1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7 #include <linux/pagevec.h>
8 #include <linux/swap.h>
9
10 #include "i915_drv.h"
11 #include "i915_gem_object.h"
12 #include "i915_scatterlist.h"
13 #include "i915_trace.h"
14
15 /*
16 * Move pages to appropriate lru and release the pagevec, decrementing the
17 * ref count of those pages.
18 */
check_release_pagevec(struct pagevec * pvec)19 static void check_release_pagevec(struct pagevec *pvec)
20 {
21 check_move_unevictable_pages(pvec);
22 __pagevec_release(pvec);
23 cond_resched();
24 }
25
shmem_get_pages(struct drm_i915_gem_object * obj)26 static int shmem_get_pages(struct drm_i915_gem_object *obj)
27 {
28 struct drm_i915_private *i915 = to_i915(obj->base.dev);
29 const unsigned long page_count = obj->base.size / PAGE_SIZE;
30 unsigned long i;
31 struct address_space *mapping;
32 struct sg_table *st;
33 struct scatterlist *sg;
34 struct sgt_iter sgt_iter;
35 struct page *page;
36 unsigned long last_pfn = 0; /* suppress gcc warning */
37 unsigned int max_segment = i915_sg_segment_size();
38 unsigned int sg_page_sizes;
39 struct pagevec pvec;
40 gfp_t noreclaim;
41 int ret;
42
43 /*
44 * Assert that the object is not currently in any GPU domain. As it
45 * wasn't in the GTT, there shouldn't be any way it could have been in
46 * a GPU cache
47 */
48 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
49 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
50
51 /*
52 * If there's no chance of allocating enough pages for the whole
53 * object, bail early.
54 */
55 if (page_count > totalram_pages())
56 return -ENOMEM;
57
58 st = kmalloc(sizeof(*st), GFP_KERNEL);
59 if (!st)
60 return -ENOMEM;
61
62 rebuild_st:
63 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
64 kfree(st);
65 return -ENOMEM;
66 }
67
68 /*
69 * Get the list of pages out of our struct file. They'll be pinned
70 * at this point until we release them.
71 *
72 * Fail silently without starting the shrinker
73 */
74 mapping = obj->base.filp->f_mapping;
75 mapping_set_unevictable(mapping);
76 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
77 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
78
79 sg = st->sgl;
80 st->nents = 0;
81 sg_page_sizes = 0;
82 for (i = 0; i < page_count; i++) {
83 const unsigned int shrink[] = {
84 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
85 0,
86 }, *s = shrink;
87 gfp_t gfp = noreclaim;
88
89 do {
90 cond_resched();
91 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
92 if (!IS_ERR(page))
93 break;
94
95 if (!*s) {
96 ret = PTR_ERR(page);
97 goto err_sg;
98 }
99
100 i915_gem_shrink(i915, 2 * page_count, NULL, *s++);
101
102 /*
103 * We've tried hard to allocate the memory by reaping
104 * our own buffer, now let the real VM do its job and
105 * go down in flames if truly OOM.
106 *
107 * However, since graphics tend to be disposable,
108 * defer the oom here by reporting the ENOMEM back
109 * to userspace.
110 */
111 if (!*s) {
112 /* reclaim and warn, but no oom */
113 gfp = mapping_gfp_mask(mapping);
114
115 /*
116 * Our bo are always dirty and so we require
117 * kswapd to reclaim our pages (direct reclaim
118 * does not effectively begin pageout of our
119 * buffers on its own). However, direct reclaim
120 * only waits for kswapd when under allocation
121 * congestion. So as a result __GFP_RECLAIM is
122 * unreliable and fails to actually reclaim our
123 * dirty pages -- unless you try over and over
124 * again with !__GFP_NORETRY. However, we still
125 * want to fail this allocation rather than
126 * trigger the out-of-memory killer and for
127 * this we want __GFP_RETRY_MAYFAIL.
