1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <linux/dma-fence-array.h>
29 #include <linux/kthread.h>
30 #include <linux/dma-resv.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/slab.h>
33 #include <linux/stop_machine.h>
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36 #include <linux/dma-buf.h>
37 #include <linux/mman.h>
38
39 #include <drm/drm_cache.h>
40 #include <drm/drm_vma_manager.h>
41
42 #include "display/intel_display.h"
43 #include "display/intel_frontbuffer.h"
44
45 #include "gem/i915_gem_clflush.h"
46 #include "gem/i915_gem_context.h"
47 #include "gem/i915_gem_ioctls.h"
48 #include "gem/i915_gem_mman.h"
49 #include "gem/i915_gem_pm.h"
50 #include "gem/i915_gem_region.h"
51 #include "gem/i915_gem_userptr.h"
52 #include "gt/intel_engine_user.h"
53 #include "gt/intel_gt.h"
54 #include "gt/intel_gt_pm.h"
55 #include "gt/intel_workarounds.h"
56
57 #include "i915_drv.h"
58 #include "i915_file_private.h"
59 #include "i915_trace.h"
60 #include "i915_vgpu.h"
61 #include "intel_pm.h"
62
63 static int
insert_mappable_node(struct i915_ggtt * ggtt,struct drm_mm_node * node,u32 size)64 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
65 {
66 int err;
67
68 err = mutex_lock_interruptible(&ggtt->vm.mutex);
69 if (err)
70 return err;
71
72 memset(node, 0, sizeof(*node));
73 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
74 size, 0, I915_COLOR_UNEVICTABLE,
75 0, ggtt->mappable_end,
76 DRM_MM_INSERT_LOW);
77
78 mutex_unlock(&ggtt->vm.mutex);
79
80 return err;
81 }
82
83 static void
remove_mappable_node(struct i915_ggtt * ggtt,struct drm_mm_node * node)84 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
85 {
86 mutex_lock(&ggtt->vm.mutex);
87 drm_mm_remove_node(node);
88 mutex_unlock(&ggtt->vm.mutex);
89 }
90
91 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file)
94 {
95 struct drm_i915_private *i915 = to_i915(dev);
96 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
97 struct drm_i915_gem_get_aperture *args = data;
98 struct i915_vma *vma;
99 u64 pinned;
100
101 if (mutex_lock_interruptible(&ggtt->vm.mutex))
102 return -EINTR;
103
104 pinned = ggtt->vm.reserved;
105 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
106 if (i915_vma_is_pinned(vma))
107 pinned += vma->node.size;
108
109 mutex_unlock(&ggtt->vm.mutex);
110
111 args->aper_size = ggtt->vm.total;
112 args->aper_available_size = args->aper_size - pinned;
113
114 return 0;
115 }
116
i915_gem_object_unbind(struct drm_i915_gem_object * obj,unsigned long flags)117 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
118 unsigned long flags)
119 {
120 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
121 bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
122 LIST_HEAD(still_in_list);
123 intel_wakeref_t wakeref;
124 struct i915_vma *vma;
125 int ret;
126
127 assert_object_held(obj);
128
129 if (list_empty(&obj->vma.list))
130 return 0;
131
132 /*
133 * As some machines use ACPI to handle runtime-resume callbacks, and
134 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
135 * as they are required by the shrinker. Ergo, we wake the device up
136 * first just in case.
137 */
138 wakeref = intel_runtime_pm_get(rpm);
139
140 try_again:
141 ret = 0;
142 spin_lock(&obj->vma.lock);
143 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
144 struct i915_vma,
145 obj_link))) {
146 list_move_tail(&vma->obj_link, &still_in_list);
147 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
148 continue;
149
150 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
151 ret = -EBUSY;
152 break;
153 }
154
155 /*
156 * Requiring the vm destructor to take the object lock
157 * before destroying a vma would help us eliminate the
158 * i915_vm_tryget() here, AND thus also the barrier stuff
159 * at the end. That's an easy fix, but sleeping locks in
160 * a kthread should generally be avoided.
161 */
162 ret = -EAGAIN;
163 if (!i915_vm_tryget(vma->vm))
164 break;
165
166 spin_unlock(&obj->vma.lock);
167
168 /*
169 * Since i915_vma_parked() takes the object lock
170 * before vma destruction, it won't race us here,
171 * and destroy the vma from under us.
