drm_mm_node_allocated(&vma->node))
4024 continue;
4025
4026 if (i915_vma_is_pinned(vma)) {
4027 DRM_DEBUG("can not change the cache level of pinned objects\n");
4028 return -EBUSY;
4029 }
4030
4031 if (!i915_vma_is_closed(vma) &&
4032 i915_gem_valid_gtt_space(vma, cache_level))
4033 continue;
4034
4035 ret = i915_vma_unbind(vma);
4036 if (ret)
4037 return ret;
4038
4039 /* As unbinding may affect other elements in the
4040 * obj->vma_list (due to side-effects from retiring
4041 * an active vma), play safe and restart the iterator.
4042 */
4043 goto restart;
4044 }
4045
4046 /* We can reuse the existing drm_mm nodes but need to change the
4047 * cache-level on the PTE. We could simply unbind them all and
4048 * rebind with the correct cache-level on next use. However since
4049 * we already have a valid slot, dma mapping, pages etc, we may as
4050 * rewrite the PTE in the belief that doing so tramples upon less
4051 * state and so involves less work.
4052 */
4053 if (obj->bind_count) {
4054 /* Before we change the PTE, the GPU must not be accessing it.
4055 * If we wait upon the object, we know that all the bound
4056 * VMA are no longer active.
4057 */
4058 ret = i915_gem_object_wait(obj,
4059 I915_WAIT_INTERRUPTIBLE |
4060 I915_WAIT_LOCKED |
4061 I915_WAIT_ALL,
4062 MAX_SCHEDULE_TIMEOUT,
4063 NULL);
4064 if (ret)
4065 return ret;
4066
4067 if (!HAS_LLC(to_i915(obj->base.dev)) &&
4068 cache_level != I915_CACHE_NONE) {
4069 /* Access to snoopable pages through the GTT is
4070 * incoherent and on some machines causes a hard
4071 * lockup. Relinquish the CPU mmaping to force
4072 * userspace to refault in the pages and we can
4073 * then double check if the GTT mapping is still
4074 * valid for that pointer access.
4075 */
4076 i915_gem_release_mmap(obj);
4077
4078 /* As we no longer need a fence for GTT access,
4079 * we can relinquish it now (and so prevent having
4080 * to steal a fence from someone else on the next
4081 * fence request). Note GPU activity would have
4082 * dropped the fence as all snoopable access is
4083 * supposed to be linear.
4084 */
4085 for_each_ggtt_vma(vma, obj) {
4086 ret = i915_vma_put_fence(vma);
4087 if (ret)
4088 return ret;
4089 }
4090 } else {
4091 /* We either have incoherent backing store and
4092 * so no GTT access or the architecture is fully
4093 * coherent. In such cases, existing GTT mmaps
4094 * ignore the cache bit in the PTE and we can
4095 * rewrite it without confusing the GPU or having
4096 * to force userspace to fault back in its mmaps.
4097 */
4098 }
4099
4100 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4101 if (!drm_mm_node_allocated(&vma->node))
4102 continue;
4103
4104 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4105 if (ret)
4106 return ret;
4107 }
4108 }
4109
4110 list_for_each_entry(vma, &obj->vma_list, obj_link)
4111 vma->node.color = cache_level;
4112 i915_gem_object_set_cache_coherency(obj, cache_level);
4113 obj->cache_dirty = true; /* Always invalidate stale cachelines */
4114
4115 return 0;
4116 }
4117
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4118 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4119 struct drm_file *file)
4120 {
4121 struct drm_i915_gem_caching *args = data;
4122 struct drm_i915_gem_object *obj;
4123 int err = 0;
4124
4125 rcu_read_lock();
4126 obj = i915_gem_object_lookup_rcu(file, args->handle);
4127 if (!obj) {
4128 err = -ENOENT;
4129 goto out;
4130 }
4131
4132 switch (obj->cache_level) {
4133 case I915_CACHE_LLC:
4134 case I915_CACHE_L3_LLC:
4135 args->caching = I915_CACHING_CACHED;
4136 break;
4137
4138 case I915_CACHE_WT:
4139 args->caching = I915_CACHING_DISPLAY;
4140 break;
4141
4142 default:
4143 args->caching = I915_CACHING_NONE;
4144 break;
4145 }
4146 out:
4147 rcu_read_unlock();
4148 return err;
4149 }
4150
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4151 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4152 struct drm_file *file)
4153 {
4154 struct drm_i915_private *i915 = to_i915(dev);
4155 struct drm_i915_gem_caching *args = data;
4156 struct drm_i915_gem_object *obj;
4157 enum i915_cache_level level;
4158 int ret = 0;
4159
4160 switch (args->caching) {
4161 case I915_CACHING_NONE:
4162 level = I915_CACHE_NONE;
4163 break;
4164 case I915_CACHING_CACHED:
4165 /*
4166 * Due to a HW issue on BXT A stepping, GPU stores via a
4167 * snooped mapping may leave stale data in a corresponding CPU
4168 * cacheline, whereas normally such cachelines would get
4169 * invalidated.
4170 */
4171 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4172 return -ENODEV;
4173
4174 level = I915_CACHE_LLC;
4175 break;
4176 case I915_CACHING_DISPLAY:
4177 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4178 break;
4179 default:
4180 return -EINVAL;
4181 }
4182
4183 obj = i915_gem_object_lookup(file, args->handle);
4184 if (!obj)
4185 return -ENOENT;
4186
4187 /*
4188 * The caching mode of proxy object is handled by its generator, and
4189 * not allowed to be changed by userspace.
4190 */
4191 if (i915_gem_object_is_proxy(obj)) {
4192 ret = -ENXIO;
4193 goto out;
4194 }
4195
4196 if (obj->cache_level == level)
4197 goto out;
4198
4199 ret = i915_gem_object_wait(obj,
4200 I915_WAIT_INTERRUPTIBLE,
4201 MAX_SCHEDULE_TIMEOUT,
4202 to_rps_client(file));
4203 if (ret)
4204 goto out;
4205
4206 ret = i915_mutex_lock_interruptible(dev);
4207 if (ret)
4208 goto out;
4209
4210 ret = i915_gem_object_set_cache_level(obj, level);
4211 mutex_unlock(&dev->struct_mutex);
4212
4213 out:
4214 i915_gem_object_put(obj);
4215 return ret;
4216 }
4217
4218 /*
4219 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4220 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4221 * (for pageflips). We only flush the caches while preparing the buffer for
4222 * display, the callers are responsible for frontbuffer flush.
4223 */
4224 struct i915_vma *
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,u32 alignment,const struct i915_ggtt_view * view,unsigned int flags)4225 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4226 u32 alignment,
4227 const struct i915_ggtt_view *view,
4228 unsigned int flags)
4229 {
4230 struct i915_vma *vma;
4231 int ret;
4232
4233 lockdep_assert_held(&obj->base.dev->struct_mutex);
4234
4235 /* Mark the global pin early so that we account for the
4236 * display coherency whilst setting up the cache domains.
4237 */
4238 obj->pin_global++;
4239
4240 /* The display engine is not coherent with the LLC cache on gen6. As
4241 * a result, we make sure that the pinning that is about to occur is
4242 * done with uncached PTEs. This is lowest common denominator for all
4243 * chipsets.
4244 *
4245 * However for gen6+, we could do better by using the GFDT bit instead
4246 * of uncaching, which would allow us to flush all the LLC-cached data
4247 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4248 */
4249 ret = i915_gem_object_set_cache_level(obj,
4250 HAS_WT(to_i915(obj->base.dev)) ?
4251 I915_CACHE_WT : I915_CACHE_NONE);
4252 if (ret) {
4253 vma = ERR_PTR(ret);
4254 goto err_unpin_global;
4255 }
4256
4257 /* As the user may map the buffer once pinned in the display plane
4258 * (e.g. libkms for the bootup splash), we have to ensure that we
4259 * always use map_and_fenceable for all scanout buffers. However,
4260 * it may simply be too big to fit into mappable, in which case
4261 * put it anyway and hope that userspace can cope (but always first
4262 * try to preserve the existing ABI).
4263 */
4264 vma = ERR_PTR(-ENOSPC);
4265 if ((flags & PIN_MAPPABLE) == 0 &&
4266 (!view || view->type == I915_GGTT_VIEW_NORMAL))
4267 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4268 flags |
4269 PIN_MAPPABLE |
4270 PIN_NONBLOCK);
4271 if (IS_ERR(vma))
4272 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4273 if (IS_ERR(vma))
4274 goto err_unpin_global;
4275
4276 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4277
4278 __i915_gem_object_flush_for_display(obj);
4279
4280 /* It should now be out of any other write domains, and we can update
4281 * the domain values for our changes.
