1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49 
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 
cpu_write_needs_clflush(struct drm_i915_gem_object * obj)52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->cache_dirty)
55 		return false;
56 
57 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 		return true;
59 
60 	return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62 
63 static int
insert_mappable_node(struct i915_ggtt * ggtt,struct drm_mm_node * node,u32 size)64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
remove_mappable_node(struct drm_mm_node * node)75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,u64 size)81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,u64 size)90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
i915_gem_wait_for_error(struct i915_gpu_error * error)100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
i915_mutex_lock_interruptible(struct drm_device * dev)124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
__i915_gem_park(struct drm_i915_private * i915)140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 	GEM_TRACE("\n");
143 
144 	lockdep_assert_held(&i915->drm.struct_mutex);
145 	GEM_BUG_ON(i915->gt.active_requests);
146 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 
148 	if (!i915->gt.awake)
149 		return I915_EPOCH_INVALID;
150 
151 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152 
153 	/*
154 	 * Be paranoid and flush a concurrent interrupt to make sure
155 	 * we don't reactivate any irq tasklets after parking.
156 	 *
157 	 * FIXME: Note that even though we have waited for execlists to be idle,
158 	 * there may still be an in-flight interrupt even though the CSB
159 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 	 * is completed before we continue, but it doesn't prevent the HW from
161 	 * raising a spurious interrupt later. To complete the shield we should
162 	 * coordinate disabling the CS irq with flushing the interrupts.
163 	 */
164 	synchronize_irq(i915->drm.irq);
165 
166 	intel_engines_park(i915);
167 	i915_timelines_park(i915);
168 
169 	i915_pmu_gt_parked(i915);
170 	i915_vma_parked(i915);
171 
172 	i915->gt.awake = false;
173 
174 	if (INTEL_GEN(i915) >= 6)
175 		gen6_rps_idle(i915);
176 
177 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178 
179 	intel_runtime_pm_put(i915);
180 
181 	return i915->gt.epoch;
182 }
183 
i915_gem_park(struct drm_i915_private * i915)184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186 	GEM_TRACE("\n");
187 
188 	lockdep_assert_held(&i915->drm.struct_mutex);
189 	GEM_BUG_ON(i915->gt.active_requests);
190 
191 	if (!i915->gt.awake)
192 		return;
193 
194 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197 
i915_gem_unpark(struct drm_i915_private * i915)198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200 	GEM_TRACE("\n");
201 
202 	lockdep_assert_held(&i915->drm.struct_mutex);
203 	GEM_BUG_ON(!i915->gt.active_requests);
204 
205 	if (i915->gt.awake)
206 		return;
207 
208 	intel_runtime_pm_get_noresume(i915);
209 
210 	/*
211 	 * It seems that the DMC likes to transition between the DC states a lot
212 	 * when there are no connected displays (no active power domains) during
213 	 * command submission.
214 	 *
215 	 * This activity has negative impact on the performance of the chip with
216 	 * huge latencies observed in the interrupt handler and elsewhere.
217 	 *
218 	 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 	 * GT activity, preventing any DC state transitions.
220 	 */
221 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222 
223 	i915->gt.awake = true;
224 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 		i915->gt.epoch = 1;
226 
227 	intel_enable_gt_powersave(i915);
228 	i915_update_gfx_val(i915);
229 	if (INTEL_GEN(i915) >= 6)
230 		gen6_rps_busy(i915);
231 	i915_pmu_gt_unparked(i915);
232 
233 	intel_engines_unpark(i915);
234 
235 	i915_queue_hangcheck(i915);
236 
237 	queue_delayed_work(i915->wq,
238 			   &i915->gt.retire_work,
239 			   round_jiffies_up_relative(HZ));
240 }
241 
242 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244 			    struct drm_file *file)
245 {
246 	struct drm_i915_private *dev_priv = to_i915(dev);
247 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248 	struct drm_i915_gem_get_aperture *args = data;
249 	struct i915_vma *vma;
250 	u64 pinned;
251 
252 	pinned = ggtt->vm.reserved;
253 	mutex_lock(&dev->struct_mutex);
254 	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255 		if (i915_vma_is_pinned(vma))
256 			pinned += vma->node.size;
257 	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258 		if (i915_vma_is_pinned(vma))
259 			pinned += vma->node.size;
260 	mutex_unlock(&dev->struct_mutex);
261 
262 	args->aper_size = ggtt->vm.total;
263 	args->aper_available_size = args->aper_size - pinned;
264 
265 	return 0;
266 }
267 
i915_gem_object_get_pages_phys(struct drm_i915_gem_object * obj)268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270 	struct address_space *mapping = obj->base.filp->f_mapping;
271 	drm_dma_handle_t *phys;
272 	struct sg_table *st;
273 	struct scatterlist *sg;
274 	char *vaddr;
275 	int i;
276 	int err;
277 
278 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279 		return -EINVAL;
280 
281 	/* Always aligning to the object size, allows a single allocation
282 	 * to handle all possible callers, and given typical object sizes,
283 	 * the alignment of the buddy allocation will naturally match.
284 	 */
285 	phys = drm_pci_alloc(obj->base.dev,
286 			     roundup_pow_of_two(obj->base.size),
287 			     roundup_pow_of_two(obj->base.size));
288 	if (!phys)
289 		return -ENOMEM;
290 
291 	vaddr = phys->vaddr;
292 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 		struct page *page;
294 		char *src;
295 
296 		page = shmem_read_mapping_page(mapping, i);
297 		if (IS_ERR(page)) {
298 			err = PTR_ERR(page);
299 			goto err_phys;
300 		}
301 
302 		src = kmap_atomic(page);
303 		memcpy(vaddr, src, PAGE_SIZE);
304 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 		kunmap_atomic(src);
306 
307 		put_page(page);
308 		vaddr += PAGE_SIZE;
309 	}
310 
311 	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 
313 	st = kmalloc(sizeof(*st), GFP_KERNEL);
314 	if (!st) {
315 		err = -ENOMEM;
316 		goto err_phys;
317 	}
318 
319 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 		kfree(st);
321 		err = -ENOMEM;
322 		goto err_phys;
323 	}
324 
325 	sg = st->sgl;
326 	sg->offset = 0;
327 	sg->length = obj->base.size;
328 
329 	sg_dma_address(sg) = phys->busaddr;
330 	sg_dma_len(sg) = obj->base.size;
331 
332 	obj->phys_handle = phys;
333 
334 	__i915_gem_object_set_pages(obj, st, sg->length);
335 
336 	return 0;
337 
338 err_phys:
339 	drm_pci_free(obj->base.dev, phys);
340 
341 	return err;
342 }
343 
__start_cpu_write(struct drm_i915_gem_object * obj)344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346 	obj->read_domains = I915_GEM_DOMAIN_CPU;
347 	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 	if (cpu_write_needs_clflush(obj))
349 		obj->cache_dirty = true;
350 }
351 
352 static void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 				struct sg_table *pages,
355 				bool needs_clflush)
356 {
357 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358 
359 	if (obj->mm.madv == I915_MADV_DONTNEED)
360 		obj->mm.dirty = false;
361 
362 	if (needs_clflush &&
363 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365 		drm_clflush_sg(pages);
366 
367 	__start_cpu_write(obj);
368 }
369 
370 static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object * obj,struct sg_table * pages)371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 			       struct sg_table *pages)
373 {
374 	__i915_gem_object_release_shmem(obj, pages, false);
375 
376 	if (obj->mm.dirty) {
377 		struct address_space *mapping = obj->base.filp->f_mapping;
378 		char *vaddr = obj->phys_handle->vaddr;
379 		int i;
380 
381 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 			struct page *page;
383 			char *dst;
384 
385 			page = shmem_read_mapping_page(mapping, i);
386 			if (IS_ERR(page))
387 				continue;
388 
389 			dst = kmap_atomic(page);
390 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 			memcpy(dst, vaddr, PAGE_SIZE);
392 			kunmap_atomic(dst);
393 
394 			set_page_dirty(page);
395 			if (obj->mm.madv == I915_MADV_WILLNEED)
396 				mark_page_accessed(page);
397 			put_page(page);
398 			vaddr += PAGE_SIZE;
399 		}
400 		obj->mm.dirty = false;
401 	}
402 
403 	sg_free_table(pages);
404 	kfree(pages);
405 
406 	drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408 
409 static void
i915_gem_object_release_phys(struct drm_i915_gem_object * obj)410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412 	i915_gem_object_unpin_pages(obj);
413 }
414 
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 	.get_pages = i915_gem_object_get_pages_phys,
417 	.put_pages = i915_gem_object_put_pages_phys,
418 	.release = i915_gem_object_release_phys,
419 };
420 
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422 
i915_gem_object_unbind(struct drm_i915_gem_object * obj)423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425 	struct i915_vma *vma;
426 	LIST_HEAD(still_in_list);
427 	int ret;
428 
429 	lockdep_assert_held(&obj->base.dev->struct_mutex);
430 
431 	/* Closed vma are removed from the obj->vma_list - but they may
432 	 * still have an active binding on the object. To remove those we
433 	 * must wait for all rendering to complete to the object (as unbinding
434 	 * must anyway), and retire the requests.
435 	 */
436 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 	if (ret)
438 		return ret;
439 
440 	while ((vma = list_first_entry_or_null(&obj->vma_list,
441 					       struct i915_vma,
442 					       obj_link))) {
443 		list_move_tail(&vma->obj_link, &still_in_list);
444 		ret = i915_vma_unbind(vma);
445 		if (ret)
446 			break;
447 	}
448 	list_splice(&still_in_list, &obj->vma_list);
449 
450 	return ret;
451 }
452 
453 static long
i915_gem_object_wait_fence(struct dma_fence * fence,unsigned int flags,long timeout,struct intel_rps_client * rps_client)454 i915_gem_object_wait_fence(struct dma_fence *fence,
455 			   unsigned int flags,
456 			   long timeout,
457 			   struct intel_rps_client *rps_client)
458 {
459 	struct i915_request *rq;
460 
461 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462 
463 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 		return timeout;
465 
466 	if (!dma_fence_is_i915(fence))
467 		return dma_fence_wait_timeout(fence,
468 					      flags & I915_WAIT_INTERRUPTIBLE,
469 					      timeout);
470 
471 	rq = to_request(fence);
472 	if (i915_request_completed(rq))
473 		goto out;
474 
475 	/*
476 	 * This client is about to stall waiting for the GPU. In many cases
477 	 * this is undesirable and limits the throughput of the system, as
478 	 * many clients cannot continue processing user input/output whilst
479 	 * blocked. RPS autotuning may take tens of milliseconds to respond
480 	 * to the GPU load and thus incurs additional latency for the client.
481 	 * We can circumvent that by promoting the GPU frequency to maximum
482 	 * before we wait. This makes the GPU throttle up much more quickly
483 	 * (good for benchmarks and user experience, e.g. window animations),
484 	 * but at a cost of spending more power processing the workload
485 	 * (bad for battery). Not all clients even want their results
486 	 * immediately and for them we should just let the GPU select its own
487 	 * frequency to maximise efficiency. To prevent a single client from
488 	 * forcing the clocks too high for the whole system, we only allow
489 	 * each client to waitboost once in a busy period.
490 	 */
491 	if (rps_client && !i915_request_started(rq)) {
492 		if (INTEL_GEN(rq->i915) >= 6)
493 			gen6_rps_boost(rq, rps_client);
494 	}
495 
496 	timeout = i915_request_wait(rq, flags, timeout);
497 
498 out:
499 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 		i915_request_retire_upto(rq);
501 
502 	return timeout;
503 }
504 
505 static long
i915_gem_object_wait_reservation(struct reservation_object * resv,unsigned int flags,long timeout,struct intel_rps_client * rps_client)506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507 				 unsigned int flags,
508 				 long timeout,
509 				 struct intel_rps_client *rps_client)
510 {
511 	unsigned int seq = __read_seqcount_begin(&resv->seq);
512 	struct dma_fence *excl;
513 	bool prune_fences = false;
514 
515 	if (flags & I915_WAIT_ALL) {
516 		struct dma_fence **shared;
517 		unsigned int count, i;
518 		int ret;
519 
520 		ret = reservation_object_get_fences_rcu(resv,
521 							&excl, &count, &shared);
522 		if (ret)
523 			return ret;
524 
525 		for (i = 0; i < count; i++) {
526 			timeout = i915_gem_object_wait_fence(shared[i],
527 							     flags, timeout,
528 							     rps_client);
529 			if (timeout < 0)
530 				break;
531 
532 			dma_fence_put(shared[i]);
533 		}
534 
535 		for (; i < count; i++)
536 			dma_fence_put(shared[i]);
537 		kfree(shared);
538 
539 		/*
540 		 * If both shared fences and an exclusive fence exist,
541 		 * then by construction the shared fences must be later
542 		 * than the exclusive fence. If we successfully wait for
543 		 * all the shared fences, we know that the exclusive fence
544 		 * must all be signaled. If all the shared fences are
545 		 * signaled, we can prune the array and recover the
546 		 * floating references on the fences/requests.
547 		 */
548 		prune_fences = count && timeout >= 0;
549 	} else {
550 		excl = reservation_object_get_excl_rcu(resv);
551 	}
552 
553 	if (excl && timeout >= 0)
554 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 						     rps_client);
556 
557 	dma_fence_put(excl);
558 
559 	/*
560 	 * Opportunistically prune the fences iff we know they have *all* been
561 	 * signaled and that the reservation object has not been changed (i.e.
562 	 * no new fences have been added).
563 	 */
564 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 		if (reservation_object_trylock(resv)) {
566 			if (!__read_seqcount_retry(&resv->seq, seq))
567 				reservation_object_add_excl_fence(resv, NULL);
568 			reservation_object_unlock(resv);
569 		}
570 	}
571 
572 	return timeout;
573 }
574 
__fence_set_priority(struct dma_fence * fence,const struct i915_sched_attr * attr)575 static void __fence_set_priority(struct dma_fence *fence,
576 				 const struct i915_sched_attr *attr)
577 {
578 	struct i915_request *rq;
579 	struct intel_engine_cs *engine;
580 
581 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 		return;
583 
584 	rq = to_request(fence);
585 	engine = rq->engine;
586 
587 	local_bh_disable();
588 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589 	if (engine->schedule)
590 		engine->schedule(rq, attr);
591 	rcu_read_unlock();
592 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594 
fence_set_priority(struct dma_fence * fence,const struct i915_sched_attr * attr)595 static void fence_set_priority(struct dma_fence *fence,
596 			       const struct i915_sched_attr *attr)
597 {
598 	/* Recurse once into a fence-array */
599 	if (dma_fence_is_array(fence)) {
600 		struct dma_fence_array *array = to_dma_fence_array(fence);
601 		int i;
602 
603 		for (i = 0; i < array->num_fences; i++)
604 			__fence_set_priority(array->fences[i], attr);
605 	} else {
606 		__fence_set_priority(fence, attr);
607 	}
608 }
609 
610 int
i915_gem_object_wait_priority(struct drm_i915_gem_object * obj,unsigned int flags,const struct i915_sched_attr * attr)611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 			      unsigned int flags,
613 			      const struct i915_sched_attr *attr)
614 {
615 	struct dma_fence *excl;
616 
617 	if (flags & I915_WAIT_ALL) {
618 		struct dma_fence **shared;
619 		unsigned int count, i;
620 		int ret;
621 
622 		ret = reservation_object_get_fences_rcu(obj->resv,
623 							&excl, &count, &shared);
624 		if (ret)
625 			return ret;
626 
627 		for (i = 0; i < count; i++) {
628 			fence_set_priority(shared[i], attr);
629 			dma_fence_put(shared[i]);
630 		}
631 
632 		kfree(shared);
633 	} else {
634 		excl = reservation_object_get_excl_rcu(obj->resv);
635 	}
636 
637 	if (excl) {
638 		fence_set_priority(excl, attr);
639 		dma_fence_put(excl);
640 	}
641 	return 0;
642 }
643 
644 /**
645  * Waits for rendering to the object to be completed
646  * @obj: i915 gem object
647  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648  * @timeout: how long to wait
649  * @rps_client: client (user process) to charge for any waitboosting
650  */
651 int
i915_gem_object_wait(struct drm_i915_gem_object * obj,unsigned int flags,long timeout,struct intel_rps_client * rps_client)652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 		     unsigned int flags,
654 		     long timeout,
655 		     struct intel_rps_client *rps_client)
656 {
657 	might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659 	GEM_BUG_ON(debug_locks &&
660 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 		   !!(flags & I915_WAIT_LOCKED));
662 #endif
663 	GEM_BUG_ON(timeout < 0);
664 
665 	timeout = i915_gem_object_wait_reservation(obj->resv,
666 						   flags, timeout,
667 						   rps_client);
668 	return timeout < 0 ? timeout : 0;
669 }
670 
to_rps_client(struct drm_file * file)671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673 	struct drm_i915_file_private *fpriv = file->driver_priv;
674 
675 	return &fpriv->rps_client;
676 }
677 
678 static int
i915_gem_phys_pwrite(struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 		     struct drm_i915_gem_pwrite *args,
681 		     struct drm_file *file)
682 {
683 	void *vaddr = obj->phys_handle->vaddr + args->offset;
684 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 
686 	/* We manually control the domain here and pretend that it
687 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 	 */
689 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 	if (copy_from_user(vaddr, user_data, args->size))
691 		return -EFAULT;
692 
693 	drm_clflush_virt_range(vaddr, args->size);
694 	i915_gem_chipset_flush(to_i915(obj->base.dev));
695 
696 	intel_fb_obj_flush(obj, ORIGIN_CPU);
697 	return 0;
698 }
699 
i915_gem_object_alloc(struct drm_i915_private * dev_priv)700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704 
i915_gem_object_free(struct drm_i915_gem_object * obj)705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708 	kmem_cache_free(dev_priv->objects, obj);
709 }
710 
711 static int
i915_gem_create(struct drm_file * file,struct drm_i915_private * dev_priv,uint64_t size,uint32_t * handle_p)712 i915_gem_create(struct drm_file *file,
713 		struct drm_i915_private *dev_priv,
714 		uint64_t size,
715 		uint32_t *handle_p)
716 {
717 	struct drm_i915_gem_object *obj;
718 	int ret;
719 	u32 handle;
720 
721 	size = roundup(size, PAGE_SIZE);
722 	if (size == 0)
723 		return -EINVAL;
724 
725 	/* Allocate the new object */
726 	obj = i915_gem_object_create(dev_priv, size);
727 	if (IS_ERR(obj))
728 		return PTR_ERR(obj);
729 
730 	ret = drm_gem_handle_create(file, &obj->base, &handle);
731 	/* drop reference from allocate - handle holds it now */
732 	i915_gem_object_put(obj);
733 	if (ret)
734 		return ret;
735 
736 	*handle_p = handle;
737 	return 0;
738 }
739 
740 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)741 i915_gem_dumb_create(struct drm_file *file,
742 		     struct drm_device *dev,
743 		     struct drm_mode_create_dumb *args)
744 {
745 	/* have to work out size/pitch and return them */
746 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747 	args->size = args->pitch * args->height;
748 	return i915_gem_create(file, to_i915(dev),
749 			       args->size, &args->handle);
750 }
751 
gpu_write_needs_clflush(struct drm_i915_gem_object * obj)752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754 	return !(obj->cache_level == I915_CACHE_NONE ||
755 		 obj->cache_level == I915_CACHE_WT);
756 }
757 
758 /**
759  * Creates a new mm object and returns a handle to it.
760  * @dev: drm device pointer
761  * @data: ioctl data blob
762  * @file: drm file pointer
763  */
764 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 		      struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = to_i915(dev);
769 	struct drm_i915_gem_create *args = data;
770 
771 	i915_gem_flush_free_objects(dev_priv);
772 
773 	return i915_gem_create(file, dev_priv,
774 			       args->size, &args->handle);
775 }
776 
777 static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object * obj,unsigned int domain)778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780 	return (domain == I915_GEM_DOMAIN_GTT ?
781 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783 
i915_gem_flush_ggtt_writes(struct drm_i915_private * dev_priv)784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786 	/*
787 	 * No actual flushing is required for the GTT write domain for reads
788 	 * from the GTT domain. Writes to it "immediately" go to main memory
789 	 * as far as we know, so there's no chipset flush. It also doesn't
790 	 * land in the GPU render cache.
791 	 *
792 	 * However, we do have to enforce the order so that all writes through
793 	 * the GTT land before any writes to the device, such as updates to
794 	 * the GATT itself.
795 	 *
796 	 * We also have to wait a bit for the writes to land from the GTT.
797 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 	 * timing. This issue has only been observed when switching quickly
799 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 	 * system agents we cannot reproduce this behaviour, until Cannonlake
802 	 * that was!).
803 	 */
804 
805 	i915_gem_chipset_flush(dev_priv);
806 
807 	intel_runtime_pm_get(dev_priv);
808 	spin_lock_irq(&dev_priv->uncore.lock);
809 
810 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
811 
812 	spin_unlock_irq(&dev_priv->uncore.lock);
813 	intel_runtime_pm_put(dev_priv);
814 }
815 
816 static void
flush_write_domain(struct drm_i915_gem_object * obj,unsigned int flush_domains)817 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
818 {
819 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
820 	struct i915_vma *vma;
821 
822 	if (!(obj->write_domain & flush_domains))
823 		return;
824 
825 	switch (obj->write_domain) {
826 	case I915_GEM_DOMAIN_GTT:
827 		i915_gem_flush_ggtt_writes(dev_priv);
828 
829 		intel_fb_obj_flush(obj,
830 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
831 
832 		for_each_ggtt_vma(vma, obj) {
833 			if (vma->iomap)
834 				continue;
835 
836 			i915_vma_unset_ggtt_write(vma);
837 		}
838 		break;
839 
840 	case I915_GEM_DOMAIN_WC:
841 		wmb();
842 		break;
843 
844 	case I915_GEM_DOMAIN_CPU:
845 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
846 		break;
847 
848 	case I915_GEM_DOMAIN_RENDER:
849 		if (gpu_write_needs_clflush(obj))
850 			obj->cache_dirty = true;
851 		break;
852 	}
853 
854 	obj->write_domain = 0;
855 }
856 
857 static inline int
__copy_to_user_swizzled(char __user * cpu_vaddr,const char * gpu_vaddr,int gpu_offset,int length)858 __copy_to_user_swizzled(char __user *cpu_vaddr,
859 			const char *gpu_vaddr, int gpu_offset,
860 			int length)
861 {
862 	int ret, cpu_offset = 0;
863 
864 	while (length > 0) {
865 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
866 		int this_length = min(cacheline_end - gpu_offset, length);
867 		int swizzled_gpu_offset = gpu_offset ^ 64;
868 
869 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
870 				     gpu_vaddr + swizzled_gpu_offset,
871 				     this_length);
872 		if (ret)
873 			return ret + length;
874 
875 		cpu_offset += this_length;
876 		gpu_offset += this_length;
877 		length -= this_length;
878 	}
879 
880 	return 0;
881 }
882 
883 static inline int
__copy_from_user_swizzled(char * gpu_vaddr,int gpu_offset,const char __user * cpu_vaddr,int length)884 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
885 			  const char __user *cpu_vaddr,
886 			  int length)
887 {
888 	int ret, cpu_offset = 0;
889 
890 	while (length > 0) {
891 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
892 		int this_length = min(cacheline_end - gpu_offset, length);
893 		int swizzled_gpu_offset = gpu_offset ^ 64;
894 
895 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
896 				       cpu_vaddr + cpu_offset,
897 				       this_length);
898 		if (ret)
899 			return ret + length;
900 
901 		cpu_offset += this_length;
902 		gpu_offset += this_length;
903 		length -= this_length;
904 	}
905 
906 	return 0;
907 }
908 
909 /*
910  * Pins the specified object's pages and synchronizes the object with
911  * GPU accesses. Sets needs_clflush to non-zero if the caller should
912  * flush the object from the CPU cache.
913  */
i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)914 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
915 				    unsigned int *needs_clflush)
916 {
917 	int ret;
918 
919 	lockdep_assert_held(&obj->base.dev->struct_mutex);
920 
921 	*needs_clflush = 0;
922 	if (!i915_gem_object_has_struct_page(obj))
923 		return -ENODEV;
924 
925 	ret = i915_gem_object_wait(obj,
926 				   I915_WAIT_INTERRUPTIBLE |
927 				   I915_WAIT_LOCKED,
928 				   MAX_SCHEDULE_TIMEOUT,
929 				   NULL);
930 	if (ret)
931 		return ret;
932 
933 	ret = i915_gem_object_pin_pages(obj);
934 	if (ret)
935 		return ret;
936 
937 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
938 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
939 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
940 		if (ret)
941 			goto err_unpin;
942 		else
943 			goto out;
944 	}
945 
946 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
947 
948 	/* If we're not in the cpu read domain, set ourself into the gtt
949 	 * read domain and manually flush cachelines (if required). This
950 	 * optimizes for the case when the gpu will dirty the data
951 	 * anyway again before the next pread happens.