172 */
173
174 ret = -EBUSY;
175 if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
176 assert_object_held(vma->obj);
177 ret = i915_vma_unbind_async(vma, vm_trylock);
178 }
179
180 if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
181 !i915_vma_is_active(vma))) {
182 if (vm_trylock) {
183 if (mutex_trylock(&vma->vm->mutex)) {
184 ret = __i915_vma_unbind(vma);
185 mutex_unlock(&vma->vm->mutex);
186 }
187 } else {
188 ret = i915_vma_unbind(vma);
189 }
190 }
191
192 i915_vm_put(vma->vm);
193 spin_lock(&obj->vma.lock);
194 }
195 list_splice_init(&still_in_list, &obj->vma.list);
196 spin_unlock(&obj->vma.lock);
197
198 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
199 rcu_barrier(); /* flush the i915_vm_release() */
200 goto try_again;
201 }
202
203 intel_runtime_pm_put(rpm, wakeref);
204
205 return ret;
206 }
207
208 static int
shmem_pread(struct page * page,int offset,int len,char __user * user_data,bool needs_clflush)209 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
210 bool needs_clflush)
211 {
212 char *vaddr;
213 int ret;
214
215 vaddr = kmap(page);
216
217 if (needs_clflush)
218 drm_clflush_virt_range(vaddr + offset, len);
219
220 ret = __copy_to_user(user_data, vaddr + offset, len);
221
222 kunmap(page);
223
224 return ret ? -EFAULT : 0;
225 }
226
227 static int
i915_gem_shmem_pread(struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args)228 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
229 struct drm_i915_gem_pread *args)
230 {
231 unsigned int needs_clflush;
232 unsigned int idx, offset;
233 char __user *user_data;
234 u64 remain;
235 int ret;
236
237 ret = i915_gem_object_lock_interruptible(obj, NULL);
238 if (ret)
239 return ret;
240
241 ret = i915_gem_object_pin_pages(obj);
242 if (ret)
243 goto err_unlock;
244
245 ret = i915_gem_object_prepare_read(obj, &needs_clflush);
246 if (ret)
247 goto err_unpin;
248
249 i915_gem_object_finish_access(obj);
250 i915_gem_object_unlock(obj);
251
252 remain = args->size;
253 user_data = u64_to_user_ptr(args->data_ptr);
254 offset = offset_in_page(args->offset);
255 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
256 struct page *page = i915_gem_object_get_page(obj, idx);
257 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
258
259 ret = shmem_pread(page, offset, length, user_data,
260 needs_clflush);
261 if (ret)
262 break;
263
264 remain -= length;
265 user_data += length;
266 offset = 0;
267 }
268
269 i915_gem_object_unpin_pages(obj);
270 return ret;
271
272 err_unpin:
273 i915_gem_object_unpin_pages(obj);
274 err_unlock:
275 i915_gem_object_unlock(obj);
276 return ret;
277 }
278
279 static inline bool
gtt_user_read(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)280 gtt_user_read(struct io_mapping *mapping,
281 loff_t base, int offset,
282 char __user *user_data, int length)
283 {
284 void __iomem *vaddr;
285 unsigned long unwritten;
286
287 /* We can use the cpu mem copy function because this is X86. */
288 vaddr = io_mapping_map_atomic_wc(mapping, base);
289 unwritten = __copy_to_user_inatomic(user_data,
290 (void __force *)vaddr + offset,
291 length);
292 io_mapping_unmap_atomic(vaddr);
293 if (unwritten) {
294 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
295 unwritten = copy_to_user(user_data,
296 (void __force *)vaddr + offset,
297 length);
298 io_mapping_unmap(vaddr);
299 }
300 return unwritten;
301 }
302
i915_gem_gtt_prepare(struct drm_i915_gem_object * obj,struct drm_mm_node * node,bool write)303 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
304 struct drm_mm_node *node,
305 bool write)
306 {
307 struct drm_i915_private *i915 = to_i915(obj->base.dev);
308 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
309 struct i915_vma *vma;
310 struct i915_gem_ww_ctx ww;
311 int ret;
312
313 i915_gem_ww_ctx_init(&ww, true);
314 retry:
315 vma = ERR_PTR(-ENODEV);
316 ret = i915_gem_object_lock(obj, &ww);
317 if (ret)
318 goto err_ww;
319
320 ret = i915_gem_object_set_to_gtt_domain(obj, write);
321 if (ret)
322 goto err_ww;
323
324 if (!i915_gem_object_is_tiled(obj))
325 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
326 PIN_MAPPABLE |
327 PIN_NONBLOCK /* NOWARN */ |
328 PIN_NOEVICT);
329 if (vma == ERR_PTR(-EDEADLK)) {
330 ret = -EDEADLK;
331 goto err_ww;
332 } else if (!IS_ERR(vma)) {
333 node->start = i915_ggtt_offset(vma);
334 node->flags = 0;
335 } else {
336 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
337 if (ret)
338 goto err_ww;
339 GEM_BUG_ON(!drm_mm_node_allocated(node));
340 vma = NULL;
341 }
342
343 ret = i915_gem_object_pin_pages(obj);
344 if (ret) {
345 if (drm_mm_node_allocated(node)) {
346 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
347 remove_mappable_node(ggtt, node);
348 } else {
349 i915_vma_unpin(vma);
350 }
351 }
352
353 err_ww:
354 if (ret == -EDEADLK) {
355 ret = i915_gem_ww_ctx_backoff(&ww);
356 if (!ret)
357 goto retry;
358 }
359 i915_gem_ww_ctx_fini(&ww);
360