128 */
129 gfp |= __GFP_RETRY_MAYFAIL;
130 }
131 } while (1);
132
133 if (!i ||
134 sg->length >= max_segment ||
135 page_to_pfn(page) != last_pfn + 1) {
136 if (i) {
137 sg_page_sizes |= sg->length;
138 sg = sg_next(sg);
139 }
140 st->nents++;
141 sg_set_page(sg, page, PAGE_SIZE, 0);
142 } else {
143 sg->length += PAGE_SIZE;
144 }
145 last_pfn = page_to_pfn(page);
146
147 /* Check that the i965g/gm workaround works. */
148 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
149 }
150 if (sg) { /* loop terminated early; short sg table */
151 sg_page_sizes |= sg->length;
152 sg_mark_end(sg);
153 }
154
155 /* Trim unused sg entries to avoid wasting memory. */
156 i915_sg_trim(st);
157
158 ret = i915_gem_gtt_prepare_pages(obj, st);
159 if (ret) {
160 /*
161 * DMA remapping failed? One possible cause is that
162 * it could not reserve enough large entries, asking
163 * for PAGE_SIZE chunks instead may be helpful.
164 */
165 if (max_segment > PAGE_SIZE) {
166 for_each_sgt_page(page, sgt_iter, st)
167 put_page(page);
168 sg_free_table(st);
169
170 max_segment = PAGE_SIZE;
171 goto rebuild_st;
172 } else {
173 dev_warn(&i915->drm.pdev->dev,
174 "Failed to DMA remap %lu pages\n",
175 page_count);
176 goto err_pages;
177 }
178 }
179
180 if (i915_gem_object_needs_bit17_swizzle(obj))
181 i915_gem_object_do_bit_17_swizzle(obj, st);
182
183 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
184
185 return 0;
186
187 err_sg:
188 sg_mark_end(sg);
189 err_pages:
190 mapping_clear_unevictable(mapping);
191 pagevec_init(&pvec);
192 for_each_sgt_page(page, sgt_iter, st) {
193 if (!pagevec_add(&pvec, page))
194 check_release_pagevec(&pvec);
195 }
196 if (pagevec_count(&pvec))
197 check_release_pagevec(&pvec);
198 sg_free_table(st);
199 kfree(st);
200
201 /*
202 * shmemfs first checks if there is enough memory to allocate the page
203 * and reports ENOSPC should there be insufficient, along with the usual
204 * ENOMEM for a genuine allocation failure.
205 *
206 * We use ENOSPC in our driver to mean that we have run out of aperture
207 * space and so want to translate the error from shmemfs back to our
208 * usual understanding of ENOMEM.
209 */
210 if (ret == -ENOSPC)
211 ret = -ENOMEM;
212
213 return ret;
214 }
215
216 static void
shmem_truncate(struct drm_i915_gem_object * obj)217 shmem_truncate(struct drm_i915_gem_object *obj)
218 {
219 /*
220 * Our goal here is to return as much of the memory as
221 * is possible back to the system as we are called from OOM.
222 * To do this we must instruct the shmfs to drop all of its
223 * backing pages, *now*.
224 */
225 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
226 obj->mm.madv = __I915_MADV_PURGED;
227 obj->mm.pages = ERR_PTR(-EFAULT);
228 }
229
230 static void
shmem_writeback(struct drm_i915_gem_object * obj)231 shmem_writeback(struct drm_i915_gem_object *obj)
232 {
233 struct address_space *mapping;
234 struct writeback_control wbc = {
235 .sync_mode = WB_SYNC_NONE,
236 .nr_to_write = SWAP_CLUSTER_MAX,
237 .range_start = 0,
238 .range_end = LLONG_MAX,
239 .for_reclaim = 1,
240 };
241 unsigned long i;
242
243 /*
244 * Leave mmapings intact (GTT will have been revoked on unbinding,
245 * leaving only CPU mmapings around) and add those pages to the LRU
246 * instead of invoking writeback so they are aged and paged out
247 * as normal.
