1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include <linux/pagevec.h>
8 #include <linux/swap.h>
9 
10 #include "i915_drv.h"
11 #include "i915_gem_object.h"
12 #include "i915_scatterlist.h"
13 #include "i915_trace.h"
14 
15 /*
16  * Move pages to appropriate lru and release the pagevec, decrementing the
17  * ref count of those pages.
18  */
check_release_pagevec(struct pagevec * pvec)19 static void check_release_pagevec(struct pagevec *pvec)
20 {
21 	check_move_unevictable_pages(pvec);
22 	__pagevec_release(pvec);
23 	cond_resched();
24 }
25 
shmem_get_pages(struct drm_i915_gem_object * obj)26 static int shmem_get_pages(struct drm_i915_gem_object *obj)
27 {
28 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
29 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
30 	unsigned long i;
31 	struct address_space *mapping;
32 	struct sg_table *st;
33 	struct scatterlist *sg;
34 	struct sgt_iter sgt_iter;
35 	struct page *page;
36 	unsigned long last_pfn = 0;	/* suppress gcc warning */
37 	unsigned int max_segment = i915_sg_segment_size();
38 	unsigned int sg_page_sizes;
39 	struct pagevec pvec;
40 	gfp_t noreclaim;
41 	int ret;
42 
43 	/*
44 	 * Assert that the object is not currently in any GPU domain. As it
45 	 * wasn't in the GTT, there shouldn't be any way it could have been in
46 	 * a GPU cache
47 	 */
48 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
49 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
50 
51 	/*
52 	 * If there's no chance of allocating enough pages for the whole
53 	 * object, bail early.
54 	 */
55 	if (page_count > totalram_pages())
56 		return -ENOMEM;
57 
58 	st = kmalloc(sizeof(*st), GFP_KERNEL);
59 	if (!st)
60 		return -ENOMEM;
61 
62 rebuild_st:
63 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
64 		kfree(st);
65 		return -ENOMEM;
66 	}
67 
68 	/*
69 	 * Get the list of pages out of our struct file.  They'll be pinned
70 	 * at this point until we release them.
71 	 *
72 	 * Fail silently without starting the shrinker
73 	 */
74 	mapping = obj->base.filp->f_mapping;
75 	mapping_set_unevictable(mapping);
76 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
77 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
78 
79 	sg = st->sgl;
80 	st->nents = 0;
81 	sg_page_sizes = 0;
82 	for (i = 0; i < page_count; i++) {
83 		const unsigned int shrink[] = {
84 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
85 			0,
86 		}, *s = shrink;
87 		gfp_t gfp = noreclaim;
88 
89 		do {
90 			cond_resched();
91 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
92 			if (!IS_ERR(page))
93 				break;
94 
95 			if (!*s) {
96 				ret = PTR_ERR(page);
97 				goto err_sg;
98 			}
99 
100 			i915_gem_shrink(i915, 2 * page_count, NULL, *s++);
101 
102 			/*
103 			 * We've tried hard to allocate the memory by reaping
104 			 * our own buffer, now let the real VM do its job and
105 			 * go down in flames if truly OOM.
106 			 *
107 			 * However, since graphics tend to be disposable,
108 			 * defer the oom here by reporting the ENOMEM back
109 			 * to userspace.
110 			 */
111 			if (!*s) {
112 				/* reclaim and warn, but no oom */
113 				gfp = mapping_gfp_mask(mapping);
114 
115 				/*
116 				 * Our bo are always dirty and so we require
117 				 * kswapd to reclaim our pages (direct reclaim
118 				 * does not effectively begin pageout of our
119 				 * buffers on its own). However, direct reclaim
120 				 * only waits for kswapd when under allocation
121 				 * congestion. So as a result __GFP_RECLAIM is
122 				 * unreliable and fails to actually reclaim our
123 				 * dirty pages -- unless you try over and over
124 				 * again with !__GFP_NORETRY. However, we still
125 				 * want to fail this allocation rather than
126 				 * trigger the out-of-memory killer and for
127 				 * this we want __GFP_RETRY_MAYFAIL.
128 				 */
129 				gfp |= __GFP_RETRY_MAYFAIL;
130 			}
131 		} while (1);
132 
133 		if (!i ||
134 		    sg->length >= max_segment ||
135 		    page_to_pfn(page) != last_pfn + 1) {
136 			if (i) {
137 				sg_page_sizes |= sg->length;
138 				sg = sg_next(sg);
139 			}
140 			st->nents++;
141 			sg_set_page(sg, page, PAGE_SIZE, 0);
142 		} else {
143 			sg->length += PAGE_SIZE;
144 		}
145 		last_pfn = page_to_pfn(page);
146 
147 		/* Check that the i965g/gm workaround works. */
148 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
149 	}
150 	if (sg) { /* loop terminated early; short sg table */
151 		sg_page_sizes |= sg->length;
152 		sg_mark_end(sg);
153 	}
154 
155 	/* Trim unused sg entries to avoid wasting memory. */
156 	i915_sg_trim(st);
157 
158 	ret = i915_gem_gtt_prepare_pages(obj, st);
159 	if (ret) {
160 		/*
161 		 * DMA remapping failed? One possible cause is that
162 		 * it could not reserve enough large entries, asking
163 		 * for PAGE_SIZE chunks instead may be helpful.