361 return ret ? ERR_PTR(ret) : vma;
362 }
363
i915_gem_gtt_cleanup(struct drm_i915_gem_object * obj,struct drm_mm_node * node,struct i915_vma * vma)364 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
365 struct drm_mm_node *node,
366 struct i915_vma *vma)
367 {
368 struct drm_i915_private *i915 = to_i915(obj->base.dev);
369 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
370
371 i915_gem_object_unpin_pages(obj);
372 if (drm_mm_node_allocated(node)) {
373 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
374 remove_mappable_node(ggtt, node);
375 } else {
376 i915_vma_unpin(vma);
377 }
378 }
379
380 static int
i915_gem_gtt_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * args)381 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
382 const struct drm_i915_gem_pread *args)
383 {
384 struct drm_i915_private *i915 = to_i915(obj->base.dev);
385 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
386 intel_wakeref_t wakeref;
387 struct drm_mm_node node;
388 void __user *user_data;
389 struct i915_vma *vma;
390 u64 remain, offset;
391 int ret = 0;
392
393 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
394
395 vma = i915_gem_gtt_prepare(obj, &node, false);
396 if (IS_ERR(vma)) {
397 ret = PTR_ERR(vma);
398 goto out_rpm;
399 }
400
401 user_data = u64_to_user_ptr(args->data_ptr);
402 remain = args->size;
403 offset = args->offset;
404
405 while (remain > 0) {
406 /* Operation in this page
407 *
408 * page_base = page offset within aperture
409 * page_offset = offset within page
410 * page_length = bytes to copy for this page
411 */
412 u32 page_base = node.start;
413 unsigned page_offset = offset_in_page(offset);
414 unsigned page_length = PAGE_SIZE - page_offset;
415 page_length = remain < page_length ? remain : page_length;
416 if (drm_mm_node_allocated(&node)) {
417 ggtt->vm.insert_page(&ggtt->vm,
418 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
419 node.start, I915_CACHE_NONE, 0);
420 } else {
421 page_base += offset & PAGE_MASK;
422 }
423
424 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
425 user_data, page_length)) {
426 ret = -EFAULT;
427 break;
428 }
429
430 remain -= page_length;
431 user_data += page_length;
432 offset += page_length;
433 }
434
435 i915_gem_gtt_cleanup(obj, &node, vma);
436 out_rpm:
437 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
438 return ret;
439 }
440
441 /**
442 * Reads data from the object referenced by handle.
443 * @dev: drm device pointer
444 * @data: ioctl data blob
445 * @file: drm file pointer
446 *
447 * On error, the contents of *data are undefined.
448 */
449 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)450 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
451 struct drm_file *file)
452 {
453 struct drm_i915_private *i915 = to_i915(dev);
454 struct drm_i915_gem_pread *args = data;
455 struct drm_i915_gem_object *obj;
456 int ret;
457
458 /* PREAD is disallowed for all platforms after TGL-LP. This also
459 * covers all platforms with local memory.
460 */
461 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
462 return -EOPNOTSUPP;
463
464 if (args->size == 0)
465 return 0;
466
467 if (!access_ok(u64_to_user_ptr(args->data_ptr),
468 args->size))
469 return -EFAULT;
470
471 obj = i915_gem_object_lookup(file, args->handle);
472 if (!obj)
473 return -ENOENT;
474
475 /* Bounds check source. */
476 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
477 ret = -EINVAL;
478 goto out;
479 }
480
481 trace_i915_gem_object_pread(obj, args->offset, args->size);
482 ret = -ENODEV;
483 if (obj->ops->pread)
484 ret = obj->ops->pread(obj, args);
485 if (ret != -ENODEV)
486 goto out;
487
488 ret = i915_gem_object_wait(obj,
489 I915_WAIT_INTERRUPTIBLE,
490 MAX_SCHEDULE_TIMEOUT);
491 if (ret)
492 goto out;
493
494 ret = i915_gem_shmem_pread(obj, args);
495 if (ret == -EFAULT || ret == -ENODEV)
496 ret = i915_gem_gtt_pread(obj, args);
497
498 out:
499 i915_gem_object_put(obj);
500 return ret;
501 }
502
503 /* This is the fast write path which cannot handle
504 * page faults in the source data
505 */
506
507 static inline bool
ggtt_write(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)508 ggtt_write(struct io_mapping *mapping,
509 loff_t base, int offset,
510 char __user *user_data, int length)
511 {
512 void __iomem *vaddr;
513 unsigned long unwritten;
514
515 /* We can use the cpu mem copy function because this is X86. */
516 vaddr = io_mapping_map_atomic_wc(mapping, base);
517 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
518 user_data, length);
519 io_mapping_unmap_atomic(vaddr);
520 if (unwritten) {
521 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
522 unwritten = copy_from_user((void __force *)vaddr + offset,
523 user_data, length);
524 io_mapping_unmap(vaddr);
525 }
526
527 return unwritten;
528 }
529
530 /**
531 * This is the fast pwrite path, where we copy the data directly from the
532 * user into the GTT, uncached.