952 	 */
953 	if (!obj->cache_dirty &&
954 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
955 		*needs_clflush = CLFLUSH_BEFORE;
956 
957 out:
958 	/* return with the pages pinned */
959 	return 0;
960 
961 err_unpin:
962 	i915_gem_object_unpin_pages(obj);
963 	return ret;
964 }
965 
i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)966 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
967 				     unsigned int *needs_clflush)
968 {
969 	int ret;
970 
971 	lockdep_assert_held(&obj->base.dev->struct_mutex);
972 
973 	*needs_clflush = 0;
974 	if (!i915_gem_object_has_struct_page(obj))
975 		return -ENODEV;
976 
977 	ret = i915_gem_object_wait(obj,
978 				   I915_WAIT_INTERRUPTIBLE |
979 				   I915_WAIT_LOCKED |
980 				   I915_WAIT_ALL,
981 				   MAX_SCHEDULE_TIMEOUT,
982 				   NULL);
983 	if (ret)
984 		return ret;
985 
986 	ret = i915_gem_object_pin_pages(obj);
987 	if (ret)
988 		return ret;
989 
990 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
991 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
992 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
993 		if (ret)
994 			goto err_unpin;
995 		else
996 			goto out;
997 	}
998 
999 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1000 
1001 	/* If we're not in the cpu write domain, set ourself into the
1002 	 * gtt write domain and manually flush cachelines (as required).
1003 	 * This optimizes for the case when the gpu will use the data
1004 	 * right away and we therefore have to clflush anyway.
1005 	 */
1006 	if (!obj->cache_dirty) {
1007 		*needs_clflush |= CLFLUSH_AFTER;
1008 
1009 		/*
1010 		 * Same trick applies to invalidate partially written
1011 		 * cachelines read before writing.
1012 		 */
1013 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1014 			*needs_clflush |= CLFLUSH_BEFORE;
1015 	}
1016 
1017 out:
1018 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1019 	obj->mm.dirty = true;
1020 	/* return with the pages pinned */
1021 	return 0;
1022 
1023 err_unpin:
1024 	i915_gem_object_unpin_pages(obj);
1025 	return ret;
1026 }
1027 
1028 static void
shmem_clflush_swizzled_range(char * addr,unsigned long length,bool swizzled)1029 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1030 			     bool swizzled)
1031 {
1032 	if (unlikely(swizzled)) {
1033 		unsigned long start = (unsigned long) addr;
1034 		unsigned long end = (unsigned long) addr + length;
1035 
1036 		/* For swizzling simply ensure that we always flush both
1037 		 * channels. Lame, but simple and it works. Swizzled
1038 		 * pwrite/pread is far from a hotpath - current userspace
1039 		 * doesn't use it at all. */
1040 		start = round_down(start, 128);
1041 		end = round_up(end, 128);
1042 
1043 		drm_clflush_virt_range((void *)start, end - start);
1044 	} else {
1045 		drm_clflush_virt_range(addr, length);
1046 	}
1047 
1048 }
1049 
1050 /* Only difference to the fast-path function is that this can handle bit17
1051  * and uses non-atomic copy and kmap functions. */
1052 static int
shmem_pread_slow(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)1053 shmem_pread_slow(struct page *page, int offset, int length,
1054 		 char __user *user_data,
1055 		 bool page_do_bit17_swizzling, bool needs_clflush)
1056 {
1057 	char *vaddr;
1058 	int ret;
1059 
1060 	vaddr = kmap(page);
1061 	if (needs_clflush)
1062 		shmem_clflush_swizzled_range(vaddr + offset, length,
1063 					     page_do_bit17_swizzling);
1064 
1065 	if (page_do_bit17_swizzling)
1066 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1067 	else
1068 		ret = __copy_to_user(user_data, vaddr + offset, length);
1069 	kunmap(page);
1070 
1071 	return ret ? - EFAULT : 0;
1072 }
1073 
1074 static int
shmem_pread(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)1075 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1076 	    bool page_do_bit17_swizzling, bool needs_clflush)
1077 {
1078 	int ret;
1079 
1080 	ret = -ENODEV;
1081 	if (!page_do_bit17_swizzling) {
1082 		char *vaddr = kmap_atomic(page);
1083 
1084 		if (needs_clflush)
1085 			drm_clflush_virt_range(vaddr + offset, length);
1086 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1087 		kunmap_atomic(vaddr);
1088 	}
1089 	if (ret == 0)
1090 		return 0;
1091 
1092 	return shmem_pread_slow(page, offset, length, user_data,
1093 				page_do_bit17_swizzling, needs_clflush);
1094 }
1095 
1096 static int
i915_gem_shmem_pread(struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args)1097 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1098 		     struct drm_i915_gem_pread *args)
1099 {
1100 	char __user *user_data;
1101 	u64 remain;
1102 	unsigned int obj_do_bit17_swizzling;
1103 	unsigned int needs_clflush;
1104 	unsigned int idx, offset;
1105 	int ret;
1106 
1107 	obj_do_bit17_swizzling = 0;
1108 	if (i915_gem_object_needs_bit17_swizzle(obj))
1109 		obj_do_bit17_swizzling = BIT(17);
1110 
1111 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1112 	if (ret)
1113 		return ret;
1114 
1115 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1116 	mutex_unlock(&obj->base.dev->struct_mutex);
1117 	if (ret)
1118 		return ret;
1119 
1120 	remain = args->size;
1121 	user_data = u64_to_user_ptr(args->data_ptr);
1122 	offset = offset_in_page(args->offset);
1123 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1124 		struct page *page = i915_gem_object_get_page(obj, idx);
1125 		int length;
1126 
1127 		length = remain;
1128 		if (offset + length > PAGE_SIZE)
1129 			length = PAGE_SIZE - offset;
1130 
1131 		ret = shmem_pread(page, offset, length, user_data,
1132 				  page_to_phys(page) & obj_do_bit17_swizzling,
1133 				  needs_clflush);
1134 		if (ret)
1135 			break;
1136 
1137 		remain -= length;
1138 		user_data += length;
1139 		offset = 0;
1140 	}
1141 
1142 	i915_gem_obj_finish_shmem_access(obj);
1143 	return ret;
1144 }
1145 
1146 static inline bool
gtt_user_read(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)1147 gtt_user_read(struct io_mapping *mapping,
1148 	      loff_t base, int offset,
1149 	      char __user *user_data, int length)
1150 {
1151 	void __iomem *vaddr;
1152 	unsigned long unwritten;
1153 
1154 	/* We can use the cpu mem copy function because this is X86. */
1155 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1156 	unwritten = __copy_to_user_inatomic(user_data,
1157 					    (void __force *)vaddr + offset,
1158 					    length);
1159 	io_mapping_unmap_atomic(vaddr);
1160 	if (unwritten) {
1161 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1162 		unwritten = copy_to_user(user_data,
1163 					 (void __force *)vaddr + offset,
1164 					 length);
1165 		io_mapping_unmap(vaddr);
1166 	}
1167 	return unwritten;
1168 }
1169 
1170 static int
i915_gem_gtt_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * args)1171 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1172 		   const struct drm_i915_gem_pread *args)
1173 {
1174 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1175 	struct i915_ggtt *ggtt = &i915->ggtt;
1176 	struct drm_mm_node node;
1177 	struct i915_vma *vma;
1178 	void __user *user_data;
1179 	u64 remain, offset;
1180 	int ret;
1181 
1182 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1183 	if (ret)
1184 		return ret;
1185 
1186 	intel_runtime_pm_get(i915);
1187 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1188 				       PIN_MAPPABLE |
1189 				       PIN_NONFAULT |
1190 				       PIN_NONBLOCK);
1191 	if (!IS_ERR(vma)) {
1192 		node.start = i915_ggtt_offset(vma);
1193 		node.allocated = false;
1194 		ret = i915_vma_put_fence(vma);
1195 		if (ret) {
1196 			i915_vma_unpin(vma);
1197 			vma = ERR_PTR(ret);
1198 		}
1199 	}
1200 	if (IS_ERR(vma)) {
1201 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1202 		if (ret)
1203 			goto out_unlock;
1204 		GEM_BUG_ON(!node.allocated);
1205 	}
1206 
1207 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1208 	if (ret)
1209 		goto out_unpin;
1210 
1211 	mutex_unlock(&i915->drm.struct_mutex);
1212 
1213 	user_data = u64_to_user_ptr(args->data_ptr);
1214 	remain = args->size;
1215 	offset = args->offset;
1216 
1217 	while (remain > 0) {
1218 		/* Operation in this page
1219 		 *
1220 		 * page_base = page offset within aperture
1221 		 * page_offset = offset within page
1222 		 * page_length = bytes to copy for this page
1223 		 */
1224 		u32 page_base = node.start;
1225 		unsigned page_offset = offset_in_page(offset);
1226 		unsigned page_length = PAGE_SIZE - page_offset;
1227 		page_length = remain < page_length ? remain : page_length;
1228 		if (node.allocated) {
1229 			wmb();
1230 			ggtt->vm.insert_page(&ggtt->vm,
1231 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1232 					     node.start, I915_CACHE_NONE, 0);
1233 			wmb();
1234 		} else {
1235 			page_base += offset & PAGE_MASK;
1236 		}
1237 
1238 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1239 				  user_data, page_length)) {
1240 			ret = -EFAULT;
1241 			break;
1242 		}
1243 
1244 		remain -= page_length;
1245 		user_data += page_length;
1246 		offset += page_length;
1247 	}
1248 
1249 	mutex_lock(&i915->drm.struct_mutex);
1250 out_unpin:
1251 	if (node.allocated) {
1252 		wmb();
1253 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1254 		remove_mappable_node(&node);
1255 	} else {
1256 		i915_vma_unpin(vma);
1257 	}
1258 out_unlock:
1259 	intel_runtime_pm_put(i915);
1260 	mutex_unlock(&i915->drm.struct_mutex);
1261 
1262 	return ret;
1263 }
1264 
1265 /**
1266  * Reads data from the object referenced by handle.
1267  * @dev: drm device pointer
1268  * @data: ioctl data blob
1269  * @file: drm file pointer
1270  *
1271  * On error, the contents of *data are undefined.
1272  */
1273 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1274 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1275 		     struct drm_file *file)
1276 {
1277 	struct drm_i915_gem_pread *args = data;
1278 	struct drm_i915_gem_object *obj;
1279 	int ret;
1280 
1281 	if (args->size == 0)
1282 		return 0;
1283 
1284 	if (!access_ok(VERIFY_WRITE,
1285 		       u64_to_user_ptr(args->data_ptr),
1286 		       args->size))
1287 		return -EFAULT;
1288 
1289 	obj = i915_gem_object_lookup(file, args->handle);
1290 	if (!obj)
1291 		return -ENOENT;
1292 
1293 	/* Bounds check source.  */
1294 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1295 		ret = -EINVAL;
1296 		goto out;
1297 	}
1298 
1299 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1300 
1301 	ret = i915_gem_object_wait(obj,
1302 				   I915_WAIT_INTERRUPTIBLE,
1303 				   MAX_SCHEDULE_TIMEOUT,
1304 				   to_rps_client(file));
1305 	if (ret)
1306 		goto out;
1307 
1308 	ret = i915_gem_object_pin_pages(obj);
1309 	if (ret)
1310 		goto out;
1311 
1312 	ret = i915_gem_shmem_pread(obj, args);
1313 	if (ret == -EFAULT || ret == -ENODEV)
1314 		ret = i915_gem_gtt_pread(obj, args);
1315 
1316 	i915_gem_object_unpin_pages(obj);
1317 out:
1318 	i915_gem_object_put(obj);
1319 	return ret;
1320 }
1321 
1322 /* This is the fast write path which cannot handle
1323  * page faults in the source data
1324  */
1325 
1326 static inline bool
ggtt_write(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)1327 ggtt_write(struct io_mapping *mapping,
1328 	   loff_t base, int offset,
1329 	   char __user *user_data, int length)
1330 {
1331 	void __iomem *vaddr;
1332 	unsigned long unwritten;
1333 
1334 	/* We can use the cpu mem copy function because this is X86. */
1335 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1336 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1337 						      user_data, length);
1338 	io_mapping_unmap_atomic(vaddr);
1339 	if (unwritten) {
1340 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1341 		unwritten = copy_from_user((void __force *)vaddr + offset,
1342 					   user_data, length);
1343 		io_mapping_unmap(vaddr);
1344 	}
1345 
1346 	return unwritten;
1347 }
1348 
1349 /**
1350  * This is the fast pwrite path, where we copy the data directly from the
1351  * user into the GTT, uncached.
1352  * @obj: i915 GEM object
1353  * @args: pwrite arguments structure
1354  */
1355 static int
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)1356 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1357 			 const struct drm_i915_gem_pwrite *args)
1358 {
1359 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1360 	struct i915_ggtt *ggtt = &i915->ggtt;
1361 	struct drm_mm_node node;
1362 	struct i915_vma *vma;
1363 	u64 remain, offset;
1364 	void __user *user_data;
1365 	int ret;
1366 
1367 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1368 	if (ret)
1369 		return ret;
1370 
1371 	if (i915_gem_object_has_struct_page(obj)) {
1372 		/*
1373 		 * Avoid waking the device up if we can fallback, as
1374 		 * waking/resuming is very slow (worst-case 10-100 ms
1375 		 * depending on PCI sleeps and our own resume time).
1376 		 * This easily dwarfs any performance advantage from
1377 		 * using the cache bypass of indirect GGTT access.
1378 		 */
1379 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1380 			ret = -EFAULT;
1381 			goto out_unlock;
1382 		}
1383 	} else {
1384 		/* No backing pages, no fallback, we must force GGTT access */
1385 		intel_runtime_pm_get(i915);
1386 	}
1387 
1388 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1389 				       PIN_MAPPABLE |
1390 				       PIN_NONFAULT |
1391 				       PIN_NONBLOCK);
1392 	if (!IS_ERR(vma)) {
1393 		node.start = i915_ggtt_offset(vma);
1394 		node.allocated = false;
1395 		ret = i915_vma_put_fence(vma);
1396 		if (ret) {
1397 			i915_vma_unpin(vma);
1398 			vma = ERR_PTR(ret);
1399 		}
1400 	}
1401 	if (IS_ERR(vma)) {
1402 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1403 		if (ret)
1404 			goto out_rpm;
1405 		GEM_BUG_ON(!node.allocated);
1406 	}
1407 
1408 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1409 	if (ret)
1410 		goto out_unpin;
1411 
1412 	mutex_unlock(&i915->drm.struct_mutex);
1413 
1414 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1415 
1416 	user_data = u64_to_user_ptr(args->data_ptr);
1417 	offset = args->offset;
1418 	remain = args->size;
1419 	while (remain) {
1420 		/* Operation in this page
1421 		 *
1422 		 * page_base = page offset within aperture
1423 		 * page_offset = offset within page
1424 		 * page_length = bytes to copy for this page
1425 		 */
1426 		u32 page_base = node.start;
1427 		unsigned int page_offset = offset_in_page(offset);
1428 		unsigned int page_length = PAGE_SIZE - page_offset;
1429 		page_length = remain < page_length ? remain : page_length;
1430 		if (node.allocated) {
1431 			wmb(); /* flush the write before we modify the GGTT */
1432 			ggtt->vm.insert_page(&ggtt->vm,
1433 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1434 					     node.start, I915_CACHE_NONE, 0);
1435 			wmb(); /* flush modifications to the GGTT (insert_page) */
1436 		} else {
1437 			page_base += offset & PAGE_MASK;
1438 		}
1439 		/* If we get a fault while copying data, then (presumably) our
1440 		 * source page isn't available.  Return the error and we'll
1441 		 * retry in the slow path.
1442 		 * If the object is non-shmem backed, we retry again with the
1443 		 * path that handles page fault.
1444 		 */
1445 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1446 			       user_data, page_length)) {
1447 			ret = -EFAULT;
1448 			break;
1449 		}
1450 
1451 		remain -= page_length;
1452 		user_data += page_length;
1453 		offset += page_length;
1454 	}
1455 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1456 
1457 	mutex_lock(&i915->drm.struct_mutex);
1458 out_unpin:
1459 	if (node.allocated) {
1460 		wmb();
1461 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1462 		remove_mappable_node(&node);
1463 	} else {
1464 		i915_vma_unpin(vma);
1465 	}
1466 out_rpm:
1467 	intel_runtime_pm_put(i915);
1468 out_unlock:
1469 	mutex_unlock(&i915->drm.struct_mutex);
1470 	return ret;
1471 }
1472 
1473 static int
shmem_pwrite_slow(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)1474 shmem_pwrite_slow(struct page *page, int offset, int length,
1475 		  char __user *user_data,
1476 		  bool page_do_bit17_swizzling,
1477 		  bool needs_clflush_before,
1478 		  bool needs_clflush_after)
1479 {
1480 	char *vaddr;
1481 	int ret;
1482 
1483 	vaddr = kmap(page);
1484 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1485 		shmem_clflush_swizzled_range(vaddr + offset, length,
1486 					     page_do_bit17_swizzling);
1487 	if (page_do_bit17_swizzling)
1488 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1489 						length);
1490 	else
1491 		ret = __copy_from_user(vaddr + offset, user_data, length);
1492 	if (needs_clflush_after)
1493 		shmem_clflush_swizzled_range(vaddr + offset, length,
1494 					     page_do_bit17_swizzling);
1495 	kunmap(page);
1496 
1497 	return ret ? -EFAULT : 0;
1498 }
1499 
1500 /* Per-page copy function for the shmem pwrite fastpath.
1501  * Flushes invalid cachelines before writing to the target if
1502  * needs_clflush_before is set and flushes out any written cachelines after
1503  * writing if needs_clflush is set.
1504  */
1505 static int
shmem_pwrite(struct page * page,int offset,int len,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)1506 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1507 	     bool page_do_bit17_swizzling,
1508 	     bool needs_clflush_before,
1509 	     bool needs_clflush_after)
1510 {
1511 	int ret;
1512 
1513 	ret = -ENODEV;
1514 	if (!page_do_bit17_swizzling) {
1515 		char *vaddr = kmap_atomic(page);
1516 
1517 		if (needs_clflush_before)
1518 			drm_clflush_virt_range(vaddr + offset, len);
1519 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1520 		if (needs_clflush_after)
1521 			drm_clflush_virt_range(vaddr + offset, len);
1522 
1523 		kunmap_atomic(vaddr);
1524 	}
1525 	if (ret == 0)
1526 		return ret;
1527 
1528 	return shmem_pwrite_slow(page, offset, len, user_data,
1529 				 page_do_bit17_swizzling,
1530 				 needs_clflush_before,
1531 				 needs_clflush_after);
1532 }
1533 
1534 static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)1535 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1536 		      const struct drm_i915_gem_pwrite *args)
1537 {
1538 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1539 	void __user *user_data;
1540 	u64 remain;
1541 	unsigned int obj_do_bit17_swizzling;
1542 	unsigned int partial_cacheline_write;
1543 	unsigned int needs_clflush;
1544 	unsigned int offset, idx;
1545 	int ret;
1546 
1547 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1548 	if (ret)
1549 		return ret;
1550 
1551 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1552 	mutex_unlock(&i915->drm.struct_mutex);
1553 	if (ret)
1554 		return ret;
1555 
1556 	obj_do_bit17_swizzling = 0;
1557 	if (i915_gem_object_needs_bit17_swizzle(obj))
1558 		obj_do_bit17_swizzling = BIT(17);
1559 
1560 	/* If we don't overwrite a cacheline completely we need to be
1561 	 * careful to have up-to-date data by first clflushing. Don't
1562 	 * overcomplicate things and flush the entire patch.
1563 	 */
1564 	partial_cacheline_write = 0;
1565 	if (needs_clflush & CLFLUSH_BEFORE)
1566 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1567 
1568 	user_data = u64_to_user_ptr(args->data_ptr);
1569 	remain = args->size;
1570 	offset = offset_in_page(args->offset);
1571 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1572 		struct page *page = i915_gem_object_get_page(obj, idx);
1573 		int length;
1574 
1575 		length = remain;
1576 		if (offset + length > PAGE_SIZE)
1577 			length = PAGE_SIZE - offset;
1578 
1579 		ret = shmem_pwrite(page, offset, length, user_data,
1580 				   page_to_phys(page) & obj_do_bit17_swizzling,
1581 				   (offset | length) & partial_cacheline_write,
1582 				   needs_clflush & CLFLUSH_AFTER);
1583 		if (ret)
1584 			break;
1585 
1586 		remain -= length;
1587 		user_data += length;
1588 		offset = 0;
1589 	}
1590 
1591 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1592 	i915_gem_obj_finish_shmem_access(obj);
1593 	return ret;
1594 }
1595 
1596 /**
1597  * Writes data to the object referenced by handle.
1598  * @dev: drm device
1599  * @data: ioctl data blob
1600  * @file: drm file
1601  *
1602  * On error, the contents of the buffer that were to be modified are undefined.
1603  */
1604 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1605 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1606 		      struct drm_file *file)
1607 {
1608 	struct drm_i915_gem_pwrite *args = data;
1609 	struct drm_i915_gem_object *obj;
1610 	int ret;
1611 
1612 	if (args->size == 0)
1613 		return 0;
1614 
1615 	if (!access_ok(VERIFY_READ,
1616 		       u64_to_user_ptr(args->data_ptr),
1617 		       args->size))
1618 		return -EFAULT;
1619 
1620 	obj = i915_gem_object_lookup(file, args->handle);
1621 	if (!obj)
1622 		return -ENOENT;
1623 
1624 	/* Bounds check destination. */
1625 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1626 		ret = -EINVAL;
1627 		goto err;
1628 	}
1629 
1630 	/* Writes not allowed into this read-only object */
1631 	if (i915_gem_object_is_readonly(obj)) {
1632 		ret = -EINVAL;
1633 		goto err;
1634 	}
1635 
1636 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1637 
1638 	ret = -ENODEV;
1639 	if (obj->ops->pwrite)
1640 		ret = obj->ops->pwrite(obj, args);
1641 	if (ret != -ENODEV)
1642 		goto err;
1643 
1644 	ret = i915_gem_object_wait(obj,
1645 				   I915_WAIT_INTERRUPTIBLE |
1646 				   I915_WAIT_ALL,
1647 				   MAX_SCHEDULE_TIMEOUT,
1648 				   to_rps_client(file));
1649 	if (ret)
1650 		goto err;
1651 
1652 	ret = i915_gem_object_pin_pages(obj);
1653 	if (ret)
1654 		goto err;
1655 
1656 	ret = -EFAULT;
1657 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1658 	 * it would end up going through the fenced access, and we'll get
1659 	 * different detiling behavior between reading and writing.
1660 	 * pread/pwrite currently are reading and writing from the CPU
1661 	 * perspective, requiring manual detiling by the client.
1662 	 */
1663 	if (!i915_gem_object_has_struct_page(obj) ||
1664 	    cpu_write_needs_clflush(obj))
1665 		/* Note that the gtt paths might fail with non-page-backed user
1666 		 * pointers (e.g. gtt mappings when moving data between
1667 		 * textures). Fallback to the shmem path in that case.
1668 		 */
1669 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1670 
1671 	if (ret == -EFAULT || ret == -ENOSPC) {
1672 		if (obj->phys_handle)
1673 			ret = i915_gem_phys_pwrite(obj, args, file);
1674 		else
1675 			ret = i915_gem_shmem_pwrite(obj, args);
1676 	}
1677 
1678 	i915_gem_object_unpin_pages(obj);
1679 err:
1680 	i915_gem_object_put(obj);
1681 	return ret;
1682 }
1683 
i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object * obj)1684 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1685 {
1686 	struct drm_i915_private *i915;
1687 	struct list_head *list;
1688 	struct i915_vma *vma;
1689 
1690 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1691 
1692 	for_each_ggtt_vma(vma, obj) {
1693 		if (i915_vma_is_active(vma))
1694 			continue;
1695 
1696 		if (!drm_mm_node_allocated(&vma->node))
1697 			continue;
1698 
1699 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1700 	}
1701 
1702 	i915 = to_i915(obj->base.dev);
1703 	spin_lock(&i915->mm.obj_lock);
1704 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1705 	list_move_tail(&obj->mm.link, list);
1706 	spin_unlock(&i915->mm.obj_lock);
1707 }
1708 
1709 /**
1710  * Called when user space prepares to use an object with the CPU, either
1711  * through the mmap ioctl's mapping or a GTT mapping.
1712  * @dev: drm device
1713  * @data: ioctl data blob
1714  * @file: drm file
1715  */
1716 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1717 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1718 			  struct drm_file *file)
1719 {
1720 	struct drm_i915_gem_set_domain *args = data;
1721 	struct drm_i915_gem_object *obj;
1722 	uint32_t read_domains = args->read_domains;
1723 	uint32_t write_domain = args->write_domain;
1724 	int err;
1725 
1726 	/* Only handle setting domains to types used by the CPU. */
1727 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1728 		return -EINVAL;
1729 
1730 	/* Having something in the write domain implies it's in the read
1731 	 * domain, and only that read domain.  Enforce that in the request.