164 		 */
165 		if (max_segment > PAGE_SIZE) {
166 			for_each_sgt_page(page, sgt_iter, st)
167 				put_page(page);
168 			sg_free_table(st);
169 
170 			max_segment = PAGE_SIZE;
171 			goto rebuild_st;
172 		} else {
173 			dev_warn(&i915->drm.pdev->dev,
174 				 "Failed to DMA remap %lu pages\n",
175 				 page_count);
176 			goto err_pages;
177 		}
178 	}
179 
180 	if (i915_gem_object_needs_bit17_swizzle(obj))
181 		i915_gem_object_do_bit_17_swizzle(obj, st);
182 
183 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
184 
185 	return 0;
186 
187 err_sg:
188 	sg_mark_end(sg);
189 err_pages:
190 	mapping_clear_unevictable(mapping);
191 	pagevec_init(&pvec);
192 	for_each_sgt_page(page, sgt_iter, st) {
193 		if (!pagevec_add(&pvec, page))
194 			check_release_pagevec(&pvec);
195 	}
196 	if (pagevec_count(&pvec))
197 		check_release_pagevec(&pvec);
198 	sg_free_table(st);
199 	kfree(st);
200 
201 	/*
202 	 * shmemfs first checks if there is enough memory to allocate the page
203 	 * and reports ENOSPC should there be insufficient, along with the usual
204 	 * ENOMEM for a genuine allocation failure.
205 	 *
206 	 * We use ENOSPC in our driver to mean that we have run out of aperture
207 	 * space and so want to translate the error from shmemfs back to our
208 	 * usual understanding of ENOMEM.
209 	 */
210 	if (ret == -ENOSPC)
211 		ret = -ENOMEM;
212 
213 	return ret;
214 }
215 
216 static void
shmem_truncate(struct drm_i915_gem_object * obj)217 shmem_truncate(struct drm_i915_gem_object *obj)
218 {
219 	/*
220 	 * Our goal here is to return as much of the memory as
221 	 * is possible back to the system as we are called from OOM.
222 	 * To do this we must instruct the shmfs to drop all of its
223 	 * backing pages, *now*.
224 	 */
225 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
226 	obj->mm.madv = __I915_MADV_PURGED;
227 	obj->mm.pages = ERR_PTR(-EFAULT);
228 }
229 
230 static void
shmem_writeback(struct drm_i915_gem_object * obj)231 shmem_writeback(struct drm_i915_gem_object *obj)
232 {
233 	struct address_space *mapping;
234 	struct writeback_control wbc = {
235 		.sync_mode = WB_SYNC_NONE,
236 		.nr_to_write = SWAP_CLUSTER_MAX,
237 		.range_start = 0,
238 		.range_end = LLONG_MAX,
239 		.for_reclaim = 1,
240 	};
241 	unsigned long i;
242 
243 	/*
244 	 * Leave mmapings intact (GTT will have been revoked on unbinding,
245 	 * leaving only CPU mmapings around) and add those pages to the LRU
246 	 * instead of invoking writeback so they are aged and paged out
247 	 * as normal.