533 * @obj: i915 GEM object
534 * @args: pwrite arguments structure
535 */
536 static int
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)537 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
538 const struct drm_i915_gem_pwrite *args)
539 {
540 struct drm_i915_private *i915 = to_i915(obj->base.dev);
541 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
542 struct intel_runtime_pm *rpm = &i915->runtime_pm;
543 intel_wakeref_t wakeref;
544 struct drm_mm_node node;
545 struct i915_vma *vma;
546 u64 remain, offset;
547 void __user *user_data;
548 int ret = 0;
549
550 if (i915_gem_object_has_struct_page(obj)) {
551 /*
552 * Avoid waking the device up if we can fallback, as
553 * waking/resuming is very slow (worst-case 10-100 ms
554 * depending on PCI sleeps and our own resume time).
555 * This easily dwarfs any performance advantage from
556 * using the cache bypass of indirect GGTT access.
557 */
558 wakeref = intel_runtime_pm_get_if_in_use(rpm);
559 if (!wakeref)
560 return -EFAULT;
561 } else {
562 /* No backing pages, no fallback, we must force GGTT access */
563 wakeref = intel_runtime_pm_get(rpm);
564 }
565
566 vma = i915_gem_gtt_prepare(obj, &node, true);
567 if (IS_ERR(vma)) {
568 ret = PTR_ERR(vma);
569 goto out_rpm;
570 }
571
572 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
573
574 user_data = u64_to_user_ptr(args->data_ptr);
575 offset = args->offset;
576 remain = args->size;
577 while (remain) {
578 /* Operation in this page
579 *
580 * page_base = page offset within aperture
581 * page_offset = offset within page
582 * page_length = bytes to copy for this page
583 */
584 u32 page_base = node.start;
585 unsigned int page_offset = offset_in_page(offset);
586 unsigned int page_length = PAGE_SIZE - page_offset;
587 page_length = remain < page_length ? remain : page_length;
588 if (drm_mm_node_allocated(&node)) {
589 /* flush the write before we modify the GGTT */
590 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
591 ggtt->vm.insert_page(&ggtt->vm,
592 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
593 node.start, I915_CACHE_NONE, 0);
594 wmb(); /* flush modifications to the GGTT (insert_page) */
595 } else {
596 page_base += offset & PAGE_MASK;
597 }
598 /* If we get a fault while copying data, then (presumably) our
599 * source page isn't available. Return the error and we'll
600 * retry in the slow path.
601 * If the object is non-shmem backed, we retry again with the
602 * path that handles page fault.
603 */
604 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
605 user_data, page_length)) {
606 ret = -EFAULT;
607 break;
608 }
609
610 remain -= page_length;
611 user_data += page_length;
612 offset += page_length;
613 }
614
615 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
616 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
617
618 i915_gem_gtt_cleanup(obj, &node, vma);
619 out_rpm:
620 intel_runtime_pm_put(rpm, wakeref);
621 return ret;
622 }
623
624 /* Per-page copy function for the shmem pwrite fastpath.
625 * Flushes invalid cachelines before writing to the target if
626 * needs_clflush_before is set and flushes out any written cachelines after
627 * writing if needs_clflush is set.
628 */
629 static int
shmem_pwrite(struct page * page,int offset,int len,char __user * user_data,bool needs_clflush_before,bool needs_clflush_after)630 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
631 bool needs_clflush_before,
632 bool needs_clflush_after)
633 {
634 char *vaddr;
635 int ret;
636
637 vaddr = kmap(page);
638
639 if (needs_clflush_before)
640 drm_clflush_virt_range(vaddr + offset, len);
641
642 ret = __copy_from_user(vaddr + offset, user_data, len);
643 if (!ret && needs_clflush_after)
644 drm_clflush_virt_range(vaddr + offset, len);
645
646 kunmap(page);
647
648 return ret ? -EFAULT : 0;
649 }
650
651 static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)652 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
653 const struct drm_i915_gem_pwrite *args)
654 {
655 unsigned int partial_cacheline_write;
656 unsigned int needs_clflush;
657 unsigned int offset, idx;
658 void __user *user_data;
659 u64 remain;
660 int ret;
661
662 ret = i915_gem_object_lock_interruptible(obj, NULL);
663 if (ret)
664 return ret;
665
666 ret = i915_gem_object_pin_pages(obj);
667 if (ret)
668 goto err_unlock;
669
670 ret = i915_gem_object_prepare_write(obj, &needs_clflush);
671 if (ret)
672 goto err_unpin;
673
674 i915_gem_object_finish_access(obj);
675 i915_gem_object_unlock(obj);
676
677 /* If we don't overwrite a cacheline completely we need to be
678 * careful to have up-to-date data by first clflushing. Don't
679 * overcomplicate things and flush the entire patch.
680 */
681 partial_cacheline_write = 0;
682 if (needs_clflush & CLFLUSH_BEFORE)
683 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
684
685 user_data = u64_to_user_ptr(args->data_ptr);
686 remain = args->size;
687 offset = offset_in_page(args->offset);
688 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
689 struct page *page = i915_gem_object_get_page(obj, idx);
690 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
691
692 ret = shmem_pwrite(page, offset, length, user_data,
693 (offset | length) & partial_cacheline_write,
694 needs_clflush & CLFLUSH_AFTER);
695 if (ret)
696 break;
697
698 remain -= length;
699 user_data += length;
700 offset = 0;
701 }
702
703 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
704
705 i915_gem_object_unpin_pages(obj);
706 return ret;
707
708 err_unpin:
709 i915_gem_object_unpin_pages(obj);
710 err_unlock:
711 i915_gem_object_unlock(obj);
712 return ret;
713 }
714
715 /**
716 * Writes data to the object referenced by handle.