248 */
249 mapping = obj->base.filp->f_mapping;
250
251 /* Begin writeback on each dirty page */
252 for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) {
253 struct page *page;
254
255 page = find_lock_entry(mapping, i);
256 if (!page || xa_is_value(page))
257 continue;
258
259 if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
260 int ret;
261
262 SetPageReclaim(page);
263 ret = mapping->a_ops->writepage(page, &wbc);
264 if (!PageWriteback(page))
265 ClearPageReclaim(page);
266 if (!ret)
267 goto put;
268 }
269 unlock_page(page);
270 put:
271 put_page(page);
272 }
273 }
274
275 void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)276 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
277 struct sg_table *pages,
278 bool needs_clflush)
279 {
280 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
281
282 if (obj->mm.madv == I915_MADV_DONTNEED)
283 obj->mm.dirty = false;
284
285 if (needs_clflush &&
286 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
287 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
288 drm_clflush_sg(pages);
289
290 __start_cpu_write(obj);
291 }
292
293 static void
shmem_put_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)294 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
295 {
296 struct sgt_iter sgt_iter;
297 struct pagevec pvec;
298 struct page *page;
299
300 __i915_gem_object_release_shmem(obj, pages, true);
301
302 i915_gem_gtt_finish_pages(obj, pages);
303
304 if (i915_gem_object_needs_bit17_swizzle(obj))
305 i915_gem_object_save_bit_17_swizzle(obj, pages);
306
307 mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
308
309 pagevec_init(&pvec);
310 for_each_sgt_page(page, sgt_iter, pages) {
311 if (obj->mm.dirty)
312 set_page_dirty(page);
313
314 if (obj->mm.madv == I915_MADV_WILLNEED)
315 mark_page_accessed(page);
316
317 if (!pagevec_add(&pvec, page))
318 check_release_pagevec(&pvec);
319 }
320 if (pagevec_count(&pvec))
321 check_release_pagevec(&pvec);
322 obj->mm.dirty = false;
323
324 sg_free_table(pages);
325 kfree(pages);
326 }
327
328 static int
shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)329 shmem_pwrite(struct drm_i915_gem_object *obj,
330 const struct drm_i915_gem_pwrite *arg)
331 {
332 struct address_space *mapping = obj->base.filp->f_mapping;
333 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
334 u64 remain, offset;
335 unsigned int pg;
336
337 /* Caller already validated user args */
338 GEM_BUG_ON(!access_ok(user_data, arg->size));
339
340 /*
341 * Before we instantiate/pin the backing store for our use, we
342 * can prepopulate the shmemfs filp efficiently using a write into
343 * the pagecache. We avoid the penalty of instantiating all the
344 * pages, important if the user is just writing to a few and never
345 * uses the object on the GPU, and using a direct write into shmemfs
346 * allows it to avoid the cost of retrieving a page (either swapin
347 * or clearing-before-use) before it is overwritten.
348 */
349 if (i915_gem_object_has_pages(obj))
350 return -ENODEV;
351
352 if (obj->mm.madv != I915_MADV_WILLNEED)
353 return -EFAULT;
354
355 /*
356 * Before the pages are instantiated the object is treated as being
357 * in the CPU domain. The pages will be clflushed as required before
358 * use, and we can freely write into the pages directly. If userspace
359 * races pwrite with any other operation; corruption will ensue -
360 * that is userspace's prerogative!
361 */
362
363 remain = arg->size;
364 offset = arg->offset;
365 pg = offset_in_page(offset);
366
367 do {
368 unsigned int len, unwritten;
369 struct page *page;
370 void *data, *vaddr;
371 int err;
372 char c;
373
374 len = PAGE_SIZE - pg;
375 if (len > remain)
376 len = remain;
377
378 /* Prefault the user page to reduce potential recursion */
379 err = __get_user(c, user_data);
380 if (err)
381 return err;
382
383 err = __get_user(c, user_data + len - 1);
384 if (err)
385 return err;
386
387 err = pagecache_write_begin(obj->base.filp, mapping,
388 offset, len, 0,
389 &page, &data);
390 if (err < 0)
391 return err;
392
393 vaddr = kmap_atomic(page);
394 unwritten = __copy_from_user_inatomic(vaddr + pg,
395 user_data,
396 len);
397 kunmap_atomic(vaddr);
398
399 err = pagecache_write_end(obj->base.filp, mapping,
400 offset, len, len - unwritten,
401 page, data);
402 if (err < 0)
403 return err;
404
405 /* We don't handle -EFAULT, leave it to the caller to check */
406 if (unwritten)
407 return -ENODEV;
408
409 remain -= len;
410 user_data += len;
411 offset += len;
412 pg = 0;
413 } while (remain);
414
415 return 0;
416 }
417
shmem_release(struct drm_i915_gem_object * obj)418 static void shmem_release(struct drm_i915_gem_object *obj)
419 {
420 fput(obj->base.filp);
421 }
422
423 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
424 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
425 I915_GEM_OBJECT_IS_SHRINKABLE,
426
427 .get_pages = shmem_get_pages,
428 .put_pages = shmem_put_pages,
429 .truncate = shmem_truncate,
430 .writeback = shmem_writeback,
431
432 .pwrite = shmem_pwrite,
433
434 .release = shmem_release,
435 };
436
create_shmem(struct drm_i915_private * i915,struct drm_gem_object * obj,size_t size)437 static int create_shmem(struct drm_i915_private *i915,
438 struct drm_gem_object *obj,
439 size_t size)
440 {
441 unsigned long flags = VM_NORESERVE;
442 struct file *filp;
443
444 drm_gem_private_object_init(&i915->drm, obj, size);
445
446 if (i915->mm.gemfs)
447 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
448 flags);
449 else
450 filp = shmem_file_setup("i915", size, flags);
451 if (IS_ERR(filp))
452 return PTR_ERR(filp);
453
454 obj->filp = filp;
455 return 0;
456 }
457
458 struct drm_i915_gem_object *
i915_gem_object_create_shmem(struct drm_i915_private * i915,u64 size)459 i915_gem_object_create_shmem(struct drm_i915_private *i915, u64 size)
460 {
461 struct drm_i915_gem_object *obj;
462 struct address_space *mapping;
463 unsigned int cache_level;
464 gfp_t mask;
465 int ret;
466
467 /* There is a prevalence of the assumption that we fit the object's
468 * page count inside a 32bit _signed_ variable. Let's document this and
469 * catch if we ever need to fix it. In the meantime, if you do spot
470 * such a local variable, please consider fixing!