4282 */
4283 obj->read_domains |= I915_GEM_DOMAIN_GTT;
4284
4285 return vma;
4286
4287 err_unpin_global:
4288 obj->pin_global--;
4289 return vma;
4290 }
4291
4292 void
i915_gem_object_unpin_from_display_plane(struct i915_vma * vma)4293 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4294 {
4295 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4296
4297 if (WARN_ON(vma->obj->pin_global == 0))
4298 return;
4299
4300 if (--vma->obj->pin_global == 0)
4301 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4302
4303 /* Bump the LRU to try and avoid premature eviction whilst flipping */
4304 i915_gem_object_bump_inactive_ggtt(vma->obj);
4305
4306 i915_vma_unpin(vma);
4307 }
4308
4309 /**
4310 * Moves a single object to the CPU read, and possibly write domain.
4311 * @obj: object to act on
4312 * @write: requesting write or read-only access
4313 *
4314 * This function returns when the move is complete, including waiting on
4315 * flushes to occur.
4316 */
4317 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)4318 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4319 {
4320 int ret;
4321
4322 lockdep_assert_held(&obj->base.dev->struct_mutex);
4323
4324 ret = i915_gem_object_wait(obj,
4325 I915_WAIT_INTERRUPTIBLE |
4326 I915_WAIT_LOCKED |
4327 (write ? I915_WAIT_ALL : 0),
4328 MAX_SCHEDULE_TIMEOUT,
4329 NULL);
4330 if (ret)
4331 return ret;
4332
4333 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4334
4335 /* Flush the CPU cache if it's still invalid. */
4336 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4337 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4338 obj->read_domains |= I915_GEM_DOMAIN_CPU;
4339 }
4340
4341 /* It should now be out of any other write domains, and we can update
4342 * the domain values for our changes.
4343 */
4344 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4345
4346 /* If we're writing through the CPU, then the GPU read domains will
4347 * need to be invalidated at next use.
4348 */
4349 if (write)
4350 __start_cpu_write(obj);
4351
4352 return 0;
4353 }
4354
4355 /* Throttle our rendering by waiting until the ring has completed our requests
4356 * emitted over 20 msec ago.
4357 *
4358 * Note that if we were to use the current jiffies each time around the loop,
4359 * we wouldn't escape the function with any frames outstanding if the time to
4360 * render a frame was over 20ms.
4361 *
4362 * This should get us reasonable parallelism between CPU and GPU but also
4363 * relatively low latency when blocking on a particular request to finish.
4364 */
4365 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)4366 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4367 {
4368 struct drm_i915_private *dev_priv = to_i915(dev);
4369 struct drm_i915_file_private *file_priv = file->driver_priv;
4370 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4371 struct i915_request *request, *target = NULL;
4372 long ret;
4373
4374 /* ABI: return -EIO if already wedged */
4375 if (i915_terminally_wedged(&dev_priv->gpu_error))
4376 return -EIO;
4377
4378 spin_lock(&file_priv->mm.lock);
4379 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4380 if (time_after_eq(request->emitted_jiffies, recent_enough))
4381 break;
4382
4383 if (target) {
4384 list_del(&target->client_link);
4385 target->file_priv = NULL;
4386 }
4387
4388 target = request;
4389 }
4390 if (target)
4391 i915_request_get(target);
4392 spin_unlock(&file_priv->mm.lock);
4393
4394 if (target == NULL)
4395 return 0;
4396
4397 ret = i915_request_wait(target,
4398 I915_WAIT_INTERRUPTIBLE,
4399 MAX_SCHEDULE_TIMEOUT);
4400 i915_request_put(target);
4401
4402 return ret < 0 ? ret : 0;
4403 }
4404
4405 struct i915_vma *
i915_gem_object_ggtt_pin(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view,u64 size,u64 alignment,u64 flags)4406 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4407 const struct i915_ggtt_view *view,
4408 u64 size,
4409 u64 alignment,
4410 u64 flags)
4411 {
4412 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4413 struct i915_address_space *vm = &dev_priv->ggtt.vm;
4414 struct i915_vma *vma;
4415 int ret;
4416
4417 lockdep_assert_held(&obj->base.dev->struct_mutex);
4418
4419 if (flags & PIN_MAPPABLE &&
4420 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4421 /* If the required space is larger than the available
4422 * aperture, we will not able to find a slot for the
4423 * object and unbinding the object now will be in
4424 * vain. Worse, doing so may cause us to ping-pong
4425 * the object in and out of the Global GTT and
4426 * waste a lot of cycles under the mutex.
4427 */
4428 if (obj->base.size > dev_priv->ggtt.mappable_end)
4429 return ERR_PTR(-E2BIG);
4430
4431 /* If NONBLOCK is set the caller is optimistically
4432 * trying to cache the full object within the mappable
4433 * aperture, and *must* have a fallback in place for
4434 * situations where we cannot bind the object. We
4435 * can be a little more lax here and use the fallback
4436 * more often to avoid costly migrations of ourselves
4437 * and other objects within the aperture.
4438 *
4439 * Half-the-aperture is used as a simple heuristic.
4440 * More interesting would to do search for a free
4441 * block prior to making the commitment to unbind.
4442 * That caters for the self-harm case, and with a
4443 * little more heuristics (e.g. NOFAULT, NOEVICT)
4444 * we could try to minimise harm to others.
4445 */
4446 if (flags & PIN_NONBLOCK &&
4447 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4448 return ERR_PTR(-ENOSPC);
4449 }
4450
4451 vma = i915_vma_instance(obj, vm, view);
4452 if (unlikely(IS_ERR(vma)))
4453 return vma;
4454
4455 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4456 if (flags & PIN_NONBLOCK) {
4457 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4458 return ERR_PTR(-ENOSPC);
4459
4460 if (flags & PIN_MAPPABLE &&
4461 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4462 return ERR_PTR(-ENOSPC);
4463 }
4464
4465 WARN(i915_vma_is_pinned(vma),
4466 "bo is already pinned in ggtt with incorrect alignment:"
4467 " offset=%08x, req.alignment=%llx,"
4468 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4469 i915_ggtt_offset(vma), alignment,
4470 !!(flags & PIN_MAPPABLE),
4471 i915_vma_is_map_and_fenceable(vma));
4472 ret = i915_vma_unbind(vma);
4473 if (ret)
4474 return ERR_PTR(ret);
4475 }
4476
4477 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4478 if (ret)
4479 return ERR_PTR(ret);
4480
4481 return vma;
4482 }
4483
__busy_read_flag(unsigned int id)4484 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4485 {
4486 /* Note that we could alias engines in the execbuf API, but
4487 * that would be very unwise as it prevents userspace from
4488 * fine control over engine selection. Ahem.
4489 *
4490 * This should be something like EXEC_MAX_ENGINE instead of
4491 * I915_NUM_ENGINES.
4492 */
4493 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4494 return 0x10000 << id;
4495 }
4496
__busy_write_id(unsigned int id)4497 static __always_inline unsigned int __busy_write_id(unsigned int id)
4498 {
4499 /* The uABI guarantees an active writer is also amongst the read
4500 * engines. This would be true if we accessed the activity tracking
4501 * under the lock, but as we perform the lookup of the object and
4502 * its activity locklessly we can not guarantee that the last_write
4503 * being active implies that we have set the same engine flag from
4504 * last_read - hence we always set both read and write busy for
4505 * last_write.
4506 */
4507 return id | __busy_read_flag(id);
4508 }
4509
4510 static __always_inline unsigned int
__busy_set_if_active(const struct dma_fence * fence,unsigned int (* flag)(unsigned int id))4511 __busy_set_if_active(const struct dma_fence *fence,
4512 unsigned int (*flag)(unsigned int id))
4513 {
4514 struct i915_request *rq;
4515
4516 /* We have to check the current hw status of the fence as the uABI
4517 * guarantees forward progress. We could rely on the idle worker
4518 * to eventually flush us, but to minimise latency just ask the
4519 * hardware.
4520 *
4521 * Note we only report on the status of native fences.
4522 */
4523 if (!dma_fence_is_i915(fence))
4524 return 0;
4525
4526 /* opencode to_request() in order to avoid const warnings */
4527 rq = container_of(fence, struct i915_request, fence);
4528 if (i915_request_completed(rq))
4529 return 0;
4530
4531 return flag(rq->engine->uabi_id);
4532 }
4533
4534 static __always_inline unsigned int
busy_check_reader(const struct dma_fence * fence)4535 busy_check_reader(const struct dma_fence *fence)
4536 {
4537 return __busy_set_if_active(fence, __busy_read_flag);
4538 }
4539
4540 static __always_inline unsigned int
busy_check_writer(const struct dma_fence * fence)4541 busy_check_writer(const struct dma_fence *fence)
4542 {
4543 if (!fence)
4544 return 0;
4545
4546 return __busy_set_if_active(fence, __busy_write_id);
4547 }
4548
4549 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4550 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4551 struct drm_file *file)
4552 {
4553 struct drm_i915_gem_busy *args = data;
4554 struct drm_i915_gem_object *obj;
4555 struct reservation_object_list *list;
4556 unsigned int seq;
4557 int err;
4558
4559 err = -ENOENT;
4560 rcu_read_lock();
4561 obj = i915_gem_object_lookup_rcu(file, args->handle);
4562 if (!obj)
4563 goto out;
4564
4565 /* A discrepancy here is that we do not report the status of
4566 * non-i915 fences, i.e. even though we may report the object as idle,
4567 * a call to set-domain may still stall waiting for foreign rendering.