717 * @dev: drm device
718 * @data: ioctl data blob
719 * @file: drm file
720 *
721 * On error, the contents of the buffer that were to be modified are undefined.
722 */
723 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)724 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
725 struct drm_file *file)
726 {
727 struct drm_i915_private *i915 = to_i915(dev);
728 struct drm_i915_gem_pwrite *args = data;
729 struct drm_i915_gem_object *obj;
730 int ret;
731
732 /* PWRITE is disallowed for all platforms after TGL-LP. This also
733 * covers all platforms with local memory.
734 */
735 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
736 return -EOPNOTSUPP;
737
738 if (args->size == 0)
739 return 0;
740
741 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
742 return -EFAULT;
743
744 obj = i915_gem_object_lookup(file, args->handle);
745 if (!obj)
746 return -ENOENT;
747
748 /* Bounds check destination. */
749 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
750 ret = -EINVAL;
751 goto err;
752 }
753
754 /* Writes not allowed into this read-only object */
755 if (i915_gem_object_is_readonly(obj)) {
756 ret = -EINVAL;
757 goto err;
758 }
759
760 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
761
762 ret = -ENODEV;
763 if (obj->ops->pwrite)
764 ret = obj->ops->pwrite(obj, args);
765 if (ret != -ENODEV)
766 goto err;
767
768 ret = i915_gem_object_wait(obj,
769 I915_WAIT_INTERRUPTIBLE |
770 I915_WAIT_ALL,
771 MAX_SCHEDULE_TIMEOUT);
772 if (ret)
773 goto err;
774
775 ret = -EFAULT;
776 /* We can only do the GTT pwrite on untiled buffers, as otherwise
777 * it would end up going through the fenced access, and we'll get
778 * different detiling behavior between reading and writing.
779 * pread/pwrite currently are reading and writing from the CPU
780 * perspective, requiring manual detiling by the client.
781 */
782 if (!i915_gem_object_has_struct_page(obj) ||
783 i915_gem_cpu_write_needs_clflush(obj))
784 /* Note that the gtt paths might fail with non-page-backed user
785 * pointers (e.g. gtt mappings when moving data between
786 * textures). Fallback to the shmem path in that case.
787 */
788 ret = i915_gem_gtt_pwrite_fast(obj, args);
789
790 if (ret == -EFAULT || ret == -ENOSPC) {
791 if (i915_gem_object_has_struct_page(obj))
792 ret = i915_gem_shmem_pwrite(obj, args);
793 }
794
795 err:
796 i915_gem_object_put(obj);
797 return ret;
798 }
799
800 /**
801 * Called when user space has done writes to this buffer
802 * @dev: drm device
803 * @data: ioctl data blob
804 * @file: drm file
805 */
806 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)807 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
808 struct drm_file *file)
809 {
810 struct drm_i915_gem_sw_finish *args = data;
811 struct drm_i915_gem_object *obj;
812
813 obj = i915_gem_object_lookup(file, args->handle);
814 if (!obj)
815 return -ENOENT;
816
817 /*
818 * Proxy objects are barred from CPU access, so there is no
819 * need to ban sw_finish as it is a nop.
820 */
821
822 /* Pinned buffers may be scanout, so flush the cache */
823 i915_gem_object_flush_if_display(obj);
824 i915_gem_object_put(obj);
825
826 return 0;
827 }
828
i915_gem_runtime_suspend(struct drm_i915_private * i915)829 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
830 {
831 struct drm_i915_gem_object *obj, *on;
832 int i;
833
834 /*
835 * Only called during RPM suspend. All users of the userfault_list
836 * must be holding an RPM wakeref to ensure that this can not
837 * run concurrently with themselves (and use the struct_mutex for
838 * protection between themselves).
839 */
840
841 list_for_each_entry_safe(obj, on,
842 &to_gt(i915)->ggtt->userfault_list, userfault_link)
843 __i915_gem_object_release_mmap_gtt(obj);
844
845 list_for_each_entry_safe(obj, on,
846 &to_gt(i915)->lmem_userfault_list, userfault_link)
847 i915_gem_object_runtime_pm_release_mmap_offset(obj);
848
849 /*
850 * The fence will be lost when the device powers down. If any were
851 * in use by hardware (i.e. they are pinned), we should not be powering
852 * down! All other fences will be reacquired by the user upon waking.
853 */
854 for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
855 struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
856
857 /*
858 * Ideally we want to assert that the fence register is not
859 * live at this point (i.e. that no piece of code will be
860 * trying to write through fence + GTT, as that both violates
861 * our tracking of activity and associated locking/barriers,
862 * but also is illegal given that the hw is powered down).
863 *
864 * Previously we used reg->pin_count as a "liveness" indicator.
865 * That is not sufficient, and we need a more fine-grained
866 * tool if we want to have a sanity check here.