248 	 */
249 	mapping = obj->base.filp->f_mapping;
250 
251 	/* Begin writeback on each dirty page */
252 	for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) {
253 		struct page *page;
254 
255 		page = find_lock_entry(mapping, i);
256 		if (!page || xa_is_value(page))
257 			continue;
258 
259 		if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
260 			int ret;
261 
262 			SetPageReclaim(page);
263 			ret = mapping->a_ops->writepage(page, &wbc);
264 			if (!PageWriteback(page))
265 				ClearPageReclaim(page);
266 			if (!ret)
267 				goto put;
268 		}
269 		unlock_page(page);
270 put:
271 		put_page(page);
272 	}
273 }
274 
275 void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)276 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
277 				struct sg_table *pages,
278 				bool needs_clflush)
279 {
280 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
281 
282 	if (obj->mm.madv == I915_MADV_DONTNEED)
283 		obj->mm.dirty = false;
284 
285 	if (needs_clflush &&
286 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
287 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
288 		drm_clflush_sg(pages);
289 
290 	__start_cpu_write(obj);
291 }
292 
293 static void
shmem_put_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)294 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
295 {
296 	struct sgt_iter sgt_iter;
297 	struct pagevec pvec;
298 	struct page *page;
299 
300 	__i915_gem_object_release_shmem(obj, pages, true);
301 
302 	i915_gem_gtt_finish_pages(obj, pages);
303 
304 	if (i915_gem_object_needs_bit17_swizzle(obj))
305 		i915_gem_object_save_bit_17_swizzle(obj, pages);
306 
307 	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
308 
309 	pagevec_init(&pvec);
310 	for_each_sgt_page(page, sgt_iter, pages) {
311 		if (obj->mm.dirty)
312 			set_page_dirty(page);
313 
314 		if (obj->mm.madv == I915_MADV_WILLNEED)
315 			mark_page_accessed(page);
316 
317 		if (!pagevec_add(&pvec, page))
318 			check_release_pagevec(&pvec);
319 	}
320 	if (pagevec_count(&pvec))
321 		check_release_pagevec(&pvec);
322 	obj->mm.dirty = false;
323 
324 	sg_free_table(pages);
325 	kfree(pages);
326 }
327 
328 static int
shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)329 shmem_pwrite(struct drm_i915_gem_object *obj,
330 	     const struct drm_i915_gem_pwrite *arg)
331 {
332 	struct address_space *mapping = obj->base.filp->f_mapping;
333 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
334 	u64 remain, offset;
335 	unsigned int pg;
336 
337 	/* Caller already validated user args */
338 	GEM_BUG_ON(!access_ok(user_data, arg->size));
339 
340 	/*
341 	 * Before we instantiate/pin the backing store for our use, we
342 	 * can prepopulate the shmemfs filp efficiently using a write into
343 	 * the pagecache. We avoid the penalty of instantiating all the
344 	 * pages, important if the user is just writing to a few and never
345 	 * uses the object on the GPU, and using a direct write into shmemfs
346 	 * allows it to avoid the cost of retrieving a page (either swapin
347 	 * or clearing-before-use) before it is overwritten.
348 	 */
349 	if (i915_gem_object_has_pages(obj))
350 		return -ENODEV;
351 
352 	if (obj->mm.madv != I915_MADV_WILLNEED)
353 		return -EFAULT;
354 
355 	/*
356 	 * Before the pages are instantiated the object is treated as being
357 	 * in the CPU domain. The pages will be clflushed as required before
358 	 * use, and we can freely write into the pages directly. If userspace
359 	 * races pwrite with any other operation; corruption will ensue -
360 	 * that is userspace's prerogative!
361 	 */
362 
363 	remain = arg->size;
364 	offset = arg->offset;
365 	pg = offset_in_page(offset);
366 
367 	do {
368 		unsigned int len, unwritten;
369 		struct page *page;
370 		void *data, *vaddr;
371 		int err;
372 		char c;
373 
374 		len = PAGE_SIZE - pg;
375 		if (len > remain)
376 			len = remain;
377 
378 		/* Prefault the user page to reduce potential recursion */
379 		err = __get_user(c, user_data);
380 		if (err)
381 			return err;
382 
383 		err = __get_user(c, user_data + len - 1);
384 		if (err)
385 			return err;
386 
387 		err = pagecache_write_begin(obj->base.filp, mapping,
388 					    offset, len, 0,
389 					    &page, &data);
390 		if (err < 0)
391 			return err;
392 
393 		vaddr = kmap_atomic(page);
394 		unwritten = __copy_from_user_inatomic(vaddr + pg,
395 						      user_data,
396 						      len);
397 		kunmap_atomic(vaddr);
398 
399 		err = pagecache_write_end(obj->base.filp, mapping,
400 					  offset, len, len - unwritten,
401 					  page, data);
402 		if (err < 0)
403 			return err;
404 
405 		/* We don't handle -EFAULT, leave it to the caller to check */
406 		if (unwritten)
407 			return -ENODEV;
408 
409 		remain -= len;
410 		user_data += len;
411 		offset += len;
412 		pg = 0;
413 	} while (remain);
414 
415 	return 0;
416 }
417 
shmem_release(struct drm_i915_gem_object * obj)418 static void shmem_release(struct drm_i915_gem_object *obj)
419 {
420 	fput(obj->base.filp);
421 }
422 
423 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
424 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
425 		 I915_GEM_OBJECT_IS_SHRINKABLE,
426 
427 	.get_pages = shmem_get_pages,
428 	.put_pages = shmem_put_pages,
429 	.truncate = shmem_truncate,
430 	.writeback = shmem_writeback,
431 
432 	.pwrite = shmem_pwrite,
433 
434 	.release = shmem_release,
435 };
436 
create_shmem(struct drm_i915_private * i915,struct drm_gem_object * obj,size_t size)437 static int create_shmem(struct drm_i915_private *i915,
438 			struct drm_gem_object *obj,
439 			size_t size)
440 {
441 	unsigned long flags = VM_NORESERVE;
442 	struct file *filp;
443 
444 	drm_gem_private_object_init(&i915->drm, obj, size);
445 
446 	if (i915->mm.gemfs)
447 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
448 						 flags);
449 	else
450 		filp = shmem_file_setup("i915", size, flags);
451 	if (IS_ERR(filp))
452 		return PTR_ERR(filp);
453 
454 	obj->filp = filp;
455 	return 0;
456 }
457 
458 struct drm_i915_gem_object *
i915_gem_object_create_shmem(struct drm_i915_private * i915,u64 size)459 i915_gem_object_create_shmem(struct drm_i915_private *i915, u64 size)
460 {
461 	struct drm_i915_gem_object *obj;
462 	struct address_space *mapping;
463 	unsigned int cache_level;
464 	gfp_t mask;
465 	int ret;
466 
467 	/* There is a prevalence of the assumption that we fit the object's
468 	 * page count inside a 32bit _signed_ variable. Let's document this and
469 	 * catch if we ever need to fix it. In the meantime, if you do spot
470 	 * such a local variable, please consider fixing!