4568 * This also means that wait-ioctl may report an object as busy,
4569 * where busy-ioctl considers it idle.
4570 *
4571 * We trade the ability to warn of foreign fences to report on which
4572 * i915 engines are active for the object.
4573 *
4574 * Alternatively, we can trade that extra information on read/write
4575 * activity with
4576 * args->busy =
4577 * !reservation_object_test_signaled_rcu(obj->resv, true);
4578 * to report the overall busyness. This is what the wait-ioctl does.
4579 *
4580 */
4581 retry:
4582 seq = raw_read_seqcount(&obj->resv->seq);
4583
4584 /* Translate the exclusive fence to the READ *and* WRITE engine */
4585 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4586
4587 /* Translate shared fences to READ set of engines */
4588 list = rcu_dereference(obj->resv->fence);
4589 if (list) {
4590 unsigned int shared_count = list->shared_count, i;
4591
4592 for (i = 0; i < shared_count; ++i) {
4593 struct dma_fence *fence =
4594 rcu_dereference(list->shared[i]);
4595
4596 args->busy |= busy_check_reader(fence);
4597 }
4598 }
4599
4600 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4601 goto retry;
4602
4603 err = 0;
4604 out:
4605 rcu_read_unlock();
4606 return err;
4607 }
4608
4609 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4610 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4611 struct drm_file *file_priv)
4612 {
4613 return i915_gem_ring_throttle(dev, file_priv);
4614 }
4615
4616 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4617 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4618 struct drm_file *file_priv)
4619 {
4620 struct drm_i915_private *dev_priv = to_i915(dev);
4621 struct drm_i915_gem_madvise *args = data;
4622 struct drm_i915_gem_object *obj;
4623 int err;
4624
4625 switch (args->madv) {
4626 case I915_MADV_DONTNEED:
4627 case I915_MADV_WILLNEED:
4628 break;
4629 default:
4630 return -EINVAL;
4631 }
4632
4633 obj = i915_gem_object_lookup(file_priv, args->handle);
4634 if (!obj)
4635 return -ENOENT;
4636
4637 err = mutex_lock_interruptible(&obj->mm.lock);
4638 if (err)
4639 goto out;
4640
4641 if (i915_gem_object_has_pages(obj) &&
4642 i915_gem_object_is_tiled(obj) &&
4643 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4644 if (obj->mm.madv == I915_MADV_WILLNEED) {
4645 GEM_BUG_ON(!obj->mm.quirked);
4646 __i915_gem_object_unpin_pages(obj);
4647 obj->mm.quirked = false;
4648 }
4649 if (args->madv == I915_MADV_WILLNEED) {
4650 GEM_BUG_ON(obj->mm.quirked);
4651 __i915_gem_object_pin_pages(obj);
4652 obj->mm.quirked = true;
4653 }
4654 }
4655
4656 if (obj->mm.madv != __I915_MADV_PURGED)
4657 obj->mm.madv = args->madv;
4658
4659 /* if the object is no longer attached, discard its backing storage */
4660 if (obj->mm.madv == I915_MADV_DONTNEED &&
4661 !i915_gem_object_has_pages(obj))
4662 i915_gem_object_truncate(obj);
4663
4664 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4665 mutex_unlock(&obj->mm.lock);
4666
4667 out:
4668 i915_gem_object_put(obj);
4669 return err;
4670 }
4671
4672 static void
frontbuffer_retire(struct i915_gem_active * active,struct i915_request * request)4673 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4674 {
4675 struct drm_i915_gem_object *obj =
4676 container_of(active, typeof(*obj), frontbuffer_write);
4677
4678 intel_fb_obj_flush(obj, ORIGIN_CS);
4679 }
4680
i915_gem_object_init(struct drm_i915_gem_object * obj,const struct drm_i915_gem_object_ops * ops)4681 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4682 const struct drm_i915_gem_object_ops *ops)
4683 {
4684 mutex_init(&obj->mm.lock);
4685
4686 INIT_LIST_HEAD(&obj->vma_list);
4687 INIT_LIST_HEAD(&obj->lut_list);
4688 INIT_LIST_HEAD(&obj->batch_pool_link);
4689
4690 obj->ops = ops;
4691
4692 reservation_object_init(&obj->__builtin_resv);
4693 obj->resv = &obj->__builtin_resv;
4694
4695 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4696 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4697
4698 obj->mm.madv = I915_MADV_WILLNEED;
4699 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4700 mutex_init(&obj->mm.get_page.lock);
4701
4702 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4703 }
4704
4705 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4706 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4707 I915_GEM_OBJECT_IS_SHRINKABLE,
4708
4709 .get_pages = i915_gem_object_get_pages_gtt,
4710 .put_pages = i915_gem_object_put_pages_gtt,
4711
4712 .pwrite = i915_gem_object_pwrite_gtt,
4713 };
4714
i915_gem_object_create_shmem(struct drm_device * dev,struct drm_gem_object * obj,size_t size)4715 static int i915_gem_object_create_shmem(struct drm_device *dev,
4716 struct drm_gem_object *obj,
4717 size_t size)
4718 {
4719 struct drm_i915_private *i915 = to_i915(dev);
4720 unsigned long flags = VM_NORESERVE;
4721 struct file *filp;
4722
4723 drm_gem_private_object_init(dev, obj, size);
4724
4725 if (i915->mm.gemfs)
4726 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4727 flags);
4728 else
4729 filp = shmem_file_setup("i915", size, flags);
4730
4731 if (IS_ERR(filp))
4732 return PTR_ERR(filp);
4733
4734 obj->filp = filp;
4735
4736 return 0;
4737 }
4738
4739 struct drm_i915_gem_object *
i915_gem_object_create(struct drm_i915_private * dev_priv,u64 size)4740 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4741 {
4742 struct drm_i915_gem_object *obj;
4743 struct address_space *mapping;
4744 unsigned int cache_level;
4745 gfp_t mask;
4746 int ret;
4747
4748 /* There is a prevalence of the assumption that we fit the object's
4749 * page count inside a 32bit _signed_ variable. Let's document this and
4750 * catch if we ever need to fix it. In the meantime, if you do spot
4751 * such a local variable, please consider fixing!
4752 */
4753 if (size >> PAGE_SHIFT > INT_MAX)
4754 return ERR_PTR(-E2BIG);
4755
4756 if (overflows_type(size, obj->base.size))
4757 return ERR_PTR(-E2BIG);
4758
4759 obj = i915_gem_object_alloc(dev_priv);
4760 if (obj == NULL)
4761 return ERR_PTR(-ENOMEM);
4762
4763 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4764 if (ret)
4765 goto fail;
4766
4767 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4768 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4769 /* 965gm cannot relocate objects above 4GiB. */
4770 mask &= ~__GFP_HIGHMEM;
4771 mask |= __GFP_DMA32;
4772 }
4773
4774 mapping = obj->base.filp->f_mapping;
4775 mapping_set_gfp_mask(mapping, mask);
4776 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4777
4778 i915_gem_object_init(obj, &i915_gem_object_ops);
4779
4780 obj->write_domain = I915_GEM_DOMAIN_CPU;
4781 obj->read_domains = I915_GEM_DOMAIN_CPU;
4782
4783 if (HAS_LLC(dev_priv))
4784 /* On some devices, we can have the GPU use the LLC (the CPU
4785 * cache) for about a 10% performance improvement
4786 * compared to uncached. Graphics requests other than
4787 * display scanout are coherent with the CPU in
4788 * accessing this cache. This means in this mode we
4789 * don't need to clflush on the CPU side, and on the
4790 * GPU side we only need to flush internal caches to
4791 * get data visible to the CPU.
4792 *
4793 * However, we maintain the display planes as UC, and so
4794 * need to rebind when first used as such.
4795 */
4796 cache_level = I915_CACHE_LLC;
4797 else
4798 cache_level = I915_CACHE_NONE;
4799
4800 i915_gem_object_set_cache_coherency(obj, cache_level);
4801
4802 trace_i915_gem_object_create(obj);
4803
4804 return obj;
4805
4806 fail:
4807 i915_gem_object_free(obj);
4808 return ERR_PTR(ret);
4809 }
4810
discard_backing_storage(struct drm_i915_gem_object * obj)4811 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4812 {
4813 /* If we are the last user of the backing storage (be it shmemfs
4814 * pages or stolen etc), we know that the pages are going to be
4815 * immediately released. In this case, we can then skip copying
4816 * back the contents from the GPU.