867 */
868
869 if (!reg->vma)
870 continue;
871
872 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
873 reg->dirty = true;
874 }
875 }
876
discard_ggtt_vma(struct i915_vma * vma)877 static void discard_ggtt_vma(struct i915_vma *vma)
878 {
879 struct drm_i915_gem_object *obj = vma->obj;
880
881 spin_lock(&obj->vma.lock);
882 if (!RB_EMPTY_NODE(&vma->obj_node)) {
883 rb_erase(&vma->obj_node, &obj->vma.tree);
884 RB_CLEAR_NODE(&vma->obj_node);
885 }
886 spin_unlock(&obj->vma.lock);
887 }
888
889 struct i915_vma *
i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object * obj,struct i915_gem_ww_ctx * ww,const struct i915_gtt_view * view,u64 size,u64 alignment,u64 flags)890 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
891 struct i915_gem_ww_ctx *ww,
892 const struct i915_gtt_view *view,
893 u64 size, u64 alignment, u64 flags)
894 {
895 struct drm_i915_private *i915 = to_i915(obj->base.dev);
896 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
897 struct i915_vma *vma;
898 int ret;
899
900 GEM_WARN_ON(!ww);
901
902 if (flags & PIN_MAPPABLE &&
903 (!view || view->type == I915_GTT_VIEW_NORMAL)) {
904 /*
905 * If the required space is larger than the available
906 * aperture, we will not able to find a slot for the
907 * object and unbinding the object now will be in
908 * vain. Worse, doing so may cause us to ping-pong
909 * the object in and out of the Global GTT and
910 * waste a lot of cycles under the mutex.
911 */
912 if (obj->base.size > ggtt->mappable_end)
913 return ERR_PTR(-E2BIG);
914
915 /*
916 * If NONBLOCK is set the caller is optimistically
917 * trying to cache the full object within the mappable
918 * aperture, and *must* have a fallback in place for
919 * situations where we cannot bind the object. We
920 * can be a little more lax here and use the fallback
921 * more often to avoid costly migrations of ourselves
922 * and other objects within the aperture.
923 *
924 * Half-the-aperture is used as a simple heuristic.
925 * More interesting would to do search for a free
926 * block prior to making the commitment to unbind.
927 * That caters for the self-harm case, and with a
928 * little more heuristics (e.g. NOFAULT, NOEVICT)
929 * we could try to minimise harm to others.
930 */
931 if (flags & PIN_NONBLOCK &&
932 obj->base.size > ggtt->mappable_end / 2)
933 return ERR_PTR(-ENOSPC);
934 }
935
936 new_vma:
937 vma = i915_vma_instance(obj, &ggtt->vm, view);
938 if (IS_ERR(vma))
939 return vma;
940
941 if (i915_vma_misplaced(vma, size, alignment, flags)) {
942 if (flags & PIN_NONBLOCK) {
943 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
944 return ERR_PTR(-ENOSPC);
945
946 /*
947 * If this misplaced vma is too big (i.e, at-least
948 * half the size of aperture) or hasn't been pinned
949 * mappable before, we ignore the misplacement when
950 * PIN_NONBLOCK is set in order to avoid the ping-pong
951 * issue described above. In other words, we try to
952 * avoid the costly operation of unbinding this vma
953 * from the GGTT and rebinding it back because there
954 * may not be enough space for this vma in the aperture.
955 */
956 if (flags & PIN_MAPPABLE &&
957 (vma->fence_size > ggtt->mappable_end / 2 ||
958 !i915_vma_is_map_and_fenceable(vma)))
959 return ERR_PTR(-ENOSPC);
960 }
961
962 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
963 discard_ggtt_vma(vma);
964 goto new_vma;
965 }
966
967 ret = i915_vma_unbind(vma);
968 if (ret)
969 return ERR_PTR(ret);
970 }
971
972 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
973
974 if (ret)
975 return ERR_PTR(ret);
976
977 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
978 mutex_lock(&ggtt->vm.mutex);
979 i915_vma_revoke_fence(vma);
980 mutex_unlock(&ggtt->vm.mutex);
981 }
982
983 ret = i915_vma_wait_for_bind(vma);
984 if (ret) {
985 i915_vma_unpin(vma);
986 return ERR_PTR(ret);
987 }
988
989 return vma;
990 }
991
992 struct i915_vma * __must_check
i915_gem_object_ggtt_pin(struct drm_i915_gem_object * obj,const struct i915_gtt_view * view,u64 size,u64 alignment,u64 flags)993 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
994 const struct i915_gtt_view *view,
995 u64 size, u64 alignment, u64 flags)
996 {
997 struct i915_gem_ww_ctx ww;
998 struct i915_vma *ret;
999 int err;
1000
1001 for_i915_gem_ww(&ww, err, true) {
1002 err = i915_gem_object_lock(obj, &ww);
1003 if (err)
1004 continue;
1005
1006 ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1007 alignment, flags);
1008 if (IS_ERR(ret))
1009 err = PTR_ERR(ret);
1010 }
1011
1012 return err ? ERR_PTR(err) : ret;
1013 }
1014