1732 	 */
1733 	if (write_domain != 0 && read_domains != write_domain)
1734 		return -EINVAL;
1735 
1736 	obj = i915_gem_object_lookup(file, args->handle);
1737 	if (!obj)
1738 		return -ENOENT;
1739 
1740 	/* Try to flush the object off the GPU without holding the lock.
1741 	 * We will repeat the flush holding the lock in the normal manner
1742 	 * to catch cases where we are gazumped.
1743 	 */
1744 	err = i915_gem_object_wait(obj,
1745 				   I915_WAIT_INTERRUPTIBLE |
1746 				   (write_domain ? I915_WAIT_ALL : 0),
1747 				   MAX_SCHEDULE_TIMEOUT,
1748 				   to_rps_client(file));
1749 	if (err)
1750 		goto out;
1751 
1752 	/*
1753 	 * Proxy objects do not control access to the backing storage, ergo
1754 	 * they cannot be used as a means to manipulate the cache domain
1755 	 * tracking for that backing storage. The proxy object is always
1756 	 * considered to be outside of any cache domain.
1757 	 */
1758 	if (i915_gem_object_is_proxy(obj)) {
1759 		err = -ENXIO;
1760 		goto out;
1761 	}
1762 
1763 	/*
1764 	 * Flush and acquire obj->pages so that we are coherent through
1765 	 * direct access in memory with previous cached writes through
1766 	 * shmemfs and that our cache domain tracking remains valid.
1767 	 * For example, if the obj->filp was moved to swap without us
1768 	 * being notified and releasing the pages, we would mistakenly
1769 	 * continue to assume that the obj remained out of the CPU cached
1770 	 * domain.
1771 	 */
1772 	err = i915_gem_object_pin_pages(obj);
1773 	if (err)
1774 		goto out;
1775 
1776 	err = i915_mutex_lock_interruptible(dev);
1777 	if (err)
1778 		goto out_unpin;
1779 
1780 	if (read_domains & I915_GEM_DOMAIN_WC)
1781 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1782 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1783 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1784 	else
1785 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1786 
1787 	/* And bump the LRU for this access */
1788 	i915_gem_object_bump_inactive_ggtt(obj);
1789 
1790 	mutex_unlock(&dev->struct_mutex);
1791 
1792 	if (write_domain != 0)
1793 		intel_fb_obj_invalidate(obj,
1794 					fb_write_origin(obj, write_domain));
1795 
1796 out_unpin:
1797 	i915_gem_object_unpin_pages(obj);
1798 out:
1799 	i915_gem_object_put(obj);
1800 	return err;
1801 }
1802 
1803 /**
1804  * Called when user space has done writes to this buffer
1805  * @dev: drm device
1806  * @data: ioctl data blob
1807  * @file: drm file
1808  */
1809 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1810 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1811 			 struct drm_file *file)
1812 {
1813 	struct drm_i915_gem_sw_finish *args = data;
1814 	struct drm_i915_gem_object *obj;
1815 
1816 	obj = i915_gem_object_lookup(file, args->handle);
1817 	if (!obj)
1818 		return -ENOENT;
1819 
1820 	/*
1821 	 * Proxy objects are barred from CPU access, so there is no
1822 	 * need to ban sw_finish as it is a nop.
1823 	 */
1824 
1825 	/* Pinned buffers may be scanout, so flush the cache */
1826 	i915_gem_object_flush_if_display(obj);
1827 	i915_gem_object_put(obj);
1828 
1829 	return 0;
1830 }
1831 
1832 /**
1833  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1834  *			 it is mapped to.
1835  * @dev: drm device
1836  * @data: ioctl data blob
1837  * @file: drm file
1838  *
1839  * While the mapping holds a reference on the contents of the object, it doesn't
1840  * imply a ref on the object itself.
1841  *
1842  * IMPORTANT:
1843  *
1844  * DRM driver writers who look a this function as an example for how to do GEM
1845  * mmap support, please don't implement mmap support like here. The modern way
1846  * to implement DRM mmap support is with an mmap offset ioctl (like
1847  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1848  * That way debug tooling like valgrind will understand what's going on, hiding
1849  * the mmap call in a driver private ioctl will break that. The i915 driver only
1850  * does cpu mmaps this way because we didn't know better.
1851  */
1852 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1853 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1854 		    struct drm_file *file)
1855 {
1856 	struct drm_i915_gem_mmap *args = data;
1857 	struct drm_i915_gem_object *obj;
1858 	unsigned long addr;
1859 
1860 	if (args->flags & ~(I915_MMAP_WC))
1861 		return -EINVAL;
1862 
1863 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1864 		return -ENODEV;
1865 
1866 	obj = i915_gem_object_lookup(file, args->handle);
1867 	if (!obj)
1868 		return -ENOENT;
1869 
1870 	/* prime objects have no backing filp to GEM mmap
1871 	 * pages from.
1872 	 */
1873 	if (!obj->base.filp) {
1874 		i915_gem_object_put(obj);
1875 		return -ENXIO;
1876 	}
1877 
1878 	addr = vm_mmap(obj->base.filp, 0, args->size,
1879 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1880 		       args->offset);
1881 	if (args->flags & I915_MMAP_WC) {
1882 		struct mm_struct *mm = current->mm;
1883 		struct vm_area_struct *vma;
1884 
1885 		if (down_write_killable(&mm->mmap_sem)) {
1886 			i915_gem_object_put(obj);
1887 			return -EINTR;
1888 		}
1889 		vma = find_vma(mm, addr);
1890 		if (vma)
1891 			vma->vm_page_prot =
1892 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1893 		else
1894 			addr = -ENOMEM;
1895 		up_write(&mm->mmap_sem);
1896 
1897 		/* This may race, but that's ok, it only gets set */
1898 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1899 	}
1900 	i915_gem_object_put(obj);
1901 	if (IS_ERR((void *)addr))
1902 		return addr;
1903 
1904 	args->addr_ptr = (uint64_t) addr;
1905 
1906 	return 0;
1907 }
1908 
tile_row_pages(struct drm_i915_gem_object * obj)1909 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1910 {
1911 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1912 }
1913 
1914 /**
1915  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1916  *
1917  * A history of the GTT mmap interface:
1918  *
1919  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1920  *     aligned and suitable for fencing, and still fit into the available
1921  *     mappable space left by the pinned display objects. A classic problem
1922  *     we called the page-fault-of-doom where we would ping-pong between
1923  *     two objects that could not fit inside the GTT and so the memcpy
1924  *     would page one object in at the expense of the other between every
1925  *     single byte.
1926  *
1927  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1928  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1929  *     object is too large for the available space (or simply too large
1930  *     for the mappable aperture!), a view is created instead and faulted
1931  *     into userspace. (This view is aligned and sized appropriately for
1932  *     fenced access.)
1933  *
1934  * 2 - Recognise WC as a separate cache domain so that we can flush the
1935  *     delayed writes via GTT before performing direct access via WC.
1936  *
1937  * Restrictions:
1938  *
1939  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1940  *    hangs on some architectures, corruption on others. An attempt to service
1941  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1942  *
1943  *  * the object must be able to fit into RAM (physical memory, though no
1944  *    limited to the mappable aperture).
1945  *
1946  *
1947  * Caveats:
1948  *
1949  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1950  *    all data to system memory. Subsequent access will not be synchronized.
1951  *
1952  *  * all mappings are revoked on runtime device suspend.
1953  *
1954  *  * there are only 8, 16 or 32 fence registers to share between all users
1955  *    (older machines require fence register for display and blitter access
1956  *    as well). Contention of the fence registers will cause the previous users
1957  *    to be unmapped and any new access will generate new page faults.
1958  *
1959  *  * running out of memory while servicing a fault may generate a SIGBUS,
1960  *    rather than the expected SIGSEGV.
1961  */
i915_gem_mmap_gtt_version(void)1962 int i915_gem_mmap_gtt_version(void)
1963 {
1964 	return 2;
1965 }
1966 
1967 static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object * obj,pgoff_t page_offset,unsigned int chunk)1968 compute_partial_view(struct drm_i915_gem_object *obj,
1969 		     pgoff_t page_offset,
1970 		     unsigned int chunk)
1971 {
1972 	struct i915_ggtt_view view;
1973 
1974 	if (i915_gem_object_is_tiled(obj))
1975 		chunk = roundup(chunk, tile_row_pages(obj));
1976 
1977 	view.type = I915_GGTT_VIEW_PARTIAL;
1978 	view.partial.offset = rounddown(page_offset, chunk);
1979 	view.partial.size =
1980 		min_t(unsigned int, chunk,
1981 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1982 
1983 	/* If the partial covers the entire object, just create a normal VMA. */
1984 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1985 		view.type = I915_GGTT_VIEW_NORMAL;
1986 
1987 	return view;
1988 }
1989 
1990 /**
1991  * i915_gem_fault - fault a page into the GTT
1992  * @vmf: fault info
1993  *
1994  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1995  * from userspace.  The fault handler takes care of binding the object to
1996  * the GTT (if needed), allocating and programming a fence register (again,
1997  * only if needed based on whether the old reg is still valid or the object
1998  * is tiled) and inserting a new PTE into the faulting process.
1999  *
2000  * Note that the faulting process may involve evicting existing objects
2001  * from the GTT and/or fence registers to make room.  So performance may
2002  * suffer if the GTT working set is large or there are few fence registers
2003  * left.
2004  *
2005  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2006  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2007  */
i915_gem_fault(struct vm_fault * vmf)2008 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2009 {
2010 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2011 	struct vm_area_struct *area = vmf->vma;
2012 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2013 	struct drm_device *dev = obj->base.dev;
2014 	struct drm_i915_private *dev_priv = to_i915(dev);
2015 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2016 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2017 	struct i915_vma *vma;
2018 	pgoff_t page_offset;
2019 	int ret;
2020 
2021 	/* Sanity check that we allow writing into this object */
2022 	if (i915_gem_object_is_readonly(obj) && write)
2023 		return VM_FAULT_SIGBUS;
2024 
2025 	/* We don't use vmf->pgoff since that has the fake offset */
2026 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2027 
2028 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2029 
2030 	/* Try to flush the object off the GPU first without holding the lock.
2031 	 * Upon acquiring the lock, we will perform our sanity checks and then
2032 	 * repeat the flush holding the lock in the normal manner to catch cases
2033 	 * where we are gazumped.
2034 	 */
2035 	ret = i915_gem_object_wait(obj,
2036 				   I915_WAIT_INTERRUPTIBLE,
2037 				   MAX_SCHEDULE_TIMEOUT,
2038 				   NULL);
2039 	if (ret)
2040 		goto err;
2041 
2042 	ret = i915_gem_object_pin_pages(obj);
2043 	if (ret)
2044 		goto err;
2045 
2046 	intel_runtime_pm_get(dev_priv);
2047 
2048 	ret = i915_mutex_lock_interruptible(dev);
2049 	if (ret)
2050 		goto err_rpm;
2051 
2052 	/* Access to snoopable pages through the GTT is incoherent. */
2053 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2054 		ret = -EFAULT;
2055 		goto err_unlock;
2056 	}
2057 
2058 
2059 	/* Now pin it into the GTT as needed */
2060 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2061 				       PIN_MAPPABLE |
2062 				       PIN_NONBLOCK |
2063 				       PIN_NONFAULT);
2064 	if (IS_ERR(vma)) {
2065 		/* Use a partial view if it is bigger than available space */
2066 		struct i915_ggtt_view view =
2067 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2068 		unsigned int flags;
2069 
2070 		flags = PIN_MAPPABLE;
2071 		if (view.type == I915_GGTT_VIEW_NORMAL)
2072 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2073 
2074 		/*
2075 		 * Userspace is now writing through an untracked VMA, abandon
2076 		 * all hope that the hardware is able to track future writes.
2077 		 */
2078 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2079 
2080 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2081 		if (IS_ERR(vma) && !view.type) {
2082 			flags = PIN_MAPPABLE;
2083 			view.type = I915_GGTT_VIEW_PARTIAL;
2084 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2085 		}
2086 	}
2087 	if (IS_ERR(vma)) {
2088 		ret = PTR_ERR(vma);
2089 		goto err_unlock;
2090 	}
2091 
2092 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2093 	if (ret)
2094 		goto err_unpin;
2095 
2096 	ret = i915_vma_pin_fence(vma);
2097 	if (ret)
2098 		goto err_unpin;
2099 
2100 	/* Finally, remap it using the new GTT offset */
2101 	ret = remap_io_mapping(area,
2102 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2103 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2104 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2105 			       &ggtt->iomap);
2106 	if (ret)
2107 		goto err_fence;
2108 
2109 	/* Mark as being mmapped into userspace for later revocation */
2110 	assert_rpm_wakelock_held(dev_priv);
2111 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2112 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2113 	GEM_BUG_ON(!obj->userfault_count);
2114 
2115 	i915_vma_set_ggtt_write(vma);
2116 
2117 err_fence:
2118 	i915_vma_unpin_fence(vma);
2119 err_unpin:
2120 	__i915_vma_unpin(vma);
2121 err_unlock:
2122 	mutex_unlock(&dev->struct_mutex);
2123 err_rpm:
2124 	intel_runtime_pm_put(dev_priv);
2125 	i915_gem_object_unpin_pages(obj);
2126 err:
2127 	switch (ret) {
2128 	case -EIO:
2129 		/*
2130 		 * We eat errors when the gpu is terminally wedged to avoid
2131 		 * userspace unduly crashing (gl has no provisions for mmaps to
2132 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2133 		 * and so needs to be reported.
2134 		 */
2135 		if (!i915_terminally_wedged(&dev_priv->gpu_error))
2136 			return VM_FAULT_SIGBUS;
2137 		/* else: fall through */
2138 	case -EAGAIN:
2139 		/*
2140 		 * EAGAIN means the gpu is hung and we'll wait for the error
2141 		 * handler to reset everything when re-faulting in
2142 		 * i915_mutex_lock_interruptible.
2143 		 */
2144 	case 0:
2145 	case -ERESTARTSYS:
2146 	case -EINTR:
2147 	case -EBUSY:
2148 		/*
2149 		 * EBUSY is ok: this just means that another thread
2150 		 * already did the job.
2151 		 */
2152 		return VM_FAULT_NOPAGE;
2153 	case -ENOMEM:
2154 		return VM_FAULT_OOM;
2155 	case -ENOSPC:
2156 	case -EFAULT:
2157 		return VM_FAULT_SIGBUS;
2158 	default:
2159 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2160 		return VM_FAULT_SIGBUS;
2161 	}
2162 }
2163 
__i915_gem_object_release_mmap(struct drm_i915_gem_object * obj)2164 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2165 {
2166 	struct i915_vma *vma;
2167 
2168 	GEM_BUG_ON(!obj->userfault_count);
2169 
2170 	obj->userfault_count = 0;
2171 	list_del(&obj->userfault_link);
2172 	drm_vma_node_unmap(&obj->base.vma_node,
2173 			   obj->base.dev->anon_inode->i_mapping);
2174 
2175 	for_each_ggtt_vma(vma, obj)
2176 		i915_vma_unset_userfault(vma);
2177 }
2178 
2179 /**
2180  * i915_gem_release_mmap - remove physical page mappings
2181  * @obj: obj in question
2182  *
2183  * Preserve the reservation of the mmapping with the DRM core code, but
2184  * relinquish ownership of the pages back to the system.
2185  *
2186  * It is vital that we remove the page mapping if we have mapped a tiled
2187  * object through the GTT and then lose the fence register due to
2188  * resource pressure. Similarly if the object has been moved out of the
2189  * aperture, than pages mapped into userspace must be revoked. Removing the
2190  * mapping will then trigger a page fault on the next user access, allowing
2191  * fixup by i915_gem_fault().
2192  */
2193 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)2194 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2195 {
2196 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2197 
2198 	/* Serialisation between user GTT access and our code depends upon
2199 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2200 	 * pagefault then has to wait until we release the mutex.
2201 	 *
2202 	 * Note that RPM complicates somewhat by adding an additional
2203 	 * requirement that operations to the GGTT be made holding the RPM
2204 	 * wakeref.
2205 	 */
2206 	lockdep_assert_held(&i915->drm.struct_mutex);
2207 	intel_runtime_pm_get(i915);
2208 
2209 	if (!obj->userfault_count)
2210 		goto out;
2211 
2212 	__i915_gem_object_release_mmap(obj);
2213 
2214 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2215 	 * memory transactions from userspace before we return. The TLB
2216 	 * flushing implied above by changing the PTE above *should* be
2217 	 * sufficient, an extra barrier here just provides us with a bit
2218 	 * of paranoid documentation about our requirement to serialise
2219 	 * memory writes before touching registers / GSM.
2220 	 */
2221 	wmb();
2222 
2223 out:
2224 	intel_runtime_pm_put(i915);
2225 }
2226 
i915_gem_runtime_suspend(struct drm_i915_private * dev_priv)2227 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2228 {
2229 	struct drm_i915_gem_object *obj, *on;
2230 	int i;
2231 
2232 	/*
2233 	 * Only called during RPM suspend. All users of the userfault_list
2234 	 * must be holding an RPM wakeref to ensure that this can not
2235 	 * run concurrently with themselves (and use the struct_mutex for
2236 	 * protection between themselves).
2237 	 */
2238 
2239 	list_for_each_entry_safe(obj, on,
2240 				 &dev_priv->mm.userfault_list, userfault_link)
2241 		__i915_gem_object_release_mmap(obj);
2242 
2243 	/* The fence will be lost when the device powers down. If any were
2244 	 * in use by hardware (i.e. they are pinned), we should not be powering
2245 	 * down! All other fences will be reacquired by the user upon waking.
2246 	 */
2247 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2248 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2249 
2250 		/* Ideally we want to assert that the fence register is not
2251 		 * live at this point (i.e. that no piece of code will be
2252 		 * trying to write through fence + GTT, as that both violates
2253 		 * our tracking of activity and associated locking/barriers,
2254 		 * but also is illegal given that the hw is powered down).
2255 		 *
2256 		 * Previously we used reg->pin_count as a "liveness" indicator.
2257 		 * That is not sufficient, and we need a more fine-grained
2258 		 * tool if we want to have a sanity check here.
2259 		 */
2260 
2261 		if (!reg->vma)
2262 			continue;
2263 
2264 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2265 		reg->dirty = true;
2266 	}
2267 }
2268 
i915_gem_object_create_mmap_offset(struct drm_i915_gem_object * obj)2269 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2270 {
2271 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2272 	int err;
2273 
2274 	err = drm_gem_create_mmap_offset(&obj->base);
2275 	if (likely(!err))
2276 		return 0;
2277 
2278 	/* Attempt to reap some mmap space from dead objects */
2279 	do {
2280 		err = i915_gem_wait_for_idle(dev_priv,
2281 					     I915_WAIT_INTERRUPTIBLE,
2282 					     MAX_SCHEDULE_TIMEOUT);
2283 		if (err)
2284 			break;
2285 
2286 		i915_gem_drain_freed_objects(dev_priv);
2287 		err = drm_gem_create_mmap_offset(&obj->base);
2288 		if (!err)
2289 			break;
2290 
2291 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2292 
2293 	return err;
2294 }
2295 
i915_gem_object_free_mmap_offset(struct drm_i915_gem_object * obj)2296 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2297 {
2298 	drm_gem_free_mmap_offset(&obj->base);
2299 }
2300 
2301 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)2302 i915_gem_mmap_gtt(struct drm_file *file,
2303 		  struct drm_device *dev,
2304 		  uint32_t handle,
2305 		  uint64_t *offset)
2306 {
2307 	struct drm_i915_gem_object *obj;
2308 	int ret;
2309 
2310 	obj = i915_gem_object_lookup(file, handle);
2311 	if (!obj)
2312 		return -ENOENT;
2313 
2314 	ret = i915_gem_object_create_mmap_offset(obj);
2315 	if (ret == 0)
2316 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2317 
2318 	i915_gem_object_put(obj);
2319 	return ret;
2320 }
2321 
2322 /**
2323  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2324  * @dev: DRM device
2325  * @data: GTT mapping ioctl data
2326  * @file: GEM object info
2327  *
2328  * Simply returns the fake offset to userspace so it can mmap it.
2329  * The mmap call will end up in drm_gem_mmap(), which will set things
2330  * up so we can get faults in the handler above.
2331  *
2332  * The fault handler will take care of binding the object into the GTT
2333  * (since it may have been evicted to make room for something), allocating
2334  * a fence register, and mapping the appropriate aperture address into
2335  * userspace.
2336  */
2337 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2338 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2339 			struct drm_file *file)
2340 {
2341 	struct drm_i915_gem_mmap_gtt *args = data;
2342 
2343 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2344 }
2345 
2346 /* Immediately discard the backing storage */
2347 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)2348 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2349 {
2350 	i915_gem_object_free_mmap_offset(obj);
2351 
2352 	if (obj->base.filp == NULL)
2353 		return;
2354 
2355 	/* Our goal here is to return as much of the memory as
2356 	 * is possible back to the system as we are called from OOM.
2357 	 * To do this we must instruct the shmfs to drop all of its
2358 	 * backing pages, *now*.
2359 	 */
2360 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2361 	obj->mm.madv = __I915_MADV_PURGED;
2362 	obj->mm.pages = ERR_PTR(-EFAULT);
2363 }
2364 
2365 /* Try to discard unwanted pages */
__i915_gem_object_invalidate(struct drm_i915_gem_object * obj)2366 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2367 {
2368 	struct address_space *mapping;
2369 
2370 	lockdep_assert_held(&obj->mm.lock);
2371 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2372 
2373 	switch (obj->mm.madv) {
2374 	case I915_MADV_DONTNEED:
2375 		i915_gem_object_truncate(obj);
2376 	case __I915_MADV_PURGED:
2377 		return;
2378 	}
2379 
2380 	if (obj->base.filp == NULL)
2381 		return;
2382 
2383 	mapping = obj->base.filp->f_mapping,
2384 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2385 }
2386 
2387 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj,struct sg_table * pages)2388 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2389 			      struct sg_table *pages)
2390 {
2391 	struct sgt_iter sgt_iter;
2392 	struct page *page;
2393 
2394 	__i915_gem_object_release_shmem(obj, pages, true);
2395 
2396 	i915_gem_gtt_finish_pages(obj, pages);
2397 
2398 	if (i915_gem_object_needs_bit17_swizzle(obj))
2399 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2400 
2401 	for_each_sgt_page(page, sgt_iter, pages) {
2402 		if (obj->mm.dirty)
2403 			set_page_dirty(page);
2404 
2405 		if (obj->mm.madv == I915_MADV_WILLNEED)
2406 			mark_page_accessed(page);
2407 
2408 		put_page(page);
2409 	}
2410 	obj->mm.dirty = false;
2411 
2412 	sg_free_table(pages);
2413 	kfree(pages);
2414 }
2415 
__i915_gem_object_reset_page_iter(struct drm_i915_gem_object * obj)2416 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2417 {
2418 	struct radix_tree_iter iter;
2419 	void __rcu **slot;
2420 
2421 	rcu_read_lock();
2422 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2423 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2424 	rcu_read_unlock();
2425 }
2426 
2427 static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object * obj)2428 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2429 {
2430 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2431 	struct sg_table *pages;
2432 
2433 	pages = fetch_and_zero(&obj->mm.pages);
2434 	if (!pages)
2435 		return NULL;
2436 
2437 	spin_lock(&i915->mm.obj_lock);
2438 	list_del(&obj->mm.link);
2439 	spin_unlock(&i915->mm.obj_lock);
2440 
2441 	if (obj->mm.mapping) {
2442 		void *ptr;
2443 
2444 		ptr = page_mask_bits(obj->mm.mapping);
2445 		if (is_vmalloc_addr(ptr))
2446 			vunmap(ptr);
2447 		else
2448 			kunmap(kmap_to_page(ptr));
2449 
2450 		obj->mm.mapping = NULL;
2451 	}
2452 
2453 	__i915_gem_object_reset_page_iter(obj);
2454 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2455 
2456 	return pages;
2457 }
2458 
__i915_gem_object_put_pages(struct drm_i915_gem_object * obj,enum i915_mm_subclass subclass)2459 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2460 				 enum i915_mm_subclass subclass)
2461 {
2462 	struct sg_table *pages;
2463 
2464 	if (i915_gem_object_has_pinned_pages(obj))
2465 		return;
2466 
2467 	GEM_BUG_ON(obj->bind_count);
2468 	if (!i915_gem_object_has_pages(obj))
2469 		return;
2470 
2471 	/* May be called by shrinker from within get_pages() (on another bo) */
2472 	mutex_lock_nested(&obj->mm.lock, subclass);
2473 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2474 		goto unlock;
2475 
2476 	/*
2477 	 * ->put_pages might need to allocate memory for the bit17 swizzle
2478 	 * array, hence protect them from being reaped by removing them from gtt
2479 	 * lists early.