471 	 */
472 	if (size >> PAGE_SHIFT > INT_MAX)
473 		return ERR_PTR(-E2BIG);
474 
475 	if (overflows_type(size, obj->base.size))
476 		return ERR_PTR(-E2BIG);
477 
478 	obj = i915_gem_object_alloc();
479 	if (!obj)
480 		return ERR_PTR(-ENOMEM);
481 
482 	ret = create_shmem(i915, &obj->base, size);
483 	if (ret)
484 		goto fail;
485 
486 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
487 	if (IS_I965GM(i915) || IS_I965G(i915)) {
488 		/* 965gm cannot relocate objects above 4GiB. */
489 		mask &= ~__GFP_HIGHMEM;
490 		mask |= __GFP_DMA32;
491 	}
492 
493 	mapping = obj->base.filp->f_mapping;
494 	mapping_set_gfp_mask(mapping, mask);
495 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
496 
497 	i915_gem_object_init(obj, &i915_gem_shmem_ops);
498 
499 	obj->write_domain = I915_GEM_DOMAIN_CPU;
500 	obj->read_domains = I915_GEM_DOMAIN_CPU;
501 
502 	if (HAS_LLC(i915))
503 		/* On some devices, we can have the GPU use the LLC (the CPU
504 		 * cache) for about a 10% performance improvement
505 		 * compared to uncached.  Graphics requests other than
506 		 * display scanout are coherent with the CPU in
507 		 * accessing this cache.  This means in this mode we
508 		 * don't need to clflush on the CPU side, and on the
509 		 * GPU side we only need to flush internal caches to
510 		 * get data visible to the CPU.
511 		 *
512 		 * However, we maintain the display planes as UC, and so
513 		 * need to rebind when first used as such.
514 		 */
515 		cache_level = I915_CACHE_LLC;
516 	else
517 		cache_level = I915_CACHE_NONE;
518 
519 	i915_gem_object_set_cache_coherency(obj, cache_level);
520 
521 	trace_i915_gem_object_create(obj);
522 
523 	return obj;
524 
525 fail:
526 	i915_gem_object_free(obj);
527 	return ERR_PTR(ret);
528 }
529 
530 /* Allocate a new GEM object and fill it with the supplied data */
531 struct drm_i915_gem_object *
i915_gem_object_create_shmem_from_data(struct drm_i915_private * dev_priv,const void * data,size_t size)532 i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
533 				       const void *data, size_t size)
534 {
535 	struct drm_i915_gem_object *obj;
536 	struct file *file;
537 	size_t offset;
538 	int err;
539 
540 	obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
541 	if (IS_ERR(obj))
542 		return obj;
543 
544 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
545 
546 	file = obj->base.filp;
547 	offset = 0;
548 	do {
549 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
550 		struct page *page;
551 		void *pgdata, *vaddr;
552 
553 		err = pagecache_write_begin(file, file->f_mapping,
554 					    offset, len, 0,
555 					    &page, &pgdata);
556 		if (err < 0)
557 			goto fail;
558 
559 		vaddr = kmap(page);
560 		memcpy(vaddr, data, len);
561 		kunmap(page);
562 
563 		err = pagecache_write_end(file, file->f_mapping,
564 					  offset, len, len,
565 					  page, pgdata);
566 		if (err < 0)
567 			goto fail;
568 
569 		size -= len;
570 		data += len;
571 		offset += len;
572 	} while (size);
573 
574 	return obj;
575 
576 fail:
577 	i915_gem_object_put(obj);
578 	return ERR_PTR(err);
579 }
580