1015 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1016 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1017 struct drm_file *file_priv)
1018 {
1019 struct drm_i915_private *i915 = to_i915(dev);
1020 struct drm_i915_gem_madvise *args = data;
1021 struct drm_i915_gem_object *obj;
1022 int err;
1023
1024 switch (args->madv) {
1025 case I915_MADV_DONTNEED:
1026 case I915_MADV_WILLNEED:
1027 break;
1028 default:
1029 return -EINVAL;
1030 }
1031
1032 obj = i915_gem_object_lookup(file_priv, args->handle);
1033 if (!obj)
1034 return -ENOENT;
1035
1036 err = i915_gem_object_lock_interruptible(obj, NULL);
1037 if (err)
1038 goto out;
1039
1040 if (i915_gem_object_has_pages(obj) &&
1041 i915_gem_object_is_tiled(obj) &&
1042 i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1043 if (obj->mm.madv == I915_MADV_WILLNEED) {
1044 GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1045 i915_gem_object_clear_tiling_quirk(obj);
1046 i915_gem_object_make_shrinkable(obj);
1047 }
1048 if (args->madv == I915_MADV_WILLNEED) {
1049 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1050 i915_gem_object_make_unshrinkable(obj);
1051 i915_gem_object_set_tiling_quirk(obj);
1052 }
1053 }
1054
1055 if (obj->mm.madv != __I915_MADV_PURGED) {
1056 obj->mm.madv = args->madv;
1057 if (obj->ops->adjust_lru)
1058 obj->ops->adjust_lru(obj);
1059 }
1060
1061 if (i915_gem_object_has_pages(obj) ||
1062 i915_gem_object_has_self_managed_shrink_list(obj)) {
1063 unsigned long flags;
1064
1065 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1066 if (!list_empty(&obj->mm.link)) {
1067 struct list_head *list;
1068
1069 if (obj->mm.madv != I915_MADV_WILLNEED)
1070 list = &i915->mm.purge_list;
1071 else
1072 list = &i915->mm.shrink_list;
1073 list_move_tail(&obj->mm.link, list);
1074
1075 }
1076 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1077 }
1078
1079 /* if the object is no longer attached, discard its backing storage */
1080 if (obj->mm.madv == I915_MADV_DONTNEED &&
1081 !i915_gem_object_has_pages(obj))
1082 i915_gem_object_truncate(obj);
1083
1084 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1085
1086 i915_gem_object_unlock(obj);
1087 out:
1088 i915_gem_object_put(obj);
1089 return err;
1090 }
1091
1092 /*
1093 * A single pass should suffice to release all the freed objects (along most
1094 * call paths), but be a little more paranoid in that freeing the objects does
1095 * take a little amount of time, during which the rcu callbacks could have added
1096 * new objects into the freed list, and armed the work again.
1097 */
i915_gem_drain_freed_objects(struct drm_i915_private * i915)1098 void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1099 {
1100 while (atomic_read(&i915->mm.free_count)) {
1101 flush_work(&i915->mm.free_work);
1102 flush_delayed_work(&i915->bdev.wq);
1103 rcu_barrier();
1104 }
1105 }
1106
1107 /*
1108 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1109 * have workers that are armed by RCU and then rearm themselves in their
1110 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1111 * waiting for the RCU grace period so that we catch work queued via RCU from
1112 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1113 * result, we make an assumption that we only don't require more than 3 passes
1114 * to catch all _recursive_ RCU delayed work.
1115 */
i915_gem_drain_workqueue(struct drm_i915_private * i915)1116 void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1117 {
1118 int i;
1119
1120 for (i = 0; i < 3; i++) {
1121 flush_workqueue(i915->wq);
1122 rcu_barrier();
1123 i915_gem_drain_freed_objects(i915);
1124 }
1125
1126 drain_workqueue(i915->wq);
1127 }
1128
i915_gem_init(struct drm_i915_private * dev_priv)1129 int i915_gem_init(struct drm_i915_private *dev_priv)
1130 {
1131 int ret;
1132
1133 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1134 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1135 RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1136
1137 ret = i915_gem_init_userptr(dev_priv);
1138 if (ret)
1139 return ret;
1140
1141 intel_uc_fetch_firmwares(&to_gt(dev_priv)->uc);
1142 intel_wopcm_init(&dev_priv->wopcm);
1143
1144 ret = i915_init_ggtt(dev_priv);
1145 if (ret) {
1146 GEM_BUG_ON(ret == -EIO);
1147 goto err_unlock;
1148 }
1149
1150 /*
1151 * Despite its name intel_init_clock_gating applies both display
1152 * clock gating workarounds; GT mmio workarounds and the occasional
1153 * GT power context workaround. Worse, sometimes it includes a context
1154 * register workaround which we need to apply before we record the
1155 * default HW state for all contexts.
1156 *
1157 * FIXME: break up the workarounds and apply them at the right time!