2480 	 */
2481 	pages = __i915_gem_object_unset_pages(obj);
2482 	if (!IS_ERR(pages))
2483 		obj->ops->put_pages(obj, pages);
2484 
2485 unlock:
2486 	mutex_unlock(&obj->mm.lock);
2487 }
2488 
i915_sg_trim(struct sg_table * orig_st)2489 static bool i915_sg_trim(struct sg_table *orig_st)
2490 {
2491 	struct sg_table new_st;
2492 	struct scatterlist *sg, *new_sg;
2493 	unsigned int i;
2494 
2495 	if (orig_st->nents == orig_st->orig_nents)
2496 		return false;
2497 
2498 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2499 		return false;
2500 
2501 	new_sg = new_st.sgl;
2502 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2503 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2504 		/* called before being DMA mapped, no need to copy sg->dma_* */
2505 		new_sg = sg_next(new_sg);
2506 	}
2507 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2508 
2509 	sg_free_table(orig_st);
2510 
2511 	*orig_st = new_st;
2512 	return true;
2513 }
2514 
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj)2515 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2516 {
2517 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2518 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2519 	unsigned long i;
2520 	struct address_space *mapping;
2521 	struct sg_table *st;
2522 	struct scatterlist *sg;
2523 	struct sgt_iter sgt_iter;
2524 	struct page *page;
2525 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2526 	unsigned int max_segment = i915_sg_segment_size();
2527 	unsigned int sg_page_sizes;
2528 	gfp_t noreclaim;
2529 	int ret;
2530 
2531 	/* Assert that the object is not currently in any GPU domain. As it
2532 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2533 	 * a GPU cache
2534 	 */
2535 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2536 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2537 
2538 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2539 	if (st == NULL)
2540 		return -ENOMEM;
2541 
2542 rebuild_st:
2543 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2544 		kfree(st);
2545 		return -ENOMEM;
2546 	}
2547 
2548 	/* Get the list of pages out of our struct file.  They'll be pinned
2549 	 * at this point until we release them.
2550 	 *
2551 	 * Fail silently without starting the shrinker
2552 	 */
2553 	mapping = obj->base.filp->f_mapping;
2554 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2555 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2556 
2557 	sg = st->sgl;
2558 	st->nents = 0;
2559 	sg_page_sizes = 0;
2560 	for (i = 0; i < page_count; i++) {
2561 		const unsigned int shrink[] = {
2562 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2563 			0,
2564 		}, *s = shrink;
2565 		gfp_t gfp = noreclaim;
2566 
2567 		do {
2568 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2569 			if (likely(!IS_ERR(page)))
2570 				break;
2571 
2572 			if (!*s) {
2573 				ret = PTR_ERR(page);
2574 				goto err_sg;
2575 			}
2576 
2577 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2578 			cond_resched();
2579 
2580 			/* We've tried hard to allocate the memory by reaping
2581 			 * our own buffer, now let the real VM do its job and
2582 			 * go down in flames if truly OOM.
2583 			 *
2584 			 * However, since graphics tend to be disposable,
2585 			 * defer the oom here by reporting the ENOMEM back
2586 			 * to userspace.
2587 			 */
2588 			if (!*s) {
2589 				/* reclaim and warn, but no oom */
2590 				gfp = mapping_gfp_mask(mapping);
2591 
2592 				/* Our bo are always dirty and so we require
2593 				 * kswapd to reclaim our pages (direct reclaim
2594 				 * does not effectively begin pageout of our
2595 				 * buffers on its own). However, direct reclaim
2596 				 * only waits for kswapd when under allocation
2597 				 * congestion. So as a result __GFP_RECLAIM is
2598 				 * unreliable and fails to actually reclaim our
2599 				 * dirty pages -- unless you try over and over
2600 				 * again with !__GFP_NORETRY. However, we still
2601 				 * want to fail this allocation rather than
2602 				 * trigger the out-of-memory killer and for
2603 				 * this we want __GFP_RETRY_MAYFAIL.
2604 				 */
2605 				gfp |= __GFP_RETRY_MAYFAIL;
2606 			}
2607 		} while (1);
2608 
2609 		if (!i ||
2610 		    sg->length >= max_segment ||
2611 		    page_to_pfn(page) != last_pfn + 1) {
2612 			if (i) {
2613 				sg_page_sizes |= sg->length;
2614 				sg = sg_next(sg);
2615 			}
2616 			st->nents++;
2617 			sg_set_page(sg, page, PAGE_SIZE, 0);
2618 		} else {
2619 			sg->length += PAGE_SIZE;
2620 		}
2621 		last_pfn = page_to_pfn(page);
2622 
2623 		/* Check that the i965g/gm workaround works. */
2624 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2625 	}
2626 	if (sg) { /* loop terminated early; short sg table */
2627 		sg_page_sizes |= sg->length;
2628 		sg_mark_end(sg);
2629 	}
2630 
2631 	/* Trim unused sg entries to avoid wasting memory. */
2632 	i915_sg_trim(st);
2633 
2634 	ret = i915_gem_gtt_prepare_pages(obj, st);
2635 	if (ret) {
2636 		/* DMA remapping failed? One possible cause is that
2637 		 * it could not reserve enough large entries, asking
2638 		 * for PAGE_SIZE chunks instead may be helpful.
2639 		 */
2640 		if (max_segment > PAGE_SIZE) {
2641 			for_each_sgt_page(page, sgt_iter, st)
2642 				put_page(page);
2643 			sg_free_table(st);
2644 
2645 			max_segment = PAGE_SIZE;
2646 			goto rebuild_st;
2647 		} else {
2648 			dev_warn(&dev_priv->drm.pdev->dev,
2649 				 "Failed to DMA remap %lu pages\n",
2650 				 page_count);
2651 			goto err_pages;
2652 		}
2653 	}
2654 
2655 	if (i915_gem_object_needs_bit17_swizzle(obj))
2656 		i915_gem_object_do_bit_17_swizzle(obj, st);
2657 
2658 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2659 
2660 	return 0;
2661 
2662 err_sg:
2663 	sg_mark_end(sg);
2664 err_pages:
2665 	for_each_sgt_page(page, sgt_iter, st)
2666 		put_page(page);
2667 	sg_free_table(st);
2668 	kfree(st);
2669 
2670 	/* shmemfs first checks if there is enough memory to allocate the page
2671 	 * and reports ENOSPC should there be insufficient, along with the usual
2672 	 * ENOMEM for a genuine allocation failure.
2673 	 *
2674 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2675 	 * space and so want to translate the error from shmemfs back to our
2676 	 * usual understanding of ENOMEM.
2677 	 */
2678 	if (ret == -ENOSPC)
2679 		ret = -ENOMEM;
2680 
2681 	return ret;
2682 }
2683 
__i915_gem_object_set_pages(struct drm_i915_gem_object * obj,struct sg_table * pages,unsigned int sg_page_sizes)2684 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2685 				 struct sg_table *pages,
2686 				 unsigned int sg_page_sizes)
2687 {
2688 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2689 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2690 	int i;
2691 
2692 	lockdep_assert_held(&obj->mm.lock);
2693 
2694 	obj->mm.get_page.sg_pos = pages->sgl;
2695 	obj->mm.get_page.sg_idx = 0;
2696 
2697 	obj->mm.pages = pages;
2698 
2699 	if (i915_gem_object_is_tiled(obj) &&
2700 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2701 		GEM_BUG_ON(obj->mm.quirked);
2702 		__i915_gem_object_pin_pages(obj);
2703 		obj->mm.quirked = true;
2704 	}
2705 
2706 	GEM_BUG_ON(!sg_page_sizes);
2707 	obj->mm.page_sizes.phys = sg_page_sizes;
2708 
2709 	/*
2710 	 * Calculate the supported page-sizes which fit into the given
2711 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2712 	 * to use opportunistically when later inserting into the GTT. For
2713 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2714 	 * 64K or 4K pages, although in practice this will depend on a number of
2715 	 * other factors.
2716 	 */
2717 	obj->mm.page_sizes.sg = 0;
2718 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2719 		if (obj->mm.page_sizes.phys & ~0u << i)
2720 			obj->mm.page_sizes.sg |= BIT(i);
2721 	}
2722 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2723 
2724 	spin_lock(&i915->mm.obj_lock);
2725 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2726 	spin_unlock(&i915->mm.obj_lock);
2727 }
2728 
____i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2729 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2730 {
2731 	int err;
2732 
2733 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2734 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2735 		return -EFAULT;
2736 	}
2737 
2738 	err = obj->ops->get_pages(obj);
2739 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2740 
2741 	return err;
2742 }
2743 
2744 /* Ensure that the associated pages are gathered from the backing storage
2745  * and pinned into our object. i915_gem_object_pin_pages() may be called
2746  * multiple times before they are released by a single call to
2747  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2748  * either as a result of memory pressure (reaping pages under the shrinker)
2749  * or as the object is itself released.
2750  */
__i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2751 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2752 {
2753 	int err;
2754 
2755 	err = mutex_lock_interruptible(&obj->mm.lock);
2756 	if (err)
2757 		return err;
2758 
2759 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2760 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2761 
2762 		err = ____i915_gem_object_get_pages(obj);
2763 		if (err)
2764 			goto unlock;
2765 
2766 		smp_mb__before_atomic();
2767 	}
2768 	atomic_inc(&obj->mm.pages_pin_count);
2769 
2770 unlock:
2771 	mutex_unlock(&obj->mm.lock);
2772 	return err;
2773 }
2774 
2775 /* The 'mapping' part of i915_gem_object_pin_map() below */
i915_gem_object_map(const struct drm_i915_gem_object * obj,enum i915_map_type type)2776 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2777 				 enum i915_map_type type)
2778 {
2779 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2780 	struct sg_table *sgt = obj->mm.pages;
2781 	struct sgt_iter sgt_iter;
2782 	struct page *page;
2783 	struct page *stack_pages[32];
2784 	struct page **pages = stack_pages;
2785 	unsigned long i = 0;
2786 	pgprot_t pgprot;
2787 	void *addr;
2788 
2789 	/* A single page can always be kmapped */
2790 	if (n_pages == 1 && type == I915_MAP_WB)
2791 		return kmap(sg_page(sgt->sgl));
2792 
2793 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2794 		/* Too big for stack -- allocate temporary array instead */
2795 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2796 		if (!pages)
2797 			return NULL;
2798 	}
2799 
2800 	for_each_sgt_page(page, sgt_iter, sgt)
2801 		pages[i++] = page;
2802 
2803 	/* Check that we have the expected number of pages */
2804 	GEM_BUG_ON(i != n_pages);
2805 
2806 	switch (type) {
2807 	default:
2808 		MISSING_CASE(type);
2809 		/* fallthrough to use PAGE_KERNEL anyway */
2810 	case I915_MAP_WB:
2811 		pgprot = PAGE_KERNEL;
2812 		break;
2813 	case I915_MAP_WC:
2814 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2815 		break;
2816 	}
2817 	addr = vmap(pages, n_pages, 0, pgprot);
2818 
2819 	if (pages != stack_pages)
2820 		kvfree(pages);
2821 
2822 	return addr;
2823 }
2824 
2825 /* get, pin, and map the pages of the object into kernel space */
i915_gem_object_pin_map(struct drm_i915_gem_object * obj,enum i915_map_type type)2826 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2827 			      enum i915_map_type type)
2828 {
2829 	enum i915_map_type has_type;
2830 	bool pinned;
2831 	void *ptr;
2832 	int ret;
2833 
2834 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2835 		return ERR_PTR(-ENXIO);
2836 
2837 	ret = mutex_lock_interruptible(&obj->mm.lock);
2838 	if (ret)
2839 		return ERR_PTR(ret);
2840 
2841 	pinned = !(type & I915_MAP_OVERRIDE);
2842 	type &= ~I915_MAP_OVERRIDE;
2843 
2844 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2845 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2846 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2847 
2848 			ret = ____i915_gem_object_get_pages(obj);
2849 			if (ret)
2850 				goto err_unlock;
2851 
2852 			smp_mb__before_atomic();
2853 		}
2854 		atomic_inc(&obj->mm.pages_pin_count);
2855 		pinned = false;
2856 	}
2857 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2858 
2859 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2860 	if (ptr && has_type != type) {
2861 		if (pinned) {
2862 			ret = -EBUSY;
2863 			goto err_unpin;
2864 		}
2865 
2866 		if (is_vmalloc_addr(ptr))
2867 			vunmap(ptr);
2868 		else
2869 			kunmap(kmap_to_page(ptr));
2870 
2871 		ptr = obj->mm.mapping = NULL;
2872 	}
2873 
2874 	if (!ptr) {
2875 		ptr = i915_gem_object_map(obj, type);
2876 		if (!ptr) {
2877 			ret = -ENOMEM;
2878 			goto err_unpin;
2879 		}
2880 
2881 		obj->mm.mapping = page_pack_bits(ptr, type);
2882 	}
2883 
2884 out_unlock:
2885 	mutex_unlock(&obj->mm.lock);
2886 	return ptr;
2887 
2888 err_unpin:
2889 	atomic_dec(&obj->mm.pages_pin_count);
2890 err_unlock:
2891 	ptr = ERR_PTR(ret);
2892 	goto out_unlock;
2893 }
2894 
2895 static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)2896 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2897 			   const struct drm_i915_gem_pwrite *arg)
2898 {
2899 	struct address_space *mapping = obj->base.filp->f_mapping;
2900 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2901 	u64 remain, offset;
2902 	unsigned int pg;
2903 
2904 	/* Before we instantiate/pin the backing store for our use, we
2905 	 * can prepopulate the shmemfs filp efficiently using a write into
2906 	 * the pagecache. We avoid the penalty of instantiating all the
2907 	 * pages, important if the user is just writing to a few and never
2908 	 * uses the object on the GPU, and using a direct write into shmemfs
2909 	 * allows it to avoid the cost of retrieving a page (either swapin
2910 	 * or clearing-before-use) before it is overwritten.
2911 	 */
2912 	if (i915_gem_object_has_pages(obj))
2913 		return -ENODEV;
2914 
2915 	if (obj->mm.madv != I915_MADV_WILLNEED)
2916 		return -EFAULT;
2917 
2918 	/* Before the pages are instantiated the object is treated as being
2919 	 * in the CPU domain. The pages will be clflushed as required before
2920 	 * use, and we can freely write into the pages directly. If userspace
2921 	 * races pwrite with any other operation; corruption will ensue -
2922 	 * that is userspace's prerogative!
2923 	 */
2924 
2925 	remain = arg->size;
2926 	offset = arg->offset;
2927 	pg = offset_in_page(offset);
2928 
2929 	do {
2930 		unsigned int len, unwritten;
2931 		struct page *page;
2932 		void *data, *vaddr;
2933 		int err;
2934 
2935 		len = PAGE_SIZE - pg;
2936 		if (len > remain)
2937 			len = remain;
2938 
2939 		err = pagecache_write_begin(obj->base.filp, mapping,
2940 					    offset, len, 0,
2941 					    &page, &data);
2942 		if (err < 0)
2943 			return err;
2944 
2945 		vaddr = kmap(page);
2946 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2947 		kunmap(page);
2948 
2949 		err = pagecache_write_end(obj->base.filp, mapping,
2950 					  offset, len, len - unwritten,
2951 					  page, data);
2952 		if (err < 0)
2953 			return err;
2954 
2955 		if (unwritten)
2956 			return -EFAULT;
2957 
2958 		remain -= len;
2959 		user_data += len;
2960 		offset += len;
2961 		pg = 0;
2962 	} while (remain);
2963 
2964 	return 0;
2965 }
2966 
i915_gem_client_mark_guilty(struct drm_i915_file_private * file_priv,const struct i915_gem_context * ctx)2967 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2968 					const struct i915_gem_context *ctx)
2969 {
2970 	unsigned int score;
2971 	unsigned long prev_hang;
2972 
2973 	if (i915_gem_context_is_banned(ctx))
2974 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
2975 	else
2976 		score = 0;
2977 
2978 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
2979 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
2980 		score += I915_CLIENT_SCORE_HANG_FAST;
2981 
2982 	if (score) {
2983 		atomic_add(score, &file_priv->ban_score);
2984 
2985 		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
2986 				 ctx->name, score,
2987 				 atomic_read(&file_priv->ban_score));
2988 	}
2989 }
2990 
i915_gem_context_mark_guilty(struct i915_gem_context * ctx)2991 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2992 {
2993 	unsigned int score;
2994 	bool banned, bannable;
2995 
2996 	atomic_inc(&ctx->guilty_count);
2997 
2998 	bannable = i915_gem_context_is_bannable(ctx);
2999 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3000 	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3001 
3002 	/* Cool contexts don't accumulate client ban score */
3003 	if (!bannable)
3004 		return;
3005 
3006 	if (banned) {
3007 		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3008 				 ctx->name, atomic_read(&ctx->guilty_count),
3009 				 score);
3010 		i915_gem_context_set_banned(ctx);
3011 	}
3012 
3013 	if (!IS_ERR_OR_NULL(ctx->file_priv))
3014 		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3015 }
3016 
i915_gem_context_mark_innocent(struct i915_gem_context * ctx)3017 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3018 {
3019 	atomic_inc(&ctx->active_count);
3020 }
3021 
3022 struct i915_request *
i915_gem_find_active_request(struct intel_engine_cs * engine)3023 i915_gem_find_active_request(struct intel_engine_cs *engine)
3024 {
3025 	struct i915_request *request, *active = NULL;
3026 	unsigned long flags;
3027 
3028 	/*
3029 	 * We are called by the error capture, reset and to dump engine
3030 	 * state at random points in time. In particular, note that neither is
3031 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
3032 	 * and we assume that no more writes can happen (we waited long enough
3033 	 * for all writes that were in transaction to be flushed) - adding an
3034 	 * extra delay for a recent interrupt is pointless. Hence, we do
3035 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3036 	 * At all other times, we must assume the GPU is still running, but
3037 	 * we only care about the snapshot of this moment.
3038 	 */
3039 	spin_lock_irqsave(&engine->timeline.lock, flags);
3040 	list_for_each_entry(request, &engine->timeline.requests, link) {
3041 		if (__i915_request_completed(request, request->global_seqno))
3042 			continue;
3043 
3044 		active = request;
3045 		break;
3046 	}
3047 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3048 
3049 	return active;
3050 }
3051 
3052 /*
3053  * Ensure irq handler finishes, and not run again.
3054  * Also return the active request so that we only search for it once.
3055  */
3056 struct i915_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs * engine)3057 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3058 {
3059 	struct i915_request *request;
3060 
3061 	/*
3062 	 * During the reset sequence, we must prevent the engine from
3063 	 * entering RC6. As the context state is undefined until we restart
3064 	 * the engine, if it does enter RC6 during the reset, the state
3065 	 * written to the powercontext is undefined and so we may lose
3066 	 * GPU state upon resume, i.e. fail to restart after a reset.
3067 	 */
3068 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3069 
3070 	request = engine->reset.prepare(engine);
3071 	if (request && request->fence.error == -EIO)
3072 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3073 
3074 	return request;
3075 }
3076 
i915_gem_reset_prepare(struct drm_i915_private * dev_priv)3077 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3078 {
3079 	struct intel_engine_cs *engine;
3080 	struct i915_request *request;
3081 	enum intel_engine_id id;
3082 	int err = 0;
3083 
3084 	for_each_engine(engine, dev_priv, id) {
3085 		request = i915_gem_reset_prepare_engine(engine);
3086 		if (IS_ERR(request)) {
3087 			err = PTR_ERR(request);
3088 			continue;
3089 		}
3090 
3091 		engine->hangcheck.active_request = request;
3092 	}
3093 
3094 	i915_gem_revoke_fences(dev_priv);
3095 	intel_uc_sanitize(dev_priv);
3096 
3097 	return err;
3098 }
3099 
engine_skip_context(struct i915_request * request)3100 static void engine_skip_context(struct i915_request *request)
3101 {
3102 	struct intel_engine_cs *engine = request->engine;
3103 	struct i915_gem_context *hung_ctx = request->gem_context;
3104 	struct i915_timeline *timeline = request->timeline;
3105 	unsigned long flags;
3106 
3107 	GEM_BUG_ON(timeline == &engine->timeline);
3108 
3109 	spin_lock_irqsave(&engine->timeline.lock, flags);
3110 	spin_lock(&timeline->lock);
3111 
3112 	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3113 		if (request->gem_context == hung_ctx)
3114 			i915_request_skip(request, -EIO);
3115 
3116 	list_for_each_entry(request, &timeline->requests, link)
3117 		i915_request_skip(request, -EIO);
3118 
3119 	spin_unlock(&timeline->lock);
3120 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3121 }
3122 
3123 /* Returns the request if it was guilty of the hang */
3124 static struct i915_request *
i915_gem_reset_request(struct intel_engine_cs * engine,struct i915_request * request,bool stalled)3125 i915_gem_reset_request(struct intel_engine_cs *engine,
3126 		       struct i915_request *request,
3127 		       bool stalled)
3128 {
3129 	/* The guilty request will get skipped on a hung engine.
3130 	 *
3131 	 * Users of client default contexts do not rely on logical
3132 	 * state preserved between batches so it is safe to execute
3133 	 * queued requests following the hang. Non default contexts
3134 	 * rely on preserved state, so skipping a batch loses the
3135 	 * evolution of the state and it needs to be considered corrupted.
3136 	 * Executing more queued batches on top of corrupted state is
3137 	 * risky. But we take the risk by trying to advance through
3138 	 * the queued requests in order to make the client behaviour
3139 	 * more predictable around resets, by not throwing away random
3140 	 * amount of batches it has prepared for execution. Sophisticated
3141 	 * clients can use gem_reset_stats_ioctl and dma fence status
3142 	 * (exported via sync_file info ioctl on explicit fences) to observe
3143 	 * when it loses the context state and should rebuild accordingly.
3144 	 *
3145 	 * The context ban, and ultimately the client ban, mechanism are safety
3146 	 * valves if client submission ends up resulting in nothing more than
3147 	 * subsequent hangs.
3148 	 */
3149 
3150 	if (i915_request_completed(request)) {
3151 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3152 			  engine->name, request->global_seqno,
3153 			  request->fence.context, request->fence.seqno,
3154 			  intel_engine_get_seqno(engine));
3155 		stalled = false;
3156 	}
3157 
3158 	if (stalled) {
3159 		i915_gem_context_mark_guilty(request->gem_context);
3160 		i915_request_skip(request, -EIO);
3161 
3162 		/* If this context is now banned, skip all pending requests. */
3163 		if (i915_gem_context_is_banned(request->gem_context))
3164 			engine_skip_context(request);
3165 	} else {
3166 		/*
3167 		 * Since this is not the hung engine, it may have advanced
3168 		 * since the hang declaration. Double check by refinding
3169 		 * the active request at the time of the reset.
3170 		 */
3171 		request = i915_gem_find_active_request(engine);
3172 		if (request) {
3173 			unsigned long flags;
3174 
3175 			i915_gem_context_mark_innocent(request->gem_context);
3176 			dma_fence_set_error(&request->fence, -EAGAIN);
3177 
3178 			/* Rewind the engine to replay the incomplete rq */
3179 			spin_lock_irqsave(&engine->timeline.lock, flags);
3180 			request = list_prev_entry(request, link);
3181 			if (&request->link == &engine->timeline.requests)
3182 				request = NULL;
3183 			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3184 		}
3185 	}
3186 
3187 	return request;
3188 }
3189 
i915_gem_reset_engine(struct intel_engine_cs * engine,struct i915_request * request,bool stalled)3190 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3191 			   struct i915_request *request,
3192 			   bool stalled)
3193 {
3194 	/*
3195 	 * Make sure this write is visible before we re-enable the interrupt
3196 	 * handlers on another CPU, as tasklet_enable() resolves to just
3197 	 * a compiler barrier which is insufficient for our purpose here.
3198 	 */
3199 	smp_store_mb(engine->irq_posted, 0);
3200 
3201 	if (request)
3202 		request = i915_gem_reset_request(engine, request, stalled);
3203 
3204 	/* Setup the CS to resume from the breadcrumb of the hung request */
3205 	engine->reset.reset(engine, request);
3206 }
3207 
i915_gem_reset(struct drm_i915_private * dev_priv,unsigned int stalled_mask)3208 void i915_gem_reset(struct drm_i915_private *dev_priv,
3209 		    unsigned int stalled_mask)
3210 {
3211 	struct intel_engine_cs *engine;
3212 	enum intel_engine_id id;
3213 
3214 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3215 
3216 	i915_retire_requests(dev_priv);
3217 
3218 	for_each_engine(engine, dev_priv, id) {
3219 		struct intel_context *ce;
3220 
3221 		i915_gem_reset_engine(engine,
3222 				      engine->hangcheck.active_request,
3223 				      stalled_mask & ENGINE_MASK(id));
3224 		ce = fetch_and_zero(&engine->last_retired_context);
3225 		if (ce)
3226 			intel_context_unpin(ce);
3227 
3228 		/*
3229 		 * Ostensibily, we always want a context loaded for powersaving,
3230 		 * so if the engine is idle after the reset, send a request
3231 		 * to load our scratch kernel_context.
3232 		 *
3233 		 * More mysteriously, if we leave the engine idle after a reset,
3234 		 * the next userspace batch may hang, with what appears to be
3235 		 * an incoherent read by the CS (presumably stale TLB). An
3236 		 * empty request appears sufficient to paper over the glitch.