4817 */
4818
4819 if (obj->mm.madv != I915_MADV_WILLNEED)
4820 return false;
4821
4822 if (obj->base.filp == NULL)
4823 return true;
4824
4825 /* At first glance, this looks racy, but then again so would be
4826 * userspace racing mmap against close. However, the first external
4827 * reference to the filp can only be obtained through the
4828 * i915_gem_mmap_ioctl() which safeguards us against the user
4829 * acquiring such a reference whilst we are in the middle of
4830 * freeing the object.
4831 */
4832 return atomic_long_read(&obj->base.filp->f_count) == 1;
4833 }
4834
__i915_gem_free_objects(struct drm_i915_private * i915,struct llist_node * freed)4835 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4836 struct llist_node *freed)
4837 {
4838 struct drm_i915_gem_object *obj, *on;
4839
4840 intel_runtime_pm_get(i915);
4841 llist_for_each_entry_safe(obj, on, freed, freed) {
4842 struct i915_vma *vma, *vn;
4843
4844 trace_i915_gem_object_destroy(obj);
4845
4846 mutex_lock(&i915->drm.struct_mutex);
4847
4848 GEM_BUG_ON(i915_gem_object_is_active(obj));
4849 list_for_each_entry_safe(vma, vn,
4850 &obj->vma_list, obj_link) {
4851 GEM_BUG_ON(i915_vma_is_active(vma));
4852 vma->flags &= ~I915_VMA_PIN_MASK;
4853 i915_vma_destroy(vma);
4854 }
4855 GEM_BUG_ON(!list_empty(&obj->vma_list));
4856 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4857
4858 /* This serializes freeing with the shrinker. Since the free
4859 * is delayed, first by RCU then by the workqueue, we want the
4860 * shrinker to be able to free pages of unreferenced objects,
4861 * or else we may oom whilst there are plenty of deferred
4862 * freed objects.
4863 */
4864 if (i915_gem_object_has_pages(obj)) {
4865 spin_lock(&i915->mm.obj_lock);
4866 list_del_init(&obj->mm.link);
4867 spin_unlock(&i915->mm.obj_lock);
4868 }
4869
4870 mutex_unlock(&i915->drm.struct_mutex);
4871
4872 GEM_BUG_ON(obj->bind_count);
4873 GEM_BUG_ON(obj->userfault_count);
4874 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4875 GEM_BUG_ON(!list_empty(&obj->lut_list));
4876
4877 if (obj->ops->release)
4878 obj->ops->release(obj);
4879
4880 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4881 atomic_set(&obj->mm.pages_pin_count, 0);
4882 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4883 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4884
4885 if (obj->base.import_attach)
4886 drm_prime_gem_destroy(&obj->base, NULL);
4887
4888 reservation_object_fini(&obj->__builtin_resv);
4889 drm_gem_object_release(&obj->base);
4890 i915_gem_info_remove_obj(i915, obj->base.size);
4891
4892 kfree(obj->bit_17);
4893 i915_gem_object_free(obj);
4894
4895 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4896 atomic_dec(&i915->mm.free_count);
4897
4898 if (on)
4899 cond_resched();
4900 }
4901 intel_runtime_pm_put(i915);
4902 }
4903
i915_gem_flush_free_objects(struct drm_i915_private * i915)4904 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4905 {
4906 struct llist_node *freed;
4907
4908 /* Free the oldest, most stale object to keep the free_list short */
4909 freed = NULL;
4910 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4911 /* Only one consumer of llist_del_first() allowed */
4912 spin_lock(&i915->mm.free_lock);
4913 freed = llist_del_first(&i915->mm.free_list);
4914 spin_unlock(&i915->mm.free_lock);
4915 }
4916 if (unlikely(freed)) {
4917 freed->next = NULL;
4918 __i915_gem_free_objects(i915, freed);
4919 }
4920 }
4921
__i915_gem_free_work(struct work_struct * work)4922 static void __i915_gem_free_work(struct work_struct *work)
4923 {
4924 struct drm_i915_private *i915 =
4925 container_of(work, struct drm_i915_private, mm.free_work);
4926 struct llist_node *freed;
4927
4928 /*
4929 * All file-owned VMA should have been released by this point through
4930 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4931 * However, the object may also be bound into the global GTT (e.g.
4932 * older GPUs without per-process support, or for direct access through
4933 * the GTT either for the user or for scanout). Those VMA still need to
4934 * unbound now.
4935 */
4936
4937 spin_lock(&i915->mm.free_lock);
4938 while ((freed = llist_del_all(&i915->mm.free_list))) {
4939 spin_unlock(&i915->mm.free_lock);
4940
4941 __i915_gem_free_objects(i915, freed);
4942 if (need_resched())
4943 return;
4944
4945 spin_lock(&i915->mm.free_lock);
4946 }
4947 spin_unlock(&i915->mm.free_lock);
4948 }
4949
__i915_gem_free_object_rcu(struct rcu_head * head)4950 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4951 {
4952 struct drm_i915_gem_object *obj =
4953 container_of(head, typeof(*obj), rcu);
4954 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4955
4956 /*
4957 * Since we require blocking on struct_mutex to unbind the freed
4958 * object from the GPU before releasing resources back to the
4959 * system, we can not do that directly from the RCU callback (which may
4960 * be a softirq context), but must instead then defer that work onto a
4961 * kthread. We use the RCU callback rather than move the freed object
4962 * directly onto the work queue so that we can mix between using the
4963 * worker and performing frees directly from subsequent allocations for
4964 * crude but effective memory throttling.
4965 */
4966 if (llist_add(&obj->freed, &i915->mm.free_list))
4967 queue_work(i915->wq, &i915->mm.free_work);
4968 }
4969
i915_gem_free_object(struct drm_gem_object * gem_obj)4970 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4971 {
4972 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4973
4974 if (obj->mm.quirked)
4975 __i915_gem_object_unpin_pages(obj);
4976
4977 if (discard_backing_storage(obj))
4978 obj->mm.madv = I915_MADV_DONTNEED;
4979
4980 /*
4981 * Before we free the object, make sure any pure RCU-only
4982 * read-side critical sections are complete, e.g.
4983 * i915_gem_busy_ioctl(). For the corresponding synchronized
4984 * lookup see i915_gem_object_lookup_rcu().
4985 */
4986 atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4987 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4988 }
4989
__i915_gem_object_release_unless_active(struct drm_i915_gem_object * obj)4990 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4991 {
4992 lockdep_assert_held(&obj->base.dev->struct_mutex);
4993
4994 if (!i915_gem_object_has_active_reference(obj) &&
4995 i915_gem_object_is_active(obj))
4996 i915_gem_object_set_active_reference(obj);
4997 else
4998 i915_gem_object_put(obj);
4999 }
5000
i915_gem_sanitize(struct drm_i915_private * i915)5001 void i915_gem_sanitize(struct drm_i915_private *i915)
5002 {
5003 int err;
5004
5005 GEM_TRACE("\n");
5006
5007 mutex_lock(&i915->drm.struct_mutex);
5008
5009 intel_runtime_pm_get(i915);
5010 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5011
5012 /*
5013 * As we have just resumed the machine and woken the device up from
5014 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5015 * back to defaults, recovering from whatever wedged state we left it
5016 * in and so worth trying to use the device once more.
5017 */
5018 if (i915_terminally_wedged(&i915->gpu_error))
5019 i915_gem_unset_wedged(i915);
5020
5021 /*
5022 * If we inherit context state from the BIOS or earlier occupants
5023 * of the GPU, the GPU may be in an inconsistent state when we
5024 * try to take over. The only way to remove the earlier state
5025 * is by resetting. However, resetting on earlier gen is tricky as
5026 * it may impact the display and we are uncertain about the stability
5027 * of the reset, so this could be applied to even earlier gen.
5028 */
5029 err = -ENODEV;
5030 if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5031 err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5032 if (!err)
5033 intel_engines_sanitize(i915);
5034
5035 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5036 intel_runtime_pm_put(i915);
5037
5038 i915_gem_contexts_lost(i915);
5039 mutex_unlock(&i915->drm.struct_mutex);
5040 }
5041
i915_gem_suspend(struct drm_i915_private * i915)5042 int i915_gem_suspend(struct drm_i915_private *i915)
5043 {
5044 int ret;
5045
5046 GEM_TRACE("\n");
5047
5048 intel_runtime_pm_get(i915);
5049 intel_suspend_gt_powersave(i915);
5050
5051 mutex_lock(&i915->drm.struct_mutex);
5052
5053 /*
5054 * We have to flush all the executing contexts to main memory so
5055 * that they can saved in the hibernation image. To ensure the last
5056 * context image is coherent, we have to switch away from it. That
5057 * leaves the i915->kernel_context still active when
5058 * we actually suspend, and its image in memory may not match the GPU
5059 * state. Fortunately, the kernel_context is disposable and we do
5060 * not rely on its state.