1158 */
1159 intel_init_clock_gating(dev_priv);
1160
1161 ret = intel_gt_init(to_gt(dev_priv));
1162 if (ret)
1163 goto err_unlock;
1164
1165 return 0;
1166
1167 /*
1168 * Unwinding is complicated by that we want to handle -EIO to mean
1169 * disable GPU submission but keep KMS alive. We want to mark the
1170 * HW as irrevisibly wedged, but keep enough state around that the
1171 * driver doesn't explode during runtime.
1172 */
1173 err_unlock:
1174 i915_gem_drain_workqueue(dev_priv);
1175
1176 if (ret != -EIO)
1177 intel_uc_cleanup_firmwares(&to_gt(dev_priv)->uc);
1178
1179 if (ret == -EIO) {
1180 /*
1181 * Allow engines or uC initialisation to fail by marking the GPU
1182 * as wedged. But we only want to do this when the GPU is angry,
1183 * for all other failure, such as an allocation failure, bail.
1184 */
1185 if (!intel_gt_is_wedged(to_gt(dev_priv))) {
1186 i915_probe_error(dev_priv,
1187 "Failed to initialize GPU, declaring it wedged!\n");
1188 intel_gt_set_wedged(to_gt(dev_priv));
1189 }
1190
1191 /* Minimal basic recovery for KMS */
1192 ret = i915_ggtt_enable_hw(dev_priv);
1193 i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1194 intel_init_clock_gating(dev_priv);
1195 }
1196
1197 i915_gem_drain_freed_objects(dev_priv);
1198
1199 return ret;
1200 }
1201
i915_gem_driver_register(struct drm_i915_private * i915)1202 void i915_gem_driver_register(struct drm_i915_private *i915)
1203 {
1204 i915_gem_driver_register__shrinker(i915);
1205
1206 intel_engines_driver_register(i915);
1207 }
1208
i915_gem_driver_unregister(struct drm_i915_private * i915)1209 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1210 {
1211 i915_gem_driver_unregister__shrinker(i915);
1212 }
1213
i915_gem_driver_remove(struct drm_i915_private * dev_priv)1214 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1215 {
1216 intel_wakeref_auto_fini(&to_gt(dev_priv)->userfault_wakeref);
1217
1218 i915_gem_suspend_late(dev_priv);
1219 intel_gt_driver_remove(to_gt(dev_priv));
1220 dev_priv->uabi_engines = RB_ROOT;
1221
1222 /* Flush any outstanding unpin_work. */
1223 i915_gem_drain_workqueue(dev_priv);
1224
1225 i915_gem_drain_freed_objects(dev_priv);
1226 }
1227
i915_gem_driver_release(struct drm_i915_private * dev_priv)1228 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1229 {
1230 intel_gt_driver_release(to_gt(dev_priv));
1231
1232 intel_uc_cleanup_firmwares(&to_gt(dev_priv)->uc);
1233
1234 /* Flush any outstanding work, including i915_gem_context.release_work. */
1235 i915_gem_drain_workqueue(dev_priv);
1236
1237 drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1238 }
1239
i915_gem_init__mm(struct drm_i915_private * i915)1240 static void i915_gem_init__mm(struct drm_i915_private *i915)
1241 {
1242 spin_lock_init(&i915->mm.obj_lock);
1243
1244 init_llist_head(&i915->mm.free_list);
1245
1246 INIT_LIST_HEAD(&i915->mm.purge_list);
1247 INIT_LIST_HEAD(&i915->mm.shrink_list);
1248
1249 i915_gem_init__objects(i915);
1250 }
1251
i915_gem_init_early(struct drm_i915_private * dev_priv)1252 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1253 {
1254 i915_gem_init__mm(dev_priv);
1255 i915_gem_init__contexts(dev_priv);
1256
1257 spin_lock_init(&dev_priv->display.fb_tracking.lock);
1258 }
1259
i915_gem_cleanup_early(struct drm_i915_private * dev_priv)1260 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1261 {
1262 i915_gem_drain_freed_objects(dev_priv);
1263 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1264 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1265 drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1266 }
1267
i915_gem_open(struct drm_i915_private * i915,struct drm_file * file)1268 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1269 {
1270 struct drm_i915_file_private *file_priv;
1271 struct i915_drm_client *client;
1272 int ret = -ENOMEM;
1273
1274 DRM_DEBUG("\n");
1275
1276 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1277 if (!file_priv)
1278 goto err_alloc;
1279
1280 client = i915_drm_client_add(&i915->clients);
1281 if (IS_ERR(client)) {
1282 ret = PTR_ERR(client);
1283 goto err_client;
1284 }
1285
1286 file->driver_priv = file_priv;
1287 file_priv->dev_priv = i915;
1288 file_priv->file = file;
1289 file_priv->client = client;
1290
1291 file_priv->bsd_engine = -1;
1292 file_priv->hang_timestamp = jiffies;
1293
1294 ret = i915_gem_context_open(i915, file);
1295 if (ret)
1296 goto err_context;
1297
1298 return 0;
1299
1300 err_context:
1301 i915_drm_client_put(client);
1302 err_client:
1303 kfree(file_priv);
1304 err_alloc:
1305 return ret;
1306 }
1307
1308 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1309 #include "selftests/mock_gem_device.c"
1310 #include "selftests/i915_gem.c"
1311 #endif
1312