3237 		 */
3238 		if (intel_engine_is_idle(engine)) {
3239 			struct i915_request *rq;
3240 
3241 			rq = i915_request_alloc(engine,
3242 						dev_priv->kernel_context);
3243 			if (!IS_ERR(rq))
3244 				i915_request_add(rq);
3245 		}
3246 	}
3247 
3248 	i915_gem_restore_fences(dev_priv);
3249 }
3250 
i915_gem_reset_finish_engine(struct intel_engine_cs * engine)3251 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3252 {
3253 	engine->reset.finish(engine);
3254 
3255 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3256 }
3257 
i915_gem_reset_finish(struct drm_i915_private * dev_priv)3258 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3259 {
3260 	struct intel_engine_cs *engine;
3261 	enum intel_engine_id id;
3262 
3263 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3264 
3265 	for_each_engine(engine, dev_priv, id) {
3266 		engine->hangcheck.active_request = NULL;
3267 		i915_gem_reset_finish_engine(engine);
3268 	}
3269 }
3270 
nop_submit_request(struct i915_request * request)3271 static void nop_submit_request(struct i915_request *request)
3272 {
3273 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3274 		  request->engine->name,
3275 		  request->fence.context, request->fence.seqno);
3276 	dma_fence_set_error(&request->fence, -EIO);
3277 
3278 	i915_request_submit(request);
3279 }
3280 
nop_complete_submit_request(struct i915_request * request)3281 static void nop_complete_submit_request(struct i915_request *request)
3282 {
3283 	unsigned long flags;
3284 
3285 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3286 		  request->engine->name,
3287 		  request->fence.context, request->fence.seqno);
3288 	dma_fence_set_error(&request->fence, -EIO);
3289 
3290 	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3291 	__i915_request_submit(request);
3292 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3293 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3294 }
3295 
i915_gem_set_wedged(struct drm_i915_private * i915)3296 void i915_gem_set_wedged(struct drm_i915_private *i915)
3297 {
3298 	struct intel_engine_cs *engine;
3299 	enum intel_engine_id id;
3300 
3301 	GEM_TRACE("start\n");
3302 
3303 	if (GEM_SHOW_DEBUG()) {
3304 		struct drm_printer p = drm_debug_printer(__func__);
3305 
3306 		for_each_engine(engine, i915, id)
3307 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3308 	}
3309 
3310 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3311 	smp_mb__after_atomic();
3312 
3313 	/*
3314 	 * First, stop submission to hw, but do not yet complete requests by
3315 	 * rolling the global seqno forward (since this would complete requests
3316 	 * for which we haven't set the fence error to EIO yet).
3317 	 */
3318 	for_each_engine(engine, i915, id) {
3319 		i915_gem_reset_prepare_engine(engine);
3320 
3321 		engine->submit_request = nop_submit_request;
3322 		engine->schedule = NULL;
3323 	}
3324 	i915->caps.scheduler = 0;
3325 
3326 	/* Even if the GPU reset fails, it should still stop the engines */
3327 	intel_gpu_reset(i915, ALL_ENGINES);
3328 
3329 	/*
3330 	 * Make sure no one is running the old callback before we proceed with
3331 	 * cancelling requests and resetting the completion tracking. Otherwise
3332 	 * we might submit a request to the hardware which never completes.
3333 	 */
3334 	synchronize_rcu();
3335 
3336 	for_each_engine(engine, i915, id) {
3337 		/* Mark all executing requests as skipped */
3338 		engine->cancel_requests(engine);
3339 
3340 		/*
3341 		 * Only once we've force-cancelled all in-flight requests can we
3342 		 * start to complete all requests.
3343 		 */
3344 		engine->submit_request = nop_complete_submit_request;
3345 	}
3346 
3347 	/*
3348 	 * Make sure no request can slip through without getting completed by
3349 	 * either this call here to intel_engine_init_global_seqno, or the one
3350 	 * in nop_complete_submit_request.
3351 	 */
3352 	synchronize_rcu();
3353 
3354 	for_each_engine(engine, i915, id) {
3355 		unsigned long flags;
3356 
3357 		/*
3358 		 * Mark all pending requests as complete so that any concurrent
3359 		 * (lockless) lookup doesn't try and wait upon the request as we
3360 		 * reset it.
3361 		 */
3362 		spin_lock_irqsave(&engine->timeline.lock, flags);
3363 		intel_engine_init_global_seqno(engine,
3364 					       intel_engine_last_submit(engine));
3365 		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3366 
3367 		i915_gem_reset_finish_engine(engine);
3368 	}
3369 
3370 	GEM_TRACE("end\n");
3371 
3372 	wake_up_all(&i915->gpu_error.reset_queue);
3373 }
3374 
i915_gem_unset_wedged(struct drm_i915_private * i915)3375 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3376 {
3377 	struct i915_timeline *tl;
3378 
3379 	lockdep_assert_held(&i915->drm.struct_mutex);
3380 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3381 		return true;
3382 
3383 	GEM_TRACE("start\n");
3384 
3385 	/*
3386 	 * Before unwedging, make sure that all pending operations
3387 	 * are flushed and errored out - we may have requests waiting upon
3388 	 * third party fences. We marked all inflight requests as EIO, and
3389 	 * every execbuf since returned EIO, for consistency we want all
3390 	 * the currently pending requests to also be marked as EIO, which
3391 	 * is done inside our nop_submit_request - and so we must wait.
3392 	 *
3393 	 * No more can be submitted until we reset the wedged bit.
3394 	 */
3395 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3396 		struct i915_request *rq;
3397 
3398 		rq = i915_gem_active_peek(&tl->last_request,
3399 					  &i915->drm.struct_mutex);
3400 		if (!rq)
3401 			continue;
3402 
3403 		/*
3404 		 * We can't use our normal waiter as we want to
3405 		 * avoid recursively trying to handle the current
3406 		 * reset. The basic dma_fence_default_wait() installs
3407 		 * a callback for dma_fence_signal(), which is
3408 		 * triggered by our nop handler (indirectly, the
3409 		 * callback enables the signaler thread which is
3410 		 * woken by the nop_submit_request() advancing the seqno
3411 		 * and when the seqno passes the fence, the signaler
3412 		 * then signals the fence waking us up).
3413 		 */
3414 		if (dma_fence_default_wait(&rq->fence, true,
3415 					   MAX_SCHEDULE_TIMEOUT) < 0)
3416 			return false;
3417 	}
3418 	i915_retire_requests(i915);
3419 	GEM_BUG_ON(i915->gt.active_requests);
3420 
3421 	/*
3422 	 * Undo nop_submit_request. We prevent all new i915 requests from
3423 	 * being queued (by disallowing execbuf whilst wedged) so having
3424 	 * waited for all active requests above, we know the system is idle
3425 	 * and do not have to worry about a thread being inside
3426 	 * engine->submit_request() as we swap over. So unlike installing
3427 	 * the nop_submit_request on reset, we can do this from normal
3428 	 * context and do not require stop_machine().
3429 	 */
3430 	intel_engines_reset_default_submission(i915);
3431 	i915_gem_contexts_lost(i915);
3432 
3433 	GEM_TRACE("end\n");
3434 
3435 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3436 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3437 
3438 	return true;
3439 }
3440 
3441 static void
i915_gem_retire_work_handler(struct work_struct * work)3442 i915_gem_retire_work_handler(struct work_struct *work)
3443 {
3444 	struct drm_i915_private *dev_priv =
3445 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3446 	struct drm_device *dev = &dev_priv->drm;
3447 
3448 	/* Come back later if the device is busy... */
3449 	if (mutex_trylock(&dev->struct_mutex)) {
3450 		i915_retire_requests(dev_priv);
3451 		mutex_unlock(&dev->struct_mutex);
3452 	}
3453 
3454 	/*
3455 	 * Keep the retire handler running until we are finally idle.
3456 	 * We do not need to do this test under locking as in the worst-case
3457 	 * we queue the retire worker once too often.
3458 	 */
3459 	if (READ_ONCE(dev_priv->gt.awake))
3460 		queue_delayed_work(dev_priv->wq,
3461 				   &dev_priv->gt.retire_work,
3462 				   round_jiffies_up_relative(HZ));
3463 }
3464 
shrink_caches(struct drm_i915_private * i915)3465 static void shrink_caches(struct drm_i915_private *i915)
3466 {
3467 	/*
3468 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3469 	 * filled slabs to prioritise allocating from the mostly full slabs,
3470 	 * with the aim of reducing fragmentation.
3471 	 */
3472 	kmem_cache_shrink(i915->priorities);
3473 	kmem_cache_shrink(i915->dependencies);
3474 	kmem_cache_shrink(i915->requests);
3475 	kmem_cache_shrink(i915->luts);
3476 	kmem_cache_shrink(i915->vmas);
3477 	kmem_cache_shrink(i915->objects);
3478 }
3479 
3480 struct sleep_rcu_work {
3481 	union {
3482 		struct rcu_head rcu;
3483 		struct work_struct work;
3484 	};
3485 	struct drm_i915_private *i915;
3486 	unsigned int epoch;
3487 };
3488 
3489 static inline bool
same_epoch(struct drm_i915_private * i915,unsigned int epoch)3490 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3491 {
3492 	/*
3493 	 * There is a small chance that the epoch wrapped since we started
3494 	 * sleeping. If we assume that epoch is at least a u32, then it will
3495 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3496 	 */
3497 	return epoch == READ_ONCE(i915->gt.epoch);
3498 }
3499 
__sleep_work(struct work_struct * work)3500 static void __sleep_work(struct work_struct *work)
3501 {
3502 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3503 	struct drm_i915_private *i915 = s->i915;
3504 	unsigned int epoch = s->epoch;
3505 
3506 	kfree(s);
3507 	if (same_epoch(i915, epoch))
3508 		shrink_caches(i915);
3509 }
3510 
__sleep_rcu(struct rcu_head * rcu)3511 static void __sleep_rcu(struct rcu_head *rcu)
3512 {
3513 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3514 	struct drm_i915_private *i915 = s->i915;
3515 
3516 	if (same_epoch(i915, s->epoch)) {
3517 		INIT_WORK(&s->work, __sleep_work);
3518 		queue_work(i915->wq, &s->work);
3519 	} else {
3520 		kfree(s);
3521 	}
3522 }
3523 
3524 static inline bool
new_requests_since_last_retire(const struct drm_i915_private * i915)3525 new_requests_since_last_retire(const struct drm_i915_private *i915)
3526 {
3527 	return (READ_ONCE(i915->gt.active_requests) ||
3528 		work_pending(&i915->gt.idle_work.work));
3529 }
3530 
assert_kernel_context_is_current(struct drm_i915_private * i915)3531 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3532 {
3533 	struct intel_engine_cs *engine;
3534 	enum intel_engine_id id;
3535 
3536 	if (i915_terminally_wedged(&i915->gpu_error))
3537 		return;
3538 
3539 	GEM_BUG_ON(i915->gt.active_requests);
3540 	for_each_engine(engine, i915, id) {
3541 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3542 		GEM_BUG_ON(engine->last_retired_context !=
3543 			   to_intel_context(i915->kernel_context, engine));
3544 	}
3545 }
3546 
3547 static void
i915_gem_idle_work_handler(struct work_struct * work)3548 i915_gem_idle_work_handler(struct work_struct *work)
3549 {
3550 	struct drm_i915_private *dev_priv =
3551 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3552 	unsigned int epoch = I915_EPOCH_INVALID;
3553 	bool rearm_hangcheck;
3554 
3555 	if (!READ_ONCE(dev_priv->gt.awake))
3556 		return;
3557 
3558 	if (READ_ONCE(dev_priv->gt.active_requests))
3559 		return;
3560 
3561 	/*
3562 	 * Flush out the last user context, leaving only the pinned
3563 	 * kernel context resident. When we are idling on the kernel_context,
3564 	 * no more new requests (with a context switch) are emitted and we
3565 	 * can finally rest. A consequence is that the idle work handler is
3566 	 * always called at least twice before idling (and if the system is
3567 	 * idle that implies a round trip through the retire worker).
3568 	 */
3569 	mutex_lock(&dev_priv->drm.struct_mutex);
3570 	i915_gem_switch_to_kernel_context(dev_priv);
3571 	mutex_unlock(&dev_priv->drm.struct_mutex);
3572 
3573 	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3574 		  READ_ONCE(dev_priv->gt.active_requests));
3575 
3576 	/*
3577 	 * Wait for last execlists context complete, but bail out in case a
3578 	 * new request is submitted. As we don't trust the hardware, we
3579 	 * continue on if the wait times out. This is necessary to allow
3580 	 * the machine to suspend even if the hardware dies, and we will
3581 	 * try to recover in resume (after depriving the hardware of power,
3582 	 * it may be in a better mmod).
3583 	 */
3584 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3585 		   intel_engines_are_idle(dev_priv),
3586 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3587 		   10, 500);
3588 
3589 	rearm_hangcheck =
3590 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3591 
3592 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3593 		/* Currently busy, come back later */
3594 		mod_delayed_work(dev_priv->wq,
3595 				 &dev_priv->gt.idle_work,
3596 				 msecs_to_jiffies(50));
3597 		goto out_rearm;
3598 	}
3599 
3600 	/*
3601 	 * New request retired after this work handler started, extend active
3602 	 * period until next instance of the work.
3603 	 */
3604 	if (new_requests_since_last_retire(dev_priv))
3605 		goto out_unlock;
3606 
3607 	epoch = __i915_gem_park(dev_priv);
3608 
3609 	assert_kernel_context_is_current(dev_priv);
3610 
3611 	rearm_hangcheck = false;
3612 out_unlock:
3613 	mutex_unlock(&dev_priv->drm.struct_mutex);
3614 
3615 out_rearm:
3616 	if (rearm_hangcheck) {
3617 		GEM_BUG_ON(!dev_priv->gt.awake);
3618 		i915_queue_hangcheck(dev_priv);
3619 	}
3620 
3621 	/*
3622 	 * When we are idle, it is an opportune time to reap our caches.
3623 	 * However, we have many objects that utilise RCU and the ordered
3624 	 * i915->wq that this work is executing on. To try and flush any
3625 	 * pending frees now we are idle, we first wait for an RCU grace
3626 	 * period, and then queue a task (that will run last on the wq) to
3627 	 * shrink and re-optimize the caches.
3628 	 */
3629 	if (same_epoch(dev_priv, epoch)) {
3630 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3631 		if (s) {
3632 			s->i915 = dev_priv;
3633 			s->epoch = epoch;
3634 			call_rcu(&s->rcu, __sleep_rcu);
3635 		}
3636 	}
3637 }
3638 
i915_gem_close_object(struct drm_gem_object * gem,struct drm_file * file)3639 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3640 {
3641 	struct drm_i915_private *i915 = to_i915(gem->dev);
3642 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3643 	struct drm_i915_file_private *fpriv = file->driver_priv;
3644 	struct i915_lut_handle *lut, *ln;
3645 
3646 	mutex_lock(&i915->drm.struct_mutex);
3647 
3648 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3649 		struct i915_gem_context *ctx = lut->ctx;
3650 		struct i915_vma *vma;
3651 
3652 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3653 		if (ctx->file_priv != fpriv)
3654 			continue;
3655 
3656 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3657 		GEM_BUG_ON(vma->obj != obj);
3658 
3659 		/* We allow the process to have multiple handles to the same
3660 		 * vma, in the same fd namespace, by virtue of flink/open.
3661 		 */
3662 		GEM_BUG_ON(!vma->open_count);
3663 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3664 			i915_vma_close(vma);
3665 
3666 		list_del(&lut->obj_link);
3667 		list_del(&lut->ctx_link);
3668 
3669 		kmem_cache_free(i915->luts, lut);
3670 		__i915_gem_object_release_unless_active(obj);
3671 	}
3672 
3673 	mutex_unlock(&i915->drm.struct_mutex);
3674 }
3675 
to_wait_timeout(s64 timeout_ns)3676 static unsigned long to_wait_timeout(s64 timeout_ns)
3677 {
3678 	if (timeout_ns < 0)
3679 		return MAX_SCHEDULE_TIMEOUT;
3680 
3681 	if (timeout_ns == 0)
3682 		return 0;
3683 
3684 	return nsecs_to_jiffies_timeout(timeout_ns);
3685 }
3686 
3687 /**
3688  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3689  * @dev: drm device pointer
3690  * @data: ioctl data blob
3691  * @file: drm file pointer
3692  *
3693  * Returns 0 if successful, else an error is returned with the remaining time in
3694  * the timeout parameter.
3695  *  -ETIME: object is still busy after timeout
3696  *  -ERESTARTSYS: signal interrupted the wait
3697  *  -ENONENT: object doesn't exist
3698  * Also possible, but rare:
3699  *  -EAGAIN: incomplete, restart syscall
3700  *  -ENOMEM: damn
3701  *  -ENODEV: Internal IRQ fail
3702  *  -E?: The add request failed
3703  *
3704  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3705  * non-zero timeout parameter the wait ioctl will wait for the given number of
3706  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3707  * without holding struct_mutex the object may become re-busied before this
3708  * function completes. A similar but shorter * race condition exists in the busy
3709  * ioctl
3710  */
3711 int
i915_gem_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3712 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3713 {
3714 	struct drm_i915_gem_wait *args = data;
3715 	struct drm_i915_gem_object *obj;
3716 	ktime_t start;
3717 	long ret;
3718 
3719 	if (args->flags != 0)
3720 		return -EINVAL;
3721 
3722 	obj = i915_gem_object_lookup(file, args->bo_handle);
3723 	if (!obj)
3724 		return -ENOENT;
3725 
3726 	start = ktime_get();
3727 
3728 	ret = i915_gem_object_wait(obj,
3729 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3730 				   to_wait_timeout(args->timeout_ns),
3731 				   to_rps_client(file));
3732 
3733 	if (args->timeout_ns > 0) {
3734 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3735 		if (args->timeout_ns < 0)
3736 			args->timeout_ns = 0;
3737 
3738 		/*
3739 		 * Apparently ktime isn't accurate enough and occasionally has a
3740 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3741 		 * things up to make the test happy. We allow up to 1 jiffy.
3742 		 *
3743 		 * This is a regression from the timespec->ktime conversion.
3744 		 */
3745 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3746 			args->timeout_ns = 0;
3747 
3748 		/* Asked to wait beyond the jiffie/scheduler precision? */
3749 		if (ret == -ETIME && args->timeout_ns)
3750 			ret = -EAGAIN;
3751 	}
3752 
3753 	i915_gem_object_put(obj);
3754 	return ret;
3755 }
3756 
wait_for_timeline(struct i915_timeline * tl,unsigned int flags,long timeout)3757 static long wait_for_timeline(struct i915_timeline *tl,
3758 			      unsigned int flags, long timeout)
3759 {
3760 	struct i915_request *rq;
3761 
3762 	rq = i915_gem_active_get_unlocked(&tl->last_request);
3763 	if (!rq)
3764 		return timeout;
3765 
3766 	/*
3767 	 * "Race-to-idle".
3768 	 *
3769 	 * Switching to the kernel context is often used a synchronous
3770 	 * step prior to idling, e.g. in suspend for flushing all
3771 	 * current operations to memory before sleeping. These we
3772 	 * want to complete as quickly as possible to avoid prolonged
3773 	 * stalls, so allow the gpu to boost to maximum clocks.
3774 	 */
3775 	if (flags & I915_WAIT_FOR_IDLE_BOOST)
3776 		gen6_rps_boost(rq, NULL);
3777 
3778 	timeout = i915_request_wait(rq, flags, timeout);
3779 	i915_request_put(rq);
3780 
3781 	return timeout;
3782 }
3783 
wait_for_engines(struct drm_i915_private * i915)3784 static int wait_for_engines(struct drm_i915_private *i915)
3785 {
3786 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3787 		dev_err(i915->drm.dev,
3788 			"Failed to idle engines, declaring wedged!\n");
3789 		GEM_TRACE_DUMP();
3790 		i915_gem_set_wedged(i915);
3791 		return -EIO;
3792 	}
3793 
3794 	return 0;
3795 }
3796 
i915_gem_wait_for_idle(struct drm_i915_private * i915,unsigned int flags,long timeout)3797 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3798 			   unsigned int flags, long timeout)
3799 {
3800 	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3801 		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3802 		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3803 
3804 	/* If the device is asleep, we have no requests outstanding */
3805 	if (!READ_ONCE(i915->gt.awake))
3806 		return 0;
3807 
3808 	if (flags & I915_WAIT_LOCKED) {
3809 		struct i915_timeline *tl;
3810 		int err;
3811 
3812 		lockdep_assert_held(&i915->drm.struct_mutex);
3813 
3814 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3815 			timeout = wait_for_timeline(tl, flags, timeout);
3816 			if (timeout < 0)
3817 				return timeout;
3818 		}
3819 
3820 		err = wait_for_engines(i915);
3821 		if (err)
3822 			return err;
3823 
3824 		i915_retire_requests(i915);
3825 		GEM_BUG_ON(i915->gt.active_requests);
3826 	} else {
3827 		struct intel_engine_cs *engine;
3828 		enum intel_engine_id id;
3829 
3830 		for_each_engine(engine, i915, id) {
3831 			struct i915_timeline *tl = &engine->timeline;
3832 
3833 			timeout = wait_for_timeline(tl, flags, timeout);
3834 			if (timeout < 0)
3835 				return timeout;
3836 		}
3837 	}
3838 
3839 	return 0;
3840 }
3841 
__i915_gem_object_flush_for_display(struct drm_i915_gem_object * obj)3842 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3843 {
3844 	/*
3845 	 * We manually flush the CPU domain so that we can override and
3846 	 * force the flush for the display, and perform it asyncrhonously.
3847 	 */
3848 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3849 	if (obj->cache_dirty)
3850 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3851 	obj->write_domain = 0;
3852 }
3853 
i915_gem_object_flush_if_display(struct drm_i915_gem_object * obj)3854 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3855 {
3856 	if (!READ_ONCE(obj->pin_global))
3857 		return;
3858 
3859 	mutex_lock(&obj->base.dev->struct_mutex);
3860 	__i915_gem_object_flush_for_display(obj);
3861 	mutex_unlock(&obj->base.dev->struct_mutex);
3862 }
3863 
3864 /**
3865  * Moves a single object to the WC read, and possibly write domain.
3866  * @obj: object to act on
3867  * @write: ask for write access or read only
3868  *
3869  * This function returns when the move is complete, including waiting on
3870  * flushes to occur.
3871  */
3872 int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object * obj,bool write)3873 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3874 {
3875 	int ret;
3876 
3877 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3878 
3879 	ret = i915_gem_object_wait(obj,
3880 				   I915_WAIT_INTERRUPTIBLE |
3881 				   I915_WAIT_LOCKED |
3882 				   (write ? I915_WAIT_ALL : 0),
3883 				   MAX_SCHEDULE_TIMEOUT,
3884 				   NULL);
3885 	if (ret)
3886 		return ret;
3887 
3888 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3889 		return 0;
3890 
3891 	/* Flush and acquire obj->pages so that we are coherent through
3892 	 * direct access in memory with previous cached writes through
3893 	 * shmemfs and that our cache domain tracking remains valid.
3894 	 * For example, if the obj->filp was moved to swap without us
3895 	 * being notified and releasing the pages, we would mistakenly
3896 	 * continue to assume that the obj remained out of the CPU cached
3897 	 * domain.
3898 	 */
3899 	ret = i915_gem_object_pin_pages(obj);
3900 	if (ret)
3901 		return ret;
3902 
3903 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3904 
3905 	/* Serialise direct access to this object with the barriers for
3906 	 * coherent writes from the GPU, by effectively invalidating the
3907 	 * WC domain upon first access.
3908 	 */
3909 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3910 		mb();
3911 
3912 	/* It should now be out of any other write domains, and we can update
3913 	 * the domain values for our changes.
3914 	 */
3915 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3916 	obj->read_domains |= I915_GEM_DOMAIN_WC;
3917 	if (write) {
3918 		obj->read_domains = I915_GEM_DOMAIN_WC;
3919 		obj->write_domain = I915_GEM_DOMAIN_WC;
3920 		obj->mm.dirty = true;
3921 	}
3922 
3923 	i915_gem_object_unpin_pages(obj);
3924 	return 0;
3925 }
3926 
3927 /**
3928  * Moves a single object to the GTT read, and possibly write domain.
3929  * @obj: object to act on
3930  * @write: ask for write access or read only
3931  *
3932  * This function returns when the move is complete, including waiting on
3933  * flushes to occur.
3934  */
3935 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)3936 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3937 {
3938 	int ret;
3939 
3940 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3941 
3942 	ret = i915_gem_object_wait(obj,
3943 				   I915_WAIT_INTERRUPTIBLE |
3944 				   I915_WAIT_LOCKED |
3945 				   (write ? I915_WAIT_ALL : 0),
3946 				   MAX_SCHEDULE_TIMEOUT,
3947 				   NULL);
3948 	if (ret)
3949 		return ret;
3950 
3951 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3952 		return 0;
3953 
3954 	/* Flush and acquire obj->pages so that we are coherent through
3955 	 * direct access in memory with previous cached writes through
3956 	 * shmemfs and that our cache domain tracking remains valid.