5061 */
5062 if (!i915_terminally_wedged(&i915->gpu_error)) {
5063 ret = i915_gem_switch_to_kernel_context(i915);
5064 if (ret)
5065 goto err_unlock;
5066
5067 ret = i915_gem_wait_for_idle(i915,
5068 I915_WAIT_INTERRUPTIBLE |
5069 I915_WAIT_LOCKED |
5070 I915_WAIT_FOR_IDLE_BOOST,
5071 MAX_SCHEDULE_TIMEOUT);
5072 if (ret && ret != -EIO)
5073 goto err_unlock;
5074
5075 assert_kernel_context_is_current(i915);
5076 }
5077 i915_retire_requests(i915); /* ensure we flush after wedging */
5078
5079 mutex_unlock(&i915->drm.struct_mutex);
5080
5081 intel_uc_suspend(i915);
5082
5083 cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5084 cancel_delayed_work_sync(&i915->gt.retire_work);
5085
5086 /*
5087 * As the idle_work is rearming if it detects a race, play safe and
5088 * repeat the flush until it is definitely idle.
5089 */
5090 drain_delayed_work(&i915->gt.idle_work);
5091
5092 /*
5093 * Assert that we successfully flushed all the work and
5094 * reset the GPU back to its idle, low power state.
5095 */
5096 WARN_ON(i915->gt.awake);
5097 if (WARN_ON(!intel_engines_are_idle(i915)))
5098 i915_gem_set_wedged(i915); /* no hope, discard everything */
5099
5100 intel_runtime_pm_put(i915);
5101 return 0;
5102
5103 err_unlock:
5104 mutex_unlock(&i915->drm.struct_mutex);
5105 intel_runtime_pm_put(i915);
5106 return ret;
5107 }
5108
i915_gem_suspend_late(struct drm_i915_private * i915)5109 void i915_gem_suspend_late(struct drm_i915_private *i915)
5110 {
5111 struct drm_i915_gem_object *obj;
5112 struct list_head *phases[] = {
5113 &i915->mm.unbound_list,
5114 &i915->mm.bound_list,
5115 NULL
5116 }, **phase;
5117
5118 /*
5119 * Neither the BIOS, ourselves or any other kernel
5120 * expects the system to be in execlists mode on startup,
5121 * so we need to reset the GPU back to legacy mode. And the only
5122 * known way to disable logical contexts is through a GPU reset.
5123 *
5124 * So in order to leave the system in a known default configuration,
5125 * always reset the GPU upon unload and suspend. Afterwards we then
5126 * clean up the GEM state tracking, flushing off the requests and
5127 * leaving the system in a known idle state.
5128 *
5129 * Note that is of the upmost importance that the GPU is idle and
5130 * all stray writes are flushed *before* we dismantle the backing
5131 * storage for the pinned objects.
5132 *
5133 * However, since we are uncertain that resetting the GPU on older
5134 * machines is a good idea, we don't - just in case it leaves the
5135 * machine in an unusable condition.
5136 */
5137
5138 mutex_lock(&i915->drm.struct_mutex);
5139 for (phase = phases; *phase; phase++) {
5140 list_for_each_entry(obj, *phase, mm.link)
5141 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5142 }
5143 mutex_unlock(&i915->drm.struct_mutex);
5144
5145 intel_uc_sanitize(i915);
5146 i915_gem_sanitize(i915);
5147 }
5148
i915_gem_resume(struct drm_i915_private * i915)5149 void i915_gem_resume(struct drm_i915_private *i915)
5150 {
5151 GEM_TRACE("\n");
5152
5153 WARN_ON(i915->gt.awake);
5154
5155 mutex_lock(&i915->drm.struct_mutex);
5156 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5157
5158 i915_gem_restore_gtt_mappings(i915);
5159 i915_gem_restore_fences(i915);
5160
5161 /*
5162 * As we didn't flush the kernel context before suspend, we cannot
5163 * guarantee that the context image is complete. So let's just reset
5164 * it and start again.
5165 */
5166 i915->gt.resume(i915);
5167
5168 if (i915_gem_init_hw(i915))
5169 goto err_wedged;
5170
5171 intel_uc_resume(i915);
5172
5173 /* Always reload a context for powersaving. */
5174 if (i915_gem_switch_to_kernel_context(i915))
5175 goto err_wedged;
5176
5177 out_unlock:
5178 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5179 mutex_unlock(&i915->drm.struct_mutex);
5180 return;
5181
5182 err_wedged:
5183 if (!i915_terminally_wedged(&i915->gpu_error)) {
5184 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5185 i915_gem_set_wedged(i915);
5186 }
5187 goto out_unlock;
5188 }
5189
i915_gem_init_swizzling(struct drm_i915_private * dev_priv)5190 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5191 {
5192 if (INTEL_GEN(dev_priv) < 5 ||
5193 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5194 return;
5195
5196 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5197 DISP_TILE_SURFACE_SWIZZLING);
5198
5199 if (IS_GEN5(dev_priv))
5200 return;
5201
5202 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5203 if (IS_GEN6(dev_priv))
5204 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5205 else if (IS_GEN7(dev_priv))
5206 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5207 else if (IS_GEN8(dev_priv))
5208 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5209 else
5210 BUG();
5211 }
5212
init_unused_ring(struct drm_i915_private * dev_priv,u32 base)5213 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5214 {
5215 I915_WRITE(RING_CTL(base), 0);
5216 I915_WRITE(RING_HEAD(base), 0);
5217 I915_WRITE(RING_TAIL(base), 0);
5218 I915_WRITE(RING_START(base), 0);
5219 }
5220
init_unused_rings(struct drm_i915_private * dev_priv)5221 static void init_unused_rings(struct drm_i915_private *dev_priv)
5222 {
5223 if (IS_I830(dev_priv)) {
5224 init_unused_ring(dev_priv, PRB1_BASE);
5225 init_unused_ring(dev_priv, SRB0_BASE);
5226 init_unused_ring(dev_priv, SRB1_BASE);
5227 init_unused_ring(dev_priv, SRB2_BASE);
5228 init_unused_ring(dev_priv, SRB3_BASE);
5229 } else if (IS_GEN2(dev_priv)) {
5230 init_unused_ring(dev_priv, SRB0_BASE);
5231 init_unused_ring(dev_priv, SRB1_BASE);
5232 } else if (IS_GEN3(dev_priv)) {
5233 init_unused_ring(dev_priv, PRB1_BASE);
5234 init_unused_ring(dev_priv, PRB2_BASE);
5235 }
5236 }
5237
__i915_gem_restart_engines(void * data)5238 static int __i915_gem_restart_engines(void *data)
5239 {
5240 struct drm_i915_private *i915 = data;
5241 struct intel_engine_cs *engine;
5242 enum intel_engine_id id;
5243 int err;
5244
5245 for_each_engine(engine, i915, id) {
5246 err = engine->init_hw(engine);
5247 if (err) {
5248 DRM_ERROR("Failed to restart %s (%d)\n",
5249 engine->name, err);
5250 return err;
5251 }
5252 }
5253
5254 return 0;
5255 }
5256
i915_gem_init_hw(struct drm_i915_private * dev_priv)5257 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5258 {
5259 int ret;
5260
5261 dev_priv->gt.last_init_time = ktime_get();
5262
5263 /* Double layer security blanket, see i915_gem_init() */
5264 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5265
5266 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5267 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5268
5269 if (IS_HASWELL(dev_priv))
5270 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5271 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5272
5273 if (HAS_PCH_NOP(dev_priv)) {
5274 if (IS_IVYBRIDGE(dev_priv)) {
5275 u32 temp = I915_READ(GEN7_MSG_CTL);
5276 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5277 I915_WRITE(GEN7_MSG_CTL, temp);
5278 } else if (INTEL_GEN(dev_priv) >= 7) {
5279 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5280 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5281 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5282 }
5283 }
5284
5285 intel_gt_workarounds_apply(dev_priv);
5286
5287 i915_gem_init_swizzling(dev_priv);
5288
5289 /*
5290 * At least 830 can leave some of the unused rings
5291 * "active" (ie. head != tail) after resume which
5292 * will prevent c3 entry. Makes sure all unused rings
5293 * are totally idle.
5294 */
5295 init_unused_rings(dev_priv);
5296
5297 BUG_ON(!dev_priv->kernel_context);
5298 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5299 ret = -EIO;
5300 goto out;
5301 }
5302
5303 ret = i915_ppgtt_init_hw(dev_priv);
5304 if (ret) {
5305 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5306 goto out;
5307 }
5308
5309 ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5310 if (ret) {
5311 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5312 goto out;
5313 }
5314
5315 /* We can't enable contexts until all firmware is loaded */
5316 ret = intel_uc_init_hw(dev_priv);
5317 if (ret) {
5318 DRM_ERROR("Enabling uc failed (%d)\n", ret);
5319 goto out;
5320 }
5321
5322 intel_mocs_init_l3cc_table(dev_priv);
5323
5324 /* Only when the HW is re-initialised, can we replay the requests */
5325 ret = __i915_gem_restart_engines(dev_priv);
5326 if (ret)
5327 goto cleanup_uc;
5328
5329 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5330
5331 return 0;
5332
5333 cleanup_uc:
5334 intel_uc_fini_hw(dev_priv);
5335 out:
5336 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5337
5338 return ret;
5339 }
5340
__intel_engines_record_defaults(struct drm_i915_private * i915)5341 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5342 {
5343 struct i915_gem_context *ctx;
5344 struct intel_engine_cs *engine;
5345 enum intel_engine_id id;
5346 int err;
5347
5348 /*
5349 * As we reset the gpu during very early sanitisation, the current
5350 * register state on the GPU should reflect its defaults values.