471 */
472 if (size >> PAGE_SHIFT > INT_MAX)
473 return ERR_PTR(-E2BIG);
474
475 if (overflows_type(size, obj->base.size))
476 return ERR_PTR(-E2BIG);
477
478 obj = i915_gem_object_alloc();
479 if (!obj)
480 return ERR_PTR(-ENOMEM);
481
482 ret = create_shmem(i915, &obj->base, size);
483 if (ret)
484 goto fail;
485
486 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
487 if (IS_I965GM(i915) || IS_I965G(i915)) {
488 /* 965gm cannot relocate objects above 4GiB. */
489 mask &= ~__GFP_HIGHMEM;
490 mask |= __GFP_DMA32;
491 }
492
493 mapping = obj->base.filp->f_mapping;
494 mapping_set_gfp_mask(mapping, mask);
495 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
496
497 i915_gem_object_init(obj, &i915_gem_shmem_ops);
498
499 obj->write_domain = I915_GEM_DOMAIN_CPU;
500 obj->read_domains = I915_GEM_DOMAIN_CPU;
501
502 if (HAS_LLC(i915))
503 /* On some devices, we can have the GPU use the LLC (the CPU
504 * cache) for about a 10% performance improvement
505 * compared to uncached. Graphics requests other than
506 * display scanout are coherent with the CPU in
507 * accessing this cache. This means in this mode we
508 * don't need to clflush on the CPU side, and on the
509 * GPU side we only need to flush internal caches to
510 * get data visible to the CPU.
511 *
512 * However, we maintain the display planes as UC, and so
513 * need to rebind when first used as such.
514 */
515 cache_level = I915_CACHE_LLC;
516 else
517 cache_level = I915_CACHE_NONE;
518
519 i915_gem_object_set_cache_coherency(obj, cache_level);
520
521 trace_i915_gem_object_create(obj);
522
523 return obj;
524
525 fail:
526 i915_gem_object_free(obj);
527 return ERR_PTR(ret);
528 }
529
530 /* Allocate a new GEM object and fill it with the supplied data */
531 struct drm_i915_gem_object *
i915_gem_object_create_shmem_from_data(struct drm_i915_private * dev_priv,const void * data,size_t size)532 i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
533 const void *data, size_t size)
534 {
535 struct drm_i915_gem_object *obj;
536 struct file *file;
537 size_t offset;
538 int err;
539
540 obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
541 if (IS_ERR(obj))
542 return obj;
543
544 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
545
546 file = obj->base.filp;
547 offset = 0;
548 do {
549 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
550 struct page *page;
551 void *pgdata, *vaddr;
552
553 err = pagecache_write_begin(file, file->f_mapping,
554 offset, len, 0,
555 &page, &pgdata);
556 if (err < 0)
557 goto fail;
558
559 vaddr = kmap(page);
560 memcpy(vaddr, data, len);
561 kunmap(page);
562
563 err = pagecache_write_end(file, file->f_mapping,
564 offset, len, len,
565 page, pgdata);
566 if (err < 0)
567 goto fail;
568
569 size -= len;
570 data += len;
571 offset += len;
572 } while (size);
573
574 return obj;
575
576 fail:
577 i915_gem_object_put(obj);
578 return ERR_PTR(err);
579 }
580