3957 	 * For example, if the obj->filp was moved to swap without us
3958 	 * being notified and releasing the pages, we would mistakenly
3959 	 * continue to assume that the obj remained out of the CPU cached
3960 	 * domain.
3961 	 */
3962 	ret = i915_gem_object_pin_pages(obj);
3963 	if (ret)
3964 		return ret;
3965 
3966 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3967 
3968 	/* Serialise direct access to this object with the barriers for
3969 	 * coherent writes from the GPU, by effectively invalidating the
3970 	 * GTT domain upon first access.
3971 	 */
3972 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3973 		mb();
3974 
3975 	/* It should now be out of any other write domains, and we can update
3976 	 * the domain values for our changes.
3977 	 */
3978 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3979 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3980 	if (write) {
3981 		obj->read_domains = I915_GEM_DOMAIN_GTT;
3982 		obj->write_domain = I915_GEM_DOMAIN_GTT;
3983 		obj->mm.dirty = true;
3984 	}
3985 
3986 	i915_gem_object_unpin_pages(obj);
3987 	return 0;
3988 }
3989 
3990 /**
3991  * Changes the cache-level of an object across all VMA.
3992  * @obj: object to act on
3993  * @cache_level: new cache level to set for the object
3994  *
3995  * After this function returns, the object will be in the new cache-level
3996  * across all GTT and the contents of the backing storage will be coherent,
3997  * with respect to the new cache-level. In order to keep the backing storage
3998  * coherent for all users, we only allow a single cache level to be set
3999  * globally on the object and prevent it from being changed whilst the
4000  * hardware is reading from the object. That is if the object is currently
4001  * on the scanout it will be set to uncached (or equivalent display
4002  * cache coherency) and all non-MOCS GPU access will also be uncached so
4003  * that all direct access to the scanout remains coherent.
4004  */
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)4005 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4006 				    enum i915_cache_level cache_level)
4007 {
4008 	struct i915_vma *vma;
4009 	int ret;
4010 
4011 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4012 
4013 	if (obj->cache_level == cache_level)
4014 		return 0;
4015 
4016 	/* Inspect the list of currently bound VMA and unbind any that would
4017 	 * be invalid given the new cache-level. This is principally to
4018 	 * catch the issue of the CS prefetch crossing page boundaries and
4019 	 * reading an invalid PTE on older architectures.
4020 	 */
4021 restart:
4022 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4023 		if (!drm_mm_node_allocated(&vma->node))
4024 			continue;
4025 
4026 		if (i915_vma_is_pinned(vma)) {
4027 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4028 			return -EBUSY;
4029 		}
4030 
4031 		if (!i915_vma_is_closed(vma) &&
4032 		    i915_gem_valid_gtt_space(vma, cache_level))
4033 			continue;
4034 
4035 		ret = i915_vma_unbind(vma);
4036 		if (ret)
4037 			return ret;
4038 
4039 		/* As unbinding may affect other elements in the
4040 		 * obj->vma_list (due to side-effects from retiring
4041 		 * an active vma), play safe and restart the iterator.
4042 		 */
4043 		goto restart;
4044 	}
4045 
4046 	/* We can reuse the existing drm_mm nodes but need to change the
4047 	 * cache-level on the PTE. We could simply unbind them all and
4048 	 * rebind with the correct cache-level on next use. However since
4049 	 * we already have a valid slot, dma mapping, pages etc, we may as
4050 	 * rewrite the PTE in the belief that doing so tramples upon less
4051 	 * state and so involves less work.
4052 	 */
4053 	if (obj->bind_count) {
4054 		/* Before we change the PTE, the GPU must not be accessing it.
4055 		 * If we wait upon the object, we know that all the bound
4056 		 * VMA are no longer active.
4057 		 */
4058 		ret = i915_gem_object_wait(obj,
4059 					   I915_WAIT_INTERRUPTIBLE |
4060 					   I915_WAIT_LOCKED |
4061 					   I915_WAIT_ALL,
4062 					   MAX_SCHEDULE_TIMEOUT,
4063 					   NULL);
4064 		if (ret)
4065 			return ret;
4066 
4067 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4068 		    cache_level != I915_CACHE_NONE) {
4069 			/* Access to snoopable pages through the GTT is
4070 			 * incoherent and on some machines causes a hard
4071 			 * lockup. Relinquish the CPU mmaping to force
4072 			 * userspace to refault in the pages and we can
4073 			 * then double check if the GTT mapping is still
4074 			 * valid for that pointer access.
4075 			 */
4076 			i915_gem_release_mmap(obj);
4077 
4078 			/* As we no longer need a fence for GTT access,
4079 			 * we can relinquish it now (and so prevent having
4080 			 * to steal a fence from someone else on the next
4081 			 * fence request). Note GPU activity would have
4082 			 * dropped the fence as all snoopable access is
4083 			 * supposed to be linear.
4084 			 */
4085 			for_each_ggtt_vma(vma, obj) {
4086 				ret = i915_vma_put_fence(vma);
4087 				if (ret)
4088 					return ret;
4089 			}
4090 		} else {
4091 			/* We either have incoherent backing store and
4092 			 * so no GTT access or the architecture is fully
4093 			 * coherent. In such cases, existing GTT mmaps
4094 			 * ignore the cache bit in the PTE and we can
4095 			 * rewrite it without confusing the GPU or having
4096 			 * to force userspace to fault back in its mmaps.
4097 			 */
4098 		}
4099 
4100 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4101 			if (!drm_mm_node_allocated(&vma->node))
4102 				continue;
4103 
4104 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4105 			if (ret)
4106 				return ret;
4107 		}
4108 	}
4109 
4110 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4111 		vma->node.color = cache_level;
4112 	i915_gem_object_set_cache_coherency(obj, cache_level);
4113 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4114 
4115 	return 0;
4116 }
4117 
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4118 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4119 			       struct drm_file *file)
4120 {
4121 	struct drm_i915_gem_caching *args = data;
4122 	struct drm_i915_gem_object *obj;
4123 	int err = 0;
4124 
4125 	rcu_read_lock();
4126 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4127 	if (!obj) {
4128 		err = -ENOENT;
4129 		goto out;
4130 	}
4131 
4132 	switch (obj->cache_level) {
4133 	case I915_CACHE_LLC:
4134 	case I915_CACHE_L3_LLC:
4135 		args->caching = I915_CACHING_CACHED;
4136 		break;
4137 
4138 	case I915_CACHE_WT:
4139 		args->caching = I915_CACHING_DISPLAY;
4140 		break;
4141 
4142 	default:
4143 		args->caching = I915_CACHING_NONE;
4144 		break;
4145 	}
4146 out:
4147 	rcu_read_unlock();
4148 	return err;
4149 }
4150 
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4151 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4152 			       struct drm_file *file)
4153 {
4154 	struct drm_i915_private *i915 = to_i915(dev);
4155 	struct drm_i915_gem_caching *args = data;
4156 	struct drm_i915_gem_object *obj;
4157 	enum i915_cache_level level;
4158 	int ret = 0;
4159 
4160 	switch (args->caching) {
4161 	case I915_CACHING_NONE:
4162 		level = I915_CACHE_NONE;
4163 		break;
4164 	case I915_CACHING_CACHED:
4165 		/*
4166 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4167 		 * snooped mapping may leave stale data in a corresponding CPU
4168 		 * cacheline, whereas normally such cachelines would get
4169 		 * invalidated.
4170 		 */
4171 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4172 			return -ENODEV;
4173 
4174 		level = I915_CACHE_LLC;
4175 		break;
4176 	case I915_CACHING_DISPLAY:
4177 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4178 		break;
4179 	default:
4180 		return -EINVAL;
4181 	}
4182 
4183 	obj = i915_gem_object_lookup(file, args->handle);
4184 	if (!obj)
4185 		return -ENOENT;
4186 
4187 	/*
4188 	 * The caching mode of proxy object is handled by its generator, and
4189 	 * not allowed to be changed by userspace.
4190 	 */
4191 	if (i915_gem_object_is_proxy(obj)) {
4192 		ret = -ENXIO;
4193 		goto out;
4194 	}
4195 
4196 	if (obj->cache_level == level)
4197 		goto out;
4198 
4199 	ret = i915_gem_object_wait(obj,
4200 				   I915_WAIT_INTERRUPTIBLE,
4201 				   MAX_SCHEDULE_TIMEOUT,
4202 				   to_rps_client(file));
4203 	if (ret)
4204 		goto out;
4205 
4206 	ret = i915_mutex_lock_interruptible(dev);
4207 	if (ret)
4208 		goto out;
4209 
4210 	ret = i915_gem_object_set_cache_level(obj, level);
4211 	mutex_unlock(&dev->struct_mutex);
4212 
4213 out:
4214 	i915_gem_object_put(obj);
4215 	return ret;
4216 }
4217 
4218 /*
4219  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4220  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4221  * (for pageflips). We only flush the caches while preparing the buffer for
4222  * display, the callers are responsible for frontbuffer flush.
4223  */
4224 struct i915_vma *
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,u32 alignment,const struct i915_ggtt_view * view,unsigned int flags)4225 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4226 				     u32 alignment,
4227 				     const struct i915_ggtt_view *view,
4228 				     unsigned int flags)
4229 {
4230 	struct i915_vma *vma;
4231 	int ret;
4232 
4233 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4234 
4235 	/* Mark the global pin early so that we account for the
4236 	 * display coherency whilst setting up the cache domains.
4237 	 */
4238 	obj->pin_global++;
4239 
4240 	/* The display engine is not coherent with the LLC cache on gen6.  As
4241 	 * a result, we make sure that the pinning that is about to occur is
4242 	 * done with uncached PTEs. This is lowest common denominator for all
4243 	 * chipsets.
4244 	 *
4245 	 * However for gen6+, we could do better by using the GFDT bit instead
4246 	 * of uncaching, which would allow us to flush all the LLC-cached data
4247 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4248 	 */
4249 	ret = i915_gem_object_set_cache_level(obj,
4250 					      HAS_WT(to_i915(obj->base.dev)) ?
4251 					      I915_CACHE_WT : I915_CACHE_NONE);
4252 	if (ret) {
4253 		vma = ERR_PTR(ret);
4254 		goto err_unpin_global;
4255 	}
4256 
4257 	/* As the user may map the buffer once pinned in the display plane
4258 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4259 	 * always use map_and_fenceable for all scanout buffers. However,
4260 	 * it may simply be too big to fit into mappable, in which case
4261 	 * put it anyway and hope that userspace can cope (but always first
4262 	 * try to preserve the existing ABI).
4263 	 */
4264 	vma = ERR_PTR(-ENOSPC);
4265 	if ((flags & PIN_MAPPABLE) == 0 &&
4266 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4267 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4268 					       flags |
4269 					       PIN_MAPPABLE |
4270 					       PIN_NONBLOCK);
4271 	if (IS_ERR(vma))
4272 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4273 	if (IS_ERR(vma))
4274 		goto err_unpin_global;
4275 
4276 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4277 
4278 	__i915_gem_object_flush_for_display(obj);
4279 
4280 	/* It should now be out of any other write domains, and we can update
4281 	 * the domain values for our changes.
4282 	 */
4283 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4284 
4285 	return vma;
4286 
4287 err_unpin_global:
4288 	obj->pin_global--;
4289 	return vma;
4290 }
4291 
4292 void
i915_gem_object_unpin_from_display_plane(struct i915_vma * vma)4293 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4294 {
4295 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4296 
4297 	if (WARN_ON(vma->obj->pin_global == 0))
4298 		return;
4299 
4300 	if (--vma->obj->pin_global == 0)
4301 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4302 
4303 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4304 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4305 
4306 	i915_vma_unpin(vma);
4307 }
4308 
4309 /**
4310  * Moves a single object to the CPU read, and possibly write domain.
4311  * @obj: object to act on
4312  * @write: requesting write or read-only access
4313  *
4314  * This function returns when the move is complete, including waiting on
4315  * flushes to occur.
4316  */
4317 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)4318 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4319 {
4320 	int ret;
4321 
4322 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4323 
4324 	ret = i915_gem_object_wait(obj,
4325 				   I915_WAIT_INTERRUPTIBLE |
4326 				   I915_WAIT_LOCKED |
4327 				   (write ? I915_WAIT_ALL : 0),
4328 				   MAX_SCHEDULE_TIMEOUT,
4329 				   NULL);
4330 	if (ret)
4331 		return ret;
4332 
4333 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4334 
4335 	/* Flush the CPU cache if it's still invalid. */
4336 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4337 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4338 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4339 	}
4340 
4341 	/* It should now be out of any other write domains, and we can update
4342 	 * the domain values for our changes.
4343 	 */
4344 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4345 
4346 	/* If we're writing through the CPU, then the GPU read domains will
4347 	 * need to be invalidated at next use.
4348 	 */
4349 	if (write)
4350 		__start_cpu_write(obj);
4351 
4352 	return 0;
4353 }
4354 
4355 /* Throttle our rendering by waiting until the ring has completed our requests
4356  * emitted over 20 msec ago.
4357  *
4358  * Note that if we were to use the current jiffies each time around the loop,
4359  * we wouldn't escape the function with any frames outstanding if the time to
4360  * render a frame was over 20ms.
4361  *
4362  * This should get us reasonable parallelism between CPU and GPU but also
4363  * relatively low latency when blocking on a particular request to finish.
4364  */
4365 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)4366 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4367 {
4368 	struct drm_i915_private *dev_priv = to_i915(dev);
4369 	struct drm_i915_file_private *file_priv = file->driver_priv;
4370 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4371 	struct i915_request *request, *target = NULL;
4372 	long ret;
4373 
4374 	/* ABI: return -EIO if already wedged */
4375 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4376 		return -EIO;
4377 
4378 	spin_lock(&file_priv->mm.lock);
4379 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4380 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4381 			break;
4382 
4383 		if (target) {
4384 			list_del(&target->client_link);
4385 			target->file_priv = NULL;
4386 		}
4387 
4388 		target = request;
4389 	}
4390 	if (target)
4391 		i915_request_get(target);
4392 	spin_unlock(&file_priv->mm.lock);
4393 
4394 	if (target == NULL)
4395 		return 0;
4396 
4397 	ret = i915_request_wait(target,
4398 				I915_WAIT_INTERRUPTIBLE,
4399 				MAX_SCHEDULE_TIMEOUT);
4400 	i915_request_put(target);
4401 
4402 	return ret < 0 ? ret : 0;
4403 }
4404 
4405 struct i915_vma *
i915_gem_object_ggtt_pin(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view,u64 size,u64 alignment,u64 flags)4406 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4407 			 const struct i915_ggtt_view *view,
4408 			 u64 size,
4409 			 u64 alignment,
4410 			 u64 flags)
4411 {
4412 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4413 	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4414 	struct i915_vma *vma;
4415 	int ret;
4416 
4417 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4418 
4419 	if (flags & PIN_MAPPABLE &&
4420 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4421 		/* If the required space is larger than the available
4422 		 * aperture, we will not able to find a slot for the
4423 		 * object and unbinding the object now will be in
4424 		 * vain. Worse, doing so may cause us to ping-pong
4425 		 * the object in and out of the Global GTT and
4426 		 * waste a lot of cycles under the mutex.
4427 		 */
4428 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4429 			return ERR_PTR(-E2BIG);
4430 
4431 		/* If NONBLOCK is set the caller is optimistically
4432 		 * trying to cache the full object within the mappable
4433 		 * aperture, and *must* have a fallback in place for
4434 		 * situations where we cannot bind the object. We
4435 		 * can be a little more lax here and use the fallback
4436 		 * more often to avoid costly migrations of ourselves
4437 		 * and other objects within the aperture.
4438 		 *
4439 		 * Half-the-aperture is used as a simple heuristic.
4440 		 * More interesting would to do search for a free
4441 		 * block prior to making the commitment to unbind.
4442 		 * That caters for the self-harm case, and with a
4443 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4444 		 * we could try to minimise harm to others.
4445 		 */
4446 		if (flags & PIN_NONBLOCK &&
4447 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4448 			return ERR_PTR(-ENOSPC);
4449 	}
4450 
4451 	vma = i915_vma_instance(obj, vm, view);
4452 	if (unlikely(IS_ERR(vma)))
4453 		return vma;
4454 
4455 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4456 		if (flags & PIN_NONBLOCK) {
4457 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4458 				return ERR_PTR(-ENOSPC);
4459 
4460 			if (flags & PIN_MAPPABLE &&
4461 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4462 				return ERR_PTR(-ENOSPC);
4463 		}
4464 
4465 		WARN(i915_vma_is_pinned(vma),
4466 		     "bo is already pinned in ggtt with incorrect alignment:"
4467 		     " offset=%08x, req.alignment=%llx,"
4468 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4469 		     i915_ggtt_offset(vma), alignment,
4470 		     !!(flags & PIN_MAPPABLE),
4471 		     i915_vma_is_map_and_fenceable(vma));
4472 		ret = i915_vma_unbind(vma);
4473 		if (ret)
4474 			return ERR_PTR(ret);
4475 	}
4476 
4477 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4478 	if (ret)
4479 		return ERR_PTR(ret);
4480 
4481 	return vma;
4482 }
4483 
__busy_read_flag(unsigned int id)4484 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4485 {
4486 	/* Note that we could alias engines in the execbuf API, but
4487 	 * that would be very unwise as it prevents userspace from
4488 	 * fine control over engine selection. Ahem.
4489 	 *
4490 	 * This should be something like EXEC_MAX_ENGINE instead of
4491 	 * I915_NUM_ENGINES.
4492 	 */
4493 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4494 	return 0x10000 << id;
4495 }
4496 
__busy_write_id(unsigned int id)4497 static __always_inline unsigned int __busy_write_id(unsigned int id)
4498 {
4499 	/* The uABI guarantees an active writer is also amongst the read
4500 	 * engines. This would be true if we accessed the activity tracking
4501 	 * under the lock, but as we perform the lookup of the object and
4502 	 * its activity locklessly we can not guarantee that the last_write
4503 	 * being active implies that we have set the same engine flag from
4504 	 * last_read - hence we always set both read and write busy for
4505 	 * last_write.
4506 	 */
4507 	return id | __busy_read_flag(id);
4508 }
4509 
4510 static __always_inline unsigned int
__busy_set_if_active(const struct dma_fence * fence,unsigned int (* flag)(unsigned int id))4511 __busy_set_if_active(const struct dma_fence *fence,
4512 		     unsigned int (*flag)(unsigned int id))
4513 {
4514 	struct i915_request *rq;
4515 
4516 	/* We have to check the current hw status of the fence as the uABI
4517 	 * guarantees forward progress. We could rely on the idle worker
4518 	 * to eventually flush us, but to minimise latency just ask the
4519 	 * hardware.
4520 	 *
4521 	 * Note we only report on the status of native fences.
4522 	 */
4523 	if (!dma_fence_is_i915(fence))
4524 		return 0;
4525 
4526 	/* opencode to_request() in order to avoid const warnings */
4527 	rq = container_of(fence, struct i915_request, fence);
4528 	if (i915_request_completed(rq))
4529 		return 0;
4530 
4531 	return flag(rq->engine->uabi_id);
4532 }
4533 
4534 static __always_inline unsigned int
busy_check_reader(const struct dma_fence * fence)4535 busy_check_reader(const struct dma_fence *fence)
4536 {
4537 	return __busy_set_if_active(fence, __busy_read_flag);
4538 }
4539 
4540 static __always_inline unsigned int
busy_check_writer(const struct dma_fence * fence)4541 busy_check_writer(const struct dma_fence *fence)
4542 {
4543 	if (!fence)
4544 		return 0;
4545 
4546 	return __busy_set_if_active(fence, __busy_write_id);
4547 }
4548 
4549 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4550 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4551 		    struct drm_file *file)
4552 {
4553 	struct drm_i915_gem_busy *args = data;
4554 	struct drm_i915_gem_object *obj;
4555 	struct reservation_object_list *list;
4556 	unsigned int seq;
4557 	int err;
4558 
4559 	err = -ENOENT;
4560 	rcu_read_lock();
4561 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4562 	if (!obj)
4563 		goto out;
4564 
4565 	/* A discrepancy here is that we do not report the status of
4566 	 * non-i915 fences, i.e. even though we may report the object as idle,
4567 	 * a call to set-domain may still stall waiting for foreign rendering.
4568 	 * This also means that wait-ioctl may report an object as busy,
4569 	 * where busy-ioctl considers it idle.
4570 	 *
4571 	 * We trade the ability to warn of foreign fences to report on which
4572 	 * i915 engines are active for the object.
4573 	 *
4574 	 * Alternatively, we can trade that extra information on read/write
4575 	 * activity with
4576 	 *	args->busy =
4577 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4578 	 * to report the overall busyness. This is what the wait-ioctl does.
4579 	 *
4580 	 */
4581 retry:
4582 	seq = raw_read_seqcount(&obj->resv->seq);
4583 
4584 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4585 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4586 
4587 	/* Translate shared fences to READ set of engines */
4588 	list = rcu_dereference(obj->resv->fence);
4589 	if (list) {
4590 		unsigned int shared_count = list->shared_count, i;
4591 
4592 		for (i = 0; i < shared_count; ++i) {
4593 			struct dma_fence *fence =
4594 				rcu_dereference(list->shared[i]);
4595 
4596 			args->busy |= busy_check_reader(fence);
4597 		}
4598 	}
4599 
4600 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4601 		goto retry;
4602 
4603 	err = 0;
4604 out:
4605 	rcu_read_unlock();
4606 	return err;
4607 }
4608 
4609 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4610 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4611 			struct drm_file *file_priv)
4612 {
4613 	return i915_gem_ring_throttle(dev, file_priv);
4614 }
4615 
4616 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4617 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4618 		       struct drm_file *file_priv)
4619 {
4620 	struct drm_i915_private *dev_priv = to_i915(dev);
4621 	struct drm_i915_gem_madvise *args = data;
4622 	struct drm_i915_gem_object *obj;
4623 	int err;
4624 
4625 	switch (args->madv) {
4626 	case I915_MADV_DONTNEED:
4627 	case I915_MADV_WILLNEED:
4628 	    break;
4629 	default:
4630 	    return -EINVAL;
4631 	}
4632 
4633 	obj = i915_gem_object_lookup(file_priv, args->handle);
4634 	if (!obj)
4635 		return -ENOENT;
4636 
4637 	err = mutex_lock_interruptible(&obj->mm.lock);
4638 	if (err)
4639 		goto out;
4640 
4641 	if (i915_gem_object_has_pages(obj) &&
4642 	    i915_gem_object_is_tiled(obj) &&
4643 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4644 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4645 			GEM_BUG_ON(!obj->mm.quirked);
4646 			__i915_gem_object_unpin_pages(obj);
4647 			obj->mm.quirked = false;
4648 		}
4649 		if (args->madv == I915_MADV_WILLNEED) {
4650 			GEM_BUG_ON(obj->mm.quirked);
4651 			__i915_gem_object_pin_pages(obj);
4652 			obj->mm.quirked = true;
4653 		}
4654 	}
4655 
4656 	if (obj->mm.madv != __I915_MADV_PURGED)
4657 		obj->mm.madv = args->madv;
4658 
4659 	/* if the object is no longer attached, discard its backing storage */
4660 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4661 	    !i915_gem_object_has_pages(obj))
4662 		i915_gem_object_truncate(obj);
4663 
4664 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4665 	mutex_unlock(&obj->mm.lock);
4666 
4667 out:
4668 	i915_gem_object_put(obj);
4669 	return err;
4670 }
4671 
4672 static void
frontbuffer_retire(struct i915_gem_active * active,struct i915_request * request)4673 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4674 {
4675 	struct drm_i915_gem_object *obj =
4676 		container_of(active, typeof(*obj), frontbuffer_write);
4677 
4678 	intel_fb_obj_flush(obj, ORIGIN_CS);
4679 }
4680 
i915_gem_object_init(struct drm_i915_gem_object * obj,const struct drm_i915_gem_object_ops * ops)4681 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4682 			  const struct drm_i915_gem_object_ops *ops)
4683 {
4684 	mutex_init(&obj->mm.lock);
4685 
4686 	INIT_LIST_HEAD(&obj->vma_list);
4687 	INIT_LIST_HEAD(&obj->lut_list);
4688 	INIT_LIST_HEAD(&obj->batch_pool_link);
4689 
4690 	obj->ops = ops;
4691 
4692 	reservation_object_init(&obj->__builtin_resv);
4693 	obj->resv = &obj->__builtin_resv;
4694 
4695 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4696 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4697 
4698 	obj->mm.madv = I915_MADV_WILLNEED;
4699 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4700 	mutex_init(&obj->mm.get_page.lock);
4701 
4702 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4703 }
4704 
4705 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4706 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4707 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4708 
4709 	.get_pages = i915_gem_object_get_pages_gtt,
4710 	.put_pages = i915_gem_object_put_pages_gtt,
4711 
4712 	.pwrite = i915_gem_object_pwrite_gtt,
4713 };
4714 
i915_gem_object_create_shmem(struct drm_device * dev,struct drm_gem_object * obj,size_t size)4715 static int i915_gem_object_create_shmem(struct drm_device *dev,
4716 					struct drm_gem_object *obj,
4717 					size_t size)
4718 {
4719 	struct drm_i915_private *i915 = to_i915(dev);
4720 	unsigned long flags = VM_NORESERVE;
4721 	struct file *filp;
4722 
4723 	drm_gem_private_object_init(dev, obj, size);
4724 
4725 	if (i915->mm.gemfs)
4726 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4727 						 flags);
4728 	else
4729 		filp = shmem_file_setup("i915", size, flags);
4730 
4731 	if (IS_ERR(filp))
4732 		return PTR_ERR(filp);
4733 
4734 	obj->filp = filp;
4735 
4736 	return 0;
4737 }
4738 
4739 struct drm_i915_gem_object *
i915_gem_object_create(struct drm_i915_private * dev_priv,u64 size)4740 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4741 {
4742 	struct drm_i915_gem_object *obj;
4743 	struct address_space *mapping;
4744 	unsigned int cache_level;
4745 	gfp_t mask;
4746 	int ret;
4747 
4748 	/* There is a prevalence of the assumption that we fit the object's
4749 	 * page count inside a 32bit _signed_ variable. Let's document this and
4750 	 * catch if we ever need to fix it. In the meantime, if you do spot
4751 	 * such a local variable, please consider fixing!