5351 * We load a context onto the hw (with restore-inhibit), then switch
5352 * over to a second context to save that default register state. We
5353 * can then prime every new context with that state so they all start
5354 * from the same default HW values.
5355 */
5356
5357 ctx = i915_gem_context_create_kernel(i915, 0);
5358 if (IS_ERR(ctx))
5359 return PTR_ERR(ctx);
5360
5361 for_each_engine(engine, i915, id) {
5362 struct i915_request *rq;
5363
5364 rq = i915_request_alloc(engine, ctx);
5365 if (IS_ERR(rq)) {
5366 err = PTR_ERR(rq);
5367 goto out_ctx;
5368 }
5369
5370 err = 0;
5371 if (engine->init_context)
5372 err = engine->init_context(rq);
5373
5374 i915_request_add(rq);
5375 if (err)
5376 goto err_active;
5377 }
5378
5379 err = i915_gem_switch_to_kernel_context(i915);
5380 if (err)
5381 goto err_active;
5382
5383 if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5384 i915_gem_set_wedged(i915);
5385 err = -EIO; /* Caller will declare us wedged */
5386 goto err_active;
5387 }
5388
5389 assert_kernel_context_is_current(i915);
5390
5391 for_each_engine(engine, i915, id) {
5392 struct i915_vma *state;
5393
5394 state = to_intel_context(ctx, engine)->state;
5395 if (!state)
5396 continue;
5397
5398 /*
5399 * As we will hold a reference to the logical state, it will
5400 * not be torn down with the context, and importantly the
5401 * object will hold onto its vma (making it possible for a
5402 * stray GTT write to corrupt our defaults). Unmap the vma
5403 * from the GTT to prevent such accidents and reclaim the
5404 * space.
5405 */
5406 err = i915_vma_unbind(state);
5407 if (err)
5408 goto err_active;
5409
5410 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5411 if (err)
5412 goto err_active;
5413
5414 engine->default_state = i915_gem_object_get(state->obj);
5415 }
5416
5417 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5418 unsigned int found = intel_engines_has_context_isolation(i915);
5419
5420 /*
5421 * Make sure that classes with multiple engine instances all
5422 * share the same basic configuration.
5423 */
5424 for_each_engine(engine, i915, id) {
5425 unsigned int bit = BIT(engine->uabi_class);
5426 unsigned int expected = engine->default_state ? bit : 0;
5427
5428 if ((found & bit) != expected) {
5429 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5430 engine->uabi_class, engine->name);
5431 }
5432 }
5433 }
5434
5435 out_ctx:
5436 i915_gem_context_set_closed(ctx);
5437 i915_gem_context_put(ctx);
5438 return err;
5439
5440 err_active:
5441 /*
5442 * If we have to abandon now, we expect the engines to be idle
5443 * and ready to be torn-down. First try to flush any remaining
5444 * request, ensure we are pointing at the kernel context and
5445 * then remove it.
5446 */
5447 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5448 goto out_ctx;
5449
5450 if (WARN_ON(i915_gem_wait_for_idle(i915,
5451 I915_WAIT_LOCKED,
5452 MAX_SCHEDULE_TIMEOUT)))
5453 goto out_ctx;
5454
5455 i915_gem_contexts_lost(i915);
5456 goto out_ctx;
5457 }
5458
i915_gem_init(struct drm_i915_private * dev_priv)5459 int i915_gem_init(struct drm_i915_private *dev_priv)
5460 {
5461 int ret;
5462
5463 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5464 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5465 mkwrite_device_info(dev_priv)->page_sizes =
5466 I915_GTT_PAGE_SIZE_4K;
5467
5468 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5469
5470 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5471 dev_priv->gt.resume = intel_lr_context_resume;
5472 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5473 } else {
5474 dev_priv->gt.resume = intel_legacy_submission_resume;
5475 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5476 }
5477
5478 ret = i915_gem_init_userptr(dev_priv);
5479 if (ret)
5480 return ret;
5481
5482 ret = intel_uc_init_misc(dev_priv);
5483 if (ret)
5484 return ret;
5485
5486 ret = intel_wopcm_init(&dev_priv->wopcm);
5487 if (ret)
5488 goto err_uc_misc;
5489
5490 /* This is just a security blanket to placate dragons.
5491 * On some systems, we very sporadically observe that the first TLBs
5492 * used by the CS may be stale, despite us poking the TLB reset. If
5493 * we hold the forcewake during initialisation these problems
5494 * just magically go away.
5495 */
5496 mutex_lock(&dev_priv->drm.struct_mutex);
5497 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5498
5499 ret = i915_gem_init_ggtt(dev_priv);
5500 if (ret) {
5501 GEM_BUG_ON(ret == -EIO);
5502 goto err_unlock;
5503 }
5504
5505 ret = i915_gem_contexts_init(dev_priv);
5506 if (ret) {
5507 GEM_BUG_ON(ret == -EIO);
5508 goto err_ggtt;
5509 }
5510
5511 ret = intel_engines_init(dev_priv);
5512 if (ret) {
5513 GEM_BUG_ON(ret == -EIO);
5514 goto err_context;
5515 }
5516
5517 intel_init_gt_powersave(dev_priv);
5518
5519 ret = intel_uc_init(dev_priv);
5520 if (ret)
5521 goto err_pm;
5522
5523 ret = i915_gem_init_hw(dev_priv);
5524 if (ret)
5525 goto err_uc_init;
5526
5527 /*
5528 * Despite its name intel_init_clock_gating applies both display
5529 * clock gating workarounds; GT mmio workarounds and the occasional
5530 * GT power context workaround. Worse, sometimes it includes a context
5531 * register workaround which we need to apply before we record the
5532 * default HW state for all contexts.
5533 *
5534 * FIXME: break up the workarounds and apply them at the right time!
5535 */
5536 intel_init_clock_gating(dev_priv);
5537
5538 ret = __intel_engines_record_defaults(dev_priv);
5539 if (ret)
5540 goto err_init_hw;
5541
5542 if (i915_inject_load_failure()) {
5543 ret = -ENODEV;
5544 goto err_init_hw;
5545 }
5546
5547 if (i915_inject_load_failure()) {
5548 ret = -EIO;
5549 goto err_init_hw;
5550 }
5551
5552 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5553 mutex_unlock(&dev_priv->drm.struct_mutex);
5554
5555 return 0;
5556
5557 /*
5558 * Unwinding is complicated by that we want to handle -EIO to mean
5559 * disable GPU submission but keep KMS alive. We want to mark the
5560 * HW as irrevisibly wedged, but keep enough state around that the
5561 * driver doesn't explode during runtime.
5562 */
5563 err_init_hw:
5564 mutex_unlock(&dev_priv->drm.struct_mutex);
5565
5566 WARN_ON(i915_gem_suspend(dev_priv));
5567 i915_gem_suspend_late(dev_priv);
5568
5569 i915_gem_drain_workqueue(dev_priv);
5570
5571 mutex_lock(&dev_priv->drm.struct_mutex);
5572 intel_uc_fini_hw(dev_priv);
5573 err_uc_init:
5574 intel_uc_fini(dev_priv);
5575 err_pm:
5576 if (ret != -EIO) {
5577 intel_cleanup_gt_powersave(dev_priv);
5578 i915_gem_cleanup_engines(dev_priv);
5579 }
5580 err_context:
5581 if (ret != -EIO)
5582 i915_gem_contexts_fini(dev_priv);
5583 err_ggtt:
5584 err_unlock:
5585 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5586 mutex_unlock(&dev_priv->drm.struct_mutex);
5587
5588 err_uc_misc:
5589 intel_uc_fini_misc(dev_priv);
5590
5591 if (ret != -EIO)
5592 i915_gem_cleanup_userptr(dev_priv);
5593
5594 if (ret == -EIO) {
5595 /*
5596 * Allow engine initialisation to fail by marking the GPU as
5597 * wedged. But we only want to do this where the GPU is angry,
5598 * for all other failure, such as an allocation failure, bail.