4752 	 */
4753 	if (size >> PAGE_SHIFT > INT_MAX)
4754 		return ERR_PTR(-E2BIG);
4755 
4756 	if (overflows_type(size, obj->base.size))
4757 		return ERR_PTR(-E2BIG);
4758 
4759 	obj = i915_gem_object_alloc(dev_priv);
4760 	if (obj == NULL)
4761 		return ERR_PTR(-ENOMEM);
4762 
4763 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4764 	if (ret)
4765 		goto fail;
4766 
4767 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4768 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4769 		/* 965gm cannot relocate objects above 4GiB. */
4770 		mask &= ~__GFP_HIGHMEM;
4771 		mask |= __GFP_DMA32;
4772 	}
4773 
4774 	mapping = obj->base.filp->f_mapping;
4775 	mapping_set_gfp_mask(mapping, mask);
4776 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4777 
4778 	i915_gem_object_init(obj, &i915_gem_object_ops);
4779 
4780 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4781 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4782 
4783 	if (HAS_LLC(dev_priv))
4784 		/* On some devices, we can have the GPU use the LLC (the CPU
4785 		 * cache) for about a 10% performance improvement
4786 		 * compared to uncached.  Graphics requests other than
4787 		 * display scanout are coherent with the CPU in
4788 		 * accessing this cache.  This means in this mode we
4789 		 * don't need to clflush on the CPU side, and on the
4790 		 * GPU side we only need to flush internal caches to
4791 		 * get data visible to the CPU.
4792 		 *
4793 		 * However, we maintain the display planes as UC, and so
4794 		 * need to rebind when first used as such.
4795 		 */
4796 		cache_level = I915_CACHE_LLC;
4797 	else
4798 		cache_level = I915_CACHE_NONE;
4799 
4800 	i915_gem_object_set_cache_coherency(obj, cache_level);
4801 
4802 	trace_i915_gem_object_create(obj);
4803 
4804 	return obj;
4805 
4806 fail:
4807 	i915_gem_object_free(obj);
4808 	return ERR_PTR(ret);
4809 }
4810 
discard_backing_storage(struct drm_i915_gem_object * obj)4811 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4812 {
4813 	/* If we are the last user of the backing storage (be it shmemfs
4814 	 * pages or stolen etc), we know that the pages are going to be
4815 	 * immediately released. In this case, we can then skip copying
4816 	 * back the contents from the GPU.
4817 	 */
4818 
4819 	if (obj->mm.madv != I915_MADV_WILLNEED)
4820 		return false;
4821 
4822 	if (obj->base.filp == NULL)
4823 		return true;
4824 
4825 	/* At first glance, this looks racy, but then again so would be
4826 	 * userspace racing mmap against close. However, the first external
4827 	 * reference to the filp can only be obtained through the
4828 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4829 	 * acquiring such a reference whilst we are in the middle of
4830 	 * freeing the object.
4831 	 */
4832 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4833 }
4834 
__i915_gem_free_objects(struct drm_i915_private * i915,struct llist_node * freed)4835 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4836 				    struct llist_node *freed)
4837 {
4838 	struct drm_i915_gem_object *obj, *on;
4839 
4840 	intel_runtime_pm_get(i915);
4841 	llist_for_each_entry_safe(obj, on, freed, freed) {
4842 		struct i915_vma *vma, *vn;
4843 
4844 		trace_i915_gem_object_destroy(obj);
4845 
4846 		mutex_lock(&i915->drm.struct_mutex);
4847 
4848 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4849 		list_for_each_entry_safe(vma, vn,
4850 					 &obj->vma_list, obj_link) {
4851 			GEM_BUG_ON(i915_vma_is_active(vma));
4852 			vma->flags &= ~I915_VMA_PIN_MASK;
4853 			i915_vma_destroy(vma);
4854 		}
4855 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4856 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4857 
4858 		/* This serializes freeing with the shrinker. Since the free
4859 		 * is delayed, first by RCU then by the workqueue, we want the
4860 		 * shrinker to be able to free pages of unreferenced objects,
4861 		 * or else we may oom whilst there are plenty of deferred
4862 		 * freed objects.
4863 		 */
4864 		if (i915_gem_object_has_pages(obj)) {
4865 			spin_lock(&i915->mm.obj_lock);
4866 			list_del_init(&obj->mm.link);
4867 			spin_unlock(&i915->mm.obj_lock);
4868 		}
4869 
4870 		mutex_unlock(&i915->drm.struct_mutex);
4871 
4872 		GEM_BUG_ON(obj->bind_count);
4873 		GEM_BUG_ON(obj->userfault_count);
4874 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4875 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4876 
4877 		if (obj->ops->release)
4878 			obj->ops->release(obj);
4879 
4880 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4881 			atomic_set(&obj->mm.pages_pin_count, 0);
4882 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4883 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4884 
4885 		if (obj->base.import_attach)
4886 			drm_prime_gem_destroy(&obj->base, NULL);
4887 
4888 		reservation_object_fini(&obj->__builtin_resv);
4889 		drm_gem_object_release(&obj->base);
4890 		i915_gem_info_remove_obj(i915, obj->base.size);
4891 
4892 		kfree(obj->bit_17);
4893 		i915_gem_object_free(obj);
4894 
4895 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4896 		atomic_dec(&i915->mm.free_count);
4897 
4898 		if (on)
4899 			cond_resched();
4900 	}
4901 	intel_runtime_pm_put(i915);
4902 }
4903 
i915_gem_flush_free_objects(struct drm_i915_private * i915)4904 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4905 {
4906 	struct llist_node *freed;
4907 
4908 	/* Free the oldest, most stale object to keep the free_list short */
4909 	freed = NULL;
4910 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4911 		/* Only one consumer of llist_del_first() allowed */
4912 		spin_lock(&i915->mm.free_lock);
4913 		freed = llist_del_first(&i915->mm.free_list);
4914 		spin_unlock(&i915->mm.free_lock);
4915 	}
4916 	if (unlikely(freed)) {
4917 		freed->next = NULL;
4918 		__i915_gem_free_objects(i915, freed);
4919 	}
4920 }
4921 
__i915_gem_free_work(struct work_struct * work)4922 static void __i915_gem_free_work(struct work_struct *work)
4923 {
4924 	struct drm_i915_private *i915 =
4925 		container_of(work, struct drm_i915_private, mm.free_work);
4926 	struct llist_node *freed;
4927 
4928 	/*
4929 	 * All file-owned VMA should have been released by this point through
4930 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4931 	 * However, the object may also be bound into the global GTT (e.g.
4932 	 * older GPUs without per-process support, or for direct access through
4933 	 * the GTT either for the user or for scanout). Those VMA still need to
4934 	 * unbound now.
4935 	 */
4936 
4937 	spin_lock(&i915->mm.free_lock);
4938 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4939 		spin_unlock(&i915->mm.free_lock);
4940 
4941 		__i915_gem_free_objects(i915, freed);
4942 		if (need_resched())
4943 			return;
4944 
4945 		spin_lock(&i915->mm.free_lock);
4946 	}
4947 	spin_unlock(&i915->mm.free_lock);
4948 }
4949 
__i915_gem_free_object_rcu(struct rcu_head * head)4950 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4951 {
4952 	struct drm_i915_gem_object *obj =
4953 		container_of(head, typeof(*obj), rcu);
4954 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4955 
4956 	/*
4957 	 * Since we require blocking on struct_mutex to unbind the freed
4958 	 * object from the GPU before releasing resources back to the
4959 	 * system, we can not do that directly from the RCU callback (which may
4960 	 * be a softirq context), but must instead then defer that work onto a
4961 	 * kthread. We use the RCU callback rather than move the freed object
4962 	 * directly onto the work queue so that we can mix between using the
4963 	 * worker and performing frees directly from subsequent allocations for
4964 	 * crude but effective memory throttling.
4965 	 */
4966 	if (llist_add(&obj->freed, &i915->mm.free_list))
4967 		queue_work(i915->wq, &i915->mm.free_work);
4968 }
4969 
i915_gem_free_object(struct drm_gem_object * gem_obj)4970 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4971 {
4972 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4973 
4974 	if (obj->mm.quirked)
4975 		__i915_gem_object_unpin_pages(obj);
4976 
4977 	if (discard_backing_storage(obj))
4978 		obj->mm.madv = I915_MADV_DONTNEED;
4979 
4980 	/*
4981 	 * Before we free the object, make sure any pure RCU-only
4982 	 * read-side critical sections are complete, e.g.
4983 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4984 	 * lookup see i915_gem_object_lookup_rcu().
4985 	 */
4986 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4987 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4988 }
4989 
__i915_gem_object_release_unless_active(struct drm_i915_gem_object * obj)4990 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4991 {
4992 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4993 
4994 	if (!i915_gem_object_has_active_reference(obj) &&
4995 	    i915_gem_object_is_active(obj))
4996 		i915_gem_object_set_active_reference(obj);
4997 	else
4998 		i915_gem_object_put(obj);
4999 }
5000 
i915_gem_sanitize(struct drm_i915_private * i915)5001 void i915_gem_sanitize(struct drm_i915_private *i915)
5002 {
5003 	int err;
5004 
5005 	GEM_TRACE("\n");
5006 
5007 	mutex_lock(&i915->drm.struct_mutex);
5008 
5009 	intel_runtime_pm_get(i915);
5010 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5011 
5012 	/*
5013 	 * As we have just resumed the machine and woken the device up from
5014 	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5015 	 * back to defaults, recovering from whatever wedged state we left it
5016 	 * in and so worth trying to use the device once more.
5017 	 */
5018 	if (i915_terminally_wedged(&i915->gpu_error))
5019 		i915_gem_unset_wedged(i915);
5020 
5021 	/*
5022 	 * If we inherit context state from the BIOS or earlier occupants
5023 	 * of the GPU, the GPU may be in an inconsistent state when we
5024 	 * try to take over. The only way to remove the earlier state
5025 	 * is by resetting. However, resetting on earlier gen is tricky as
5026 	 * it may impact the display and we are uncertain about the stability
5027 	 * of the reset, so this could be applied to even earlier gen.
5028 	 */
5029 	err = -ENODEV;
5030 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5031 		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5032 	if (!err)
5033 		intel_engines_sanitize(i915);
5034 
5035 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5036 	intel_runtime_pm_put(i915);
5037 
5038 	i915_gem_contexts_lost(i915);
5039 	mutex_unlock(&i915->drm.struct_mutex);
5040 }
5041 
i915_gem_suspend(struct drm_i915_private * i915)5042 int i915_gem_suspend(struct drm_i915_private *i915)
5043 {
5044 	int ret;
5045 
5046 	GEM_TRACE("\n");
5047 
5048 	intel_runtime_pm_get(i915);
5049 	intel_suspend_gt_powersave(i915);
5050 
5051 	mutex_lock(&i915->drm.struct_mutex);
5052 
5053 	/*
5054 	 * We have to flush all the executing contexts to main memory so
5055 	 * that they can saved in the hibernation image. To ensure the last
5056 	 * context image is coherent, we have to switch away from it. That
5057 	 * leaves the i915->kernel_context still active when
5058 	 * we actually suspend, and its image in memory may not match the GPU
5059 	 * state. Fortunately, the kernel_context is disposable and we do
5060 	 * not rely on its state.
5061 	 */
5062 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5063 		ret = i915_gem_switch_to_kernel_context(i915);
5064 		if (ret)
5065 			goto err_unlock;
5066 
5067 		ret = i915_gem_wait_for_idle(i915,
5068 					     I915_WAIT_INTERRUPTIBLE |
5069 					     I915_WAIT_LOCKED |
5070 					     I915_WAIT_FOR_IDLE_BOOST,
5071 					     MAX_SCHEDULE_TIMEOUT);
5072 		if (ret && ret != -EIO)
5073 			goto err_unlock;
5074 
5075 		assert_kernel_context_is_current(i915);
5076 	}
5077 	i915_retire_requests(i915); /* ensure we flush after wedging */
5078 
5079 	mutex_unlock(&i915->drm.struct_mutex);
5080 
5081 	intel_uc_suspend(i915);
5082 
5083 	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5084 	cancel_delayed_work_sync(&i915->gt.retire_work);
5085 
5086 	/*
5087 	 * As the idle_work is rearming if it detects a race, play safe and
5088 	 * repeat the flush until it is definitely idle.
5089 	 */
5090 	drain_delayed_work(&i915->gt.idle_work);
5091 
5092 	/*
5093 	 * Assert that we successfully flushed all the work and
5094 	 * reset the GPU back to its idle, low power state.
5095 	 */
5096 	WARN_ON(i915->gt.awake);
5097 	if (WARN_ON(!intel_engines_are_idle(i915)))
5098 		i915_gem_set_wedged(i915); /* no hope, discard everything */
5099 
5100 	intel_runtime_pm_put(i915);
5101 	return 0;
5102 
5103 err_unlock:
5104 	mutex_unlock(&i915->drm.struct_mutex);
5105 	intel_runtime_pm_put(i915);
5106 	return ret;
5107 }
5108 
i915_gem_suspend_late(struct drm_i915_private * i915)5109 void i915_gem_suspend_late(struct drm_i915_private *i915)
5110 {
5111 	struct drm_i915_gem_object *obj;
5112 	struct list_head *phases[] = {
5113 		&i915->mm.unbound_list,
5114 		&i915->mm.bound_list,
5115 		NULL
5116 	}, **phase;
5117 
5118 	/*
5119 	 * Neither the BIOS, ourselves or any other kernel
5120 	 * expects the system to be in execlists mode on startup,
5121 	 * so we need to reset the GPU back to legacy mode. And the only
5122 	 * known way to disable logical contexts is through a GPU reset.
5123 	 *
5124 	 * So in order to leave the system in a known default configuration,
5125 	 * always reset the GPU upon unload and suspend. Afterwards we then
5126 	 * clean up the GEM state tracking, flushing off the requests and
5127 	 * leaving the system in a known idle state.
5128 	 *
5129 	 * Note that is of the upmost importance that the GPU is idle and
5130 	 * all stray writes are flushed *before* we dismantle the backing
5131 	 * storage for the pinned objects.
5132 	 *
5133 	 * However, since we are uncertain that resetting the GPU on older
5134 	 * machines is a good idea, we don't - just in case it leaves the
5135 	 * machine in an unusable condition.
5136 	 */
5137 
5138 	mutex_lock(&i915->drm.struct_mutex);
5139 	for (phase = phases; *phase; phase++) {
5140 		list_for_each_entry(obj, *phase, mm.link)
5141 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5142 	}
5143 	mutex_unlock(&i915->drm.struct_mutex);
5144 
5145 	intel_uc_sanitize(i915);
5146 	i915_gem_sanitize(i915);
5147 }
5148 
i915_gem_resume(struct drm_i915_private * i915)5149 void i915_gem_resume(struct drm_i915_private *i915)
5150 {
5151 	GEM_TRACE("\n");
5152 
5153 	WARN_ON(i915->gt.awake);
5154 
5155 	mutex_lock(&i915->drm.struct_mutex);
5156 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5157 
5158 	i915_gem_restore_gtt_mappings(i915);
5159 	i915_gem_restore_fences(i915);
5160 
5161 	/*
5162 	 * As we didn't flush the kernel context before suspend, we cannot
5163 	 * guarantee that the context image is complete. So let's just reset
5164 	 * it and start again.
5165 	 */
5166 	i915->gt.resume(i915);
5167 
5168 	if (i915_gem_init_hw(i915))
5169 		goto err_wedged;
5170 
5171 	intel_uc_resume(i915);
5172 
5173 	/* Always reload a context for powersaving. */
5174 	if (i915_gem_switch_to_kernel_context(i915))
5175 		goto err_wedged;
5176 
5177 out_unlock:
5178 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5179 	mutex_unlock(&i915->drm.struct_mutex);
5180 	return;
5181 
5182 err_wedged:
5183 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5184 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5185 		i915_gem_set_wedged(i915);
5186 	}
5187 	goto out_unlock;
5188 }
5189 
i915_gem_init_swizzling(struct drm_i915_private * dev_priv)5190 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5191 {
5192 	if (INTEL_GEN(dev_priv) < 5 ||
5193 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5194 		return;
5195 
5196 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5197 				 DISP_TILE_SURFACE_SWIZZLING);
5198 
5199 	if (IS_GEN5(dev_priv))
5200 		return;
5201 
5202 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5203 	if (IS_GEN6(dev_priv))
5204 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5205 	else if (IS_GEN7(dev_priv))
5206 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5207 	else if (IS_GEN8(dev_priv))
5208 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5209 	else
5210 		BUG();
5211 }
5212 
init_unused_ring(struct drm_i915_private * dev_priv,u32 base)5213 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5214 {
5215 	I915_WRITE(RING_CTL(base), 0);
5216 	I915_WRITE(RING_HEAD(base), 0);
5217 	I915_WRITE(RING_TAIL(base), 0);
5218 	I915_WRITE(RING_START(base), 0);
5219 }
5220 
init_unused_rings(struct drm_i915_private * dev_priv)5221 static void init_unused_rings(struct drm_i915_private *dev_priv)
5222 {
5223 	if (IS_I830(dev_priv)) {
5224 		init_unused_ring(dev_priv, PRB1_BASE);
5225 		init_unused_ring(dev_priv, SRB0_BASE);
5226 		init_unused_ring(dev_priv, SRB1_BASE);
5227 		init_unused_ring(dev_priv, SRB2_BASE);
5228 		init_unused_ring(dev_priv, SRB3_BASE);
5229 	} else if (IS_GEN2(dev_priv)) {
5230 		init_unused_ring(dev_priv, SRB0_BASE);
5231 		init_unused_ring(dev_priv, SRB1_BASE);
5232 	} else if (IS_GEN3(dev_priv)) {
5233 		init_unused_ring(dev_priv, PRB1_BASE);
5234 		init_unused_ring(dev_priv, PRB2_BASE);
5235 	}
5236 }
5237 
__i915_gem_restart_engines(void * data)5238 static int __i915_gem_restart_engines(void *data)
5239 {
5240 	struct drm_i915_private *i915 = data;
5241 	struct intel_engine_cs *engine;
5242 	enum intel_engine_id id;
5243 	int err;
5244 
5245 	for_each_engine(engine, i915, id) {
5246 		err = engine->init_hw(engine);
5247 		if (err) {
5248 			DRM_ERROR("Failed to restart %s (%d)\n",
5249 				  engine->name, err);
5250 			return err;
5251 		}
5252 	}
5253 
5254 	return 0;
5255 }
5256 
i915_gem_init_hw(struct drm_i915_private * dev_priv)5257 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5258 {
5259 	int ret;
5260 
5261 	dev_priv->gt.last_init_time = ktime_get();
5262 
5263 	/* Double layer security blanket, see i915_gem_init() */
5264 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5265 
5266 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5267 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5268 
5269 	if (IS_HASWELL(dev_priv))
5270 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5271 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5272 
5273 	if (HAS_PCH_NOP(dev_priv)) {
5274 		if (IS_IVYBRIDGE(dev_priv)) {
5275 			u32 temp = I915_READ(GEN7_MSG_CTL);
5276 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5277 			I915_WRITE(GEN7_MSG_CTL, temp);
5278 		} else if (INTEL_GEN(dev_priv) >= 7) {
5279 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5280 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5281 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5282 		}
5283 	}
5284 
5285 	intel_gt_workarounds_apply(dev_priv);
5286 
5287 	i915_gem_init_swizzling(dev_priv);
5288 
5289 	/*
5290 	 * At least 830 can leave some of the unused rings
5291 	 * "active" (ie. head != tail) after resume which
5292 	 * will prevent c3 entry. Makes sure all unused rings
5293 	 * are totally idle.
5294 	 */
5295 	init_unused_rings(dev_priv);
5296 
5297 	BUG_ON(!dev_priv->kernel_context);
5298 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5299 		ret = -EIO;
5300 		goto out;
5301 	}
5302 
5303 	ret = i915_ppgtt_init_hw(dev_priv);
5304 	if (ret) {
5305 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5306 		goto out;
5307 	}
5308 
5309 	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5310 	if (ret) {
5311 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5312 		goto out;
5313 	}
5314 
5315 	/* We can't enable contexts until all firmware is loaded */
5316 	ret = intel_uc_init_hw(dev_priv);
5317 	if (ret) {
5318 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5319 		goto out;
5320 	}
5321 
5322 	intel_mocs_init_l3cc_table(dev_priv);
5323 
5324 	/* Only when the HW is re-initialised, can we replay the requests */
5325 	ret = __i915_gem_restart_engines(dev_priv);
5326 	if (ret)
5327 		goto cleanup_uc;
5328 
5329 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5330 
5331 	return 0;
5332 
5333 cleanup_uc:
5334 	intel_uc_fini_hw(dev_priv);
5335 out:
5336 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5337 
5338 	return ret;
5339 }
5340 
__intel_engines_record_defaults(struct drm_i915_private * i915)5341 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5342 {
5343 	struct i915_gem_context *ctx;
5344 	struct intel_engine_cs *engine;
5345 	enum intel_engine_id id;
5346 	int err;
5347 
5348 	/*
5349 	 * As we reset the gpu during very early sanitisation, the current
5350 	 * register state on the GPU should reflect its defaults values.
5351 	 * We load a context onto the hw (with restore-inhibit), then switch
5352 	 * over to a second context to save that default register state. We
5353 	 * can then prime every new context with that state so they all start
5354 	 * from the same default HW values.
5355 	 */
5356 
5357 	ctx = i915_gem_context_create_kernel(i915, 0);
5358 	if (IS_ERR(ctx))
5359 		return PTR_ERR(ctx);
5360 
5361 	for_each_engine(engine, i915, id) {
5362 		struct i915_request *rq;
5363 
5364 		rq = i915_request_alloc(engine, ctx);
5365 		if (IS_ERR(rq)) {
5366 			err = PTR_ERR(rq);
5367 			goto out_ctx;
5368 		}
5369 
5370 		err = 0;
5371 		if (engine->init_context)
5372 			err = engine->init_context(rq);
5373 
5374 		i915_request_add(rq);
5375 		if (err)
5376 			goto err_active;
5377 	}
5378 
5379 	err = i915_gem_switch_to_kernel_context(i915);
5380 	if (err)
5381 		goto err_active;
5382 
5383 	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5384 		i915_gem_set_wedged(i915);
5385 		err = -EIO; /* Caller will declare us wedged */
5386 		goto err_active;
5387 	}
5388 
5389 	assert_kernel_context_is_current(i915);
5390 
5391 	for_each_engine(engine, i915, id) {
5392 		struct i915_vma *state;
5393 
5394 		state = to_intel_context(ctx, engine)->state;
5395 		if (!state)
5396 			continue;
5397 
5398 		/*
5399 		 * As we will hold a reference to the logical state, it will
5400 		 * not be torn down with the context, and importantly the
5401 		 * object will hold onto its vma (making it possible for a
5402 		 * stray GTT write to corrupt our defaults). Unmap the vma
5403 		 * from the GTT to prevent such accidents and reclaim the
5404 		 * space.
5405 		 */
5406 		err = i915_vma_unbind(state);
5407 		if (err)
5408 			goto err_active;
5409 
5410 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5411 		if (err)
5412 			goto err_active;
5413 
5414 		engine->default_state = i915_gem_object_get(state->obj);
5415 	}
5416 
5417 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5418 		unsigned int found = intel_engines_has_context_isolation(i915);
5419 
5420 		/*
5421 		 * Make sure that classes with multiple engine instances all
5422 		 * share the same basic configuration.
5423 		 */
5424 		for_each_engine(engine, i915, id) {
5425 			unsigned int bit = BIT(engine->uabi_class);
5426 			unsigned int expected = engine->default_state ? bit : 0;
5427 
5428 			if ((found & bit) != expected) {
5429 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5430 					  engine->uabi_class, engine->name);
5431 			}
5432 		}
5433 	}
5434 
5435 out_ctx:
5436 	i915_gem_context_set_closed(ctx);
5437 	i915_gem_context_put(ctx);
5438 	return err;
5439 
5440 err_active:
5441 	/*
5442 	 * If we have to abandon now, we expect the engines to be idle
5443 	 * and ready to be torn-down. First try to flush any remaining
5444 	 * request, ensure we are pointing at the kernel context and
5445 	 * then remove it.
5446 	 */
5447 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5448 		goto out_ctx;
5449 
5450 	if (WARN_ON(i915_gem_wait_for_idle(i915,
5451 					   I915_WAIT_LOCKED,
5452 					   MAX_SCHEDULE_TIMEOUT)))
5453 		goto out_ctx;
5454 
5455 	i915_gem_contexts_lost(i915);
5456 	goto out_ctx;
5457 }
5458 
i915_gem_init(struct drm_i915_private * dev_priv)5459 int i915_gem_init(struct drm_i915_private *dev_priv)
5460 {
5461 	int ret;
5462 
5463 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
5464 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5465 		mkwrite_device_info(dev_priv)->page_sizes =
5466 			I915_GTT_PAGE_SIZE_4K;
5467 
5468 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5469 
5470 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5471 		dev_priv->gt.resume = intel_lr_context_resume;
5472 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5473 	} else {
5474 		dev_priv->gt.resume = intel_legacy_submission_resume;
5475 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5476 	}
5477 
5478 	ret = i915_gem_init_userptr(dev_priv);
5479 	if (ret)
5480 		return ret;
5481 
5482 	ret = intel_uc_init_misc(dev_priv);
5483 	if (ret)
5484 		return ret;
5485 
5486 	ret = intel_wopcm_init(&dev_priv->wopcm);
5487 	if (ret)
5488 		goto err_uc_misc;
5489 
5490 	/* This is just a security blanket to placate dragons.
5491 	 * On some systems, we very sporadically observe that the first TLBs
5492 	 * used by the CS may be stale, despite us poking the TLB reset. If
5493 	 * we hold the forcewake during initialisation these problems
5494 	 * just magically go away.
5495 	 */
5496 	mutex_lock(&dev_priv->drm.struct_mutex);
5497 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5498 
5499 	ret = i915_gem_init_ggtt(dev_priv);
5500 	if (ret) {
5501 		GEM_BUG_ON(ret == -EIO);
5502 		goto err_unlock;
5503 	}
5504 
5505 	ret = i915_gem_contexts_init(dev_priv);
5506 	if (ret) {
5507 		GEM_BUG_ON(ret == -EIO);
5508 		goto err_ggtt;
5509 	}
5510 
5511 	ret = intel_engines_init(dev_priv);
5512 	if (ret) {
5513 		GEM_BUG_ON(ret == -EIO);
5514 		goto err_context;
5515 	}
5516 
5517 	intel_init_gt_powersave(dev_priv);
5518 
5519 	ret = intel_uc_init(dev_priv);
5520 	if (ret)
5521 		goto err_pm;
5522 
5523 	ret = i915_gem_init_hw(dev_priv);
5524 	if (ret)
5525 		goto err_uc_init;
5526 
5527 	/*
5528 	 * Despite its name intel_init_clock_gating applies both display
5529 	 * clock gating workarounds; GT mmio workarounds and the occasional
5530 	 * GT power context workaround. Worse, sometimes it includes a context
5531 	 * register workaround which we need to apply before we record the
5532 	 * default HW state for all contexts.
5533 	 *
5534 	 * FIXME: break up the workarounds and apply them at the right time!
5535 	 */
5536 	intel_init_clock_gating(dev_priv);
5537 
5538 	ret = __intel_engines_record_defaults(dev_priv);
5539 	if (ret)
5540 		goto err_init_hw;
5541 
5542 	if (i915_inject_load_failure()) {
5543 		ret = -ENODEV;
5544 		goto err_init_hw;
5545 	}
5546 
5547 	if (i915_inject_load_failure()) {
5548 		ret = -EIO;
5549 		goto err_init_hw;
5550 	}
5551 
5552 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5553 	mutex_unlock(&dev_priv->drm.struct_mutex);
5554 
5555 	return 0;
5556 
5557 	/*
5558 	 * Unwinding is complicated by that we want to handle -EIO to mean
5559 	 * disable GPU submission but keep KMS alive. We want to mark the
5560 	 * HW as irrevisibly wedged, but keep enough state around that the
5561 	 * driver doesn't explode during runtime.
5562 	 */
5563 err_init_hw:
5564 	mutex_unlock(&dev_priv->drm.struct_mutex);
5565 
5566 	WARN_ON(i915_gem_suspend(dev_priv));
5567 	i915_gem_suspend_late(dev_priv);
5568 
5569 	i915_gem_drain_workqueue(dev_priv);
5570 
5571 	mutex_lock(&dev_priv->drm.struct_mutex);
5572 	intel_uc_fini_hw(dev_priv);
5573 err_uc_init:
5574 	intel_uc_fini(dev_priv);
5575 err_pm:
5576 	if (ret != -EIO) {
5577 		intel_cleanup_gt_powersave(dev_priv);
5578 		i915_gem_cleanup_engines(dev_priv);
5579 	}
5580 err_context:
5581 	if (ret != -EIO)
5582 		i915_gem_contexts_fini(dev_priv);
5583 err_ggtt:
5584 err_unlock:
5585 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5586 	mutex_unlock(&dev_priv->drm.struct_mutex);
5587 
5588 err_uc_misc:
5589 	intel_uc_fini_misc(dev_priv);
5590 
5591 	if (ret != -EIO)
5592 		i915_gem_cleanup_userptr(dev_priv);
5593 
5594 	if (ret == -EIO) {
5595 		/*
5596 		 * Allow engine initialisation to fail by marking the GPU as
5597 		 * wedged. But we only want to do this where the GPU is angry,
5598 		 * for all other failure, such as an allocation failure, bail.
5599 		 */
5600 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5601 			i915_load_error(dev_priv,
5602 					"Failed to initialize GPU, declaring it wedged!\n");
5603 			i915_gem_set_wedged(dev_priv);
5604 		}
5605 		ret = 0;
5606 	}
5607 
5608 	i915_gem_drain_freed_objects(dev_priv);
5609 	return ret;
5610 }
5611 
i915_gem_fini(struct drm_i915_private * dev_priv)5612 void i915_gem_fini(struct drm_i915_private *dev_priv)
5613 {
5614 	i915_gem_suspend_late(dev_priv);
5615 
5616 	/* Flush any outstanding unpin_work. */
5617 	i915_gem_drain_workqueue(dev_priv);
5618 
5619 	mutex_lock(&dev_priv->drm.struct_mutex);
5620 	intel_uc_fini_hw(dev_priv);
5621 	intel_uc_fini(dev_priv);
5622 	i915_gem_cleanup_engines(dev_priv);
5623 	i915_gem_contexts_fini(dev_priv);
5624 	mutex_unlock(&dev_priv->drm.struct_mutex);
5625 
5626 	intel_uc_fini_misc(dev_priv);
5627 	i915_gem_cleanup_userptr(dev_priv);
5628 
5629 	i915_gem_drain_freed_objects(dev_priv);
5630 
5631 	WARN_ON(!list_empty(&dev_priv->contexts.list));
5632 }
5633 
i915_gem_init_mmio(struct drm_i915_private * i915)5634 void i915_gem_init_mmio(struct drm_i915_private *i915)
5635 {
5636 	i915_gem_sanitize(i915);
5637 }
5638 
5639 void
i915_gem_cleanup_engines(struct drm_i915_private * dev_priv)5640 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5641 {
5642 	struct intel_engine_cs *engine;
5643 	enum intel_engine_id id;
5644 
5645 	for_each_engine(engine, dev_priv, id)
5646 		dev_priv->gt.cleanup_engine(engine);
5647 }
5648 
5649 void
i915_gem_load_init_fences(struct drm_i915_private * dev_priv)5650 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5651 {
5652 	int i;
5653 
5654 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5655 	    !IS_CHERRYVIEW(dev_priv))
5656 		dev_priv->num_fence_regs = 32;
5657 	else if (INTEL_GEN(dev_priv) >= 4 ||
5658 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5659 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5660 		dev_priv->num_fence_regs = 16;
5661 	else
5662 		dev_priv->num_fence_regs = 8;
5663 
5664 	if (intel_vgpu_active(dev_priv))
5665 		dev_priv->num_fence_regs =
5666 				I915_READ(vgtif_reg(avail_rs.fence_num));
5667 
5668 	/* Initialize fence registers to zero */
5669 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5670 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5671 
5672 		fence->i915 = dev_priv;
5673 		fence->id = i;
5674 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5675 	}
5676 	i915_gem_restore_fences(dev_priv);
5677 
5678 	i915_gem_detect_bit_6_swizzle(dev_priv);
5679 }
5680 
i915_gem_init__mm(struct drm_i915_private * i915)5681 static void i915_gem_init__mm(struct drm_i915_private *i915)
5682 {
5683 	spin_lock_init(&i915->mm.object_stat_lock);
5684 	spin_lock_init(&i915->mm.obj_lock);
5685 	spin_lock_init(&i915->mm.free_lock);
5686 
5687 	init_llist_head(&i915->mm.free_list);
5688 
5689 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5690 	INIT_LIST_HEAD(&i915->mm.bound_list);
5691 	INIT_LIST_HEAD(&i915->mm.fence_list);
5692 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5693 
5694 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5695 }
5696 
i915_gem_init_early(struct drm_i915_private * dev_priv)5697 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5698 {
5699 	int err = -ENOMEM;
5700 
5701 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5702 	if (!dev_priv->objects)
5703 		goto err_out;
5704 
5705 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5706 	if (!dev_priv->vmas)
5707 		goto err_objects;
5708 
5709 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5710 	if (!dev_priv->luts)
5711 		goto err_vmas;
5712 
5713 	dev_priv->requests = KMEM_CACHE(i915_request,
5714 					SLAB_HWCACHE_ALIGN |
5715 					SLAB_RECLAIM_ACCOUNT |
5716 					SLAB_TYPESAFE_BY_RCU);
5717 	if (!dev_priv->requests)
5718 		goto err_luts;
5719 
5720 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5721 					    SLAB_HWCACHE_ALIGN |
5722 					    SLAB_RECLAIM_ACCOUNT);
5723 	if (!dev_priv->dependencies)
5724 		goto err_requests;
5725 
5726 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5727 	if (!dev_priv->priorities)
5728 		goto err_dependencies;
5729 
5730 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5731 	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5732 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5733 
5734 	i915_gem_init__mm(dev_priv);
5735 
5736 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5737 			  i915_gem_retire_work_handler);
5738 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5739 			  i915_gem_idle_work_handler);
5740 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5741 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5742 
5743 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5744 
5745 	spin_lock_init(&dev_priv->fb_tracking.lock);
5746 
5747 	err = i915_gemfs_init(dev_priv);
5748 	if (err)
5749 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5750 
5751 	return 0;
5752 
5753 err_dependencies:
5754 	kmem_cache_destroy(dev_priv->dependencies);
5755 err_requests:
5756 	kmem_cache_destroy(dev_priv->requests);
5757 err_luts:
5758 	kmem_cache_destroy(dev_priv->luts);
5759 err_vmas:
5760 	kmem_cache_destroy(dev_priv->vmas);
5761 err_objects:
5762 	kmem_cache_destroy(dev_priv->objects);
5763 err_out:
5764 	return err;
5765 }
5766 
i915_gem_cleanup_early(struct drm_i915_private * dev_priv)5767 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5768 {
5769 	i915_gem_drain_freed_objects(dev_priv);
5770 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5771 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5772 	WARN_ON(dev_priv->mm.object_count);
5773 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5774 
5775 	kmem_cache_destroy(dev_priv->priorities);
5776 	kmem_cache_destroy(dev_priv->dependencies);
5777 	kmem_cache_destroy(dev_priv->requests);
5778 	kmem_cache_destroy(dev_priv->luts);
5779 	kmem_cache_destroy(dev_priv->vmas);
5780 	kmem_cache_destroy(dev_priv->objects);
5781 
5782 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5783 	rcu_barrier();
5784 
5785 	i915_gemfs_fini(dev_priv);
5786 }
5787 
i915_gem_freeze(struct drm_i915_private * dev_priv)5788 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5789 {
5790 	/* Discard all purgeable objects, let userspace recover those as
5791 	 * required after resuming.
5792 	 */
5793 	i915_gem_shrink_all(dev_priv);
5794 
5795 	return 0;
5796 }
5797 
i915_gem_freeze_late(struct drm_i915_private * i915)5798 int i915_gem_freeze_late(struct drm_i915_private *i915)
5799 {
5800 	struct drm_i915_gem_object *obj;
5801 	struct list_head *phases[] = {
5802 		&i915->mm.unbound_list,
5803 		&i915->mm.bound_list,
5804 		NULL
5805 	}, **phase;
5806 
5807 	/*
5808 	 * Called just before we write the hibernation image.
5809 	 *
5810 	 * We need to update the domain tracking to reflect that the CPU
5811 	 * will be accessing all the pages to create and restore from the
5812 	 * hibernation, and so upon restoration those pages will be in the
5813 	 * CPU domain.
5814 	 *
5815 	 * To make sure the hibernation image contains the latest state,
5816 	 * we update that state just before writing out the image.
5817 	 *
5818 	 * To try and reduce the hibernation image, we manually shrink
5819 	 * the objects as well, see i915_gem_freeze()
5820 	 */
5821 
5822 	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5823 	i915_gem_drain_freed_objects(i915);
5824 
5825 	mutex_lock(&i915->drm.struct_mutex);
5826 	for (phase = phases; *phase; phase++) {
5827 		list_for_each_entry(obj, *phase, mm.link)
5828 			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5829 	}
5830 	mutex_unlock(&i915->drm.struct_mutex);
5831 
5832 	return 0;
5833 }
5834 
i915_gem_release(struct drm_device * dev,struct drm_file * file)5835 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5836 {
5837 	struct drm_i915_file_private *file_priv = file->driver_priv;
5838 	struct i915_request *request;
5839 
5840 	/* Clean up our request list when the client is going away, so that
5841 	 * later retire_requests won't dereference our soon-to-be-gone
5842 	 * file_priv.
5843 	 */
5844 	spin_lock(&file_priv->mm.lock);
5845 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5846 		request->file_priv = NULL;
5847 	spin_unlock(&file_priv->mm.lock);
5848 }
5849 
i915_gem_open(struct drm_i915_private * i915,struct drm_file * file)5850 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5851 {
5852 	struct drm_i915_file_private *file_priv;
5853 	int ret;
5854 
5855 	DRM_DEBUG("\n");
5856 
5857 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5858 	if (!file_priv)
5859 		return -ENOMEM;
5860 
5861 	file->driver_priv = file_priv;
5862 	file_priv->dev_priv = i915;
5863 	file_priv->file = file;
5864 
5865 	spin_lock_init(&file_priv->mm.lock);
5866 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5867 
5868 	file_priv->bsd_engine = -1;
5869 	file_priv->hang_timestamp = jiffies;
5870 
5871 	ret = i915_gem_context_open(i915, file);
5872 	if (ret)
5873 		kfree(file_priv);
5874 
5875 	return ret;
5876 }
5877 
5878 /**
5879  * i915_gem_track_fb - update frontbuffer tracking
5880  * @old: current GEM buffer for the frontbuffer slots
5881  * @new: new GEM buffer for the frontbuffer slots
5882  * @frontbuffer_bits: bitmask of frontbuffer slots
5883  *
5884  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5885  * from @old and setting them in @new. Both @old and @new can be NULL.
5886  */
i915_gem_track_fb(struct drm_i915_gem_object * old,struct drm_i915_gem_object * new,unsigned frontbuffer_bits)5887 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5888 		       struct drm_i915_gem_object *new,
5889 		       unsigned frontbuffer_bits)
5890 {
5891 	/* Control of individual bits within the mask are guarded by
5892 	 * the owning plane->mutex, i.e. we can never see concurrent
5893 	 * manipulation of individual bits. But since the bitfield as a whole
5894 	 * is updated using RMW, we need to use atomics in order to update
5895 	 * the bits.
5896 	 */
5897 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5898 		     sizeof(atomic_t) * BITS_PER_BYTE);
5899 
5900 	if (old) {
5901 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5902 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5903 	}
5904 
5905 	if (new) {
5906 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5907 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5908 	}
5909 }
5910 
5911 /* Allocate a new GEM object and fill it with the supplied data */
5912 struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_i915_private * dev_priv,const void * data,size_t size)5913 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5914 			         const void *data, size_t size)
5915 {
5916 	struct drm_i915_gem_object *obj;
5917 	struct file *file;
5918 	size_t offset;
5919 	int err;
5920 
5921 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5922 	if (IS_ERR(obj))
5923 		return obj;
5924 
5925 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5926 
5927 	file = obj->base.filp;
5928 	offset = 0;
5929 	do {
5930 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5931 		struct page *page;
5932 		void *pgdata, *vaddr;
5933 
5934 		err = pagecache_write_begin(file, file->f_mapping,
5935 					    offset, len, 0,
5936 					    &page, &pgdata);
5937 		if (err < 0)
5938 			goto fail;
5939 
5940 		vaddr = kmap(page);
5941 		memcpy(vaddr, data, len);
5942 		kunmap(page);
5943 
5944 		err = pagecache_write_end(file, file->f_mapping,
5945 					  offset, len, len,
5946 					  page, pgdata);
5947 		if (err < 0)
5948 			goto fail;
5949 
5950 		size -= len;
5951 		data += len;
5952 		offset += len;
5953 	} while (size);
5954 
5955 	return obj;
5956 
5957 fail:
5958 	i915_gem_object_put(obj);
5959 	return ERR_PTR(err);
5960 }
5961 
5962 struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object * obj,unsigned int n,unsigned int * offset)5963 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5964 		       unsigned int n,
5965 		       unsigned int *offset)
5966 {
5967 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5968 	struct scatterlist *sg;
5969 	unsigned int idx, count;
5970 
5971 	might_sleep();
5972 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5973 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5974 
5975 	/* As we iterate forward through the sg, we record each entry in a
5976 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5977 	 * this index previously, we will have an entry for it.
5978 	 *
5979 	 * Initial lookup is O(N), but this is amortized to O(1) for
5980 	 * sequential page access (where each new request is consecutive
5981 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5982 	 * i.e. O(1) with a large constant!
5983 	 */
5984 	if (n < READ_ONCE(iter->sg_idx))
5985 		goto lookup;
5986 
5987 	mutex_lock(&iter->lock);
5988 
5989 	/* We prefer to reuse the last sg so that repeated lookup of this
5990 	 * (or the subsequent) sg are fast - comparing against the last
5991 	 * sg is faster than going through the radixtree.
5992 	 */
5993 
5994 	sg = iter->sg_pos;
5995 	idx = iter->sg_idx;
5996 	count = __sg_page_count(sg);
5997 
5998 	while (idx + count <= n) {
5999 		unsigned long exception, i;
6000 		int ret;
6001 
6002 		/* If we cannot allocate and insert this entry, or the
6003 		 * individual pages from this range, cancel updating the
6004 		 * sg_idx so that on this lookup we are forced to linearly
6005 		 * scan onwards, but on future lookups we will try the
6006 		 * insertion again (in which case we need to be careful of
6007 		 * the error return reporting that we have already inserted
6008 		 * this index).
6009 		 */
6010 		ret = radix_tree_insert(&iter->radix, idx, sg);
6011 		if (ret && ret != -EEXIST)
6012 			goto scan;
6013 
6014 		exception =
6015 			RADIX_TREE_EXCEPTIONAL_ENTRY |
6016 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
6017 		for (i = 1; i < count; i++) {
6018 			ret = radix_tree_insert(&iter->radix, idx + i,
6019 						(void *)exception);
6020 			if (ret && ret != -EEXIST)
6021 				goto scan;
6022 		}
6023 
6024 		idx += count;
6025 		sg = ____sg_next(sg);
6026 		count = __sg_page_count(sg);
6027 	}
6028 
6029 scan:
6030 	iter->sg_pos = sg;
6031 	iter->sg_idx = idx;
6032 
6033 	mutex_unlock(&iter->lock);
6034 
6035 	if (unlikely(n < idx)) /* insertion completed by another thread */
6036 		goto lookup;
6037 
6038 	/* In case we failed to insert the entry into the radixtree, we need
6039 	 * to look beyond the current sg.
6040 	 */
6041 	while (idx + count <= n) {
6042 		idx += count;
6043 		sg = ____sg_next(sg);
6044 		count = __sg_page_count(sg);
6045 	}
6046 
6047 	*offset = n - idx;
6048 	return sg;
6049 
6050 lookup:
6051 	rcu_read_lock();
6052 
6053 	sg = radix_tree_lookup(&iter->radix, n);
6054 	GEM_BUG_ON(!sg);
6055 
6056 	/* If this index is in the middle of multi-page sg entry,
6057 	 * the radixtree will contain an exceptional entry that points
6058 	 * to the start of that range. We will return the pointer to
6059 	 * the base page and the offset of this page within the
6060 	 * sg entry's range.
6061 	 */
6062 	*offset = 0;
6063 	if (unlikely(radix_tree_exception(sg))) {
6064 		unsigned long base =
6065 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
6066 
6067 		sg = radix_tree_lookup(&iter->radix, base);
6068 		GEM_BUG_ON(!sg);
6069 
6070 		*offset = n - base;
6071 	}
6072 
6073 	rcu_read_unlock();
6074 
6075 	return sg;
6076 }
6077 
6078 struct page *
i915_gem_object_get_page(struct drm_i915_gem_object * obj,unsigned int n)6079 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6080 {
6081 	struct scatterlist *sg;
6082 	unsigned int offset;
6083 
6084 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6085 
6086 	sg = i915_gem_object_get_sg(obj, n, &offset);
6087 	return nth_page(sg_page(sg), offset);
6088 }
6089 
6090 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6091 struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object * obj,unsigned int n)6092 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6093 			       unsigned int n)
6094 {
6095 	struct page *page;
6096 
6097 	page = i915_gem_object_get_page(obj, n);
6098 	if (!obj->mm.dirty)
6099 		set_page_dirty(page);
6100 
6101 	return page;
6102 }
6103 
6104 dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object * obj,unsigned long n)6105 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6106 				unsigned long n)
6107 {
6108 	struct scatterlist *sg;
6109 	unsigned int offset;
6110 
6111 	sg = i915_gem_object_get_sg(obj, n, &offset);
6112 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6113 }
6114 
i915_gem_object_attach_phys(struct drm_i915_gem_object * obj,int align)6115 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6116 {
6117 	struct sg_table *pages;
6118 	int err;
6119 
6120 	if (align > obj->base.size)
6121 		return -EINVAL;
6122 
6123 	if (obj->ops == &i915_gem_phys_ops)
6124 		return 0;
6125 
6126 	if (obj->ops != &i915_gem_object_ops)
6127 		return -EINVAL;
6128 
6129 	err = i915_gem_object_unbind(obj);
6130 	if (err)
6131 		return err;
6132 
6133 	mutex_lock(&obj->mm.lock);
6134 
6135 	if (obj->mm.madv != I915_MADV_WILLNEED) {
6136 		err = -EFAULT;
6137 		goto err_unlock;
6138 	}
6139 
6140 	if (obj->mm.quirked) {
6141 		err = -EFAULT;
6142 		goto err_unlock;
6143 	}
6144 
6145 	if (obj->mm.mapping) {
6146 		err = -EBUSY;
6147 		goto err_unlock;
6148 	}
6149 
6150 	pages = __i915_gem_object_unset_pages(obj);
6151 
6152 	obj->ops = &i915_gem_phys_ops;
6153 
6154 	err = ____i915_gem_object_get_pages(obj);
6155 	if (err)
6156 		goto err_xfer;
6157 
6158 	/* Perma-pin (until release) the physical set of pages */
6159 	__i915_gem_object_pin_pages(obj);
6160 
6161 	if (!IS_ERR_OR_NULL(pages))
6162 		i915_gem_object_ops.put_pages(obj, pages);
6163 	mutex_unlock(&obj->mm.lock);
6164 	return 0;
6165 
6166 err_xfer:
6167 	obj->ops = &i915_gem_object_ops;
6168 	if (!IS_ERR_OR_NULL(pages)) {
6169 		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6170 
6171 		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6172 	}
6173 err_unlock:
6174 	mutex_unlock(&obj->mm.lock);
6175 	return err;
6176 }
6177 
6178 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6179 #include "selftests/scatterlist.c"
6180 #include "selftests/mock_gem_device.c"
6181 #include "selftests/huge_gem_object.c"
6182 #include "selftests/huge_pages.c"
6183 #include "selftests/i915_gem_object.c"
6184 #include "selftests/i915_gem_coherency.c"
6185 #endif
6186