5599 */
5600 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5601 i915_load_error(dev_priv,
5602 "Failed to initialize GPU, declaring it wedged!\n");
5603 i915_gem_set_wedged(dev_priv);
5604 }
5605 ret = 0;
5606 }
5607
5608 i915_gem_drain_freed_objects(dev_priv);
5609 return ret;
5610 }
5611
i915_gem_fini(struct drm_i915_private * dev_priv)5612 void i915_gem_fini(struct drm_i915_private *dev_priv)
5613 {
5614 i915_gem_suspend_late(dev_priv);
5615
5616 /* Flush any outstanding unpin_work. */
5617 i915_gem_drain_workqueue(dev_priv);
5618
5619 mutex_lock(&dev_priv->drm.struct_mutex);
5620 intel_uc_fini_hw(dev_priv);
5621 intel_uc_fini(dev_priv);
5622 i915_gem_cleanup_engines(dev_priv);
5623 i915_gem_contexts_fini(dev_priv);
5624 mutex_unlock(&dev_priv->drm.struct_mutex);
5625
5626 intel_uc_fini_misc(dev_priv);
5627 i915_gem_cleanup_userptr(dev_priv);
5628
5629 i915_gem_drain_freed_objects(dev_priv);
5630
5631 WARN_ON(!list_empty(&dev_priv->contexts.list));
5632 }
5633
i915_gem_init_mmio(struct drm_i915_private * i915)5634 void i915_gem_init_mmio(struct drm_i915_private *i915)
5635 {
5636 i915_gem_sanitize(i915);
5637 }
5638
5639 void
i915_gem_cleanup_engines(struct drm_i915_private * dev_priv)5640 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5641 {
5642 struct intel_engine_cs *engine;
5643 enum intel_engine_id id;
5644
5645 for_each_engine(engine, dev_priv, id)
5646 dev_priv->gt.cleanup_engine(engine);
5647 }
5648
5649 void
i915_gem_load_init_fences(struct drm_i915_private * dev_priv)5650 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5651 {
5652 int i;
5653
5654 if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5655 !IS_CHERRYVIEW(dev_priv))
5656 dev_priv->num_fence_regs = 32;
5657 else if (INTEL_GEN(dev_priv) >= 4 ||
5658 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5659 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5660 dev_priv->num_fence_regs = 16;
5661 else
5662 dev_priv->num_fence_regs = 8;
5663
5664 if (intel_vgpu_active(dev_priv))
5665 dev_priv->num_fence_regs =
5666 I915_READ(vgtif_reg(avail_rs.fence_num));
5667
5668 /* Initialize fence registers to zero */
5669 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5670 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5671
5672 fence->i915 = dev_priv;
5673 fence->id = i;
5674 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5675 }
5676 i915_gem_restore_fences(dev_priv);
5677
5678 i915_gem_detect_bit_6_swizzle(dev_priv);
5679 }
5680
i915_gem_init__mm(struct drm_i915_private * i915)5681 static void i915_gem_init__mm(struct drm_i915_private *i915)
5682 {
5683 spin_lock_init(&i915->mm.object_stat_lock);
5684 spin_lock_init(&i915->mm.obj_lock);
5685 spin_lock_init(&i915->mm.free_lock);
5686
5687 init_llist_head(&i915->mm.free_list);
5688
5689 INIT_LIST_HEAD(&i915->mm.unbound_list);
5690 INIT_LIST_HEAD(&i915->mm.bound_list);
5691 INIT_LIST_HEAD(&i915->mm.fence_list);
5692 INIT_LIST_HEAD(&i915->mm.userfault_list);
5693
5694 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5695 }
5696
i915_gem_init_early(struct drm_i915_private * dev_priv)5697 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5698 {
5699 int err = -ENOMEM;
5700
5701 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5702 if (!dev_priv->objects)
5703 goto err_out;
5704
5705 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5706 if (!dev_priv->vmas)
5707 goto err_objects;
5708
5709 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5710 if (!dev_priv->luts)
5711 goto err_vmas;
5712
5713 dev_priv->requests = KMEM_CACHE(i915_request,
5714 SLAB_HWCACHE_ALIGN |
5715 SLAB_RECLAIM_ACCOUNT |
5716 SLAB_TYPESAFE_BY_RCU);
5717 if (!dev_priv->requests)
5718 goto err_luts;
5719
5720 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5721 SLAB_HWCACHE_ALIGN |
5722 SLAB_RECLAIM_ACCOUNT);
5723 if (!dev_priv->dependencies)
5724 goto err_requests;
5725
5726 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5727 if (!dev_priv->priorities)
5728 goto err_dependencies;
5729
5730 INIT_LIST_HEAD(&dev_priv->gt.timelines);
5731 INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5732 INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5733
5734 i915_gem_init__mm(dev_priv);
5735
5736 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5737 i915_gem_retire_work_handler);
5738 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5739 i915_gem_idle_work_handler);
5740 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5741 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5742
5743 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5744
5745 spin_lock_init(&dev_priv->fb_tracking.lock);
5746
5747 err = i915_gemfs_init(dev_priv);
5748 if (err)
5749 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5750
5751 return 0;
5752
5753 err_dependencies:
5754 kmem_cache_destroy(dev_priv->dependencies);
5755 err_requests:
5756 kmem_cache_destroy(dev_priv->requests);
5757 err_luts:
5758 kmem_cache_destroy(dev_priv->luts);
5759 err_vmas:
5760 kmem_cache_destroy(dev_priv->vmas);
5761 err_objects:
5762 kmem_cache_destroy(dev_priv->objects);
5763 err_out:
5764 return err;
5765 }
5766
i915_gem_cleanup_early(struct drm_i915_private * dev_priv)5767 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5768 {
5769 i915_gem_drain_freed_objects(dev_priv);
5770 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5771 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5772 WARN_ON(dev_priv->mm.object_count);
5773 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5774
5775 kmem_cache_destroy(dev_priv->priorities);
5776 kmem_cache_destroy(dev_priv->dependencies);
5777 kmem_cache_destroy(dev_priv->requests);
5778 kmem_cache_destroy(dev_priv->luts);
5779 kmem_cache_destroy(dev_priv->vmas);
5780 kmem_cache_destroy(dev_priv->objects);
5781
5782 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5783 rcu_barrier();
5784
5785 i915_gemfs_fini(dev_priv);
5786 }
5787
i915_gem_freeze(struct drm_i915_private * dev_priv)5788 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5789 {
5790 /* Discard all purgeable objects, let userspace recover those as
5791 * required after resuming.
5792 */
5793 i915_gem_shrink_all(dev_priv);
5794
5795 return 0;
5796 }
5797
i915_gem_freeze_late(struct drm_i915_private * i915)5798 int i915_gem_freeze_late(struct drm_i915_private *i915)
5799 {
5800 struct drm_i915_gem_object *obj;
5801 struct list_head *phases[] = {
5802 &i915->mm.unbound_list,
5803 &i915->mm.bound_list,
5804 NULL
5805 }, **phase;
5806
5807 /*
5808 * Called just before we write the hibernation image.
5809 *
5810 * We need to update the domain tracking to reflect that the CPU
5811 * will be accessing all the pages to create and restore from the
5812 * hibernation, and so upon restoration those pages will be in the
5813 * CPU domain.
5814 *
5815 * To make sure the hibernation image contains the latest state,
5816 * we update that state just before writing out the image.
5817 *
5818 * To try and reduce the hibernation image, we manually shrink
5819 * the objects as well, see i915_gem_freeze()
5820 */
5821
5822 i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5823 i915_gem_drain_freed_objects(i915);
5824
5825 mutex_lock(&i915->drm.struct_mutex);
5826 for (phase = phases; *phase; phase++) {
5827 list_for_each_entry(obj, *phase, mm.link)
5828 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5829 }
5830 mutex_unlock(&i915->drm.struct_mutex);
5831
5832 return 0;
5833 }
5834
i915_gem_release(struct drm_device * dev,struct drm_file * file)5835 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5836 {
5837 struct drm_i915_file_private *file_priv = file->driver_priv;
5838 struct i915_request *request;
5839
5840 /* Clean up our request list when the client is going away, so that
5841 * later retire_requests won't dereference our soon-to-be-gone
5842 * file_priv.
5843 */
5844 spin_lock(&file_priv->mm.lock);
5845 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5846 request->file_priv = NULL;
5847 spin_unlock(&file_priv->mm.lock);
5848 }
5849
i915_gem_open(struct drm_i915_private * i915,struct drm_file * file)5850 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5851 {
5852 struct drm_i915_file_private *file_priv;
5853 int ret;
5854
5855 DRM_DEBUG("\n");
5856
5857 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5858 if (!file_priv)
5859 return -ENOMEM;
5860
5861 file->driver_priv = file_priv;
5862 file_priv->dev_priv = i915;
5863 file_priv->file = file;
5864
5865 spin_lock_init(&file_priv->mm.lock);
5866 INIT_LIST_HEAD(&file_priv->mm.request_list);
5867
5868 file_priv->bsd_engine = -1;
5869 file_priv->hang_timestamp = jiffies;
5870
5871 ret = i915_gem_context_open(i915, file);
5872 if (ret)
5873 kfree(file_priv);
5874
5875 return ret;
5876 }
5877
5878 /**
5879 * i915_gem_track_fb - update frontbuffer tracking
5880 * @old: current GEM buffer for the frontbuffer slots
5881 * @new: new GEM buffer for the frontbuffer slots
5882 * @frontbuffer_bits: bitmask of frontbuffer slots
5883 *
5884 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5885 * from @old and setting them in @new. Both @old and @new can be NULL.
5886 */
i915_gem_track_fb(struct drm_i915_gem_object * old,struct drm_i915_gem_object * new,unsigned frontbuffer_bits)5887 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5888 struct drm_i915_gem_object *new,
5889 unsigned frontbuffer_bits)
5890 {
5891 /* Control of individual bits within the mask are guarded by
5892 * the owning plane->mutex, i.e. we can never see concurrent
5893 * manipulation of individual bits. But since the bitfield as a whole
5894 * is updated using RMW, we need to use atomics in order to update
5895 * the bits.
5896 */
5897 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5898 sizeof(atomic_t) * BITS_PER_BYTE);
5899
5900 if (old) {
5901 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5902 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5903 }
5904
5905 if (new) {
5906 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5907 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5908 }
5909 }
5910
5911 /* Allocate a new GEM object and fill it with the supplied data */
5912 struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_i915_private * dev_priv,const void * data,size_t size)5913 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5914 const void *data, size_t size)
5915 {
5916 struct drm_i915_gem_object *obj;
5917 struct file *file;
5918 size_t offset;
5919 int err;
5920
5921 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5922 if (IS_ERR(obj))
5923 return obj;
5924
5925 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5926
5927 file = obj->base.filp;
5928 offset = 0;
5929 do {
5930 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5931 struct page *page;
5932 void *pgdata, *vaddr;
5933
5934 err = pagecache_write_begin(file, file->f_mapping,
5935 offset, len, 0,
5936 &page, &pgdata);
5937 if (err < 0)
5938 goto fail;
5939
5940 vaddr = kmap(page);
5941 memcpy(vaddr, data, len);
5942 kunmap(page);
5943
5944 err = pagecache_write_end(file, file->f_mapping,
5945 offset, len, len,
5946 page, pgdata);
5947 if (err < 0)
5948 goto fail;
5949
5950 size -= len;
5951 data += len;
5952 offset += len;
5953 } while (size);
5954
5955 return obj;
5956
5957 fail:
5958 i915_gem_object_put(obj);
5959 return ERR_PTR(err);
5960 }
5961
5962 struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object * obj,unsigned int n,unsigned int * offset)5963 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5964 unsigned int n,
5965 unsigned int *offset)
5966 {
5967 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5968 struct scatterlist *sg;
5969 unsigned int idx, count;
5970
5971 might_sleep();
5972 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5973 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5974
5975 /* As we iterate forward through the sg, we record each entry in a
5976 * radixtree for quick repeated (backwards) lookups. If we have seen
5977 * this index previously, we will have an entry for it.
5978 *
5979 * Initial lookup is O(N), but this is amortized to O(1) for
5980 * sequential page access (where each new request is consecutive
5981 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5982 * i.e. O(1) with a large constant!
5983 */
5984 if (n < READ_ONCE(iter->sg_idx))
5985 goto lookup;
5986
5987 mutex_lock(&iter->lock);
5988
5989 /* We prefer to reuse the last sg so that repeated lookup of this
5990 * (or the subsequent) sg are fast - comparing against the last
5991 * sg is faster than going through the radixtree.
5992 */
5993
5994 sg = iter->sg_pos;
5995 idx = iter->sg_idx;
5996 count = __sg_page_count(sg);
5997
5998 while (idx + count <= n) {
5999 unsigned long exception, i;
6000 int ret;
6001
6002 /* If we cannot allocate and insert this entry, or the
6003 * individual pages from this range, cancel updating the
6004 * sg_idx so that on this lookup we are forced to linearly
6005 * scan onwards, but on future lookups we will try the
6006 * insertion again (in which case we need to be careful of
6007 * the error return reporting that we have already inserted
6008 * this index).
6009 */
6010 ret = radix_tree_insert(&iter->radix, idx, sg);
6011 if (ret && ret != -EEXIST)
6012 goto scan;
6013
6014 exception =
6015 RADIX_TREE_EXCEPTIONAL_ENTRY |
6016 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
6017 for (i = 1; i < count; i++) {
6018 ret = radix_tree_insert(&iter->radix, idx + i,
6019 (void *)exception);
6020 if (ret && ret != -EEXIST)
6021 goto scan;
6022 }
6023
6024 idx += count;
6025 sg = ____sg_next(sg);
6026 count = __sg_page_count(sg);
6027 }
6028
6029 scan:
6030 iter->sg_pos = sg;
6031 iter->sg_idx = idx;
6032
6033 mutex_unlock(&iter->lock);
6034
6035 if (unlikely(n < idx)) /* insertion completed by another thread */
6036 goto lookup;
6037
6038 /* In case we failed to insert the entry into the radixtree, we need
6039 * to look beyond the current sg.
6040 */
6041 while (idx + count <= n) {
6042 idx += count;
6043 sg = ____sg_next(sg);
6044 count = __sg_page_count(sg);
6045 }
6046
6047 *offset = n - idx;
6048 return sg;
6049
6050 lookup:
6051 rcu_read_lock();
6052
6053 sg = radix_tree_lookup(&iter->radix, n);
6054 GEM_BUG_ON(!sg);
6055
6056 /* If this index is in the middle of multi-page sg entry,
6057 * the radixtree will contain an exceptional entry that points
6058 * to the start of that range. We will return the pointer to
6059 * the base page and the offset of this page within the
6060 * sg entry's range.
6061 */
6062 *offset = 0;
6063 if (unlikely(radix_tree_exception(sg))) {
6064 unsigned long base =
6065 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
6066
6067 sg = radix_tree_lookup(&iter->radix, base);
6068 GEM_BUG_ON(!sg);
6069
6070 *offset = n - base;
6071 }
6072
6073 rcu_read_unlock();
6074
6075 return sg;
6076 }
6077
6078 struct page *
i915_gem_object_get_page(struct drm_i915_gem_object * obj,unsigned int n)6079 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6080 {
6081 struct scatterlist *sg;
6082 unsigned int offset;
6083
6084 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6085
6086 sg = i915_gem_object_get_sg(obj, n, &offset);
6087 return nth_page(sg_page(sg), offset);
6088 }
6089
6090 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6091 struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object * obj,unsigned int n)6092 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6093 unsigned int n)
6094 {
6095 struct page *page;
6096
6097 page = i915_gem_object_get_page(obj, n);
6098 if (!obj->mm.dirty)
6099 set_page_dirty(page);
6100
6101 return page;
6102 }
6103
6104 dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object * obj,unsigned long n)6105 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6106 unsigned long n)
6107 {
6108 struct scatterlist *sg;
6109 unsigned int offset;
6110
6111 sg = i915_gem_object_get_sg(obj, n, &offset);
6112 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6113 }
6114
i915_gem_object_attach_phys(struct drm_i915_gem_object * obj,int align)6115 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6116 {
6117 struct sg_table *pages;
6118 int err;
6119
6120 if (align > obj->base.size)
6121 return -EINVAL;
6122
6123 if (obj->ops == &i915_gem_phys_ops)
6124 return 0;
6125
6126 if (obj->ops != &i915_gem_object_ops)
6127 return -EINVAL;
6128
6129 err = i915_gem_object_unbind(obj);
6130 if (err)
6131 return err;
6132
6133 mutex_lock(&obj->mm.lock);
6134
6135 if (obj->mm.madv != I915_MADV_WILLNEED) {
6136 err = -EFAULT;
6137 goto err_unlock;
6138 }
6139
6140 if (obj->mm.quirked) {
6141 err = -EFAULT;
6142 goto err_unlock;
6143 }
6144
6145 if (obj->mm.mapping) {
6146 err = -EBUSY;
6147 goto err_unlock;
6148 }
6149
6150 pages = __i915_gem_object_unset_pages(obj);
6151
6152 obj->ops = &i915_gem_phys_ops;
6153
6154 err = ____i915_gem_object_get_pages(obj);
6155 if (err)
6156 goto err_xfer;
6157
6158 /* Perma-pin (until release) the physical set of pages */
6159 __i915_gem_object_pin_pages(obj);
6160
6161 if (!IS_ERR_OR_NULL(pages))
6162 i915_gem_object_ops.put_pages(obj, pages);
6163 mutex_unlock(&obj->mm.lock);
6164 return 0;
6165
6166 err_xfer:
6167 obj->ops = &i915_gem_object_ops;
6168 if (!IS_ERR_OR_NULL(pages)) {
6169 unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6170
6171 __i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6172 }
6173 err_unlock:
6174 mutex_unlock(&obj->mm.lock);
6175 return err;
6176 }
6177
6178 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6179 #include "selftests/scatterlist.c"
6180 #include "selftests/mock_gem_device.c"
6181 #include "selftests/huge_gem_object.c"
6182 #include "selftests/huge_pages.c"
6183 #include "selftests/i915_gem_object.c"
6184 #include "selftests/i915_gem_coherency.c"
6185 #endif
6186